Sample records for actively toxic pfiesteria

  1. Demonstration of toxicity to fish and to mammalian cells by Pfiesteria species: Comparison of assay methods and strains

    PubMed Central

    Burkholder, JoAnn M.; Gordon, Andrew S.; Moeller, Peter D.; Law, J. Mac; Coyne, Kathryn J.; Lewitus, Alan J.; Ramsdell, John S.; Marshall, Harold G.; Deamer, Nora J.; Cary, S. Craig; Kempton, Jason W.; Morton, Steven L.; Rublee, Parke A.

    2005-01-01

    Toxicity and its detection in the dinoflagellate fish predators Pfiesteria piscicida and Pfiesteria shumwayae depend on the strain and the use of reliable assays. Two assays, standardized fish bioassays (SFBs) with juvenile fish and fish microassays (FMAs) with larval fish, were compared for their utility to detect toxic Pfiesteria. The comparison included strains with confirmed toxicity, negative controls (noninducible Pfiesteria strains and a related nontoxic cryptoperidiniopsoid dinoflagellate), and P. shumwayae strain CCMP2089, which previously had been reported as nontoxic. SFBs, standardized by using toxic Pfiesteria (coupled with tests confirming Pfiesteria toxin) and conditions conducive to toxicity expression, reliably detected actively toxic Pfiesteria, but FMAs did not. Pfiesteria toxin was found in fish- and algae-fed clonal Pfiesteria cultures, including CCMP2089, but not in controls. In contrast, noninducible Pfiesteria and cryptoperidiniopsoids caused no juvenile fish mortality in SFBs even at high densities, and low larval fish mortality by physical attack in FMAs. Filtrate from toxic strains of Pfiesteria spp. in bacteria-free media was cytotoxic. Toxicity was enhanced by bacteria and other prey, especially live fish. Purified Pfiesteria toxin extract adversely affected mammalian cells as well as fish, and it caused fish death at environmentally relevant cell densities. These data show the importance of testing multiple strains when assessing the potential for toxicity at the genus or species level, using appropriate culturing techniques and assays. PMID:15728353

  2. The standardized fish bioassay procedure for detecting and culturing actively toxic Pfiesteria, used by two reference laboratories for atlantic and gulf coast states.

    PubMed Central

    Burkholder, J M; Marshall, H G; Glasgow, H B; Seaborn, D W; Deamer-Melia, N J

    2001-01-01

    In the absence of purified standards of toxins from Pfiesteria species, appropriately conducted fish bioassays are the "gold standard" that must be used to detect toxic strains of Pfiesteria spp. from natural estuarine water or sediment samples and to culture actively toxic Pfiesteria. In this article, we describe the standardized steps of our fish bioassay as an abbreviated term for a procedure that includes two sets of trials with fish, following the Henle-Koch postulates modified for toxic rather than infectious agents. This procedure was developed in 1991, and has been refined over more than 12 years of experience in research with toxic Pfiesteria. The steps involve isolating toxic strains of Pfiesteria (or other potentially, as-yet-undetected, toxic Pfiesteria or Pfiesteria-like species) from fish-killing bioassays with natural samples; growing the clones with axenic algal prey; and retesting the isolates in a second set of fish bioassays. The specific environmental conditions used (e.g., temperature, salinity, light, other factors) must remain flexible, given the wide range of conditions from which natural estuarine samples are derived. We present a comparison of information provided for fish culture conditions, reported in international science journals in which such research is routinely published, and we provide information from more than 2,000 fish bioassays with toxic Pfiesteria, along with recommendations for suitable ranges and frequency of monitoring of environmental variables. We present data demonstrating that algal assays, unlike these standardized fish bioassays, should not be used to detect toxic strains of Pfiesteria spp. Finally, we recommend how quality control/assurance can be most rapidly advanced among laboratories engaged in studies that require research-quality isolates of toxic Pfiesteria spp. PMID:11677184

  3. Species of the toxic Pfiesteria complex, and the importance of functional type in data interpretation.

    PubMed Central

    Burkholder, J M; Glasgow, H B; Deamer-Melia, N J; Springer, J; Parrow, M W; Zhang, C; Cancellieri, P J

    2001-01-01

    We describe the two species of the toxic Pfiesteria complex to date (Pfiesteria piscicida and Pfiesteria shumwayae), their complex life cycles, and the characteristics required for inclusion within this complex. These species resemble P. piscicida Steidinger & Burkholder and also have a) strong attraction to fresh fish tissues and excreta, b) toxic activity stimulated by live fish, and c) production of toxin that can cause fish death and disease. Amoeboid stages were verified in 1992-1997 by our laboratory (various stages from toxic cultures) and that of K. Steidinger and co-workers (filose amoebae in nontoxic cultures), and in 2000 by H. Marshall and co-workers (various stages from toxic cultures), from clonal Pfiesteria spp. cultures, using species-specific polymerase chain reaction-based molecular probes with cross-confirmation by an independent specialist. Data were provided from tests of the hypothesis that Pfiesteriastrains differ in response to fresh fish mucus and excreta, algal prey, and inorganic nutrient (N, P) enrichment, depending on functional type or toxicity status. There are three functional types: TOX-A, in actively toxic, fish-killing mode; TOX-B, temporarily nontoxic, without access to live fish for days to weeks, but capable of toxic activity if fish are added; and NON-IND, noninducible with negligible toxicity in the presence of live fish. NON-IND Pfiesteria attained highest zoospore production on algal prey without or without inorganic nitrogen or inorganic phosphorus enrichment. TOX-B Pfiesteria was intermediate and TOX-A was lowest in zoospore production on algal prey with or without nutrients. TOX-A Pfiesteria spp. showed strong behavioral attraction to fresh fish mucus and excreta in short-term trials, with intermediate attraction of TOX-B zoospores and relatively low attraction of NON-IND cultures when normalized for cell density. The data for these clones indicated a potentially common predatory behavioral response, although differing

  4. Discovery of the toxic dinoflagellate Pfiesteria in northern European waters.

    PubMed Central

    Jakobsen, Kjetill S; Tengs, Torstein; Vatne, Andreas; Bowers, Holly A; Oldach, David W; Burkholder, JoAnn M; Glasgow, Howard B; Rublee, Parke A; Klaveness, Dag

    2002-01-01

    Several dinoflagellate strains of the genus Pfiesteria were isolated by culturing techniques from sediment samples taken in the Oslofjord region of Norway. Pfiesteria piscicida, well known as a fish killer from the Atlantic coast of America, was identified by genetic methods and light microscopy. The related species Pfiesteria shumwayae was attracted from the sediment by the presence of fish, and has proved toxic. This present survey demonstrates the wide distribution of these potentially harmful species, but so far they have not been connected with fish kills in Europe. PMID:11798438

  5. Responding to Pfiesteria piscicida (the fish killer): phantomatic ontologies, indeterminacy, and responsibility in toxic microbiology.

    PubMed

    Schrader, Astrid

    2010-04-01

    Based on an analysis of an ongoing scientific-political controversy over the toxicity of a fish-killing microorganism, this paper explores the relationship between responsibility and nonhuman contributions to agency in experimental practices. Research into the insidious effects of the dinoflagellates Pfiesteria piscicida (the fish killer) that thrive in waters over-enriched with nutrients, has received considerable attention by both the media and government agencies concerned with public and environmental health. After nearly two decades of research, the question of whether Pfiesteria can be regarded the 'causative agent' of massive fish kills in the estuaries of the US mid-Atlantic could not be scientifically settled. In contrast to policymakers, who attribute the absence of a scientific consensus to gaps in scientific knowledge and uncertainties regarding the identity and behavior of the potentially toxic dinoflagellates, I propose that an inseparable entanglement of Pfiesteria's identities and their toxic activities challenges conventional notions of causality that seek to establish a connection between independent events in linear time. Building on Karen Barad's framework of agential realism, I argue for a move from epistemological uncertainties to ontological indeterminacies that follow from Pfiesteria's contributions to agency, as the condition for responsible and objective science. In tracking discrepant experimental enactments of Pfiesteria that have been mobilized as evidence for and against their toxicity, I investigate how criteria for what counts as evidence get built into the experimental apparatuses and suggest that the joint possibilities of causality and responsibility vary with the temporalities of the objects enacted. This discussion seeks to highlight a thorough entanglement of epistemic/ontological concerns with the ecological/political relevance of particular experiments. Finally, I introduce a new kind of scientific object that--borrowing from

  6. Report from the NOAA workshops to standardize protocols for monitoring toxic Pfiesteria species and associated environmental conditions.

    PubMed

    Luttenberg, D; Turgeon, D; Higgins, J

    2001-10-01

    Long-term monitoring of water quality, fish health, and plankton communities in susceptible bodies of water is crucial to identify the environmental factors that contribute to outbreaks of toxic Pfiesteria complex (TPC) species. In the aftermath of the 1997 toxic Pfiesteria outbreaks in North Carolina and Maryland, federal and several state agencies agreed that there was a need to standardize monitoring protocols. The National Oceanic & Atmospheric Administration convened two workshops that brought together state, federal, and academic resource managers and scientific experts to a) seek consensus on responding to and monitoring potential toxic Pfiesteria outbreaks; b) recommend standard parameters and protocols to characterize water quality, fish health, and plankton at historical event sites and potentially susceptible sites; and c) discuss options for integrating monitoring data sets from different states into regional and national assessments. Workshop recommendations included the development of a three-tiered TPC monitoring strategy: Tier 1, rapid event response; Tier 2, comprehensive assessment; and Tier 3, routine monitoring. These tiers correspond to varying levels of water quality, fish health, and plankton monitoring frequency and intensity. Under the strategy, sites are prioritized, depending upon their history and susceptibility to TPC events, and assigned an appropriate level of monitoring activity. Participants also agreed upon a suite of water quality parameters that should be monitored. These recommendations provide guidance to state and federal agencies conducting rapid-response and assessment activities at sites of suspected toxic Pfiesteria outbreaks, as well as to states that are developing such monitoring programs for the first time.

  7. Are Pfiesteria species toxicogenic? Evidence against production of ichthyotoxins by Pfiesteria shumwayae

    PubMed Central

    Berry, J. P.; Reece, K. S.; Rein, K. S.; Baden, D. G.; Haas, L. W.; Ribeiro, W. L.; Shields, J. D.; Snyder, R. V.; Vogelbein, W. K.; Gawley, R. E.

    2002-01-01

    The estuarine genus Pfiesteria has received considerable attention since it was first identified and proposed to be the causative agent of fish kills along the mid-Atlantic coast in 1992. The presumption has been that the mechanism of fish death is by release of one or more toxins by the dinoflagellate. In this report, we challenge the notion that Pfiesteria species produce ichthyotoxins. Specifically, we show that (i) simple centrifugation, with and without ultrasonication, is sufficient to “detoxify” water of actively fish-killing cultures of Pfiesteria shumwayae, (ii) organic extracts of lyophilized cultures are not toxic to fish, (iii) degenerate primers that amplify PKS genes from several polyketide-producing dinoflagellates failed to yield a product with P. shumwayae DNA or cDNA, and (iv) degenerate primers for NRPS genes failed to amplify any NRPS genes but (unexpectedly) yielded a band (among several) that corresponded to known or putative PKSs and fatty acid synthases. We conclude that P. shumwayae is able to kill fish by means other than releasing a toxin into bulk water. Alternative explanations of the effects attributed to Pfiesteria are suggested. PMID:12163648

  8. PFIESTERIA SHUMWAYAE KILLS FISH BY MICROPREDATION NOT ECOTOXIN SECRETION

    EPA Science Inventory

    Massive fish kills in mid-Atlantic USA estuaries involving several million Atlantic menhaden, Brevoortia tyrannus,have been attributed to dinoflagellates of the toxic Pfiesteria complex (TPC). Potent ichthyotoxins secreted during Pfiesteria blooms are thought to be responsible fo...

  9. Characterization of Ichthyocidal Activity of Pfiesteria piscicida: Dependence on the Dinospore Cell Density

    PubMed Central

    Drgon, Tomás; Saito, Keiko; Gillevet, Patrick M.; Sikaroodi, Masoumeh; Whitaker, Brent; Krupatkina, Danara N.; Argemi, Federico; Vasta, Gerardo R.

