Science.gov

Sample records for active-unsterile neutrino mixing

  1. Theory for Neutrino Mixing

    NASA Astrophysics Data System (ADS)

    He, Xiao-Gang

    2016-07-01

    Since the discovery of neutrino oscillations, for which Takaaki Kajita and Arthur B. McDonald were awarded the 2015 Nobel prize in physics, tremendous progresses have been made in measuring the mixing angles which determine the oscillation pattern. A lot of theoretical efforts have been made to understand how neutrinos mix with each other. Present data show that in the standard parameterization of the mixing matrix, θ23 is close to π/4 and the CP violating phase is close to ‑ π/2. In this talk I report results obtained in arXiv:1505.01932 (Phys. Lett. B750(2015)620) and arXive:1404.01560 (Chin. J. Phys.53(2015)100101) and discuss some implications for theoretical model buildings for such mixing pattern. Specific examples for neutrino mixing based on A4 family symmetry are given.

  2. An Overview of Neutrino Mixing

    NASA Astrophysics Data System (ADS)

    Altarelli, G.

    2013-08-01

    We present a concise review of the recent important experimental developments on neutrino mixing (hints for sterile neutrinos, large θ13, possible non maximal θ23, approaching sensitivity on δ) and their implications on models of neutrino mixing. The new data disfavour many models but the surviving ones still span a wide range going from Anarchy (no structure, no symmetry in the lepton sector) to a maximum of symmetry, as for the models based on discrete non-abelian flavour groups.

  3. The Mystery of Neutrino Mixings

    NASA Astrophysics Data System (ADS)

    Altarelli, Guido

    2013-07-01

    In the last years we have learnt a lot about neutrino masses and mixings. Neutrinos are not all massless but their masses are very small. Probably masses are small because neutrinos are Majorana particles with masses inversely proportional to the large scale M of lepton number (L) violation, which turns out to be compatible with the GUT scale. We have understood that there is no contradiction between large neutrino mixings and small quark mixings, even in the context of GUTs and that neutrino masses fit well in the SUSY GUT picture. Out of equilibrium decays with CP and L violation of heavy RH neutrinos can produce a B-L asymmetry, then converted near the weak scale by instantons into an amount of B asymmetry compatible with observations (baryogenesis via leptogenesis). It appears that active neutrinos are not a significant component of Dark Matter in the Universe. A long list of models have been formulated over the years to understand neutrino masses and mixings. With the continuous improvement of the data most of the models have been discarded by experiment. The surviving models still span a wide range going from a maximum of symmetry, with discrete non-abelian flavour groups, to the opposite extreme of anarchy.

  4. Generalized perturbations in neutrino mixing

    NASA Astrophysics Data System (ADS)

    Liao, Jiajun; Marfatia, D.; Whisnant, K.

    2015-10-01

    We derive expressions for the neutrino mixing parameters that result from complex perturbations on (1) the Majorana neutrino mass matrix (in the basis of charged lepton mass eigenstates) and on (2) the charged lepton mass matrix, for arbitrary initial (unperturbed) mixing matrices. In the first case, we find that the phases of the elements of the perturbation matrix, and the initial values of the Dirac and Majorana phases, strongly impact the leading-order corrections to the neutrino mixing parameters and phases. For experimentally compatible scenarios wherein the initial neutrino mass matrix has μ -τ symmetry, we find that the Dirac phase can take any value under small perturbations. Similarly, in the second case, perturbations to the charged lepton mass matrix can generate large corrections to the mixing angles and phases of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. As an illustration of our generalized procedure, we apply it to a situation in which nonstandard scalar and nonstandard vector interactions simultaneously affect neutrino oscillations.

  5. Unveiling Neutrino Mixing and Leptonic CP Violation

    NASA Astrophysics Data System (ADS)

    Mena, Olga

    We review the present understanding of neutrino masses and mixings, discussing what are the unknowns in the three-family oscillation scenario. Despite the anticipated success coming from the planned long baseline neutrino experiments in unraveling the leptonic mixing sector, there are two important unknowns which may remain obscure: the mixing angle θ13 and the CP-phase δ. The measurement of these two parameters has led us to consider the combination of superbeams and neutrino factories as the key to unveil the neutrino oscillation picture.

  6. Unveiling neutrino mixing and leptonic CP violation

    SciTech Connect

    Mena, Olga; /Fermilab

    2005-01-01

    We review the present understanding of neutrino masses and mixings, discussing what are the unknowns in the three family oscillation scenario. Despite the anticipated success coming from the planned long baseline neutrino experiments in unraveling the leptonic mixing sector, there are two important unknowns which may remain obscure: the mixing angle {theta}{sub 13} and the CP-phase {delta}. The measurement of these two parameters has led us to consider the combination of superbeams and neutrino factories as the key to unveil the neutrino oscillation picture.

  7. Neutrino mixing and oscillations in astrophysical environments

    SciTech Connect

    Balantekin, A. B.

    2014-05-02

    A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

  8. Neutrino mass and mixing: Summary of the neutrino sessions

    SciTech Connect

    Bowles, T.J.

    1993-01-01

    A great deal of experimental and theoretical effort is underway to use neutrinos as a probe for Physics Beyond the Standard Model. Most of these efforts center on the questions of the possible existence of non zero neutrino mass and mixing. Sessions at the Moriond conferences have dealt with these questions at most of the meetings during the last several years and this year was no exception. Presentations covering most of the current and planned research in this field were presented and discussed. Although there is, at present, no definitive evidence for a non zero neutrino mass and mixing, several unresolved problems (in particular solar neutrinos) do seem to be indicating the likely existence of new neutrino properties. It is likely that before the end of this decade, efforts now being initiated will be able to determine whether or not the hints we are now seeing are really due to new physics.

  9. Testing nonunitarity of neutrino mixing matrices at neutrino factories

    SciTech Connect

    Goswami, Srubabati; Ota, Toshihiko

    2008-08-01

    In this paper we explore the effect of nonunitary neutrino mixing on neutrino oscillation probabilities both in vacuum and matter. In particular, we consider the {nu}{sub {mu}}{yields}{nu}{sub {tau}} channel and, using a neutrino factory as the source for {nu}{sub {mu}}'s, discuss the constraints that can be obtained on the moduli and phases of the parameters characterizing the violation of unitarity. We point out how the new CP violation phases present in the case where the nonunitary mixings give rise to spurious ''degenerate'' solutions in the parameter space. We also discuss how the true solutions can be extricated by combining measurements at several baselines.

  10. Neutrino Masses and Mixings in SO(10)

    NASA Astrophysics Data System (ADS)

    Abud, M.; Buccella, F.; Tramontano, F.; Falcone, D.; Ricciardi, G.

    Assuming a Zee-like matrix for the right-handed neutrino Majorana masses in the seesaw mechanism, one gets maximal mixing for vacuum solar oscillations, a very small value for Ue3 and an approximate degeneracy for the two lower neutrino masses. The scale of right-handed neutrino Majorana masses is in good agreement with the value expected in an SO(10) model with Pati-Salam SU(4)×SU(2)×SU(2) intermediate symmetry.

  11. Three-neutrino mixing: status and prospects

    NASA Astrophysics Data System (ADS)

    Marrone, A.; Capozzi, F.; Lisi, E.; Montanino, D.; Palazzo, A.

    2016-05-01

    We discuss the present knowledge of the neutrino oscillation parameters. In a three-neutrino scenario, neutrino oscillations depend on six parameters, two squared mass differences (Δm2, δm2), three mixing angles (θ 12, θ13 , θ 23) and one phase δ. While five out of these six parameters have been measured, the CP-violating phase δ remains unknown. Moreover, the octant of the mixing angle θ23 and the neutrino mass hierarchy are still undetermined. We update our previous analysis, by adding to the global fit the recent results of the antineutrino running of T2K, the first results of the NOvA experiment, the latest SuperKamiokande and IceCube atmospheric neutrino data.

  12. Beaming Neutrinos and Anti-neutrinos across the Earth to Disentangle Neutrino Mixing Parameters

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele; D'Armiento, Daniele; Desiati, Paolo; Paggi, Paolo

    2012-10-01

    A result from MINOS seemed to indicate that the mass splitting and mixing angle of anti-neutrinos is different from that of neutrinos, suggesting a charge-parity-time (CPT) violation in the lepton sector. However, more recent MINOS data reduced the νμ-\\bar{\

  13. Leptonic mixing, family symmetries, and neutrino phenomenology

    SciTech Connect

    Medeiros Varzielas, I. de; Gonzalez Felipe, R.; Serodio, H.

    2011-02-01

    Tribimaximal leptonic mixing is a mass-independent mixing scheme consistent with the present solar and atmospheric neutrino data. By conveniently decomposing the effective neutrino mass matrix associated to it, we derive generic predictions in terms of the parameters governing the neutrino masses. We extend this phenomenological analysis to other mass-independent mixing schemes which are related to the tribimaximal form by a unitary transformation. We classify models that produce tribimaximal leptonic mixing through the group structure of their family symmetries in order to point out that there is often a direct connection between the group structure and the phenomenological analysis. The type of seesaw mechanism responsible for neutrino masses plays a role here, as it restricts the choices of family representations and affects the viability of leptogenesis. We also present a recipe to generalize a given tribimaximal model to an associated model with a different mass-independent mixing scheme, which preserves the connection between the group structure and phenomenology as in the original model. This procedure is explicitly illustrated by constructing toy models with the transpose tribimaximal, bimaximal, golden ratio, and hexagonal leptonic mixing patterns.

  14. Overview of Neutrino Mixing Models and Their Mixing Angle Predictions

    SciTech Connect

    Albright, Carl H.

    2009-11-01

    An overview of neutrino-mixing models is presented with emphasis on the types of horizontal flavor and vertical family symmetries that have been invoked. Distributions for the mixing angles of many models are displayed. Ways to differentiate among the models and to narrow the list of viable models are discussed.

  15. Global constraints on heavy neutrino mixing

    NASA Astrophysics Data System (ADS)

    Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu; Lopez-Pavon, Jacobo

    2016-08-01

    We derive general constraints on the mixing of heavy Seesaw neutrinos with the SM fields from a global fit to present flavour and electroweak precision data. We explore and compare both a completely general scenario, where the heavy neutrinos are integrated out without any further assumption, and the more constrained case were only 3 additional heavy states are considered. The latter assumption implies non-trivial correlations in order to reproduce the correct neutrino masses and mixings as observed by oscillation data and thus some qualitative differences can be found with the more general scenario. The relevant processes analyzed in the global fit include searches for Lepton Flavour Violating (LFV) decays, probes of the universality of weak interactions, CKM unitarity bounds and electroweak precision data. In particular, a comparative and detailed study of the present and future sensitivity of the different LFV experiments is performed. We find a mild 1-2σ preference for non-zero heavy neutrino mixing of order 0.03-0.04 in the electron and tau sectors. At the 2σ level we derive bounds on all mixings ranging from 0.1 to 0.01 with the notable exception of the e - μ sector with a more stringent bound of 0.005 from the μ → eγ process.

  16. Neutrino mass and mixing with discrete symmetry

    NASA Astrophysics Data System (ADS)

    King, Stephen F.; Luhn, Christoph

    2013-05-01

    This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A4, S4 and Δ(96).

  17. Sensitivity to neutrino mixing parameters with atmospheric neutrinos

    SciTech Connect

    Samanta, Abhijit

    2009-12-01

    We have analyzed the atmospheric neutrino data to study the octant of {theta}{sub 23} and the precision of the oscillation parameters for a large iron calorimeter detector. The iron calorimeter being a tracking detector has the ability to measure the energy and the direction of the muon with high resolution. From bending of the track in the magnetic field it can also distinguish its charge. We have generated events by Nuance and then considered only the muons (directly measurable quantities) produced in charge current interactions in our analysis. This encounters the main problem of wide resolutions of energy and baseline. The energy-angle correlated two-dimensional resolution functions are used to migrate the energy and the zenith angle of the neutrino to those of the muon. A new type of binning has been introduced to get better reflection of the oscillation pattern in {chi}{sup 2} analysis. Then the marginalization of the {chi}{sup 2} over all parameters has been carried out for neutrinos and antineutrinos separately. We find that the measurement of {theta}{sub 13} is possible at a significant precision with atmospheric neutrinos. The precisions of {delta}m{sub 32}{sup 2} and sin{sup 2}{theta}{sub 23} are found {approx}8% and 38%, respectively, at 90% C.L. The discrimination of the octant as well as the deviation from maximal mixing of atmospheric neutrinos is also possible for some combinations of ({theta}{sub 23},{theta}{sub 13}). We also discuss the impact of the events at near horizon on the precision studies.

  18. Discrete symmetries and mixing of Dirac neutrinos

    NASA Astrophysics Data System (ADS)

    Esmaili, Arman; Smirnov, Alexei Yu.

    2015-11-01

    We study the mixing of the Dirac neutrinos in the residual symmetries approach. The key difference from the Majorana case is that the Dirac mass matrix may have larger symmetries: Gν=Zn with n ≥3 . The symmetry group relations have been generalized to the case of Dirac neutrinos. Using them, we have found all new relations between mixing parameters and corresponding symmetry assignments, which are in agreement with the present data. The viable relations exist only for the charged lepton residual symmetry Gℓ=Z2. The relations involve elements of the rows of the Pontecorvo-Maki-Nakagawa-Sakata matrix and lead to precise predictions of the 2-3 mixing angle and certain ranges of the C P violation phase. For larger symmetries Gℓ, an agreement with the data can be achieved if ˜10 % corrections related to breaking of Gℓ and Gν are included.

  19. Neutrino mixing anarchy: Alive and kicking

    NASA Astrophysics Data System (ADS)

    de Gouvêa, André; Murayama, Hitoshi

    2015-07-01

    Neutrino mixing anarchy is the hypothesis that the leptonic mixing matrix can be described as the result of a random draw from an unbiased distribution of unitary three-by-three matrices. In light of the very strong evidence for a nonzero sin2 ⁡ 2θ13, we show that the anarchy hypothesis is consistent with the choice made by the Nature - the probability of a more unusual choice is 41%. We revisit anarchy's ability to make predictions, concentrating on correlations - or lack thereof - among the different neutrino mixing parameters, especially sin2 ⁡θ13 and sin2 ⁡θ23. We also comment on anarchical expectations regarding the magnitude of CP-violation in the lepton sector, and potential connections to underlying flavor models or the landscape.

  20. Phenomenological relations for neutrino masses and mixing parameters

    SciTech Connect

    Khruschov, V. V.

    2013-11-15

    Phenomenological relations for masses, angles, and CP phases in the neutrino mixing matrix are proposed with allowance for available experimental data. For the case of CP violation in the lepton sector, an analysis of the possible structure of the neutrino mass matrix and a calculation of the neutrino mass features and the Dirac CP phase for the bimodal-neutrino model are performed. The values obtained in this way can be used to interpret and predict the results of various neutrino experiments.

  1. Democratic neutrino mixing and radiative corrections

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-Zhong

    2001-03-01

    The renormalization effect on a specific ansatz of lepton mass matrices, arising naturally from the breaking of flavor democracy for charged leptons and that of mass degeneracy for light neutrinos, is studied from a superhigh energy scale M0~1013 GeV to the electroweak scale in the framework of the minimal supersymmetric standard model. We find that the democratic neutrino mixing pattern obtained from this ansatz may in general be unstable against radiative corrections. With the help of similar flavor symmetries we prescribe a slightly different scheme of lepton mass matrices at the scale M0, from which the democratic mixing pattern of lepton flavors can be achieved, after radiative corrections, at the experimentally accessible scales.

  2. High scale mixing unification for Dirac neutrinos

    NASA Astrophysics Data System (ADS)

    Abbas, Gauhar; Gupta, Saurabh; Rajasekaran, G.; Srivastava, Rahul

    2015-06-01

    Starting with the high scale mixing unification hypothesis, we investigate the renormalization-group evolution of mixing parameters and masses for Dirac-type neutrinos. Following this hypothesis, the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing angles and phase are taken to be identical to the Cabibbo-Kobayashi-Maskawa (CKM) ones at a unifying high scale. Then they are evolved to a low scale using renormalization-group equations. The notable feature of this hypothesis is that renormalization-group evolution with quasidegenerate mass pattern can explain largeness of leptonic mixing angles even for Dirac neutrinos. The renormalization-group evolution "naturally" results in a nonzero and small value of leptonic mixing angle θ13. One of the important predictions of this work is that the mixing angle θ23 is nonmaximal and lies only in the second octant. We also derive constraints on the allowed parameter range for the supersymmetry breaking and unification scales for which this hypothesis works. The results are novel and can be tested by present and future experiments.

  3. Confusing sterile neutrinos with deviation from tribimaximal mixing at neutrino telescopes

    SciTech Connect

    Awasthi, Ram Lal; Choubey, Sandhya

    2007-12-01

    We expound on the impact of extra sterile species on the ultra high energy neutrino fluxes in neutrino telescopes. We use three types of well-known flux ratios and compare the values of these flux ratios in the presence of sterile neutrinos, with those predicted by deviation from the tribimaximal mixing scheme. We show that in the upcoming neutrino telescopes, it is easy to confuse the signature of sterile neutrinos with that of the deviation from tribimaximal mixing. We also show that if the measured flux ratios acquire a value well outside the range predicted by the standard scenario with three active neutrinos only, it might be possible to tell the presence of extra sterile neutrinos by observing ultra high energy neutrinos in future neutrino telescopes.

  4. Neutrino mass and mixing in the seesaw playground

    NASA Astrophysics Data System (ADS)

    King, Stephen F.

    2016-07-01

    We discuss neutrino mass and mixing in the framework of the classic seesaw mechanism, involving right-handed neutrinos with large Majorana masses, which provides an appealing way to understand the smallness of neutrino masses. However, with many input parameters, the seesaw mechanism is in general not predictive. We focus on natural implementations of the seesaw mechanism, in which large cancellations do not occur, where one of the right-handed neutrinos is dominantly responsible for the atmospheric neutrino mass, while a second right-handed neutrino accounts for the solar neutrino mass, leading to an effective two right-handed neutrino model. We discuss recent attempts to predict lepton mixing and CP violation within such natural frameworks, focusing on the Littlest Seesaw and its distinctive predictions.

  5. BEAMING NEUTRINOS AND ANTI-NEUTRINOS ACROSS THE EARTH TO DISENTANGLE NEUTRINO MIXING PARAMETERS

    SciTech Connect

    Fargion, Daniele; D'Armiento, Daniele; Paggi, Paolo; Desiati, Paolo E-mail: paolo.desiati@icecube.wisc.edu

    2012-10-10

    A result from MINOS seemed to indicate that the mass splitting and mixing angle of anti-neutrinos is different from that of neutrinos, suggesting a charge-parity-time (CPT) violation in the lepton sector. However, more recent MINOS data reduced the {nu}{sub {mu}}-{nu}-bar{sub {mu}} differences leading to a narrow discrepancy nearly compatible with no CPT violation. However, the last few years of OPERA activity on the appearance of a tau lepton (one unique event) still has not been probed and more tools may be required to disentangle a list of parameters ({mu}-{tau} flavor mixing, tau appearance, any eventual CPT violation, {theta}{sub 13} angle value, and any hierarchy neutrino mass). Atmospheric anisotropy in muon neutrino spectra in the DeepCore, at ten to tens of GeV (unpublished), can hardly reveal asymmetry in the eventual {nu}{sub {mu}}-{nu}-bar{sub {mu}} oscillation parameters. Here we considered how the longest baseline neutrino oscillation available, crossing most of Earth's diameter, may improve the measurement and at best disentangle any hypothetical CPT violation occurring between the earliest (2010) and the present (2012) MINOS bounds (with 6{sigma} a year), while testing {tau} and even the appearance of {tau}-bar at the highest rate. The {nu}{sub {mu}} and {nu}-bar{sub {mu}} disappearance correlated with the tau appearance is considered for those events at the largest distances. We thus propose a beam of {nu}{sub {mu}} and {nu}-bar{sub {mu}} crossing through the Earth, within an OPERA-like experiment from CERN (or Fermilab), in the direction of the IceCube-DeepCore {nu} detector at the South Pole. The ideal energy lies at 21 GeV to test the disappearance or (for any tiny CPT violation) the partial {nu}-bar{sub {mu}} appearance. Such a tuned detection experiment may lead to a strong signature of {tau} or {tau}-bar generation even within its neutral current noise background events: nearly one {tau}-bar or two {tau} a day. The tau appearance signal is

  6. Cosmological neutrino entropy changes due to flavor statistical mixing

    NASA Astrophysics Data System (ADS)

    Bernardini, A. E.

    2013-08-01

    Entropy changes due to delocalization and decoherence effects should modify the predictions for the cosmological neutrino background (CνB) temperature when one treats neutrino flavors in the framework of composite quantum systems. Assuming that the final stage of neutrino interactions with the \\gamma e^{-}e^{+} radiation plasma before decoupling works as a measurement scheme that projects neutrinos into flavor quantum states, the resulting free-streaming neutrinos can be described as a statistical ensemble of flavor-mixed states. Even not corresponding to an electronic-flavor pure state, after decoupling the statistical ensemble is described by a density matrix that evolves in time with the full Hamiltonian accounting for flavor mixing, momentum delocalization and, in case of an open-quantum-system approach, decoherence effects. Depending on the quantum measurement scheme used for quantifying the entropy, mixing associated to dissipative effects can lead to an increase of the flavor-associated von Neumann entropy for free-streaming neutrinos. The production of the von Neumann entropy mitigates the constraints on the predictions for energy densities and temperatures of a cosmologically evolving isentropic fluid, in this case, the cosmological neutrino background. Our results state that the quantum mixing associated to decoherence effects are fundamental for producing an additive quantum entropy contribution to the cosmological neutrino thermal history. According to our framework, it does not modify the predictions for the number of neutrino species, N_{\

  7. The case for mixed dark matter from sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Lello, Louis; Boyanovsky, Daniel

    2016-06-01

    Sterile neutrinos are SU(2) singlets that mix with active neutrinos via a mass matrix, its diagonalization leads to mass eigenstates that couple via standard model vertices. We study the cosmological production of heavy neutrinos via standard model charged and neutral current vertices under a minimal set of assumptions: i) the mass basis contains a hierarchy of heavy neutrinos, ii) these have very small mixing angles with the active (flavor) neutrinos, iii) standard model particles, including light (active-like) neutrinos are in thermal equilibrium. If kinematically allowed, the same weak interaction processes that produce active-like neutrinos also produce the heavier species. We introduce the quantum kinetic equations that describe their production, freeze out and decay and discuss the various processes that lead to their production in a wide range of temperatures assessing their feasibility as dark matter candidates. The final distribution function at freeze-out is a mixture of the result of the various production processes. We identify processes in which finite temperature collective excitations may lead to the production of the heavy species. As a specific example, we consider the production of heavy neutrinos in the mass range Mh lesssim 140 MeV from pion decay shortly after the QCD crossover including finite temperature corrections to the pion form factors and mass. We consider the different decay channels that allow for the production of heavy neutrinos showing that their frozen distribution functions exhibit effects from ``kinematic entanglement'' and argue for their viability as mixed dark matter candidates. We discuss abundance, phase space density and stability constraints and argue that heavy neutrinos with lifetime τ> 1/H0 freeze out of local thermal equilibrium, and conjecture that those with lifetimes τ ll 1/H0 may undergo cascade decay into lighter DM candidates and/or inject non-LTE neutrinos into the cosmic neutrino background. We provide a

  8. Solar neutrinos and the MSW effect for three-neutrino mixing

    NASA Technical Reports Server (NTRS)

    Shi, X.; Schramm, David N.

    1991-01-01

    Researchers considered three-neutrino Mikheyev-Smirnov-Wolfenstein (MSW) mixing, assuming m sub 3 is much greater than m sub 2 is greater than m sub 1 as expected from theoretical consideration if neutrinos have mass. They calculated the corresponding mixing parameter space allowed by the Cl-37 and Kamiokande 2 experiments. They also calculated the expected depletion for the Ga-71 experiment. They explored a range of theoretical uncertainty due to possible astrophysical effects by varying the B-8 neutrino flux and redoing the MSW mixing calculation.

  9. Probing nonunitary mixing and CP violation at a neutrino factory

    SciTech Connect

    Antusch, Stefan; Blennow, Mattias; Fernandez-Martinez, Enrique; Lopez-Pavon, Jacobo

    2009-08-01

    A low-energy nonunitary leptonic mixing matrix is a generic feature of many extensions of the standard model. In such a case, the task of future precision neutrino oscillation experiments is more ambitious than measuring the three mixing angles and the leptonic (Dirac) CP phase, i.e., the accessible parameters of a unitary leptonic mixing matrix. A nonunitary mixing matrix has 13 parameters that affect neutrino oscillations, out of which four are CP violating. In the scheme of minimal unitarity violation we analyze the potential of a neutrino factory for determining or constraining the parameters of the nonunitary leptonic mixing matrix, thereby testing the origin of CP violation in the lepton sector.

  10. Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tanaka, H.; Tomura, T.; Ueno, K.; Wendell, R. A.; Yokozawa, T.; Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Lee, K. P.; McLachlan, T.; Nishimura, Y.; Richard, E.; Okumura, K.; Labarga, L.; Fernandez, P.; Gustafson, J.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Tanaka, H. A.; Tobayama, S.; Goldhaber, M.; Carminati, G.; Kropp, W. R.; Mine, S.; Weatherly, P.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Keig, W. E.; Hong, N.; Kim, J. Y.; Lim, I. T.; Akiri, T.; Himmel, A.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Jang, J. S.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Bronner, C.; Hirota, S.; Huang, K.; Ieki, K.; Kikawa, T.; Minamino, A.; Murakami, A.; Nakaya, T.; Suzuki, K.; Takahashi, S.; Tateishi, K.; Fukuda, Y.; Choi, K.; Itow, Y.; Mitsuka, G.; Mijakowski, P.; Hignight, J.; Imber, J.; Jung, C. K.; Yanagisawa, C.; Ishino, H.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Yamaguchi, R.; Yano, T.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Suda, Y.; Totsuka, Y.; Yokoyama, M.; Martens, K.; Marti, Ll.; Vagins, M. R.; Martin, J. F.; de Perio, P.; Konaka, A.; Wilking, M. J.; Chen, S.; Zhang, Y.; Connolly, K.; Wilkes, R. J.; Super-Kamiokande Collaboration

    2015-03-01

    We present limits on sterile neutrino mixing using 4,438 live-days of atmospheric neutrino data from the Super-Kamiokande experiment. We search for fast oscillations driven by an eV2 -scale mass splitting and for oscillations into sterile neutrinos instead of tau neutrinos at the atmospheric mass splitting. When performing both of these searches we assume that the sterile mass splitting is large, allowing sin2(Δ m2L /4 E ) to be approximated as 0.5, and we assume that there is no mixing between electron neutrinos and sterile neutrinos (|Ue 4|2=0 ). No evidence of sterile oscillations is seen and we limit |Uμ 4|2 to less than 0.041 and |Uτ 4|2 to less than 0.18 for Δ m2>0.1 eV2 at the 90% C.L. in a 3 +1 framework. The approximations that can be made with atmospheric neutrinos allow these limits to be easily applied to 3 +N models, and we provide our results in a generic format to allow comparisons with other sterile neutrino models.

  11. Models of neutrino mass, mixing and CP violation

    NASA Astrophysics Data System (ADS)

    King, Stephen F.

    2015-12-01

    In this topical review we argue that neutrino mass and mixing data motivates extending the Standard Model (SM) to include a non-Abelian discrete flavour symmetry in order to accurately predict the large leptonic mixing angles and {C}{P} violation. We begin with an overview of the SM puzzles, followed by a description of some classic lepton mixing patterns. Lepton mixing may be regarded as a deviation from tri-bimaximal mixing, with charged lepton corrections leading to solar mixing sum rules, or tri-maximal lepton mixing leading to atmospheric mixing rules. We survey neutrino mass models, using a roadmap based on the open questions in neutrino physics. We then focus on the seesaw mechanism with right-handed neutrinos, where sequential dominance (SD) can account for large lepton mixing angles and {C}{P} violation, with precise predictions emerging from constrained SD (CSD). We define the flavour problem and discuss progress towards a theory of favour using GUTs and discrete family symmetry. We classify models as direct, semidirect or indirect, according to the relation between the Klein symmetry of the mass matrices and the discrete family symmetry, in all cases focussing on spontaneous {C}{P} violation. Finally we give two examples of realistic and highly predictive indirect models with CSD, namely an A to Z of flavour with Pati-Salam and a fairly complete A 4 × SU(5) SUSY GUT of flavour, where both models have interesting implications for leptogenesis.

  12. Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector

    NASA Astrophysics Data System (ADS)

    Di Crescenzo, A.; OPERA Collaboration

    2016-05-01

    The OPERA experiment observed ν μ → ν τ oscillations in the atmospheric sector. To this purpose the hybrid OPERA detector was exposed to the CERN Neutrinos to Gran Sasso beam from 2008 to 2012, at a distance of 730 km from the neutrino source. Charged-current interactions of ν τ were searched for through the identification of τ lepton decay topologies. The five observed ν τ interactions are consistent with the expected number of events in the standard three neutrino framework. Based on this result, new limits on the mixing parameters of a massive sterile neutrino may be set. Preliminary results of the analysis performed in the 3+1 neutrino framework are here presented.

  13. Remark on Majorana CP phases in neutrino mixing and leptogenesis

    NASA Astrophysics Data System (ADS)

    Kitabayashi, Teruyuki; Koizumi, Naoto

    2014-05-01

    We estimate Majorana CP phases for a simple flavor neutrino mixing matrix which has been reported by Qu and Ma. Sizes of Majorana CP phases are evaluated in the study of the neutrinoless double beta decay and a particular leptogenesis scenario. We find the dependence of the physically relevant Majorana CP phase on the mass of lightest right-handed neutrino in the minimal seesaw model and the effective Majorana neutrino mass which is related with the half-life of the neutrinoless double beta decay.

  14. Recent neutrino data and a realistic tribimaximal-like neutrino mixing matrix

    NASA Astrophysics Data System (ADS)

    Ahn, Y. H.; Cheng, Hai-Yang; Oh, Sechul

    2012-08-01

    In light of the recent neutrino experimental results from the Daya Bay and RENO Collaborations, we construct a realistic tribimaximal-like Pontecorvo-Maki-Nakagawa-Sakata (PMNS) leptonic mixing matrix. Motivated by the Qin-Ma (QM) parametrization for the quark mixing matrix in which the CP-odd phase is approximately maximal, we propose a simple ansatz for the charged lepton mixing matrix, namely, it has the QM-like parametrization, and assume the tribimaximal mixing (TBM) pattern for the neutrino mixing matrix. The deviation of the leptonic mixing matrix from the TBM one is then systematically studied. While the deviation of the solar and atmospheric neutrino mixing angles from the corresponding TBM values, i.e. sin2θ12 = 1 / 3 and sin2θ23 = 1 / 2, is fairly small, we find a non-vanishing reactor mixing angle given by sinθ13 ≈ λ /√{ 2} (λ ≈ 0.22 being the Cabibbo angle). Specifically, we obtain θ13 ≃ 9.2 ° and δCP ≃δQM ≃ O (90 °). Furthermore, we show that the leptonic CP violation characterized by the Jarlskog invariant is | JCPℓ | ≃ λ / 6, which could be tested in the future experiments such as the upcoming long baseline neutrino oscillation ones.

  15. Neutrino mixing and mass hierarchy in Gaussian landscapes

    SciTech Connect

    Hall, Lawrence J.; Salem, Michael P.; Watari, Taizan

    2009-01-15

    The flavor structure of the standard model may arise from random selection on a landscape. In a class of simple models, called ''Gaussian landscapes,'' Yukawa couplings derive from overlap integrals of Gaussian zero-mode wave functions on an extra-dimensional space. Statistics of vacua are generated by scanning the peak positions of these wave functions, giving probability distributions for all flavor observables. Gaussian landscapes can account for all of the major features of flavor, including both the small electroweak mixing in the quark sector and the large mixing observed in the lepton sector. We find that large lepton mixing stems directly from lepton doublets having broad wave functions on the internal manifold. Assuming the seesaw mechanism, we find the mass hierarchy among neutrinos is sensitive to the number of right-handed neutrinos and can provide a good fit to neutrino oscillation measurements.

  16. Unitary Parametrization of Perturbations to Tribimaximal Neutrino Mixing

    SciTech Connect

    Pakvasa, Sandip; Rodejohann, Werner; Weiler, Thomas J.

    2008-03-21

    Current experimental data on neutrino mixing are very well described by tribimaximal mixing. Accordingly, any phenomenological parametrization of the Maki-Nakagawa-Sakata-Pontecorvo matrix must build upon tribimaximal mixing. We propose one particularly natural parametrization, which we call 'triminimal'. The three small deviations of the Particle Data Group angles from their tribimaximal values, and the PDG phase, parametrize the triminimal mixing matrix. As an important example of the utility of this new parametrization, we present the simple resulting expressions for the flavor-mixing probabilities of atmospheric and astrophysical neutrinos. As no foreseeable experiment will be sensitive to more than second order in the small parameters, we expand these flavor probabilities to second order.

  17. Unitary Parametrization of Perturbations to Tribimaximal Neutrino Mixing

    NASA Astrophysics Data System (ADS)

    Pakvasa, Sandip; Rodejohann, Werner; Weiler, Thomas J.

    2008-03-01

    Current experimental data on neutrino mixing are very well described by tribimaximal mixing. Accordingly, any phenomenological parametrization of the Maki-Nakagawa-Sakata-Pontecorvo matrix must build upon tribimaximal mixing. We propose one particularly natural parametrization, which we call “triminimal.” The three small deviations of the Particle Data Group angles from their tribimaximal values, and the PDG phase, parametrize the triminimal mixing matrix. As an important example of the utility of this new parametrization, we present the simple resulting expressions for the flavor-mixing probabilities of atmospheric and astrophysical neutrinos. As no foreseeable experiment will be sensitive to more than second order in the small parameters, we expand these flavor probabilities to second order.

  18. Modified Friedberg-Lee symmetry for neutrino mixing

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen-hua

    2015-12-01

    In this paper, we put forward a special neutrino mass matrix which is invariant under a modified Friedberg-Lee (FL) transformation νe→νe-2 ξ and νμ ,τ→νμ ,τ+ξ with ξ being a space-time independent element of the Grassmann algebra. Compared to the original FL symmetry (with the transformation νe ,μ ,τ→νe ,μ ,τ+ξ ) which results in the TM2 neutrino mixing, the modified FL symmetry will lead us to the TM1 mixing which has a better agreement with the experimental results. While the original FL symmetry has to be broken in order to produce a realistic neutrino mass spectrum, the modified FL symmetry is allowed to remain intact and give us a vanishing m1. A combination of the FL symmetry with the μ -τ reflection symmetry is also discussed.

  19. Large mixing angles from many right-handed neutrinos

    NASA Astrophysics Data System (ADS)

    Feldstein, Brian; Klemm, William

    2012-03-01

    A beautiful understanding of the smallness of the neutrino masses may be obtained via the seesaw mechanism, whereby one takes advantage of the key qualitative distinction between the neutrinos and the other fermions: right-handed neutrinos are gauge singlets, and may therefore have large Majorana masses. The standard seesaw mechanism, however, does not address the apparent lack of hierarchy in the neutrino masses compared to the quarks and charged leptons, nor the large leptonic mixing angles compared to the small angles of the Cabibbo-Kobayashi-Maskawa matrix. In this paper, we will show that the singlet nature of the right-handed neutrinos may be taken advantage of in one further way in order to solve these remaining problems: Unlike particles with gauge interactions, whose numbers are constrained by anomaly cancellation, the number of gauge singlet particles is essentially undetermined. If large numbers of gauge singlet fermions are present at high energies—as is suggested, for example, by various string constructions—then the effective low-energy neutrino mass matrix may be determined as a sum over many distinct Yukawa couplings, with the largest ones being the most important. This can reduce hierarchy, and lead to large mixing angles. Assuming a statistical distribution of fundamental parameters, we will show that this scenario leads to a good fit to low-energy phenomenology, with only a few qualitative assumptions guided by the known quark and lepton masses. The scenario leads to predictions of a normal hierarchy for the neutrino masses, and a value for the |mee| mass matrix element of about 1-6 meV.

  20. Flavor identification of astronomical high energy neutrinos and the accuracy of mixing angles

    SciTech Connect

    Hwang, Ggyoung-Riun; Siyeon, Kim

    2008-11-23

    Typical initial neutrino fluxes from pion decays may be different depending on energy, since the muon decays can be excluded due to the electromagnetic energy loss. However, the specification of the initial flux ratio is limited by the accuracy of neutrino mixing parameters. We will discuss the expected measurement of relative flavors at future neutrino telescopes, focusing on the ambiguity in current neutrino parameters.

  1. Solar neutrinos and 1-3 leptonic mixing

    SciTech Connect

    Goswami, Srubabati; Smirnov, Alexei Yu.

    2005-09-01

    Effects of the 1-3 leptonic mixing on the solar neutrino observables are studied and the signatures of nonzero {theta}{sub 13} are identified. For this we have rederived the formula for 3{nu}-survival probability including all relevant corrections and constructed the isocontours of observables in the sin{sup 2}{theta}{sub 12}-sin{sup 2}{theta}{sub 13} plane. Analysis of the solar neutrino data gives sin{sup 2}{theta}{sub 13}=0.007{sub -0.007}{sup +0.080} (90% C.L.) for {delta}m{sup 2}=8x10{sup -5} eV{sup 2}. The combination of the ratio CC/NC at Sudbury Neutrino Observatory (SNO) and gallium production rate selects sin{sup 2}{theta}{sub 13}=0.017{+-}0.026 (1{sigma}). The global fit of all oscillation data leads to zero best value of sin{sup 2}{theta}{sub 13}. The sensitivity (1{sigma} error) of future solar neutrino studies to sin{sup 2}{theta}{sub 13} can be improved down to 0.01-0.02 by precise measurements of the pp-neutrino flux and the CC/NC ratio as well as spectrum distortion at high (E>4 MeV) energies. Combination of experimental results sensitive to the low and high energy parts of the solar neutrino spectrum resolves the degeneracy of angles {theta}{sub 13} and {theta}{sub 12}. Comparison of sin{sup 2}{theta}{sub 13} as well as sin{sup 2}{theta}{sub 12} measured in the solar neutrinos and in the reactor/accelerator experiments may reveal new effects which can not be seen otherwise.

  2. A Possible Non Unitary Neutrino Mixing Matrix from SUL(4) UN(1) Gauge Group

    NASA Astrophysics Data System (ADS)

    Mekahlia, A.; Mebarki, N.; Harrat, M.

    2015-04-01

    Neutrino mixing phenomenon is studied within the non unitary Pontecorvo-Maki- Nakagawa-Sakata modified matrix (PMNS) in the context of an effective low energy limit of the minimal 341 model with right handed neutrinos.

  3. Experimental constraints on the neutrino oscillations and a simple model of three-flavor mixing

    SciTech Connect

    Raczka, P.A.; Szymacha, A. ); Tatur, S. )

    1994-02-01

    A simple model of neutrino mixing is considered which contains only one right-handed neutrino field coupled, via the mass term, to the three usual left-handed fields. This is the simplest model that allows for three-flavor neutrino oscillations. The existing experimental limits on the neutrino oscillations are used to obtain constraints on the two free-mixing parameters of the model. A specific sum rule relating the oscillation probabilities of different flavors is derived.

  4. Neutrino mixing in a left-right model

    NASA Astrophysics Data System (ADS)

    Martins Simões, J. A.; Ponciano, J. A.

    We study the mixing among different generations of massive neutrino fields in a neutrino oscillations. The left and right sectors can be connected by a new neutral current. PACS: 12.60.-i, 14.60.St, 14.60.Pq

  5. Measuring the 13 Neutrino Mixing Angle and the CP Phase with Neutrino Telescopes

    SciTech Connect

    Serpico, P.D.; Kachelriess, M.

    2005-06-03

    The observed excess of high-energy cosmic rays from the Galactic plane in the energy range around 10{sup 18} eV may be explained by neutron primaries generated in the photodissociation of heavy nuclei. In this scenario, lower-energy neutrons decay before reaching the Earth and produce a detectable flux in a 1 km{sup 3} neutrino telescope. The initial flavor composition of the neutrino flux, {phi}({nu}{sub e}):{phi}({nu}{sub {mu}}):{phi}({nu}{sub {tau}})=1:0:0, permits a combined {nu}{sub {mu}}/{nu}{sub {tau}} appearance and {nu}{sub e} disappearance experiment. The observable flux ratio {phi}({nu}{sub {mu}})/{phi}({nu}{sub e}+{nu}{sub {tau}}) at Earth depends on the 13 mixing angle {theta}{sub 13} and the leptonic CP phase {delta}{sub CP}, thus opening a new way to measure these two quantities.

  6. Predictive model for radiatively induced neutrino masses and mixings with dark matter.

    PubMed

    Gustafsson, Michael; No, Jose M; Rivera, Maximiliano A

    2013-05-24

    A minimal extension of the standard model to naturally generate small neutrino masses and provide a dark matter candidate is proposed. The dark matter particle is part of a new scalar doublet field that plays a crucial role in radiatively generating neutrino masses. The symmetry that stabilizes the dark matter also suppresses neutrino masses to appear first at three-loop level. Without the need of right-handed neutrinos or other very heavy new fields, this offers an attractive explanation of the hierarchy between the electroweak and neutrino mass scales. The model has distinct verifiable predictions for the neutrino masses, flavor mixing angles, colliders, and dark matter signals. PMID:23745861

  7. Self-induced neutrino flavor conversion without flavor mixing

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Hansen, R. S.; Izaguirre, I.; Raffelt, G. G.

    2016-03-01

    Neutrino-neutrino refraction in dense media can cause self-induced flavor conversion triggered by collective run-away modes of the interacting flavor oscillators. The growth rates were usually found to be of order a typical vacuum oscillation frequency Δ m2/2E. However, even in the simple case of a νe beam interacting with an opposite-moving bar nue beam, and allowing for spatial inhomogeneities, the growth rate of the fastest-growing Fourier mode is of order μ=√2 GF nν, a typical ν-ν interaction energy. This growth rate is much larger than the vacuum oscillation frequency and gives rise to flavor conversion on a much shorter time scale. This phenomenon of "fast flavor conversion" occurs even for vanishing Δ m2/2E and thus does not depend on energy, but only on the angle distributions. Moreover, it does not require neutrinos to mix or to have masses, except perhaps for providing seed disturbances. We also construct a simple homogeneous example consisting of intersecting beams and study a schematic supernova model proposed by Ray Sawyer, where νe and bar nue emerge with different zenith-angle distributions, the key ingredient for fast flavor conversion. What happens in realistic astrophysical scenarios remains to be understood.

  8. Inconsistency in super-luminal CERN-OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele; D'Armiento, Daniele

    2012-08-01

    We tried to fit in any way the recent OPERA-CERN claims of a neutrino super-luminal speed with the observed supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillations. We considered three main frameworks: (1) tachyon imaginary neutrino mass, whose timing is nevertheless in conflict with the observed IMB-Kamiokande SN1987A burst by thousands of billion times longer. (2) An ad hoc anti-tachyon model whose timing shrinkage may accommodate the SN1987A burst but greatly disagrees with the energy-independent CERN-OPERA super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic νe component and a super-luminal νμ) in an ad hoc frozen speed scenario that leads to the prompt neutrino de-coherence and rapid flavor mixing (between νe and νμ, ντ) that are in conflict with most oscillation records. Therefore, we concluded that an error must be hidden in OPERA-CERN time calibration (as indeed recent rumors seem to confirm). We concluded recalling the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a millisecond graviton-neutrino split time delay among the gravity burst and neutronization neutrino peak in any future supernova explosion in Andromeda recordable in the Megaton neutrino detector.

  9. Unitarity and the Three Flavour Neutrino Mixing Matrix

    SciTech Connect

    Parke, Stephen; Ross-Lonergan, Mark

    2015-08-20

    Unitarity is a fundamental property of any theory required to ensure we work in a theoretically consistent framework. In comparison with the quark sector, experimental tests of unitarity for the 3x3 neutrino mixing matrix are considerably weaker. It must be remembered that the vast majority of our information on the neutrino mixing angles originates from v-e and vμ disappearance experiments, with the assumption of unitarity being invoked to constrain the remaining elements. New physics can invalidate this assumption for the 3x3 subset and thus modify our precision measurements. We also perform a reanalysis to see how global knowledge is altered when one refits oscillation results without assuming unitarity, and present 3σ ranges for allowed UPMNS elements consistent with all observed phenomena. We calculate the bounds on the closure of the six neutrino unitarity triangles, with the closure of the v-e and vμ triangle being constrained to be ≤0.03, while the remaining triangles are significantly less constrained to be ≤ 0.1 - 0.2. Similarly for the row and column normalization, we find their deviation from unity is constrained to be ≤ 0.2 - 0.4, for four out of six such normalizations, while for the vμ and ve row normalization the deviations are constrained to be ≤0.07, all at the 3σCL. Additionally, we emphasize that there is significant room for new low energy physics, especially in the vτ sector which very few current experiments constrain directly.

  10. Unitarity and the three flavor neutrino mixing matrix

    DOE PAGESBeta

    Parke, Stephen; Ross-Lonergan, Mark

    2016-06-14

    Unitarity is a fundamental property of any theory required to ensure we work in a theoretically consistent framework. In comparison with the quark sector, experimental tests of unitarity for the 3x3 neutrino mixing matrix are considerably weaker. It must be remembered that the vast majority of our information on the neutrino mixing angles originates from v-e and vμ disappearance experiments, with the assumption of unitarity being invoked to constrain the remaining elements. New physics can invalidate this assumption for the 3x3 subset and thus modify our precision measurements. We also perform a reanalysis to see how global knowledge is alteredmore » when one refits oscillation results without assuming unitarity, and present 3σ ranges for allowed UPMNS elements consistent with all observed phenomena. We calculate the bounds on the closure of the six neutrino unitarity triangles, with the closure of the v-e and vμ triangle being constrained to be ≤0.03, while the remaining triangles are significantly less constrained to be ≤ 0.1 - 0.2. Similarly for the row and column normalization, we find their deviation from unity is constrained to be ≤ 0.2 - 0.4, for four out of six such normalizations, while for the vμ and ve row normalization the deviations are constrained to be ≤0.07, all at the 3σCL. Additionally, we emphasize that there is significant room for new low energy physics, especially in the vτ sector which very few current experiments constrain directly.« less

  11. Neutrino production states in oscillation phenomena—are they pure or mixed?

    NASA Astrophysics Data System (ADS)

    Ochman, Michał; Szafron, Robert; Zrałek, Marek

    2008-06-01

    General quantum mechanical states of neutrinos produced by mechanisms outside the Standard Model are discussed. The neutrino state is described by the Maki-Nakagawa-Sakata-Pontecorvo unitary mixing matrix only in the case of relativistic neutrinos and Standard Model left-handed charge-current interaction. The problem of Wigner spin rotation caused by Lorentz transformation from the rest production frame to the laboratory frame is considered. Moreover, the mixture of the neutrino states as a function of their energy and parameters from the extension of the Standard Model are investigated. Two sources of mixture, the appearance of subdominant helicity states and mass mixing with several different mixing matrices are studied.

  12. Semidirect product groups, vacuum alignment, and tribimaximal neutrino mixing

    SciTech Connect

    Babu, K. S.; Gabriel, S.

    2010-10-01

    The neutrino oscillation data are in very good agreement with the tribimaximal mixing pattern: sin{sup 2{theta}}{sub 23}=1/2, sin{sup 2{theta}}{sub 12}=1/3, and sin{sup 2{theta}}{sub 13}=0. Attempts to generate this pattern based on finite family symmetry groups typically assume that the family symmetry is broken into different subgroups in the charged-lepton and the neutrino mass matrices. This leads to a technical problem, where the cross couplings between the Higgs fields responsible for the two symmetry breaking chains force their vacuum expectation values to align, upsetting the desired breaking pattern. Here, we present a class of models based on the semidirect product group (S{sub 3}){sup 4}xA{sub 4}, where the lepton families belong to representations which are not faithful. In effect, the Higgs sector knows about the full symmetry while the lepton sector knows only about the A{sub 4} factor group. This can solve the alignment problem without altering the desired properties of the family symmetry. Inclusion of quarks into the framework is straightforward and leads to small and arbitrary Cabibbo-Kobayashi-Maskawa mixing angles. Supersymmetry is not essential for our proposal, but the model presented is easily supersymmetrized, in which case the same family symmetry solves the supersymmetry flavor problem.

  13. Cosmological bounds on active-sterile neutrino mixing after Planck data

    NASA Astrophysics Data System (ADS)

    Saviano, Ninetta

    2015-04-01

    Light sterile neutrinos can be produced by oscillations with active neutrinos in the early universe. Their properties can be constrained by their contribution as extra-radiation, parametrized in terms of the effective number of neutrino species Neff, and to the universe energy density today Ωvh2. Both these parameters have been measured to quite a good precision by the Planck satellite experiment. We use these results to update the bounds on the parameter space of (3+1) sterile neutrino scenarios, with an active-sterile neutrino mass squared splitting in the range (10-5 — 102)eV2. For the first time we take into account the possibility of two non-vanishing active-sterile mixing angles. We find that the mass and mixing parameter space is severely constrained. In particular sterile neutrinos with m ˜ O(1) eV are strongly disfavoured by neutrino mass bound.

  14. Unitarity and the three flavor neutrino mixing matrix

    NASA Astrophysics Data System (ADS)

    Parke, Stephen; Ross-Lonergan, Mark

    2016-06-01

    Unitarity is a fundamental property of any theory required to ensure we work in a theoretically consistent framework. In comparison with the quark sector, experimental tests of unitarity for the 3 ×3 neutrino mixing matrix are considerably weaker. We perform a reanalysis to see how global knowledge is altered when one refits oscillation results without assuming unitarity, and present 3 σ ranges for allowed UPMNS elements consistent with all observed phenomena. We calculate, for the first time, bounds on the closure of the six neutrino unitarity triangles, with the closure of the νeνμ triangle being constrained to be ≤0.03 , while the remaining triangles are significantly less constrained to be ≤0.1 - 0.2 . Similarly for the row and column normalization, we find their deviation from unity is constrained to be ≤0.2 - 0.4 , for four out of six such normalizations, while for the νμ and νe row normalization the deviations are constrained to be ≤0.07 , all at the 3 σ CL. We emphasize that there is significant room for new low energy physics, especially in the ντ sector which very few current experiments constrain directly.

  15. Neutrino mixing with nonzero θ13 in Zee-Babu model

    NASA Astrophysics Data System (ADS)

    Long, Hoang Ngoc; Vien, Vo Van

    2014-05-01

    The exact solution for the neutrino mass matrix of the Zee-Babu model is derived. Tribimaximal mixing imposes conditions on the Yukawa couplings, from which the normal mass hierarchy is preferred. The derived conditions give a possibility of Majorana maximal CP violation in the neutrino sector. We have shown that nonzero θ13 is generated if Yukawa couplings between leptons almost equal to each other. The model gives some regions of the parameters where neutrino mixing angles and the normal neutrino mass hierarchy obtained are consistent with the recent experimental data.