    2005-01-01

    The ichthyocidal activity of Pfiesteria piscicida dinospores was examined in an aquarium bioassay format by exposing fish to either Pfiesteria-containing environmental sediments or clonal P. piscicida. The presence of Pfiesteria spp. and the complexity of the microbial assemblage in the bioassay were assessed by molecular approaches. Cell-free water from bioassays that yielded significant fish mortality failed to show ichthyocidal activity. Histopathological examination of moribund and dead fish failed to reveal the skin lesions reported elsewhere. Fish larvae within “cages” of variable mesh sizes were killed in those where the pore size exceeded that of Pfiesteria dinospores. In vitro exposure of fish larvae to clonal P. piscicida indicated that fish mortality was directly proportional to the dinospore cell density. Dinospores clustered around the mouth, eyes, and operculi, suggesting that fish health may be affected by their direct interaction with skin, gill epithelia, or mucous surfaces. Molecular fingerprinting revealed the presence of a very diverse microbial community of bacteria, protists, and fungi within bioassay aquaria containing environmental sediments. Some components of the microbial community were identified as potential fish pathogens, preventing the rigorous identification of Pfiesteria spp. as the only cause of fish death. In summary, our results strongly suggest (i) that this aquarium bioassay format, which has been extensively reported in the literature, is unsuitable to accurately assess the ichthyocidal activity of Pfiesteria spp. and (ii) that the ichthyocidal activity of Pfiesteria spp. is mostly due to direct interactions of the zoospores with fish skin and gill epithelia rather than to soluble factors. PMID:15640229

  10. Identification of amoebae implicated in the life cycle of Pfiesteria and Pfiesteria-like dinoflagellates

    USGS Publications Warehouse

    Peglar, M.T.; Nerad, T.A.; Anderson, O.R.; Gillevet, P.M.

    2004-01-01

    This study was undertaken to assess whether amoebae commonly found in mesohaline environments are in fact stages in the life cycles of Pfiesteria and Pfiesteria-like dinoflagellates. Primary isolations of amoebae and dinoflagellates were made from water and sediment samples from five tributaries of the Chesapeake Bay. Additional amoebae were also cloned from bioassay aquaria where fish mortality was attributed to Pfiesteria. Electron microscopy and small subunit (SSU) rRNA gene sequence analysis of these isolates clearly demonstrated that the commonly depicted amoeboid form of Pfiesteria is very likely a species of Korotnevella and is unrelated to Pfiesteria or Pfiesteria-like dinoflagellates. We have determined that the Pfiesteria and Pfiesteria-like dinoflagellates examined in this study undergo a typical homothallic life cycle without amoeboid stages. Furthermore, we have demonstrated that cloned amoebae sharing morphological characteristics described for stages in the life cycle of Pfiesteria do not transform into dinozoites. The strict clonal isolation and cultivation techniques used in this study substantially support the conclusion that the amoebae and some of the flagellates depicted in the life cycle of Pfiesteria are environmental contaminants of the Pfiesteria culture system and that the Ambush Predator Hypothesis needs to be rigorously reevaluated.

  11. Current progress in isolation and characterization of toxins isolated from Pfiesteria piscicida.

    PubMed Central

    Moeller, P D; Morton, S L; Mitchell, B A; Sivertsen, S K; Fairey, E R; Mikulski, T M; Glasgow, H; Deamer-Melia, N J; Burkholder, J M; Ramsdell, J S

    2001-01-01

    The isolation and partial purification of toxic substances derived from Pfiesteria piscicida Steidinger & Burkholder extracts is described. Four distinct bioassay systems were used to monitor bioactivity of the P. piscicida extracts, including a high throughput cell cytotoxicity assay and a reporter gene assay as well as assays using brine shrimp and fish. Using these bioassays to guide fractionation, we have isolated two distinct, active fractions from Pfiesteria culture medium and cell mass extracts on the basis of their solubility characteristics. We have identified and characterized a bioactive lipophilic substance from Pfiesteria-derived extracts as di(2-ethylhexyl)phthalate, a commonly used plasticizer. The source of this typically man-made substance has been identified as originating from Instant Ocean (Aquarium Systems, Mentor, OH, USA), a commercially available seawater salt mixture used to prepare our mass culture growth medium. We have developed chromatographic methodology to isolate a bioactive polar compound isolated from extracts of Pfiesteria culture and presently report the characterization of the activity of this substance. The molecular structural analysis of the polar active component(s) using mass spectrometry and nuclear magnetic resonance spectroscopy is currently under way. PMID:11677183

  12. Reporter gene assay for fish-killing activity produced by Pfiesteria piscicida.

    PubMed Central

    Fairey, E R; Edmunds, J S; Deamer-Melia, N J; Glasgow, H; Johnson, F M; Moeller, P R; Burkholder, J M; Ramsdell, J S

    1999-01-01

    Collaborative studies were performed to develop a functional assay for fish-killing activity produced by Pfiesteria piscicida. Eight cell lines were used to screen organic fractions and residual water fraction by using a 3-[4, 5-dimethylthiazol-(2-4)]-diphenyltetrazolium bromide cytotoxicity assay. Diethyl ether and a residual water fraction were cytotoxic to several cell lines including rat pituitary (GH(4)C(1)) cells. Residual water as well as preextracted culture water containing P. piscicida cells induced c-fos-luciferase expressed in GH(4)C(1) cells with a rapid time course of induction and sensitive detection. The reporter gene assay detected activity in toxic isolates of P. piscicida from several North Carolina estuaries in 1997 and 1998 and may also be suitable for detecting toxic activity in human and animal serum. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10464070

  13. Metal Complexes and Free Radical Toxins Produced by Pfiesteria piscicida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeller,P.; Beauchesne, K.; Huncik, K.

    2007-01-01

    Metal-containing organic toxins produced by Pfiesteria piscicida were characterized, for the first time, by corroborating data obtained from five distinct instrumental methods: nuclear magnetic resonance spectroscopy (NMR), inductively coupled plasma mass spectrometry (ICP-MS), liquid chromatography particle beam glow discharge mass spectrometry (LC/PB-GDMS), electron paramagnetic resonance spectroscopy (EPR), and X-ray absorption spectroscopy (XAS). The high toxicity of the metal-containing toxins is due to metal-mediated free radical production. This mode of activity explains the toxicity of Pfiesteria, as well as previously reported difficulty in observing the molecular target, due to the ephemeral nature of radical species. The toxins are highly labile inmore » purified form, maintaining activity for only 2-5 days before all activity is lost. The multiple toxin congeners in active extracts are also susceptible to decomposition in the presence of white light, pH variations, and prolonged heat. These findings represent the first formal isolation and characterization of a radical forming toxic organic-ligated metal complex isolated from estuarine/marine dinoflagellates. These findings add to an increased understanding regarding the active role of metals interacting with biological systems in the estuarine environment, as well as their links and implications to human health.« less

  14. Metal Complexes And Free Radical Toxins Produced By Pfiesteria Piscicida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeller, P.D.R.; Beauchesne, K.R.; Huncik, K.M.

    2009-06-03

    Metal-containing organic toxins produced by Pfiesteria piscicida were characterized, for the first time, by corroborating data obtained from five distinct instrumental methods: nuclear magnetic resonance spectroscopy (NMR), inductively coupled plasma mass spectrometry (ICPMS), liquid chromatography particle beam glow discharge mass spectrometry (LC/PB-GDMS), electron paramagnetic resonance spectroscopy (EPR), and X-ray absorption spectroscopy (XAS). The high toxicity of the metal-containing toxins is due to metal-mediated free radical production. This mode of activity explains the toxicity of Pfiesteria, as well as previously reported difficulty in observing the molecular target, due to the ephemeral nature of radical species. The toxins are highly labile inmore » purified form, maintaining activity for only 2-5 days before all activity is lost. The multiple toxin congeners in active extracts are also susceptible to decomposition in the presence of white light, pH variations, and prolonged heat. These findings represent the first formal isolation and characterization of a radical forming toxic organic-ligated metal complex isolated from estuarine/marine dinoflagellates. These findings add to an increased understanding regarding the active role of metals interacting with biological systems in the estuarine environment, as well as their links and implications to human health.« less

  15. Lack of Evidence for Contact Sensitization by Pfiesteria Extract

    PubMed Central

    Patterson, Rachel M.; Noga, Edward; Germolec, Dori

    2007-01-01

    Background Members of the estuarine dinoflagellate genus Pfiesteria are reported to have been responsible for massive fish kills in the southeastern United States. Some reports suggest that exposure to waters having Pfiesteria blooms or occupation-related exposure might result in Pfiesteria-induced dermal irritation and inflammation. Although the toxin has not been isolated and purified, the original data suggested both hydrophilic and hydrophobic toxic components. Some investigators propose that dermonecrotic properties are associated with a hydrophobic fraction. Objectives A bioactive C18-bound putative toxin (CPE) extracted from Pfiesteria-laden aquarium water during active fish-killing conditions was examined in the present study to evaluate its potential to produce inflammation and dermal sensitization and to determine whether the inflammation and dermatitis reported in early human exposure studies were allergic or irritant in nature. Results This fraction was cytotoxic to mouse Neuro-2A cells and primary human epidermal keratinocytes (NHEK) at a concentration of 1 mg/mL. Balb/C mice exposed to 50–200% CPE by skin painting exhibited a 6–10% increase in ear swelling relative to vehicle-treated mice in a primary irritancy assay. There was no increase in lymph node cell proliferation as measured using the local lymph node assay. Exposure to CPE in culture up-regulated interleukin-8 in NHEK, whereas granulocyte macrophage–colony-stimulating factor and tumor necrosis factor α were only minimally altered. Conclusions This study suggests that CPE is cytotoxic to keratinocytes in culture at high concentrations and that it induces mild, localized irritation but not dermal sensitization. PMID:17637917

  16. Lack of evidence for contact sensitization by Pfiesteria extract.

    PubMed

    Patterson, Rachel M; Noga, Edward; Germolec, Dori

    2007-07-01

    Members of the estuarine dinoflagellate genus Pfiesteria are reported to have been responsible for massive fish kills in the southeastern United States. Some reports suggest that exposure to waters having Pfiesteria blooms or occupation-related exposure might result in Pfiesteria-induced dermal irritation and inflammation. Although the toxin has not been isolated and purified, the original data suggested both hydrophilic and hydrophobic toxic components. Some investigators propose that dermonecrotic properties are associated with a hydrophobic fraction. A bioactive C18-bound putative toxin (CPE) extracted from Pfiesteria-laden aquarium water during active fish-killing conditions was examined in the present study to evaluate its potential to produce inflammation and dermal sensitization and to determine whether the inflammation and dermatitis reported in early human exposure studies were allergic or irritant in nature. This fraction was cytotoxic to mouse Neuro-2A cells and primary human epidermal keratinocytes (NHEK) at a concentration of 1 mg/mL. Balb/C mice exposed to 50-200% CPE by skin painting exhibited a 6-10% increase in ear swelling relative to vehicle-treated mice in a primary irritancy assay. There was no increase in lymph node cell proliferation as measured using the local lymph node assay. Exposure to CPE in culture up-regulated interleukin-8 in NHEK, whereas granulocyte macrophage-colony-stimulating factor and tumor necrosis factor alpha were only minimally altered. This study suggests that CPE is cytotoxic to keratinocytes in culture at high concentrations and that it induces mild, localized irritation but not dermal sensitization.

  17. PFIESTERIA PISCICIDA-INDUCED COGNITIVE EFFECTS: VISUAL SIGNAL DETECTION PERFORMANCE AND REVERSAL.

    EPA Science Inventory

    Humans exposed to Pfiesteria piscicida report cognitive impairment. In a rat model, we showed that exposure to Pfiesteria impaired learning a new task, but not performance of previously-learned behavior. In this study, we characterized the behavioral effects of Pfiesteria in rats...

  18. Etiology and pathogenesis of skin ulcers in menhaden, Brevoortia tyrannis: does Pfiesteria piscicida play a role?

    USGS Publications Warehouse

    Blazer, V.; Vogelbein, W.K.; Densmore, C.; Kator, H.; Zwerner, D.; Lilley, J.