  16. Search for sterile neutrino mixing in the MINOS long baseline experiment

    SciTech Connect

    Adamson, P.; Andreopoulos, C.; Auty, D.J.; Ayres, D.S.; Backhouse, C.; Barnes Jr., P.D.; Barr, G.; Barrett, W.L.; Bishai, M.; Blake, A.; Bock, G.J.; /Fermilab /Fermilab

    2010-01-01

    A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18 x 10{sup 20} protons on target in which neutrinos of energies between {approx}500 MeV and 120 GeV are produced predominantly as {nu}{sub {mu}}, the visible energy spectrum of candidate neutral-current reactions in the MINOS far-detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the {nu}{sub {mu}} flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles {theta}{sub 24} and {theta}{sub 34} are constrained to be less than 11{sup o} and 56{sup o} at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime {tau}{sub 3}/m{sub 3} > 2.1 x 10{sup -12} s/eV at 90% C.L.

  17. Lepton mass and mixing in a neutrino mass model based on S4 flavor symmetry

    NASA Astrophysics Data System (ADS)

    Vien, V. V.

    2016-03-01

    We study a neutrino mass model based on S4 flavor symmetry which accommodates lepton mass, mixing with nonzero θ13 and CP violation phase. The spontaneous symmetry breaking in the model is imposed to obtain the realistic neutrino mass and mixing pattern at the tree-level with renormalizable interactions. Indeed, the neutrinos get small masses from one SU(2)L doublet and two SU(2)L singlets in which one being in 2̲ and the two others in 3̲ under S4 with both the breakings S4 → S3 and S4 → Z3 are taken place in charged lepton sector and S4 →𝒦 in neutrino sector. The model also gives a remarkable prediction of Dirac CP violation δCP = π 2 or ‑π 2 in both the normal and inverted spectrum which is still missing in the neutrino mixing matrix. The relation between lepton mixing angles is also represented.

  18. Neutrino mass and mixing: from theory to experiment

    NASA Astrophysics Data System (ADS)

    King, Stephen F.; Merle, Alexander; Morisi, Stefano; Shimizu, Yusuke; Tanimoto, Morimitsu

    2014-04-01

    The origin of fermion mass hierarchies and mixings is one of the unresolved and most difficult problems in high-energy physics. One possibility to address the flavour problems is by extending the standard model to include a family symmetry. In the recent years it has become very popular to use non-Abelian discrete flavour symmetries because of their power in the prediction of the large leptonic mixing angles relevant for neutrino oscillation experiments. Here we give an introduction to the flavour problem and to discrete groups that have been used to attempt a solution for it. We review the current status of models in light of the recent measurement of the reactor angle, and we consider different model-building directions taken. The use of the flavons or multi-Higgs scalars in model building is discussed as well as the direct versus indirect approaches. We also focus on the possibility of experimentally distinguishing flavour symmetry models by means of mixing sum rules and mass sum rules. In fact, we illustrate in this review the complete path from mathematics, via model building, to experiments, so that any reader interested in starting work in the field could use this text as a starting point in order to obtain a broad overview of the different subject areas.

  19. Unitarity violation in sequential neutrino mixing in a model of extra dimensions

    SciTech Connect

    Bhattacharya, Subhaditya; Dey, Paramita; Mukhopadhyaya, Biswarup

    2009-10-01

    We give the first demonstration of unitarity violation in the sequential neutrino mixing matrix in a scenario with extra compact spacelike dimensions. Gauge singlet neutrinos are assumed to propagate in one extra dimension, giving rise to an infinite tower of states in the effective four-dimensional theory. It is shown that this leads to small lepton-number violating entries in the neutrino mass matrix, which can violate unitarity on the order of 1%.

  20. W. K. H. Panofsky Prize: The Road to Neutrino Mixing Angle θ13

    NASA Astrophysics Data System (ADS)

    Luk, Kam-Biu

    2014-03-01

    A series of solar, atmospheric, accelerator and reactor neutrino experiments have observed transformations of one type of neutrino to another type. This intriguing phenomenon called neutrino oscillation was predicted by Pontecorvo, Maki, Nakagawa and Sakata. It is due to the fact that the three flavors of neutrinos observed in laboratories are mixtures of three neutrino mass eigenstates. Neutrino mixing is described by a set of three mixing angles and a CP-violating phase. The smallest angle, θ13, was unknown until 2012. Knowing the value of θ13 is essential. Besides being a fundamental parameter of nature, knowing its value will improve our understanding of neutrino mixing, provide guidance for building theoretical models and define the future program of neutrino oscillation experiments. In this talk, the experimental development that led to the recent discovery of a new θ13-driven neutrino oscillation will be presented. Work was supported by the US Department of Energy, Office of High Energy Physics, contract DE-AC02-05CH11231.

  1. Neutrino mixing and oscillation in a grand unified field theory SO(10)

    SciTech Connect

    Tanaka, K.

    1980-01-01

    The investigation shows that it is very difficult to achieve neutrino mixing of other than the V/sub ..mu../-..nu../sub tau/ type in any minimal SO(10) model in which neutrino masses are generated by the Gell-Mann-Ramond-Slansky mechanism, because of the severe constraints placed on the mass matrix by quark phenomenology.

  2. On the Non Unitary Neutrino Mixing Matrix in 331 Model with Three Higgs Triplets

    NASA Astrophysics Data System (ADS)

    Mebarki, N.

    2015-04-01

    The neutrino mixing phenomenon is studied within the non unitary Pontecorvo- Maki-Nakagawa-Sakata modified matrix (PMNS) in the context of the low energy limit of the minimal 331 model without right handed neutrinos as a deviation from the standard model. Moreover, comparison with the recent experimental data gives some stringent bounds on some physical parameters.

  3. Neutrino Experiments

    SciTech Connect

    McKeown, R. D.

    2010-08-04

    Recent studies of neutrino oscillations have established the existence of finite neutrino masses and mixing between generations of neutrinos. The combined results from studies of atmospheric neutrinos, solar neutrinos, reactor antineutrinos and neutrinos produced at accelerators paint an intriguing picture that clearly requires modification of the standard model of particle physics. These results also provide clear motivation for future neutrino oscillation experiments as well as searches for direct neutrino mass and nuclear double-beta decay. I will discuss the program of new neutrino oscillation experiments aimed at completing our knowledge of the neutrino mixing matrix.

  4. Precise Measurement of the Neutrino Mixing Parameter θ23 from Muon Neutrino Disappearance in an Off-Axis Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iwai, E.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-05-01

    New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ23. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×1020 protons on target, T2K has fit the energy-dependent νμ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin2(θ23) is 0.514-0.056+0.055 (0.511±0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm322=(2.51±0.10)×10-3 eV2/c4 (inverted hierarchy: Δm132=(2.48±0.10)×10-3 eV2/c4). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.

  5. Precise measurement of the neutrino mixing parameter θ23 from muon neutrino disappearance in an off-axis beam.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Floetotto, L; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iwai, E; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Lamont, I; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Palomino, J; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2014-05-01

    New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ23. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×10(20) protons on target, T2K has fit the energy-dependent νμ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin(2)(θ23) is 0.514(-0.056)(+0.055) (0.511±0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm32(2)=(2.51±0.10)×10(-3)  eV(2)/c(4) (inverted hierarchy: Δm13(2)=(2.48±0.10)×10(-3)  eV(2)/c(4)). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty. PMID:24856687

  6. Determination of the mixing between active neutrinos and sterile neutrino through the quark-lepton complementarity and self-complementarity

    NASA Astrophysics Data System (ADS)

    Ke, Hong-Wei; Liu, Tan; Li, Xue-Qian

    2014-09-01

    It is suggested that there is an underlying symmetry which relates the quark and lepton sectors. Namely, among the mixing matrix elements of Cabibbo-Kobayashi-Maskawa for quarks and Pontecorvo-Maki-Nakawaga-Sakata for leptons there exist complementarity relations at a high energy scale (such as the seesaw or even the grand unification theory scales). We assume that the relations would remain during the matrix elements running down to the electroweak scale. Observable breaking of the rational relation is attributed to the existence of sterile neutrinos that mix with the active neutrino to result in the observable Pontecorvo-Maki-Nakawaga-Sakata matrix. We show that involvement of a sterile in the (3+1) model induces that |Ue4|2=0.040, |Uμ4|2=0.009, and sin22α =0.067. We also find a new self-complementarity ϑ12+ϑ23+ϑ13+α ≈90°. The numbers are generally consistent with those obtained by fitting recent measurements, especially in this scenario, to the existence of a sterile neutrino that does not upset the LEP data; i.e., the number of neutrino types is very close to 3.

  7. Measurement of the neutrino mass splitting and flavor mixing by MINOS

    SciTech Connect

    Adamson, P.; Andreopoulos, C.; Armstrong, R.; Auty, D.J.; Ayres, D.S.; Backhouse, C.; Barr, G.; Bishai, M.; Blake, A.; Bock, G.J.; Boehnlein, D.J.; /Fermilab /Fermilab

    2011-03-01

    Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25 x 10{sup 20} protons on target. A fit to neutrino oscillations yields values of |{Delta}m{sup 2}| = (2.32{sub -0.08}{sup +0.12}) x 10{sup -3} eV{sup 2} for the atmospheric mass splitting and sin 2(2{Theta}) > 0.90 (90% C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively.

  8. Measurement of the neutrino mass splitting and flavor mixing by MINOS.

    PubMed

    Adamson, P; Andreopoulos, C; Armstrong, R; Auty, D J; Ayres, D S; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Cavanaugh, S; Cherdack, D; Childress, S; Choudhary, B C; Coelho, J A B; Coleman, S J; Corwin, L; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Dorman, M; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grant, N; Grzelak, K; Habig, A; Harris, D; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, X; Hylen, J; Ilic, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Lefeuvre, G; Ling, J; Litchfield, P J; Litchfield, R P; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGowan, A M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Morfín, J; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Oliver, W P; Orchanian, M; Ospanov, R; Paley, J; Patterson, R B; Pawloski, G; Pearce, G F; Petyt, D A; Phan-Budd, S; Plunkett, R K; Qiu, X; Ratchford, J; Raufer, T M; Rebel, B; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreiner, P; Shanahan, P; Smith, C; Sousa, A; Stamoulis, P; Strait, M; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Yang, T; Zwaska, R

    2011-05-01

    Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25×10(20) protons on target. A fit to neutrino oscillations yields values of |Δm(2)|=(2.32(-0.08)(+0.12))×10(-3) eV(2) for the atmospheric mass splitting and sin(2)(2θ)>0.90 (90% C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively. PMID:21635083

  9. Nearly degenerate heavy sterile neutrinos in cascade decay: Mixing and oscillations

    NASA Astrophysics Data System (ADS)

    Boyanovsky, Daniel

    2014-11-01

    Some extensions beyond the Standard Model propose the existence of nearly degenerate heavy sterile neutrinos. If kinematically allowed these can be resonantly produced and decay in a cascade to common final states. The common decay channels lead to mixing of the heavy sterile neutrino states and interference effects. We implement nonperturbative methods to study the dynamics of the cascade decay to common final states, which features similarities but also noteworthy differences with the case of neutral meson mixing. We show that mixing and oscillations among the nearly degenerate sterile neutrinos can be detected as quantum beats in the distribution of final states produced from their decay. These oscillations would be a telltale signal of mixing between heavy sterile neutrinos. We study in detail the case of two nearly degenerate sterile neutrinos produced in the decay of pseudoscalar mesons and decaying into a purely leptonic "visible" channel: νh→e+e-νa. Possible cosmological implications for the effective number of neutrinos Neff are discussed.

  10. Probing the 2-3 leptonic mixing at high-energy neutrino telescopes

    SciTech Connect

    Serpico, Pasquale D.

    2006-02-15

    We discuss the possibility to probe leptonic mixing parameters at high-energy neutrino telescopes in a model-independent way, using astrophysical neutron and pion sources. In particular we show how the octant of the 2-3 mixing angle might be determined independently of prior knowledge of the source, even when current uncertainties on the other mixing parameters are included. We also argue that nontrivial neutrino oscillation effects should be taken into account when using high-energy flavor ratios for astrophysical diagnostics.

  11. Neutrino mixing and the exponential form of the Pontecorvo Maki Nakagawa Sakata matrix

    NASA Astrophysics Data System (ADS)

    Dattoli, G.; Zhukovsky, K. V.

    2008-06-01

    The form of the neutrino mixing matrix is discussed. The exponential parameterisation of the Pontecorvo Maki Nakagawa Sakata (PMNS) matrix is proposed and the generation of the new unitary parameterisation of the neutrino mixing matrix by the exponential form is demonstrated. The CP violating phase and the Majorana phases in the PMNS matrix are accounted for by a special term, separated from the rotational one. The O(3) rotation matrix in the angle-axis form is discussed in the context of such a representation of the mixing matrix. Its properties are reviewed in the context of the unitarity requirement.

  12. Simple mass matrices of neutrinos and quarks consistent with observed mixings and masses

    NASA Astrophysics Data System (ADS)

    Nishiura, Hiroyuki; Fukuyama, Takeshi

    2016-02-01

    We propose a simple phenomenological model of quarks-leptons mass matrices having fundamentally universal symmetry structure. These mass matrices consist of democratic and semi-democratic mass matrix terms commonly to the neutrino and the quark sectors and have only eight free parameters. We show that this mass matrix model well reproduces all the observed values of the MNS lepton and the CKM quark mixing angles, the neutrino mass squared difference ratio, and quark mass ratios, with an excellent agreement. The model also predicts δCPℓ = - 94 ° for the leptonic CP violating phase and < m > ≃ 0.0073 eV for the effective Majorana neutrino mass.

  13. Cold dark matter from heavy right-handed neutrino mixing

    SciTech Connect

    Anisimov, Alexey; Di Bari, Pasquale

    2009-10-01

    We show that, within the seesaw mechanism, an almost decoupled right-handed (RH) neutrino species N{sub DM} with mass M{sub DM} > or approx. 100 GeV can play the role of dark matter (DM). The N{sub DM}'s can be produced from nonadiabatic conversions of thermalized (source) RH neutrinos with mass M{sub S} lower than M{sub DM}. This is possible if a nonrenormalizable operator is added to the minimal type I seesaw Lagrangian. The observed DM abundance can be reproduced for M{sub DM}{delta}{sup 1/4}{approx}10{sup -13}{lambda}{sub eff}{xi}, where {lambda}{sub eff} is a very high energy new physics scale, {delta}{identical_to}(M{sub DM}-M{sub S})/M{sub DM}, and {xi} < or approx. 1 is a parameter determined by the RH neutrino couplings.

  14. Neutrino mixings in SO(10) with type II seesaw mechanism and θ13

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Mohapatra, R. N.; Severson, Matt

    2011-09-01

    We analyze a class of supersymmetric SO(10) grand unified theories with a type II seesaw mechanism for neutrino masses, where the contribution to the Pontecorvo-Maki-Nakagawa-Sakata matrix from the neutrino sector has an exact tribimaximal form, dictated by a broken S4 symmetry. The Higgs fields that determine the fermion masses are two 10 fields and one 126 field, with the latter simultaneously contributing to neutrino as well as charged fermion masses. Fitting charged fermion masses and the Cabibbo-Kobayashi-Maskawa mixings leads to corrections to the tribimaximal mixing that determine the final Pontecorvo-Maki-Nakagawa-Sakata matrix with the predictions θ13≃4°-6° and a Dirac CP phase between -10° and +15°. We also show correlations between various mixing angles which can be used to test the model.

  15. Neutrinos

    PubMed Central

    Besson, Dave; Cowen, Doug; Selen, Mats; Wiebusch, Christopher

    1999-01-01

    Neutrinos represent a new “window” to the Universe, spanning a large range of energy. We discuss the science of neutrino astrophysics and focus on two energy regimes. At “lower” energies (≈1 MeV), studies of neutrinos born inside the sun, or produced in interactions of cosmic rays with the atmosphere, have allowed the first incontrovertible evidence that neutrinos have mass. At energies typically one thousand to one million times higher, sources further than the sun (both within the Milky Way and beyond) are expected to produce a flux of particles that can be detected only through neutrinos. PMID:10588680

  16. Parametrization of Pontecorvo-Maki-Nakagawa-Sakata mixing matrix based on CP-violating bipair neutrino mixing

    NASA Astrophysics Data System (ADS)

    Iizuka, Jun; Kitabayashi, Teruyuki; Minagawa, Yuki; Yasuè, Masaki

    2015-01-01

    CP violation in neutrino interactions is described by three phases contained in Pontecorvo-Maki-Nakagawa-Sakata mixing matrix (UPMNS). We argue that the phenomenologically consistent result of the Dirac CP violation can be obtained if UPMNS is constructed along bipair neutrino mixing scheme, namely, requiring that |U12| = |U32| and |U22| = |U23| (case 1) and |U12| = |U22| and |U32| = |U33| (case 2), where Uij stands for the i × j matrix element of UPMNS. As a result, the solar, atmospheric and reactor neutrino mixing angles θ12, θ23 and θ13, respectively, are correlated to satisfy cos 2θ12 = sin2 θ23 - tan2 θ13 (case 1) or cos 2θ12 = cos2 θ23 - tan2 θ13 (case 2). Furthermore, if Dirac CP violation is observed to be maximal, θ23 is determined by θ13 to be: sin2θ 23 ≈ \\big (&sqrt;2 -1\\big )\\big (cos2θ 13+&sqrt;2 sin2θ 13\\big ) (case 1) or cos2 θ 23 ≈\\big (&sqrt;2 -1\\big )\\big (cos2θ 13+&sqrt;2 sin2θ 13\\big) (case 2). For the case of non-maximal Dirac CP violation, we perform numerical computation to show relations between the CP-violating Dirac phase and the mixing angles.

  17. Soft A4 → Z3 symmetry breaking and cobimaximal neutrino mixing

    NASA Astrophysics Data System (ADS)

    Ma, Ernest

    2016-04-01

    I propose a model of radiative charged-lepton and neutrino masses with A4 symmetry. The soft breaking of A4 to Z3 lepton triality is accomplished by dimension-three terms. The breaking of Z3 by dimension-two terms allows cobimaximal neutrino mixing (θ13 ≠ 0, θ23 = π / 4, δCP = ± π / 2) to be realized with only very small finite calculable deviations from the residual Z3 lepton triality. This construction solves a long-standing technical problem inherent in renormalizable A4 models since their inception.

  18. Soft A4→Z3 symmetry breaking and cobimaximal neutrino mixing

    DOE PAGESBeta

    Ma, Ernest

    2016-03-28

    In this study, I propose a model of radiative charged-lepton and neutrino masses with A4 symmetry. The soft breaking of A4 to Z3 lepton triality is accomplished by dimension-three terms. The breaking of Z3 by dimension-two terms allows cobimaximal neutrino mixing (θ13 ≠ 0, θ23 = π/4, δcp=π/2) to be realized with only very small finite calculable deviations from the residual Z3 lepton triality. This construction solves a long-standing technical problem inherent in renormalizable A4 models since their inception.

  19. Predictions for the Dirac Phase in the Neutrino Mixing Matrix and Sum Rules

    NASA Astrophysics Data System (ADS)

    Girardi, I.; Petcov, S. T.; Titov, A. V.

    2015-07-01

    Using the fact that the neutrino mixing matrix U = U†eUν, where Ue and Uv result from the diagonalisation of the charged lepton and neutrino mass matrices, we analyse the sum rules which the Dirac phase δ present in U satisfies when Uv has a form dictated by, or associated with, discrete symmetries and Ue has a “minimal” form (in terms of angles and phases it contains) that can provide the requisite corrections to Uv, so that reactor, atmospheric and solar neutrino mixing angles θ13, θ23 and θ12 have values compatible with the current data. The following symmetry forms are considered: i) tri-bimaximal (TBM), ii) bimaximal (BM) (or corresponding to the conservation of the lepton charge L' = Le — Lμ — Lτ (LC)), iii) golden ratio type A (GRA), iv) golden ratio type B (GRB), and v) hexagonal (HG). We investigate the predictions for 5 in the cases of TBM, BM (LC), GRA, GRB and HG forms using the exact and the leading order sum rules for cos δ proposed in the literature, taking into account also the uncertainties in the measured values of sin2 θ12, sin2 θ23 and sin2 θ13. This allows us, in particular, to assess the accuracy of the predictions for cos δ based on the leading order sum rules and its dependence on the values of the indicated neutrino mixing parameters when the latter are varied in their respective 3σ experimentally allowed ranges.

  20. Determination of the third neutrino-mixing angle θ13 and its implications

    NASA Astrophysics Data System (ADS)

    Roy, D. P.

    2013-05-01

    Until 2010 we had three unknown parameters of neutrino oscillation—the third mixing angle θ13, the sign of the larger mass difference Δm312 and the CP violating phase δ. Thanks to a number of consistent experimental results since then, culminating in the recent Daya Bay reactor neutrino data, we now have a definitive determination of θ13. Moreover its measured value, sin22θ13 ≈ 0.1, is close to its earlier upper limit. This has promising implications for the determination of the two remaining unknown parameters from the present and proposed accelerator neutrino experiments in the foreseeable future. This article presents a pedagogical review of these profound developments for the wider community of young physicists including university students.

  1. Measurement of Neutrino Mixing Angle thetas13 Using Neutron Captured on Hydrogen in Daya Bay

    NASA Astrophysics Data System (ADS)

    Xu, Jianyi

    The Daya Bay Reactor Neutrino Experiment aims to measure the last unknown neutrino mixing angle theta13, by measuring the disappearance of electron anti-neutrinos produced by the six nuclear reactors of the Daya Bay Nuclear Power Plant. In total eight functionally identical anti-neutrino detectors are deployed underground, with two detectors distributed at each of the two near sites close to the reactor cores and four detectors placed at a far site ˜2 km away from the reactor cores. The number of observed electron anti-neutrinos are measured via inverse-beta decay reaction, v¯e+ p+ → e+ + n. The positrons deposit energy in the liquid scintillator and annihilate with electrons, emitting gammas, which is the prompt signals for detection. The neutrons are captured on either gadolinium or hydrogen atoms and emit gammas with total energy ˜8 MeV or ˜2 MeV, respectively, producing the delayed signals. The ratio between the numbers of anti-neutrinos from far site and near site detectors is used to measure the oscillation parameters. With 55 calendar days of data, the Daya Bay experiment first published its result using neutron-captured-on-gadolinium signals in March 2012, with best-fit sin2 2theta13 = 0.092+/-0.016( stat.)0.005(syst.), excluding the zero-theta 13 hypothesis at 5.2sigma confidence level. Subsequently results with higher statistics and improved systematic uncertainty have further constrained sin2 2theta13 = 0.085 +/- 0.006. In this thesis, an independent oscillation analysis using the neutron-captured-on- hydrogen signals is presented, which could cross-check the neutron-captured-on-gadolinium analysis result with independent anti-neutrino samples and different systematic uncertainty. With 190 live days of data and 6 detectors, the rate-only analysis gives best-fit sin2 2theta13 = 0.078 +/- 0.02.

  2. 1-3 leptonic mixing and the neutrino oscillograms of the Earth

    NASA Astrophysics Data System (ADS)

    Akhmedov, Evgeny Kh.; Maltoni, Michele; Smirnov, Alexei Yu.

    2007-05-01

    We develop a detailed and comprehensive description of neutrino oscillations driven by the 1-3 mixing in the matter of the Earth. The description is valid for the realistic (PREM) Earth density profile in the whole range of nadir angles and for neutrino energies above 1 GeV. It can be applied to oscillations of atmospheric and accelerator neutrinos. The results are presented in the form of neutrino oscillograms of the Earth, i.e. the contours of equal oscillation probabilities in the neutrino energy-nadir angle plane. A detailed physics interpretation of the oscillograms, which includes the MSW peaks, parametric ridges, local maxima, zeros and saddle points, is given in terms of the amplitude and phase conditions. Precise analytic formulas for the probabilities are obtained. We study the dependence of the oscillation pattern on θ13 and find, in particular, that the survival probability Pee < 1/2 appears for sin22θ13 as small as ~ 0.009. We consider the dependence of the oscillation pattern on the matter density profile and comment on the possibility of the oscillation tomography of the Earth.

  3. Neutrino mixing and masses in SO(10) GUTs with hidden sector and flavor symmetries

    NASA Astrophysics Data System (ADS)

    Chu, Xiaoyong; Smirnov, Alexei Yu.

    2016-05-01

    We consider the neutrino masses and mixing in the framework of SO(10) GUTs with hidden sector consisting of fermionic and bosonic SO(10) singlets and flavor symmetries. The framework allows to disentangle the CKM physics responsible for the CKM mixing and different mass hierarchies of quarks and leptons and the neutrino new physics which produces smallness of neutrino masses and large lepton mixing. The framework leads naturally to the relation U PMNS ˜ V CKM † U 0, where structure of U 0 is determined by the flavor symmetry. The key feature of the framework is that apart from the Dirac mass matrices m D , the portal mass matrix M D and the mass matrix of singlets M S are also involved in generation of the lepton mixing. This opens up new possibilities to realize the flavor symmetries and explain the data. Using A 4 × Z 4 as the flavor group, we systematically explore the flavor structures which can be obtained in this framework depending on field content and symmetry assignments. We formulate additional conditions which lead to U 0 ˜ U TBM or U BM. They include (i) equality (in general, proportionality) of the singlet flavons couplings, (ii) equality of their VEVs; (iii) correlation between VEVs of singlets and triplet, (iv) certain VEV alignment of flavon triplet(s). These features can follow from additional symmetries or be remnants of further unification. Phenomenologically viable schemes with minimal flavon content and minimal number of couplings are constructed.

  4. Neutrino mixings and leptonic CP violation from CKM matrix and Majorana phases

    SciTech Connect

    Agarwalla, Sanjib Kumar; Parida, M. K.; Mohapatra, R. N.; Rajasekaran, G.

    2007-02-01

    The high scale mixing unification hypothesis recently proposed by three of us (R. N. M., M. K. P. and G. R.) states that if at the seesaw scale the quark and lepton mixing matrices are equal, then for quasidegenerate neutrinos radiative corrections can lead to large solar and atmospheric mixings and small reactor angle at the weak scale in agreement with data. Evidence for quasidegenerate neutrinos could, within this framework, be interpreted as being consistent with quark-lepton unification at high scale. In the current work, we extend this model to show that the hypothesis works quite successfully in the presence of CP-violating phases (which were set to zero in the first paper). In the case where the Pontecorvo-Maki-Nakagawa-Sakata matrix is identical to the Cabibbo-Kobayashi-Maskawa quark-mixing matrix at the seesaw scale, with a Dirac phase but no Majorana phase, the low energy Dirac phase is predicted to be ({approx_equal}0.3 deg.) and leptonic CP-violation parameter J{sub CP}{approx_equal}(4-8)x10{sup -5} and {theta}{sub 13}=3.5 deg. If on the other hand, the Pontecorvo-Maki-Nakagawa-Sakata matrix is assumed to also have non-negligible Majorana phase(s) initially, the resulting theory damps radiative magnification phenomenon for a large range of parameters but nevertheless has enough parameter space to give the two necessary large neutrino mixing angles. In this case, one has {theta}{sub 13}=3.5 deg. -10 deg. and vertical bar J{sub CP} vertical bar as large as 0.02-0.04 which are accessible to long baseline neutrino oscillation experiments.

  5. Neutrino mixings and leptonic CP violation from CKM matrix and Majorana phases

    NASA Astrophysics Data System (ADS)

    Agarwalla, Sanjib Kumar; Parida, M. K.; Mohapatra, R. N.; Rajasekaran, G.

    2007-02-01

    The high scale mixing unification hypothesis recently proposed by three of us (R. N. M., M. K. P. and G. R.) states that if at the seesaw scale the quark and lepton mixing matrices are equal, then for quasidegenerate neutrinos radiative corrections can lead to large solar and atmospheric mixings and small reactor angle at the weak scale in agreement with data. Evidence for quasidegenerate neutrinos could, within this framework, be interpreted as being consistent with quark-lepton unification at high scale. In the current work, we extend this model to show that the hypothesis works quite successfully in the presence of CP-violating phases (which were set to zero in the first paper). In the case where the Pontecorvo-Maki-Nakagawa-Sakata matrix is identical to the Cabibbo-Kobayashi-Maskawa quark-mixing matrix at the seesaw scale, with a Dirac phase but no Majorana phase, the low energy Dirac phase is predicted to be (≃0.3°) and leptonic CP-violation parameter JCP≃(4-8)×10-5 and θ13=3.5°. If on the other hand, the Pontecorvo-Maki-Nakagawa-Sakata matrix is assumed to also have non-negligible Majorana phase(s) initially, the resulting theory damps radiative magnification phenomenon for a large range of parameters but nevertheless has enough parameter space to give the two necessary large neutrino mixing angles. In this case, one has θ13=3.5° 10° and |JCP| as large as 0.02 0.04 which are accessible to long baseline neutrino oscillation experiments.

  6. A Type 2 supernovae constraint on neutrino(sub e) - neutrino(sub s) mixing

    NASA Technical Reports Server (NTRS)

    Shi, X.; Sigl, G.

    1993-01-01

    The role of a resonant nu(e) - nu(s) oscillation is discussed in the event of a supernova explosion. It is concluded that a significant nu(e) - nu(s) mixing may hinder the ability of the supernova to explode. It may also cool the proto-neutron star too quickly with respect to the observed cooling time of several seconds. The constraints on the nu(e) - nu(s) mixing parameters based on the above arguments are calculated.

  7. Minimal supergravity radiative effects on the tribimaximal neutrino mixing pattern

    SciTech Connect

    Hirsch, M.; Valle, J. W. F.; Villanova Moral, A. del; Romao, J. C.

    2007-03-01

    We study the stability of the Harrison-Perkins-Scott (HPS) mixing pattern, assumed to hold at some high energy scale, against supersymmetric radiative corrections. We work in the framework of a reference minimal supergravity model (mSUGRA) where supersymmetry breaking is universal and flavor-blind at unification. The radiative corrections considered include both RGE running as well as threshold effects. We find that in this case the solar mixing angle can only increase with respect to the HPS reference value, while the atmospheric and reactor mixing angles remain essentially stable. Deviations from the solar angle HPS prediction towards lower values would signal novel contributions from physics beyond the simplest mSUGRA model.

  8. Direct and semi-direct approaches to lepton mixing with a massless neutrino

    NASA Astrophysics Data System (ADS)

    King, Stephen F.; Ludl, Patrick Otto

    2016-06-01

    We discuss the possibility of enforcing a massless Majorana neutrino in the direct and semi-direct approaches to lepton mixing, in which the PMNS matrix is partly predicted by subgroups of a discrete family symmetry, extending previous group searches up to order 1535. We find a phenomenologically viable scheme for the semi-direct approach based on Q(648) which contains Δ(27) and the quaternion group as subgroups. This leads to novel predictions for the first column of the PMNS matrix corresponding to a normal neutrino mass hierarchy with m 1 = 0, and sum rules for the mixing angles and phase which are characterised by the solar angle being on the low side θ 12 ˜ 31° and the Dirac (oscillation) CP phase δ being either about ±45° or ±π.

  9. Neutrino emissivity in the quark-hadron mixed phase of neutron stars

    NASA Astrophysics Data System (ADS)

    Spinella, William M.; Weber, Fridolin; Contrera, Gustavo A.; Orsaria, Milva G.

    2016-03-01

    Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark matter would result in an extended mixed phase region that would segregate phases by net charge to minimize the total energy of the phase, leading to the formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have significant consequences for its thermal evolution, which for thousands of years is facilitated primarily by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the core. To this end we calculate the equation of state using the relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures (lesssim10^9 K) and quark fractions (lesssim 30% , and that contributions due to lattice vibrations are insignificant compared to static-lattice contributions.

  10. A 4 -based seesaw model for realistic neutrino masses and mixing

    NASA Astrophysics Data System (ADS)

    Pramanick, Soumita; Raychaudhuri, Amitava

    2016-02-01

    We present an A 4 -based model where neutrino masses arise from a combination of seesaw mechanisms. The model is motivated by several small mixing and mass parameters indicated by the data. These are θ13, the solar mass splitting, and the small deviation of θ23 from maximal mixing (=π /4 ). We take the above as indications that at some level the small quantities are well approximated by zero. In particular, the mixing angles to zeroth order should be either 0 or π /4 . Accordingly, in this model the type-II seesaw dominates and generates the larger atmospheric mass splitting and sets θ23=π /4 . The other mixing angles are vanishing as is the solar splitting. We show how the A 4 assignment for the lepton doublets leads to this form. We also specify the A 4 properties of the right-handed neutrinos which result in a smaller type-I seesaw contribution that acts as a perturbation and shifts the angles θ12 and θ13 into the correct range and the desired value of Δ msolar2 is produced. The A 4 symmetry results in relationships between these quantities as well as with a small deviation of θ23 from π /4 . If the right-handed neutrino mass matrix MR is chosen real then there is no leptonic C P violation and only normal ordering is admissible. If MR is complex then inverted ordering is also allowed with the proviso that the C P phase δ is large, i.e., ˜π /2 or -π /2 . The preliminary results from NO ν A favoring normal ordering and δ near -π /2 imply quasidegenerate neutrino masses in this model.

  11. Neutrino Oscillations With Two Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard S.

    2016-06-01

    This work estimates the probability of μ to e neutrino oscillation with two sterile neutrinos using a 5×5 U-matrix, an extension of the previous estimate with one sterile neutrino and a 4×4 U-matrix. The sterile neutrino-active neutrino mass differences and the mixing angles of the two sterile neutrinos with the three active neutrinos are taken from recent publications, and the oscillation probability for one sterile neutrino is compared to the previous estimate.

  12. Impact of active-sterile neutrino mixing on supernova explosion and nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Fischer, Tobias; Huther, Lutz; Martínez-Pinedo, Gabriel; Qian, Yong-Zhong

    2014-03-01

    We show that for the active-sterile flavor mixing parameters suggested by the reactor neutrino anomaly, substantial νe-νs and ν¯e-ν¯s conversion occurs in regions with an electron fraction of ≈1/3 near the core of an 8.8M⊙ electron-capture supernova. We explicitly include the feedback of such conversion on the evolution of the electron fraction in supernova ejecta. Compared to the case without such conversion, the neutron richness of the ejecta is enhanced to allow production of elements from Sr, Y, and Zr up to Cd in broad agreement with observations of the metal-poor star HD 122563 for a wide range of mixing parameters. Active-sterile flavor conversion can also strongly suppress neutrino heating at times when it is important for the revival of the shock. Our results suggest that simulations of a supernova explosion and the associated nucleosynthesis may be used to constrain active-sterile mixing parameters in combination with neutrino experiments and cosmological considerations.

  13. Meeting the constraint of neutrino-Higgsino mixing in gravity unified theories

    SciTech Connect

    Faraggi, A.E.; Pati, J.C.

    1997-02-01

    In Gravity Unified Theories all operators that are consistent with the local gauge and discrete symmetries are expected to arise in the effective low-energy theory. given the absence of multiplets like 126 of S0(10) in string models, and assuming that B - L is violated spontaneously to generate light neutrino masses via a seesaw mechanism, it is observed that string theory solutions genetically face the problem of producing an excessive {nu}{sub L} - {tilde H} mixing mass at the GUT scale, which is some nineteen orders of magnitude larger than the experimental bound of 1 MeV. The suppression of {nu}{sub L} - {tilde H} mixing, like proton longevity, thus provides one of the most severe restraints on the validity of any string theory solution. We examine this problem in a class of superstring derived models. We find a family of solutions within this class for which the symmetries of the models and an allowed pattern of VEVs, surprisingly, succeed in adequately suppressing the neutrino-Higgsino mixing terms. At the same time they produce the terms required to generate small neutrino masses via seesaw mechanism.

  14. Neutrinos

    NASA Astrophysics Data System (ADS)

    Winter, K.; Murdin, P.

    2000-11-01

    Neutrinos are electrically neutral ELEMENTARY PARTICLES which experience only the weak nuclear force and gravity. Their existence was introduced as a hypothesis by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in radioactive beta decay. Chadwick had discovered in 1914 that the energy spectrum of electrons emitted in beta decay was not monoenergetic but continuous...

  15. Nonzero θ13 signals nonmaximal atmospheric neutrino mixing

    NASA Astrophysics Data System (ADS)

    Eby, David A.; Frampton, Paul H.

    2012-12-01

    From recent groundbreaking experiments, it is now known that the Pontecorvo-Maki-Nakagawa-Sakata mixing differs significantly from the tribimaximal model in which θ13=0 and θ23=π/4. Flavor symmetry can require that the departures from these two equations are linearly related. T' and A4, which successfully accommodated the pre-T2K Pontecorvo-Maki-Nakagawa-Sakata matrix, predict that 38.07°≤θ23≤39.52° at 95% C.L. The best fit values, combining the model predictions with T2K, MINOS, Double Chooz, Daya Bay, and RENO data, are θ23=38.7° and θ13=8.9°.

  16. Implications of recent data on neutrino mixing and lepton flavour violating decays for the Zee model

    NASA Astrophysics Data System (ADS)

    He, Xiao-Gang; Majee, Swarup Kumar

    2012-03-01

    We study implications of recent data on neutrino mixing from T2K, MINOS, Double Chooz and μ → eγ from MEG for the Zee model. The simplest version of this model has been shown to be ruled out by experimental data some time ago. The general Zee model is still consistent with recent data. We demonstrate this with a constrained Zee model based on naturalness consideration. In this constrained model, only inverted mass hierarchy for neutrino masses is allowed, and θ 13 must be non-zero in order to have correct ratio for neutrino mass-squared differences and for mixing in solar and atmospherical neutrino oscillations. The best-fit value of our model for θ 13 is 8.91° from T2K and MINOS data, very close to the central value obtained by Double Chooz experiment. There are solutions with non-zero CP violation with the Jarlskog parameter predicted in the range ±0.039, ±0.044 and ±0.048 respectively for a 1 σ, 2 σ and 3 σ ranges of other input parameters. However, without any constraint on the θ 13-parameter above respective ranges become ±0.049, ±0.053 and ±0.056. We analyse different cases to obtain a branching ratio for μ → eγ close to the recent MEG bound. We also discuss other radiative as well as the charged trilepton flavour violating decay modes of the τ-lepton.

  17. Trimaximal TM1 neutrino mixing in S4 with spontaneous CP violation

    NASA Astrophysics Data System (ADS)

    Luhn, Christoph

    2013-10-01

    The measurement of the reactor angle by the Daya Bay and RENO experiments in 2012 has ruled out the tri-bimaximal paradigm. Adopting an S4 family symmetry, we propose direct models of the trimaximal type TM1 in which the tri-bimaximal Klein symmetry of the neutrino sector is broken to a residual Z2 symmetry. In such a scenario, the solar mixing angle is decreased compared to its tri-bimaximal value by about 1°, thus bringing it in excellent agreement with experimental observation. The atmospheric mixing angle, on the other hand, depends on the CP violating Dirac phase δ. Imposing CP conservation in the family symmetry limit, we show how to break the CP symmetry via flavon VEVs with well-defined complex phases, so that sizable deviations of the atmospheric angle from maximal mixing, consistent with the latest global fits, are produced. A related approach adopts non-Abelian groups which contain only half the Klein symmetry of the neutrino sector [44-47].

  18. 2-3 symmetry: Flavor changing b, τ decays, and neutrino mixing

    NASA Astrophysics Data System (ADS)

    Datta, Alakabha; O'Donnell, Patrick J.

    2005-12-01

    The observed pattern of neutrino mixing may be the result of a 2-3(μ-τ) symmetry in the leptonic sector. We consider a two Higgs doublet model with a 2-3 symmetry in the down-type quark and the charged lepton sector. The breaking of the 2-3 symmetry by the strange quark mass and the muon mass leads to flavor changing neutral currents in the quark sector and the charged lepton sector that are suppressed by ms/mb and mμ/mτ in addition to the mass of the heavy Higgs boson of the second Higgs doublet. A Higgs boson mass of mH˜600-900GeV can explain the deviation from the standard model reported in several rare B decays. Predictions for other B decays are made, and a new CP phase is predicted in Bs- Bmacr s mixing. The lepton flavor violating decays τ→μ lmacr ( qmacr )l(q) are below the experimental limits. The breaking of 2-3 symmetry in the lepton sector can lead to deviations of the atmospheric neutrino mixing angle from the maximal value by ˜2 degrees.

  19. Neutrino

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-04-01

    The most basic Quantum are the particles who mutual rotation, quantum is composed of basic quantum.Quantum convergence or divergence is conditional, the faster the particle rotates, the smaller the orbiting radius will be, the greater quality is, the more density will be. The orbiting radius of less than 10-15 meters in the order of convergence, convergence of neutron, proton, and then they are in the formation of the nucleus, and the convergence of quantum can make extra nuclear electron and the formation of atomic; if rotation radius is more than 10-15 meters of magnitude, the internal quantum atoms diverge to outer space in the form of electromagnetic waves. The quality of magnetic wave particle is composed of the rotation speed of the particle which is internal of the electromagnetic, it doesn't matter about the electromagnetic wave propagation velocity of particles. Neutrinos are orbiting particles, the orbiting radius is about 10-15 meters, is a special kind of radiation. Neutrino is between the virtual particles (according to modern science, the electromagnetic wave doesn't have quality) and modern scientific (the particle who has quality) special particles

  20. Neutrino Oscillations with Three Active and Three Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard S.

    2016-07-01

    This is an extension of estimates of the probability of μ to e neutrino oscillation with one sterile neutrino to three sterile neutrinos, using a 6x6 matrix. Since the mixing angle for only one sterile neutrino has been experimentally determined, we estimate the μ to e neutrino oscillation probability with different mixing angles for two of the sterile neutrinos.

  1. Neutrino mixing matrix and masses from a generalized Friedberg-Lee model

    NASA Astrophysics Data System (ADS)

    Razzaghi, N.; Gousheh, S. S.

    2014-02-01

    The overall characteristics of the solar and atmospheric neutrino oscillation are approximately consistent with a tribimaximal form of the mixing matrix U of the lepton sector. Exact tribimaximal mixing leads to θ13=0. However, recent results from the Daya Bay and RENO experiments have established a nonzero value for θ13. Keeping the leading behavior of U as tribimaximal, we use a generalized Friedberg-Lee neutrino mass model along with a complementary ansatz to incorporate a nonzero θ13 along with CP violation. We generalize this model in two stages: In the first stage, we assume μ -τ symmetry and add imaginary components which leads to nonzero phases. In the second stage, we add a perturbation with real components which breaks the μ-τ symmetry, and this leads to a nonzero value for θ13. The combination of these two generalizations leads to CP violation. Using only two sets of the experimental data, we can fix all of the parameters of our model and predict not only values for the other experimental data, which agree well with the available data, but also the masses of neutrinos and the CP-violating phases and parameters. These predictions include the following: ⟨mνe⟩≈(0.033-0.037) eV, ⟨mνμ⟩≈(0.043-0.048) eV, ⟨mντ⟩≈(0.046-0.051) eV, and 59.21°≲δ ≲59.34°.

  2. Neutrino physics

    SciTech Connect

    Kayser, Boris; /Fermilab

    2005-06-01

    Thanks to compelling evidence that neutrinos can change flavor, we now know that they have nonzero masses, and that leptons mix. In these lectures, we explain the physics of neutrino flavor change, both in vacuum and in matter. Then, we describe what the flavor-change data have taught us about neutrinos. Finally, we consider some of the questions raised by the discovery of neutrino mass, explaining why these questions are so interesting, and how they might be answered experimentally.

  3. Nonstandard neutrino-neutrino refractive effects in dense neutrino gases

    SciTech Connect

    Blennow, Mattias; Mirizzi, Alessandro; Serpico, Pasquale D.; /CERN /Fermilab

    2008-10-01

    We investigate the effects of nonstandard four-fermion neutrino-neutrino interactions on the flavor evolution of dense neutrino gases. We find that in the regions where the neutrino-neutrino refractive index leads to collective flavor oscillations, the presence of new neutrino interactions can produce flavor equilibration in both normal and inverted neutrino mass hierarchy. In realistic supernova environments, these effects are significant if the nonstandard neutrino-neutrino interaction strength is comparable to the one expected in the standard case, dominating the ordinary matter potential. However, very small nonstandard neutrino-neutrino couplings are enough to trigger the usual collective neutrino flavor transformations in the inverted neutrino mass hierarchy, even if the mixing angle vanishes exactly.

  4. Flavor symmetry L{sub e}-L{sub {mu}}-L{sub {tau}}, atmospheric neutrino mixing, and CP violation in the lepton sector

    SciTech Connect

    Petcov, S.T.; Rodejohann, W.

    2005-04-01

    The Pontecorvo-Maki-Nakagawa-Sakata neutrino mixing matrix is given, in general, by the product of two unitary matrices associated with the diagonalization of the charged lepton and neutrino mass matrices. Assuming that the active flavor neutrinos possess a Majorana mass matrix which is diagonalized by a bimaximal mixing matrix, we give the allowed forms of the charged lepton mixing matrix and the corresponding implied forms of the charged lepton mass matrix. We then assume that the origin of bimaximal mixing is a weakly broken flavor symmetry corresponding to the conservation of the nonstandard lepton charge L{sup '}=L{sub e}-L{sub {mu}}-L{sub {tau}}. The latter does not predict, in general, the atmospheric neutrino mixing to be maximal. We study the impact of this fact on the allowed forms of the charged lepton mixing matrix and on the neutrino mixing observables, analyzing the case of CP violation in detail. When compared with the case of exact bimaximal mixing, the deviations from zero U{sub e3} and from maximal atmospheric neutrino mixing are typically more sizable if one assumes just L{sup '} conservation. In fact, |U{sub e3}|{sup 2} can be as small as 0.007 and atmospheric neutrino mixing can take any value inside its currently allowed range. We discuss under which conditions the atmospheric neutrino mixing angle is larger or smaller than {pi}/4. We present also a simple seesaw realization of the implied light neutrino Majorana mass matrix and consider leptogenesis in this scenario.

  5. A PRECISION MEASUREMENT OF THE NEUTRINO MIXING ANGLE THETA (SUB 13) USING REACTOR ANTINEUTRINOS AT DAYA BAY.

    SciTech Connect

    KETTELL, S.; ET AL.

    2006-10-16

    This document describes the design of the Daya Bay reactor neutrino experiment. Recent discoveries in neutrino physics have shown that the Standard Model of particle physics is incomplete. The observation of neutrino oscillations has unequivocally demonstrated that the masses of neutrinos are nonzero. The smallness of the neutrino masses (<2 eV) and the two surprisingly large mixing angles measured have thus far provided important clues and constraints to extensions of the Standard Model. The third mixing angle, {delta}{sub 13}, is small and has not yet been determined; the current experimental bound is sin{sup 2} 2{theta}{sub 13} < 0.17 at 90% confidence level (from Chooz) for {Delta}m{sub 31}{sup 2} = 2.5 x 10{sup -3} eV{sup 2}. It is important to measure this angle to provide further insight on how to extend the Standard Model. A precision measurement of sin{sup 2} 2{theta}{sub 13} using nuclear reactors has been recommended by the 2004 APS Multi-divisional Study on the Future of Neutrino Physics as well as a recent Neutrino Scientific Assessment Group (NUSAG) report. We propose to perform a precision measurement of this mixing angle by searching for the disappearance of electron antineutrinos from the nuclear reactor complex in Daya Bay, China. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will be vital in resolving the neutrino-mass hierarchy and future measurements of CP violation in the lepton sector because this technique cleanly separates {theta}{sub 13} from CP violation and effects of neutrino propagation in the earth. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will provide important, complementary information to that from long-baseline, accelerator-based experiments. The goal of the Daya Bay experiment is to reach a sensitivity of 0.01 or better in sin{sup 2} 2{theta}{sub 13} at 90% confidence level.

  6. Experimental Neutrino Physics: Final Report

    SciTech Connect

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  7. Optimizing the determination of the neutrino mixing angle θ13 from reactor data

    NASA Astrophysics Data System (ADS)

    Khan, Amir N.; McKay, Douglas W.; Ralston, John P.

    2014-07-01

    The technical breakthroughs of multiple detectors developed by Daya Bay and RENO collaborations have gotten great attention. Yet the optimal determination of neutrino mixing parameters from reactor data depends on the statistical method and demands equal attention. We find that a straightforward method using minimal parameters will generally outperform a multi-parameter method by delivering more reliable values with sharper resolution. We review standard confidence levels and statistical penalties for models using extra parameters, and apply those rules to our analysis. We find that the methods used in recent work of the Daya Bay and RENO collaborations have several undesirable properties. The existing work also uses nonstandard measures of significance which we are unable to explain. A central element of the current methods consists of variationally fitting many more parameters than data points. As a result, the experimental resolution of sin2(2θ13) is degraded. The results also become extremely sensitive to certain model parameters that can be adjusted arbitrarily. The number of parameters to include in evaluating significance is an important issue that has generally been overlooked. The measures of significance applied previously would be consistent if and only if all parameters but one were considered to have no physical relevance for the experiment's hypothesis test. Simpler, more transparent methods can improve the determination of the mixing angle θ13 from reactor data, and exploit the advantages from superb hardware technique of the experiments. We anticipate that future experimental analysis will fully exploit those advantages.

  8. NEUTRINO FACTORIES - PHYSICS POTENTIALS.

    SciTech Connect

    PARSA,Z.

    2001-02-16

    The recent results from Super-Kamiokande atmospheric and solar neutrino observations opens a new era in neutrino physics and has sparked a considerable interest in the physics possibilities with a Neutrino Factory based on the muon storage ring. We present physics opportunities at a Neutrino Factory, and prospects of Neutrino oscillation experiments. Using the precisely known flavor composition of the beam, one could envision an extensive program to measure the neutrino oscillation mixing matrix, including possible CP violating effects. These and Neutrino Interaction Rates for examples of a Neutrino Factory at BNL (and FNAL) with detectors at Gran Sasso, SLAC and Sudan are also presented.

  9. Neutrino masses and mixings: Status of known and unknown 3ν parameters

    NASA Astrophysics Data System (ADS)

    Capozzi, F.; Lisi, E.; Marrone, A.; Montanino, D.; Palazzo, A.