    2000-01-01

    The toxic dinoflagellate, Pfiesteria piscicida, is widely blamed for adverse human health effects, acute fish kills and skin lesion events in fishes, particularly menhaden, Brevoortia tyrannis, inhabiting coastal waters from Delaware to North Carolina, USA. In response, we initiated studies to clarify the etiology and pathogenesis of presumed 'Pfiesteria-specific' menhaden skin lesions. Histopathologically, all lesions (>150 fish examined) were associated with a highly invasive and pathogenic fungus eliciting severe tissue necrosis and intense granulomatous inflammation. Severity and extent of the host response indicates that ulcers were at least 1 week old or older. Maryland and Virginia currently use menhaden ulcers as one of several indicators of local Pfiesteria activity. However, their chronic nature, advanced age, and consistent fungal involvement suggest that their use for this purpose may not be valid. We recently isolated an Aphanomyces sp. from the menhaden lesions which by appearance in culture, temperature growth curves, pathogenicity studies in snakehead and positive immunohistochemical staining with polyclonal antibodies suggest the infectious agent is A. invadans (cause of epizootic ulcerative syndrome in Asia, Japan and Australia) or a very closely related species. Ongoing research will address pathogenicity of the fungus in menhaden, genetic comparisons of isolates, and the role of environmental stressors, including P. piscicida, in initiation of the infection. Copyright (C) 2000.

  19. PFIESTERIA PISCICIDA IMPACTS

    EPA Science Inventory

    Recent evidence suggests that the estuarine dinofageflate, Pfiesteria piscicida, may release a toxin(s) which kills fish and adversely affects human health in laboratory and environmental settings. The potential for Pfresferia-like organisms to adversely impact estuarine ecosys...

  20. CHEMOSENSORY ATTRACTION OF ZOOSPORES OF THE ESTUARINE DINOFLAGELLATES, PFIESTERIA PISCICIDA AND P. SHUMWAYAE, TO FINFISH MUCUS AND EXCRETA. (R825551)

    EPA Science Inventory

    Toxic strains of the estuarine dinoflagellates, Pfiesteria piscicida and P. shumwayae, can cause fish death and disease, whereas other estuarine `lookalike' species such as cryptoperidiniopsoids have not been ichthyotoxic under ecologically rel...

  1. Pfiesteria: review of the science and identification of research gaps. Report for the National Center for Environmental Health, Centers for Disease Control and Prevention.

    PubMed Central

    Samet, J; Bignami, G S; Feldman, R; Hawkins, W; Neff, J; Smayda, T

    2001-01-01

    In connection with the CDC National Conference on Pfiesteria, a multidisciplinary panel evaluated Pfiesteria-related research. The panel set out what was known and what was not known about adverse effects of the organism on estuarine ecology, fish, and human health; assessed the methods used in Pfiesteria research; and offered suggestions to address data gaps. The panel's expertise covered dinoflagellate ecology; fish pathology and toxicology; laboratory measurement of toxins, epidemiology, and neurology. The panel evaluated peer-reviewed and non-peer-reviewed literature available through June 2000 in a systematic conceptual framework that moved from the source of exposure, through exposure research and dose, to human health effects. Substantial uncertainties remain throughout the conceptual framework the panel used to guide its evaluation. Firm evidence demonstrates that Pfiesteria is toxic to fish, but the specific toxin has not been isolated or characterized. Laboratory and field evidence indicate that the organism has a complex life cycle. The consequences of human exposure to Pfiesteria toxin and the magnitude of the human health problem remain obscure. The patchwork of approaches used in clinical evaluation and surrogate measures of exposure to the toxin are major limitations of this work. To protect public health, the panel suggests that priority be given research that will provide better insight into the effects of Pfiesteria on human health. Key gaps include the identity and mechanism of action of the toxin(s), the incomplete description of effects of exposure in invertebrates, fish, and humans, and the nature and extent of exposures that place people at risk. PMID:11687383

  2. REAL-TIME MONITORING FOR TOXICITY CAUSED BY ...

    EPA Pesticide Factsheets

    This project, sponsored by EPA's Environmental Monitoring for Public Access and Community Tracking (EMPACT) program, evaluated the ability of an automated biological monitoring system that measures fish ventilatory responses (ventilatory rate, ventilatory depth, and cough rate) to detect developing toxic conditions in water.In laboratory tests, acutely toxic levels of both brevetoxin (PbTx-2) and toxic Pfiesteria piscicida cultures caused fish responses primarily through large increases in cough rate. In the field, the automated biomonitoring system operated continuously for 3 months on the Chicamacomico River, a tributary to the Chesapeake Bay that has had a history of intermittent toxic algal blooms. Data gathered through this effort complemented chemical monitoring data collected by the Maryland Department of Natural Resources (DNR) as part of their Pfiesteria monitoring program. After evaluation by DNR personnel, the public could access the data on the DNR Internet web site at www.dnr.state.md.us/bay/pfiesteria/00results.html or receive more detailed information at www.aquaticpath.umd.edu/empact.. The field biomonitor identified five fish response events. Increased conductivity combined with a substantial decrease in water temperature was the likely cause of one event, while contaminants (probably surfactants) released from inadequately rinsed particle filters produced another response. The other three events, characterized by greatly increased cough ra

  3. Microfluorimetric analysis of a purinergic receptor (P2X7) in GH4C1 rat pituitary cells: effects of a bioactive substance produced by Pfiesteria piscicida.

    PubMed Central

    Melo, A C; Moeller, P D; Glasgow, H; Burkholder, J M; Ramsdell, J S

    2001-01-01

    Pfiesteria piscicida Steidinger & Burkholder is a toxic dinoflagellate that leads to fish and human toxicity. It produces a bioactive substance that leads to cytotoxicity of GH4C1 rat pituitary cells. Extracellular adenosine 5'-triphosphate (ATP) acting on P2X7 purinergic receptors induces the formation of a nonselective cation channel, causing elevation of the cytosolic free calcium followed by a characteristic permeabilization of the cell to progressively larger ions and subsequent cell lysis. We investigated whether GH4C1 rat pituitary cells express functional P2X7 receptors, and if so, are they activated by a bioactive substance isolated from toxic P. piscicida cultures. We tested the selective agonist 2'-3'-O-(benzoyl-4-benzoyl)-ATP (BzATP) and antagonists piridoxalphosphate-6-azophenyl-2'-4'-disulfonic acid (PPADS) and oxidized-ATP (oxATP) using elevated cytosolic free calcium in Fura-2 loaded cells, and induced permeability of these cells to the fluorescent dye YO-PRO-1 as end points. We demonstrated that in GH4C1 cells, BzATP induces both the elevation of cytosolic free calcium and the permeabilization of the cell membrane. ATP-induced membrane permeabilization was inhibited by PPADS reversibly and by oxATP irreversibly. The putative Pfiesteria toxin (pPfTx) also elevated cytosolic free calcium in Fura-2 in GH4C1 cells and increased the permeability to YO-PRO-1 in a manner inhibited fully by oxATP. This study indicates that GH4C1 cells express a purinoceptor with characteristics consistent with the P2X7 subtype, and that pPfTx mimics the kinetics of cell permeabilization by ATP. PMID:11677182

  4. STEROLS OF THE HETEROTROPHIC DINOFLAGELLATE, PFIESTERIA PISCICIDA (DINOPHYCEAE): IS THERE A LIPID BIOMARKER?

    EPA Science Inventory

    Within United States waters, blooms of the dinoflagellate, Pfiesteria piscicida, have been recorded on an almost regular basis in the Chesapeake Bay and surrounding mid-Atlantic regions for the last two decades. Despite the apparent significance of such blooms to the environment ...

  5. USE OF MOLECULAR PROBES TO ASSESS GEOGRAPHIC DISTRIBUTION OF PFIESTERIA SPECIES. (R827084)

    EPA Science Inventory

    We have developed multiple polymerase chain reaction (PCR)-based methods for the
    detection of Pfiesteria sp. in cultures and environmental samples. More than 2,100 water and
    sediment samples from estuarine sites of the U.S. Atlantic and gulf coasts were assayed for the
    p...

  6. Detection of the Dinozoans Pfiesteria piscicida and P. shumwayae: a review of detection methods and geographic distribution.

    PubMed

    Rublee, Parke A; Remington, David L; Schaefer, Eric F; Marshall, Michael M

    2005-01-01

    Molecular methods, including conventional PCR, real-time PCR, denaturing gradient gel electrophoresis, fluorescent fragment detection PCR, and fluorescent in situ hybridization, have all been developed for use in identifying and studying the distribution of the toxic dinoflagellates Pfiesteria piscicida and P. shumwayae. Application of the methods has demonstrated a worldwide distribution of both species and provided insight into their environmental tolerance range and temporal changes in distribution. Genetic variability among geographic locations generally appears low in rDNA genes, and detection of the organisms in ballast water is consistent with rapid dispersal or high gene flow among populations, but additional sequence data are needed to verify this hypothesis. The rapid development and application of these tools serves as a model for study of other microbial taxa and provides a basis for future development of tools that can simultaneously detect multiple targets.

  7. Chronic biotoxin-associated illness: multiple-system symptoms, a vision deficit, and effective treatment.

    PubMed

    Hudnell, H Kenneth

    2005-01-01

    Blooms of toxigenic organisms have increased in spatial and temporal extent due to human activities and natural forces that alter ecologic habitats and pollute the environment. In aquatic environments, harmful algal blooms pose a risk for human health, the viability of organisms, and the sustainability of ecosystems. The estuarine dinoflagellate, Pfiesteria piscicida, was discovered in the late 1980s at North Carolina State University as a contaminant in fish cultures. P. piscicida was associated with fish death in laboratory aquaria, and illness among laboratory workers who inhaled the mist above aquaria. Both the fish and humans exhibited signs of toxicity. During the 1990s, large-scale mortality among fish and other aquatic organisms was associated with high concentrations of Pfiesteria sp. in estuaries on the eastern seaboard of North America from New York to Texas. Illness among humans was associated with direct exposure to estuaries and exposures to estuarine aerosols around the time of Pfiesteria-related fish kills. This review of the scientific literature on associations between Pfiesteria and human illness identified some of the possible mechanisms of action by which putative Pfiesteria toxins may have caused morbidity. Particular attention was given to the Pfiesteria-associated, human-illness syndrome known as Possible Estuary Associated Syndrome (PEAS). PEAS was characterized by multiple-system symptoms, deficits in neuropsychological tests of cognitive function, and rapid and severe decrements in visual contrast sensitivity (VCS), an indicator of neurologic function in the visual system. PEAS was diagnosed in acute and chronic illness cases, and was reacquired during re-exposure. Rapid normalization of PEAS signs and symptoms was achieved through the use of cholestyramine therapy. Cholestyramine, a non-absorbable polymer, has been used by humans to lower cholesterol levels since it was approved for that use by the U.S. Food and Drug Administration in

  8. Identification of a P2X7 receptor in GH(4)C(1) rat pituitary cells: a potential target for a bioactive substance produced by Pfiesteria piscicida.

    PubMed Central

    Kimm-Brinson, K L; Moeller, P D; Barbier, M; Glasgow, H; Burkholder, J M; Ramsdell, J S

    2001-01-01

    We examined the pharmacologic activity of a putative toxin (pPfTx) produced by Pfiesteria piscicida by characterizing the signaling pathways that induce the c-fos luciferase construct in GH(4)C(1) rat pituitary cells. Adenosine-5'-triphosphate (ATP) was determined to increase and, at higher concentrations, decrease luciferase activity in GH(4)C(1) rat pituitary cells that stably express c-fos luciferase. The inhibition of luciferase results from cytotoxicity, characteristic of the putative P. piscicida toxin (pPfTx). The actions of both pPfTx and ATP to induce c-fos luciferase were inhibited by the purinogenic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Further characterization of a P2X receptor on the GH(4)C(1) cell was determined by the analog selectivity of P2X agonists. The P2X1/P2X3 agonist alpha,beta-methylene ATP (alpha,beta-MeATP) failed to increase or decrease c-fos luciferase. However, the P2X7 agonist 2',3'-(4-benzoyl)benzoyl ATP (BzATP), which had a predominant cytotoxic effect, was more potent than ATP. Immunoblot analysis of GH(4)C(1) cell membranes confirmed the presence of a 70-kDa protein that was immunoreactive to an antibody directed against the carboxy-terminal domain unique to the P2X7 receptor. The P2X7 irreversible antagonist oxidized-ATP (oxATP) inhibited the action of ATP, BzATP, and pPfTx. These findings indicate that GH(4)C(1) cells express purinogenic receptors with selectivity consistent with the P2X7 subtype and that this receptor pathway mediates the induction of the c-fos luciferase reporter gene by ATP and the putative Pfiesteria toxin PMID:11401756

  9. Toxicity evaluation and prediction of toxic chemicals on activated sludge system.

    PubMed

    Cai, Bijing; Xie, Li; Yang, Dianhai; Arcangeli, Jean-Pierre

    2010-05-15

    The gaps of data for evaluating toxicity of new or overloaded organic chemicals on activated sludge system resulted in the requirements for methodology of toxicity estimation. In this study, 24 aromatic chemicals typically existed in the industrial wastewater were selected and classified into three groups of benzenes, phenols and anilines. Their toxicity on activated sludge was then investigated. Two indexes of IC(50-M) and IC(50-S) were determined respectively from the respiration rates of activated sludge with different toxicant concentration at mid-term (24h) and short-term (30min) time intervals. Experimental results showed that the group of benzenes was the most toxic, followed by the groups of phenols and anilines. The values of IC(50-M) of the tested chemicals were higher than those of IC(50-S). In addition, quantitative structure-activity relationships (QSARs) models developed from IC(50-M) were more stable and accurate than those of IC(50-S). The multiple linear models based on molecular descriptors and K(ow) presented better reliability than single linear models based on K(ow). Among these molecular descriptors, E(lumo) was the most important impact factor for evaluation of mid-term toxicity. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  10. Skin ulcers in estuarine fishes: a comparative pathological evaluation of wild and laboratory-exposed fish.

    PubMed Central

    Vogelbein, W K; Shields, J D; Haas, L W; Reece, K S; Zwerner, D E

    2001-01-01

    The toxic dinoflagellate Pfiesteria piscicida Steidinger & Burkholder has recently been implicated as the etiologic agent of acute mass mortalities and skin ulcers in menhaden, Brevoortia tyrannus, and other fishes from mid-Atlantic U.S. estuaries. However, evidence for this association is largely circumstantial and controversial. We exposed tilapia (Oreochromis spp.) to Pfiesteria shumwayae Glasgow & Burkholder (identification based on scanning electron microscopy and molecular analyses) and compared the resulting pathology to the so-called Pfiesteria-specific lesions occurring in wild menhaden. The tilapia challenged by high concentrations (2,000-12,000 cells/mL) of P. shumwayaeexhibited loss of mucus coat and scales plus mild petecchial hemorrhage, but no deeply penetrating chronic ulcers like those in wild menhaden. Histologically, fish exhibited epidermal erosion with bacterial colonization but minimal associated inflammation. In moribund fish, loss of epidermis was widespread over large portions of the body. Similar erosion occurred in the mucosa lining the oral and branchial cavities. Gills exhibited epithelial lifting, loss of secondary lamellar structure, and infiltration by lymphoid cells. Epithelial lining of the lateral line canal (LLC) and olfactory organs exhibited severe necrosis. Visceral organs, kidney, and neural tissues (brain, spinal cord, ganglia, peripheral nerves) were histologically normal. An unexpected finding was the numerous P. shumwayae cells adhering to damaged skin, skin folds, scale pockets, LLC, and olfactory tissues. In contrast, histologic evaluation of skin ulcers in over 200 wild menhaden from Virginia and Maryland portions of the Chesapeake Bay and the Pamlico Estuary, North Carolina, revealed that all ulcers harbored a deeply invasive, highly pathogenic fungus now known to be Aphanomyces invadans. In menhaden the infection always elicited severe myonecrosis and intense granulomatous myositis. The consistent occurrence of this

  11. Toxicity tests, antioxidant activity, and antimicrobial activity of chitosan

    NASA Astrophysics Data System (ADS)

    Kurniasih, M.; Purwati; Dewi, R. S.

    2018-04-01

    Chitosan is a naturally occurring cationic biopolymer, obtained by alkaline deacetylation of chitin. This research aims to investigate the toxicity, antioxidant activity and antibacterial activity of chitosan from shrimp chitin. In this study, chitin extracted from shrimp waste material. Chitin is then deacetylation with 60% NaOH so that chitosan produced. Degrees of deacetylation, molecular weight, toxicity test, antioxidant activity and antimicrobial activity of chitosan then evaluated. Toxicity test using Brine Shrimp Lethality Test. The antioxidant analysis was performed using DPPH method (2, 2-diphenyl-1-picrylhydrazyl) and FTC method (ferric thiocyanate) in which the radical formed will reduce Ferro to Ferri resulting in a complex with thiocyanate. To determine the antibacterial activity of Staphylococcus aureus, antifungal in Candida albicans and Aspergillus niger by measuring antimicrobial effects and minimum inhibitory concentrations (MIC). Based on the result of research, the value of degrees of deacetylation, molecular weight, and LC50 values of chitosan synthesis was 94,32, 1052.93 g/mol and 1364.41 ppm, respectively. In general, the antioxidative activities increased as the concentration of chitosan increased. MIC value of chitosan against S. aureus, C. albicans, and A. niger was 10 ppm, 15.6 ppm, and 5 ppm, respectively.

  12. Toxicities of triclosan, phenol, and copper sulfate in activated sludge.

    PubMed

    Neumegen, Rosalind A; Fernández-Alba, Amadeo R; Chisti, Yusuf

    2005-04-01

    The effect of toxicants on the BOD degradation rate constant was used to quantitatively establish the toxicity of triclosan, phenol, and copper (II) against activated sludge microorganisms. Toxicities were tested over the following ranges of concentrations: 0-450 mg/L for phenol, 0-2 mg/L for triclosan, and 0-35 mg/L for copper sulfate (pentahydrate). According to the EC(50) values, triclosan was the most toxic compound tested (EC(50) = 1.82 +/- 0.1 mg/L), copper (II) had intermediate toxicity (EC(50) = 18.3 +/- 0.37 mg/L), and phenol was the least toxic (EC(50) = 270 +/- 0.26 mg/L). The presence of 0.2% DMSO had no toxic effect on the activated sludge. The toxicity evaluation method used was simple, reproducible, and directly relevant to activated sludge wastewater treatment processes.

  13. PFIESTERIA PISCICIDA AND OTHER TOXIC PFIESTERIA-LIKE DINOFLAGELLATES: BEHAVIOR, IMPACTS, AND ENVIRONMENTAL CONTROLS. (R825551)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. Effects of gamma radiation on cork wastewater: Antioxidant activity and toxicity.

    PubMed

    Madureira, Joana; Pimenta, Andreia I; Popescu, Larisa; Besleaga, Alexandra; Dias, Maria Inês; Santos, Pedro M P; Melo, Rita; Ferreira, Isabel C F R; Cabo Verde, Sandra; Margaça, Fernanda M A

    2017-02-01

    A comprehensive assessment of the toxicity and antioxidant activity of cork boiling wastewater and the effects of gamma radiation on these parameters was performed. Antioxidant activity was evaluated using different methodologies as DPPH radical scavenging activity, reducing power and inhibition of β-carotene bleaching. The results have shown that gamma radiation can induce an increase on the antioxidant activity of cork boiling wastewater. Toxicity tests were performed to access the potential added value of the irradiated wastewaters and/or minimization of the impact for discharge in the environment. Two different methods for toxicity evaluation were followed, bacterial growth inhibition test and cytotoxicity assay, in order to predict the behavior of different cells (prokaryotic and eukaryotic) in the presence of cork wastewater. Non-treated cork boiling wastewater seemed to be non-toxic for prokaryotic cells (Pseudomonas fluorescens and Bacillus subtilis) but toxic for eukaryotic cells (A549 human cells and RAW264.7 mouse cells). The gamma radiation treatment at doses of 100 kGy appeared to increase the toxicity of cork compounds for all tested cells, which could be related to a toxic effect of radiolytic products of cork compounds in the wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Still acting green: continued expression of photosynthetic genes in the heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata).

    PubMed

    Kim, Gwang Hoon; Jeong, Hae Jin; Yoo, Yeong Du; Kim, Sunju; Han, Ji Hee; Han, Jong Won; Zuccarello, Giuseppe C

    2013-01-01

    The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as "kleptoplastids" multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons) obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value

  16. PACSIN2 polymorphism influences TPMT activity and mercaptopurine-related gastrointestinal toxicity.

    PubMed

    Stocco, Gabriele; Yang, Wenjian; Crews, Kristine R; Thierfelder, William E; Decorti, Giuliana; Londero, Margherita; Franca, Raffaella; Rabusin, Marco; Valsecchi, Maria Grazia; Pei, Deqing; Cheng, Cheng; Paugh, Steven W; Ramsey, Laura B; Diouf, Barthelemy; McCorkle, Joseph Robert; Jones, Terreia S; Pui, Ching-Hon; Relling, Mary V; Evans, William E

    2012-11-01

    Treatment-related toxicity can be life-threatening and is the primary cause of interruption or discontinuation of chemotherapy for acute lymphoblastic leukemia (ALL), leading to an increased risk of relapse. Mercaptopurine is an essential component of continuation therapy in all ALL treatment protocols worldwide. Genetic polymorphisms in thiopurine S-methyltransferase (TPMT) are known to have a marked effect on mercaptopurine metabolism and toxicity; however, some patients with wild-type TPMT develop toxicity during mercaptopurine treatment for reasons that are not well understood. To identify additional genetic determinants of mercaptopurine toxicity, a genome-wide analysis was performed in a panel of human HapMap cell lines to identify trans-acting genes whose expression and/or single-nucleotide polymorphisms (SNPs) are related to TPMT activity, then validated in patients with ALL. The highest ranking gene with both mRNA expression and SNPs associated with TPMT activity in HapMap cell lines was protein kinase C and casein kinase substrate in neurons 2 (PACSIN2). The association of a PACSIN2 SNP (rs2413739) with TPMT activity was confirmed in patients and knock-down of PACSIN2 mRNA in human leukemia cells (NALM6) resulted in significantly lower TPMT activity. Moreover, this PACSIN2 SNP was significantly associated with the incidence of severe gastrointestinal (GI) toxicity during consolidation therapy containing mercaptopurine, and remained significant in a multivariate analysis including TPMT and SLCO1B1 as covariates, consistent with its influence on TPMT activity. The association with GI toxicity was also validated in a separate cohort of pediatric patients with ALL. These data indicate that polymorphism in PACSIN2 significantly modulates TPMT activity and influences the risk of GI toxicity associated with mercaptopurine therapy.

  17. PACSIN2 polymorphism influences TPMT activity and mercaptopurine-related gastrointestinal toxicity

    PubMed Central

    Stocco, Gabriele; Yang, Wenjian; Crews, Kristine R.; Thierfelder, William E.; Decorti, Giuliana; Londero, Margherita; Franca, Raffaella; Rabusin, Marco; Valsecchi, Maria Grazia; Pei, Deqing; Cheng, Cheng; Paugh, Steven W.; Ramsey, Laura B.; Diouf, Barthelemy; McCorkle, Joseph Robert; Jones, Terreia S.; Pui, Ching-Hon; Relling, Mary V.; Evans, William E.