    2016-07-01

    Within the standard 3ν mass-mixing framework, we present an up-to-date global analysis of neutrino oscillation data (as of January 2016), including the latest available results from experiments with atmospheric neutrinos (Super-Kamiokande and IceCube DeepCore), at accelerators (first T2K ν ‾ and NO νAν runs in both appearance and disappearance modes), and at short-baseline reactors (Daya Bay and RENO far/near spectral ratios), as well as a reanalysis of older KamLAND data in the light of the "bump" feature recently observed in reactor spectra. We discuss improved constraints on the five known oscillation parameters (δm2, | Δm2 |, sin2 ⁡θ12, sin2 ⁡θ13, sin2 ⁡θ23), and the status of the three remaining unknown parameters: the mass hierarchy [sign (± Δm2)], the θ23 octant [sign (sin2 ⁡θ23 - 1 / 2)], and the possible CP-violating phase δ. With respect to previous global fits, we find that the reanalysis of KamLAND data induces a slight decrease of both δm2 and sin2 ⁡θ12, while the latest accelerator and atmospheric data induce a slight increase of | Δm2 |. Concerning the unknown parameters, we confirm the previous intriguing preference for negative values of sin ⁡ δ (with best-fit values around sin ⁡ δ ≃ - 0.9), but we find no statistically significant indication about the θ23 octant or the mass hierarchy (normal or inverted). Assuming an alternative (so-called LEM) analysis of NO νA data, some δ ranges can be excluded at > 3 σ, and the normal mass hierarchy appears to be slightly favored at ∼ 90% C.L. We also describe in detail the covariances of selected pairs of oscillation parameters. Finally, we briefly discuss the implications of the above results on the three non-oscillation observables sensitive to the (unknown) absolute ν mass scale: the sum of ν masses Σ (in cosmology), the effective νe mass mβ (in beta decay), and the effective Majorana mass mββ (in neutrinoless double beta decay).

  10. CP violation in neutrino mixing with δ = - π / 2 in A4 Type-II seesaw model

    NASA Astrophysics Data System (ADS)

    Li, Guan-Nan; He, Xiao-Gang

    2015-11-01

    We study a class of models for neutrino mass matrix in Type-II seesaw with A4 family symmetry. The resulting neutrino mass matrix can be naturally made to respect a μ- τ exchange plus CP conjugate symmetry (GLS) with the CP violating phase δ and the mixing angle θ23 predicted to be ± π / 2 and π / 4, respectively. When GLS is explicitly broken by complex Yukawa couplings, the model predictions for δ and θ23 can be significantly modified. Should future experiments indeed determine θ23 and δCP away from the GLS limit values, one then had to consider models with broken GLS. We study several simple scenarios to show how the modifications arise w&barbelow;hen GLS is broken and how future experiments can test this class of models.

  11. Nonzero {theta}{sub 13} for neutrino mixing in a supersymmetric B-L gauge model with T{sub 7} lepton flavor symmetry

    SciTech Connect

    Cao Qinghong; Khalil, Shaaban; Ma, Ernest; Okada, Hiroshi

    2011-10-01

    We discuss how {theta}{sub 13}{ne}0 is accommodated in a recently proposed renormalizable model of neutrino mixing using the non-Abelian discrete symmetry T{sub 7} in the context of a supersymmetric extension of the standard model with gauged U(1){sub B-L}. We predict a correlation between {theta}{sub 13} and {theta}{sub 23}, as well as the effective neutrino mass m{sub ee} in neutrinoless double beta decay.

  12. Neutrino refraction by the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Díaz, J. S.; Klinkhamer, F. R.

    2016-03-01

    We have determined the dispersion relation of a neutrino test particle propagating in the cosmic neutrino background. Describing the relic neutrinos and antineutrinos from the hot big bang as a dense medium, a matter potential or refractive index is obtained. The vacuum neutrino mixing angles are unchanged, but the energy of each mass state is modified. Using a matrix in the space of neutrino species, the induced potential is decomposed into a part which produces signatures in beta-decay experiments and another part which modifies neutrino oscillations. The low temperature of the relic neutrinos makes a direct detection extremely challenging. From a different point of view, the identified refractive effects of the cosmic neutrino background constitute an ultralow background for future experimental studies of nonvanishing Lorentz violation in the neutrino sector.

  13. Neutrinos Matter

    NASA Astrophysics Data System (ADS)

    Freedman, Stuart

    2003-04-01

    The excitement about neutrinos is all about mass. Recent experiments have established that neutrino have mass and that the familiar weak interaction states ν_e, ν_μ, and ν_τ are not the states the quantum states with definite mass. These new discoveries require a major reassessment of the role of neutrinos in the universe and the first reformulation of the Standard Model of particle physics since the discovery of the third generation of quarks and leptons. Neutrino experiments are poised to answer many of the new questions raised by the recent discoveries. I will review the current status of the field and discuss what experiment is teaching us about neutrino mass and mixing.

  14. Active to sterile neutrino mixing limits from neutral-current interactions in MINOS.

    PubMed

    Adamson, P; Auty, D J; Ayres, D S; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Cavanaugh, S; Cherdack, D; Childress, S; Coelho, J A B; Coleman, S J; Corwin, L; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Dorman, M; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grant, N; Grzelak, K; Habig, A; Harris, D; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, X; Hylen, J; Ilic, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Lefeuvre, G; Ling, J; Litchfield, P J; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGowan, A M; Mehdiyev, R; Meier, J R; Messier, M D; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Morfín, J; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nicholls, T C; Nowak, J A; Oliver, W P; Orchanian, M; Paley, J; Patterson, R B; Pawloski, G; Pearce, G F; Petyt, D A; Phan-Budd, S; Pittam, R; Plunkett, R K; Qiu, X; Ratchford, J; Raufer, T M; Rebel, B; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreiner, P; Sharma, R; Shanahan, P; Sousa, A; Stamoulis, P; Strait, M; Tagg, N; Talaga, R L; Tetteh-Lartey, E; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Walding, J J; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Zwaska, R

    2011-07-01

    Results are reported from a search for active to sterile neutrino oscillations in the MINOS long-baseline experiment, based on the observation of neutral-current neutrino interactions, from an exposure to the NuMI neutrino beam of 7.07×10(20) protons on target. A total of 802 neutral-current event candidates is observed in the Far Detector, compared to an expected number of 754 ± 28(stat) ± 37(syst) for oscillations among three active flavors. The fraction f(s) of disappearing ν(μ) that may transition to ν(s) is found to be less than 22% at the 90% C.L. PMID:21797535

  15. Active to Sterile Neutrino Mixing Limits from Neutral-Current Interactions in MINOS

    SciTech Connect

    Adamson, P.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Childress, S.; Harris, D.; Hatcher, R.; Hylen, J.; James, C.; Jensen, D.; Koizumi, G.; Kreymer, A.; Lucas, P.; Moore, C. D.; Morfin, J.; Plunkett, R. K.; Rebel, B.; Sharma, R.; Shanahan, P.; Torretta, D.

    2011-07-01

    Results are reported from a search for active to sterile neutrino oscillations in the MINOS long-baseline experiment, based on the observation of neutral-current neutrino interactions, from an exposure to the NuMI neutrino beam of 7.07x10{sup 20} protons on target. A total of 802 neutral-current event candidates is observed in the Far Detector, compared to an expected number of 754{+-}28(stat){+-}37(syst) for oscillations among three active flavors. The fraction f{sub s} of disappearing {nu}{sub {mu}} that may transition to {nu}{sub s} is found to be less than 22% at the 90% C.L.

  16. Active to sterile neutrino mixing limits from neutral-current interactions in MINOS

    SciTech Connect

    Adamson, P.; Auty, D.J.; Ayres, D.S.; Backhouse, C.; Barr, G.; Bishai, M.; Blake, A.; Bock, G.J.; Boehnlein, D.J.; Bogert, D.; Cavanaugh, S.; /Harvard U., Phys. Dept. /Tufts U.

    2011-04-01

    Results are reported from a search for active to sterile neutrino oscillations in the MINOS long-baseline experiment, based on the observation of neutral-current neutrino interactions, from an exposure to the NuMI neutrino beam of 7.07 x 10{sup 20} protons on target. A total of 802 neutral-current event candidates is observed in the Far Detector, compared to an expected number of 754 {+-} 28(stat.) {+-} 37(syst.) for oscillations among three active flavors. The fraction f{sub s} of disappearing {nu}{sub {mu}} that may transition to {nu}{sub s} is found to be less than 22% at the 90% C.L.

  17. Global analyses of neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Gonzalez-Garcia, M. C.; Maltoni, Michele; Schwetz, Thomas

    2016-07-01

    We summarize the determination of some neutrino properties from the global analysis of solar, atmospheric, reactor, and accelerator neutrino data in the framework of three-neutrino mixing as well as in some extended scenarios such as the mixing with eV-scale sterile neutrinos invoked for the interpretation of the short baseline anomalies, and the presence of non-standard neutrino interactions.

  18. AN OVERVIEW OF NEUTRINO MASSES AND MIXING IN SO(10) MODELS.

    SciTech Connect

    CHEN,M.C.MAHANTHAPPA,K.T.

    2003-06-05

    We review in this talk various SUSY SO(10) models. Specifically, we discuss how small neutrino masses are generated in and generic predictions of different SO(10) models. A comparison of the predictions of these models for sin{sup 2} {theta}{sub 13}is given.

  19. Neutrino mass models and CP violation

    SciTech Connect

    Joshipura, Anjan S.

    2011-10-06

    Theoretical ideas on the origin of (a) neutrino masses (b) neutrino mass hierarchies and (c) leptonic mixing angles are reviewed. Topics discussed include (1) symmetries of neutrino mass matrix and their origin (2) ways to understand the observed patterns of leptonic mixing angles and (3)unified description of neutrino masses and mixing angles in grand unified theories.

  20. Neutrino oscillation studies with reactors

    PubMed Central

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. PMID:25913819

  1. Neutrino oscillation studies with reactors

    SciTech Connect

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  2. Novel Ideas for Neutrino Beams

    SciTech Connect

    Peach, Ken

    2007-04-23

    Recent developments in neutrino physics, primarily the demonstration of neutrino oscillations in both atmospheric neutrinos and solar neutrinos, provide the first conclusive evidence for physics beyond the Standard Model of particle physics. The simplest phenomenology of neutrino oscillations, for three generations of neutrino, requires six parameters - two squared mass differences, 3 mixing angles and a complex phase that could, if not 0 or {pi}, contribute to the otherwise unexplained baryon asymmetry observed in the universe. Exploring the neutrino sector will require very intense beams of neutrinos, and will need novel solutions.

  3. Neutrino oscillation studies with reactors.

    PubMed

    Vogel, P; Wen, L J; Zhang, C

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. PMID:25913819

  4. Neutrino oscillation studies with reactors

    DOE PAGESBeta

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  5. Measurement of neutrino mixing angle θ13 and mass difference Δ mee2 from reactor antineutrino disappearance in the RENO experiment

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Bong

    2016-07-01

    RENO (Reactor Experiment for Neutrino Oscillation) made a definitive measurement of the smallest neutrino mixing angle θ13 in 2012, based on the disappearance of reactor electron antineutrinos. The experiment has obtained a more precise value of the mixing angle and the first result on neutrino mass difference Δ mee2 from an energy and baseline dependent reactor neutrino disappearance using ∼500 days of data. Based on the ratio of inverse-beta-decay (IBD) prompt spectra measured in two identical far and near detectors, we obtain sin2 ⁡ (2θ13) = 0.082 ± 0.009 (stat .) ± 0.006 (syst .) and | Δ mee2 | = [2.62-0.23+0.21 (stat .)-0.13+0.12 (syst .) ] ×10-3 eV2. An excess of reactor antineutrinos near 5 MeV is observed in the measured prompt spectrum with respect to the most commonly used models. The excess is found to be consistent with coming from reactors. A successful measurement of θ13 is also made in an IBD event sample with a delayed signal of neutron capture on hydrogen. A precise value of θ13 would provide important information on determination of the leptonic CP phase if combined with a result of an accelerator neutrino beam experiment.

  6. Effects of sudden mixing in the solar core on solar neutrinos and ice ages.

    NASA Technical Reports Server (NTRS)

    Ezer, D.; Cameron, A. G. W.

    1972-01-01

    Some numerical experiments with a solar model have been conducted in connection with the hypothesis regarding the effects of mixing in the solar core. Questions concerning a plausible mechanism by which such a mixing could be produced are explored. The variation of solar luminosity throughout the numerical experiments is shown. In connection with a great change in luminosity after a second mixing, it is suggested that the earth is presently undergoing an ice age.

  7. EFFECTS OF A DEEP MIXED SHELL ON SOLAR g-MODES, p-MODES, AND NEUTRINO FLUX

    SciTech Connect

    Wolff, Charles L.

    2009-08-10

    A mixed-shell model that reflects g-modes away from the Sun's center is developed further by calibrating its parameters and evaluating a mixing mechanism: buoyancy. The shell roughly doubles g-mode oscillation periods and would explain why there is no definitive detection of their periods. But the shell has only minor effects on most p-modes. The model provides a mechanism for causing short-term fluctuations in neutrino flux and makes plausible the correlations between this flux and solar activity levels. Relations are derived for a shell heated asymmetrically by transient increases in nuclear burning in small 'hot spots'. The size of these spots and the timing of a heating event are governed by sets(l) of standing asymptotic g-modes, coupled by a maximal principle that greatly enhances their excitation and concentrates power toward the equator, assisting the detection of higher-l sets. Signals from all sets, except one, in the range 2 {<=} l {<=} 8 are identified by difference periods between consecutive radial states using the method of Garcia et al. and reinterpreting their latest spectrum. This confirms two detections of sets in a similar range of l by their rotation rates. The mean radius of shell mixing is r{sub m} = 0.16 R{sub sun}, which improves an earlier independent estimate of 0.18 by the author. The shell may cause the unexplained dip in measured sound speed at its location. Another sound speed error, centered near 0.67 R{sub sun}, and reversing flows in the same place with a period originally near 1.3 yr suggest that the g-modes are depositing there about 3% of the solar luminosity. That implies the shell at r{sub m} is receiving a similar magnitude of power, which would be enough energy to mix the corresponding shell in a standard solar model in <<10{sup 7} yr.

  8. Yang-Mills Duality as Origin of Generations, Quark Mixing, and Neutrino Oscillations

    NASA Astrophysics Data System (ADS)

    Tsou, Sheung Tsun

    2002-08-01

    The origin of fermion generations is one of the great mysteries in particle physics. We consider here a possible solution within the Standard Model framework based on a nonabelian generalization of electric-magnetic duality. First, nonabelian duality says that dual to the colour (electric) symmetry SU(3), there is a "colour magnetic symmetry" {SU}͠(3), which by a result of 't Hooft is spontaneously broken and can thus play the role of the "horizontal symmetry" of generations. Second, nonabelian duality suggests the manner this symmetry is broken with frame vectors in internal symmetry space acting as Higgs fields. As a result, mass matrices factorize leading to fermion mass hierarchy. At the tree level, there is no mixing but with loop corrections, the mass matrices rotate and mixing occurs. A calculation to first order gives mixing (CKM and MNS) matrices in general agreement with experiment. In particular, quark mixing is seen naturally to be weak compared with leptons, while within the lepton sector, μ - τ mixing turns out near maximal but e - τ mixing small, just as seen in recent ν oscillation experiments. In addition, the scheme leads to many testable predictions ranging from rare FCNC meson decays and μ - e conversion in nuclei to cosmic ray air showers above 1020 eV, which will be detailed in the followng talk by Chan.

  9. Direct Neutrino Mass Searches

    NASA Astrophysics Data System (ADS)

    VanDevender, B. A.

    2009-12-01

    Neutrino flavor oscillation experiments have demonstrated that the three Standard Model neutrino flavor eigenstates are mixed with three mass eigenstates whose mass eigenvalues are nondegenerate. The oscillation experiments measure the differences between the squares of the mass eigenvalues but tell us nothing about their absolute values. The unknown absolute neutrino mass scale has important implications in particle physics and cosmology. Beta decay endpoint measurements are presented as a model-independent method to measure the absolute neutrino mass. The Karlsruhe Tritium Neutrino Experiment (KATRIN) is explored in detail.

  10. Finite temperature corrections and embedded strings in noncommutative geometry and the standard model with neutrino mixing

    SciTech Connect

    Martins, R. A.

    2007-08-15

    The recent extension of the standard model to include massive neutrinos in the framework of noncommutative geometry and the spectral action principle involves new scalar fields and their interactions with the usual complex scalar doublet. After ensuring that they bring no unphysical consequences, we address the question of how these fields affect the physics predicted in the Weinberg-Salam theory, particularly in the context of the electroweak phase transition. Applying the Dolan-Jackiw procedure, we calculate the finite temperature corrections, and find that the phase transition is first order. The new scalar interactions significantly improve the stability of the electroweak Z string, through the 'bag' phenomenon described by Vachaspati and Watkins ['Bound states can stabilize electroweak strings', Phys. Lett. B 318, 163-168 (1993)]. (Recently, cosmic strings have climbed back into interest due to a new evidence.) Sourced by static embedded strings, an internal space analogy of Cartan's torsion is drawn, and a possible Higgs-force-like 'gravitational' effect of this nonpropagating torsion on the fermion masses is described. We also check that the field generating the Majorana mass for the {nu}{sub R} is nonzero in the physical vacuum.

  11. An Experimentalist's Overview of Solar Neutrinos

    NASA Astrophysics Data System (ADS)

    Oser, Scott M.

    2012-02-01

    Four decades of solar neutrino research have demonstrated that solar models do a remarkable job of predicting the neutrino fluxes from the Sun, to the extent that solar neutrinos can now serve as a calibrated neutrino source for experiments to understand neutrino oscillations and mixing. In this review article I will highlight the most significant experimental results, with emphasis on the latest model-independent measurements from the Sudbury Neutrino Observatory. The solar neutrino fluxes are seen to be generally well-determined experimentally, with no indications of time variability, while future experiments will elucidate the lower energy part of the neutrino spectrum, especially pep and CNO neutrinos.

  12. Neutrino oscillations: From a historical perspective to the present status

    NASA Astrophysics Data System (ADS)

    Bilenky, S.

    2016-07-01

    The history of neutrino mixing and oscillations is briefly presented. Basics of neutrino mixing and oscillations and convenient formalism of neutrino oscillations in vacuum are given. The role of neutrino in the Standard Model and the Weinberg mechanism of the generation of the Majorana neutrino masses are discussed.

  13. Independent measurement of the neutrino mixing angle θ13 via neutron capture on hydrogen at Daya Bay

    SciTech Connect

    Jaffe, D. E.

    2014-10-03

    A new measurement of the θ13 mixing angle has been obtained at the Daya Bay Reactor Neutrino Experiment via the detection of inverse beta decays tagged by neutron capture on hydrogen. The antineutrino events for hydrogen capture are distinct from those for gadolinium capture with largely different systematic uncertainties, allowing a determination independent of the gadolinium-capture result and an improvement on the precision of the θ13 measurement. With a 217-day antineutrino data set obtained with six antineutrino detectors and from six 2.9 GWth reactors, the rate deficit observed at the far hall is interpreted as sin213=0.083±0.018 in the three-flavor oscillation model. When combined with the gadolinium-capture result from Daya Bay, we obtain sin213=0.089±0.008 as the final result for the six-antineutrino-detector configuration of the Daya Bay experiment.

  14. Independent measurement of the neutrino mixing angle θ13 via neutron capture on hydrogen at Daya Bay

    DOE PAGESBeta

    Jaffe, D. E.

    2014-10-03

    A new measurement of the θ13 mixing angle has been obtained at the Daya Bay Reactor Neutrino Experiment via the detection of inverse beta decays tagged by neutron capture on hydrogen. The antineutrino events for hydrogen capture are distinct from those for gadolinium capture with largely different systematic uncertainties, allowing a determination independent of the gadolinium-capture result and an improvement on the precision of the θ13 measurement. With a 217-day antineutrino data set obtained with six antineutrino detectors and from six 2.9 GWth reactors, the rate deficit observed at the far hall is interpreted as sin22θ13=0.083±0.018 in the three-flavor oscillationmore » model. When combined with the gadolinium-capture result from Daya Bay, we obtain sin22θ13=0.089±0.008 as the final result for the six-antineutrino-detector configuration of the Daya Bay experiment.« less

  15. Neutrino Oscillation Physics

    SciTech Connect

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

  16. A New Neutrino Oscillation

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2011-07-01

    Starting in the late 1960s, neutrino detectors began to see signs that neutrinos, now known to come in the flavors electron ({nu}{sub e}), muon ({nu}{sub {mu}}), and tau ({nu}{sub {tau}}), could transform from one flavor to another. The findings implied that neutrinos must have mass, since massless particles travel at the speed of light and their clocks, so to speak, don't tick, thus they cannot change. What has since been discovered is that neutrinos oscillate at two distinct scales, 500 km/GeV and 15,000 km/GeV, which are defined by the baseline (L) of the experiment (the distance the neutrino travels) divided by the neutrino energy (E). Neutrinos of one flavor can oscillate into neutrinos of another flavor at both L/E scales, but the amplitude of these oscillations is different for the two scales and depends on the initial and final flavor of the neutrinos. The neutrino states that propogate unchanged in time, the mass eigenstates {nu}1, {nu}2, {nu}3, are quantum mechanical mixtures of the electron, muon, and tau neutrino flavors, and the fraction of each flavor in a given mass eigenstate is controlled by three mixing angles and a complex phase. Two of these mixing angles are known with reasonable precision. An upper bound exists for the third angle, called {theta}{sub 13}, which controls the size of the muon neutrino to electron neutrino oscillation at an L/E of 500 km/GeV. The phase is completely unknown. The existence of this phase has important implications for the asymmetry between matter and antimatter we observe in the universe today. Experiments around the world have steadily assembled this picture of neutrino oscillation, but evidence of muon neutrino to electron neutrino oscillation at 500 km/GeV has remained elusive. Now, a paper from the T2K (Tokai to Kamioka) experiment in Japan, reports the first possible observation of muon neutrinos oscillating into electron neutrinos at 500 km/GeV. They see 6 candidate signal events, above an expected background

  17. Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Beier, E. W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in Jan. 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical Cl-37 and Ga-71 experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun.

  18. Review of Reactor Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Bong

    New generation of reactor neutrino experiments, Daya Bay and RENO, have made definitive measurements of the smallest neutrino mixing angle θ13 in 2012, based on the disappearance of electron antineutrinos. More precise measurements of the mixing angle and reactor neutrino spectra have been made and presented. A rather large value of θ13 has opened a new window to find the CP violation phase and to determine the neutrino mass hierarchy. Future reactor experiments, JUNO and RENO-50, are proposed to determine the neutrino mass hierarchy and to make highly precise measurements of θ12, Δm212, and Δm312.

  19. Berry phase in neutrino oscillations

    SciTech Connect

    He Xiaogang; McKellar, Bruce H.J.; Zhang Yue

    2005-09-01

    We study the Berry phase in neutrino oscillations for both Dirac and Majorana neutrinos. In order to have a Berry phase, the neutrino oscillations must occur in a varying medium, the neutrino-background interactions must depend on at least two independent densities, and also there must be CP violation. If the neutrino interactions with matter are mediated only by the standard model W and Z boson exchanges, these conditions imply that there must be at least three generations of neutrinos. The CP violating Majorana phases do not play a role in generating a Berry phase. We show that a natural way to satisfy the conditions for the generation of a Berry phase is to have sterile neutrinos with active-sterile neutrino mixing, in which case at least two active and one sterile neutrinos are required. If there are additional new CP violating flavor changing interactions, it is also possible to have a nonzero Berry phase with just two generations.

  20. Astrophysical and cosmological constraints to neutrino properties

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Schramm, David N.; Turner, Michael S.

    1989-01-01

    The astrophysical and cosmological constraints on neutrino properties (masses, lifetimes, numbers of flavors, etc.) are reviewed. The freeze out of neutrinos in the early Universe are discussed and then the cosmological limits on masses for stable neutrinos are derived. The freeze out argument coupled with observational limits is then used to constrain decaying neutrinos as well. The limits to neutrino properties which follow from SN1987A are then reviewed. The constraint from the big bang nucleosynthesis on the number of neutrino flavors is also considered. Astrophysical constraints on neutrino-mixing as well as future observations of relevance to neutrino physics are briefly discussed.

  1. Results from Neutrino Oscillations Experiments

    SciTech Connect

    Aguilar-Arevalo, Alexis

    2010-09-10

    The interpretation of the results of early solar and atmospheric neutrino experiments in terms of neutrino oscillations has been verified by several recent experiments using both, natural and man-made sources. The observations provide compelling evidence in favor of the existence of neutrino masses and mixings. These proceedings give a general description of the results from neutrino oscillation experiments, the current status of the field, and some possible future developments.

  2. Neutrino physics with JUNO

    NASA Astrophysics Data System (ADS)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    . Detection of neutrinos from all past core-collapse supernova explosions in the visible universe with JUNO would further provide valuable information on the cosmic star-formation rate and the average core-collapse neutrino energy spectrum. Antineutrinos originating from the radioactive decay of uranium and thorium in the Earth can be detected in JUNO with a rate of ˜400 events per year, significantly improving the statistics of existing geoneutrino event samples. Atmospheric neutrino events collected in JUNO can provide independent inputs for determining the MH and the octant of the {θ }23 mixing angle. Detection of the 7Be and 8B solar neutrino events at JUNO would shed new light on the solar metallicity problem and examine the transition region between the vacuum and matter dominated neutrino oscillations. Regarding light sterile neutrino topics, sterile neutrinos with {10}-5 {{{eV}}}2\\lt {{Δ }}{m}412\\lt {10}-2 {{{eV}}}2 and a sufficiently large mixing angle {θ }14 could be identified through a precise measurement of the reactor antineutrino energy spectrum. Meanwhile, JUNO can also provide us excellent opportunities to test the eV-scale sterile neutrino hypothesis, using either the radioactive neutrino sources or a cyclotron-produced neutrino beam. The JUNO detector is also sensitive to several other beyondthe-standard-model physics. Examples include the search for proton decay via the p\\to {K}++\\bar{ν } decay channel, search for neutrinos resulting from dark-matter annihilation in the Sun, search for violation of Lorentz invariance via the sidereal modulation of the reactor neutrino event rate, and search for the effects of non-standard interactions. The proposed construction of the JUNO detector will provide a unique facility to address many outstanding crucial questions in particle and astrophysics in a timely and cost-effective fashion. It holds the great potential for further advancing our quest to understanding the fundamental properties of neutrinos, one

  3. Direct neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Thümmler, T.

    2011-07-01

    The determination of the neutrino rest mass plays an important role at the intersections of cosmology, particle physics and astroparticle physics. This topic is currently being addressed by two complementary approaches in laboratory experiments. Neutrinoless double beta decay experiments probe whether neutrinos are Majorana particles and determine an effective neutrino mass value. Single beta decay experiments such as KATRIN and MARE investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Owing to neutrino flavour mixing, the neutrino mass parameter appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β-spectroscopy close to the T 2 end-point with unprecedented precision and will reach a sensitivity of 200 meV/ c 2 (90% C.L.) on the neutrino rest mass.

  4. Establishing atmospheric neutrino oscillations with Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Kajita, T.; Kearns, E.; Shiozawa, M.

    2016-07-01

    In this article we review the discovery of atmospheric neutrino oscillation by the Super-Kamiokande experiment. This review outlines the sequence of observations and their associated publications that solved the atmospheric neutrino anomaly and established the existence of neutrino oscillations with nearly maximal mixing of muon neutrinos and tau neutrinos. We also discuss subsequent and ongoing studies that use atmospheric neutrinos to continue to reveal the nature of the neutrino.

  5. Los Alamos Science, Number 25 -- 1997: Celebrating the Neutrino

    DOE R&D Accomplishments Database

    Cooper, N. G. ed.

    1997-01-01

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  6. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    SciTech Connect

    Cooper, N.G.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  7. Some comments on high precision study of neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Bilenky, S. M.

    2015-07-01

    I discuss here some problems connected with the high precision study of neutrino oscillations. In the general case of n-neutrino mixing I derive a convenient expression for transition probability in which only independent terms (and mass-squared differences) enter. For three-neutrino mixing I discuss a problem of a definition of a large (atmospheric) neutrino mass-squared difference. I comment also possibilities to reveal the character of neutrino mass spectrum in future reactor neutrino experiments.

  8. Double-Chooz Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Palomares, Carmen; Double Chooz Collaboration

    2011-12-01

    The Double Chooz experiment will use the electron anti-neutrinos produced by the Chooz nuclear power station to search for a non-vanishing value of the θ13 neutrino mixing angle. Double Chooz will be the first of a new generation of neutrino experiments using identical detectors at different distances from the neutrino source to reduce the systematic errors due to the uncertainties on the neutrino flux and to the detector acceptance. The far detector will be operative by the beginning of 2011. Installation of the near detector will occur in 2012.

  9. Democratic Neutrino Paradigm

    NASA Astrophysics Data System (ADS)

    Zhuridov, Dmitry

    2014-03-01

    I will introduce a democratic neutrino theory, which sets the absolute scale of the neutrino masses at about 0.03 eV, and has only one free parameter in contrast to 7 (9) free parameters in the conventional model of Dirac (Majorana) neutrino masses and mixing. Taking into account the incoherence and matter effects, this democratic theory agrees with the atmospheric and solar neutrino data. Moreover the results of the reactor neutrino experiments with the baselines around 100 m can be better explained. I will also discuss the predictions of this theory for low energy beta decays, magnetic moments, and neutrinoless double beta decays. Supported in part by the U.S. Department of Energy under contract DE-FG02-12ER41825.

  10. GUT implications from neutrino mass

    SciTech Connect

    Carl H. Albright

    2001-06-26

    An overview is given of the experimental neutrino mixing results and types of neutrino models proposed, with special attention to the general features of various GUT models involving intra-family symmetries and horizontal flavor symmetries. Many of the features are then illustrated by a specific SO (10) SUSY GUT model formulated by S.M. Barr and the author which can explain all four types of solar neutrino mixing solutions by various choices of the right-handed Majorana mass matrix. The quantitative nature of the model's large mixing angle solution is used to compare the reaches of a neutrino super beam and a neutrino factory for determining the small U{sub e3} mixing matrix element.

  11. Sterile neutrino anarchy

    NASA Astrophysics Data System (ADS)

    Heeck, Julian; Rodejohann, Werner

    2013-02-01

    Lepton mixing, which requires physics beyond the Standard Model, is surprisingly compatible with a minimal, symmetryless and unbiased approach, called anarchy. This contrasts with highly involved flavor symmetry models. On the other hand, hints for light sterile neutrinos have emerged from a variety of independent experiments and observations. If confirmed, their existence would represent a groundbreaking discovery, calling for a theoretical interpretation. We discuss anarchy in the two-neutrino eV-scale seesaw framework. The distributions of mixing angles and masses according to anarchy are in agreement with global fits for the active and sterile neutrino parameters. Our minimal and economical scenario predicts the absence of neutrinoless double beta decay and one vanishing neutrino mass, and can therefore be tested in future experiments.

  12. Evidence for neutrino mass: A decade of discovery

    SciTech Connect

    Heeger, Karsten M.

    2004-12-08

    Neutrino mass and mixing are amongst the major discoveries of recent years. From the observation of flavor change in solar and atmospheric neutrino experiments to the measurements of neutrino mixing with terrestrial neutrinos, recent experiments have provided consistent and compelling evidence for the mixing of massive neutrinos. The discoveries at Super-Kamiokande, SNO, and KamLAND have solved the long-standing solar neutrino problem and demand that we make the first significant revision of the Standard Model in decades. Searches for neutrinoless double-beta decay probe the particle nature of neutrinos and continue to place limits on the effective mass of the neutrino. Possible signs of neutrinoless double-beta decay will stimulate neutrino mass searches in the next decade and beyond. I review the recent discoveries in neutrino physics and the current evidence for massive neutrinos.

  13. Boxing with Neutrino Oscillations

    NASA Astrophysics Data System (ADS)

    Wagner, Dj; Weiler, Thomas J.

    1998-03-01

    We have developed a model-independent ``box'' parameterization of neutrino oscillations. Oscillation probabilities are linear in these new parameters, so measurements can straighforwardly determine the box parameters which can then be manipulated to yield magnitudes of mixing matrix elements. We will present these new parameters and examine the effects of unitarity which reduce the number of independent parameters to the minimum set. The framework presented here will facilitate general analyses of neutrino oscillations among n >= 3 flavors.

  14. Geometric Mean Neutrino Mass Relation

    NASA Astrophysics Data System (ADS)

    He, Xiao-Gang; Zee, A.

    Present experimental data from neutrino oscillations have provided much information about the neutrino mixing angles. Since neutrino oscillations only determine the mass squared differences Δ m2ij = m2i - m2j, the absolute values for neutrino masses mi, can not be determined using data just from oscillations. In this work we study implications on neutrino masses from a geometric mean mass relation m2 = √ {m1m_3} which enables one to determined the absolute masses of the neutrinos. We find that the central values of the three neutrino masses and their 2σ errors to be m1 = (1.58 ± 0.18)meV, m2 = (9.04 ± 0.42)meV, and m3 = (51.8 ± 3.5)meV. Implications for cosmological observation, beta decay and neutrinoless double beta decays are discussed.

  15. Neutrino Physics

    DOE R&D Accomplishments Database

    Lederman, L. M.

    1963-01-09

    The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

  16. Future of Neutrino Interaction Models

    NASA Astrophysics Data System (ADS)

    Terri, Ryan

    2015-04-01

    Neutrino-nucleus cross sections are one of the dominant sources of systematic errors in long-baseline neutrino oscillation experiments. To achieve the goals of precision measurements of the mixing angles and difference of the mass eigenstates squared, and discover the mass hierarchy and CP-violating phase, the underlying neutrino interactions must be better understood. This poster will mention some recent improvements in models in the interaction generators as well as some possible future improvements for proposed experiments.

  17. Neutrino Oscillograms of the Earth

    SciTech Connect

    Smirnov, Alexei Yu.

    2008-04-16

    Oscillograms are 'neutrino portraits' of the Earth. They encode unique information about the Earth interior and provide a comprehensive description of neutrino oscillation phenomena. I will explain the physical effects involved and the structure of the oscillograms. Dependence of the oscillograms on neutrino parameters, in particular, on the currently unknown q1-3, mixing and CP-violation phase will be considered. A program of measurements of the oscillograms will be outlined.

  18. Probing the origin of neutrino masses and mixings via doubly charged scalars: Complementarity of the intensity and the energy frontiers

    NASA Astrophysics Data System (ADS)

    Geib, Tanja; King, Stephen F.; Merle, Alexander; No, Jose Miguel; Panizzi, Luca

    2016-04-01

    We discuss how the intensity and the energy frontiers provide complementary constraints within a minimal model of neutrino mass involving just one new field beyond the Standard Model at accessible energy, namely a doubly charged scalar S++ and its antiparticle S-- . In particular, we focus on the complementarity between high-energy LHC searches and low-energy probes such as lepton flavor violation. Our setting is a prime example of how high- and low-energy physics can cross-fertilize each other.

  19. Structure formation in a mixed dark matter model with decaying sterile neutrino: the 3.5 keV X-ray line and the Galactic substructure

    NASA Astrophysics Data System (ADS)

    Harada, Akira; Kamada, Ayuki

    2016-01-01

    We perform a set of cosmological simulations of structure formation in a mixed dark matter (MDM) model. Our model is motivated by the recently identified 3.5 keV X-ray line, which can be explained by the decay of non-resonantly produced sterile neutrinos accounting for 20-60% of the dark matter in the Universe. These non-resonantly produced sterile neutrinos have a sizable free-streaming length and hence behave effectively as warm dark matter (WDM). Assuming the rest of dark matter is composed of some cold dark matter (CDM) particles, we follow the coevolution of a mixed WDM plus CDM cosmology. Specifically, we consider the models with the warm component fraction of rwarm=0.25 and 0.50. Our MDM models predict that the comoving Jeans length at the matter-radiation equality is close to that of the thermally produced warm dark matter model with particle mass mWDM=2.4 keV, but the suppression in the fluctuation power spectrum is weaker. We perform large N-body simulations to study the structure of non-linear dark halos in the MDM models. The abundance of substructure is significantly reduced in the MDM models, and hence the so-called small-scale crisis is mitigated. The cumulative maximum circular velocity function (CVF) of at least one halo in the MDM models is in good agreement with the CVFs of the observed satellites in the Milky Way and the Andromeda galaxy. We argue that the MDM models open an interesting possibility to reconcile the reported 3.5 keV line and the internal structure of galaxies.

  20. Neutrino physics

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2008-09-01

    The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

  1. Neutrino masses: from fantasy to facts

    NASA Astrophysics Data System (ADS)

    Valle, J. W. F.

    Theory suggests the existence of neutrino masses, but little more. Facts are coming close to revealing our fantasy: solar- and atmospheric-neutrino data strongly indicate the need for neutrino conversions, while LSND provides an intriguing hint. The simplest ways to reconcile these data in terms of neutrino oscillations invoke a light sterile neutrino in addition to the three active ones. Out of the four neutrinos, two are maximally mixed and lie at the LSND scale, while the others are at the solar-mass scale. These schemes can be distinguished at neutral-current-sensitive solar- and atmospheric-neutrino experiments. I discuss the simplest theoretical scenarios, where the lightness of the sterile neutrino, the nearly maximal atmospheric-neutrino mixing and the generation of Δm {⊙/2} and Δm {atm/2} all follow naturally from the assumed lepton-number symmetry and its breaking. Although the most likely interpretation of the present data is in terms of neutrino-mass-induced oscillations, one still has room for alternative explanations, such as flavor-changing neutrino interactions, with no need for neutrino mass or mixing. Such flavor-violating transitions arise in theories with strictly massless neutrinos and may lead to other sizeable flavor non-conservation effects, such as μ → e + γ, μ - e conversion in nuclei, unaccompanied by neutrinoless double-beta decay.

  2. Neutrino mass models

    NASA Astrophysics Data System (ADS)

    King, S. F.

    2004-02-01

    This is a review article about neutrino mass models, particularly see-saw models involving three active neutrinos that are capable of describing both the atmospheric neutrino oscillation data and the large mixing angle (LMA) MSW solar solution, which is now uniquely specified by recent data. We briefly review the current experimental status, show how to parametrize and construct the neutrino mixing matrix, and present the leading order neutrino Majorana mass matrices. We then introduce the see-saw mechanism and discuss a natural application of it to current data using the sequential dominance mechanism, which we compare with an early proposal for obtaining LMAs. We show how both the Standard Model and the Minimal Supersymmetric Standard Model may be extended to incorporate the see-saw mechanism and show how the latter case leads to the expectation of lepton flavour violation. The see-saw mechanism motivates models with additional symmetries such as unification and family symmetry models, and we tabulate some possible models before focusing on two particular examples based on SO(10) grand unification and either U(1) or SU(3) family symmetry as specific examples. This review contains extensive appendices that include techniques for analytically diagonalizing different types of mass matrices involving two LMAs and one small mixing angle, to leading order in the small mixing angle.

  3. Fermion masses and neutrino mixing in an SU(5)/sub GUT/ x SU(8)/sub ETC/ model

    SciTech Connect

    Aubrecht, G.J. II; Matsuki, T.; Tanaka, K.

    1983-01-01

    We extend the SU(3) x SU(2) x U(1) model without scalars to SU(5)/sub GUT/ x SU(8)/sub ETC/. In our model, the mixing in the leptons is identical to that for the quarks, so that the Cabibbo angle determines the mixing of nu/sub e/ and nu/sub ..mu../. The quark masses and mixing angles are studied for two and three generations of quarks.

  4. Status of non-standard neutrino interactions.

    PubMed

    Ohlsson, Tommy

    2013-04-01

    The phenomenon of neutrino oscillations has been established as the leading mechanism behind neutrino flavor transitions, providing solid experimental evidence that neutrinos are massive and lepton flavors are mixed. Here we review sub-leading effects in neutrino flavor transitions known as non-standard neutrino interactions (NSIs), which is currently the most explored description for effects beyond the standard paradigm of neutrino oscillations. In particular, we report on the phenomenology of NSIs and their experimental and phenomenological bounds as well as an outlook for future sensitivity and discovery reach. PMID:23481442

  5. Neutrino oscillations and the seesaw origin of neutrino mass

    NASA Astrophysics Data System (ADS)

    Miranda, O. G.; Valle, J. W. F.

    2016-07-01

    The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.

  6. Neutrino self-interactions

    NASA Astrophysics Data System (ADS)

    Hasenkamp, Jasper

    2016-03-01

    We propose a theory that equips the active neutrinos with interactions among themselves that are at least 3 orders of magnitude stronger than the weak interaction. We introduce an Abelian gauge group U (1 )X with vacuum expectation value vx≲O (100 MeV ) . An asymmetric mass matrix implements the active neutrinos as massless mass eigenstates carrying "effective" charges. To stabilize vx, supersymmetry breaking is mediated via loops to the additional sector with the only exception of xHiggs terms. No Standard Model interaction eigenstate carries U (1 )X charge. Thus, the dark photon's kinetic mixing is two-loop suppressed. With only simple and generic values of dimensionless parameters, our theory might explain the high-energy neutrino spectrum observed by IceCube including the PeV neutrinos. We comment on the imposing opportunity to incorporate a self-interacting dark matter candidate.

  7. Magnus approximation in neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Acero, Mario A.; Aguilar-Arevalo, Alexis A.; D'Olivo, J. C.

    2011-04-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some anomalous experimental observations. In a four-neutrino (three active plus one sterile) mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos with energies of the order of a few GeV, taking into account the matter effect for a varying terrestrial density.

  8. Pseudo-dirac neutrinos: a challenge for neutrino telescopes.

    PubMed

    Beacom, John F; Bell, Nicole F; Hooper, Dan; Learned, John G; Pakvasa, Sandip; Weiler, Thomas J

    2004-01-01

    Neutrinos may be pseudo-Dirac states, such that each generation is actually composed of two maximally mixed Majorana neutrinos separated by a tiny mass difference. The usual active neutrino oscillation phenomenology would be unaltered if the pseudo-Dirac splittings are deltam(2) less, similar 10(-12) eV(2); in addition, neutrinoless double beta decay would be highly suppressed. However, it may be possible to distinguish pseudo-Dirac from Dirac neutrinos using high-energy astrophysical neutrinos. By measuring flavor ratios as a function of L/E, mass-squared differences down to deltam(2) approximately 10(-18) eV(2) can be reached. We comment on the possibility of probing cosmological parameters with neutrinos. PMID:14753977

  9. Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2010-01-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(10{sup 21}) muons/year. This prepares the way for a Neutrino Factory (NF) in which high energy muons decay within the straight sections of a storage ring to produce a beam of neutrinos and anti-neutrinos. The NF concept was proposed in 1997 at a time when the discovery that the three known types of neutrino ({nu}{sub e}, {nu}{sub {mu}}, {nu}{sub {tau}}) can change their flavor as they propagate through space (neutrino oscillations) was providing a first glimpse of physics beyond the Standard Model. This development prepares the way for a new type of neutrino source: a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

  10. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  11. Neutrino Factories

    NASA Astrophysics Data System (ADS)

    Geer, Steve

    2010-06-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(1021) muons/year. This development prepares the way for a new type of neutrino source : a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

  12. Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2016-05-01

    Several anomalies recorded in short-baseline neutrino experiments suggest the possibility that the standard 3-flavor framework may be incomplete and point towards a manifestation of new physics. Light sterile neutrinos provide a credible solution to these puzzling results. Here, we present a concise review of the status of the neutrino oscillations within the 3+1 scheme, the minimal extension of the standard 3-flavor framework endowed with one sterile neutrino species. We emphasize the potential role of LBL experiments in the searches of CP violation related to sterile neutrinos and their complementarity with the SBL experiments.

  13. Solar neutrinos and neutrino physics

    NASA Astrophysics Data System (ADS)

    Maltoni, Michele; Smirnov, Alexei Yu.

    2016-04-01

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. The theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters θ_{12} and Δ m 2 21 have been measured; θ_{13} extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3 ν paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos.

  14. Flavor composition of ultrahigh energy neutrinos at source and at neutrino telescopes

    SciTech Connect

    Choubey, Sandhya; Rodejohann, Werner

    2009-12-01

    We parametrize the initial flux composition of high energy astrophysical neutrinos as ({phi}{sub e}{sup 0} ratio {phi}{sub {mu}}{sup 0} ratio {phi}{sub {tau}}{sup 0})=(1 ratio n ratio 0), where n characterizes the source. All usually assumed neutrino sources appear as limits of this simple parametrization. We investigate how precise neutrino telescopes can pin down the value of n. We furthermore show that there is a neutrino mixing scenario in which the ratio of muon neutrinos to the other neutrinos takes a constant value regardless of the initial flux composition. This occurs when the muon neutrino survival probability takes its minimal allowed value. The phenomenological consequences of this very predictive neutrino mixing scenario are given.

  15. Massive neutrinos, Lorentz invariance dominated standard model and the phenomenological approach to neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Šoln, Josip

    2009-08-01

    For the electroweak interactions, the massive neutrino perturbative kinematical procedure is developed in the massive neutrino Fock space. The perturbation expansion parameter is the ratio of neutrino mass to its energy. This procedure, within the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)-modified electroweak Lagrangian, calculates the cross-sections with the new neutrino energy projection operators in the massive neutrino Fock space, resulting in the dominant Lorentz invariant standard model massless flavor neutrino cross-sections. As a consequence of the kinematical relations between the massive and massless neutrinos, some of the neutrino oscillation cross-sections are Lorentz invariance violating. But all these oscillating cross-sections, some of which violate the flavor conservation, being proportional to the squares of neutrino masses are practically unobservable in the laboratory. However, these neutrino oscillating cross-sections are consistent with the original Pontecorvo neutrino oscillating transition probability expression at short time (baseline), as presented by Dvornikov. From these comparisons, by mimicking the time dependence of the original Pontecorvo neutrino oscillating transition probability, one can formulate the dimensionless neutrino intensity-probability I, by phenomenologically extrapolating the time t, or, equivalently the baseline distance L away from the collision point for the oscillating differential cross-section. For the incoming neutrino of 10 MeV in energy and neutrino masses from Fritzsch analysis with the neutrino mixing matrix of Harrison, Perkins and Scott, the baseline distances at the first two maxima of the neutrino intensity are Lsime281 and 9279 km. The intensity I at the first maximum conserves the flavor, while at the second maximum, the intensities violate the flavor, respectively, in the final and initial state. At the end some details are given as to how one should be able to verify experimentally these neutrino

  16. Flavor oscillations with sterile neutrinos and in dense neutrino environments

    NASA Astrophysics Data System (ADS)

    Hollander, David

    Many experiments have provided evidence for neutrino flavor oscillations, and consequently that neutrinos are in fact massive which is not predicted by the Standard Model. Many experiments have been built to constrain the parameters which determine flavor oscillations, and for only three flavors of neutrinos the mixing parameters are well known, aside from the CP violating phase for two mass hierarchies. Most experimental data can be well explained by mixing between three flavors of neutrinos, however oscillation anomalies from several experiments, most notably from LSND (Liquid Scintillator Neutrino Detector) have suggested that there may be additional flavors of neutrinos beyond those in the Standard Model. One of the focuses of this dissertation is the possibility of adding new flavors of right-handed neutrinos to the Standard Model to account for oscillation anomalies, and exploring the consequences of sterile neutrinos for other experiments. Sensitivities to a particular model of sterile neutrinos at the future Long-Baseline Neutrino Experiment will be determined, in which CP effects introduced by the sterile neutrinos play an important role. It will be demonstrated how, by combining data from the Long-Baseline Neutrino Experiment along with data from Daya Bay and T2K, it is possible to provide evidence for or rule out this model of sterile neutrinos. A chi-squared analysis is used to determine the significance of measuring the effects of sterile neutrinos in IceCube; it will be shown that it may be possible to extract evidence for sterile neutrinos from high energy atmospheric neutrinos in IceCube. Furthermore it will be demonstrated how measuring neutrino flavor ratios from astrophysical sources in IceCube can help to distinguish between the three flavor scenario and a beyond the Standard Model (BSM) scenario involving sterile neutrinos. Measuring astrophysical as well as atmospheric neutrinos can evince the existence of sterile neutrinos. Despite the fact

  17. Linking solar and long baseline terrestrial neutrino experiments.

    PubMed

    Akhmedov, E K; Branco, G C; Rebelo, M N

    2000-04-17

    We show that, in the framework of three light neutrino species with hierarchical masses and assuming no fine tuning between the entries of the neutrino mass matrix, one can use the solar neutrino data to obtain information on the element U(e3) of the lepton mixing matrix. Conversely, a measurement of U(e3) in atmospheric or long baseline accelerator or reactor neutrino experiments would help discriminate between possible oscillation solutions of the solar neutrino problem. PMID:11019139

  18. Neutrinoless double-beta decay and neutrino physics

    NASA Astrophysics Data System (ADS)

    Rodejohann, Werner

    2012-12-01

    The connection of neutrino physics with the neutrinoless double-beta decay is reviewed. After presenting the current status of the Pontecorvo-Maki-Nakagawa-Sakata matrix and the theoretical background of neutrino mass and lepton mixing, we will summarize the various implications of neutrino physics for the double-beta decay. The influence of light sterile neutrinos and other exotic modifications of the three neutrino picture is also discussed.

  19. Neutrino factory

    SciTech Connect

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R.J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A.C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  20. Neutrino factory

    DOE PAGESBeta

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; et al

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  1. One 17-keV Majorana neutrino?

    NASA Astrophysics Data System (ADS)

    Carlson, Eric; Randall, Lisa

    1991-06-01

    A model is presented accommodating a 17-keV neutrino with 1 percent mixing with the electron neutrino and bounds on the electron-neutrino mass and neutrinoless double-beta decay. However, in contrast to previous models, there is only a single state with mass 17 keV. This model is consistent with cosmological and supernova-cooling constraints, and incorporates the Mikheyev-Smirnov-Wolfenstein explanation of the low solar-neutrino counts. Possible signatures of this model include an excess of muon neutrinos from a supernova explosion, spread over a period of 10-1000 sec, and a Higgs-boson decay signature of leptons plus missing energy.

  2. Solar Neutrinos

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  3. Boxing with neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Wagner, D. J.; Weiler, Thomas J.

    1999-06-01

    We develop a characterization of neutrino oscillations based on the coefficients of the oscillating terms. These coefficients are individually observable; although they are quartic in the elements of the unitary mixing matrix, they are independent of the conventions chosen for the angle and phase parametrization of the mixing matrix. We call these reparametrization-invariant observables ``boxes'' because of their geometric relation to the mixing matrix, and because of their association with the Feynman box diagram that describes oscillations in field theory. The real parts of the boxes are the coefficients for the CP- or T-even oscillation modes, while the imaginary parts are the coefficients for the CP- or T-odd oscillation modes. Oscillation probabilities are linear in the boxes, so measurements can straightforwardly determine values for the boxes (which can then be manipulated to yield magnitudes of mixing matrix elements). We examine the effects of unitarity on the boxes and discuss the reduction of the number of boxes to a minimum basis set. For the three-generation case, we explicitly construct the basis. Using the box algebra, we show that CP violation may be inferred from measurements of neutrino flavor mixing even when the oscillatory factors have averaged. The framework presented here will facilitate general analyses of neutrino oscillations among n>=3 flavors.

  4. Boxing with neutrino oscillations

    SciTech Connect

    Wagner, D.J.; Weiler, T.J.