    2012-01-01

    Treatment-related toxicity can be life-threatening and is the primary cause of interruption or discontinuation of chemotherapy for acute lymphoblastic leukemia (ALL), leading to an increased risk of relapse. Mercaptopurine is an essential component of continuation therapy in all ALL treatment protocols worldwide. Genetic polymorphisms in thiopurine S-methyltransferase (TPMT) are known to have a marked effect on mercaptopurine metabolism and toxicity; however, some patients with wild-type TPMT develop toxicity during mercaptopurine treatment for reasons that are not well understood. To identify additional genetic determinants of mercaptopurine toxicity, a genome-wide analysis was performed in a panel of human HapMap cell lines to identify trans-acting genes whose expression and/or single-nucleotide polymorphisms (SNPs) are related to TPMT activity, then validated in patients with ALL. The highest ranking gene with both mRNA expression and SNPs associated with TPMT activity in HapMap cell lines was protein kinase C and casein kinase substrate in neurons 2 (PACSIN2). The association of a PACSIN2 SNP (rs2413739) with TPMT activity was confirmed in patients and knock-down of PACSIN2 mRNA in human leukemia cells (NALM6) resulted in significantly lower TPMT activity. Moreover, this PACSIN2 SNP was significantly associated with the incidence of severe gastrointestinal (GI) toxicity during consolidation therapy containing mercaptopurine, and remained significant in a multivariate analysis including TPMT and SLCO1B1 as covariates, consistent with its influence on TPMT activity. The association with GI toxicity was also validated in a separate cohort of pediatric patients with ALL. These data indicate that polymorphism in PACSIN2 significantly modulates TPMT activity and influences the risk of GI toxicity associated with mercaptopurine therapy. PMID:22846425

  18. Effects of Environmental Toxicants on Metabolic Activity of Natural Microbial Communities

    PubMed Central

    Barnhart, Carole L. H.; Vestal, J. Robie

    1983-01-01

    Two methods of measuring microbial activity were used to study the effects of toxicants on natural microbial communities. The methods were compared for suitability for toxicity testing, sensitivity, and adaptability to field applications. This study included measurements of the incorporation of 14C-labeled acetate into microbial lipids and microbial glucosidase activity. Activities were measured per unit biomass, determined as lipid phosphate. The effects of various organic and inorganic toxicants on various natural microbial communities were studied. Both methods were useful in detecting toxicity, and their comparative sensitivities varied with the system studied. In one system, the methods showed approximately the same sensitivities in testing the effects of metals, but the acetate incorporation method was more sensitive in detecting the toxicity of organic compounds. The incorporation method was used to study the effects of a point source of pollution on the microbiota of a receiving stream. Toxic doses were found to be two orders of magnitude higher in sediments than in water taken from the same site, indicating chelation or adsorption of the toxicant by the sediment. The microbiota taken from below a point source outfall was 2 to 100 times more resistant to the toxicants tested than was that taken from above the outfall. Downstream filtrates in most cases had an inhibitory effect on the natural microbiota taken from above the pollution source. The microbial methods were compared with commonly used bioassay methods, using higher organisms, and were found to be similar in ability to detect comparative toxicities of compounds, but were less sensitive than methods which use standard media because of the influences of environmental factors. PMID:16346432

  19. Propulsion Risk Reduction Activities for Non-Toxic Cryogenic Propulsion

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Klem, Mark D.; Fisher, Kenneth

    2010-01-01

    The Propulsion and Cryogenics Advanced Development (PCAD) Project s primary objective is to develop propulsion system technologies for non-toxic or "green" propellants. The PCAD project focuses on the development of non-toxic propulsion technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of non-toxic propellants for space missions. Implementation of non-toxic propellants in high performance propulsion systems offers NASA an opportunity to consider other options than current hypergolic propellants. The PCAD Project is emphasizing technology efforts in reaction control system (RCS) thruster designs, ascent main engines (AME), and descent main engines (DME). PCAD has a series of tasks and contracts to conduct risk reduction and/or retirement activities to demonstrate that non-toxic cryogenic propellants can be a feasible option for space missions. Work has focused on 1) reducing the risk of liquid oxygen/liquid methane ignition, demonstrating the key enabling technologies, and validating performance levels for reaction control engines for use on descent and ascent stages; 2) demonstrating the key enabling technologies and validating performance levels for liquid oxygen/liquid methane ascent engines; and 3) demonstrating the key enabling technologies and validating performance levels for deep throttling liquid oxygen/liquid hydrogen descent engines. The progress of these risk reduction and/or retirement activities will be presented.

  20. Advanced oxidation processes on doxycycline degradation: monitoring of antimicrobial activity and toxicity.

    PubMed

    Spina-Cruz, Mylena; Maniero, Milena Guedes; Guimarães, José Roberto

    2018-05-08

    Advanced oxidation processes (AOPs) have been highly efficient in degrading contaminants of emerging concern (CEC). This study investigated the efficiency of photolysis, peroxidation, photoperoxidation, and ozonation at different pH values to degrade doxycycline (DC) in three aqueous matrices: fountain, tap, and ultrapure water. More than 99.6% of DC degradation resulted from the UV/H 2 O 2 and ozonation processes. Also, to evaluate the toxicity of the original solution and throughout the degradation time, antimicrobial activity tests were conducted using Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, and acute toxicity test using the bioluminescent marine bacterium (Vibrio fischeri). Antimicrobial activity reduced as the drug degradation increased in UV/H 2 O 2 and ozonation processes, wherein the first process only 6 min was required to reduce 100% of both bacteria activity. In ozonation, 27.7 mg L -1 of ozone was responsible for reducing 100% of the antimicrobial activity. When applied the photoperoxidation process, an increase in the toxicity occurred as the high levels of degradation were achieved; it means that toxic intermediates were formed. The ozonated solutions did not present toxicity.

  1. Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives.

    PubMed

    Urbatzka, Ralph; Freitas, Sara; Palmeira, Andreia; Almeida, Tiago; Moreira, João; Azevedo, Carlos; Afonso, Carlos; Correia-da-Silva, Marta; Sousa, Emilia; Pinto, Madalena; Vasconcelos, Vitor

    2018-05-10

    Obesity is an increasing epidemic worldwide and novel treatments are urgently needed. Polyphenols are natural compounds derived from plants, which are known in particular for their antioxidant properties. However, some polyphenols were described to possess anti-obesity activities in vitro and in vivo. In this study, we aimed to screen a library of 85 polyphenol derivatives for their lipid reducing activity and toxicity. Compounds were analyzed at 5 μM with the zebrafish Nile red fluorescence fat metabolism assay and for general toxicity in vivo. To improve the safety profile, compounds were screened at 50 μM in murine preadipocytes in vitro for cytotoxicity. Obtained activity data were used to create a 2D-QSAR (quantitative structure activity relationship) model. 38 polyphenols showed strong lipid reducing activity. Toxicity analysis revealed that 18 of them did not show any toxicity in vitro or in vivo. QSAR analysis revealed the importance of the number of rings, fractional partial positively charged surface area, relative positive charge, relative number of oxygen atoms, and partial negative surface area for lipid-reducing activity. The five most potent compounds with EC 50 values in the nanomolar range for lipid reducing activity and without any toxic effects are strong candidates for future research and development into anti-obesity drugs. Molecular profiling for fasn, sirt1, mtp and ppary revealed one compound that reduced significantly fasn mRNA expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Major Pesticides Are More Toxic to Human Cells Than Their Declared Active Principles

    PubMed Central

    Spiroux de Vendômois, Joël; Séralini, Gilles-Eric

    2014-01-01

    Pesticides are used throughout the world as mixtures called formulations. They contain adjuvants, which are often kept confidential and are called inerts by the manufacturing companies, plus a declared active principle, which is usually tested alone. We tested the toxicity of 9 pesticides, comparing active principles and their formulations, on three human cell lines (HepG2, HEK293, and JEG3). Glyphosate, isoproturon, fluroxypyr, pirimicarb, imidacloprid, acetamiprid, tebuconazole, epoxiconazole, and prochloraz constitute, respectively, the active principles of 3 major herbicides, 3 insecticides, and 3 fungicides. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. Fungicides were the most toxic from concentrations 300–600 times lower than agricultural dilutions, followed by herbicides and then insecticides, with very similar profiles in all cell types. Despite its relatively benign reputation, Roundup was among the most toxic herbicides and insecticides tested. Most importantly, 8 formulations out of 9 were up to one thousand times more toxic than their active principles. Our results challenge the relevance of the acceptable daily intake for pesticides because this norm is calculated from the toxicity of the active principle alone. Chronic tests on pesticides may not reflect relevant environmental exposures if only one ingredient of these mixtures is tested alone. PMID:24719846

  3. Saving two birds with one stone: using active substance avian acute toxicity data to predict formulated plant protection product toxicity.

    PubMed

    Maynard, Samuel K; Edwards, Peter; Wheeler, James R

    2014-07-01

    Environmental safety assessments for exposure of birds require the provision of acute avian toxicity data for both the pesticidal active substance and formulated products. As an example, testing on the formulated product is waived in Europe using an assessment of data for the constituent active substance(s). This is often not the case globally, because some countries require acute toxicity tests with every formulated product, thereby triggering animal welfare concerns through unnecessary testing. A database of 383 formulated products was compiled from acute toxicity studies conducted with northern bobwhite (Colinus virginianus) or Japanese quail (Coturnix japonica) (unpublished regulatory literature). Of the 383 formulated products studied, 159 contained only active substances considered functionally nontoxic (median lethal dose [LD50] > highest dose tested). Of these, 97% had formulated product LD50 values of >2000 mg formulated product/kg (limit dose), indicating that no new information was obtained in the formulated product study. Furthermore, defined (point estimated) LD50 values for formulated products were compared with LD50 values predicted from toxicity of the active substance(s). This demonstrated that predicted LD50 values were within 2-fold and 5-fold of the measured formulated product LD50 values in 90% and 98% of cases, respectively. This analysis demonstrates that avian acute toxicity testing of formulated products is largely unnecessary and should not be routinely required to assess avian acute toxicity. In particular, when active substances are known to be functionally nontoxic, further formulated product testing adds no further information and unnecessarily increases bird usage in testing. A further analysis highlights the fact that significant reductions (61% in this dataset) could be achieved by using a sequential testing design (Organisation for Economic Co-operation and Development test guideline 223), as opposed to established single

  4. Estimating Toxicity Pathway Activating Doses for High Throughput Chemical Risk Assessments

    EPA Science Inventory

    Estimating a Toxicity Pathway Activating Dose (TPAD) from in vitro assays as an analog to a reference dose (RfD) derived from in vivo toxicity tests would facilitate high throughput risk assessments of thousands of data-poor environmental chemicals. Estimating a TPAD requires def...

  5. Aqueous humor tyrosinase activity is indicative of iris melanocyte toxicity.

    PubMed

    Mahanty, Sarmistha; Kawali, Ankush A; Dakappa, Shruthi Shirur; Mahendradas, Padmamalini; Kurian, Mathew; Kharbanda, Varun; Shetty, Rohit; Setty, Subba Rao Gangi

    2017-09-01

    Antibiotics such as fluoroquinolones (FQLs) are commonly used to treat ocular infections but are also known to cause dermal melanocyte toxicity. The release of dispersed pigments from the iris into the aqueous humor has been considered a possible ocular side effect of the systemic administration of FQLs such as Moxifloxacin, and this condition is known as bilateral acute iris transillumination (BAIT). Bilateral acute depigmentation of iris (BADI) is a similar condition, with iris pigment released into the aqueous, but it has not been reported as a side effect of FQL. Iris pigments are synthesized by the melanogenic enzyme tyrosinase (TYR) and can be detected but not quantified by using slit-lamp biomicroscopy. The correlation between dispersed pigments in the aqueous and the extent of melanocyte toxicity due to topical antibiotics in vivo is not well studied. Here, we aimed to study the effect of topical FQLs on iris tissue, the pigment release in the aqueous humor and the development of clinically evident iris atrophic changes. We evaluated this process by measuring the activity of TYR in the aqueous humor of 82 healthy eyes undergoing cataract surgery following topical application of FQLs such as Moxifloxacin (27 eyes, preservative-free) or Ciprofloxacin (29 eyes, with preservative) or the application of non-FQL Tobramycin (26 eyes, with preservative) as a control. In addition, the patients were questioned and examined for ocular side effects in pre- and post-operative periods. Our data showed a significantly higher mean TYR activity in the aqueous humor of Ciprofloxacin-treated eyes compared to Moxifloxacin- (preservative free, p < 0.0001) or Tobramycin-treated eyes (p < 0.0001), which indicated that few quinolones under certain conditions are toxic to the iris melanocytes. However, the reduced TYR activity in the aqueous of Moxifloxacin-treated eyes was possibly due to the presence of a higher drug concentration, which inhibits TYR activity. Consistently

  6. Toxicant inhibition in activated sludge: fractionation of the physiological status of bacteria.

    PubMed

    Foladori, P; Bruni, L; Tamburini, S

    2014-09-15

    In wastewater treatment plants the sensitivity of activated sludge to a toxicant depends on the toxicity test chosen, and thus the use of more than one test is suggested. The physiological status of bacteria in response to toxicants was analysed by flow cytometry to distinguish intact, permeabilised, active cells and cells disrupted. Results were compared with respirometry and bioluminescence bioassay (Vibrio fischeri). 3,5-Dichlorophenol (DCP) was used as reference xenobiotic. DCP has a strong effect on cellular integrity, causing an increase in permeabilised and disrupted cells. A reduction of 44-80% of intact cells with 6-30 mgDCP/L for 5h was found. Inhibition of active cells was 25-49%, at 6-30 mgDCP/L for 5h. The bioluminescence bioassay resulted oversensitive to DCP compared to tests based on activated sludge, while oxygen uptake rate was affected similarly to intact cells measured by flow cytometry. Landfill leachate was tested: a detrimental impact on both cellular integrity and enzymatic activity was observed. Reduction of intact cells and active cells was by 32% and 61% respectively after addition of 50% (v/v) of leachate for 5h. The flow cytometry analysis proposed here might be widely applicable in the monitoring of various toxicants and in other aquatic biosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Hyperfunctioning thyroid nodules in toxic multinodular goiter share activating thyrotropin receptor mutations with solitary toxic adenoma.