    1999-06-01

    We develop a characterization of neutrino oscillations based on the coefficients of the oscillating terms. These coefficients are individually observable; although they are quartic in the elements of the unitary mixing matrix, they are independent of the conventions chosen for the angle and phase parametrization of the mixing matrix. We call these reparametrization-invariant observables {open_quotes}boxes{close_quotes} because of their geometric relation to the mixing matrix, and because of their association with the Feynman box diagram that describes oscillations in field theory. The real parts of the boxes are the coefficients for the {ital CP}- or {ital T}-even oscillation modes, while the imaginary parts are the coefficients for the {ital CP}- or {ital T}-odd oscillation modes. Oscillation probabilities are linear in the boxes, so measurements can straightforwardly determine values for the boxes (which can then be manipulated to yield magnitudes of mixing matrix elements). We examine the effects of unitarity on the boxes and discuss the reduction of the number of boxes to a minimum basis set. For the three-generation case, we explicitly construct the basis. Using the box algebra, we show that {ital CP} violation may be inferred from measurements of neutrino flavor mixing even when the oscillatory factors have averaged. The framework presented here will facilitate general analyses of neutrino oscillations among n{ge}3 flavors. {copyright} {ital 1999} {ital The American Physical Society}

  5. Oscillations of solar atmosphere neutrinos

    SciTech Connect

    Fogli, G. L.; Lisi, E.; Mirizzi, A.; Montanino, D.; Serpico, P. D.

    2006-11-01

    The Sun is a source of high-energy neutrinos (E(greater-or-similar sign)10 GeV) produced by cosmic ray interactions in the solar atmosphere. We study the impact of three-flavor oscillations (in vacuum and in matter) on solar atmosphere neutrinos, and calculate their observable fluxes at Earth, as well as their event rates in a kilometer-scale detector in water or ice. We find that peculiar three-flavor oscillation effects in matter, which can occur in the energy range probed by solar atmosphere neutrinos, are significantly suppressed by averaging over the production region and over the neutrino and antineutrino components. In particular, we find that the relation between the neutrino fluxes at the Sun and at the Earth can be approximately expressed in terms of phase-averaged vacuum oscillations, dominated by a single mixing parameter (the angle {theta}{sub 23})

  6. Atmospheric neutrinos

    NASA Astrophysics Data System (ADS)

    Gaisser, Thomas K.

    2016-05-01

    In view of the observation by IceCube of high-energy astrophysical neutrinos, it is important to quantify the uncertainty in the background of atmospheric neutrinos. There are two sources of uncertainty, the imperfect knowledge of the spectrum and composition of the primary cosmic rays that produce the neutrinos and the limited understanding of hadron production, including charm, at high energy. This paper is an overview of both aspects.

  7. Atmospheric neutrinos and discovery of neutrino oscillations

    PubMed Central

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258

  8. Neutrino oscillations refitted

    NASA Astrophysics Data System (ADS)

    Forero, D. V.; Tórtola, M.; Valle, J. W. F.

    2014-11-01

    Here, we update our previous global fit of neutrino oscillations by including the recent results that have appeared since the Neutrino 2012 conference. These include the measurements of reactor antineutrino disappearance reported by Daya Bay and RENO, together with latest T2K and MINOS data including both disappearance and appearance channels. We also include the revised results from the third solar phase of Super-Kamiokande, SK-III, as well as new solar results from the fourth phase of Super-Kamiokande, SK-IV. We find that the preferred global determination of the atmospheric angle θ23 is consistent with maximal mixing. We also determine the impact of the new data upon all the other neutrino oscillation parameters with an emphasis on the increasing sensitivity to the C P phase, thanks to the interplay between accelerator and reactor data. In the Appendix, we present the updated results obtained after the inclusion of new reactor data presented at the Neutrino 2014 conference. We discuss their impact on the global neutrino analysis.

  9. Light sterile neutrinos, lepton number violating interactions and short baseline neutrino experiments

    NASA Astrophysics Data System (ADS)

    Babu, K. S.; McKay, D. W.; Mocioiu, Irina; Pakvasa, Sandip

    2016-06-01

    We develop the consequences of introducing a purely leptonic, non-standard interaction (NSI) ΔL = 2, four-fermion effective Lagrangian and standard model neutrino mixing with a fourth, sterile neutrino in the analysis of short-baseline, neutrino experiments. We focus on the muon decay at rest (DAR) results from the Liquid Scintillation Neutrino Experiment (LSND) and the Karlsruhe and Rutherford medium Energy Neutrino Experiment (KARMEN), seeking a reconciliation between the two. Both v¯e appearance from v¯μ oscillation and v¯e survival after production from NSI decay of the µ+ contribute to the expected signal. This is a unique feature of our scheme. We comment on further implications of the lepton number violating interaction and sterile neutrino-standard neutrino mixing.

  10. Constraints on the relic neutrino abundance and implications for cosmological neutrino mass limits

    SciTech Connect

    Bell, Nicole F.; /Fermilab

    2004-01-01

    The authors examine a mechanism which can lead to flavor transformation of neutrino-antineutrino asymmetries in the early universe, a process which is unavoidable when the neutrino mixing angles are large. This sets the best limit on the lepton number of the universe, and hence on the relic neutrino abundance. They also consider the consequences for the relic neutrino abundance if extra neutrino interactions are allowed, e.g., the coupling of the neutrinos to a light (compared to m{sub {nu}}) boson. For a wide range of couplings not excluded by other considerations, the relic neutrinos would annihilate to bosons at late times, and thus make a negligible contribution to the matter density today. This mechanism evades the neutrino mass limits arising from large scale structure.

  11. Sterile neutrino dark matter production in the neutrino-phillic two Higgs doublet model

    NASA Astrophysics Data System (ADS)

    Adulpravitchai, Adisorn; Schmidt, Michael A.

    2015-12-01

    Sterile Neutrinos with a mass in the keV range form a good candidate for dark matter. They are naturally produced from neutrino oscillations via their mixing with the active neutrinos. However the production via non-resonant neutrino oscillations has recently been ruled out. The alternative production via Higgs decay is negligibly small compared to neutrino oscillations. We show that in the neutrino-phillic two Higgs doublet model, the contribution from Higgs decay can dominate over the contribution from neutrino oscillations and evade all constraints. We also study the free-streaming horizon and find that a sterile neutrino mass in the range of 4 to 53 keV leads to warm dark matter.

  12. Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation

    SciTech Connect

    Kersten, Joern; Smirnov, Alexei Yu.

    2007-10-01

    We consider the possibility to detect right-handed neutrinos, which are mostly singlets of the standard model gauge group, at future accelerators. Substantial mixing of these neutrinos with the active neutrinos requires a cancellation of different contributions to the light neutrino mass matrix at the level of 10{sup -8}. We discuss possible symmetries behind this cancellation and argue that for three right-handed neutrinos they always lead to conservation of total lepton number. Light neutrino masses can be generated by small perturbations violating these symmetries. In the most general case, LHC physics and the mechanism of neutrino mass generation are essentially decoupled; with additional assumptions, correlations can appear between collider observables and features of the neutrino mass matrix.

  13. Neutrino astronomy

    SciTech Connect

    Schramm, D.N.

    1980-01-01

    Current knowledge and proposed experiments in the field of neutrino astronomy are reviewed, with particular emphasis on expected sources and existing and proposed detectors for intermediate-energy (10 to 50 MeV) and ultrahigh energy (greater than 10 GeV) neutrinos. Following a brief discussion of the counting rate obtained in the solar neutrino experiment of Davis (1978) and possible statistical sources for the discrepancy between the expected and observed rates, consideration is given to the physics of neutrino ejection in stellar gravitational collapse and sources of high-energy proton collisions giving rise to ultrahigh energy neutrinos. The capabilities of operating Cerenkov detectors at the Homestake Gold Mine, the Mt. Blanc Tunnel and in the Soviet Caucasus are considered in relation to the detection of gravitational collapse in the center of the galaxy, and it is pointed out that neutrino detectors offer a more reliable means of detecting collapses in the Galaxy than do gravitational wave detectors. The possibility of using Cerenkov detectors for ultrahigh energy neutrino detection is also indicated, and applications of large neutrino detectors such as the proposed DUMAND array to measure the lifetime of the proton are discussed.

  14. Discriminating neutrino see-saw models

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; King, S. F.

    2001-09-01

    We consider how well current theories can predict neutrino mass and mixing parameters, and construct a statistical discriminator which allows us to compare different models to each other. As an example we consider see-saw models based on family symmetry, and single right-handed neutrino dominance, and compare them to each other and to the case of neutrino anarchy with random entries in the neutrino Yukawa and Majorana mass matrices. The predictions depend crucially on the range of the undetermined coefficients over which we scan, and we speculate on how future theories might lead to more precise predictions for the coefficients and hence for neutrino observables. Our results indicate how accurately neutrino masses and mixing angles need to be measured by future experiments in order to discriminate between current models.

  15. Neutrino telescopes

    SciTech Connect

    Costantini, H.

    2012-09-15

    Neutrino astrophysics offers a new possibility to observe our Universe: high-energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos: this young discipline extends in fact the conventional astronomy beyond the usual electromagnetic probe. The weak interaction of neutrinos with matter allows them to escape from the core of astrophysical objects and in this sense they represent a complementary messenger with respect to photons. However, their detection on Earth due to the small interaction cross section requires a large target mass. The aim of this article is to review the scientific motivations of the high-energy neutrino astrophysics, the detection principles together with the description of a running apparatus, the experiment ANTARES, the performance of this detector with some results, and the presentation of other neutrino telescope projects.

  16. Neutrino factories

    SciTech Connect

    Soler, F. J. P.

    2015-07-15

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of θ{sub 13}. The accelerator facility will deliver 10{sup 21} muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of δ{sub CP} that a Neutrino Factory can achieve and the δ{sub CP} coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  17. Neutrino factories

    NASA Astrophysics Data System (ADS)

    Soler, F. J. P.

    2015-07-01

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of θ13. The accelerator facility will deliver 1021 muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of δCP that a Neutrino Factory can achieve and the δCP coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  18. New results for muon neutrino to electron neutrino oscillations in the MINOS experiment

    SciTech Connect

    Evans, Justin; Whitehead, Lisa; /Brookhaven

    2010-01-01

    MINOS is a long-baseline neutrino oscillation experiment situated along Fermilab's high-intensity NuMI neutrino beam. MINOS has completed an updated search for muon neutrino to electron neutrino transitions, observation of which would indicate a non-zero value for the neutrino mixing angle {theta}{sub 13}. The present 7 x 10{sup 20} protons-on-target data set represents more than double the exposure used in the previous analysis. The new result and its implications are presented.

  19. Neutrinos and flavor symmetries

    SciTech Connect

    Tanimoto, Morimitsu

    2015-07-15

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  20. An overview of the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    Cao, Jun; Luk, Kam-Biu

    2016-07-01

    The Daya Bay Reactor Neutrino Experiment discovered an unexpectedly large neutrino oscillation related to the mixing angle θ13 in 2012. This finding paved the way to the next generation of neutrino oscillation experiments. In this article, we review the history, featured design, and scientific results of Daya Bay. Prospects of the experiment are also described.

  1. Arbitrarily massive sterile neutrinos at the neutrino factory

    SciTech Connect

    Meloni, Davide; Tang Jian; Winter, Walter

    2011-10-06

    We study the effects of one additional sterile neutrino at the Neutrino Factory. On the one hand, we do not impose any constraint on the additional mass squared splitting, which is different from earlier discussions where LSND motivated Q(1)eV{sup 2} is always assumed. We find that a combination of near detectors and long baselines is good at searching for arbitrarily massive sterile neutrinos at the neutrino factory. On the other hand, we compare our sensitivities of mixing angles with the MINOS results where |{Delta}m{sub 41}{sup 2}|>>{Delta}m{sub 31}{sup 2}| is assumed and the fast oscillations in the far detectors are averaged out.

  2. Constraining astrophysical neutrino flavor composition from leptonic unitarity

    SciTech Connect

    Xu, Xun-Jie; He, Hong-Jian; Rodejohann, Werner E-mail: hjhe@tsinghua.edu.cn

    2014-12-01

    The recent IceCube observation of ultra-high-energy astrophysical neutrinos has begun the era of neutrino astronomy. In this work, using the unitarity of leptonic mixing matrix, we derive nontrivial unitarity constraints on the flavor composition of astrophysical neutrinos detected by IceCube. Applying leptonic unitarity triangles, we deduce these unitarity bounds from geometrical conditions, such as triangular inequalities. These new bounds generally hold for three flavor neutrinos, and are independent of any experimental input or the pattern of lepton mixing. We apply our unitarity bounds to derive general constraints on the flavor compositions for three types of astrophysical neutrino sources (and their general mixture), and compare them with the IceCube measurements. Furthermore, we prove that for any sources without ν{sub τ} neutrinos, a detected ν{sub μ} flux ratio < 1/4 will require the initial flavor composition with more ν{sub e} neutrinos than ν{sub μ} neutrinos.

  3. Neutrino mass and New physics

    NASA Astrophysics Data System (ADS)

    Smirnov, A. Yu

    2006-11-01

    Reconstruction of the neutrino mass and flavor spectrum is described. Essentially two processes are relevant for interpretation of the neutrino results which were used in determination of neutrino parameters: oscillations (averaged and non-averaged) in vacuum and matter and the adiabatic flavor conversion in matter (the MSW-effect). Detailed physics picture of these processes is elaborated and their realizations in solar and atmospheric neutrinos as well as in K2K, KamLAND and MINOS experiments are described. Important bounds have been obtained from neutrinoless double beta decay and cosmology. Implications of the obtained results to fundamental physics are discussed. Among various mechanisms for small neutrino masses we consider the seesaw (which has the highest priority) and overlap suppression in extra dimensions. The observed pattern on neutrino mixing may testify for existence of new symmetries of nature. One of the key issues on the way to underlying physics is comparison of the quarks and lepton masses and mixing. In this connections concepts of quark-lepton symmetry and unification, quark-lepton universality and quark-lepton complementarity are described.

  4. Possible explanation of the solar-neutrino puzzle

    NASA Technical Reports Server (NTRS)

    Bethe, H. A.

    1986-01-01

    A new derivation of the Mikheyev and Smirnov (1985) mechanism for the conversion of electron neutrinos into mu neutrinos when traversing the sun is presented, and various hypotheses set forth. It is assumed that this process is responsible for the detection of fewer solar neutrinos than expected, with neutrinos below a minimum energy, E(m), being undetectable. E(m) is found to be about 6 MeV, and the difference of the squares of the respective neutrino masses is calculated to be 6 X 10 to the - 5th sq eV. A restriction on the neutrino mixing angle is assumed such that the change of density near the crossing point is adiabatic. It is predicted that no resonance conversion of neutrinos will occur in the dense core of supernovae, but conversion of electron neutrinos to mu neutrinos will occur as they escape outward through a density region around 100.

  5. Sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Kopp, J.; Machado, P. A. N.; Maltoni, M.; Schwetz, T.

    2016-06-01

    We characterize statistically the indications of a presence of one or more light sterile neutrinos from MiniBooNE and LSND data, together with the reactor and gallium anomalies, in the global context. The compatibility of the aforementioned signals with null results from solar, atmospheric, reactor, and accelerator experiments is evaluated. We conclude that a severe tension is present in the global fit, and therefore the addition of eV-scale sterile neutrinos does not satisfactorily explain the anomalies.

  6. Sterile neutrinos in the light of IceCube

    NASA Astrophysics Data System (ADS)

    Lindner, Manfred; Rodejohann, Werner; Xu, Xun-Jie

    2016-01-01

    We determine constraints on parameters of a single eV-scale light neutrino using IceCube-59 data. Particular emphasis is put on the question whether such an analysis can rule out sterile neutrino hints. While important complementary information is provided, the different dependence on the various sterile neutrino mixing angles makes it currently not possible to fully exclude short baseline appearance results or sterile neutrinos in general.

  7. Earth matter effect on active-sterile neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Acero, Mario A.; Aguilar-Arevalo, Alexis A.; D'Olivo, J. C.

    2011-08-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some experimental observations. In a four-neutrino mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos taking into account the matter effect for a varying terrestrial density.

  8. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  9. Sterile Neutrinos in Cold Climates

    SciTech Connect

    Jones, Benjamin J.P.

    2015-09-01

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Part II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin224 ≤ 0.02 at m2 ~ 0.3 eV2, and the LSND and Mini

  10. Neutrino observables from predictive flavour patterns

    NASA Astrophysics Data System (ADS)

    Cebola, Luís M.; Emmanuel-Costa, David; Felipe, Ricardo González

    2016-03-01

    We look for predictive flavour patterns of the effective Majorana neutrino mass matrix that are compatible with current neutrino oscillation data. Our search is based on the assumption that the neutrino mass matrix contains equal elements and a minimal number of parameters, in the flavour basis where the charged lepton mass matrix is diagonal and real. Three unique patterns that can successfully explain neutrino observables at the 3\\upsigma confidence level with just three physical parameters are presented. Neutrino textures described by four and five parameters are also studied. The predictions for the lightest neutrino mass, the effective mass parameter in neutrinoless double beta decays and for the CP-violating phases in the leptonic mixing are given.

  11. Testing constrained sequential dominance models of neutrinos

    NASA Astrophysics Data System (ADS)

    Björkeroth, Fredrik; King, Stephen F.

    2015-12-01

    Constrained sequential dominance (CSD) is a natural framework for implementing the see-saw mechanism of neutrino masses which allows the mixing angles and phases to be accurately predicted in terms of relatively few input parameters. We analyze a class of CSD(n) models where, in the flavour basis, two right-handed neutrinos are dominantly responsible for the ‘atmospheric’ and ‘solar’ neutrino masses with Yukawa couplings to ({ν }e,{ν }μ ,{ν }τ ) proportional to (0,1,1) and (1,n,n-2), respectively, where n is a positive integer. These coupling patterns may arise in indirect family symmetry models based on A 4. With two right-handed neutrinos, using a χ 2 test, we find a good agreement with data for CSD(3) and CSD(4) where the entire Pontecorvo-Maki-Nakagawa-Sakata mixing matrix is controlled by a single phase η, which takes simple values, leading to accurate predictions for mixing angles and the magnitude of the oscillation phase | {δ }{CP}| . We carefully study the perturbing effect of a third ‘decoupled’ right-handed neutrino, leading to a bound on the lightest physical neutrino mass {m}1{{≲ }}1 meV for the viable cases, corresponding to a normal neutrino mass hierarchy. We also discuss a direct link between the oscillation phase {δ }{CP} and leptogenesis in CSD(n) due to the same see-saw phase η appearing in both the neutrino mass matrix and leptogenesis.

  12. Prospects for cosmic neutrino detection in tritium experiments in the case of hierarchical neutrino masses

    SciTech Connect

    Blennow, Mattias

    2008-06-01

    We discuss the effects of neutrino mixing and the neutrino mass hierarchy when considering the capture of the cosmic neutrino background (CNB) on radioactive nuclei. The implications of mixing and hierarchy at future generations of tritium decay experiments are considered. We find that the CNB should be detectable at these experiments provided that the resolution for the kinetic energy of the outgoing electron can be pushed to a few 0.01 eV for the scenario with inverted neutrino mass hierarchy, about an order of magnitude better than that of the upcoming KATRIN experiment. Another order of magnitude improvement is needed in the case of normal neutrino mass hierarchy. We also note that mixing effects generally make the prospects for CNB detection worse due to an increased maximum energy of the normal beta decay background.

  13. Measuring Neutrino Oscillations with Nuclear Reactors

    SciTech Connect

    McKeown, R. D.

    2007-10-26

    Since the first direct observations of antineutrino events by Reines and Cowan in the 1950's, nuclear reactors have been an important tool in the study of neutrino properties. More recently, the study of neutrino oscillations has been a very active area of research. The pioneering observation of oscillations by the KamLAND experiment has provided crucial information on the neutrino mixing matrix. New experiments to study the remaining unknown mixing angle are currently under development. These recent studies and potential future developments will be discussed.

  14. Observation of electron neutrino appearance in a muon neutrino beam.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F D M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Floetotto, L; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Gaudin, A; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gomez-Cadenas, J J; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Lamont, I; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Licciardi, C; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Paolone, V; Payne, D; Pearce, G F; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L J; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2014-02-14

    The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3σ when compared to 4.92±0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles θ12, θ23, θ13, a mass difference Δm(32)(2) and a CP violating phase δ(CP). In this neutrino oscillation scenario, assuming |Δm(32)(2)|=2.4×10(-3)  eV(2), sin(2)θ(23)=0.5, and Δm322>0 (Δm(32)(2)<0), a best-fit value of sin(2)2θ(13)=0.140(-0.032)(+0.038) (0.170(-0.037)(+0.045)) is obtained at δ(CP)=0. When combining the result with the current best knowledge of oscillation parameters including the world average value of θ(13) from reactor experiments, some values of δ(CP) are disfavored at the 90% C.L. PMID:24580687

  15. Observation of Electron Neutrino Appearance in a Muon Neutrino Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L. J.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-02-01

    The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3σ when compared to 4.92±0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles θ12, θ23, θ13, a mass difference Δm322 and a CP violating phase δCP. In this neutrino oscillation scenario, assuming |Δm322|=2.4×10-3 eV2, sin2θ23=0.5, and Δm322>0 (Δm322<0), a best-fit value of sin22θ13=0.140-0.032+0.038 (0.170-0.037+0.045) is obtained at δCP=0. When combining the result with the current best knowledge of oscillation parameters including the world average value of θ13 from reactor experiments, some values of δCP are disfavored at the 90% C.L.

  16. Flavor distribution of UHE cosmic neutrino oscillations at neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-Zhong

    2009-04-01

    If the ultrahigh-energy (UHE) cosmic neutrinos produced from a distant astrophysical source can be measured at a km-size neutrino telescope such as the IceCube or KM3NeT, they will open a new window to understand the nature of flavor mixing and to probe possible new physics. Considering the conventional UHE cosmic neutrino source with the flavor ratio φe:φμ:φτ=1:2:0, I point out two sets of conditions for the flavor democracy φeT:φμT:φτT=1:1:1 to show up at neutrino telescopes: either θ13=0 and θ23=π/4 (CP invariance) or δ=±π/2 and θ23=π/4 (CP violation) in the standard parametrization of the 3×3 neutrino mixing matrix V. Allowing for slight μ-τ symmetry breaking effects characterized by Δ∈[-0.1,+0.1], I find φeT:φμT:φτT=(1-2Δ):(1+Δ):(1+Δ) as a good approximation. Another possibility to constrain Δ is to detect the ν flux of E≈6.3PeV via the Glashow resonance channel νe→W→anything. I also give some brief comments on (1) possible non-unitarity of V in the seesaw framework and its effects on the flavor distribution at neutrino telescopes and (2) a generic description and determination of the cosmic neutrino flavor composition at distant astrophysical sources.

  17. Sterile neutrinos beyond LSND at the neutrino factory

    SciTech Connect

    Meloni, Davide; Tang Jian; Winter, Walter

    2010-11-01

    We discuss the effects of one additional sterile neutrino at the Neutrino Factory. Compared to earlier analyses, which have been motivated by Liquid Scintillator Neutrino Detector (LSND) results, we do not impose any constraint on the additional mass squared splitting. This means that the additional mass eigenstate could, with small mixings, be located among the known ones, as it is suggested by the recent analysis of cosmological data. We use a self-consistent framework at the Neutrino Factory without any constraints on the new parameters. We demonstrate for a combined short and long baseline setup that near detectors can provide the expected sensitivity at the LSND-motivated {Delta}m{sub 41}{sup 2}-range, while some sensitivity can also be obtained in the region of the atmospheric mass splitting from the long baselines. We point out that limits on such very light sterile neutrinos may also be obtained from a reanalysis of atmospheric and solar neutrino oscillation data, as well as from supernova neutrino observations. In the second part of the analysis, we compare our sensitivity with the existing literature using additional assumptions, such as |{Delta}m{sub 41}{sup 2}|>>|{Delta}m{sub 31}{sup 2}|, leading to averaging of the fast oscillations in the far detectors. We demonstrate that while the Neutrino Factory has excellent sensitivity compared to existing studies using similar assumptions, one has to be very careful interpreting these results for a combined short and long baseline setup where oscillations could occur in the near detectors. We also test the impact of additional {nu}{sub {tau}} detectors at the short and long baselines, and we do not find a substantial improvement of the sensitivities.

  18. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  19. Neutrino masses, neutrino oscillations, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

  20. BEST sensitivity to O(1) eV sterile neutrino

    NASA Astrophysics Data System (ADS)

    Barinov, Vladislav; Gavrin, Vladimir; Gorbunov, Dmitry; Ibragimova, Tatiana

    2016-04-01

    Numerous anomalous results in neutrino oscillation experiments can be attributed to the interference of an ˜1 eV sterile neutrino. The Baksan Experiment on Sterile Transitions (BEST), specially designed to fully explore the Gallium anomaly, starts next year. We investigate the sensitivity of BEST in search of a sterile neutrino mixed with an electron neutrino. Then, performing the combined analysis of all the Gallium experiments (SAGE, GALLEX, BEST), we find the region in the model parameter space (sterile neutrino mass and mixing angle) which will be excluded if BEST agrees with no sterile neutrino hypothesis. For the opposite case, if BEST observes the signal as it follows from the sterile neutrino explanation of the Gallium (SAGE and GALLEX) anomaly, we show how BEST will improve upon the present estimates of the model parameters.

  1. Muon neutrino disappearance at MINOS

    SciTech Connect

    Armstrong, R

    2009-08-01

    A strong case has been made by several experiments that neutrinos oscillate, although important questions remain as to the mechanisms and precise values of the parameters. In the standard picture, two parameters describe the nature of how the neutrinos oscillate: the mass-squared difference between states and the mixing angle. The purpose of this thesis is to use data from the MINOS experiment to precisely measure the parameters associated with oscillations first observed in studies of atmospheric neutrinos. MINOS utilizes two similar detectors to observe the oscillatory nature of neutrinos. The Near Detector, located 1 km from the source, observes the unoscillated energy spectrum while the Far Detector, located 735 km away, is positioned to see the oscillation signal. Using the data in the Near Detector, a prediction of the expected neutrino spectrum at the Far Detector assuming no oscillations is made. By comparing this prediction with the MINOS data, the atmospheric mixing parameters are measured to be Δm322 = 2.45+0.12-0.12 x 10-3 eV2 and sin232) = 1.00-0.04+0.00 (> 0.90 at 90% confidence level).

  2. Solar Neutrinos: Status and Prospects

    NASA Astrophysics Data System (ADS)

    Haxton, W. C.; Hamish Robertson, R. G.; Serenelli, Aldo M.

    2013-08-01

    We describe the current status of solar neutrino measurements and of the theory—both neutrino physics and solar astrophysics—employed in interpreting measurements. Important recent developments include Super-Kamiokande's determination of the ν-e elastic scattering rate for 8B neutrinos to 3%; the latest Sudbury Neutrino Observatory (SNO) global analysis in which the inclusion of low-energy data from SNO I and II significantly narrowed the range of allowed values for the neutrino mixing angle θ12; Borexino results for both the 7Be and proton-electron-proton (pep) neutrino fluxes, the first direct measurements constraining the rate of proton-proton (pp) I and pp II burning in the Sun; global reanalyses of solar neutrino data that take into account new reactor results on θ13; a new decadal evaluation of the nuclear physics of the pp chain and CNO cycle defining best values and uncertainties in the nuclear microphysics input to solar models; recognition of an emerging discrepancy between two tests of solar metallicity, helioseismological mappings of the sound speed in the solar interior, and analyses of the metal photoabsorption lines based on our best current description of the Sun's photosphere; a new round of standard solar model calculations optimized to agree either with helioseismology or with the new photospheric analysis; and, motivated by the solar abundance problem, the development of nonstandard, accreting solar models, in order to investigate possible consequences of the metal segregation that occurred in the proto-solar disk. We review this progress and describe how new experiments such as SNO+ could help us further exploit neutrinos as a unique probe of stellar interiors.

  3. Collective neutrino flavor transformation in supernovae

    SciTech Connect

    Duan Huaiyu; Fuller, George M.; Qian Yongzhong

    2006-12-15

    We examine coherent active-active channel neutrino flavor evolution in environments where neutrino-neutrino forward scattering can engender large-scale collective flavor transformation. We introduce the concept of neutrino flavor isospin which treats neutrinos and antineutrinos on an equal footing, and which facilitates the analysis of neutrino systems in terms of the spin precession analogy. We point out a key quantity, the ''total effective energy,'' which is conserved in several important regimes. Using this concept, we analyze collective neutrino and antineutrino flavor oscillation in the synchronized mode and what we term the bi-polar mode. We thereby are able to explain why large collective flavor mixing can develop on short time scales even when vacuum mixing angles are small in, e.g., a dense gas of initially pure {nu}{sub e} and {nu}{sub e} with an inverted neutrino mass hierarchy (an example of bi-polar oscillation). In the context of the spin precession analogy, we find that the corotating frame provides insights into more general systems, where either the synchronized or bi-polar mode could arise. For example, we use the corotating frame to demonstrate how large flavor mixing in the bi-polar mode can occur in the presence of a large and dominant matter background. We use the adiabatic condition to derive a simple criterion for determining whether the synchronized or bi-polar mode will occur. Based on this criterion, we predict that neutrinos and antineutrinos emitted from a protoneutron star in a core-collapse supernova event can experience synchronized and bi-polar flavor transformations in sequence before conventional Mikhyev-Smirnov-Wolfenstein flavor evolution takes over. This certainly will affect the analyses of future supernova neutrino signals, and might affect the treatment of shock reheating rates and nucleosynthesis depending on the depth at which collective transformation arises.

  4. Very low-energy neutrino interactions

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio

    2015-05-01

    Neutrino-nucleus reaction cross sections are now evaluated rather accurately by shell-model (SM) or SM+RPA calculations based on recent advances in nuclear structure studies. Due to these achievements, reliable constraints on super-nova neutrino temperatures as well as neutrino oscillation parameters become possible. Supernova neutrino tempeatures are constrained from abundances of elements obtained by using new ν-nucleus reaction cross sections. A possibility of constructing supernova neutrino spectrum from beta-beam measurements is pointed out. Neutrino mass hierarchy and mixing angle θ13 can be determined from abundance ratio of 7Li/11B, which is sensitive to the MSW matter oscillation effects in supernova explosions. Inverted mass hierarchy is shown to be statistically more favored based on a recent analysis of presolar grains. Effects of neutrino-neutrino interactions are also shown to play important roles in r-process nucleosynthesis. Importance and possibilities of direct measurements of ν-induced cross sections on 40Ar and 208Pb are discussed for future supernova neutrino detections. Recent calculations of the cross sections for ν-40Ar are presented. The need for new theoretical evaluations of the cross sections for ν-208Pb is pointed out. Challenges to experiments on coherent elastic scattering are presented.

  5. Very low-energy neutrino interactions

    SciTech Connect

    Suzuki, Toshio

    2015-05-15

    Neutrino-nucleus reaction cross sections are now evaluated rather accurately by shell-model (SM) or SM+RPA calculations based on recent advances in nuclear structure studies. Due to these achievements, reliable constraints on super-nova neutrino temperatures as well as neutrino oscillation parameters become possible. Supernova neutrino tempeatures are constrained from abundances of elements obtained by using new ν-nucleus reaction cross sections. A possibility of constructing supernova neutrino spectrum from beta-beam measurements is pointed out. Neutrino mass hierarchy and mixing angle θ{sub 13} can be determined from abundance ratio of {sup 7}Li/{sup 11}B, which is sensitive to the MSW matter oscillation effects in supernova explosions. Inverted mass hierarchy is shown to be statistically more favored based on a recent analysis of presolar grains. Effects of neutrino-neutrino interactions are also shown to play important roles in r-process nucleosynthesis. Importance and possibilities of direct measurements of ν-induced cross sections on {sup 40}Ar and {sup 208}Pb are discussed for future supernova neutrino detections. Recent calculations of the cross sections for ν-{sup 40}Ar are presented. The need for new theoretical evaluations of the cross sections for ν-{sup 208}Pb is pointed out. Challenges to experiments on coherent elastic scattering are presented.

  6. Effects of Neutrino Decay on Oscillation Probabilities

    NASA Astrophysics Data System (ADS)

    Leonard, Kayla; de Gouvêa, André

    2016-01-01

    It is now well accepted that neutrinos oscillate as a quantum mechanical result of a misalignment between their mass-eigenstates and the flavor-eigenstates. We study neutrino decay—the idea that there may be new, light states that the three Standard Model flavors may be able to decay into. We consider what effects this neutrino decay would have on the observed oscillation probabilities.The Hamiltonian governs how the states change with time, so we use it to calculate an oscillation amplitude, and from that, the oscillation probability. We simplify the theoretical probabilities using results from experimental data, such as the neutrino mixing angles and mass differences. By exploring what values of the decay parameters are physically allowable, we can begin to understand just how large the decay parameters can be. We compare the probabilities in the case of no neutrino decay and in the case of maximum neutrino decay to determine how much of an effect neutrino decay could have on observations, and discuss the ability of future experiments to detect these differences.We also examine neutrino decay in the realm of CP invariance, and found that it is a new source of CP violation. Our work indicates that there is a difference in the oscillation probabilities between particle transitions and their corresponding antiparticle transitions. If neutrino decay were proven true, it could be an important factor in understanding leptogenesis and the particle-antiparticle asymmetry present in our Universe.

  7. Neutrino anarchy and renormalization group evolution

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; König, Matthias; Kopp, Joachim

    2016-05-01

    The observed pattern of neutrino mixing angles is in good agreement with the hypothesis of neutrino anarchy, which posits that nature has chosen the entries of the leptonic mixing matrix at random. In this paper we investigate how stable this conclusion is under renormalization group (RG) effects. Working in the simplest type-I seesaw model and two variants of the inverse seesaw model we study how the statistical distributions of the neutrino mixing parameters evolve between the grand unification scale and the electroweak scale. Especially in the inverse seesaw case we find significant distortions: Mixing angles tend to be smaller after RG running, and the Dirac C P phase tends to be closer to zero. The p -value describing the compatibility between the observed mixing angles and the anarchy hypothesis increases by 10%-20%. This illustrates that RG effects are highly relevant for quantitative studies of the anarchy scenario.

  8. New Ambiguity in Probing C P Violation in Neutrino Oscillations

    NASA Astrophysics Data System (ADS)

    Miranda, O. G.; Tórtola, M.; Valle, J. W. F.

    2016-08-01

    If neutrinos get mass via the seesaw mechanism the mixing matrix describing neutrino oscillations can be effectively nonunitary. We show that in this case the neutrino appearance probabilities involve a new C P phase ϕ associated with nonunitarity. This leads to an ambiguity in extracting the "standard" three-neutrino phase δC P, which can survive even after neutrino and antineutrino channels are combined. Its existence should be taken into account in the planning of any oscillation experiment aiming at a robust measurement of δC P.

  9. Solar Neutrino flare detection in Hyperkamiokande and SK

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele

    2016-07-01

    The possible buid and near activity of a Megaton neutrino detection in HyperKamiokande and the older SK implementation by Gadolinium liqid might open to future detection of largest solar flare (pion trace at tens MeV) electron neutrino and antineutrino. The multiwave detection of X-gamma and neutrino event might offer a deep view of such solar acelleration and of neutrino flavor mix along its flight. The possoble near future discover of such events will open a third neutrino astronomy windows after rarest SN 1987A and persistent Solar nuclear signals.

  10. Precision Measurements of Long-Baseline Neutrino Oscillation at LBNF

    DOE PAGESBeta

    Worcester, Elizabeth

    2015-08-06

    In a long-baseline neutrino oscillation experiment, the primary physics objectives are to determine the neutrino mass hierarchy, to determine the octant of the neutrino mixing angle θ23, to search for CP violation in neutrino oscillation, and to precisely measure the size of any CP-violating effect that is discovered. This presentation provides a brief introduction to these measurements and reports on efforts to optimize the design of a long-baseline neutrino oscillation experiment, the status of LBNE, and the transition to an international collaboration at LBNF.

  11. E sub 6 leptoquarks and the solar neutrino problem

    NASA Technical Reports Server (NTRS)

    Roulet, Esteban

    1991-01-01

    The possibility that non-conventional neutrino oscillations take place in the superstring inspired E sub 6 models is considered. In this context, the influence of leptoquark mediated interactions of the neutrinos with nucleons in the resonant flavor conversion is discussed. It is shown that this effect can be significant for v sub e - v sub tau oscillations if these neutrinos have masses required in the ordinary Mikheyev-Smirnov-Wolfenstein (MSW) effect, and may lead to a solution of the solar neutrino problem even in the absence of vacuum mixings. On the other hand, this model cannot lead to a resonant behavior in the sun if the neutrinos are massless.

  12. Precision Measurements of Long-Baseline Neutrino Oscillation at LBNF

    SciTech Connect

    Worcester, Elizabeth

    2015-08-06

    In a long-baseline neutrino oscillation experiment, the primary physics objectives are to determine the neutrino mass hierarchy, to determine the octant of the neutrino mixing angle θ23, to search for CP violation in neutrino oscillation, and to precisely measure the size of any CP-violating effect that is discovered. This presentation provides a brief introduction to these measurements and reports on efforts to optimize the design of a long-baseline neutrino oscillation experiment, the status of LBNE, and the transition to an international collaboration at LBNF.

  13. New Ambiguity in Probing CP Violation in Neutrino Oscillations.

    PubMed

    Miranda, O G; Tórtola, M; Valle, J W F

    2016-08-01

    If neutrinos get mass via the seesaw mechanism the mixing matrix describing neutrino oscillations can be effectively nonunitary. We show that in this case the neutrino appearance probabilities involve a new CP phase ϕ associated with nonunitarity. This leads to an ambiguity in extracting the "standard" three-neutrino phase δ_{CP}, which can survive even after neutrino and antineutrino channels are combined. Its existence should be taken into account in the planning of any oscillation experiment aiming at a robust measurement of δ_{CP}. PMID:27541461

  14. Neutrino Oscillations:. Hierarchy Question

    NASA Astrophysics Data System (ADS)

    Ernst, D. J.; Cogswell, B. K.; Burroughs, H. R.; Escamilla-Roa, J.; Latimer, D. L.

    2014-09-01

    The only experimentally observed phenomenon that lies outside the standard model of the electroweak interaction is neutrino oscillations. A way to try to unify the extensive neutrino oscillation data is to add a phenomenological mass term to the Lagrangian that is not diagonal in the flavor basis. The goal is then to understand the world's data in terms of the parameters of the mixing matrix and the differences between the squares of the masses of the neutrinos. An outstanding question is what is the correct ordering of the masses, the hierarchy question. We point out a broken symmetry relevant to this question, the symmetry of the simultaneous interchange of hierarchy and the sign of θ13. We first present the results of an analysis of data that well determine the phenomenological parameters but are not sensitive to the hierarchy. We find θ13 = 0.152±0.014, θ 23 = 0.25{ - 0.05}{ + 0.03} π and Δ32 = 2.45±0.14×10-3 eV2, results consistent with others. We then include data that are sensitive to the hierarchy and the sign of θ13. We find, unlike others, four isolated minimum in the χ2-space as predicted by the symmetry. Now that Daya Bay and RENO have determined θ13 to be surprisingly large, the Super-K atmospheric data produce meaningful symmetry breaking such that the inverse hierarchy is preferred at the 97.2 % level.

  15. SAGE: Solar Neutrino Data from SAGE, the Russian-American Gallium Solar Neutrino Experiment

    DOE Data Explorer

    SAGE Collaboration

    SAGE is a solar neutrino experiment based on the reaction 71Ga + n goes to 71Ge + e-. The 71Ge atoms are chemically extracted from a 50-metric ton target of Ga metal and concentrated in a sample of germane gas mixed with xenon. The atoms are then individually counted by observing their decay back to 71Ga in a small proportional counter. The distinguishing feature of the experiment is its ability to detect the low-energy neutrinos from proton-proton fusion. These neutrinos, which are made in the primary reaction that provides the Sun's energy, are the major component of the solar neutrino flux and have not been observed in any other way. To shield the experiment from cosmic rays, it is located deep underground in a specially built facility at the Baksan Neutrino Observatory in the northern Caucasus mountains of Russia. Nearly 100 measurements of the solar neutrino flux have been made during 1990-2000, and their combined result is a neutrino capture rate that is well below the prediction of the Standard Solar Model. The significant suppression of the solar neutrino flux that SAGE and other solar neutrino experiments have observed gives a strong indication for the existence of neutrino oscillations. [copied from the SAGE homepage at http://ewi.npl.washington.edu/SAGE/SAGE.html

  16. Neutrino magnetic moment

    SciTech Connect

    Chang, D. . Dept. of Physics and Astronomy Fermi National Accelerator Lab., Batavia, IL ); Senjanovic, G. . Dept. of Theoretical Physics)

    1990-01-01

    We review attempts to achieve a large neutrino magnetic moment ({mu}{sub {nu}} {le} 10{sup {minus}11}{mu}{sub B}), while keeping neutrino light or massless. The application to the solar neutrino puzzle is discussed. 24 refs.

  17. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    SciTech Connect

    Coleman, Stephen James

    2011-05-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting Δm232 = (2.32-0.08+0.12) x 10-3 eV2/c4 and the mixing angle sin2(2θ32) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2σ and the neutrino quantum decoherence hypothesis is disfavored at 9.0σ.

  18. Light sterile neutrino production in the early universe with dynamical neutrino asymmetries

    NASA Astrophysics Data System (ADS)

    Mirizzi, Alessandro; Saviano, Ninetta; Miele, Gennaro; Serpico, Pasquale Dario

    2012-09-01

    Light sterile neutrinos mixing with the active ones have been recently proposed to solve different anomalies observed in short-baseline oscillation experiments. These neutrinos can also be produced by oscillations of the active neutrinos in the early Universe, leaving possible traces on different cosmological observables. Here, we perform an updated study of the neutrino kinetic equations in (3+1) and (2+1) oscillation schemes, dynamically evolving primordial asymmetries of active neutrinos and taking into account for the first time CP-violation effects. In the absence of neutrino asymmetries, eV-mass scale sterile neutrinos would be completely thermalized, creating a tension with respect to the cosmic microwave background, large scale structures, and big bang nucleosynthesis data. In the past literature, active neutrino asymmetries have been invoked as a way to inhibit the sterile neutrino production via the in-medium suppression of the sterile-active mixing angle. However, neutrino asymmetries also permit a resonant sterile neutrino production. We find that if the active species have equal asymmetries L, a value |L|=10-3 is required to start suppressing the resonant sterile production, roughly an order of magnitude larger than what was previously expected. When active species have opposite asymmetries, the sterile abundance is further enhanced, requiring an even larger |L|≃10-2 to start suppressing their production. In the latter case, CP violation (naturally expected) further exacerbates the phenomenon. Some consequences for cosmological observables are briefly discussed: for example, it is likely that moderate suppressions of the sterile species production are associated with significant spectral distortions of the active neutrino species, with potentially interesting phenomenological consequences especially for big bang nucleosynthesis.

  19. Investigation of Neutrino Properties with Bolometric Detectors

    SciTech Connect

    Heeger, Karsten M

    2014-11-01

    Neutrino mass and mixing are amongst the major discoveries of the past decade. The particle nature of neutrinos and the hierarchy of mass eigenstates, however, are unknown. Neutrinoless double beta-decay (0νββ) is the only known mechanism to test whether neutrinos are their own antiparticles. The observation of 0νββ would imply lepton number violation and show that neutrinos have Majorana mass. This report describes research activities performed at the University of Wisconsin in 2011-2014 aimed at the search for 0νββ with CUORE-0 and CUORE with the goal of exploring the inverted mass hierarchy region and probing an effective neutrino mass of ~40- 120 meV.

  20. Dirac neutrinos and SN 1987A

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1991-01-01

    Previous work has shown that the cooling of SN 1987A excludes a Dirac-neutrino mass greater than theta(20 keV) for nu(sub e), nu(sub mu), or nu(sub tau). The emission of wrong-helicity, Dirac neutrinos from SN 1987A, is re-examined. It is concluded that the effect of a Dirac neutrino on the cooling of SN 1987A has been underestimated due to neutrino degeneracy and additional emission processes. The limit that follows from the cooling of SN 1987A is believed to be greater (probably much greater) than 10 keV. This result is significant in light of the recent evidence for a 17 keV mass eigenstate that mixes with the electron neutrino.

  1. Neutrinos: Theory and Phenomenology

    SciTech Connect

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  2. Resolving the reactor neutrino anomaly with the KATRIN neutrino experiment

    NASA Astrophysics Data System (ADS)

    Formaggio, J. A.; Barrett, J.

    2011-11-01

    The KArlsruhe TRItium Neutrino experiment (KATRIN) combines an ultra-luminous molecular tritium source with an integrating high-resolution spectrometer to gain sensitivity to the absolute mass scale of neutrinos. The projected sensitivity of the experiment on the electron neutrino mass is 200 meV at 90% C.L. With such unprecedented resolution, the experiment is also sensitive to physics beyond the Standard Model, particularly to the existence of additional sterile neutrinos at the eV mass scale. A recent analysis of available reactor data appears to favor the existence of such a sterile neutrino with a mass splitting of | Δmsterile | 2 ⩾ 1.5eV2 and mixing strength of sin2 2θsterile = 0.17 ± 0.08 at 95% C.L. Upcoming tritium beta decay experiments should be able to rule out or confirm the presence of the new phenomenon for a substantial fraction of the allowed parameter space.

  3. The one loop corrections to the neutrino masses in BLMSSM

    NASA Astrophysics Data System (ADS)

    Zhao, Shu-Min; Feng, Tai-Fu; Dong, Xing-Xing; Zhang, Hai-Bin; Ning, Guo-Zhu; Guo, Tao

    2016-09-01

    The neutrino masses and mixings are studied in the model which is the supersymmetric extension of the standard model with local gauged baryon and lepton numbers (BLMSSM). At tree level the neutrinos can obtain tiny masses through the See-Saw mechanism in the BLMSSM. The one-loop corrections to the neutrino masses and mixings are important, and they are studied in this work with the mass insertion approximation. We study the numerical results and discuss the allowed parameter space of BLMSSM. It can contribute to study the neutrino masses and to explore the new physics beyond the standard model (SM).

  4. Relating lepton mixing angles with lepton mass hierarchy

    NASA Astrophysics Data System (ADS)

    Borah, Debasish

    2016-01-01

    We revisit the possibility of relating lepton mixing angles with lepton mass hierarchies in a model-independent way. Guided by the existence of such relations in the quark sector, we first consider all the mixing angles, both in charged lepton and neutrino sectors to be related to the respective mass ratios. This allows us to calculate the leptonic mixing angles observed in neutrino oscillations as functions of the lightest neutrino mass. We show that for both normal and inverted hierarchical neutrino masses, this scenario does not give rise to correct leptonic mixing angles. We then show that correct leptonic mixing angles can be generated with normal hierarchical neutrino masses if the relation between mixing angle and mass ratio is restricted to 1-2 and 1-3 mixing in both charged lepton and neutrino sectors leaving the 2-3 mixing angles as free parameters. We then restrict the lightest neutrino mass as well as the difference between 2-3 mixing angles in charged lepton and neutrino sectors from the requirement of producing correct leptonic mixing angles. We constrain the lightest neutrino mass to be around 0.002 eV and leptonic Dirac CP phase δCP such that sin2δ CP ˜ (0.35-0.50). We also construct the leptonic mass matrices in terms of 2-3 mixing angles and lightest neutrino mass and briefly comment on the possibility of realizing texture zeros in the neutrino mass matrix.

  5. PREFACE: Neutrino physics at spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Avignone, F. T.; Chatterjee, L.; Efremenko, Y. V.; Strayer, M.

    2003-11-01

    Unique because of their super-light masses and tiny interaction cross sections, neutrinos combine fundamental physics on the scale of the miniscule with macroscopic physics on the scale of the cosmos. Starting from the ignition of the primal p-p chain of stellar and solar fusion reactions that signal star-birth, these elementary leptons (neutrinos) are also critical players in the life-cycles and explosive deaths of massive stars and the production and disbursement of heavy elements. Stepping beyond their importance in solar, stellar and supernova astrophysics, neutrino interactions and properties influence the evolution, dynamics and symmetries of the cosmos as a whole. Further, they serve as valuable probes of its material content at various levels of structure from atoms and nuclei to valence and sea quarks. In the light of the multitude of physics phenomena that neutrinos influence, it is imperative to enhance our understanding of neutrino interactions and properties to the maximum. This is accentuated by the recent evidence of finite neutrino mass and flavour mixing between generations that reverberates on the plethora of physics that neutrinos influence. Laboratory experiments using intense neutrino fluxes would allow precision measurements and determination of important neutrino reaction rates. These can then complement atmospheric, solar and reactor experiments that have enriched so valuably our understanding of the neutrino and its repertoire of physics applications. In particular, intermediate energy neutrino experiments can provide critical information on stellar and solar astrophysical processes, along with advancing our knowledge of nuclear structure, sub-nuclear physics and fundamental symmetries. So where should we look for such intense neutrino sources? Spallation neutron facilities by their design are sources of intense neutrino pulses that are produced as a by-product of neutron spallation. These neutrino sources could serve as unique laboratories

  6. Potential measurements of neutrino-deuterium interactions with the T2K near detectors

    NASA Astrophysics Data System (ADS)

    Mahn, Kendall; T2K Collaboration

    2015-04-01

    Uncertainties on neutrino interactions with matter are important for current and future generation neutrino long baseline experiments, which infer neutrino mixing parameters. Measurements of neutrinos on deuterium constrain neutrino-nucleon interaction models, such as axial form factors, and are relatively free of complicating nuclear effects. Existing measurements of neutrino interaction using deuterium bubble chambers suffer from low statistics and significant systematic uncertainty on neutrino flux production. This talk describes the possibility of modern neutrino-deuterium cross section measurements using modifications to the existing T2K experiment near detector complex. A comparison of data taken with deuterated water and normal water would provide a measurement of neutrino-deuteron interactions with high-intensity neutrino beam. T2K is supported by the Department of Energy.

  7. Calculating Neutrino Oscillations with Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Linehan, Bryan

    2014-09-01

    In particle physics, it is currently known that three types of neutrinos exist that interact via the weak force. Referred to as ``flavors,'' they are distinguishable and named for the lepton they produce through charged current interactions: electron, muon, and tau. In a process called neutrino oscillation, one flavor of neutrino can change into another flavor as it propagates through space. At the moment, mild discrepancies between expected and measured neutrino oscillations suggest that more types of neutrinos that do not interact via the weak force exist: sterile neutrinos. The goal of this project was to calculate non-sterile flavor oscillation probabilities when 1, 2 or 3 sterile neutrinos were assumed to exist. An application has been written in Mathematica that calculates these probabilities with the neutrino masses, linear relationships between mass and flavor states, values of CP symmetry violating constants, and constant densities of media in which the neutrinos propagate set as parameters. The application was published online for researchers to use as a tool when considering the existence of sterile neutrinos. In the immediate future, the insights this application gives into neutrino oscillations will be studied and reported. In particle physics, it is currently known that three types of neutrinos exist that interact via the weak force. Referred to as ``flavors,'' they are distinguishable and named for the lepton they produce through charged current interactions: electron, muon, and tau. In a process called neutrino oscillation, one flavor of neutrino can change into another flavor as it propagates through space. At the moment, mild discrepancies between expected and measured neutrino oscillations suggest that more types of neutrinos that do not interact via the weak force exist: sterile neutrinos. The goal of this project was to calculate non-sterile flavor oscillation probabilities when 1, 2 or 3 sterile neutrinos were assumed to exist. An application

  8. Reactor neutrino experiments: θ13 and beyond

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Wang, Wei

    2014-05-01

    We review the current-generation short-baseline reactor neutrino experiments that have firmly established the third neutrino mixing angle θ13 to be nonzero. The relative large value of θ13 (around 9°) has opened many new and exciting opportunities for future neutrino experiments. Daya Bay experiment with the first measurement of Δ m2ee is aiming for a precision measurement of this atmospheric mass-squared splitting with a comparable precision as Δ m2μ μ from accelerator muon neutrino experiments. JUNO, a next-generation reactor neutrino experiment, is targeting to determine the neutrino mass hierarchy (MH) with medium baselines ( 50 km). Beside these opportunities enabled by the large θ13, the current-generation (Daya Bay, Double Chooz, and RENO) and the next-generation (JUNO, RENO-50, and PROSPECT) reactor experiments, with their unprecedented statistics, are also leading the precision era of the three-flavor neutrino oscillation physics as well as constraining new physics beyond the neutrino Standard Model.

  9. PINGU sensitivity to neutrino mass hierarchy

    SciTech Connect

    Groß, Andreas; Collaboration: IceCube-PINGU Collaboration

    2014-11-18

    Determination of the neutrino mass hierarchy (NMH) is among the most fundamental questions in particle physics. Recent measurements of 1) a large mixing angle between the first and the third neutrino mass eigenstates and 2) the first observation of atmospheric neutrino oscillations at tens of GeV with neutrino telescopes, open the intriguing new possibility to exploit matter effects in neutrino oscillation to determine the neutrino mass hierarchy. A further extension of IceCube/DeepCore called PINGU (Precision IceCube Next Generation Upgrade) has been recently envisioned with the ultimate goal to measure neutrino mass hierarchy. PINGU would consist of additional IceCube-like strings of detectors deployed in the deepest and cleanest ice in the center of IceCube. More densely deployed instrumentation would provide a threshold substantially below 10 GeV and enhance the sensitivity to the mass hierarchy signal in atmospheric neutrinos. Here we discuss an estimate of the PINGU sensitivity to the mass hierarchy determined using an approximation with an Asimov dataset and an oscillation parameter fit.

  10. Observables sensitive to absolute neutrino masses. II

    SciTech Connect

    Fogli, G. L.; Marrone, A.; Rotunno, A. M.; Lisi, E.; Melchiorri, A.; Palazzo, A.; Silk, J.; Slosar, A.

    2008-08-01

    In this followup to Phys. Rev. D 75, 053001 (2007) , we report updated constraints on neutrino mass-mixing parameters, in light of recent neutrino oscillation data (KamLAND, SNO, and MINOS) and cosmological observations (WMAP 5-year and other data). We discuss their interplay with the final 0{nu}2{beta} decay results in {sup 76}Ge claimed by part of the Heidelberg-Moscow Collaboration, using recent evaluations of the corresponding nuclear matrix elements, and their uncertainties. We also comment on the 0{nu}2{beta} limits in {sup 130}Te recently set by Cuoricino and on prospective limits or signals from the Karlsruhe tritium neutrino experiment.

  11. A theoretical perspective on neutrino physics

    SciTech Connect

    Marciano, W.J. )

    1989-09-01

    A survey of sin{sup 2} {theta}{sub W}, {rho}, CKM matrix, and axial-isoscalar neutral current measurements via neutrino scattering is presented. Loop effects due to heavy top or a fourth generation are described. Neutrino oscillations are discussed in a three generation mixing framework and some motivation for {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillation searches is given. 15 refs., 1 tab.

  12. Light sterile neutrinos, lepton number violating interactions, and the LSND neutrino anomaly

    NASA Astrophysics Data System (ADS)

    Babu, K. S.; McKay, Douglas W.; Mocioiu, Irina; Pakvasa, Sandip

    2016-06-01

    We develop the consequences of introducing a purely leptonic, lepton number violating nonstandard interaction (NSI) and standard model neutrino mixing with a fourth, sterile neutrino in the analysis of short baseline, neutrino experiments. We focus on the muon decay at rest (DAR) results from the Liquid Scintillation Neutrino Experiment (LSND) and the Karlsruhe and Rutherford Medium Energy Neutrino Experiment. We make a comprehensive analysis of lepton number violating, NSI effective operators and find nine that affect muon decay relevant to LSND results. Two of these preserve the standard model value 3 /4 for the Michel ρ and δ parameters and, overall, show favorable agreement with precision data and the ν¯e signal from LSND data. We display theoretical models that lead to these two effective operators. In the model we choose to apply to DAR data, both ν¯e appearance from ν¯μ oscillation and ν¯e survival after production from NSI decay of the μ+ contribute to the expected signal. This is a unique feature of our scheme. We find a range of parameters where both experiments can be accommodated consistently with recent global, sterile neutrino fits to short baseline data. We comment on implications of the models for new physics searches at colliders and comment on further implications of the lepton number violating interactions plus sterile neutrino-standard neutrino mixing.

  13. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    SciTech Connect

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  14. Neutrino masses and non-abelian horizontal symmetries

    NASA Astrophysics Data System (ADS)

    Antonelli, V.; Caravaglios, F.; Ferrari, R.; Picariello, M.

    2002-12-01

    Recently neutrino experiments have made very significant progresses and our knowledge of neutrino masses and mixing has considerably improved. In a model-independent Monte Carlo approach, we have examined a very large class of textures, in the context of non-abelian horizontal symmetries; we have found that neutrino data select only those charged lepton matrices with left-right asymmetric texture. The large atmospheric mixing angle needs m23≃m33. This result, if combined with similar recent findings for the quark sector in the B oscillations, can be interpreted as a hint for SU(5) unification. In the neutrino sector strict neutrino anarchy is disfavored by data, and at least a factor 2 of suppression in the first row and column of the neutrino Majorana mass matrix is required.

  15. Light sterile neutrino sensitivity of 163Ho experiments

    NASA Astrophysics Data System (ADS)

    Gastaldo, L.; Giunti, C.; Zavanin, E. M.

    2016-06-01

    We explore the sensitivity of 163Ho electron capture experiments to neutrino masses in the standard framework of three-neutrino mixing and in the framework of 3+1 neutrino mixing with a sterile neutrino which mixes with the three standard active neutrinos, as indicated by the anomalies found in short-baseline neutrino oscillations experiments. We calculate the sensitivity to neutrino masses and mixing for different values of the energy resolution of the detectors, of the unresolved pileup fraction and of the total statistics of events, considering the expected values of these parameters in the two planned stages of the ECHo project (ECHo-1k and ECHo-1M). We show that an extension of the ECHo-1M experiment with the possibility to collect 1016 events will be competitive with the KATRIN experiment. This statistics will allow to explore part of the 3+1 mixing parameter space indicated by the global analysis of short-baseline neutrino oscillation experiments. In order to cover all the allowed region, a statistics of about 1017 events will be needed.

  16. Neutrinos in Nuclear Physics

    SciTech Connect

    McKeown, Bob

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  17. The cosmic neutrino background

    NASA Technical Reports Server (NTRS)

    Dar, Arnon

    1991-01-01

    The cosmic neutrino background is expected to consist of relic neutrinos from the big bang, of neutrinos produced during nuclear burning in stars, of neutrinos released by gravitational stellar collapse, and of neutrinos produced by cosmic ray interactions with matter and radiation in the interstellar and intergalactic medium. Formation of baryonic dark matter in the early universe, matter-antimatter annihilation in a baryonic symmetric universe, and dark matter annihilation could have also contributed significantly to the cosmic neutrino background. The purpose of this paper is to review the properties of these cosmic neutrino backgrounds, the indirect evidence for their existence, and the prospects for their detection.

  18. Low-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Ludhova, Livia

    2016-05-01

    There exist several kinds of sources emitting neutrinos in the MeV energy range. These low-energy neutrinos from different sources can be often detected by the same multipurpose detectors. The status-of-art of the field of solar neutrinos, geoneutrinos, and the search for sterile neutrino with artificial neutrino sources is provided here; other neutrino sources, as for example reactor or high-energy neutrinos, are described elsewhere. For each of these three fields, the present-day motivation and open questions, as well as the latest experimental results and future perspectives are discussed.

  19. Status and Implications of Neutrino Masses: A Brief Panorama

    NASA Astrophysics Data System (ADS)

    Valle, José W. F.

    With the historic discovery of the Higgs boson our picture of particle physics would have been complete were it not for the neutrino sector and cosmology. I briefly discuss the role of neutrino masses and mixing upon gauge coupling unification, electroweak breaking and the flavor sector. Time is ripe for new discoveries such as leptonic CP violation, charged lepton flavor violation and neutrinoless double beta decay. Neutrinos could also play a role in elucidating the nature of dark matter and cosmic inflation.

  20. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    SciTech Connect

    Adams, C.; et al.,

    2013-07-28

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC) deployed there as a 'far' detector. The facilities envisioned are expected to enable many other science opportunities due to the high event rates and excellent detector resolution from beam neutrinos in the near detector and atmospheric neutrinos in the far detector. This is a mature, well developed, world class experiment whose relevance, importance, and probability of unearthing critical and exciting physics has increased with time.

  1. Tachyonic neutrinos and the neutrino masses

    NASA Astrophysics Data System (ADS)

    Ehrlich, Robert

    2013-01-01

    With a recent claim of superluminal neutrinos shown to be in error, 2012 may not be a propitious time to consider the evidence that one or more neutrinos may indeed be tachyons. Nevertheless, there are a growing number of observations that continue to suggest this possibility - albeit with an mν2<0 having a much smaller magnitude than was implied by the original OPERA claim. One recently published non-standard analysis of SN 1987A neutrinos supports a tachyonic mass eigenstate, and here we show how it leads to 3 + 3 mirror neutrino model having an unconventional mass hierarchy. The model incorporates one superluminal active-sterile neutrino pair, and it is testable in numerous ways, including making a surprising prediction about an unpublished aspect of the SN 1987A neutrinos. Additional supporting evidence involving earlier analyses of cosmic rays is summarized to add credence to the tachyonic neutrino hypothesis.

  2. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  3. Future Long-Baseline Neutrino Oscillations: View from North America

    SciTech Connect

    Wilson, R. J.

    2015-06-01

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE), that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  4. Future long-baseline neutrino oscillations: View from North America

    SciTech Connect

    Wilson, Robert J.

    2015-07-15

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE) that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  5. Future long-baseline neutrino oscillations: View from North America

    NASA Astrophysics Data System (ADS)

    Wilson, Robert J.

    2015-07-01

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE) that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  6. The neutrino mass hierarchy measurement with a neutrino telescope in the Mediterranean Sea: A feasibility study

    SciTech Connect

    Tsirigotis, A. G.; Collaboration: KM3NeT Collaboration

    2014-11-18

    With the measurement of a non zero value of the θ{sub 13} neutrino mixing parameter, interest in neutrinos as source of the baryon asymmetry of the universe has increased. Among the measurements of a rich and varied program in near future neutrino physics is the determination of the mass hierarchy. We present the status of a study of the feasibility of using a densely instrumented undersea neutrino detector to determine the mass hierarchy, utilizing the Mikheyev-Smirnov-Wolfenstein (MSW) effect on atmospheric neutrino oscillations. The detector will use technology developed for KM3NeT. We present the systematic studies of the optimization of a detector in the required 5–10 GeV energy regime. These studies include new tracking and interaction identification algorithms as well as geometrical optimizations of the detector.

  7. The Daya Bay Reactor Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Zhe

    2010-02-01

    The 3x3 PMNS leptonic mixing matrix relates the mass and flavor eigenstates of the 3 known neutrinos. The θ13 mixing angle is the last unknown mixing angle in the PMNS matrix, the parameters of which must be determined experimentally. The Daya Bay experiment will search for the ``disappearance'' of reactor anti-neutrinos from the Daya Bay and Ling Ao Nuclear Power Plants located in Daya Bay, Guangdong, China using multiple identical detectors at different baselines. The disappearance probability of reactor anti-neutrinos at short baselines of 1-2km is directly proportional to 2̂(2 θ13). The goal of the Daya Bay experiment is to reach a sensitivity of 2̂(2 θ13) = 0.01 at the 90 % C.L. The status and prospects of the experiment will be presented. )

  8. Neutrinos estériles en nucleosíntesis primordial

    NASA Astrophysics Data System (ADS)

    Sáez, M. M.; Mosquera, M. E.; Civitarese, O.

    2015-08-01

    We have studied the effect of the inclusion of massive sterile neutrinos upon primordial abundances of the elements produced during the stage of primordial nucleosynthesis (Big Bang Nucleosynthesis). We calculate the new active neutrino number densities by taking into account the interactions between active neutrinos (effective potential), the active neutrino oscillations, the active-sterile neutrino oscillations and a damping factor for active neutrinos. We computed the primordial abundances as functions of the active-sterile mixing parameters. Finally, we compared the abundances calculated theoretically with the observations to set constraints for the free parameters.

  9. Distinguishing neutrino mass hierarchies using dark matter annihilation signals at IceCube

    SciTech Connect

    Allahverdi, Rouzbeh; Dutta, Bhaskar; Ghosh, Dilip Kumar; Knockel, Bradley; Saha, Ipsita

    2015-12-01

    We explore the possibility of distinguishing neutrino mass hierarchies through the neutrino signal from dark matter annihilation at neutrino telescopes. We consider a simple extension of the standard model where the neutrino masses and mixing angles are obtained via the type-II seesaw mechanism as an explicit example. We show that future extensions of IceCube neutrino telescope may detect the neutrino signal from DM annihilation at the Galactic Center and inside the Sun, and differentiate between the normal and inverted mass hierarchies, in this model.

  10. Improved bounds on the heavy neutrino productions at the LHC

    NASA Astrophysics Data System (ADS)

    Das, Arindam; Okada, Nobuchika

    2016-02-01

    The Majorana neutrino in the type-I seesaw and the pseudo-Dirac neutrinos in the inverse seesaw can have sizable mixings with the light neutrinos in the standard model, through which the heavy neutrinos can be produced at the LHC. In producing the heavy neutrinos, we study a variety of initial states such as quark-quark, quark-gluon and gluon-gluon as well as photon mediated processes. For the Majorana heavy neutrino production, we consider a same-sign dilepton plus dijet as the signal events. Using the recent ATLAS and CMS data at √{s }=8 TeV with 20.3 and 19.7 fb-1 luminosities, respectively, we obtain direct upper bounds on the light-heavy neutrino mixing angles. For the pseudo-Dirac heavy neutrino production we consider the final sate with a trilepton plus missing energy as the signal events. Using the recent anomalous multilepton search by CMS at √{s }=8 TeV with 19.5 fb-1 luminosity, we obtain upper bounds on the mixing angles. Taking the varieties of initial states into account, the previously obtained upper bounds on the mixing angles have been improved. We scale our results at the 8 TeV LHC to obtain a prospective search reach at the 14 TeV LHC with high luminosities.

  11. Sterile neutrinos and indirect dark matter searches in IceCube

    SciTech Connect

    Argüelles, Carlos A.; Kopp, Joachim E-mail: jkopp@fnal.gov

    2012-07-01

    If light sterile neutrinos exist and mix with the active neutrino flavors, this mixing will affect the propagation of high-energy neutrinos from dark matter annihilation in the Sun. In particular, new Mikheyev-Smirnov-Wolfenstein resonances can occur, leading to almost complete conversion of some active neutrino flavors into sterile states. We demonstrate how this can weaken IceCube limits on neutrino capture and annihilation in the Sun and how potential future conflicts between IceCube constraints and direct detection or collider data might be resolved by invoking sterile neutrinos. We also point out that, if the dark matter-nucleon scattering cross section and the allowed annihilation channels are precisely measured in direct detection and collider experiments in the future, IceCube can be used to constrain sterile neutrino models using neutrinos from the dark matter annihilation.

  12. Predictive model of radiative neutrino masses

    NASA Astrophysics Data System (ADS)

    Babu, K. S.; Julio, J.

    2014-03-01

    We present a simple and predictive model of radiative neutrino masses. It is a special case of the Zee model which introduces two Higgs doublets and a charged singlet. We impose a family-dependent Z4 symmetry acting on the leptons, which reduces the number of parameters describing neutrino oscillations to four. A variety of predictions follow: the hierarchy of neutrino masses must be inverted; the lightest neutrino mass is extremely small and calculable; one of the neutrino mixing angles is determined in terms of the other two; the phase parameters take CP-conserving values with δCP=π; and the effective mass in neutrinoless double beta decay lies in a narrow range, mββ=(17.6-18.5) meV. The ratio of vacuum expectation values of the two Higgs doublets, tanβ, is determined to be either 1.9 or 0.19 from neutrino oscillation data. Flavor-conserving and flavor-changing couplings of the Higgs doublets are also determined from neutrino data. The nonstandard neutral Higgs bosons, if they are moderately heavy, would decay dominantly into μ and τ with prescribed branching ratios. Observable rates for the decays μ →eγ and τ→3μ are predicted if these scalars have masses in the range of 150-500 GeV.

  13. Hierarchical majorana neutrinos from democratic mass matrices

    NASA Astrophysics Data System (ADS)

    Yang, Masaki J. S.

    2016-09-01

    In this paper, we obtain the light neutrino masses and mixings consistent with the experiments, in the democratic texture approach. The essential ansatz is that νRi are assumed to transform as "right-handed fields" 2R +1R under the S3L ×S3R symmetry. The symmetry breaking terms are assumed to be diagonal and hierarchical. This setup only allows the normal hierarchy of the neutrino mass, and excludes both of inverted hierarchical and degenerated neutrinos. Although the neutrino sector has nine free parameters, several predictions are obtained at the leading order. When we neglect the smallest parameters ζν and ζR, all components of the mixing matrix UPMNS are expressed by the masses of light neutrinos and charged leptons. From the consistency between predicted and observed UPMNS, we obtain the lightest neutrino masses m1 = (1.1 → 1.4) meV, and the effective mass for the double beta decay ≃ 4.5 meV.

  14. Measurement of neutrino oscillation parameters from muon neutrino disappearance with an off-axis beam.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F D M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Curioni, A; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Frank, E; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Gaudin, A; Giffin, S; Giganti, C; Gilje, K; Golan, T; Gomez-Cadenas, J J; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Joo, K K; Jung, C K; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kim, S B; Kisiel, J; Kitching, P; Kobayashi, T; Kogan, G; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Licciardi, C; Lim, I T; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Lopez, G D; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Masliah, P; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Otani, M; Owen, R A; Oyama, Y; Pac, M Y; Palladino, V; Paolone, V; Payne, D; Pearce, G F; Perevozchikov, O; Perkin, J D; Petrov, Y; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Taylor, I J; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2013-11-22

    The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×10(20) protons on target. In the absence of neutrino oscillations, 205±17 (syst) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum, assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle sin2(θ23)=0.514±0.082 and mass splitting |Δm(32)(2)|=2.44(-0.15)(+0.17)×10(-3) eV2/c4. Our result corresponds to the maximal oscillation disappearance probability. PMID:24313479

  15. Probing heavy neutrinos in the COMET experiment

    NASA Astrophysics Data System (ADS)

    Asaka, Takehiko; Watanabe, Atsushi

    2016-03-01

    We argue that the COMET experiment-a dedicated experiment for the μ -e conversion search-has a good potential to search for heavy neutrinos in the mass range 1 MeV ≲ M ≲ 100 MeV. The stopped muons captured by the target nuclei or decaying in orbit efficiently produce heavy neutrinos via the active-sterile mixing. The produced heavy neutrinos then decay to electron-positron pairs (plus an active neutrino), which charged particles hit the cylindrical drift chamber surrounding the target. If the backgrounds from gamma rays are sufficiently rejected by some method, the expected sensitivity becomes comparable to the PS191 bound when the COMET experiment achieves {˜ }10^{17} stopping muons in the target.

  16. Neutrino Physics at Fermilab

    ScienceCinema

    Saoulidou, Niki

    2010-01-08

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  17. SOX: Short distance neutrino Oscillations with BoreXino

    NASA Astrophysics Data System (ADS)

    Bellini, G.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Etenko, A.; Fernandes, G.; Fomenko, K.; Franco, D.; Galbiati, C.; Ghiano, C.; Göger-Neff, M.; Goretti, A.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Kobychev, V.; Korablev, D.; Korga, G.; Krasnicky, D.; Kryn, D.; Laubenstein, M.; Link, J. M.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Pantic, E.; Papp, L.; Perasso, S.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Wojcik, M.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.

    2013-08-01

    The very low radioactive background of the Borexino detector, its large size, and the well proved capability to detect both low energy electron neutrinos and antineutrinos make an ideal case for the study of short distance neutrino oscillations with artificial sources at Gran Sasso. This paper describes the possible layouts of 51Cr ( ν e ) and 144Ce-144Pr source experiments in Borexino and shows the expected sensitivity to eV mass sterile neutrinos for three possible different phases of the experiment. Expected results on neutrino magnetic moment, electroweak mixing angle, and couplings to axial and vector currents are shown too.

  18. Cosmic muon background and reactor neutrino detectors: the Angra experiment

    NASA Astrophysics Data System (ADS)

    Casimiro, E.; Anjos, J. C.

    2008-06-01

    We discuss on the importance of appropriately taking into account the cosmic background in the design of reactor neutrino detectors. In particular, as a practical study case, we describe the Angra Project, a new reactor neutrino oscillation experiment proposed to be built in the coming years at the Brazilian nuclear power complex, located near the Angra dos Reis city. The main goal of the experiment is to measure with high precision θ13, the last unknown of the three neutrino mixing angles. The experiment will in addition explore the possibility of using neutrino detectors for purposes of safeguards and non-proliferation of nuclear weapons.

  19. Direct detection of relic active and sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Li, Yu-Feng

    2016-05-01

    Both active and sterile sub-eV neutrinos can form the cosmic neutrino background in the early Universe. We consider the beta-decaying (e.g., 3H) and EC-decaying (e.g., 163Ho) nuclei as the promising targets to capture relic neutrinos in the laboratory. We calculate the capture rates of relic electron neutrinos and antineutrinos against the corresponding beta decay or electron capture (EC) decay backgrounds in the (3+Ns) flavor mixing scheme, and discuss the future prospect in terms of the PTOLEMY project. We stress that such direct measurements of hot DM might not be hopeless in the long term.

  20. Daya Bay Neutrino Experiment: Goal, Progress and Schedule

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Daya Bay Neutrino Experiment Collaboration

    2011-04-01

    The discovery of neutrino oscillation, as a breakthrough in particle physics, prompted the Daya Bay Neutrino Experiment, which is designed to make a precise measurement of the last unknown neutrino mixing angle theta13, with a sensitivity of 0.01 for sin2(2 * θ13), using reactor anti-neutrinos from the 17.4GW Daya Bay Nuclear Power Plant located in Shenzhen, China. This talk will introduce the goal of this experiment including an overall introduction of the selection of the site and baseline, the detector optimization, the current construction progress and the schedule for expected data taking.

  1. Neutrino oscillations and uncertainty in the solar model

    NASA Astrophysics Data System (ADS)

    Dearborn, D. S.; Fuller, G. M.

    1989-06-01

    The Mikheyev-Smirnov-Wolfenstein (MSW) resonant neutrino oscillation mechanism is investigated for the Sun using a detailed numerical solar model and a modified version of the Parke-Walker technique for following the neutrino phases through the oscillation resonance. We present overall solar-neutrino spectra and the associated expected neutrino count rates for the 37Cl, 71Ga, and Kamiokande detectors for ranges of masses and vacuum mixing angles for two neutrino species. We also investigate the effects of uncertainties in the solar model. In particular, we examine the effect of opacity changes on the expected solar-neutrino spectrum and resulting parameter space for the MSW mechanism. We find that plausible uncertainties in the standard solar model, and in particular the opacity, translate into significant expansion in the constraints on neutrino masses and vacuum mixing angles from neutrino experiments. It is shown, however, that forthcoming results from the Kamiokande solar-neutrino experiment could put stringent constraints on even the expanded MSW parameter space.

  2. Radiatively broken symmetries of nonhierarchical neutrinos

    SciTech Connect

    Dighe, Amol; Roy, Probir; Goswami, Srubabati

    2007-11-01

    Symmetry-based ideas, such as the quark-lepton complementarity principle and the tribimaximal mixing scheme, have been proposed to explain the observed mixing pattern of neutrinos. We argue that such symmetry relations need to be imposed at a high scale {lambda}{approx}10{sup 12} GeV characterizing the large masses of right-handed neutrinos required to implement the seesaw mechanism. For nonhierarchical neutrinos, renormalization group evolution down to a laboratory energy scale {lambda}{approx}10{sup 3} GeV tends to radiatively break these symmetries at a significant level and spoil the mixing pattern predicted by them. However, for Majorana neutrinos, suitable constraints on the extra phases {alpha}{sub 2,3} enable the retention of those high scale mixing patterns at laboratory energies. We examine this issue within the minimal supersymmetric standard model and demonstrate the fact posited above for two versions of quark-lepton complementarity and two versions of tribimaximal mixing. The appropriate constraints are worked out for all these four cases. Specifically, a preference for {alpha}{sub 2}{approx_equal}{pi} (i.e., m{sub 1}{approx_equal}-m{sub 2}) emerges in each case. We also show how a future accurate measurement of {theta}{sub 13} may enable some discrimination among these four cases in spite of renormalization group evolution.

  3. A model of massive neutrinos with a conserved lepton number

    NASA Astrophysics Data System (ADS)

    Ecker, G.; Grimus, W.; Gronau, M.

    1987-01-01

    We consider a left-right symmetric model with three generations and with the standard assignments of fermion and scalar fields. The left-right symmetry gives rise to a unique conserved lepton number which is of the Zel'dovich-Konopinski-Mahmoud type. The neutrino mass matrix yields one Dirac and one Majorana neutrino, both in the light and in the heavy sector. Up to small mixings with right-handed neutrinos, the left-handed ν e and ν τ combine to the light Dirac neutrino whereas ν μ is the light Majoranan neutrino. With a right-handed scale in the TeV range all light neutrino lepton masses. Phenomenological consequences of the model are discussed. charged lepton masses. Phenomenological consequences of the model are discussed.

  4. Testing the principle of equivalence by solar neutrinos

    SciTech Connect

    Minakata, Hisakazu |; Nunokawa, Hiroshi |

    1994-04-01

    We discuss the possibility of testing the principle of equivalence with solar neutrinos. If there exists a violation of the equivalence principle quarks and leptons with different flavors may not universally couple with gravity. The method we discuss employs a quantum mechanical phenomenon of neutrino oscillation to probe into the non-university of the gravitational couplings of neutrinos. We develop an appropriate formalism to deal with neutrino propagation under the weak gravitational fields of the sun in the presence of the flavor mixing. We point out that solar neutrino observation by the next generation water Cherenkov detectors can improve the existing bound on violation of the equivalence principle by 3-4 orders of magnitude if the nonadiabatic Mikheyev-Smirnov-Wolfenstein mechanism is the solution to the solar neutrino problem.

  5. Solar neutrino physics with low-threshold dark matter detectors

    NASA Astrophysics Data System (ADS)

    Billard, J.; Strigari, L. E.; Figueroa-Feliciano, E.

    2015-05-01

    Dark matter detectors will soon be sensitive to Solar neutrinos via two distinct channels: coherent neutrino-nucleus and neutrino-electron elastic scatterings. We establish an analysis method for extracting Solar model properties and neutrino properties from these measurements, including the possible effects of sterile neutrinos which have been hinted at by some reactor experiments and cosmological measurements. Even including sterile neutrinos, through the coherent scattering channel, a 1 ton-year exposure with a low-threshold background free Germanium detector could improve on the current measurement of the normalization of the B 8 Solar neutrino flux down to 3% or less. Combining with the neutrino-electron elastic scattering data will provide constraints on both the high- and low-energy survival probability and will improve on the uncertainty on the active-to-sterile mixing angle by a factor of 2. This sensitivity to active-to-sterile transitions is competitive and complementary to forthcoming dedicated short baseline sterile neutrino searches with nuclear decays. Finally, we show that such solar neutrino physics potentials can be reached as long as the signal-to-noise ratio is better than 0.1.

  6. Introduction to direct neutrino mass measurements and KATRIN

    NASA Astrophysics Data System (ADS)

    Thümmler, T.; Katrin Collaboration

    2012-08-01

    The properties of neutrinos and especially their rest mass play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double beta decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. On the other hand experiments such as MARE, KATRIN and the recently proposed Project 8 will investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Here, because of neutrino flavour mixing, the neutrino mass appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. It combines an ultra-luminous molecular windowless gaseous tritium source with an integrating high-resolution spectrometer of MAC-E filter type. It will investigate the neutrino rest mass with 0.2 eV/c (90% C.L.) sensitivity and allow β spectroscopy close to the T endpoint at 18.6 keV with unprecedented precision.

  7. Supernova neutrino detection

    SciTech Connect

    Scholberg, K.

    2015-07-15

    In this presentation I summarize the main detection channels for neutrinos from core-collapse supernovae, and describe current status of and future prospects for supernova-neutrino-sensitive detectors worldwide.

  8. Solar Neutrino Problem

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

    1978-04-28

    A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

  9. Probing {theta}{sub 23} in neutrino telescopes

    SciTech Connect

    Choubey, Sandhya; Niro, Viviana; Rodejohann, Werner

    2008-06-01

    Among all neutrino mixing parameters, the atmospheric neutrino mixing angle {theta}{sub 23} introduces the strongest variation on the flux ratios of ultrahigh-energy neutrinos. We investigate the potential of these flux ratio measurements at neutrino telescopes to constrain {theta}{sub 23}. We consider astrophysical neutrinos originating from pion, muon-damped, and neutron sources and make a comparative study of their sensitivity reach to {theta}{sub 23}. It is found that neutron sources are most favorable for testing deviations from maximal {theta}{sub 23}. Using a {chi}{sup 2} analysis, we show, in particular, the power of combining (i) different flux ratios from the same type of source, and also (ii) combining flux ratios from different astrophysical sources. We include in our analysis 'impure' sources, i.e., deviations from the usually assumed initial (1 ratio 2 ratio 0), (0 ratio 1 ratio 0), or (1 ratio 0 ratio 0) flux compositions.

  10. Geo-neutrino Observation

    SciTech Connect

    Dye, S. T.; Alderman, M.; Batygov, M.; Learned, J. G.; Matsuno, S.; Mahoney, J. M.; Pakvasa, S.; Rosen, M.; Smith, S.; Varner, G.; McDonough, W. F.

    2009-12-17

    Observations of geo-neutrinos measure radiogenic heat production within the earth, providing information on the thermal history and dynamic processes of the mantle. Two detectors currently observe geo-neutrinos from underground locations. Other detection projects in various stages of development include a deep ocean observatory. This paper presents the current status of geo-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology and neutrino physics.

  11. Leptogenesis with many neutrinos

    SciTech Connect

    Eisele, Marc-Thomas

    2008-02-15

    We consider leptogenesis in scenarios with many neutrino singlets. We find that the lower bound for the reheating temperature can be significantly relaxed with respect to the hierarchical three neutrino case. We further argue that the upper bound for the neutrino mass scale from leptogenesis gets significantly lifted in these scenarios. As a specific realization, we then discuss an extradimensional model, where the large number of neutrinos is provided by Kaluza-Klein excitations.

  12. Exact methods for self interacting neutrinos

    SciTech Connect

    Pehlivan, Y.; Balantekin, A. B.; Kajino, Toshitaka

    2014-06-24

    The effective many-body Hamiltonian which describes vacuum oscillations and self interactions of neutrinos in a two flavor mixing scheme under the single angle approximation has the same dynamical symmetries as the well known BCS pairing Hamiltonian. These dynamical symmetries manifest themselves in terms of a set of constants of motion and can be useful in formulating the collective oscillation modes in an intuitive way. In particular, we show that a neutrino spectral split can be simply viewed as an avoided level crossing between the eigenstates of a mean field Hamiltonian which includes a Lagrange multiplier in order to fix the value of an exact many-body constant of motion. We show that the same dynamical symmetries also exist in the three neutrino mixing scheme by explicitly writing down the corresponding constants of motion.

  13. Neutrino Detectors Review

    SciTech Connect

    D'Ambrosio, Nicola

    2005-10-12

    The neutrino physics is one of the most important research field and there are several experiments made and under construction focused on it. This paper will present a review on some detectors used for Solar Neutrinos detection, Atmospheric Neutrinos detection and in Long Baseline Experiments.

  14. Neutrino Physics with Opera

    NASA Astrophysics Data System (ADS)

    Bertolin, Alessandro

    2011-10-01

    Neutrino physics with the OPERA experiment will be discussed in this paper. First the OPERA physic goal will be presented. A description of the neutrino beam and of the detector will follow. The analysis of the beam induced neutrino interactions will then be presented.

  15. Neutrino observations from the Sudbury Neutrino Observatory

    SciTech Connect

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O'Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  16. Neutrino Observations from the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. Bühler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  17. Mass determination of neutrinos

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1988-01-01

    A time-energy correlation method has been developed to determine the signature of a nonzero neutrino mass in a small sample of neutrinos detected from a distant source. The method is applied to the Kamiokande II (Hirata et al., 1987) and IMB (Bionta et al., 1987) observations of neutrino bursts from SN 1987A. Using the Kamiokande II data, the neutrino rest mass is estimated at 2.8 + 2.0, - 1.4 eV and the initial neutrino pulse is found to be less than 0.3 sec full width, followed by an emission tail lasting at least 10 sec.

  18. Nucleosynthesis and Neutrinos

    SciTech Connect

    Kajino, Toshitaka

    2011-05-06

    Neutrinos play the critical roles in nucleosynthesis of light-to-heavy mass nuclei in core-collapse supernovae. We study the nucleosynthesis induced by neutrino interactions and find suitable average neutrino temperatures in order to explain the observed solar system abundances of several isotopes {sup 7}Li, {sup 11}B, {sup 138}La and {sup 180}Ta. These isotopes are predominantly synthesized by the supernova {nu}-process. We also study the neutrino oscillation effects on their abundances and propose a method to determine the unknown neutrino oscillation parameters, i.e. {theta}{sub 13} and mass hierarchy.

  19. Neutrinos from AGN

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)

    2000-01-01

    The great penetrating power of neutrinos makes them ideal probe of astrophysical sites and conditions inaccessible to other forms of radiation. These are the centers of stars (collapsing or not) and the centers of Active Galactic Nuclei (AGN). It has been suggested that AGN presented a very promising source of high energy neutrinos, possibly detectable by underwater neutrino detectors. This paper reviews the evolution of ideas concerning the emission of neutrinos from AGN in view of the more recent developments in gamma-ray astronomy and their implications for the neutrino emission from these class of objects.

  20. New development in radiative neutrino mass generation

    NASA Astrophysics Data System (ADS)

    Julio

    2014-10-01

    We present a simple and predictive model of radiative neutrino masses. It is a special case of the Zee model with a family-dependent Z4 symmetry acting on the leptons. A variety of predictions follow: The hierarchy of neutrino masses must be inverted; the lightest neutrino mass is extremely small and calculable; one of the neutrino mixing angles is determined in terms of the other two; the phase parameters take CP-conserving values with δCP = π and the effective mass in neutrinoless double beta decay lies in a narrow range, mββ =(17.6-18.5) meV. The ratio of vacuum expectation values of the two Higgs doublets, tan β, is determined to be either 1.9 or 0.19 from neutrino oscillation data. Flavor-conserving and flavor-changing couplings of the Higgs doublets are also determined from neutrino data. The non-standard neutral Higgs bosons, if they are moderately heavy, decay significantly into μ and τ with prescribed branching ratios. Observable rates for the decays μ → eγ and τ → 3μ are predicted if these scalars have masses in the range of 150-500 GeV.

  1. Flavour dependent gauged radiative neutrino mass model

    NASA Astrophysics Data System (ADS)

    Baek, Seungwon; Okada, Hiroshi; Yagyu, Kei

    2015-04-01

    We propose a one-loop induced radiative neutrino mass model with anomaly free flavour dependent gauge symmetry: μ minus τ symmetry U(1) μ- τ . A neutrino mass matrix satisfying current experimental data can be obtained by introducing a weak isospin singlet scalar boson that breaks U(1) μ- τ symmetry, an inert doublet scalar field, and three right-handed neutrinos in addition to the fields in the standard model. We find that a characteristic structure appears in the neutrino mass matrix: two-zero texture form which predicts three non-zero neutrino masses and three non-zero CP-phases from five well measured experimental inputs of two squared mass differences and three mixing angles. Furthermore, it is clarified that only the inverted mass hierarchy is allowed in our model. In a favored parameter set from the neutrino sector, the discrepancy in the muon anomalous magnetic moment between the experimental data and the the standard model prediction can be explained by the additional neutral gauge boson loop contribution with mass of order 100 MeV and new gauge coupling of order 10-3.

  2. Theory of Neutrinos: a White Paper

    SciTech Connect

    Mohapatra, R.N.; Antusch, S.; Babu, K.S.; Barenboim, G.; Chen, Mu-Chun; Davidson, S.; de Gouvea, A.; de Holanda, P.; Dutta, Bhaskar; Grossman, Y.; Joshipura, A.; Kayser, B.; Kersten, J.; Keum, Y.Y.; King, S.F.; Langacker, P.; Lindner, M.; Loinaz, W.; Masina, I.; Mocioiu, I.; Mohanty, S.; /Maryland U. /Madrid, Autonoma U. /Southampton U. /Oklahoma State U. /Valencia U. /Fermilab /Durham U., IPPP /Northwestern U. /Campinas State U. /Regina U. /SLAC /Ahmedabad, Phys. Res. Lab /Fermilab /DESY /Taiwan, Inst. Phys. /Pennsylvania U. /Munich, Tech. U. /Amherst Coll. /Enrico Fermi Ctr., Rome /INFN, Rome /Penn State U. /Princeton, Inst. Advanced Study

    2006-01-11

    During 2004, four divisions of the American Physical Society commissioned a study of neutrino physics to take stock of where the field is at the moment and where it is going in the near and far future. Several working groups looked at various aspects of this vast field. The summary was published as a main report entitled ''The Neutrino Matrix'' accompanied by short 50 page versions of the report of each working group. Theoretical research in this field has been quite extensive and touches many areas and the short 50 page report [1] provided only a brief summary and overview of few of the important points. The theory discussion group felt that it may be of value to the community to publish the entire study as a white paper and the result is the current article. After a brief overview of the present knowledge of neutrino masses and mixing and some popular ways to probe the new physics implied by recent data, the white paper summarizes what can be learned about physics beyond the Standard Model from the various proposed neutrino experiments. It also comments on the impact of the experiments on our understanding of the origin of the matter-antimatter asymmetry of the Universe and the basic nature of neutrino interactions as well as the existence of possible additional neutrinos. Extensive references to original literature are provided.

  3. Theory of neutrinos: A White paper

    SciTech Connect

    Mohapatra, R.N.; Antusch, S.; Babu, K.S.; Barenboim, G.; Chen, Mu-Chun; Davidson, S.; de Gouvea, A.; de Holanda, P.; Dutta, Bhaskar; Grossman, Y.; Joshipura, A.; Kayser, B.; Kersten, J.; Keum, Y.Y.; King, S.F.; Langacker, P.; Lindner, M.; Loinaz, W.; Masina, I.; Mocioiu, I.; Mohanty, S.; /Maryland U. /Madrid, Autonoma U. /Southampton U. /Oklahoma State U. /Valencia U. /Fermilab /Durham U., IPPP /Northwestern U. /Campinas State U. /Regina U. /SLAC /Ahmedabad, Phys. Res. Lab /Fermilab /DESY /Taiwan, Inst. Phys. /Pennsylvania U. /Munich, Tech. U. /Amherst Coll. /Enrico Fermi Ctr., Rome /INFN, Rome /Penn State U. /Princeton, Inst. Advanced Study

    2005-10-01

    During 2004, four divisions of the American Physical Society commissioned a study of neutrino physics to take stock of where the field is at the moment and where it is going in the near and far future. Several working groups looked at various aspects of this vast field. The summary was published as a main report entitled ''The Neutrino Matrix'' accompanied by short 50 page versions of the report of each working group. Theoretical research in this field has been quite extensive and touches many areas and the short 50 page report [1] provided only a brief summary and overview of few of the important points. The theory discussion group felt that it may be of value to the community to publish the entire study as a white paper and the result is the current article. After a brief overview of the present knowledge of neutrino masses and mixing and some popular ways to probe the new physics implied by recent data, the white paper summarizes what can be learned about physics beyond the Standard Model from the various proposed neutrino experiments. It also comments on the impact of the experiments on our understanding of the origin of the matter-antimatter asymmetry of the Universe and the basic nature of neutrino interactions as well as the existence of possible additional neutrinos. Extensive references to original literature are provided.

  4. THE BNL SUPER NEUTRINO BEAM PROJECT

    SciTech Connect

    WENG,W-T.; RAPARIA,D.

    2004-12-02

    To determine the neutrino mixing amplitudes and phase accurately, as well as the CP violation parameters, a very long base line super neutrino beam facility is needed. This is possible due to the long distance and wideband nature of the neutrino beam for the observation of several oscillations from one species of the neutrino to the other [1,2]. BNL plans to upgrade the AGS proton beam from the current 0.14 MW to higher than 1.0 MW and beyond for such a neutrino facility which consists of three major subsystems. First is a 1.5 GeV superconducting linac to replace the booster as injector for the AGS, second is the performance upgrade for the AGS itself for the higher intensity and repetition rate, and finally is target and horn system for the neutrino production. The major contribution for the higher power is from the increase of the repetition rate of the AGS form 0.3 Hz to 2.5 Hz, with moderate increase from the intensity [3]. The design consideration to achieve high intensity and low losses for the linac and the AGS will be reviewed. The target horn design for high power operation and easy maintenance will also be presented.

  5. Generating θ13 from sterile neutrinos in μ -τ symmetric models

    NASA Astrophysics Data System (ADS)

    Rivera-Agudelo, Diana C.; Pérez-Lorenzana, Abdel

    2015-10-01

    The smallness of the θ13 mixing angle as observed in neutrino oscillation experiments can be understood through an approximated μ -τ exchange symmetry in the neutrino mass matrix. Using recent oscillation neutrino data, but assuming no C P violation, we study μ -τ breaking parameter space to establish the conditions under which such a breaking could have a perturbative origin. According to the so-obtained conditions, we suggest that a sterile neutrino, matching LSND/MiniBooNE neutrino oscillation results, could provide the necessary ingredients to properly fix atmospheric and θ13 mixing angles to observable values, without exceeding the sterile neutrino fraction bound in solar oscillations. In such a scenario, we analyze the general effect of a fourth neutrino on the prediction for the effective me e majorana mass parameter.

  6. Future atmospheric neutrino measurements with PINGU

    SciTech Connect

    Grant, D.

    2015-07-15

    Neutrino oscillations, first measured in 1998 via atmospheric neutrinos, have provided the only current direct evidence for physics beyond the Standard Model of Elementary Particles. The full neutrino mixing, described by six parameters, has been measured in the last decade with the exception of the charge-parity phase and the ordering of the mass eigenstates (the neutrino mass hierarchy – NMH). A relatively large mixing-angle between the first and third mass eigenstates has opened the possibility of measuring the mass hierarchy via atmospheric neutrinos using very large volume detectors. A leading proposal to perform this measurement is the future low-energy extension to the IceCube–DeepCore detector, called PINGU (the Precision IceCube Next Generation Upgrade). By increasing the photocathode density in the DeepCore region, it is possible to lower the energy threshold in the fiducial volume to the region that is affected by the MSW [1, 2], and thus permits extraction of the hierarchy. Here we discuss the design of the PINGU detector, its sensitivity to the mass hierarchy (approximately 3σ in 3.5 years) and measurements of ν{sub μ} disappearance and ν{sub τ} appearance.

  7. Oscillation of Very Low Energy Atmospheric Neutrinos

    SciTech Connect

    Peres, Orlando L. G.

    2010-03-30

    We discuss the oscillation effects of sub-sub-GeV atmospheric neutrinos, the sample with energies E < or approx. 100 MeV. The energy spectra of the e-like events in water Cherenkov detectors are computed and dependence of the spectra on the 2-3 mixing angle, theta{sub 23}, the 1-3 mixing and CP-violation phase are studied.

  8. Seesaw parametrization for n right-handed neutrinos

    NASA Astrophysics Data System (ADS)

    Heeck, Julian

    2012-11-01

    Introducing n right-handed neutrinos to the Standard Model yields, in general, massive active neutrinos. We give explicit parametrizations for the involved mixing and coupling matrices in terms of physical parameters for both the top-down and the bottom-up approach for arbitrary n. Bounds on the complex mixing angles in the bottom-up approach from perturbativity of the Yukawa couplings to charged lepton flavor violation are discussed. As a novel illustration of possible effects from n≠3, we extend the neutrino anarchy framework to arbitrary n; we show that while the anarchic mixing angles are insensitive to the number of singlets, the observed ratios of neutrino masses prefer small n for the simplest linear measure.

  9. The Need for new neutrino physics or a cooler sun in the solar neutrino problem

    SciTech Connect

    Shi, X.; Schramm, D. N.

    1992-11-22

    t is shown that the current solar neutrino situation, now that we have the SAGE and GALLEX result along with the results from the Kamioksnde and the Homestake experiments, is unfortunately still quite ambiguous. The differences between observations and the standard solar theory may still be due to either astrophysical inputs or new neutrino physics. In particular, the astrophysical solution, which requires a cooler Sun than the standard solar model of Bahcsll et al., may still be viable. The need for new neutrino physics, MSW or vacuum neutrino mixing, is sensitive to the results of the Homestake experiment and SAGE. The use of future experiments, SNO, Borexino, the Super Kamiokande, and the Iodine experiment to resolve this ambiguity are explicitly discussed.

  10. High Energy Neutrino Astronomy and Neutrino Telescopes

    NASA Astrophysics Data System (ADS)

    Kouchner, A.

    2015-04-01

    Neutrinos constitute a unique probe since they escape from their sources, travel undisturbed on cosmological distances and are produced in high-energy (HE) hadronic processes. In particular they would allow a direct detection and unambiguous identification of the acceleration sites of HE baryonic cosmic rays (CR), which remain unknown. Recent results from the ICECUBE collaboration present the first highly significant indication for the detection of high-energy extraterrestrial neutrinos, after several decades of instrumental efforts. We briefly report on this important results which open the route for the high-energy neutrino astronomy era. We then focus on the ANTARES detector, which despite its modest size with respect to ICECUBE is the largest deep-sea neutrino telescope in the world. The primary goal is to search for astrophysical neutrinos in the TeV-PeV range. This comprises generic searches for any diffuse cosmic neutrino flux as well as more specific searches for astrophysical sources such as active galactic nuclei or Galactic sources. The search program also includes multi-messenger analyses based on time and/or space coincidences with other cosmic probes. The ANTARES observatory is sensitive to a wide-range of other phenomena, from atmospheric neutrino oscillations to dark matter annihilation or potential exotics such as nuclearites and magnetic monopoles. The most recent results are reported.

  11. Collective neutrino oscillations in supernovae

    SciTech Connect

    Duan, Huaiyu

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  12. Subpanel on accelerator-based neutrino oscillation experiments

    SciTech Connect

    1995-09-01

    Neutrinos are among nature`s fundamental constituents, and they are also the ones about which we know least. Their role in the universe is widespread, ranging from the radioactive decay of a single atom to the explosions of supernovae and the formation of ordinary matter. Neutrinos might exhibit a striking property that has not yet been observed. Like the back-and-forth swing of a pendulum, neutrinos can oscillate to-and-from among their three types (or flavors) if nature provides certain conditions. These conditions include neutrinos having mass and a property called {open_quotes}mixing.{close_quotes} The phenomenon is referred to as neutrino oscillations. The questions of the origin of neutrino mass and mixing among the neutrino flavors are unsolved problems for which the Standard Model of particle physics holds few clues. It is likely that the next critical step in answering these questions will result from the experimental observation of neutrino oscillations. The High Energy Physics Advisory Panel (HEPAP) Subpanel on Accelerator-Based Neutrino Oscillation Experiments was charged to review the status and discovery potential of ongoing and proposed accelerator experiments on neutrino oscillations, to evaluate the opportunities for the U.S. in this area of physics, and to recommend a cost-effective plan for pursuing this physics, as appropriate. The complete charge is provided in Appendix A. The Subpanel studied these issues over several months and reviewed all the relevant and available information on the subject. In particular, the Subpanel reviewed the two proposed neutrino oscillation programs at Fermi National Accelerator Laboratory (Fermilab) and at Brookhaven National Laboratory (BNL). The conclusions of this review are enumerated in detail in Chapter 7 of this report. The recommendations given in Chapter 7 are also reproduced in this summary.

  13. A study of muon neutrino to electron neutrino oscillations in the MINOS experiment

    SciTech Connect

    Yang, Tingjun

    2009-03-01

    The observation of neutrino oscillations (neutrino changing from one flavor to another) has provided compelling evidence that the neutrinos have non-zero masses and that leptons mix, which is not part of the original Standard Model of particle physics. The theoretical framework that describes neutrino oscillation involves two mass scales (Δmatm2 and Δmsol2), three mixing angles (θ12, θ23, and θ13) and one CP violating phase (δCP). Both mass scales and two of the mixing angles (θ12 and θ23) have been measured by many neutrino experiments. The mixing angle θ13, which is believed to be very small, remains unknown. The current best limit on θ13 comes from the CHOOZ experiment: θ13 < 11° at 90% C.L. at the atmospheric mass scale. δCP is also unknown today. MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino experiment based at Fermi National Accelerator Laboratory. The experiment uses a muon neutrino beam, which is measured 1 km downstream from its origin in the Near Detector at Fermilab and then 735 km later in the Far Detector at the Soudan mine. By comparing these two measurements, MINOS can obtain parameters in the atmospheric sector of neutrino oscillations. MINOS has published results on the precise measurement of Δmatm2 and θ23 through the disappearance of muon neutrinos in the Far Detector and on a search for sterile neutrinos by looking for a deficit in the number of neutral current interactions seen in the Far Detector. MINOS also has the potential to improve the limit on the neutrino mixing angle θ13 or make the first measurement of its value by searching for an electron neutrino appearance signal in the Far Detector. This is the focus of the study presented in this thesis. We developed a neural network based algorithm to

  14. NEUTRINO FACTORY AND BETA BEAM EXPERIMENTS AND DEVELOPMENT.

    SciTech Connect

    ALBRIGHT, C.; BERG, J.S.; FERNOW, R.; GALLARDO, J.; KAHN, S.; KIRK, H.; ET AL.