    PubMed

    Tonacchera, M; Chiovato, L; Pinchera, A; Agretti, P; Fiore, E; Cetani, F; Rocchi, R; Viacava, P; Miccoli, P; Vitti, P

    1998-02-01

    Toxic multinodular goiter is a cause of nonautoimmune hyperthyroidism and is believed to differ in its nature and pathogenesis from toxic adenoma. Gain-of-function mutations of the TSH receptor gene have been identified as a cause of toxic adenoma. The pathogenesis at the molecular level of hyperfunctioning nodules in toxic multinodular goiter has yet not been reported. Six patients with a single hot nodule within a multinodular goiter and 11 patients with toxic thyroid adenoma were enrolled in our study. At histology five hyperfunctioning nodules in multinodular goiters showed the features of adenomas, and one was identified as a hyperplastic nodule. The entire exon 10 of the TSH receptor gene was directly sequenced after PCR amplification from genomic DNA obtained from surgical specimens. Functional studies of mutated receptors were performed in COS-7 cells. Five out of 6 (83%) hyperfunctioning nodules within toxic multinodular goiters harbored a TSH receptor mutation. A TSH receptor mutation was also evident in the hyperfunctioning nodule that at histology had the features of noncapsulated hyperplastic nodule. Among toxic adenomas, 8 out of 11 (72%) nodules harbored a TSH receptor mutation. All the mutations were heterozygotic and somatic. Nonfunctioning nodules, whether adenomas or hyperplastic nodules present in association with hyperfunctioning nodules in the same multinodular goiters, had no TSH receptor mutation. All the mutations identified had constitutive activity as assessed by cAMP production after expression in COS-7 cells. Hyperfunctioning thyroid nodules in multinodular goiters recognize the same pathogenetic event (TSH receptor mutation) as toxic adenoma. Other mechanisms are implicated in the growth of nonfunctioning thyroid nodules coexistent in the same gland.

  8. Toxicity of Biologically Active Peptides and Future Safety Aspects: An Update.

    PubMed

    Khan, Fazlullah; Niaz, Kamal; Abdollahi, Mohammad

    2018-02-18

    Peptides are fragments of proteins with significant biological activities. These peptides are encoded in the protein sequence. Initially, such peptides are inactive in their parental form, unless proteolytic enzymes are released. These peptides then exhibit various functions and play a therapeutic role in the body. Besides the therapeutic and physiological activities of peptides, the main purpose of this study was to highlight the safety aspects of peptides. We performed an organized search of available literature using PubMed, Google Scholar, Medline, EMBASE, Reaxys and Scopus databases. All the relevant citations including research and review articles about the toxicity of biologically active peptides were evaluated and gathered in this study. Biological peptides are widely used in the daily routine ranging from food production to the cosmetics industry and also they have a beneficial role in the treatment and prevention of different diseases. These peptides are manufactured by both chemical and biotechnological techniques, which show negligible toxicity, however, some naturally occurring peptides and enzymes may induce high toxicity. Depending upon the demand and expected use in the food or pharmaceutical industry, we need different approaches to acertain the safety of these peptides preferentially through in silico methods. Intestinal wall disruption, erythrocytes and lymphocytes toxicity, free radical production, enzymopathic and immunopathic tissue damage and cytotoxicity due to the consumption of peptides are the main problems in the biological system that lead to various complicated disorders. Therefore, before considering biologically active peptides for food production and for therapeutic purpose, it is first necessary to evaluate the immunogenicity and toxicities of peptides. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Essential oil from fruit of Xylopia langsdorffiana: antitumour activity and toxicity.

    PubMed

    Moura, Ana Paula Gomes; Beltrão, Daiene Martins; Pita, João Carlos Lima Rodrigues; Xavier, Aline Lira; Brito, Monalisa Taveira; Sousa, Tatyanna Kelvia Gomes de; Batista, Leônia Maria; Carvalho, João Ernesto de; Ruiz, Ana Lúcia Tasca Gois; Della Torre, Adriana; Duarte, Marcelo Cavalcante; Tavares, Josean Fechine; da Silva, Marcelo Sobral; Sobral, Marianna Vieira

    2016-12-01

    The genus Xylopia L. (Annonaceae) includes aromatic plants that have both nutritional and medicinal uses. Essential oils of Xylopia species have antitumour effects. However, the efficacy of the essential oil from the fruit of Xylopia langsdorffiana St. Hil & Tul. (EOX) has not been examined. EOX was evaluated to determine its chemical composition, antitumour activity and toxicity. EOX was obtained from fresh fruits of X. langsdorffiana subjected to hydrodistillation, and gas chromatography-mass spectrometry was used to characterize the chemical composition of EOX. The toxicity of EOX was evaluated using haemolysis, acute toxicity and micronucleus assays. The in vitro antitumour activity of EOX was investigated using the sulforhodamine B assay. The sarcoma 180 murine tumour model was used to evaluate the in vivo antitumour activity and toxicity of EOX (50 and 100 mg/kg) after 7 d of treatment. The major components of EOX were α-pinene (34.57%) and limonene (31.75%). The HC 50 (concentration producing 50% haemolysis) was 293.6 μg/ml. EOX showed greater selectivity for the leukaemia cell line K562, with total growth inhibition (TGI) (concentration producing TGI) of 1.8 μg/ml, and for multidrug-resistant ovarian tumour cell line NCI/ADR-RES (TGI of 45.4 μg/ml). The LD 50 was approximately 351.09 mg/kg. At doses of 50 and 100 mg/kg, EOX inhibited the in vivo growth of sarcoma 180 by 38.67 and 54.32%, respectively. EOX displayed minor hepatic alterations characteristic of acute hepatitis and induced no genotoxicity. EOX showed in vitro and in vivo antitumour activity and low toxicity, which warrants further pharmacological studies.

  10. Pharmacological activity and toxicity of some neurotropic agents under conditions of experimental hypodynamia

    NASA Technical Reports Server (NTRS)

    Kirichek, L. T.

    1980-01-01

    The indices of pharmacological range, risk coefficients, ED50, LD50, the size of the area of toxic activity, and maximal tolerated and absolute lethal doses were compared in hypodynamic mice. The pharmacological activity of the test neurotropic agents exhibiting a central action underwent change, but their toxicity remained unchanged.

  11. Decoupling Activation of Heme Biosynthesis from Anaerobic Toxicity in a Molecule Active in Staphylococcus aureus.

    PubMed

    Dutter, Brendan F; Mike, Laura A; Reid, Paul R; Chong, Katherine M; Ramos-Hunter, Susan J; Skaar, Eric P; Sulikowski, Gary A

    2016-05-20

    Small molecules active in the pathogenic bacterium Staphylococcus aureus are valuable tools for the study of its basic biology and pathogenesis, and many molecules may provide leads for novel therapeutics. We have previously reported a small molecule, 1, which activates endogenous heme biosynthesis in S. aureus, leading to an accumulation of intracellular heme. In addition to this novel activity, 1 also exhibits toxicity towards S. aureus growing under fermentative conditions. To determine if these activities are linked and establish what features of the molecule are required for activity, we synthesized a library of analogs around the structure of 1 and screened them for activation of heme biosynthesis and anaerobic toxicity to investigate structure-activity relationships. The results of this analysis suggest that these activities are not linked. Furthermore, we have identified the structural features that promote each activity and have established two classes of molecules: activators of heme biosynthesis and inhibitors of anaerobic growth. These molecules will serve as useful probes for their respective activities without concern for the off target effects of the parent compound.

  12. Toxic industrial deposit remediation by ant activity

    NASA Astrophysics Data System (ADS)

    Jilkova, Veronika; Frouz, Jan

    2016-04-01

    Toxic industrial deposits are often contaminated by heavy metals and the substrates have low pH values. In such systems, soil development is thus slowed down by high toxicity and acidic conditions which are unfavourable to soil fauna. Ants (Hymenoptera, Formicidae) are considered tolerant to heavy metal pollution and are known to increase organic matter content and microbial activity in their nests. Here, we focused on soil remediation caused by three ant species (Formica sanguinea, Lasius niger, and Tetramorium sp.) in an ore-washery sedimentation basin near Chvaletice (Czech Republic). Soil samples were taken from the centre of ant nests and from the nest surroundings (>3 m from nests). Samples were then analyzed for microbial activity and biomass and contents of organic matter and nutrients. As a result, ant species that most influenced soil properties was F. sanguinea as there were higher microbial activity and total nitrogen and ammonia contents in ant nests than in the surrounding soil. We expected such a result because F. sanguinea builds conspicuous large nests and is a carnivorous species that brings substantial amounts of nitrogen in insect prey to their nests. Effects of the other two ant species might be lower because of smaller nests and different feeding habits as they rely mainly on honeydew from aphids or on plant seeds that do not contain much nutrients.

  13. Intracellular haemolytic agents of Heterocapsa circularisquama exhibit toxic effects on H. circularisquama cells themselves and suppress both cell-mediated haemolytic activity and toxicity to rotifers (Brachionus plicatilis).

    PubMed

    Nishiguchi, Tomoki; Cho, Kichul; Yasutomi, Masumi; Ueno, Mikinori; Yamaguchi, Kenichi; Basti, Leila; Yamasaki, Yasuhiro; Takeshita, Satoshi; Kim, Daekyung; Oda, Tatsuya

    2016-10-01

    A harmful dinoflagellate, Heterocapsa circularisquama, is highly toxic to shellfish and the zooplankton rotifer Brachionus plicatilis. A previous study found that H. circularisquama has both light-dependent and -independent haemolytic agents, which might be responsible for its toxicity. Detailed analysis of the haemolytic activity of H. circularisquama suggested that light-independent haemolytic activity was mediated mainly through intact cells, whereas light-dependent haemolytic activity was mediated by intracellular agents which can be discharged from ruptured cells. Because H. circularisquama showed similar toxicity to rotifers regardless of the light conditions, and because ultrasonic ruptured H. circularisquama cells showed no significant toxicity to rotifers, it was suggested that live cell-mediated light-independent haemolytic activity is a major factor responsible for the observed toxicity to rotifers. Interestingly, the ultrasonic-ruptured cells of H. circularisquama suppressed their own lethal effect on the rotifers. Analysis of samples of the cell contents (supernatant) and cell fragments (precipitate) prepared from the ruptured H. circularisquama cells indicated that the cell contents contain inhibitors for the light-independent cell-mediated haemolytic activity, toxins affecting H. circularisquama cells themselves, as well as light-dependent haemolytic agents. Ethanol extract prepared from H. circularisquama, which is supposed to contain a porphyrin derivative that displays photosensitising haemolytic activity, showed potent toxicity to Chattonella marina, Chattonella antiqua, and Karenia mikimotoi, as well as to H. circularisquama at the concentration range at which no significant toxicity to rotifers was observed. Analysis on a column of Sephadex LH-20 revealed that light-dependent haemolytic activity and inhibitory activity on cell-mediated light-independent haemolytic activity existed in two separate fractions (f-2 and f-3), suggesting that both

  14. Anticancer activities against cholangiocarcinoma, toxicity and pharmacological activities of Thai medicinal plants in animal models

    PubMed Central

    2012-01-01

    Background Chemotherapy of cholangiocarcinoma (CCA), a devastating cancer with increasing worldwide incidence and mortality rates, is largely ineffective. The discovery and development of effective chemotherapeutics is urgently needed. Methods/Design The study aimed at evaluating anticancer activities, toxicity, and pharmacological activities of the curcumin compound (CUR), the crude ethanolic extracts of rhizomes of Zingiber officinale Roscoe (Ginger: ZO) and Atractylodes lancea thung. DC (Khod-Kha-Mao: AL), fruits of Piper chaba Hunt. (De-Plee: PC), and Pra-Sa-Prao-Yhai formulation (a mixture of parts of 18 Thai medicinal plants: PPF) were investigated in animal models. Anti-cholangiocarcinoma (anti-CCA) was assessed using CCA-xenograft nude mouse model. The antihypertensive, analgesic, anti-inflammatory, antipyretic, and anti-ulcer activities and effects on motor coordination were investigated using Rota-rod test, CODA tail-cuff system, writhing and hot plate tests, carrageenan-induced paw edema test, brewer's yeast test, and alcohol-induced gastric ulcer test, respectively. Acute and subacute toxicity tests were performed according to the OECD guideline for testing of chemicals with modification. Results Promising anticancer activity against CCA in nude mouse xenograft model was shown for the ethanolic extract of AL at all oral dose levels (1000, 3000, and 5000 mg/kg body weight) as well as the extracts of ZO, PPF, and CUR compound at the highest dose level (5000, 4000, and 5000 mg/kg body weight, respectively). PC produced no significant anti-CCA activity. Results from acute and subacute toxicity tests both in mice and rats indicate safety profiles of all the test materials in a broad range of dose levels. No significant toxicity except stomach irritation and general CNS depressant signs were observed. Investigation of pharmacological activities of the test materials revealed promising anti-inflammatory (ZO, PPF, and AL), analgesic (CUR and PPF), antipyretic

  15. Description of Fundulus Heteroclitus Ventilatory Data and Water Quality Parameters: A Feasibility Study for Predicting Toxic Pfiesteria Piscicida and P. Piscicida-like Events in Estuarine Environments

    DTIC Science & Technology

    2000-06-30

    Center for Environmental Health Research (USACEHR), the United States Environmental Protection Agency (USEPA), Johns Hopkins University Applied Physics...Joanne M. Burkholder and fellow North Carolina State researchers in 1988, has the ability to assume a toxic life cycle stage under appropriate...P. piscicida form. If the toxic form ofP. piscicida is present in the optimal quantity, the fish \\vill usually die within an hour. Dr. Burkholder

  16. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity.