    2004-09-21

    The long-term prospects for fully exploring three-flavor mixing in the neutrino sector depend upon an ongoing and increased investment in the appropriate accelerator R&D. Two new concepts have been proposed that would revolutionize neutrino experiments, namely the Neutrino Factory and the Beta Beam facility. These new facilities would dramatically improve our ability to test the three-flavor mixing framework, measure CP violation in the lepton sector, and perhaps determine the neutrino mass hierarchy, and, if necessary, probe extremely small values of the mixing angle {theta}{sub 13}. The stunning sensitivity that could be achieved with a Neutrino Factory is described, together with our present understanding of the corresponding sensitivity that might be achieved with a Beta Beam facility. In the Beta Beam case, additional study is required to better understand the optimum Beta Beam energy, and the achievable sensitivity. Neither a Neutrino Factory nor a Beta Beam facility could be built without significant R&D. An impressive Neutrino Factory R&D effort has been ongoing in the U.S. and elsewhere over the last few years and significant progress has been made towards optimizing the design, developing and testing the required accelerator components, and significantly reducing the cost. The recent progress is described here. There has been no corresponding activity in the U.S. on Beta Beam facility design and, given the very limited resources, there is little prospect of starting a significant U.S. Beta Beam R&D effort in the near future. However, the Beta Beam concept is interesting, and progress on its development in Europe should be followed. The Neutrino Factory R&D program has reached a critical stage in which support is required for two crucial international experiments and a third-generation international design study. If this support is forthcoming, a Neutrino Factory could be added to the Neutrino Community's road map in about a decade.

  15. Simple picture for neutrino flavor transformation in supernovae

    SciTech Connect

    Duan Huaiyu; Fuller, George M.; Qian Yongzhong

    2007-10-15

    We can understand many recently discovered features of flavor evolution in dense, self-coupled supernova neutrino and antineutrino systems with a simple, physical scheme consisting of two quasistatic solutions. One solution closely resembles the conventional, adiabatic single-neutrino Mikheyev-Smirnov-Wolfenstein (MSW) mechanism, in that neutrinos and antineutrinos remain in mass eigenstates as they evolve in flavor space. The other solution is analogous to the regular precession of a gyroscopic pendulum in flavor space, and has been discussed extensively in recent works. Results of recent numerical studies are best explained with combinations of these solutions in the following general scenario: (1) Near the neutrino sphere, the MSW-like many-body solution obtains. (2) Depending on neutrino vacuum mixing parameters, luminosities, energy spectra, and the matter density profile, collective flavor transformation in the nutation mode develops and drives neutrinos away from the MSW-like evolution and toward regular precession. (3) Neutrino and antineutrino flavors roughly evolve according to the regular precession solution until neutrino densities are low. In the late stage of the precession solution, a stepwise swapping develops in the energy spectra of {nu}{sub e} and {nu}{sub {mu}}/{nu}{sub {tau}}. We also discuss some subtle points regarding adiabaticity in flavor transformation in dense-neutrino systems.

  16. Neutrino magnetic moment, CP violation, and flavor oscillations in matter

    NASA Astrophysics Data System (ADS)

    Pehlivan, Y.; Balantekin, A. B.; Kajino, Toshitaka

    2014-09-01

    We consider collective oscillations of neutrinos, which are emergent nonlinear flavor evolution phenomena instigated by neutrino-neutrino interactions in astrophysical environments with sufficiently high neutrino densities. We investigate the symmetries of the problem in the full three-flavor mixing scheme and in the exact many-body formulation by including the effects of CP violation and the neutrino magnetic moment. We show that, similar to the two-flavor scheme, several dynamical symmetries exist for three flavors in the single-angle approximation if the net electron background in the environment and the effects of the neutrino magnetic moment are negligible. Moreover, we show that these dynamical symmetries are present even when the CP symmetry is violated in neutrino oscillations. We explicitly write down the constants of motion through which these dynamical symmetries manifest themselves in terms of the generators of the SU(3) flavor transformations. We also show that the effects due to the CP-violating Dirac phase factor out of the many-body evolution operator and evolve independently of nonlinear flavor transformations if neutrino electromagnetic interactions are ignored. In the presence of a strong magnetic field, CP-violating effects can still be considered independently provided that an effective definition for the neutrino magnetic moment is used.

  17. MINOS Sterile Neutrino Search

    SciTech Connect

    Koskinen, David Jason

    2009-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the v μ→ Vτ transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling ~2.5 x 1020 protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  18. Observing Muon Neutrino to Electron Neutrino Oscillations in the NOνA Experiment

    SciTech Connect

    Xin, Tian

    2016-01-01

    Neutrino oscillations offers an insight on new physics beyond the Standard Model. The three mixing angles (θ12, θ13 and θ23) and the two mass splittings (Δm2 and Αm2 ) have been measured by different neutrino oscillation experiments. Some other parameters including the mass ordering of different neutrino mass eigenstates and the CP violation phase are still unknown. NOνA is a long-baseline accelerator neutrino experiment, using neutrinos from the NuMI beam at Fermilab. The experiment is equipped with two functionally identical detectors about 810 kilometers apart and 14 mrad off the beam axis. In this configuration, the muon neutrinos from the NuMI beam reach the disappearance maximum in the far detector and a small fraction of that oscillates into electron neutrinos. The sensitivity to the mass ordering and CP viola- tion phase determination is greately enhanced. This thesis presents the νeappearance analysis using the neutrino data collected with the NOνA experiment between February 2014 and May 2015, which corresponds to 3.45 ×1020 protons-on-target (POT). The νe appearance analysis is performed by comparing the observed νe CC-like events to the estimated background at the far detector. The total background is predicted to be 0.95 events with 0.89 originated from beam events and 0.06 from cosmic ray events. The beam background is obtained by extrapolating near detector data through different oscillation channels, while the cosmic ray background is calculated based on out-of-time NuMI trigger data. A total of 6 electron neutrino candidates are observed in the end at the far detector which represents 3.3 σ excess over the predicted background. The NOνA result disfavors inverted mass hierarchy for δcp ϵ [0, 0.6π] at 90% C.L.

  19. Golden channel at a neutrino factory revisited: Improved sensitivities from a magnetized iron neutrino detector

    NASA Astrophysics Data System (ADS)

    Bayes, R.; Laing, A.; Soler, F. J. P.; Cervera Villanueva, A.; Gómez Cadenas, J. J.; Hernández, P.; Martín-Albo, J.; Burguet-Castell, J.

    2012-11-01

    This paper describes the performance and sensitivity to neutrino mixing parameters of a Magnetised Iron Neutrino Detector at a Neutrino Factory with a neutrino beam created from the decay of 10 GeV muons. Specifically, it is concerned with the ability of such a detector to detect muons of the opposite sign to those stored (wrong-sign muons) while suppressing contamination of the signal from the interactions of other neutrino species in the beam. A new, more realistic simulation and analysis, which improves the efficiency of this detector at low energies, has been developed using the GENIE neutrino event generator and the GEANT4 simulation toolkit. Low-energy neutrino events down to 1 GeV were selected, while reducing backgrounds to the 10-4 level. Signal efficiency plateaus of ˜60% for νμ and ˜70% for ν¯μ events were achieved starting at ˜5GeV. Contamination from the νμ→ντ oscillation channel was studied for the first time and was found to be at the level between 1% and 4%. Full response matrices are supplied for all the signal and background channels from 1 GeV to 10 GeV. The sensitivity of an experiment involving a Magnetised Iron Neutrino Detector detector of 100 ktons at 2000 km from the Neutrino Factory is calculated for the case of sin⁡22θ13˜10-1. For this value of θ13, the accuracy in the measurement of the CP-violating phase is estimated to be ΔδCP˜3°-5°, depending on the value of δCP, the CP coverage at 5σ is 85% and the mass hierarchy would be determined with better than 5σ level for all values of δCP.

  20. Connecting Dirac and Majorana neutrino mass matrices in the minimal left-right symmetric model.

    PubMed

    Nemevšek, Miha; Senjanović, Goran; Tello, Vladimir

    2013-04-12

    Probing the origin of neutrino mass by disentangling the seesaw mechanism is one of the central issues of particle physics. We address it in the minimal left-right symmetric model and show how the knowledge of light and heavy neutrino masses and mixings suffices to determine their Dirac Yukawa couplings. This in turn allows one to make predictions for a number of high and low energy phenomena, such as decays of heavy neutrinos, neutrinoless double beta decay, electric dipole moments of charged leptons, and neutrino transition moments. We also discuss a way of reconstructing the neutrino Dirac Yukawa couplings at colliders such as the LHC. PMID:25167249

  1. Right-Handed Neutrinos and the 2 TeV $W'$ Boson

    DOE PAGESBeta

    Coloma, Pilar; Dobrescu, Bogdan A.; Lopez-Pavon, Jacobo

    2015-12-30

    The CMS e+e-jj events of invariant mass near 2 TeV are consistent with a W' boson decaying into an electron and a right-handed neutrino whose TeV-scale mass is of the Dirac type. We show that the Dirac partner of the right-handed electron-neutrino can be the right-handed tau-neutrino. Furthermore, a prediction of this model is that the sum of the τ+e+jj and τ-e-jj signal cross sections equals twice that for e+e-jj. The Standard Model neutrinos acquire Majorana masses and mixings compatible with neutrino oscillation data.

  2. Solar neutrinos, Martian rivers, and Praesepe.

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Young, A. T.

    1973-01-01

    Some recent papers on solar neutrinos, Martian rivers, and Praesepe stars are reviewed. Possible causes of solar neutrino detection rates being below theoretical expectations are quoted. The widespread presence of sinuous dendritic channels on Mars is noted. The occurrence of earth-like epochs on Mars is indicated as a plausible explanation for many such channels in terms of surface liquid water flows. The roughly uniform distribution of the Praesepe stars through the main sequence width is viewed as the indication that the excursion time off the main sequence is comparable to the time between mixings.

  3. Sterile neutrinos in neutrinoless double beta decay

    SciTech Connect

    Benes, P.; Faessler, Amand; Simkovic, F.; Kovalenko, S.

    2005-04-01

    We study possible contribution of the Majorana neutrino mass eigenstate {nu}{sub h}, dominated by a sterile neutrino component, to neutrinoless double beta (0{nu}{beta}{beta}) decay. A special emphasis is made on accurate calculation of the corresponding nuclear matrix elements. From the current experimental lower bound on the 0{nu}{beta}{beta}-decay half-life of 76 Ge we derive stringent constraints on the {nu}{sub h}-{nu}{sub e} mixing in a wide region of the values of {nu}{sub h} mass. We discuss cosmological and astrophysical status of {nu}{sub h} in this mass region.

  4. Oscillations of very low energy atmospheric neutrinos

    SciTech Connect

    Peres, Orlando L. G.; Smirnov, A. Yu.

    2009-06-01

    There are several new features in the production, oscillations, and detection of the atmospheric neutrinos of low energies E < or approx. 100 MeV. The flavor ratio r of muon to electron neutrino fluxes is substantially smaller than 2 and decreases with energy, a significant part of events is due to the decay of invisible muons at rest, etc. Oscillations in a two-layer medium (atmosphere-Earth) should be taken into account. We derive analytical and semianalytical expressions for the oscillation probabilities of these 'sub-sub-GeV' neutrinos. The energy spectra of the e-like events in water Cherenkov detectors are computed, and the dependence of the spectra on the 2-3 mixing angle {theta}{sub 23}, the 1-3 mixing, and the CP-violation phase are studied. We find that variations of {theta}{sub 23} in the presently allowed region change the number of e-like events by about 15%-20% as well as lead to distortion of the energy spectrum. The 1-3 mixing and CP violation can lead to {approx}10% effects. Detailed study of the sub-sub-GeV neutrinos will be possible in future megaton-scale detectors.

  5. Solar neutrino detection

    SciTech Connect

    Miramonti, Lino

    2009-04-30

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  6. Paradoxes of neutrino oscillations

    SciTech Connect

    Akhmedov, E. Kh.; Smirnov, A. Yu.

    2009-08-15

    Despite the theory of neutrino oscillations being rather old, some of its basic issues are still being debated in the literature. We discuss a number of such issues, including the relevance of the 'same energy' and 'same momentum' assumptions, the role of quantum-mechanical uncertainty relations in neutrino oscillations, the dependence of the coherence and localization conditions that ensure the observability of neutrino oscillations on neutrino energy and momentum uncertainties, the question of (in)dependence of the oscillation probabilities on the neutrino production and detection processes, and the applicability limits of the stationary-source approximation. We also develop a novel approach to calculation of the oscillation probability in the wave-packet approach, based on the summation/integration conventions different from the standard one, which allows a new insight into the 'same energy' vs. 'same momentum' problem. We also discuss a number of apparently paradoxical features of the theory of neutrino oscillations.

  7. Charged Cosmic Rays and Neutrinos

    NASA Astrophysics Data System (ADS)

    Kachelrieß, M.

    2013-04-01

    High-energy neutrino astronomy has grown up, with IceCube as one of its main experiments having sufficient sensitivity to test "vanilla" models of astrophysical neutrinos. I review predictions of neutrino fluxes as well as the status of cosmic ray physics. I comment also briefly on an improvement of the Fermi-LAT limit for cosmogenic neutrinos and on the two neutrino events presented by IceCube first at "Neutrino 2012".

  8. The Daya Bay Reactor Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Bishai, Mary

    2007-04-01

    The 3x3 PMNS leptonic mixing matrix relates the mass and flavor eigenstates of the 3 known neutrinos. The θ13 mixing angle is the last unknown mixing angle in the PMNS matrix, the parameters of which must be determined experimentally. The goal of the Daya Bay experiment is to measure θ13 with a sensitivity in 2circ(2θ13) of 0.01. The Daya Bay experiment will search for the `disappearance' of reactor electron anti-neutrinos from the Daya Bay and Ling Ao Nuclear Power Plants located in Daya Bay, Guangdong, China using multiple identical detectors at different baselines. The status and prospects of the experiment will be presented.

  9. Active and sterile neutrino mass effects on beta decay spectra

    SciTech Connect

    Boillos, Juan Manuel; Moya de Guerra, Elvira

    2013-06-10

    We study the spectra of the emitted charged leptons in charge current weak nuclear processes to analyze the effect of neutrino masses. Standard active neutrinos are studied here, with masses of the order of 1 eV or lower, as well as sterile neutrinos with masses of a few keV. The latter are warm dark matter (WDM) candidates hypothetically produced or captured as small mixtures with the active neutrinos. We compute differential decay or capture rates spectra in weak charged processes of different nuclei ({sup 3}H, {sup 187}Re, {sup 107}Pd, {sup 163}Ho, etc) using different masses of both active and sterile neutrinos and different values of the mixing parameter.

  10. Sound speed and viscosity of semi-relativistic relic neutrinos

    NASA Astrophysics Data System (ADS)

    Krauss, Lawrence; Long, Andrew J.

    2016-07-01

    Generalized fluid equations, using sound speed ceff2 and viscosity cvis2 as effective parameters, provide a convenient phenomenological formalism for testing the relic neutrino "null hypothesis," i.e. that that neutrinos are relativistic and free-streaming prior to recombination. In this work, we relax the relativistic assumption and ask "to what extent can the generalized fluid equations accommodate finite neutrino mass?" We consider both the mass of active neutrinos, which are largely still relativistic at recombination m2 / T2 ~ 0.2, and the effect of a semi-relativistic sterile component. While there is no one-to-one mapping between mass/mixing parameters and ceff2 and cvis2, we demonstrate that the existence of a neutrino mass could induce a bias to measurements of ceff2 and cvis2 at the level of 0.01 m2 / T2 ~ 10‑3.

  11. Neutrino Mass Anarchy

    NASA Astrophysics Data System (ADS)

    Hall, Lawrence; Murayama, Hitoshi; Weiner, Neal

    2000-03-01

    What is the form of the neutrino mass matrix which governs the oscillations of the atmospheric and solar neutrinos? Features of the data have led to a dominant viewpoint where the mass matrix has an ordered, regulated pattern, perhaps dictated by a flavor symmetry. We challenge this viewpoint and demonstrate that the data are well accounted for by a neutrino mass matrix which appears to have random entries.

  12. Neutrino mass anarchy

    PubMed

    Hall; Murayama; Weiner

    2000-03-20

    What is the form of the neutrino mass matrix which governs the oscillations of the atmospheric and solar neutrinos? Features of the data have led to a dominant viewpoint where the mass matrix has an ordered, regulated pattern, perhaps dictated by a flavor symmetry. We challenge this viewpoint and demonstrate that the data are well accounted for by a neutrino mass matrix which appears to have random entries. PMID:11017272

  13. Neutrinos in Cosmology

    SciTech Connect

    Wong, Yvonne Y. Y.

    2008-01-24

    I give an overview of the effects of neutrinos on cosmology, focussing in particular on the role played by neutrinos in the evolution of cosmological perturbations. I discuss how recent observations of the cosmic microwave background and the large-scale structure of galaxies can probe neutrino masses with greater precision than current laboratory experiments. I describe several new techniques that will be used to probe cosmology in the future.

  14. Neutrinos: Nature's Ghosts?

    ScienceCinema

    Lincoln, Don

    2014-08-12

    Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

  15. Neutrinos: Nature's Ghosts?

    SciTech Connect

    Lincoln, Don

    2013-06-18

    Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

  16. Accelerator neutrino program at Fermilab

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2010-05-01

    The accelerator neutrino programme in the USA consists primarily of the Fermilab neutrino programme. Currently, Fermilab operates two neutrino beamlines, the Booster neutrino beamline and the NuMI neutrino beamline and is the planning stages for a third neutrino beam to send neutrinos to DUSEL. The experiments in the Booster neutrino beamline are miniBooNE, SciBooNE and in the future microBooNE, whereas in the NuMI beamline we have MINOS, ArgoNut, MINERVA and coming soon NOvA. The major experiment in the beamline to DUSEL will be LBNE.

  17. Maximal CP violation in flavor neutrino masses

    NASA Astrophysics Data System (ADS)

    Kitabayashi, Teruyuki; Yasuè, Masaki

    2016-03-01

    Since flavor neutrino masses Mμμ,ττ,μτ can be expressed in terms of Mee,eμ,eτ, mutual dependence among Mμμ,ττ,μτ is derived by imposing some constraints on Mee,eμ,eτ. For appropriately imposed constraints on Mee,eμ,eτ giving rise to both maximal CP violation and the maximal atmospheric neutrino mixing, we show various specific textures of neutrino mass matrices including the texture with Mττ = Mμμ∗ derived as the simplest solution to the constraint of Mττ ‑ Mμμ = imaginary, which is required by the constraint of Meμcos θ23 ‑ Meτsin θ23 = real for cos 2θ23 = 0. It is found that Majorana CP violation depends on the phase of Mee.

  18. Discovering New Light States at Neutrino Experiments

    SciTech Connect

    Essig, Rouven; Harnik, Roni; Kaplan, Jared; Toro, Natalia; /Stanford U., Phys. Dept.

    2011-08-11

    Experiments designed to measure neutrino oscillations also provide major opportunities for discovering very weakly coupled states. In order to produce neutrinos, experiments such as LSND collide thousands of Coulombs of protons into fixed targets, while MINOS and MiniBooNE also focus and then dump beams of muons. The neutrino detectors beyond these beam dumps are therefore an excellent arena in which to look for long-lived pseudoscalars or for vector bosons that kinetically mix with the photon. We show that these experiments have significant sensitivity beyond previous beam dumps, and are able to partially close the gap between laboratory experiments and supernovae constraints on pseudoscalars. Future upgrades to the NuMI beamline and Project X will lead to even greater opportunities for discovery. We also discuss thin target experiments with muon beams, such as those available in COMPASS, and show that they constitute a powerful probe for leptophilic PNGBs.

  19. The Unruh effect and oscillating neutrinos

    NASA Astrophysics Data System (ADS)

    Vir Ahluwalia, Dharam; Labun, Lance; Torrieri, Giorgio

    2016-04-01

    We give an overview of the issues and ambiguities associated with the Unruh effect, and argue that, as well as a very interesting phenomenon, it can also be used as a probe of fundamental physics. In particular, We point out that, because the detectable neutrino is not a mass Eigenstate, the Unruh effect works in a qualitatively different way than for any inertial process. For inertial processes, neutrinoes are produced as charged eigenstates, rather than as mass Eigenstates as in the comoving frame. This makes the Unruh effect detectable in microscopic processes, via, for example, p→ nl^+\\barνl decays. Such an experiment would be invaluable both as a tool to measure neutrino masses and mixing angles, and to investigate the fundamental quantization of fields.

  20. Nonlinear growing neutrino cosmology

    NASA Astrophysics Data System (ADS)

    Ayaita, Youness; Baldi, Marco; Führer, Florian; Puchwein, Ewald; Wetterich, Christof

    2016-03-01

    The energy scale of dark energy, ˜2 ×10-3 eV , is a long way off compared to all known fundamental scales—except for the neutrino masses. If dark energy is dynamical and couples to neutrinos, this is no longer a coincidence. The time at which dark energy starts to behave as an effective cosmological constant can be linked to the time at which the cosmic neutrinos become nonrelativistic. This naturally places the onset of the Universe's accelerated expansion in recent cosmic history, addressing the why-now problem of dark energy. We show that these mechanisms indeed work in the growing neutrino quintessence model—even if the fully nonlinear structure formation and backreaction are taken into account, which were previously suspected of spoiling the cosmological evolution. The attractive force between neutrinos arising from their coupling to dark energy grows as large as 106 times the gravitational strength. This induces very rapid dynamics of neutrino fluctuations which are nonlinear at redshift z ≈2 . Nevertheless, a nonlinear stabilization phenomenon ensures only mildly nonlinear oscillating neutrino overdensities with a large-scale gravitational potential substantially smaller than that of cold dark matter perturbations. Depending on model parameters, the signals of large-scale neutrino lumps may render the cosmic neutrino background observable.

  1. Muons and neutrinos

    NASA Technical Reports Server (NTRS)

    Stanev, T.

    1986-01-01

    The first generation of large and precise detectors, some initially dedicated to search for nucleon decay has accumulated significant statistics on neutrinos and high-energy muons. A second generation of even better and bigger detectors are already in operation or in advanced construction stage. The present set of experimental data on muon groups and neutrinos is qualitatively better than several years ago and the expectations for the following years are high. Composition studies with underground muon groups, neutrino detection, and expected extraterrestrial neutrino fluxes are discussed.

  2. Bolometric detection of neutrinos

    NASA Technical Reports Server (NTRS)

    Cabrera, B.; Krauss, L. M.; Wilczek, F.

    1985-01-01

    Elastic neutrino scattering off electrons in crystalline silicon at 1-10 mK results in measurable temperature changes in macroscopic amounts of material, even for low-energy (less than 0.41-MeV) pp neutrinos from the sun. New detectors for bolometric measurement of low-energy neutrino interactions, including coherent nuclear elastic scattering, are proposed. A new and more sensitive search for oscillations of reactor antineutrinos is practical (about 100 kg of Si), and would lay the groundwork for a more ambitious measurement of the spectrum of pp, Be-7, and B-8 solar neutrinos, and of supernovae anywhere in the Galaxy (about 10 tons of Si).

  3. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  4. Neutrinos in supernovae

    SciTech Connect

    Cooperstein, J.

    1986-10-01

    The role of neutrinos in Type II supernovae is discussed. An overall view of the neutrino luminosity as expected theoretically is presented. The different weak interactions involved are assessed from the standpoint of how they exchange energy, momentum, and lepton number. Particular attention is paid to entropy generation and the path to thermal and chemical equilibration, and to the phenomenon of trapping. Various methods used to calculate the neutrino flows are considered. These include trapping and leakage schemes, distribution-averaged transfer, and multi-energy group methods. The information obtained from the neutrinos caught from Supernova 1987a is briefly evaluated. 55 refs., 7 figs.

  5. Detecting Solar Neutrino Flare in Megaton and km3 detectors

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele; di Giacomo, Paola

    2009-03-01

    , marginally, too. Solar neutrino flavors may shine light on neutrino mixing angles. Not only on orbit satellites but even human astronauts in Space may exploit underground neutrino detectors for the prompt alert on (otherwise) fast and maybe lethal solar explosions.

  6. Tri-bimaximal Mixing from Cascades

    SciTech Connect

    Takahashi, Ryo

    2008-11-23

    We investigate fermion mass matrices of the cascade form which lead to the tri-bimaximal mixing in the lepton sector. The cascade neutrino matrix predicts a parameter-independent relation among the observables, which are the neutrino mixing angles and mass squared differences. The relation predicts that the atmospheric neutrino mixing angle is close to maximal. We also study phenomenological aspect of the cascade form in supersymmetric theory, which are lepton flavor violation and thermal leptogenesis. A dynamical realivation of the cascade mass matrix are also presented in U(1) flavor theory.

  7. Study of muon neutrino and muon antineutrino disappearance with the NOvA neutrino oscillation experiment

    SciTech Connect

    Pawloski, Gregory

    2014-06-30

    The primary goal of this working group is to study the disappearance rate of νμ charged current events in order to measure the mixing angle θ23 and the magnitude of the neutrino mass square splitting Δm 232.

  8. Neutrino in standard model and beyond

    NASA Astrophysics Data System (ADS)

    Bilenky, S. M.

    2015-07-01

    After discovery of the Higgs boson at CERN the Standard Model acquired a status of the theory of the elementary particles in the electroweak range (up to about 300 GeV). What general conclusions can be inferred from the Standard Model? It looks that the Standard Model teaches us that in the framework of such general principles as local gauge symmetry, unification of weak and electromagnetic interactions and Brout-Englert-Higgs spontaneous breaking of the electroweak symmetry nature chooses the simplest possibilities. Two-component left-handed massless neutrino fields play crucial role in the determination of the charged current structure of the Standard Model. The absence of the right-handed neutrino fields in the Standard Model is the simplest, most economical possibility. In such a scenario Majorana mass term is the only possibility for neutrinos to be massive and mixed. Such mass term is generated by the lepton-number violating Weinberg effective Lagrangian. In this approach three Majorana neutrino masses are suppressed with respect to the masses of other fundamental fermions by the ratio of the electroweak scale and a scale of a lepton-number violating physics. The discovery of the neutrinoless double β-decay and absence of transitions of flavor neutrinos into sterile states would be evidence in favor of the minimal scenario we advocate here.

  9. Status of the RENO Reactor Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Joo, K. K.; RENO Collaboration

    2012-08-01

    The Reactor Experiment for Neutrino Oscillation (RENO) is a reactor based neutrino oscillation experiment to measure the neutrino mixing angle θ13 using anti-neutrinos emitted from the Yonggwang nuclear power plant in Korea. Its thermal power output is 16.4 Gwth. The experimental setup consists of two identical 16-ton gadolinium-loaded liquid scintillator detectors. The near and far detectors are placed roughly 290 m and 1.4 km from the center of the reactor array, respectively. The near detector is constructed at underground of a 70 m high hill and the far detector at underground of a 260 m high mountain. The construction of experimental halls and access tunnels for both near and far detector sites was completed in early 2009. The experiment is planned to start data-taking from early 2011. An expected number of observed anti-neutrinos is roughly 1300 per day and 100 per day in the far and near detector, respectively. We expect that an estimated systematic uncertainty is less than 0.5%. With three years of data taken, RENO is sensitive to measure sin2(2θ13)>0.02. Sensitivity is ten times better than the current limit obtained by Chooz. In this review, current status of RENO is presented.

  10. Exotic charges, multicomponent dark matter and light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Heeck, Julian; Zhang, He

    2013-05-01

    Generating small sterile neutrino masses via the same seesaw mechanism that suppresses active neutrino masses requires a specific structure in the neutral fermion mass matrix. We present a model where this structure is enforced by a new U(1)' gauge symmetry, spontaneously broken at the TeV scale. The additional fermions necessary for anomaly cancellation need to carry exotic charges in order not to spoil the neutrino structure and turn out to form multicomponent cold dark matter. The active-sterile mixing then connects the new particles and the Standard Model — opening a new portal in addition to the usual Higgs- and kinetic-mixing portals — which leads to dark matter annihilation almost exclusively into neutrinos.

  11. Astronomical constraints on properties of sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Chan, M. H.; Chu, M.-C.

    2011-04-01

    We consider sterile neutrinos as a component of dark matter in the Milky Way and clusters, and compare their rest mass, decay rate and the mixing angle. A radiative decaying rate of order Γ˜10-19 s-1 for sterile neutrino rest mass m s =18-19 keV can satisfactorily account for the cooling flow problem and heating source in Milky Way center simultaneously. Also, these ranges of decay rate and rest mass match the prediction of the mixing angle sin 22 θ˜10-3 with a low reheating temperature in the inflation model, which enables the sterile-active neutrino oscillation to be visible in future experiments. However, decaying sterile neutrinos have to be ruled out as a major component of dark matter because of the high decay rate.

  12. Minimal 3 +2 sterile neutrino model at LBNE

    NASA Astrophysics Data System (ADS)

    Hollander, D.; Mocioiu, I.

    2015-01-01

    In this paper we examine the sensitivity of the Long Baseline Neutrino Oscillation Experiment to the inclusion of two new sterile neutrino flavors with masses in the eV range. We implement a model with a modified Casas-Ibarra parametrization which can accommodate medium scale mass eigenstates and introduce a new complex mixing angle. We explore the new mixing angle parameter space and demonstrate how LBNE can be used to either provide evidence for or rule out a particular model of sterile neutrinos. Certain three-flavor C P -violation scenarios cannot be distinguished from the sterile neutrinos. Constraints from the Daya Bay reactor experiment and T2K are used to help lift this degeneracy.

  13. Noncommutative spectral geometry, Bogoliubov transformations and neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Vittoria Gargiulo, Maria; Sakellariadou, Mairi; Vitiello, Giuseppe

    2015-07-01

    In this report we show that neutrino mixing is intrinsically contained in Connes’ noncommutatives pectral geometry construction, thanks to the introduction of the doubling of algebra, which is connected to the Bogoliubov transformation. It is known indeed that these transformations are responsible for the mixing, turning the mass vacuum state into the flavor vacuum state, in such a way that mass and flavor vacuum states are not unitary equivalent. There is thus a red thread that binds the doubling of algebra of Connes’ model to the neutrino mixing.

  14. Neutrinos from collapsars

    NASA Astrophysics Data System (ADS)

    Vieyro, F. L.; Romero, G. E.; Peres, O. L. G.

    2013-10-01

    Context. Long gamma-ray bursts (GRBs) are associated with the gravitational collapse of very massive stars. The central engine of a GRB can collimate relativistic jets that propagate inside the stellar envelope. The shock waves produced when the jet disrupts the stellar surface are capable of accelerating particles up to very high energies. Aims: If the jet has hadronic content, neutrinos will be produced via charged pion decays. The main goal of this work is to estimate the neutrino emission produced in the region close to the surface of the star, taking pion and muon cooling into account, along with subtle effects arising from neutrino production in a highly magnetized medium. Methods: We estimate the maximum energies of the different kinds of particles and solve the coupled transport equations for each species. Once the particle distributions are known, we calculate the intensity of neutrinos. We study the different effects on the neutrinos that can change the relative weight of different flavors. In particular, we consider the effects of neutrino oscillations, and of neutrino spin precession caused by strong magnetic fields. Results: The expected neutrino signals from the shocks in the uncorking regions of Population III events is very weak, but the neutrino signal produced by Wolf-Rayet GRBs with z < 0.5 is not far from the level of the atmospheric background. Conclusions: The IceCube experiment does not have the sensitivity to detect neutrinos from the implosion of the earliest stars, but a number of high-energy neutrinos may be detected from nearby long GRBs. The cumulative signal should be detectable over several years (~10 yr) of integration with the full 86-string configuration.

  15. Decoherence in supernova neutrino transformations suppressed by deleptonization

    SciTech Connect

    Esteban-Pretel, Andreu; Pastor, Sergio; Tomas, Ricard; Sigl, Guenter

    2007-12-15

    In the dense-neutrino region at 50-400 km above the neutrino sphere in a supernova, neutrino-neutrino interactions cause large flavor transformations. We study when the multiangle nature of the neutrino trajectories leads to flavor decoherence between different angular modes. We consider a two-flavor mixing scenario between {nu}{sub e} and another flavor {nu}{sub x} and assume the usual hierarchy F{sub {nu}{sub e}}>F{sub {nu}{sub e}}>F{sub {nu}{sub x}}=F{sub {nu}{sub x}} for the number fluxes. We define {epsilon}=(F{sub {nu}{sub e}}-F{sub {nu}{sub e}})/(F{sub {nu}{sub e}}-F{sub {nu}{sub x}}) as a measure for the deleptonization flux which is the one crucial parameter. The transition between the quasi-single-angle behavior and multiangle decoherence is abrupt as a function of {epsilon}. For typical choices of other parameters, multiangle decoherence is suppressed for {epsilon} > or approx. 0.3, but a much smaller asymmetry suffices if the neutrino mass hierarchy is normal and the mixing angle small. The critical {epsilon} depends logarithmically on the neutrino luminosity. In a realistic supernova scenario, the deleptonization flux is probably enough to suppress multiangle decoherence.

  16. Implications of leptonic unitarity violation at neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-Zhong; Zhou, Shun

    2008-08-01

    A measurement of the ultrahigh-energy (UHE) cosmic neutrinos at a km3-size neutrino telescope will open a new window to constrain the 3×3 neutrino mixing matrix V and probe possible new physics. We point out that it is in principle possible to examine the non-unitarity of V, which is naturally expected in a class of seesaw models with one or more TeV-scale Majorana neutrinos, by using neutrino telescopes. Considering the UHE neutrinos produced from the decays of charged pions arising from pp and (or) pγ collisions at a distant astrophysical source, we show that their flavor ratios at a terrestrial neutrino telescope may deviate from the democratic flavor distribution ϕeT:ϕμT:ϕτT=1:1:1 due to the seesaw-induced unitarity violation of V. Its effect can be as large as several percent and can serve for an illustration of how sensitive a neutrino telescope should be to this kind of new physics.

  17. Sterile Neutrino Searches in MINOS and MINOS+ Experiments

    SciTech Connect

    Huang, Junting

    2015-05-01

    This dissertation presents the searches on sterile neutrinos using the data collected in MINOS+ Experiment from September 2013 to September 2014, and the full data set of MINOS Experiment collected from 2005 to 2012. Anomalies in short baseline experiments, such as LSND and MiniBooNE, showed hints of sterile neutrinos, a type of neutrino that does not interact with the Standard Model particles. In this work, two models are considered: 3+1 and large extra dimension (LED). In the 3+1 model, one sterile neutrino state is added into the standard oscillation scheme consisting of three known active neutrino states ve, vμ and vτ. In the LED model, sterile neutrinos arise as Kaluza-Klein (KK) states due to assumed large extra dimensions. Mixing between sterile and active neutrino states may modify the oscillation patterns observed in the MINOS detectors. Both searches yield null results. For 3+1, a combined fit of MINOS and MINOS+ data gives a stronger limit on θ24 in the range of 10-2 eV2 < Δm412 < 1 eV2 than previous experiments. For LED, with the complete MINOS data set, the size of extra dimensions is constrained to be smaller than ~ 0.35 μm at 90% C.L. in the limit of a vanishing lightest neutrino mass.

  18. Physics from solar neutrinos in dark matter direct detection experiments

    NASA Astrophysics Data System (ADS)

    Cerdeño, David G.; Fairbairn, Malcolm; Jubb, Thomas; Machado, Pedro A. N.; Vincent, Aaron C.; Bœhm, Céline

    2016-05-01

    The next generation of dark matter direct detection experiments will be sensitive to both coherent neutrino-nucleus and neutrino-electron scattering. This will enable them to explore aspects of solar physics, perform the lowest energy measurement of the weak angle sin2 θ W to date, and probe contributions from new theories with light mediators. In this article, we compute the projected nuclear and electron recoil rates expected in several dark matter direct detection experiments due to solar neutrinos, and use these estimates to quantify errors on future measurements of the neutrino fluxes, weak mixing angle and solar observables, as well as to constrain new physics in the neutrino sector. Our analysis shows that the combined rates of solar neutrino events in second generation experiments (SuperCDMS and LZ) can yield a measurement of the pp flux to 2.5% accuracy via electron recoil, and slightly improve the 8B flux determination. Assuming a low-mass argon phase, projected tonne-scale experiments like DARWIN can reduce the uncertainty on both the pp and boron-8 neutrino fluxes to below 1%. Finally, we use current results from LUX, SuperCDMS and CDMSlite to set bounds on new interactions between neutrinos and electrons or nuclei, and show that future direct detection experiments can be used to set complementary constraints on the parameter space associated with light mediators.

  19. Yet another possible explanation of the solar-neutrino puzzle

    SciTech Connect

    Kolb, E.W.; Turner, M.S.; Walker, T.P.

    1986-04-01

    Mikheyev and Smirnov have shown that the interactions of neutrinos with matter can result in the conversion of electron neutrinos produced in the center of the sun to muon neutrinos. Bethe has exploited this and has pointed out that the solar-neutrino puzzle can be resolved if the mass difference squared of the two neutrinos is m/sub 2//sup 2/ - m /sub 1//sup 2/ approx. = 6 x 10/sup -5/ eV/sup 2/, and the mixing angle satisfies sin theta/sub v/ > 0.0065. We discuss a qualitatively different solution to the solar-neutrino puzzle which requires 1.0 x 10/sup -8/ < (m/sub 2//sup 2/ - m/sub 1//sup 2/) (sin/sup 2/ 2theta/sub v//cos 2theta/sub v/) < 6.1 x 10/sup -8/ eV/sup 2/. Our solutions result in a much smaller flux of neutrinos from the p - p process than predicted by standard solar models, while Bethe's solution results in a flux of neutrinos from the p - process that is about the same as standard solar models.

  20. Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis

    SciTech Connect

    Ruchayskiy, Oleg; Ivashko, Artem E-mail: ivashko@lorentz.leidenuniv.nl

    2012-10-01

    We analyze the influence of sterile neutrinos with the masses in the MeV range on the primordial abundances of Helium-4 and Deuterium. We solve explicitly the Boltzmann equations for all particle species, taking into account neutrino flavour oscillations and demonstrate that the abundances are sensitive mostly to the sterile neutrino lifetime and only weakly to the way the active-sterile mixing is distributed between flavours. The decay of these particles also perturbs the spectra of (decoupled) neutrinos and heats photons, changing the ratio of neutrino to photon energy density, that can be interpreted as extra neutrino species at the recombination epoch. We derive upper bounds on the lifetime of sterile neutrinos based on both astrophysical and cosmological measurements of Helium-4 and Deuterium. We also demonstrate that the recent results of Izotov and Thuan [1], who find 2σ higher than predicted by the standard primordial nucleosynthesis value of Helium-4 abundance, are consistent with the presence in the plasma of sterile neutrinos with the lifetime 0.01–2 seconds.

  1. Neutrino masses in lepton number violating mSUGRA

    SciTech Connect

    Kom, Steve C. H.

    2008-11-23

    In SUSY models which violate R-parity, there exist trilinear lepton number violating (LNV) operators which can lead to neutrino masses. If these operators are defined at the unification scale, the renormalization group flow becomes important and generally leads to one neutrino mass much heavier than the others. We study, in a minimal supergravity (mSUGRA) set-up with two trilinear LNV operators and three charged lepton mixing angles, numerically how these parameters may be arranged to be compatible with neutrino oscillation data, and discuss some phenomenological observations.

  2. Common origin for neutrino anarchy and charged hierarchies.

    PubMed

    Agashe, Kaustubh; Okui, Takemichi; Sundrum, Raman

    2009-03-13

    The generation of exponential flavor hierarchies from extra-dimensional wave function overlaps is reexamined. We find, surprisingly, that the coexistence of anarchic fermion mass matrices with such hierarchies is intrinsic and natural to this setting. The salient features of charged fermion and neutrino masses and mixings can thereby be captured within a single framework. Both Dirac and Majorana neutrinos can be realized. Implications for a variety of weak-scale scenarios, including warped compactification and supersymmetry, are discussed. When the new weak-scale physics is sensitive to the origin of flavor structure, Dirac neutrinos are preferred. PMID:19392102

  3. Common Origin for Neutrino Anarchy and Charged Hierarchies

    SciTech Connect

    Agashe, Kaustubh; Okui, Takemichi; Sundrum, Raman

    2009-03-13

    The generation of exponential flavor hierarchies from extra-dimensional wave function overlaps is reexamined. We find, surprisingly, that the coexistence of anarchic fermion mass matrices with such hierarchies is intrinsic and natural to this setting. The salient features of charged fermion and neutrino masses and mixings can thereby be captured within a single framework. Both Dirac and Majorana neutrinos can be realized. Implications for a variety of weak-scale scenarios, including warped compactification and supersymmetry, are discussed. When the new weak-scale physics is sensitive to the origin of flavor structure, Dirac neutrinos are preferred.

  4. Simple neutrino mass matrix with only two free parameters

    NASA Astrophysics Data System (ADS)

    Nishiura, Hiroyuki; Fukuyama, Takeshi

    2014-09-01

    A simple form of neutrino mass matrix which has only two free parameters is proposed from a phenomenological point of view. Using this mass matrix, we succeed to reproduce all the observed values for the Maki-Nakagawa-Sakata (MNS) lepton mixing angles and the neutrino mass squared difference ratio. Our model also predicts δν = 155° for the Dirac CP violating phase in the lepton sector and the effective neutrino mass = 6.3×10-3eV in the neutrinoless double beta decay.

  5. Common Origin for Neutrino Anarchy and Charged Hierarchies

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Okui, Takemichi; Sundrum, Raman

    2009-03-01

    The generation of exponential flavor hierarchies from extra-dimensional wave function overlaps is reexamined. We find, surprisingly, that the coexistence of anarchic fermion mass matrices with such hierarchies is intrinsic and natural to this setting. The salient features of charged fermion and neutrino masses and mixings can thereby be captured within a single framework. Both Dirac and Majorana neutrinos can be realized. Implications for a variety of weak-scale scenarios, including warped compactification and supersymmetry, are discussed. When the new weak-scale physics is sensitive to the origin of flavor structure, Dirac neutrinos are preferred.

  6. Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data

    SciTech Connect

    Fogli, G.L.; Lisi, E.; Marrone, A.; Palazzo, A.; Melchiorri, A.; Serra, P.; Silk, J.

    2004-12-01

    In the context of three-flavor neutrino mixing, we present a thorough study of the phenomenological constraints applicable to three observables sensitive to absolute neutrino masses: The effective neutrino mass in Tritium beta-decay (m{sub {beta}}); the effective Majorana neutrino mass in neutrinoless double beta-decay (m{sub {beta}}{sub {beta}}); and the sum of neutrino masses in cosmology ({sigma}). We discuss the correlations among these variables which arise from the combination of all the available neutrino oscillation data, in both normal and inverse neutrino mass hierarchy. We set upper limits on m{sub {beta}} by combining updated results from the Mainz and Troitsk experiments. We also consider the latest results on m{sub {beta}}{sub {beta}} from the Heidelberg-Moscow experiment, both with and without the lower bound claimed by such experiment. We derive upper limits on {sigma} from an updated combination of data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite and the two degrees Fields (2dF) Galaxy Redshifts Survey, with and without Lyman-{alpha} forest data from the Sloan Digital Sky Survey (SDSS), in models with a nonzero running of the spectral index of primordial inflationary perturbations. The results are discussed in terms of two-dimensional projections of the globally allowed region in the (m{sub {beta}},m{sub {beta}}{sub {beta}},{sigma}) parameter space, which neatly show the relative impact of each data set. In particular, the (in)compatibility between {sigma} and m{sub {beta}}{sub {beta}} constraints is highlighted for various combinations of data. We also briefly discuss how future neutrino data (both oscillatory and nonoscillatory) can further probe the currently allowed regions.

  7. Measurement of the total boron-8 solar neutrino flux at the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Rusu, Vadim Liviu

    This work presents experimental measurements obtained by analyzing the first 254 live days of data from the SNO NaCl run. The electron neutrino flux was measured to be 1.66 +/- 0.10 stat.+0.07 -0.07 (syst.) x 106cm-2s-l and the non-electron neutrino flux was measured to be 3.32 +/- 0.38 stat.+0.26 -0.25 (syst.) x 106cm-2s-1. Using the above results we determined the integrated electron neutrino survival probability to be 0.33 +/- 0.04 stat.+0.02 -0.02 (syst.). This rejects maximum mixing in the solar neutrino sector at more than 3sigma using SNO data only under the assumption that the flavor changing mechanism is due to the MSW effect in the solar interior. The capability of the Sudbury Neutrino Observatory (SNO) to distinguish between the Charged-Current (CC) and Neutral-Current(NC) neutrino interactions made possible the first simultaneous measurements of the electron and non-electron solar neutrino flux, providing a direct test of the hypothesis that neutrinos change flavor as they propagate from the Sun to the Earth. Two tonnes of purified NaCl were added to the one kilotonne of heavy water target of SNO to enhance the neutron capture efficiency and detection of capture gamma-rays. Neutron capture on 35Cl often produces multiple gamma-rays, which permits a statistical separation of neutron capture and electron events based on the event isotropy, the increased statistical separation between event categories, using the degree of event isotropy, made possible a significant improvement on the measured fluxes. Moreover, the flux analysis does not require any assumption regarding the energy dependence of the flavor changing mechanism.

  8. High Energy Neutrinos with a Mediterranean Neutrino Telescope

    SciTech Connect

    Borriello, E.; Cuoco, A.; Mangano, G.; Miele, G.; Pastor, Sergio; Pisanti, O.; Serpico, Pasquale Dario; /Fermilab

    2007-09-01

    The high energy neutrino detection by a km{sup 3} Neutrino Telescope placed in the Mediterranean sea provides a unique tool to both determine the diffuse astrophysical neutrino flux and the neutrino nucleon cross section in the extreme kinematical region, which could unveil the presence of new physics. Here is performed a brief analysis of possible NEMO site performances.

  9. Extremely high energy cosmic neutrinos and relic neutrinos

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2006-03-01

    I review the essentials of ultrahigh-energy neutrino interactions, show how neutral-current detection and flavor tagging can enhance the scientific potential of neutrino telescopes, and sketch new studies on neutrino encounters with dark matter relics and on gravitational lensing of neutrinos.

  10. Relativistic Wigner function approach to neutrino propagation in matter

    NASA Astrophysics Data System (ADS)

    Sirera, M.; Pérez, A.

    1999-06-01

    In this work we study the propagation of massive Dirac neutrinos in matter with flavor mixing, using statistical techniques based on relativistic Wigner functions. First, we consider neutrinos in equilibrium within the Hartree approximation, and obtain the corresponding dispersion relations and effective masses. After this, we analyze the same system out of equilibrium. We verify that, under the appropriate physical conditions, the well-known equations for the MSW effect are recovered.

  11. Muon and neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  12. Effects of kination and scalar-tensor cosmologies on sterile neutrinos

    SciTech Connect

    Rehagen, Thomas; Gelmini, Graciela B. E-mail: gelmini@physics.ucla.edu

    2014-06-01

    We study the effects of kination and scalar-tensor pre-Big Bang Nucleosynthesis cosmologies on the non-resonant production of sterile neutrinos. We show that if the peak of the production rate of sterile neutrinos occurs during a non-standard cosmological phase, the relic number density of sterile neutrinos could be reduced with respect to the number expected in the standard cosmology. Consequently, current bounds on active-sterile neutrino mixing derived from the relic energy density of sterile neutrinos could be greatly relaxed. In particular, we show that the sterile neutrinos which could explain the anomalies found in short-baseline neutrino experiments are compatible with recent joint Planck upper limits on their contribution to the energy density of the Universe in a scalar-tensor or a low-reheating temperature pre-Big Bang Nucleosynthesis cosmology.

  13. The History of "Anomalous" Atmospheric Neutrino Events: A First Person Account

    NASA Astrophysics Data System (ADS)

    LoSecco, John M.

    2016-07-01

    The modern picture of the neutrino as a multiple-mass, highly mixed neutral particle has emerged over forty years of study. Best known of the issues leading to this picture was the apparent loss of neutrinos coming from the sun. This article describes another piece of evidence that supports the picture; the substantial reduction of high-energy muon-type neutrinos observed in nature. For much of the forty-year period before the modern picture emerged, this observation was known as the "atmospheric neutrino anomaly," since these neutrinos originate in the Earth's atmosphere. This paper describes the discovery of the atmospheric neutrino anomaly. I explore the scientific context and motivations in the late 1970s, from which this work emerged. The gradual awareness that the observations of atmospheric neutrinos were not as expected took place in the 1983-1986 period.

  14. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    NASA Technical Reports Server (NTRS)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  15. The History of "Anomalous" Atmospheric Neutrino Events: A First Person Account

    NASA Astrophysics Data System (ADS)

    LoSecco, John M.

    2016-08-01

    The modern picture of the neutrino as a multiple-mass, highly mixed neutral particle has emerged over forty years of study. Best known of the issues leading to this picture was the apparent loss of neutrinos coming from the sun. This article describes another piece of evidence that supports the picture; the substantial reduction of high-energy muon-type neutrinos observed in nature. For much of the forty-year period before the modern picture emerged, this observation was known as the "atmospheric neutrino anomaly," since these neutrinos originate in the Earth's atmosphere. This paper describes the discovery of the atmospheric neutrino anomaly. I explore the scientific context and motivations in the late 1970s, from which this work emerged. The gradual awareness that the observations of atmospheric neutrinos were not as expected took place in the 1983-1986 period.

  16. Cosmological neutrino mass detection: The Best probe of neutrino lifetime

    SciTech Connect

    Serpico, Pasquale D.; /Fermilab

    2007-01-01

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-)massless particles as in majoron models. On the other hand, neutrino decay may provide a way-out to explain a discrepancy {approx}< 0.1 eV between cosmic neutrino bounds and Lab data.

  17. Cosmological Neutrino Mass Detection: The Best Probe of Neutrino Lifetime

    SciTech Connect

    Serpico, Pasquale D.

    2007-04-27

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence, on neutrino secret interactions with (quasi)massless particles as in Majoron models. On the other hand, neutrino decay may provide a way out to explain a discrepancy < or approx. 0.1 eV between cosmic neutrino bounds and lab data.

  18. Multimomentum and multiflavor active-sterile neutrino oscillations in the early universe: Role of neutrino asymmetries and effects on nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Saviano, Ninetta; Mirizzi, Alessandro; Pisanti, Ofelia; Serpico, Pasquale Dario; Mangano, Gianpiero; Miele, Gennaro

    2013-04-01

    We perform a study of the flavor evolution in the early universe of a multiflavor active-sterile neutrino system with parameters inspired by the short-baseline neutrino anomalies. In a neutrino-symmetric bath a “thermal” population of the sterile state would quickly grow, but in the presence of primordial neutrino asymmetries a self-suppression as well as a resonant sterile neutrino production can take place, depending on temperature and chosen parameters. In order to characterize these effects, we go beyond the usual average momentum and single-mixing approximations and consider a multimomentum and multiflavor treatment of the kinetic equations. We find that the enhancement obtained in this case with respect to the average momentum approximation is significant, up to ˜20% of a degree of freedom. Such a detailed and computationally demanding treatment further raises the asymmetry values required to significantly suppress the sterile neutrino production, up to |Lν|≳O(10-2). For such asymmetries, however, the active-sterile flavor conversions happen so late that significant distortions are produced in the electron (anti)neutrino spectra. The larger |Lν|, the more the impact of these distortions takes over as a dominant cosmological effect, notably increasing the He4 abundance in primordial nucleosynthesis. The standard expression of the primordial yields in terms of the effective number of neutrinos and asymmetries is also greatly altered. We numerically estimate the magnitude of such effects for a few representative cases and comment on the implications for current cosmological measurements.

  19. Maki-Nakagawa-Sakata parameters from neutrino oscillations, single beta decay, and double beta decay

    SciTech Connect

    Matsuda, K.; Takeda, N.; Fukuyama, T.; Nishiura, H.

    2001-07-01

    We examine the constraints on the Maki-Nakagawa-Sakata lepton mixing matrix from the present and future experimental data of neutrino oscillation, tritium beta decay, and neutrinoless double beta decay for the Majorana neutrinos. We show that the small mixing angle solutions for solar neutrino problem are disfavored for small averaged mass ({l_angle}m{sub {nu}}{r_angle}) of neutrinoless double beta decay ({le}0.01 eV) in the inverse neutrino mass hierarchy scenario. This is the case even in the normal mass hierarchy scenario except for a very restrictive value of the averaged neutrino mass ({ovr m{sub {nu}}}) of single beta decay. The lower mass bound for {ovr m{sub {nu}}} is given from the present neutrino oscillation data. We obtain some relations between {l_angle}m{sub {nu}}{r_angle} and {ovr m{sub {nu}}}. The constraints on the Majorana CP violating phases are also given.

  20. The Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Bellerive, A.; Klein, J. R.; McDonald, A. B.; Noble, A. J.; Poon, A. W. P.

    2016-07-01

    This review paper provides a summary of the published results of the Sudbury Neutrino Observatory (SNO) experiment that was carried out by an international scientific collaboration with data collected during the period from 1999 to 2006. By using heavy water as a detection medium, the SNO experiment demonstrated clearly that solar electron neutrinos from 8B decay in the solar core change into other active neutrino flavors in transit to Earth. The reaction on deuterium that has equal sensitivity to all active neutrino flavors also provides a very accurate measure of the initial solar flux for comparison with solar models. This review summarizes the results from three phases of solar neutrino detection as well as other physics results obtained from analyses of the SNO data.

  1. Neutrinos and dark matter

    SciTech Connect

    Ibarra, Alejandro

    2015-07-15

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  2. Summary: Neutrinos and nonaccelerator physics

    SciTech Connect

    Hoffman, C.M.

    1991-01-01

    This paper contains brief synopsis of the following major topics discussed in the neutrino and nonaccelerator parallel sessions: dark matter; neutrino oscillations at accelerators and reactors; gamma-ray astronomy; double beta decay; solar neutrinos; and the possible existence of a 17-KeV neutrino. (LSP)

  3. Solar neutrinos: Probing the sun or neutrinos

    SciTech Connect

    Wilkerson, J.F.

    1991-01-01

    The decade of the 1990's should prove to be a landmark period for the study of solar neutrino physics. Current observations show 2-3 times fewer neutrinos coming from the sun than are theoretically expected. As we enter the decade, new experiments are poised to attempt and discover whether this deficit is a problem with our understanding of how the sun works, is a hint of new neutrino properties beyond those predicted by the standard model of particle physics, or perhaps a combination of both. This paper will review the current status of the field and point out how future measurements should help solve this interesting puzzle. 11 refs., 3 figs., 1 tab.

  4. Recent Results in Solar Neutrinos

    NASA Astrophysics Data System (ADS)

    Saldanha, Richard

    2011-10-01

    Solar neutrinos are an invaluable tool for studying neutrino oscillations in matter as well as probing the nuclear reactions that fuel the Sun. In this talk I will give an overview of solar neutrinos and discuss the latest results in the field. I will highlight the recent precision measurement of the ^7Be solar neutrino interaction rate with the Borexino solar neutrino detector and present the status of the analysis of pep and CNO neutrinos. I will also briefly describe future experiments and their potential to detect low energy solar neutrinos.

  5. Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider

    SciTech Connect

    Campos, F. de; Eboli, O. J. P.; Hirsch, M.; Valle, J. W. F.; Porod, W.

    2010-10-01

    The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.

  6. Astroparticle physics with solar neutrinos

    PubMed Central

    NAKAHATA, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. PMID:21558758

  7. Massive neutrinos in the standard model and beyond

    NASA Astrophysics Data System (ADS)

    Thalapillil, Arun Madhav

    The generation of the fermion mass hierarchy in the standard model of particle physics is a long-standing puzzle. The recent discoveries from neutrino physics suggests that the mixing in the lepton sector is large compared to the quark mixings. To understand this asymmetry between the quark and lepton mixings is an important aim for particle physics. In this regard, two promising approaches from the theoretical side are grand unified theories and family symmetries. In the first part of my thesis we try to understand certain general features of grand unified theories with Abelian family symmetries by taking the simplest SU(5) grand unified theory as a prototype. We construct an SU(5) toy model with U(1) F ⊗Z'2 ⊗Z'' 2⊗Z''' 2 family symmetry that, in a natural way, duplicates the observed mass hierarchy and mixing matrices to lowest approximation. The system for generating the mass hierarchy is through a Froggatt-Nielsen type mechanism. One idea that we use in the model is that the quark and charged lepton sectors are hierarchical with small mixing angles while the light neutrino sector is democratic with larger mixing angles. We also discuss some of the difficulties in incorporating finer details into the model without making further assumptions or adding a large scalar sector. In the second part of my thesis, the interaction of high energy neutrinos with weak gravitational fields is explored. The form of the graviton-neutrino vertex is motivated from Lorentz and gauge invariance and the non-relativistic interpretations of the neutrino gravitational form factors are obtained. We comment on the renormalization conditions, the preservation of the weak equivalence principle and the definition of the neutrino mass radius. We associate the neutrino gravitational form factors with specific angular momentum states. Based on Feynman diagrams, spin-statistics, CP invariance and symmetries of the angular momentum states in the neutrino-graviton vertex, we deduce

  8. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    SciTech Connect

    Ling, Jiajie

    2010-01-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |Δm232|, sin2 θ23. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  9. Coherent scattering of cosmic neutrinos

    NASA Technical Reports Server (NTRS)

    Opher, R.

    1974-01-01

    It is shown that cosmic neutrino scattering can be non-negligible when coherence effects previously neglected are taken into account. The coherent neutrino scattering cross section is derived and the neutrino index of refraction evaluated. As an example of coherent neutrino scattering, a detector using critical reflection is described which in principle can detect the low energy cosmic neutrino background allowed by the measured cosmological red shift.

  10. Fermion masses, flavour mixing and CP violation

    SciTech Connect

    Ross, G. G.

    2008-11-23

    The pattern of neutrino masses and mixings is characteristically different from those observed in the quark sector. I discuss how this can be elegantly explaned through a combination of an underlying family symmetry and the see-saw mechanism.

  11. Absolute neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  12. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  13. A search for muon neutrino to electron neutrino oscillations at delta(m^2)>0.1 eV^2

    SciTech Connect

    Patterson, Ryan Benton; /Princeton U.

    2007-11-01

    The evidence is compelling that neutrinos undergo flavor change as they propagate. In recent years, experiments have observed this phenomenon of neutrino oscillations using disparate neutrino sources: the sun, fission reactors, accelerators, and secondary cosmic rays. The standard model of particle physics needs only simple extensions - neutrino masses and mixing - to accommodate all neutrino oscillation results to date, save one. The 3.8{sigma}-significant {bar {nu}}{sub e} excess reported by the LSND collaboration is consistent with {bar {nu}}{sub {mu}} {yields}{bar {nu}}{sub e} oscillations with a mass-squared splitting of {Delta}m{sup 2} {approx} 1 eV{sup 2}. This signal, which has not been independently verified, is inconsistent with other oscillation evidence unless more daring standard model extensions (e.g. sterile neutrinos) are considered.

  14. A{sub 4} flavor symmetry and neutrino phenomenology

    SciTech Connect

    Brahmachari, Biswajoy; Choubey, Sandhya; Mitra, Manimala

    2008-04-01

    It has been shown that tribimaximal mixing can be obtained by some particular breaking pattern of the A{sub 4} symmetry, wherein the extra A{sub 4} triplet Higgs scalars pick up certain fixed vacuum expectation value (VEV) alignments. We have performed a detailed analysis of the different possible neutrino mass matrices within the framework of the A{sub 4} model. We take into account all possible singlet and triplet Higgs scalars which leave the Lagrangian invariant under A{sub 4}. We break A{sub 4} spontaneously, allowing the Higgs to take any VEV in general. We show that the neutrino mixing matrix deviates from tribimaximal, both due to the presence of the extra Higgs singlets, as well as from the deviation of the triplet Higgs VEV from its desired alignment, taken previously. We solve the eigenvalue problem for a variety of these illustrative cases and identify the ones where one obtains exact tribimaximal mixing. All such cases require fine-tuning. We show which neutrino mass matrices would be strongly disfavored by the current neutrino data. Finally, we study in detail the phenomenology of the remaining viable mass matrices and establish the deviation of the neutrino mixing from tribimaximal, both analytically as well as numerically.

  15. Measuring Neutrinos with Cosmology

    NASA Astrophysics Data System (ADS)

    Knox, Lloyd

    2016-03-01

    Along with a thermal distribution of photons, we expect a thermal distribution of neutrinos to have been produced in the big bang. Although direct detection of the cosmic neutrino background (CNB) is extremely difficult, if not impossible, there is much we are learning indirectly about the CNB from its gravitational influences. I will review constraints from cosmic microwave background observations on the energy density in the CNB, present a recent detection of supersonic evolution of density perturbations in the CNB, and discuss constraints on neutrino masses from cosmological observables. I will also look toward what we can expect from future cosmological surveys, such as CMB-S4.

  16. Neutrino Physics in Supernovae

    NASA Astrophysics Data System (ADS)

    Dineva, Tamara Simeonova

    1997-11-01

    The models of exploding stars-supernovae-do not explode. This dissertation investigates the transfer of energy from the interior to the outer layers in such stars to try to understand what is missing in these models that would solve the supernova problem. Hydrodynamic instabilities and aspects in the microphysics of the neutrino transport in postcollapsed stellar matter are considered. In Chapter II we derive criteria for the presence of doubly diffusive instabilities believed to be essential for producing a supernova explosion. Contrary to the widely accepted view, we find that the core, if unstable, is unstable to semiconvection, rather than to neutron fingers. A critical value for the lepton fraction, Yl, is found for a given density and entropy, below which the stellar core is completely stable to instabilities. A considerable fraction of the stellar core is found to lie below the critical Yl. As the core evolves this fraction quickly encompasses the entire core. Thus doubly diffusive instabilities of any kind are unlikely to play a role in the supernova explosion mechanism. A strong magnetic field may modify the neutrino-nucleon absorption rates which are critical for shock reheating. In Chapter III we derive the cross section of neutrino absorption on neutrons in the presence of a strong magnetic field. We calculate values for the neutrino inverse mean free path and numerically compare them to the values in the non magnetic case. We find that they exhibit an oscillatory behavior, with huge peaks present due to discontinuities in the density of state. We conclude that the presence of a strong magnetic field does not yield a dramatic reduction in the inverse mean free paths which would be necessary to substantially increase the neutrino luminosity and revive the shock. Neutrino-neutrino scattering in the vicinity of the neutrino sphere may modify the neutrino luminosities and therefore affect shock reheating. In the last Chapter we calculate the neutrino-neutrino

  17. Neutrinos from neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    A calculation of the flux of ultra-high energy neutrinos from galactic neutron stars is presented. The calculation is used to determine the number of point sources detectable at the sensitivity threshold of a proposed deep underwater muon and neutrino detector array. The detector array would have a point source detection threshold of about 100 eV/sq cm-sec. Analysis of neutrino luminosities and the number of detectable sources suggests that the deep underwater detector may make a few discoveries. In particular, a suspected neutron star in the Cyg X-3 source seems a promising target for the deep underwater array.

  18. Neutrinos: Nature's Identity Thieves?

    SciTech Connect

    Lincoln, Don

    2013-07-11

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  19. Solar neutrinos: Theoretical status

    NASA Astrophysics Data System (ADS)

    Haxton, W. C.

    I review the standard solar model, the disparities between its predictions and the solar neutrino flux measurements of the Homestake and Kamioka 2 collaborations, and possible particle physics resolutions of this puzzle. The effects of matter, including density fluctuations and turbulence, on solar neutrino oscillations are explained by building analogies with more familiar atomic physics phenomena. These and other mechanisms are considered as possible explanations for time variations in the solar neutrino flux. Finally, I consider possible outcomes and implications of the SAGE/GALLEX gallium experiments.

  20. Neutrinos: Nature's Identity Thieves?

    ScienceCinema

    Lincoln, Don

    2014-08-07

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  1. Neutrinos: Nature's Identity Thieves?

    ScienceCinema

    Dr. Don Lincoln

    2013-07-22

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  2. Neutrino Mass Hierarchy and Neutrino Oscillation Parameters with One Hundred Thousand Reactor Events

    NASA Astrophysics Data System (ADS)

    Capozzi, F.; Lisi, E.; Marrone, A.

    High-statistics reactor neutrino experiments at medium baselines will probe mass-mixing parameters governing neutrino oscillations at long wavelength, driven by the (δm2, θ12) and at short wavelength, driven by (Δm2, θ13).The interference between these two oscillations will allow to probe the mass hierarchy. The determination of the neutrino mass spectrum hierarchy, however, will require an unprecedented level of detector performance and collected statistics, and the control of several systematics at (sub)percent level. In this work we perform accurate theoretical calculations of reactor event spectra and refined statistical analyses to show that with O(105) reactor events, a typical sensitivity of ∼ 2σ could be achieved by an experiment such as JUNO. We also show the impact of the energy scale and spectrum shape systematics on the determination of the hierarchy.

  3. Minimal seesaw textures with two heavy neutrinos

    SciTech Connect

    Goswami, Srubabati; Watanabe, Atsushi

    2009-02-01

    We systematically analyze the Dirac and the Majorana mass matrices in seesaw models with two heavy right-handed neutrinos. We perform thorough classification of the vanishing matrix elements which are compatible with the results from the current neutrino oscillation experiments. We include the possibility of a nondiagonal Majorana mass matrix which leads to new solutions viable with data. In a basis where the Majorana mass matrix is diagonal, these solutions imply a Dirac matrix with specific relationships amongst its elements. We find that at the level of total four zeros together in m{sub D} and M{sub R} the mass matrices are almost consistent with the data but one mixing angle is predicted to be unsuitable. At the next level, i.e. with total three zeros, only seven patterns of mass matrices describe the experimental data well. The seven solutions have testable predictions for the future neutrino experiments. In particular, each solution has definite predictions about the observation of the 1-3 leptonic mixing angle and the effective mass measured in neutrinoless double beta decay. The solutions of the mass matrices contain novel texture forms and provide new insights into the lepton-generation structure. We also discuss possible connections between these textures and the tri-bimaximal mixing to search for symmetry principles behind the mass matrix structure.

  4. Measurement of atmospheric neutrino oscillations with IceCube.

    PubMed

    Aartsen, M G; Abbasi, R; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Bechet, S; Becker Tjus, J; Becker, K-H; Bell, M; Benabderrahmane, M L; Benzvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Bertrand, D; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H-P; Brown, A M; Bruijn, R; Brunner, J; Carson, M; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Cruz Silva, A H; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Desiati, P; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Groß, A; Ha, C; Haj Ismail, A; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J-H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Palazzo, A; Paul, L; Pepper, J A; Pérez de los Heros, C; Pfendner, C; Pieloth, D; Pinat, E; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H-G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Wasserman, R; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2013-08-23

    We present the first statistically significant detection of neutrino oscillations in the high-energy regime (>20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010 and 2011. This measurement is made possible by the low-energy threshold of the DeepCore detector (~20 GeV) and benefits from the use of the IceCube detector as a veto against cosmic-ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20-100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV-10 TeV) was extracted from IceCube data to constrain systematic uncertainties. The disappearance of low-energy upward-going muon neutrinos was observed, and the nonoscillation hypothesis is rejected with more than 5σ significance. In a two-neutrino flavor formalism, our data are best described by the atmospheric neutrino oscillation parameters |Δm(32)(2)|=(2.3(-0.5)(+0.6))×10(-3) eV(2) and sin(2)(2θ(23))>0.93, and maximum mixing is favored. PMID:24010427

  5. Particle production with left-right neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Enomoto, Seishi; Matsuda, Tomohiro

    2016-03-01

    When the Higgs field starts oscillation after Higgs inflation, gauge bosons are produced nonperturbatively near the enhanced symmetry point (ESP). Just after the particle production, when the Higgs field is going away from the ESP, these gauge bosons gain mass and decay or annihilate into Standard Model (SM) fermions. Left-handed neutrinos can be generated in that way. If one assumes the seesaw mechanism, the mass matrix of a pair of left- and right-handed neutrinos is nondiagonal. Although their mixing in the mass eigenstates is negligible in the true vacuum, it could be significant near the edge of the Higgs oscillation, where the off-diagonal component is large. Therefore, the left-handed neutrinos generated from the gauge bosons can start neutrino oscillation between the right-handed neutrinos. We study the particle production when such left-right (L-R) neutrino oscillation is significant. For a working example, the nonthermal leptogenesis scenario after Higgs inflation is examined, which cannot be realized without the L-R neutrino oscillation. The same mechanism could be applied to other singlet particles whose abundance has been neglected.

  6. Sterile neutrinos with secret interactions — lasting friendship with cosmology

    SciTech Connect

    Chu, Xiaoyong; Dasgupta, Basudeb; Kopp, Joachim

    2015-10-06

    Sterile neutrinos with mass ≃1 eV and order 10% mixing with active neutrinos have been proposed as a solution to anomalies in neutrino oscillation data, but are tightly constrained by cosmological limits. It was recently shown that these constraints are avoided if sterile neutrinos couple to a new MeV-scale gauge boson A{sup ′}. However, even this scenario is restricted by structure formation constraints when A{sup ′}-mediated collisional processes lead to efficient active-to-sterile neutrino conversion after neutrinos have decoupled. In view of this, we reevaluate in this paper the viability of sterile neutrinos with such “secret” interactions. We carefully dissect their evolution in the early Universe, including the various production channels and the expected modifications to large scale structure formation. We argue that there are two regions in parameter space — one at very small A{sup ′} coupling, one at relatively large A{sup ′} coupling — where all constraints from big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and large scale structure (LSS) data are satisfied. Interestingly, the large A{sup ′} coupling region is precisely the region that was previously shown to have potentially important consequences for the small scale structure of dark matter halos if the A{sup ′} boson couples also to the dark matter in the Universe.

  7. Sterile neutrinos with secret interactions—lasting friendship with cosmology

    NASA Astrophysics Data System (ADS)

    Chu, Xiaoyong; Dasgupta, Basudeb; Kopp, Joachim

    2015-10-01

    Sterile neutrinos with mass simeq 1 eV and order 10% mixing with active neutrinos have been proposed as a solution to anomalies in neutrino oscillation data, but are tightly constrained by cosmological limits. It was recently shown that these constraints are avoided if sterile neutrinos couple to a new MeV-scale gauge boson A'. However, even this scenario is restricted by structure formation constraints when A'-mediated collisional processes lead to efficient active-to-sterile neutrino conversion after neutrinos have decoupled. In view of this, we reevaluate in this paper the viability of sterile neutrinos with such ``secret'' interactions. We carefully dissect their evolution in the early Universe, including the various production channels and the expected modifications to large scale structure formation. We argue that there are two regions in parameter space—one at very small A' coupling, one at relatively large A' coupling—where all constraints from big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and large scale structure (LSS) data are satisfied. Interestingly, the large A' coupling region is precisely the region that was previously shown to have potentially important consequences for the small scale structure of dark matter halos if the A' boson couples also to the dark matter in the Universe.

  8. Light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y. F.; Zavanin, E. M.

    2016-03-01

    The theory and phenomenology of light sterile neutrinos at the eV mass scale is reviewed. The reactor, gallium and Liquid Scintillator Neutrino Detector anomalies are briefly described and interpreted as indications of the existence of short-baseline oscillations which require the existence of light sterile neutrinos. The global fits of short-baseline oscillation data in 3 + 1 and 3 + 2 schemes are discussed, together with the implications for β-decay and neutrinoless double-β decay. The cosmological effects of light sterile neutrinos are briefly reviewed and the implications of existing cosmological data are discussed. The review concludes with a summary of future perspectives. This review is dedicated to the memory of Hai-Wei Long, our dear friend and collaborator, who passed away on 29 May 2015. He was an exceptionally kind person and an enthusiastic physicist. We deeply miss him.

  9. Light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y. F.; Zavanin, E. M.

    2015-03-01

    The theory and phenomenology of light sterile neutrinos at the eV mass scale is reviewed. The reactor, gallium and Liquid Scintillator Neutrino Detector anomalies are briefly described and interpreted as indications of the existence of short-baseline oscillations which require the existence of light sterile neutrinos. The global fits of short-baseline oscillation data in 3 + 1 and 3 + 2 schemes are discussed, together with the implications for β-decay and neutrinoless double-β decay. The cosmological effects of light sterile neutrinos are briefly reviewed and the implications of existing cosmological data are discussed. The review concludes with a summary of future perspectives. This review is dedicated to the memory of Hai-Wei Long, our dear friend and collaborator, who passed away on 29 May 2015. He was an exceptionally kind person and an enthusiastic physicist. We deeply miss him.

  10. Detecting the Neutrino

    NASA Astrophysics Data System (ADS)

    Arns, Robert G.

    In 1930 Wolfgang Pauli suggested that a new particle might be required to make sense of the radioactive-disintegration mode known as beta decay. This conjecture initially seemed impossible to verify since the new particle, which became known as the neutrino, was uncharged, had zero or small mass, and interacted only insignificantly with other matter. In 1951 Frederick Reines and Clyde L. Cowan, Jr., of the Los Alamos Scientific Laboratory undertook the difficult task of detecting the free neutrino by observing its inverse beta-decay interaction with matter. They succeeded in 1956. The neutrino was accepted rapidly as a fundamental particle despite discrepancies in reported details of the experiments and despite the absence of independent verification of the result. This paper describes the experiments, examines the nature of the discrepancies, and discusses the circumstances of the acceptance of the neutrino's detection by the physics community.

  11. ICFA neutrino panel report

    NASA Astrophysics Data System (ADS)

    Long, K.

    2015-07-01

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: "To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments." In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel's findings from the three Regional Town Meetings. The Panel's initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  12. ICFA neutrino panel report

    SciTech Connect

    Long, K.

    2015-07-15

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: <<neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments. >>>In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel’s findings from the three Regional Town Meetings. The Panel’s initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  13. Neutrinos in Cosmology

    SciTech Connect

    Davidson, Sacha

    2008-02-21

    Neutrinos can contribute to various episodes of the evolution of the Universe. For instance, in the seesaw model, they may generate the baryon asymmetry of the Universe via leptogenesis. This conference proceedings briefly reviews lepton flavour effects in thermal leptogenesis.

  14. Neutrino mass hierarchy and three-flavor spectral splits of supernova neutrinos

    SciTech Connect

    Dasgupta, Basudeb; Mirizzi, Alessandro; Tomas, Ricard; Tamborra, Irene

    2010-05-01

    It was recently realized that three-flavor effects could peculiarly modify the development of spectral splits induced by collective oscillations, for supernova neutrinos emitted during the cooling phase of a protoneutron star. We systematically explore this case, explaining how the impact of these three-flavor effects depends on the ordering of the neutrino masses. In inverted mass hierarchy, the solar mass splitting gives rise to instabilities in regions of the (anti)neutrino energy spectra that were otherwise stable under the leading two-flavor evolution governed by the atmospheric mass splitting and by the 1-3 mixing angle. As a consequence, the high-energy spectral splits found in the electron (anti)neutrino spectra disappear, and are transferred to other flavors. Imperfect adiabaticity leads to smearing of spectral swap features. In normal mass hierarchy, the three-flavor and the two-flavor instabilities act in the same region of the neutrino energy spectrum, leading to only minor departures from the two-flavor treatment.

  15. Constraint on neutrino decay with medium-baseline reactor neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Abrahão, Thamys; Minakata, Hisakazu; Nunokawa, Hiroshi; Quiroga, Alexander A.

    2015-11-01

    The experimental bound on lifetime of ν 3, the neutrino mass eigenstate with the smallest ν e component, is much weaker than those of ν 1 and ν 2 by many orders of magnitude to which the astrophysical constraints apply. We argue that the future reactor neutrino oscillation experiments with medium-baseline (˜50 km), such as JUNO or RENO-50, has the best chance of placing the most stringent constraint on ν3 lifetime among all neutrino experiments which utilize the artificial source neutrinos. Assuming decay into invisible states, we show by a detailed χ 2 analysis that the ν 3 lifetime divided by its mass, τ 3 /m 3, can be constrained to be τ 3 /m 3 > 7 .5 (5 .5) × 10-11 s/eV at 95% (99%) C.L. by 100 kt·years exposure by JUNO. It may be further improved to the level comparable to the atmospheric neutrino bound by its longer run. We also discuss to what extent ν 3 decay affects mass-ordering determination and precision measurements of the mixing parameters.

  16. Light sterile neutrinos, spin flavor precession, and the solar neutrino experiments

    NASA Astrophysics Data System (ADS)

    Das, C. R.; Pulido, João; Picariello, Marco

    2009-04-01

    We generalize to three active flavors a previous two-flavor model for the resonant spin flavor conversion of solar neutrinos to sterile ones, a mechanism which is added to the well-known large mixing angle (LMA) one. The transition magnetic moments from the muon and tau neutrinos to the sterile play the dominant role in fixing the amount of active flavor suppression. We also show, through numerical integration of the evolution equations, that the data from all solar neutrino experiments except Borexino exhibit a clear preference for a sizable magnetic field either in the convection zone or in the core and radiation zone. This is possibly related to the fact that the data from the first set are average ones taken during a period of mostly intense solar activity, whereas in contrast Borexino data were taken during a period of quiet Sun. We argue that the solar neutrino experiments are capable of tracing the possible modulation of the solar magnetic field. Those monitoring the high-energy neutrinos, namely, the B8 flux, appear to be sensitive to a field modulation either in the convection zone or in the core and radiation zone. Those monitoring the low-energy fluxes will be sensitive to the second type of solar field profiles only. In this way Borexino alone may play an essential role, since it examines both energy sectors, although experimental redundancy from other experiments will be most important.

  17. Shedding light on neutrino masses with dark forces

    NASA Astrophysics Data System (ADS)

    Batell, Brian; Pospelov, Maxim; Shuve, Brian

    2016-08-01

    Heavy right-handed neutrinos, N , provide the simplest explanation for the origin of light neutrino masses and mixings. If M N is at or below the weak scale, direct experimental discovery of these states is possible at accelerator experiments such as the LHC or new dedicated beam dump experiments; in these experiments, N decays after traversing a macroscopic distance from the collision point. The experimental sensitivity to right-handed neutrinos is significantly enhanced if there is a new "dark" gauge force connecting them to the Standard Model (SM), and detection of N can be the primary discovery mode for the new dark force itself. We take the well-motivated example of a B - L gauge symmetry and analyze the sensitivity to displaced decays of N produced via the new gauge interaction in two experiments: the LHC and the proposed SHiP beam dump experiment. In the most favorable case in which the mediator can be produced on-shell and decays to right handed neutrinos ( pp → X + V B- L → X + N N ), the sensitivity reach is controlled by the square of the B - L gauge coupling. We demonstrate that these experiments could access neutrino parameters responsible for the observed SM neutrino masses and mixings in the most straightforward implementation of the see-saw mechanism.

  18. Cosmological and supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  19. GUT, neutrinos, and baryogenesis

    NASA Astrophysics Data System (ADS)

    Murayama, Hitoshi

    2002-11-01

    It is an exciting time for flavor physics. In this talk, I discuss recent topics in baryogenesis and leptogenesis in light of new data, and implications in B and neutrino physics. I also discuss current situation of grand unified theories concerning coupling unification, proton decay, and indirect consequences in lepton flavor violation and B physics. I explain attempts to understand the origin of flavor based on flavor symmetry, in particular "anarchy" in neutrinos.

  20. Cosmological and supernova neutrinos

    SciTech Connect

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Suzuki, T.

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  1. Neutrinos from GRBs cannonballs

    NASA Astrophysics Data System (ADS)

    Hubbard, J. R.; Ferry, S.

    We present a new estimation of the production of prompt neutrinos in the Cannonball Model of Gamma Ray Bursts proposed by Dar and De Rújula. Interactions between nucleons in the cannonballs and nucleons in the supernova shell are calculated in the rest frame of the shocked matter produced by these interactions. We explore the neutrino yield as a function of the parameters of the model.

  2. Neutrino Interactions with Nuclei

    SciTech Connect

    Leitner, T.; Buss, O.; Mosel, U.; Alvarez-Ruso, L.

    2007-12-21

    We investigate neutrino-nucleus collisions at intermediate energies incorporating quasielastic scattering and the excitation of 13 resonances as elementary processes, taking into account medium effects such as Fermi motion, Pauli blocking, mean-field potentials and in-medium spectral functions. A coupled-channel treatment of final state interactions is achieved with the GiBUU transport model. Results for inclusive reactions, neutrino- and electron-induced, as well as for pion production and nucleon knockout are presented.

  3. Warped flavor symmetry predictions for neutrino physics

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Ding, Gui-Jun; Rojas, Alma D.; Vaquera-Araujo, C. A.; Valle, J. W. F.

    2016-01-01

    A realistic five-dimensional warped scenario with all standard model fields propagating in the bulk is proposed. Mass hierarchies would in principle be accounted for by judicious choices of the bulk mass parameters, while fermion mixing angles are restricted by a Δ(27) flavor symmetry broken on the branes by flavon fields.The latter gives stringent predictions for the neutrino mixing parameters, and the Dirac CP violation phase, all described in terms of only two independent parameters at leading order. The scheme also gives an adequate CKM fit and should be testable within upcoming oscillation experiments.

  4. Neutrinos and SU(3) family gauge symmetry

    SciTech Connect

    Appelquist, Thomas; Bai Yang; Piai, Maurizio

    2006-10-01

    We include the standard model (SM) leptons in a recently proposed framework for the generation of quark mass ratios and Cabibbo-Kobayashi-Maskawa (CKM) mixing angles from a SU(3) family gauge interaction. The set of SM singlet scalar fields describing the spontaneous breaking is the same as employed for the quark sector. The imposition at tree level of the experimentally correct Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix, in the form of a tri-bi maximal structure, fixes several of the otherwise free parameters and renders the model predictive. The normal hierarchy among the neutrino masses emerges from this scheme.

  5. Nonthermal cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Chen, Mu-Chun; Ratz, Michael; Trautner, Andreas

    2015-12-01

    We point out that, for Dirac neutrinos, in addition to the standard thermal cosmic neutrino background (C ν B ), there could also exist a nonthermal neutrino background with comparable number density. As the right-handed components are essentially decoupled from the thermal bath of standard model particles, relic neutrinos with a nonthermal distribution may exist until today. The relic density of the nonthermal (nt) background can be constrained by the usual observational bounds on the effective number of massless degrees of freedom Neff and can be as large as nν nt≲0.5 nγ. In particular, Neff can be larger than 3.046 in the absence of any exotic states. Nonthermal relic neutrinos constitute an irreducible contribution to the detection of the C ν B and, hence, may be discovered by future experiments such as PTOLEMY. We also present a scenario of chaotic inflation in which a nonthermal background can naturally be generated by inflationary preheating. The nonthermal relic neutrinos, thus, may constitute a novel window into the very early Universe.

  6. Neutron star accretion and the neutrino fireball

    SciTech Connect

    Colgate, S.A.; Herant, M.E.; Benz, W.

    1991-11-26

    The mixing necessary to explain the ``Fe`` line widths and possibly the observed red shifts of 1987A is explained in terms of large scale, entropy conserving, up and down flows (calculated with a smooth particle 2-D code) taking place between the neutron star and the explosion shock wave due to the gravity and neutrino deposition. Depending upon conditions of entropy and mass flux further accretion takes place in single events, similar to relaxation oscillator, fed by the downward flows of low entropy matter. The shock, in turn, is driven by the upflow of the buoyant high entropy bubbles. Some accretion events will reach a temperature high enough to create a neutrino ``fireball,`` a region hot enough, 11 Mev, so as to be partially opaque to its own (neutrino) radiation. The continuing neutrino deposition drives the explosion shock until the entropy of matter flowing downwards onto the neutron star is high enough to prevent further accretion. This process should result in a robust supernova explosion.

  7. Sterile neutrinos as subdominant warm dark matter

    SciTech Connect

    Palazzo, A.; Cumberbatch, D.; Slosar, A.; Silk, J.

    2007-11-15

    In light of recent findings which seem to disfavor a scenario with (warm) dark matter entirely constituted of sterile neutrinos produced via the Dodelson-Widrow mechanism, we investigate the constraints attainable for this mechanism by relaxing the usual hypothesis that the relic neutrino abundance must necessarily account for all of the dark matter. We first study how to reinterpret the limits attainable from x-ray nondetection and Lyman-{alpha} forest measurements in the case that sterile neutrinos constitute only a fraction f{sub s} of the total amount of dark matter. Then, assuming that sterile neutrinos are generated in the early universe solely through the Dodelson-Widrow mechanism, we show how the x-ray and Lyman-{alpha} results jointly constrain the mass-mixing parameters governing their production. Furthermore, we show how the same data allow us to set a robust upper limit f{sub s} < or approx. 0.7 at the 2{sigma} level, rejecting the case of dominant dark matter (f{sub s}=1) at the {approx}3{sigma} level.

  8. Status of the Daya Bay Reactor Neutrino Oscillation Experiment

    SciTech Connect

    Daya Bay Collaboration; Lin, Cheng-Ju Stephen

    2010-12-15

    The last unknown neutrino mixing angle theta_13 is one of the fundamental parameters of nature; it is also a crucial parameter for determining the sensitivity of future long-baseline experiments aimed to study CP violation in the neutrino sector. Daya Bay is a reactor neutrino oscillation experiment designed to achieve a sensitivity on the value of sin^2(2*theta_13) to better than 0.01 at 90percent CL. The experiment consists of multiple identical detectors placed underground at different baselines to minimize systematic errors and suppress cosmogenic backgrounds. With the baseline design, the expected anti-neutrino signal at the far site is about 360 events per day and at each of the near sites is about 1500 events per day. An overview and current status of the experiment will be presented.

  9. B-Meson and Neutrino Oscillation: A Unified Treatment

    SciTech Connect

    Kayser, Boris; /Fermilab

    2011-10-01

    We present a unified treatment of the quantum mechanics of B-factory and neutrino oscillation experiments. While our approach obtains the usual phenomenological predictions for these experiments, it does so without having to invoke perplexing Einstein-Podolsky-Rosen correlations or non-intuitive kinematical assumptions. The quantum mechanics of mixing during propagation is at the heart of both B-factory and neutrino oscillation experiments. In this paper, we will treat both these experiments in the same way. Our treatment has several advantages. In dealing with the B-factory experiments, it avoids having to invoke real but nonetheless puzzling Einstein-Podolsky-Rosen correlations. In dealing with neutrino oscillation, our approach avoids the non-intuitive assumption that all the interfering neutrino mass eigenstates in a beam have the same energy.

  10. 7Be Solar Neutrino Measurement with KamLAND

    SciTech Connect

    The KamLAND Collaboration; Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Kishimoto, Y.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakajima, K.; Nakamura, K.; Obata, A.; Oki, A.; Oki, Y.; Otani, M.; Shimizu, I.; Shirai, J.; Suzuki, A.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamada, S.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Grant, C.; Keefer, G.; McKee, D. W.; Piepke, A.; Banks, T. I.; Bloxham, T.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Hsu, L.; Ichimura, K.; Murayama, H.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D.; Mauger, C.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Learned, J. G.; Sakai, M.; Horton-Smith, G. A.; Tang, A.; Downum, K. E.; Tolich, K.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Heeger, K.; Decowski, M. P.

    2014-05-26

    We report a measurement of the neutrino-electron elastic scattering rate of 862 keV {sup 7}Be solar neutrinos based on a 165.4 kton-day exposure of KamLAND. The observed rate is 582{+-}90 (kton day){sup -1}, which corresponds to a 862 keV {sup 7}Be solar neutrino flux of (3.26{+-}0.50) x 10{sup 9} cm{sup -2}s{sup -1}, assuming a pure electron flavor flux. Comparing this flux with the standard solar model prediction and further assuming three flavor mixing, a e survival probability of 0.66{+-}0.14 is determined from the KamLAND data. Utilizing a global three flavor oscillation analysis, we obtain a total {sup 7}Be solar neutrino flux of (5.82{+-}0.98) x 10{sup 9} cm{sup -2}s{sup -1}, which is consistent with the standard solar model predictions.

  11. Neutrino mass matrices with two vanishing elements/cofactors

    NASA Astrophysics Data System (ADS)

    Dev, S.; Singh, Lal; Raj, Desh

    2015-08-01

    We study the phenomenological implications of the recent neutrino data for class B of two texture zeros and two vanishing cofactors for Majorana neutrinos in the flavor basis. We find that the classes () of two texture zeros and the classes () of two vanishing cofactors have similar predictions for neutrino oscillation parameters for the same mass hierarchy. Similar predictions for the classes () of two texture zeros and classes () of two vanishing cofactors are expected. However, a preference for a shift in the quadrant of the Dirac-type CP-violating phase () in contrast to the earlier analysis has been predicted for a relatively large value of the reactor neutrino mixing angle () for class B of two texture zeros and two vanishing cofactors for an inverted mass spectrum. No such shift in the quadrant of has been found for the normal mass spectrum.

  12. Search for neutrino oscillations at the Brookhaven AGS

    SciTech Connect

    Ahrens, L.A.; Aronson, S.H.; Connolly, P.L.; Gibbard, B.G.; Murtagh, M.J.; Murtagh, S.J.; Terada, S.; White, D.H.; Callas, J.L.; Cutts, D.

    1985-02-20

    We report on a search for neutrino oscillations of the type nu/sub ..mu../ ..-->.. nu/sub e/ in a detector located an effective distance of 96m from the neutrino source in the wide band neutrino beam at the Brookhaven AGS. No excess of electron events was observed. The resulting upper limit on the strength of the mixing between nu/sub ..mu../ and nu/sub e/ in the case of large mass difference ..delta..m/sup 2/ = absolute value m/sub 1//sup 2/ - m/sub 2//sup 2/ between the neutrino mass eigenstates m/sub 1/ and m/sub 2/ is sin/sup 2/2..cap alpha.. less than or equal to 3.4 x 10/sup -3/ at 90% CL. The corresponding upper limit for small mass difference is ..delta..m/sup 2/sin2..cap alpha.. < 0.43 eV/sup 2/. 9 refs.

  13. 7Be solar neutrino measurement with KamLAND

    NASA Astrophysics Data System (ADS)

    Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Kishimoto, Y.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakajima, K.; Nakamura, K.; Obata, A.; Oki, A.; Oki, Y.; Otani, M.; Shimizu, I.; Shirai, J.; Suzuki, A.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamada, S.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Grant, C.; Keefer, G.; McKee, D. W.; Piepke, A.; Banks, T. I.; Bloxham, T.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Hsu, L.; Ichimura, K.; Murayama, H.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D.; Mauger, C.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Learned, J. G.; Sakai, M.; Horton-Smith, G. A.; Tang, A.; Downum, K. E.; Tolich, K.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Heeger, K.; Decowski, M. P.; KamLAND Collaboration

    2015-11-01

    We report a measurement of the neutrino-electron elastic scattering rate of 862 keV 7Be solar neutrinos based on a 165.4 kt d exposure of KamLAND. The observed rate is 582 ±94 (kt d)-1, which corresponds to an 862-keV 7Be solar neutrino flux of (3.26 ±0.52 ) ×109cm-2s-1 , assuming a pure electron-flavor flux. Comparing this flux with the standard solar model prediction and further assuming three-flavor mixing, a νe survival probability of 0.66 ±0.15 is determined from the KamLAND data. Utilizing a global three-flavor oscillation analysis, we obtain a total 7Be solar neutrino flux of (5.82 ±1.02 ) ×109cm-2s-1 , which is consistent with the standard solar model predictions.

  14. Electromagnetic properties of massive neutrinos

    SciTech Connect

    Dobrynina, A. A. Mikheev, N. V.; Narynskaya, E. N.

    2013-10-15

    The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

  15. Neutrino experiments: Hierarchy, CP, CPT

    NASA Astrophysics Data System (ADS)

    Gupta, Manmohan; Randhawa, Monika; Singh, Mandip

    2016-07-01

    We present an overview of our recent investigations regarding the prospects of ongoing neutrino experiments as well as future experiments in determining few of the most important unknowns in the field of neutrino physics, specifically the neutrino mass ordering and leptonic CP-violation phase. The effect of matter oscillations on the neutrino oscillation probabilities has been exploited in resolving the degeneracy between the neutrino mass ordering and the CP violation phase in the leptonic sector. Further, we estimate the extent of extrinsic CP and CPT violation in the experiments with superbeams as well as neutrino factories.

  16. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  17. Experimental High Energy Neutrino Astrophysics

    SciTech Connect

    Distefano, Carla

    2005-10-12

    Neutrinos are considered promising probes for high energy astrophysics. More than four decades after deep water Cerenkov technique was proposed to detect high energy neutrinos. Two detectors of this type are successfully taking data: BAIKAL and AMANDA. They have demonstrated the feasibility of the high energy neutrino detection and have set first constraints on TeV neutrino production astrophysical models. The quest for the construction of km3 size detectors have already started: in the South Pole, the IceCube neutrino telescope is under construction; the ANTARES, NEMO and NESTOR Collaborations are working towards the installation of a neutrino telescope in the Mediterranean Sea.

  18. Oscillations of Dirac and Majorana neutrinos in matter and a magnetic field

    SciTech Connect

    Dvornikov, Maxim; Maalampi, Jukka

    2009-06-01

    We study the evolution of massive mixed Dirac and Majorana neutrinos in matter under the influence of a transversal magnetic field. The analysis is based on relativistic quantum mechanics. We solve exactly the evolution equation for relativistic neutrinos, find the neutrino wave functions, and calculate the transition probability for spin-flavor oscillations. We analyze the dependence of the transition probability on the external fields and compare the cases of Dirac and Majorana neutrinos. The evolution of Majorana particles in vacuum is also studied and correction terms to the standard oscillation formula are derived and discussed. As a possible application of our results we discuss the spin-flavor transitions in supernovae.

  19. Majorana phases, CP violation, sterile neutrinos and neutrinoless double-beta decay

    SciTech Connect

    Babič, Andrej; Šimkovic, Fedor

    2013-12-30

    CP violation plays a crucial role in the generation of the baryon asymmetry in the Universe. Within this context we investigate the possibility of CP violation in the lepton sector caused by Majorana neutrino mixing. Focus is put on the model including 1 sterile neutrino. Both cases of normal and inverted neutrino mass spectrum are considered. We address the question whether the Majorana phases can be measured in the neutrinoless double-beta decay experiments with sensitivity to the effective Majorana neutrino mass of the order of 10{sup −2} eV.

  20. Sterile Neutrinos in Non-Standard Cosmologies and Particle Models

    NASA Astrophysics Data System (ADS)

    Osoba, Efunwande

    2010-12-01

    The discovery of neutrino masses suggests that the Standard Model should be supplemented with new gauge-singlet fermions, often called sterile neutrinos. These sterile neutrinos can shed new light on open questions in cosmology. I will highlight some interesting contributions that sterile neutrinos bring to the understanding of cosmology. In this dissertation, I will show a novel way in which sterile neutrinos could be a dark matter candidate in the form of "Inert-Sterile" neutrinos. In usual particle models, sterile neutrinos can account for the dark matter of the Universe only if they have niasses in the keV range and are warm dark matter. Stringent cosmological and astrophysical bounds, in particular imposed by X-ray observations, apply to them. I will point out that in a particular variation of the Inert Doublet Model, sterile neutrinos can account for the dark matter in the Universe and may be either cold or warm dark matter candidates, even for masses much larger than the keV range. These "Inert-Sterile" neutrinos, produced non-thermally in the early Universe, would be stable and have very small couplings to Standard Model particles, rendering very difficult their detection in either direct or indirect dark matter searches. They could be, in principle, revealed in colliders by discovering other particles in the model. I also show how the existence of the sterile neutrino may force us to rethink the standard cosmology. It is commonly assumed that the cosmological and astrophysical bounds on the mixings of sterile with active neutrinos are much more stringent than those obtained from laboratory measurements. In this dissertation, I show that in scenarios with a very low reheating temperature at the end of (the last episode of) inflation or entropy creation, the abundance of heavy (> 1 MeV) sterile neutrinos becomes largely suppressed with respect to that obtained within the standard framework. Thus, in this case cosmological bounds become much less stringent

  1. The next-generation liquid-scintillator neutrino observatory LENA

    NASA Astrophysics Data System (ADS)

    Wurm, Michael; Beacom, John F.; Bezrukov, Leonid B.; Bick, Daniel; Blümer, Johannes; Choubey, Sandhya; Ciemniak, Christian; D'Angelo, Davide; Dasgupta, Basudeb; Derbin, Alexander; Dighe, Amol; Domogatsky, Grigorij; Dye, Steve; Eliseev, Sergey; Enqvist, Timo; Erykalov, Alexey; von Feilitzsch, Franz; Fiorentini, Gianni; Fischer, Tobias; Göger-Neff, Marianne; Grabmayr, Peter; Hagner, Caren; Hellgartner, Dominikus; Hissa, Johannes; Horiuchi, Shunsaku; Janka, Hans-Thomas; Jaupart, Claude; Jochum, Josef; Kalliokoski, Tuomo; Kayunov, Alexei; Kuusiniemi, Pasi; Lachenmaier, Tobias; Lazanu, Ionel; Learned, John G.; Lewke, Timo; Lombardi, Paolo; Lorenz, Sebastian; Lubsandorzhiev, Bayarto; Ludhova, Livia; Loo, Kai; Maalampi, Jukka; Mantovani, Fabio; Marafini, Michela; Maricic, Jelena; Marrodán Undagoitia, Teresa; McDonough, William F.; Miramonti, Lino; Mirizzi, Alessandro; Meindl, Quirin; Mena, Olga; Möllenberg, Randolph; Muratova, Valentina; Nahnhauer, Rolf; Nesterenko, Dmitry; Novikov, Yuri N.; Nuijten, Guido; Oberauer, Lothar; Pakvasa, Sandip; Palomares-Ruiz, Sergio; Pallavicini, Marco; Pascoli, Silvia; Patzak, Thomas; Peltoniemi, Juha; Potzel, Walter; Räihä, Tomi; Raffelt, Georg G.; Ranucci, Gioacchino; Razzaque, Soebur; Rummukainen, Kari; Sarkamo, Juho; Sinev, Valerij; Spiering, Christian; Stahl, Achim; Thorne, Felicitas; Tippmann, Marc; Tonazzo, Alessandra; Trzaska, Wladyslaw H.; Vergados, John D.; Wiebusch, Christopher; Winter, Jürgen

    2012-06-01

    As part of the European LAGUNA design study on a next-generation neutrino detector, we propose the liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) as a multipurpose neutrino observatory. The outstanding successes of the Borexino and KamLAND experiments demonstrate the large potential of liquid-scintillator detectors in low-energy neutrino physics. Low energy threshold, good energy resolution and efficient background discrimination are inherent to the liquid-scintillator technique. A target mass of 50 kt will offer a substantial increase in detection sensitivity. At low energies, the variety of detection channels available in liquid scintillator will allow for an energy - and flavor-resolved analysis of the neutrino burst emitted by a galactic Supernova. Due to target mass and background conditions, LENA will also be sensitive to the faint signal of the Diffuse Supernova Neutrino Background. Solar metallicity, time-variation in the solar neutrino flux and deviations from MSW-LMA survival probabilities can be investigated based on unprecedented statistics. Low background conditions allow to search for dark matter by observing rare annihilation neutrinos. The large number of events expected for geoneutrinos will give valuable information on the abundances of Uranium and Thorium and their relative ratio in the Earth's crust and mantle. Reactor neutrinos enable a high-precision measurement of solar mixing parameters. A strong radioactive or pion decay-at-rest neutrino source can be placed close to the detector to investigate neutrino oscillations for short distances and sub-MeV to MeV energies. At high energies, LENA will provide a new lifetime limit for the SUSY-favored proton decay mode into kaon and antineutrino, surpassing current experimental limits by about one order of magnitude. Recent studies have demonstrated that a reconstruction of momentum and energy of GeV particles is well feasible in liquid scintillator. Monte Carlo studies on the

  2. Supernova heavy element nucleosynthesis: Can it tell us about neutrino masses?

    SciTech Connect

    Fuller, George M.

    1997-05-20

    Here we describe a new probe of neutrino properties based on heavy element nucleosynthesis. This technique is in many ways akin to the familiar light element Primordial Nucleosynthesis probe of conditions in the early universe. Our new probe is based on the fact that neutrino masses and vacuum mixings can engender matter-enhanced neutrino flavor transformation in the post core bounce supernova environment. Transformations of the type {nu}{sub {mu}}{sub (r)}<-->{nu}{sub e} in this site will have significant effects on the synthesis of the rapid neutron capture (r-Process) elements and the light p-nuclei. We suggest that an understanding of the origin of these nuclides, combined with the measured abundances of these species, may provide a ''Rosetta Stone'' for neutrino properties. Heavy element nucleosynthesis abundance considerations give either constraints/evidence for neutrino masses and flavor mixings, or strong constraints on the site of origin of r-Process nucleosynthesis. The putative limits on neutrino characteristics are complimentary to those derived from laboratory neutrino oscillation studies and solar and atmospheric neutrino experiments. Preliminary studies show that the existence of r-Process nuclei in the abundances observed in the Galaxy cannot be understood unless neutrinos have small masses (possibly in the cosmologically significant range)

  3. Neutrino Decay as an Explanation of Atmospheric Neutrino Observations

    SciTech Connect

    Barger, V.; Barger, V.; Learned, J.G.; Pakvasa, S.; Weiler, T.J.