    PubMed

    Mesnage, R; Bernay, B; Séralini, G-E

    2013-11-16

    Pesticides are always used in formulations as mixtures of an active principle with adjuvants. Glyphosate, the active ingredient of the major pesticide in the world, is an herbicide supposed to be specific on plant metabolism. Its adjuvants are generally considered as inert diluents. Since side effects for all these compounds have been claimed, we studied potential active principles for toxicity on human cells for 9 glyphosate-based formulations. For this we detailed their compositions and toxicities, and as controls we used a major adjuvant (the polyethoxylated tallowamine POE-15), glyphosate alone, and a total formulation without glyphosate. This was performed after 24h exposures on hepatic (HepG2), embryonic (HEK293) and placental (JEG3) cell lines. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. The compositions in adjuvants were analyzed by mass spectrometry. Here we demonstrate that all formulations are more toxic than glyphosate, and we separated experimentally three groups of formulations differentially toxic according to their concentrations in ethoxylated adjuvants. Among them, POE-15 clearly appears to be the most toxic principle against human cells, even if others are not excluded. It begins to be active with negative dose-dependent effects on cellular respiration and membrane integrity between 1 and 3ppm, at environmental/occupational doses. We demonstrate in addition that POE-15 induces necrosis when its first micellization process occurs, by contrast to glyphosate which is known to promote endocrine disrupting effects after entering cells. Altogether, these results challenge the establishment of guidance values such as the acceptable daily intake of glyphosate, when these are mostly based on a long term in vivo test of glyphosate alone. Since pesticides are always used with adjuvants that could change their toxicity, the necessity to assess their whole formulations as mixtures becomes obvious. This challenges

  17. The chemical exposure toxicity space (CETS) model: Displaying exposure time, aqueous and organic concentration, activity, and onset of toxicity.

    PubMed

    Mackay, Donald; Celsie, Alena K D; Parnis, J Mark; McCarty, Lynn S; Arnot, Jon A; Powell, David E

    2017-05-01

    A 1-compartment toxicokinetic model is used to characterize the chemical exposure toxicity space (CETS), providing a novel graphic tool that can aid in the design of aquatic toxicity tests for fish and for interpreting their results. The graph depicts the solution to the differential equation describing the uptake kinetics of a chemical by a modeled fish under conventional bioassay conditions. The model relates the exposure concentration in the water to a dimensionless time and the onset of toxicity as determined by an estimated or assumed critical body residue or incipient lethal aqueous concentration. These concentration graphs are specific to each chemical and exposure and organism parameters and clearly demonstrate differences in toxicity between chemicals and how factors such as hydrophobicity influence the toxic endpoint. The CETS plots can also be used to assess bioconcentration test conditions to ensure that concentrations are well below toxic levels. Illustrative applications are presented using a recent set of high-quality toxicity data. Conversion of concentrations to chemical activities in the plots enables results for different baseline toxicants to be superimposed. For chemicals that have different modes of toxic action, the increased toxicity then becomes apparent. Implications for design and interpretation of aquatic toxicity tests are discussed. The model, and pictorial visualization of the time-course of aquatic toxicity tests, may contribute to improvements in test design, implementation, and interpretation, and to reduced animal usage. Environ Toxicol Chem 2017;36:1389-1396. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.

  18. Molluscicidal properties and selective toxicity of surface-active agents

    PubMed Central

    Visser, S. A.

    1965-01-01

    Of over 100 commercially produced surface-active agents tested against the bilharziasis vector snail Biomphalaria sudanica, 13 were found to possess considerable and highly selective molluscicidal properties at concentrations of less than 1 ppm for exposures of 48 hours. Against crustacea, fish, water plants, mosquito larvae, mice, and the eggs of B. sudanica, the toxicities of the 13 surfactants were slight. The chemicals did not appear to be absorbed by organic matter to any appreciable extent. It is thought that the toxicity to B. sudanica is of both a chemical and a physical nature. PMID:5294185

  19. Chronic Activation of FXR in Transgenic Mice Caused Perinatal Toxicity and Sensitized Mice to Cholesterol Toxicity

    PubMed Central

    Cheng, Qiuqiong; Inaba, Yuka; Lu, Peipei; Xu, Meishu; He, Jinhan; Zhao, Yueshui; Guo, Grace L.; Kuruba, Ramalinga; de la Vega, Rona; Evans, Rhobert W.; Li, Song

    2015-01-01

    The nuclear receptor farnesoid X receptor (FXR) (nuclear receptor subfamily 1, group H, member 4, or NR1H4) is highly expressed in the liver and intestine. Previous reports have suggested beneficial functions of FXR in the homeostasis of bile acids, lipids, and glucose, as well as in promoting liver regeneration and inhibiting carcinogenesis. To investigate the effect of chronic FXR activation in vivo, we generated transgenic mice that conditionally and tissue specifically express the activated form of FXR in the liver and intestine. Unexpectedly, the transgenic mice showed several intriguing phenotypes, including partial neonatal lethality, growth retardation, and spontaneous liver toxicity. The transgenic mice also displayed heightened sensitivity to a high-cholesterol diet-induced hepatotoxicity but resistance to the gallstone formation. The phenotypes were transgene specific, because they were abolished upon treatment with doxycycline to silence the transgene expression. The perinatal toxicity, which can be rescued by a maternal vitamin supplement, may have resulted from vitamin deficiency due to low biliary bile acid output as a consequence of inhibition of bile acid formation. Our results also suggested that the fibroblast growth factor-inducible immediate-early response protein 14 (Fn14), a member of the proinflammatory TNF family, is a FXR-responsive gene. However, the contribution of Fn14 induction in the perinatal toxic phenotype of the transgenic mice remains to be defined. Because FXR is being explored as a therapeutic target, our results suggested that a chronic activation of this nuclear receptor may have an unintended side effect especially during the perinatal stage. PMID:25719402

  20. Compound toxicity screening and structure-activity relationship modeling in Escherichia coli.

    PubMed

    Planson, Anne-Gaëlle; Carbonell, Pablo; Paillard, Elodie; Pollet, Nicolas; Faulon, Jean-Loup

    2012-03-01

    Synthetic biology and metabolic engineering are used to develop new strategies for producing valuable compounds ranging from therapeutics to biofuels in engineered microorganisms. When developing methods for high-titer production cells, toxicity is an important element to consider. Indeed the production rate can be limited due to toxic intermediates or accumulation of byproducts of the heterologous biosynthetic pathway of interest. Conversely, highly toxic molecules are desired when designing antimicrobials. Compound toxicity in bacteria plays a major role in metabolic engineering as well as in the development of new antibacterial agents. Here, we screened a diversified chemical library of 166 compounds for toxicity in Escherichia coli. The dataset was built using a clustering algorithm maximizing the chemical diversity in the library. The resulting assay data was used to develop a toxicity predictor that we used to assess the toxicity of metabolites throughout the metabolome. This new tool for predicting toxicity can thus be used for fine-tuning heterologous expression and can be integrated in a computational-framework for metabolic pathway design. Many structure-activity relationship tools have been developed for toxicology studies in eukaryotes [Valerio (2009), Toxicol Appl Pharmacol, 241(3): 356-370], however, to the best of our knowledge we present here the first E. coli toxicity prediction web server based on QSAR models (EcoliTox server: http://www.issb.genopole.fr/∼faulon/EcoliTox.php). Copyright © 2011 Wiley Periodicals, Inc.

  1. Automated swimming activity monitor for examining temporal patterns of toxicant effects on individual Daphnia magna.

    PubMed

    Bahrndorff, Simon; Michaelsen, Thomas Yssing; Jensen, Anne; Marcussen, Laurits Faarup; Nielsen, Majken Elley; Roslev, Peter

    2016-07-01

    Aquatic pollutants are often biologically active at low concentrations and impact on biota in combination with other abiotic stressors. Traditional toxicity tests may not detect these effects, and there is a need for sensitive high-throughput methods for detecting sublethal effects. We have evaluated an automated infra-red (IR) light-based monitor for recording the swimming activity of Daphnia magna to establish temporal patterns of toxicant effects on an individual level. Activity was recorded for 48 h and the sensitivity of the monitor was evaluated by exposing D. magna to the reference chemicals K2 Cr2 O7 at 15, 20 and 25 °C and 2,4-dichlorophenol at 20 °C. Significant effects (P < 0.001) of toxicant concentrations, exposure time and incubation temperatures were observed. At 15 °C, the swimming activity remained unchanged for 48 h at sublethal concentrations of K2 Cr2 O7 whereas activity at 20 and 25 °C was more biphasic with decreases in activity occurring after 12-18 h. A similar biphasic pattern was observed after 2,4-dichlorophenol exposure at 20 °C. EC50 values for 2,4-dichlorophenol and K2 Cr2 O7 determined from automated recording of swimming activity showed increasing toxicity with time corresponding to decreases in EC50 of 0.03-0.07 mg l(-1) h(-1) . EC50 values determined after 48 h were comparable or lower than EC50 values based on visual inspection according to ISO 6341. The results demonstrated that the swimming activity monitor is capable of detecting sublethal behavioural effects that are toxicant and temperature dependent. The method allows EC values to be established at different time points and can serve as a high-throughput screening tool in toxicity testing. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Loss of 5-lipoxygenase activity protects mice against paracetamol-induced liver toxicity.

    PubMed

    Pu, Shiyun; Ren, Lin; Liu, Qinhui; Kuang, Jiangying; Shen, Jing; Cheng, Shihai; Zhang, Yuwei; Jiang, Wei; Zhang, Zhiyong; Jiang, Changtao; He, Jinhan

    2016-01-01

    Paracetamol (acetaminophen) is the most widely used over-the-counter analgesic and overdosing with paracetamol is the leading cause of hospital admission for acute liver failure. 5-Lipoxygenase (5-LO) catalyses arachidonic acid to form LTs, which lead to inflammation and oxidative stress. In this study, we examined whether deletion or pharmacological inhibition of 5-LO could protect mice against paracetamol-induced hepatic toxicity. Both genetic deletion and pharmacological inhibition of 5-LO in C57BL/6J mice were used to study the role of this enzyme in paracetamol induced liver toxicity. Serum and tissue biochemistry, H&E staining, and real-time PCR were used to assess liver toxicity. Deletion or pharmacological inhibition of 5-LO in mice markedly ameliorated paracetamol-induced hepatic injury, as shown by decreased serum alanine transaminase and aspartate aminotransferase levels and hepatic centrilobular necrosis. The hepatoprotective effect of 5-LO inhibition was associated with induction of the antitoxic phase II conjugating enzyme, sulfotransferase2a1, suppression of the pro-toxic phase I CYP3A11 and reduction of the hepatic transporter MRP3. In 5-LO(-/-) mice, levels of GSH were increased, and oxidative stress decreased. In addition, PPAR α, a nuclear receptor that confers resistance to paracetamol toxicity, was activated in 5-LO(-/-) mice. The activity of 5-LO may play a critical role in paracetamol-induced hepatic toxicity by regulating paracetamol metabolism and oxidative stress. © 2015 The British Pharmacological Society.