    1999-03-01

    We show that the observed zenith angle dependence of the atmospheric neutrinos can be accounted for by neutrino decay. Furthermore, it is possible to account for all neutrino anomalies with just three flavors. A decay model for Majorana neutrinos appears consistent with big-bang nucleosynthesis and supernova constraints. The decay model is testable in the near future. {copyright} {ital 1999} {ital The American Physical Society}

  4. No-neutrino double beta decay: more than one neutrino

    SciTech Connect

    Rosen, S.P.

    1983-01-01

    Interference effects between light and heavy Majorana neutrinos in the amplitude for no-neutrino double beta decay are discussed. The effects include an upper bound on the heavy neutrino mass, and an A dependence for the effective mass extracted from double beta decay. Thus the search for the no-neutrino decay mode should be pursued in several nuclei, and particularly in Ca/sup 48/, where the effective mass may be quite large.

  5. More is different: Reconciling eV sterile neutrinos with cosmological mass bounds

    NASA Astrophysics Data System (ADS)

    Tang, Yong

    2015-11-01

    It is generally expected that adding light sterile species would increase the effective number of neutrinos, Neff. In this paper we discuss a scenario that Neff can actually decrease due to the neutrino oscillation effect if sterile neutrinos have self-interactions. We specifically focus on the eV mass range, as suggested by the neutrino anomalies. With large self-interactions, sterile neutrinos are not fully thermalized in the early Universe because of the suppressed effective mixing angle or matter effect. As the Universe cools down, flavor equilibrium between active and sterile species can be reached after big bang nucleosynthesis (BBN) epoch, but leading to a decrease of Neff. In such a scenario, we also show that the conflict with cosmological mass bounds on the additional sterile neutrinos can be relaxed further when more light species are introduced. To be consistent with the latest Planck results, at least 3 sterile species are needed.

  6. Atmospheric neutrinos in ice and measurement of neutrino oscillation parameters

    SciTech Connect

    Fernandez-Martinez, Enrique; Giordano, Gerardo; Mocioiu, Irina; Mena, Olga

    2010-11-01

    The main goal of the IceCube Deep Core array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show that the very high statistics atmospheric neutrino data can be used to obtain precise measurements of the main oscillation parameters.

  7. Astrophysical tau neutrinos and their detection by large neutrino telescopes

    SciTech Connect

    Bugaev, E.V.; Montaruli, T.

    2004-06-01

    We present results of the detailed Monte Carlo calculation of the rates of double-bang events in a 1-km{sup 3} underwater neutrino telescope taking into account the effects of {tau}-neutrino propagation through the Earth. As an input, the moderately optimistic theoretical predictions for diffuse neutrino spectra of AGN jets are used.

  8. Birth of Lepton Flavor Mixing

    NASA Astrophysics Data System (ADS)

    Kobayashi, Makoto

    The history of the lepton flavor mixing could be traced back to the early 60s, when Maki, Nakagawa and Sakata (MNS) discussed the neutrino mixing. Their work emerged in the course of the developments of the composite model of elementary particles which was initiated by Sakata. In Sakata's model, the weak interaction of the hadrons can be described by two types of transitions among the fundamental triplet baryons. This pattern of the weak interaction of the hadrons is similar to that of leptons provided that the neutrino consists of a single species. From this similarity, Maki, Nakagawa, Ohnuki and Sakata proposed the so-called Nagoya model, in which the fundamental triplet baryons are regarded as composite states of the leptons and a hypothetical object called B-matter. Although the Nagoya model did not make a remarkable success, when existence of two kinds of neutrinos was discovered in 1962, Maki, Nakagawa and Sakata precisely formulated lepton flavor mixing to associate leptons with the fundamental baryons in the framework of the Nagoya model. To recognize their contributions, the flavor mixing matrix of the lepton sector is called the MNS matrix. See also: M. Kobayashi, "Neutrino mass and mixing -- The beginning and future", Nucl. Phys. B (Proc. Suppl.) Vol. 235-236, (2013), pp. 4-7.

  9. Hadronization processes in neutrino interactions

    NASA Astrophysics Data System (ADS)

    Katori, Teppei; Mandalia, Shivesh

    2015-10-01

    Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modelled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.

  10. Hadronization processes in neutrino interactions

    SciTech Connect

    Katori, Teppei; Mandalia, Shivesh

    2015-10-15

    Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modelled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.

  11. Diluted equilibrium sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Patwardhan, Amol V.; Fuller, George M.; Kishimoto, Chad T.; Kusenko, Alexander

    2015-11-01

    We present a model where sterile neutrinos with rest masses in the range ˜keV to ˜MeV can be the dark matter and be consistent with all laboratory, cosmological, and large-scale structure, as well as x-ray constraints. These sterile neutrinos are assumed to freeze out of thermal and chemical equilibrium with matter and radiation in the very early Universe, prior to an epoch of prodigious entropy generation ("dilution") from out-of-equilibrium decay of heavy particles. In this work, we consider heavy, entropy-producing particles in the ˜TeV to ˜EeV rest-mass range, possibly associated with new physics at high-energy scales. The process of dilution can give the sterile neutrinos the appropriate relic densities, but it also alters their energy spectra so that they could act like cold dark matter, despite relatively low rest masses as compared to conventional dark matter candidates. Moreover, since the model does not rely on active-sterile mixing for producing the relic density, the mixing angles can be small enough to evade current x-ray or lifetime constraints. Nevertheless, we discuss how future x-ray observations, future lepton number constraints, and future observations and sophisticated simulations of large-scale structure could, in conjunction, provide evidence for this model and/or constrain and probe its parameters.

  12. Neutrino physics at muon colliders

    SciTech Connect

    King, B.J.

    1998-03-01

    An overview is given of the neutrino physics potential of future muon storage rings that use muon collider technology to produce, accelerate and store large currents of muons. After a general characterization of the neutrino beam and its interactions, some crude quantitative estimates are given for the physics performance of a muon ring neutrino experiment (MURINE) consisting of a high rate, high performance neutrino detector at a 250 GeV muon collider storage ring.

  13. The Effect of Neutrino Oscillations on Supernova Light Element Synthesis

    SciTech Connect

    Yoshida, Takashi; Kajino, Toshitaka; Yokomakura, Hidekazu; Kimura, Keiichi; Takamura, Akira; Hartmann, Dieter H.

    2006-07-12

    We investigate light element synthesis through the {nu}-process during supernova explosions considering neutrino oscillations and investigate the dependence of 7Li and 11B yields on neutrino oscillation parameters mass hierarchy and {theta}13. The adopted supernova explosion model for explosive nucleosynthesis corresponds to SN 1987A. The 7Li and 11B yields increase by about factors of 1.9 and 1.3 in the case of normal mass hierarchy and adiabatic 13-mixing resonance compared with the case without neutrino oscillations. In the case of inverted mass hierarchy or nonadiabatic 13-mixing resonance, the increase in 7Li and 11B yields is much smaller. Astronomical observations of 7Li/11B ratio in stars formed in regions strongly affected by prior generations of supernovae would constrain mass hierarchy and the range of {theta}13.

  14. Anomaly-free flavor symmetry and neutrino anarchy

    NASA Astrophysics Data System (ADS)

    Berger, M. S.; Siyeon, Kim

    2001-03-01

    We show that one can describe the quark and lepton masses with a single anomaly-free U(1) flavor symmetry provided a single order one parameter is enhanced by roughly 4-5. The flavor symmetry can be seen to arise from inside the E6 symmetry group in such a way that it commutes with the SU(5) grand unified gauge group. The scenario does not distinguish between the left-handed lepton doublets and hence is a model of neutrino anarchy. It can therefore account for the large mixing observed in atmospheric neutrino experiments and predicts that the solar neutrino oscillation data are consistent with the large mixing angle solution of matter-enhanced oscillations.

  15. Anomaly-free flavor symmetry and neutrino anarchy

    SciTech Connect

    Berger, M. S.; Siyeon, Kim

    2001-03-01

    We show that one can describe the quark and lepton masses with a single anomaly-free U(1) flavor symmetry provided a single order one parameter is enhanced by roughly 4--5. The flavor symmetry can be seen to arise from inside the E{sub 6} symmetry group in such a way that it commutes with the SU(5) grand unified gauge group. The scenario does not distinguish between the left-handed lepton doublets and hence is a model of neutrino anarchy. It can therefore account for the large mixing observed in atmospheric neutrino experiments and predicts that the solar neutrino oscillation data are consistent with the large mixing angle solution of matter-enhanced oscillations.

  16. Flavor entanglement in neutrino oscillations in the wave packet description

    NASA Astrophysics Data System (ADS)

    Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2015-10-01

    The wave packet approach to neutrino oscillations provides an enlightening description of quantum decoherence induced, during propagation, by localization effects. Within this approach, we show that a deeper insight into the dynamical aspects of particle mixing can be obtained if one investigates the behavior of quantum correlations associated to flavor oscillations. By identifying the neutrino three-flavor modes with (suitably defined) three-qubit modes, the exploitation of tools of quantum information theory for mixed states allows a detailed analysis of the dynamical behavior of flavor entanglement during free propagation. This provides further elements leading to a more complete understanding of the phenomenon of neutrino oscillations, and a basis for possible applicative implementations. The analysis is carried out by studying the distribution of the flavor entanglement; to this aim, we perform combined investigations of the behaviors of the two-flavor concurrence and of the logarithmic negativities associated with specific bipartitions of the three flavors.

  17. Neutrino sea scope takes shape

    NASA Astrophysics Data System (ADS)

    Cartlidge, Edwin

    2016-03-01

    A consortium of European physicists building a vast neutrino detector on the floor of the Mediterranean Sea has unveiled the science it will carry out. The Cubic Kilometre Neutrino Telescope (KM3NeT) will use strings of radiation detectors arranged in a 3D network to measure the light emitted when neutrinos very occasionally interact with the surrounding sea water.

  18. Gravitational Lensing of Supernova Neutrinos

    SciTech Connect

    Mena, Olga; Mocioiu, Irina; Quigg, Chris; /Fermilab

    2006-10-01

    The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.

  19. Neutrino fluctuat nec mercitur: are fossil neutrinos detectable

    SciTech Connect

    De Rujula, A

    1980-04-01

    A brief report is presented on the question whether light (few eV to approx. 100 eV) neutrinos left over from the big bang are detectable. The answer is perhaps. If the weak current of leptons, like those of quarks, are not diagonal in mass eigenstates, a neutrino will decay into a lighter neutrino and a monochromatic photon. The corresponding photon line may be detectable provided: neutrinos are heavy enough to participate in galaxy clustering and neutrino lifetimes are, as in some weak interaction models, short enough.

  20. Neutrinos in anomaly mediated supersymmetry breaking with R-parity violation

    SciTech Connect

    Campos, F. de; Diaz, M.A.; Lineros, R.A.; Eboli, O.J.P.; Mercadante, P.G.; Magro, M.B.

    2005-03-01

    We show that a supersymmetric standard model exhibiting anomaly mediated supersymmetry breaking can generate naturally the observed neutrino mass spectrum as well mixings when we include bilinear R-parity violation interactions. In this model, one of the neutrinos gets its mass due to the tree-level mixing with the neutralinos induced by the R-parity violating interactions while the other two neutrinos acquire their masses due to radiative corrections. One interesting feature of this scenario is that the lightest supersymmetric particle is unstable and its decay can be observed at high energy colliders, providing a falsifiable test of the model.

  1. Interpretation of neutrino flux limits from neutrino telescopes on the Hillas plot

    NASA Astrophysics Data System (ADS)

    Winter, Walter

    2012-01-01

    We discuss the interplay between spectral shape and detector response beyond a simple E-2 neutrino flux at neutrino telescopes, using the example of time-integrated point source searches using IceCube-40 data. We use a self-consistent model for the neutrino production, in which protons interact with synchrotron photons from coaccelerated electrons, and we fully take into account the relevant pion and kaon production modes, the flavor composition at the source, flavor mixing, and magnetic field effects on the secondaries (pions, muon, and kaons). Since some of the model parameters can be related to the Hillas parameters R (size of the acceleration region) and B (magnetic field), we relate the detector response to the Hillas plane. In order to compare the response to different spectral shapes, we use the energy flux density as a measure for the pion production efficiency times luminosity of the source. We demonstrate that IceCube has a very good reach in this quantity for active galactic nuclei and jets for all source declinations, while the spectra of sources with strong magnetic fields are found outside the optimal reach. We also demonstrate where neutrinos from kaon decays and muon tracks from τ decays can be relevant for the detector response. Finally, we point out the complementarity between IceCube and other experiments sensitive to high-energy neutrinos, using the example of 2004-2008 Earth-skimming neutrino data from Auger. We illustrate that Auger, in principle, is more sensitive to the parameter region in the Hillas plane from which the highest-energetic cosmic rays may be expected in this model.

  2. Unitarity constraints on trimaximal mixing

    SciTech Connect

    Kumar, Sanjeev

    2010-07-01

    When the neutrino mass eigenstate {nu}{sub 2} is trimaximally mixed, the mixing matrix is called trimaximal. The middle column of the trimaximal mixing matrix is identical to tribimaximal mixing and the other two columns are subject to unitarity constraints. This corresponds to a mixing matrix with four independent parameters in the most general case. Apart from the two Majorana phases, the mixing matrix has only one free parameter in the CP conserving limit. Trimaximality results in interesting interplay between mixing angles and CP violation. A notion of maximal CP violation naturally emerges here: CP violation is maximal for maximal 2-3 mixing. Similarly, there is a natural constraint on the deviation from maximal 2-3 mixing which takes its maximal value in the CP conserving limit.

  3. Precision Measurement of the Beryllium-7 Solar Neutrino Interaction Rate in Borexino

    NASA Astrophysics Data System (ADS)

    Saldanha, Richard Nigel

    Solar neutrinos, since their first detection nearly forty years ago, have revealed valuable information regarding the source of energy production in the Sun, and have demonstrated that neutrino oscillations are well described by the Large Mixing Angle (LMA) oscillation parameters with matter interactions due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. This thesis presents a precision measurement of the 7Be solar neutrino interaction rate within Borexino, an underground liquid scintillator detector that is designed to measure solar neutrino interactions through neutrino-electron elastic scattering. The thesis includes a detailed description of the analysis techniques developed and used for this measurement as well as an evaluation of the relevant systematic uncertainties that affect the precision of the result. The rate of neutrino-electron elastic scattering from 0.862 MeV 7Be neutrinos is determined to be 45.4 +/- 1.6 (stat) +/- 1.5 (sys) counts/day/100 ton. Due to extensive detector calibrations and improved analysis methods, the systematic uncertainty in the interaction rate has been reduced by more than a factor of two from the previous evaluation. In the no-oscillation hypothesis, the interaction rate corresponds to a 0.862 MeV 7Be electron neutrino flux of (2.75 +/- 0.13) x 10 9 cm-2 sec-1. Including the predicted neutrino flux from the Standard Solar Model yields an electron neutrino survival probability of Pee 0.51 +/- 0.07 and rules out the no-oscillation hypothesis at 5.1sigma The LMA-MSW neutrino oscillation model predicts a transition in the solar Pee value between low (< 1 MeV) and high (> 10 MeV) energies which has not yet been experimentally confirmed. This result, in conjunction with the Standard Solar Model, represents the most precise measurement of the electron neutrino survival probability for solar neutrinos at sub-MeV energies.

  4. Direct Neutrino Mass Experiments

    NASA Astrophysics Data System (ADS)

    Mertens, Susanne

    2016-05-01

    With a mass at least six orders of magnitudes smaller than the mass of an electron – but non-zero – neutrinos are a clear misfit in the Standard Model of Particle Physics. On the one hand, its tiny mass makes the neutrino one of the most interesting particles, one that might hold the key to physics beyond the Standard Model. On the other hand this minute mass leads to great challenges in its experimental determination. Three approaches are currently pursued: An indirect neutrino mass determination via cosmological observables, the search for neutrinoless double β-decay, and a direct measurement based on the kinematics of single β-decay. In this paper the latter will be discussed in detail and the status and scientific reach of the current and near-future experiments will be presented.

  5. Cosmology and neutrino physics

    NASA Astrophysics Data System (ADS)

    Steigman, Gary

    1982-05-01

    Constraints on cosmology and on neutrino physics are provided by the abundances of the light elements produced during the early evolution of the universe. The predictions of primordial nucleosynthesis depend on the nucleon to photon ratio ɛ and on the number of types of two component neutrinos Nν. A comparison between the big bang predictions and the observed abundances of D, 3He, 4He and 7Li shows that ɛ is constrained to a narrow range around 4×10-10 and Nν<~4. An important consequence of the derived value of ɛ is that the universal density of nucleon is small, raising the possibility that our Universe may be dominated by massive relic neutrinos. The constraint on Nn suggests that (almost) all lepton species are now known.

  6. Phenomenology of atmospheric neutrinos

    NASA Astrophysics Data System (ADS)

    Fedynitch, Anatoli

    2016-04-01

    The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  7. Probing Late Neutrino Mass Properties With SupernovaNeutrinos

    SciTech Connect

    Baker, Joseph; Goldberg, Haim; Perez, Gilad; Sarcevic, Ina

    2007-08-08

    Models of late-time neutrino mass generation contain new interactions of the cosmic background neutrinos with supernova relic neutrinos (SRNs). Exchange of an on-shell light scalar may lead to significant modification of the differential SRN flux observed at earth. We consider an Abelian U(1) model for generating neutrino masses at low scales, and show that there are cases for which the changes induced in the flux allow one to distinguish the Majorana or Dirac nature of neutrinos, as well as the type of neutrino mass hierarchy (normal or inverted or quasi-degenerate). In some region of parameter space the determination of the absolute values of the neutrino masses is also conceivable. Measurements of the presence of these effects may be possible at the next-generation water Cerenkov detectors enriched with Gadolinium, or a 100 kton liquid argon detector.

  8. The neutrino signal at HALO: learning about the primary supernova neutrino fluxes and neutrino properties

    SciTech Connect

    Väänänen, Daavid; Volpe, Cristina E-mail: volpe@ipno.in2p3.fr

    2011-10-01

    Core-collapse supernova neutrinos undergo a variety of phenomena when they travel from the high neutrino density region and large matter densities to the Earth. We perform analytical calculations of the supernova neutrino fluxes including collective effects due to the neutrino-neutrino interactions, the Mikheev-Smirnov-Wolfenstein (MSW) effect due to the neutrino interactions with the background matter and decoherence of the wave packets as they propagate in space. We predict the numbers of one- and two-neutron charged and neutral-current electron-neutrino scattering on lead events. We show that, due to the energy thresholds, the ratios of one- to two-neutron events are sensitive to the pinching parameters of neutrino fluxes at the neutrinosphere, almost independently of the presently unknown neutrino properties. Besides, such events have an interesting sensitivity to the spectral split features that depend upon the presence/absence of energy equipartition among neutrino flavors. Our calculations show that a lead-based observatory like the Helium And Lead Observatory (HALO) has the potential to pin down important characteristics of the neutrino fluxes at the neutrinosphere, and provide us with information on the neutrino transport in the supernova core.

  9. Relic neutrinos: Physically consistent treatment of effective number of neutrinos and neutrino mass

    NASA Astrophysics Data System (ADS)

    Birrell, Jeremiah; Rafelski, Johann

    2014-03-01

    It is well known that the effective number of cosmic neutrinos, Nν, is larger than the standard model number of neutrino flavors Nνf = 3 due a small flow of entropy into neutrinos from e +/- annihilation. Observational bounds from both BBN and the CMB suggest a value of Nν that is larger than the current theoretical prediction of Nν = 3 . 046 . We show in a model independent way how Nν relates to the neutrino kinetic freeze-out temperature, Tk, which we treat as parameter. We derive the relations that must hold between Nν, the photon to neutrino temperature ratio, the neutrino fugacity, and Tk. Our results imply that measurement of neutrino reheating, as characterized by Nν, amounts to the determination of Tk. We follow the free streaming neutrinos down to a temperature on the order of the neutrino mass and determine how the cosmic neutrino properties i.e. energy density, pressure, particle density, depend in a physically consistent way on both neutrino mass and Nν. We continue down to the present day temperature and characterize the neutrino distribution in this regime as well. See arXiv:1212.6943, PRD in press. This work has been supported by a grant from the U.S. Department of Energy, No. DE-FG02-04ER41318 and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  10. Are neutrinos their own antiparticles?

    SciTech Connect

    Kayser, Boris; /Fermilab

    2009-03-01

    We explain the relationship between Majorana neutrinos, which are their own antiparticles, and Majorana neutrino masses. We point out that Majorana masses would make the neutrinos very distinctive particles, and explain why many theorists strongly suspect that neutrinos do have Majorana masses. The promising approach to confirming this suspicion is to seek neutrinoless double beta decay. We introduce a toy model that illustrates why this decay requires nonzero neutrino masses, even when there are both right-handed and left-handed weak currents.

  11. Panel Discussion v: Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Obraztsov, Vladimir; Konaka, Akira; Ikeda, Motoyasu; Jediny, Filip; Shirokov, Evgeny; Kalekin, Oleg; Palomares-Ruiz, Sergio

    2015-06-01

    Questions to discuss: * Can sidereal time analysis of the long time neutrino observations give information about the galaxy distribution in the Local Universe? * How well do we need to know the PMNS matrix elements? * Is the existence of MSW effect proved experimentally? * Are there new species of neutrino (e.g. the sterile one)? * What are other most important problems in neutrino physics (CP-violation)? * Can sidereal time analysis of the long time neutrino observations give information about the galaxy distribution in the Local Universe? * Perspectives of existing and future neutrino experiments (LNBF, LAGUNA, ICARUS, SHIP ...)

  12. Atmospheric neutrinos: Status and prospects

    NASA Astrophysics Data System (ADS)

    Choubey, Sandhya

    2016-07-01

    We present an overview of the current status of neutrino oscillation studies at atmospheric neutrino experiments. While the current data gives some tantalising hints regarding the neutrino mass hierarchy, octant of θ23 and δCP, the hints are not statistically significant. We summarise the sensitivity to these sub-dominant three-generation effects from the next-generation proposed atmospheric neutrino experiments. We next present the prospects of new physics searches such as non-standard interactions, sterile neutrinos and CPT violation studies at these experiments.

  13. NOνA Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Jediny, Filip

    2015-06-01

    The NOνA experiment is a long-baseline accelerator-based neutrino oscillation experiment. It uses the upgraded NuMI beam from Fermilab and measures electron-neutrino appearance and muon-neutrino disappearance at its far detector in Ash River, Minnesota. Goals of the experiment include measurements of θ13, mass hierarchy and the CP violating phase. NOνA has begun to take neutrino data and first neutrino candidates are observed in its detectors. This document provides an overview of the scientific reach of the experiment, the status of detector operation and physics analysis, as well as the first data.

  14. Solar Neutrinos. II. Experimental

    DOE R&D Accomplishments Database

    Davis, Raymond Jr.

    1964-01-01

    A method is described for observing solar neutrinos from the reaction Cl{sup 37}(nu,e{sup -})Ar{sup 37} in C{sub 2}Cl{sub 4}. Two 5 00-gal tanks of C{sub 2}Cl{sub 4} were placed in a limestone mine (1800 m.w.e.) and the resulting Ar{sup 37} activity induced by cosmic mesons( mu ) was measured to determine the necessary conditions for solar neutrino observations. (R.E.U.)

  15. DESIGN OF THE BNL SUPER NEUTRINO BEAM FACILITY

    SciTech Connect

    WENG, W.T.; ALESSI, J.; BEAVIS, D. ET AL.

    2004-03-22

    A very long base line super neutrino beam facility is need to determine the neutrino mixing amplitudes and phase accurately, as well as the CP violation parameters. This is possible due to the long distance and wideband nature of the neutrino beam for the observation of several oscillations from one species of the neutrino to the other. BNL plans to upgrade the AGS proton beam from the current 0.14 MW to higher than 1.0 MW and beyond for such a neutrino facility which consists of three major subsystems. First is a 1.2 GeV superconducting linac to replace the booster as injector for the AGS, second is the performance upgrade for the AGS itself for the higher intensity and repetition rate, and finally is target and horn system for the neutrino production. The major contribution for the higher power is from the increase of the repetition rate of the AGS form 0.3 Hz to 2.5 Hz, with moderate increase from the intensity. The design consideration to achieve high intensity and low losses for the linac and the AGS will be reviewed. The target horn design for high power operation and easy maintenance will also be presented.

  16. Remarks on models with singlet neutrino in large extra dimensions*

    NASA Astrophysics Data System (ADS)

    Agashe, K.; Wu, G.-H.

    2001-01-01

    Small Dirac masses for neutrinos are natural in models with singlet fermions in large extra dimensions with quantum gravity scale M*~1-100 TeV. We study two modifications of the minimal model in order to obtain the mass scale relevant for atmospheric neutrino oscillations with at most /O(1) higher-dimensional Yukawa couplings and with M*~ a few TeV. (1) In models with singlet fermions in smaller number of extra dimensions than gravity, we find that the effects on BR/(μ-->eγ) and on charged-current universality in π--->eν¯,μν¯ decays are suppressed as compared to that in the minimal model with neutrino and gravity in the same space. (2) If small Dirac masses for the singlets are added along with lepton number violating couplings, then the mass scales and mixing angles for neutrino oscillations can be different from those relevant for /μ-->eγ and π--->eν¯,μν¯. Thus, in both modified models the constraints on M* from BR/(μ-->eγ) and π--->eν¯,μν¯ decays can be significantly relaxed. Furthermore, constraints from supernova /1987a strongly disfavor oscillations of active neutrinos to sterile neutrinos in both the minimal and the modified models.

  17. The Final Results from the Sudbury Neutrino Observatory

    ScienceCinema

    None

    2011-04-25

    The Sudbury Neutrino Observatory (SNO) was a water Cherenkov detector dedicated to investigate elementary particles called neutrinos. It successfully took data between 1999 and 2006. The detector was unique in its use of heavy water as a detection medium, permitting it to make a solar model-independent test of solar neutrino mixing. In fact, SNO conclusively showed that solar neutrinos oscillate on their way from the core of the Sun to the Earth. This groundbreaking observation was made during three independent phases of the experiment. Even if data taking ended, SNO is still in a mode of precise determination of the solar neutrino oscillation parameters because all along SNO had developed several methods to tell charged-current events apart from neutral-current events. This ability is crucial for the final and ultimate data analysis of all the phases. The physics reach of a combined three-phase solar analysis will be reviewed together with results and subtleties about solar neutrino physics.

  18. First indication of terrestrial matter effects on solar neutrino oscillation.

    PubMed

    Renshaw, A; Abe, K; Hayato, Y; Iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Tomura, T; Ueno, K; Yokozawa, T; Wendell, R A; Irvine, T; Kajita, T; Kaneyuki, K; Lee, K P; Nishimura, Y; Okumura, K; McLachlan, T; Labarga, L; Berkman, S; Tanaka, H A; Tobayama, S; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Goldhabar, M; Bays, K; Carminati, G; Kropp, W R; Mine, S; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Hong, N; Kim, J Y; Lim, I T; Akiri, T; Himmel, A; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Jang, J S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Bronner, C; Hirota, S; Huang, K; Ieki, K; Ikeda, M; Kikawa, T; Minamino, A; Nakaya, T; Suzuki, K; Takahashi, S; Fukuda, Y; Choi, K; Itow, Y; Mitsuka, G; Mijakowski, P; Hignight, J; Imber, J; Jung, C K; Yanagisawa, C; Ishino, H; Kibayashi, A; Koshio, Y; Mori, T; Sakuda, M; Yano, T; Kuno, Y; Tacik, R; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Yokoyama, M; Martens, K; Marti, Ll; Vagins, M R; Martin, J F; de Perio, P; Konaka, A; Wilking, M J; Chen, S; Zhang, Y; Wilkes, R J

    2014-03-01

    We report an indication that the elastic scattering rate of solar B8 neutrinos with electrons in the Super-Kamiokande detector is larger when the neutrinos pass through Earth during nighttime. We determine the day-night asymmetry, defined as the difference of the average day rate and average night rate divided by the average of those two rates, to be [-3.2 ± 1.1(stat) ± 0.5(syst)]%, which deviates from zero by 2.7 σ. Since the elastic scattering process is mostly sensitive to electron-flavored solar neutrinos, a nonzero day-night asymmetry implies that the flavor oscillations of solar neutrinos are affected by the presence of matter within the neutrinos' flight path. Super-Kamiokande's day-night asymmetry is consistent with neutrino oscillations for 4 × 10(-5)  eV(2) ≤ Δm 2(21) ≤ 7 × 10(-5) eV(2) and large mixing values of θ12, at the 68% C.L. PMID:24655245

  19. A combined limit on the neutrino mass from neutrinoless double-beta decay searches in multiple isotopes

    NASA Astrophysics Data System (ADS)

    Guzowski, P.

    2016-05-01

    We set a combined limit on the effective Majorana neutrino mass mββ from experimental searches for neutrinoless double-beta decay of multiple isotopes. The limits on mββ range between 130-310 meV, depending on the choice of nuclear matrix element calculation. The limits on mββ can also be translated into a limit on the neutrino mass and mixing parameters of a fourth sterile neutrino.

  20. Sterile Neutrino Search with MINOS

    SciTech Connect

    Devan, Alena V.

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  1. Sterile Neutrino Search with MINOS

    NASA Astrophysics Data System (ADS)

    Devan, Alena V.

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Amt. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, Delta m2s 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  2. Experimental data on solar neutrinos

    NASA Astrophysics Data System (ADS)

    Ludhova, Livia

    2016-04-01

    Neutrino physics continues to be a very active research field, full of opened fundamental questions reaching even beyond the Standard Model of elementary particles and towards a possible new physics. Solar neutrinos have played a fundamental historical role in the discovery of the phenomenon of neutrino oscillations and thus non-zero neutrino mass. Even today, the study of solar neutrinos provides an important insight both into the neutrino as well as into the stellar and solar physics. In this section we give an overview of the most important solar-neutrino measurements from the historical ones up to the most recent ones. We cover the results from the experiments using radio-chemic (Homestake, SAGE, GNO, GALLEX), water Cherenkov (Kamiokande, Super-Kamiokande, SNO), and the liquid-scintillator (Borexino, KamLAND) detection techniques.

  3. Ultrahigh-energy neutrino scattering

    NASA Astrophysics Data System (ADS)

    Kuroda, Masaaki; Schildknecht, Dieter

    2013-09-01

    We predict the neutrino-nucleon cross section at ultrahigh energies relevant in connection with the search for high-energy cosmic neutrinos. Our investigation, employing the color-dipole picture, among other things, allows us to quantitatively determine which fraction of the ultrahigh-energy neutrino-nucleon cross section stems from the saturation vs the color-transparency region. We disagree with various results in the literature that predict a strong suppression of the neutrino-nucleon cross section at neutrino energies above E≅109GeV. Suppression in the sense of a diminished increase of the neutrino-nucleon cross section with energy only starts to occur at neutrino energies beyond E≅1014GeV.

  4. Chaos, determinacy and fractals in active-sterile neutrino oscillations in the early universe

    SciTech Connect

    Abazajian, Kevork N; Agrawal, Prateek E-mail: apr@umd.edu

    2008-10-15

    The possibility of light sterile neutrinos allows for the resonant production of lepton number in the early universe through matter-affected neutrino mixing. For a given mixing of the active and sterile neutrino states it has been found that the lepton number generation process is chaotic and strongly oscillatory. We undertake a new study of the sensitivity of this process to initial conditions through the quantum rate equations. We confirm the chaoticity of the process in this solution, and moreover find that the resultant lepton number and the sign of the asymmetry produce a fractal in the parameter space of mass, mixing angle and initial baryon number. This has implications for future searches for sterile neutrinos, where arbitrarily high sensitivity may not be determinate in forecasting the lepton number of the universe.

  5. 3+2 neutrino scheme from a singular double seesaw mechanism

    SciTech Connect

    McDonald, K.L.; McKellar, B.H.J.; Mastrano, A.

    2004-09-01

    We obtain a 3+2 neutrino spectrum within a left-right symmetric framework by invoking a singular double seesaw mechanism. Higgs doublets are employed to break SU{sub R}(2) and three additional fermions, singlets under the left-right symmetric gauge group, are included. The introduction of a singularity into the singlet fermion Majorana mass matrix results in a light neutrino sector of three neutrinos containing predominantly {nu}{sub {alpha}}{sub L}, {alpha}=e,{mu},{tau}, separated from two neutrinos containing a small {nu}{sub {alpha}}{sub L} component. The resulting active-sterile mixing in the 5x5 mixing matrix is specified once the mass eigenvalues and the 3x3 submatrix corresponding to the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix are known.

  6. Self-induced conversion in dense neutrino gases: Pendulum in flavor space

    SciTech Connect

    Hannestad, Steen; Raffelt, Georg G.; Wong, Yvonne Y. Y.; Sigl, Guenter

    2006-11-15

    Neutrino-neutrino interactions can lead to collective flavor conversion effects in supernovae and in the early universe. We demonstrate that the case of bipolar oscillations, where a dense gas of neutrinos and antineutrinos in equal numbers completely converts from one flavor to another even if the mixing angle is small, is equivalent to a pendulum in flavor space. Bipolar flavor conversion corresponds to the swinging of the pendulum, which begins in an unstable upright position (the initial flavor), and passes through momentarily the vertically downward position (the other flavor) in the course of its motion. The time scale to complete one cycle of oscillation depends logarithmically on the vacuum mixing angle. Likewise, the presence of an ordinary medium can be shown analytically to contribute to a logarithmic increase in the bipolar conversion period. We further find that a more complex (and realistic) system of unequal numbers of neutrinos and antineutrinos is analogous to a spinning top subject to a torque. This analogy easily explains how such a system can oscillate in both the bipolar and the synchronized mode, depending on the neutrino density and the size of the neutrino-antineutrino asymmetry. Our simple model applies strictly only to isotropic neutrino gasses. In more general cases, and especially for neutrinos streaming from a supernova core, different modes couple to each other with unequal strength, an effect that can lead to kinematical decoherence in flavor space rather than collective oscillations. The exact circumstances under which collective oscillations occur in nonisotropic media remain to be understood.

  7. Three twin neutrinos: Evidence from LSND and MiniBooNE

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Lu, Ran; Lu, Sida; Salvado, Jordi; Stefanek, Ben A.

    2016-04-01

    We construct a neutrino model of three twin neutrinos in light of the neutrino appearance excesses at LSND and MiniBooNE. The model, which includes a twin parity, naturally predicts identical lepton Yukawa structures in the Standard Model and the twin sectors. As a result, a universal mixing angle controls all three twin neutrino couplings to the Standard Model charged leptons. This mixing angle is predicted to be the ratio of the electroweak scale over the composite scale of the Higgs boson and has the right order of magnitude to fit the data. The heavy twin neutrinos decay within the experimental lengths into active neutrinos plus a long-lived Majoron and can provide a good fit, at around the 4 σ confidence level, to the LSND and MiniBooNE appearance data while simultaneously satisfying the disappearance constraints. For the Majorana neutrino case, the fact that neutrinos have a larger scattering cross section than antineutrinos provides a natural explanation to MiniBooNE's observation of a larger antineutrino appearance excess.

  8. Neutrino flux predictions for cross section measurements

    SciTech Connect

    Hartz, Mark

    2015-05-15

    Experiments that measure neutrino interaction cross sections using accelerator neutrino sources require a prediction of the neutrino flux to extract the interaction cross section from the measured neutrino interaction rate. This article summarizes methods of estimating the neutrino flux using in-situ and ex-situ measurements. The application of these methods by current and recent experiments is discussed.

  9. Neutrino Factory Downstream Systems

    SciTech Connect

    Zisman, Michael S.

    2009-12-23

    We describe the Neutrino Factory accelerator systems downstream from the target and capture area. These include the bunching and phase rotation, cooling, acceleration, and decay ring systems. We also briefly discuss the R&D program under way to develop these systems, and indicate areas where help from CERN would be invaluable.

  10. Long Baseline Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Mezzetto, Mauro

    2016-05-01

    Following the discovery of neutrino oscillations by the Super-Kamiokande collaboration, recently awarded with the Nobel Prize, two generations of long baseline experiments had been setup to further study neutrino oscillations. The first generation experiments, K2K in Japan, Minos in the States and Opera in Europe, focused in confirming the Super-Kamiokande result, improving the precision with which oscillation parameters had been measured and demonstrating the ντ appearance process. Second generation experiments, T2K in Japan and very recently NOνA in the States, went further, being optimized to look for genuine three neutrino phenomena like non-zero values of θ13 and first glimpses to leptonic CP violation (LCPV) and neutrino mass ordering (NMO). The discovery of leptonic CP violation will require third generation setups, at the moment two strong proposals are ongoing, Dune in the States and Hyper-Kamiokande in Japan. This review will focus a little more in these future initiatives.

  11. Supernovae and neutrinos

    SciTech Connect

    John F. Beacom

    2002-09-19

    A long-standing problem in supernova physics is how to measure the total energy and temperature of {nu}{sub {mu}}, {nu}{sub {tau}}, {bar {nu}}{sub {mu}}, and {bar {nu}}{sub {tau}}. While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, {nu} + p {yields} {nu} + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with T{sub p} {approx_equal} 2E{sub {nu}}{sup 2}/M{sub p}, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from {bar {nu}}{sub e} + p {yields} e{sup +} + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.

  12. Production of heavy neutrino in next-to-leading order QCD at the LHC and beyond

    NASA Astrophysics Data System (ADS)

    Das, Arindam; Konar, Partha; Majhi, Swapan

    2016-06-01

    Majorana and pseudo-Dirac heavy neutrinos are introduced into the type-I and inverse seesaw models, respectively, in explaining the naturally small neutrino mass. TeV scale heavy neutrinos can also be accommodated to have a sizable mixing with the Standard Model light neutrinos, through which they can be produced and detected at the high energy colliders. In this paper we consider the Next-to-Leading Order QCD corrections to the heavy neutrino production, and study the scale variation in cross-sections as well as the kinematic distributions with different final states at 14 TeV LHC and also in the context of 100 TeV hadron collider. The repertoire of the Majorana neutrino is realized through the characteristic signature of the same-sign dilepton pair, whereas, due to a small lepton number violation, the pseudo-Dirac heavy neutrino can manifest the trileptons associated with missing energy in the final state. Using the √{s}=8 TeV, 20 .3 fb-1 and 19 .7 fb-1 data at the ATLAS and CMS respectively, we obtain prospective scale dependent upper bounds of the light-heavy neutrino mixing angles for the Majorana heavy neutrinos at the 14 TeV LHC and 100 TeV collider. Further exploiting a recent study on the anomalous multilepton search by CMS at √{s}=8 TeV with 19 .5 fb-1 data, we also obtain the prospective scale dependent upper bounds on the mixing angles for the pseudo-Dirac neutrinos. We thus project a scale dependent prospective reach using the NLO processes at the 14 TeV LHC.

  13. First Evidence of pep Solar Neutrinos by Direct Detection in Borexino

    NASA Astrophysics Data System (ADS)

    Bellini, G.; Benziger, J.; Bick, D.; Bonetti, S.; Bonfini, G.; Bravo, D.; Buizza Avanzini, M.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Etenko, A.; Fomenko, K.; Franco, D.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Grandi, L.; Guardincerri, E.; Hardy, S.; Ianni, Aldo; Ianni, Andrea; Korablev, D.; Korga, G.; Koshio, Y.; Kryn, D.; Laubenstein, M.; Lewke, T.; Litvinovich, E.; Loer, B.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Meindl, Q.; Meroni, E.; Miramonti, L.; Misiaszek, M.; Montanari, D.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Quirk, J.; Raghavan, R. S.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Sabelnikov, A.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; von Feilitzsch, F.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Xu, J.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.

    2012-02-01

    We observed, for the first time, solar neutrinos in the 1.0-1.5 MeV energy range. We determined the rate of pep solar neutrino interactions in Borexino to be 3.1±0.6stat±0.3systcounts/(day·100ton). Assuming the pep neutrino flux predicted by the standard solar model, we obtained a constraint on the CNO solar neutrino interaction rate of <7.9counts/(day·100ton) (95% C.L.). The absence of the solar neutrino signal is disfavored at 99.97% C.L., while the absence of the pep signal is disfavored at 98% C.L. The necessary sensitivity was achieved by adopting data analysis techniques for the rejection of cosmogenic C11, the dominant background in the 1-2 MeV region. Assuming the Mikheyev-Smirnov-Wolfenstein large mixing angle solution to solar neutrino oscillations, these values correspond to solar neutrino fluxes of (1.6±0.3)×108cm-2s-1 and <7.7×108cm-2s-1 (95% C.L.), respectively, in agreement with both the high and low metallicity standard solar models. These results represent the first direct evidence of the pep neutrino signal and the strongest constraint of the CNO solar neutrino flux to date.

  14. Predicting leptonic CP phase by considering deviations in charged lepton and neutrino sectors

    NASA Astrophysics Data System (ADS)

    Sruthilaya, M.; Soumya, C.; Deepthi, K. N.; Mohanta, R.

    2015-08-01

    Recently, the reactor mixing angle {θ }13 has been measured precisely by Daya Bay, RENO, and T2K experiments with a moderately large value. However, the standard form of neutrino mixing patterns such as bimaximal, tri-bimaximal, golden ratio of types A and B, hexagonal, etc., which are based on certain flavor symmetries, predict vanishing {θ }13. Using the fact that the neutrino mixing matrix can be represented as {V}{PMNS}={U}l\\dagger {U}ν {P}ν , where Ul and {U}ν result from the diagonalization of the charged lepton and neutrino mass matrices and {P}ν is a diagonal matrix containing Majorana phases, we explore the possibility of accounting for the large reactor mixing angle by considering deviations both in the charged lepton and neutrino sector. In the charged lepton sector we consider the deviation as an additional rotation in the (12) and (13) planes, whereas in the neutrino sector we consider deviations to various neutrino mixing patterns through (13) and (23) rotations. We find that with the inclusion of these deviations it is possible to accommodate the observed large reactor mixing angle {θ }13, and one can also obtain limits on the charge-conjugation parity-violating Dirac phase{δ }{CP} and Jarlskog invariant JCP for most of the cases. We then explore whether our findings can be tested in the currently running NuMI Off-axis ve Appearance experiment with three years of data taking in neutrino mode followed by three years with the anti-neutrino mode.

  15. Favored Bc decay modes to search for a Majorana neutrino

    NASA Astrophysics Data System (ADS)

    Mandal, Sanjoy; Sinha, Nita

    2016-08-01

    Recently, the LHCb collaboration reported the observation of the decay mode Bc-→B¯s 0π- with the largest exclusive branching fraction amongst the known decay modes of all the B mesons. Here we propose a search for a few lepton-number violating (Δ L =2 ) decay modes of Bc which can only be induced by Majorana neutrinos. Distinguishing between Dirac and Majorana nature of neutrinos is an outstanding problem and hence, all possible searches for Majorana neutrinos need to be carried out. Since the lepton number violating modes are expected to be rare, when using meson decay modes for these searches one expects CKM favored modes to be the preferred ones; Bc→Bs is one such transition. With a resonance enhancement of the Majorana neutrino mediating the Bc-→B¯s 0ℓ1-ℓ2-π+ modes one can hope to observe these rare modes, or, even their nonobservation can be used to obtain tight constraints on the mixing angles of the heavy Majorana singlet with the light flavour neutrinos from upper limits of the branching fractions. Using these modes we obtain exclusion curves for the mixing angles which are tighter or compatible with results from earlier studies. However, we find that the relatively suppressed mode Bc-→J /ψ ℓ1- ℓ2-π+ can provide even tighter constraints on |Ve N|2, |Vμ N|2, |Ve NVμ N|, and in a larger range of the heavy neutrino mass. Further, exclusion regions for |Ve NVτ N|, |Vμ NVτ N| can also be obtained for masses larger than those accessible in tau decays. Upper limits on B (Bc-→π+ℓ1- ℓ2-) can also result in stringent exclusion curves for all the mixing elements, including that for |Vτ N|2 in a mass range where it is unconstrained thus far.

  16. The Borexino solar neutrino experiment and its scintillator containment vessel

    NASA Astrophysics Data System (ADS)

    Cadonati, Laura

    2001-05-01

    Thirty years ago, the first solar neutrino detector proved fusion reactions power the Sun. However, the total rate detected in this and all subsequent solar neutrino experiments is consistently two to three times lower than predicted by the Standard Solar Model. Current experiments seek to explain this ``solar neutrino puzzle'' through non-standard particle properties, like neutrino mass and flavor mixing, within the context of the MSW theory. The detection of the monoenergetic 7Be solar neutrino is the missing clue for the solution of the solar neutrino problem; this constitutes the main physics goal of Borexino, a real- time, high-statistics solar neutrino detector located under the Gran Sasso mountain, in Italy. In the first part of this thesis, I present a Monte Carlo study of the expected performance of Borexino, with simulations of the neutrino rate, the external y background and the α/β/γ activity in the scintillator. The Standard Solar Model predicts a solar neutrino rate of about 60 events/day in Borexino in the 0.25-0.8 MeV window, mostly due to 7Be neutrinos. Given the design scintillator radiopurity levels (10-16 g/g 238U and 232Th and 10-14 g/g K), Borexino will detect such a rate with a ~2.4% statistical error, after one year. In the MSW Small (Large) Angle scenario, the predicted rate of ~13 (33) events/day will be detected with 8% (4%) error. The sensitivity of Borexino to 8B and pp neutrinos and to a Galactic supernova event is also discussed. The second part of this dissertation is devoted to the liquid scintillator containment vessel, an 8.5 m diameter sphere built of bonded panels of 0.125 mm polymer film. Through an extensive materials testing program we have identified an amorphous nylon-6 film which meets all the critical requirements for the success of Borexino. I describe tests of tensile strength, measurements of 222Rn diffusion through thin nylon films and of optical clarity. I discuss how the materials' radiopurity and mechanical

  17. Dynamical framework for KeV Dirac neutrino warm dark matter

    NASA Astrophysics Data System (ADS)

    Robinson, Dean J.; Tsai, Yuhsin

    2014-08-01

    If the source of the reported 3.5 keV x-ray line is a sterile neutrino, comprising an O(1) fraction of the dark matter (DM), then it exhibits the property that its mass times mixing angle is ˜ few×10-2 eV, a plausible mass scale for the active neutrinos. This property is a common feature of Dirac neutrino mixing. We present a framework that dynamically produces light active and keV sterile Dirac neutrinos, with appropriate mixing angles to be the x-ray line source. The central idea is that the right-handed active neutrino is a composite state, while elementary sterile neutrinos gain keV masses similarly to the quarks in extended technicolor. The entire framework is fixed by just two dynamical scales and may automatically exhibit a warm dark matter (WDM) production mechanism—dilution of thermal relics from late decays of a heavy composite neutrino—such that the keV neutrinos may comprise an O(1) fraction of the DM. In this framework, the WDM is typically quite cool and within structure formation bounds, with temperature ˜ few×10-2Tν and free-streaming length ˜ few kpc. A toy model that exhibits the central features of the framework is also presented.

  18. First measurement of pp neutrinos in real time in the Borexino detector

    NASA Astrophysics Data System (ADS)

    Mosteiro, Pablo

    2014-09-01

    The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. Neutrinos (nu) produced by these nuclear reactions exit the Sun and reach Earth within minutes, providing us with key information about what goes on at the core of our star. For over twenty years since the first detection of solar neutrinos in the late 1960's, an apparent deficit in their detection rate was known as the Solar Neutrino Problem. Today, the Mikheyev-Smirnov-Wolfenstein (MSW) effect is the accepted mechanism by which neutrinos oscillate inside the Sun, arriving at Earth as a mixture of nue, numu and nutau, the latter two of which were invisible to early detectors. Several experiments have now confirmed the observation of neutrino oscillations. These experiments, when their results are combined together, have demonstrated that neutrino oscillations are well described by the Large Mixing Angle (LMA) solution of the MSW effect. This thesis presents the first measurement of pp neutrinos in the Borexino detector, which is another validation of the LMA-MSW model of neutrino oscillations. In addition, it is one more step towards the completion of the spectroscopy of pp chain neutrinos in Borexino, leaving only the extremely faint hep neutrinos undetected. This advance validates the experiment itself and its previous results. This is, furthermore, the first direct real-time measurement of pp neutrinos. We find a pp neutrino detection rate of 143+/-16 (stat)+/-10 (syst) cpd/100 t in the Borexino experiment, which translates, according to the LMA-MSW model, to (6.42+/-0.85)x1010 cm -2 s-1. We also report on a measurement of neutrons in a dedicated system within the Borexino detector, which resulted in an improved understanding of neutron rates in liquid scintillator detectors at Gran Sasso depths. This result is crucial to the development of novel direct dark matter detection experiments.

  19. Topics in neutrino astroparticle physics

    NASA Astrophysics Data System (ADS)

    Hong, Woopyo

    1993-01-01

    In the first part of the dissertation, two neutrino properties such as neutrino mass measurement and neutrino dipole moment, in the terrestrial experiments, are examined with particular attention to exotic phenomena that may be observed for theories beyond the Standard Model. In the second part, we study a method for measuring the neutrino mass from a galactic supernova neutrino burst using an innovated detector concept. The neutral current based SNBO (Supernova Neutrino Burst Observatory) detector concept is discussed. We show that it is possible to measure a cosmologically significant neutrino mass, i.e., 5-50 eV directly from the flight time difference between the massive and massless neutrino using the SNBO detector concept. In the third part, very heavy unstable particles from the Big Bang decaying into neutrinos at cosmological epochs is discussed. In particular, we focus on a detection of such relic neutrinos from the decays in the neutrino window on earth, in the energy ranges 10-100 MeV, where the neutrino background is expected to be lowest. In the fourth part, neutrino emission from the explosion of Primordial Black Holes in the context of the Hawking radiation is presented. We suggest a new explosion mechanism inspired by new data from gamma ray bursts that might occur when the Primordial Black Hole reaches a certain surface temperature. We propose some observational tests that use a satellite detector and the proposed SNBO detector. In the last chapter, we examine a possible connection between the baryogenesis in the early universe and the lepton number violation processes.

  20. Precision Solar Neutrino Measurements with the Sudbury Neutrino Observatory

    SciTech Connect

    Oblath, Noah

    2007-10-26

    The Sudbury Neutrino Observatory (SNO) is the first experiment to measure the total flux of active, high-energy neutrinos from the sun. Results from SNO have solved the long-standing 'Solar Neutrino Problem' by demonstrating that neutrinos change flavor. SNO measured the total neutrino flux with the neutral-current interaction of solar neutrinos with 1000 tonnes of D{sub 2}O. In the first two phases of the experiment we detected the neutron from that interaction by capture on deuterium and capture on chlorine, respectively. In the third phase an array of {sup 3}He proportional counters was deployed in the detector. This allows a measurement of the neutral-current neutrons that is independent of the Cherenkov light detected by the PMT array. We are currently developing a unique, detailed simulation of the current pulses from the proportional-counter array that will be used to help distinguish signal and background pulses.