  3. CP5484, a novel quaternary carbapenem with potent anti-MRSA activity and reduced toxicity.

    PubMed

    Maruyama, Takahisa; Yamamoto, Yasuo; Kano, Yuko; Kurazono, Mizuyo; Matsuhisa, Eiji; Takata, Hiromi; Takata, Toshihiko; Atsumi, Kunio; Iwamatsu, Katsuyoshi; Shitara, Eiki

    2007-10-01

    A new series of 1beta-methyl carbapenems possessing a 6,7-disubstituted imidazo[5,1-b]thiazol-2-yl group directly attached to the C-2 position of the carbapenem nucleus was prepared, and the activities of these compounds against methicillin-resistant Staphylococcus aureus (MRSA) were evaluated. To study the effect of basic moieties on anti-MRSA activity, we introduced an amino, or imino, or amidino group at the 6-position of imidazo[5,1-b]thiazole in place of the carbamoylmethyl moiety of CP5068. Anti-MRSA activities of almost all basic group-substituted carbapenems were improved, though some of the compounds showed stronger acute toxicity in mice than IPM. In order to decrease the toxicity without decreasing the activity, we introduced various additional functionalities around the basic moiety. Finally, we obtained CP5484, which has excellent anti-MRSA activity and low acute toxicity.

  4. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units.

    PubMed

    Schmidt, Stine N; Holmstrup, Martin; Smith, Kilian E C; Mayer, Philipp

    2013-07-02

    A 7-day mixture toxicity experiment with the terrestrial springtail Folsomia candida was conducted, and the effects were linked to three different mixture exposure parameters. Passive dosing from silicone was applied to tightly control exposure levels and compositions of 12 mixture treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑C(lipid eq.)), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LC(lipid eq 50)) of 133 mmol kg(-1) lipid in good correspondence with the lethal membrane burden for baseline toxicity (40-160 mmol kg(-1) lipid). Finally, the effective lethal toxic unit (LTU50) of 1.20 was rather close to the expected value of 1. Altogether, passive dosing provided tightly controlled mixture exposure in terms of both level and composition, while ∑a, ∑C(lipid eq.), and ∑TU allowed baseline toxicity to be linked to mixture exposure.

  5. Carlina acaulis Exhibits Antioxidant Activity and Counteracts Aβ Toxicity in Caenorhabditis elegans.

    PubMed

    Link, Pille; Roth, Kevin; Sporer, Frank; Wink, Michael

    2016-07-02

    Carlina acaulis is a medicinal plant that has shown antioxidant activity in in vitro studies, but to date no corresponding in vivo data is available. Therefore, in the present study the antioxidant activity and its impact in counteracting Aβ toxicity were studied in the Caenorhabditis elegans model. A dichloromethane extract of the roots of C. acaulis was prepared and characterised via gas-liquid-chromatography/mass-spectrometry (GLC-MS). The in vitro antioxidant activity was confirmed via 2,2-diphenyl-1-picrylhydracyl assay. The extract was further separated by thin layer chromatography into two fractions, one of which was a fraction of the dichloromethane extract of C. acaulis containing mostly Carlina oxide (CarOx). Different strains of C. elegans were employed to study the expression of hsp-16.2p::GFP as a marker for oxidative stress, delocalisation of the transcription factor DAF-16 as a possible mechanism of antioxidant activity, the effect of the drug under lethal oxidative stress, and the effect against beta-amyloid (Aβ) toxicity in a paralysis assay. The C. acaulis extract and CarOx showed high antioxidant activity (stress reduction by 47% and 64%, respectively) in C. elegans and could activate the transcription factor DAF-16 which directs the expression of anti-stress genes. In paralysis assay, only the total extract was significantly active, delaying paralysis by 1.6 h. In conclusion, in vivo antioxidant activity was shown for C. acaulis for the first time in the C. elegans model. The active antioxidant compound is Carlina oxide. This activity, however, is not sufficient to counteract Aβ toxicity. Other mechanisms and possibly other active compounds are involved in this effect.

  6. Anti-Candida activity and brine shrimp toxicity assay of Ganoderma boninense.

    PubMed

    Daruliza, K M A; Fernandez, L; Jegathambigai, R; Sasidharan, S

    2012-01-01

    Ganoderma (G.) boninense is a white rot fungus, which can be found in the palm oil tree. Several studies have shown that G. boninense has antimicrobial and antagonistic properties. However, there is limited information reported on antifungal properties especially on Candida (C) albicans. Hence, this study was conducted to determine the anti-Candida activity of G. boninense against C albicans. Crude methanolic extracts of G. boninense was obtained by maceration method with 70% methanol. Anti-Candida test was carried out using disc diffusion assay, broth dilution method, time killing profile and brine shrimp toxicity assay. Anti-Candida activity indicated that the mean zone of inhibition was 12.5 +/- 0.6 mm. The MIC value for C. albicans found to be 3.125 mg/ml. The result from time-killing profile showed that the growth of C albicans was inhibited hence decreases its exponential phase. For brine shrimp toxicity assay, the LC50 value was 3.59 mg/ml which proved that the extract of G. boninense is not toxic.

  7. Structure-activity relationship analysis of mitochondrial toxicity caused by antiviral ribonucleoside analogs.

    PubMed

    Jin, Zhinan; Kinkade, April; Behera, Ishani; Chaudhuri, Shuvam; Tucker, Kathryn; Dyatkina, Natalia; Rajwanshi, Vivek K; Wang, Guangyi; Jekle, Andreas; Smith, David B; Beigelman, Leo; Symons, Julian A; Deval, Jerome

    2017-07-01

    Recent cases of severe toxicity during clinical trials have been associated with antiviral ribonucleoside analogs (e.g. INX-08189 and balapiravir). Some have hypothesized that the active metabolites of toxic ribonucleoside analogs, the triphosphate forms, inadvertently target human mitochondrial RNA polymerase (POLRMT), thus inhibiting mitochondrial RNA transcription and protein synthesis. Others have proposed that the prodrug moiety released from the ribonucleoside analogs might instead cause toxicity. Here, we report the mitochondrial effects of several clinically relevant and structurally diverse ribonucleoside analogs including NITD-008, T-705 (favipiravir), R1479 (parent nucleoside of balapiravir), PSI-7851 (sofosbuvir), and INX-08189 (BMS-986094). We found that efficient substrates and chain terminators of POLRMT, such as the nucleoside triphosphate forms of R1479, NITD-008, and INX-08189, are likely to cause mitochondrial toxicity in cells, while weaker chain terminators and inhibitors of POLRMT such as T-705 ribonucleoside triphosphate do not elicit strong in vitro mitochondrial effects. Within a fixed 3'-deoxy or 2'-C-methyl ribose scaffold, changing the base moiety of nucleotides did not strongly affect their inhibition constant (K i ) against POLRMT. By swapping the nucleoside and prodrug moieties of PSI-7851 and INX-08189, we demonstrated that the cell-based toxicity of INX-08189 is mainly caused by the nucleoside component of the molecule. Taken together, these results show that diverse 2' or 4' mono-substituted ribonucleoside scaffolds cause mitochondrial toxicity. Given the unpredictable structure-activity relationship of this ribonucleoside liability, we propose a rapid and systematic in vitro screen combining cell-based and biochemical assays to identify the early potential for mitochondrial toxicity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Antiulcerogenic Activity and Toxicity of Bauhinia holophylla Hydroalcoholic Extract

    PubMed Central

    Rozza, A. L.; Cesar, D. A. S.; Pieroni, L. G.; Saldanha, L. L.; Dokkedal, A. L.; De-Faria, F. M.; Souza-Brito, A. R. M.; Vilegas, W.; Takahira, R. K.; Pellizzon, C. H.

    2015-01-01

    Several species of Bauhinia are used in traditional medicine for the treatment of gastrointestinal diseases, diabetes, and inflammation, among other conditions. The aim of this study was to investigate the antiulcer effect of a hydroalcoholic extract from the leaves of B. holophylla. The chemical profile of the extract was determined by HPLC-PAD-ESI-IT-MS. A dose-effect relation was constructed using the ethanol-induced gastric ulcer model in male Wistar rats. Histological analyses and studies of antioxidant and anti-inflammatory activities were performed in stomach samples. The involvement of SH compounds, NO, K+ ATP channels, and α 2-adrenergic receptors in the gastroprotective effect was evaluated. A toxicity study was performed with a single oral dose of 5000 mg/kg. The extract was composed mainly of cyanoglucoside and flavonol-O-glycosides derivatives of quercetin and myricetin. SH compounds, NO release, K+ ATP channel activation, and presynaptic α 2-adrenergic receptor stimulation each proved to be involved in the antiulcer effect. The levels of GSH and activity of GR and GPx were increased, and the levels of TNF-α, IL-6 and IL-10 were modulated. There was an antidiarrheal effect and there were no signs of toxicity. B. holophylla presents antiulcer activity mainly by decreasing oxidative stress and attenuating the inflammatory response, without inducing side effects. PMID:25954316

  9. Antiulcerogenic Activity and Toxicity of Bauhinia holophylla Hydroalcoholic Extract.

    PubMed

    Rozza, A L; Cesar, D A S; Pieroni, L G; Saldanha, L L; Dokkedal, A L; De-Faria, F M; Souza-Brito, A R M; Vilegas, W; Takahira, R K; Pellizzon, C H

    2015-01-01

    Several species of Bauhinia are used in traditional medicine for the treatment of gastrointestinal diseases, diabetes, and inflammation, among other conditions. The aim of this study was to investigate the antiulcer effect of a hydroalcoholic extract from the leaves of B. holophylla. The chemical profile of the extract was determined by HPLC-PAD-ESI-IT-MS. A dose-effect relation was constructed using the ethanol-induced gastric ulcer model in male Wistar rats. Histological analyses and studies of antioxidant and anti-inflammatory activities were performed in stomach samples. The involvement of SH compounds, NO, K(+) ATP channels, and α 2-adrenergic receptors in the gastroprotective effect was evaluated. A toxicity study was performed with a single oral dose of 5000 mg/kg. The extract was composed mainly of cyanoglucoside and flavonol-O-glycosides derivatives of quercetin and myricetin. SH compounds, NO release, K(+) ATP channel activation, and presynaptic α 2-adrenergic receptor stimulation each proved to be involved in the antiulcer effect. The levels of GSH and activity of GR and GPx were increased, and the levels of TNF-α, IL-6 and IL-10 were modulated. There was an antidiarrheal effect and there were no signs of toxicity. B. holophylla presents antiulcer activity mainly by decreasing oxidative stress and attenuating the inflammatory response, without inducing side effects.

  10. STRUCTURE-ACTIVITY RELATIONSHIP STUIDES AND THEIR ROLE IN PREDICTING AND INVESTIGATING CHEMICAL TOXICITY

    EPA Science Inventory

    Structure-Activity Relationship Studies and their Role in Predicting and Investigating Chemical Toxicity

    Structure-activity relationships (SAR) represent attempts to generalize chemical information relative to biological activity for the twin purposes of generating insigh...

  11. Toxicity of N-substituted aromatics to acetoclastic methanogenic activity in granular sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donlon, B.A.; Razo-Flores, E.; Field, J.A.

    1995-11-01

    N-substituted aromatics are important priority pollutants entering the environment primarily through anthropogenic activities associated associated with the industrial production of dyes, explosives, pestides, and pharmaceuticals. Anaerobic treatment of wastewaters discharged by these industries could potentially be problematical as a result of the high toxicity of N-substituted aromatics. The objective of this study was to examine the structure-toxicity relationship of N-substituted aromatic compounds to acetoclastic methanogenic bacteria. The toxicity was assayed to serum flasks by measuring methane production in granular sludge. Unacclimated cultures were used to minimize the biotransformation of the toxic organic chemicals during the test. The nature and themore » degree of the aromatic substitution were observed to have a profound effect on the toxicity of the test compound. Nitroaromatic compounds were, on the average, over 500-fold more toxic than their corresponding aromatic amines. Considering the facile reduction of nitro groups by anerobic microorganisms, a dramatic detoxification of nitroaromatics towards methanogens can be expected to occur during anaerobic wastewater treatment. While the toxicity exerted by the N-substituted aromatic compounds was closely correlated with compound apolarity (log P), it was observed that at any given log P, N-substituted phenols had a toxicity that was 2 orders of magnitude higher than that of chlorophenols and alkylphenols. This indicates that toxicity due to the chemical reactivity of nitroaromatics is much more important than partitioning effects in bacterial membranes. 41 refs., 3 figs., 1 tab.« less

  12. Comparing anti-hyperglycemic activity and acute oral toxicity of three different trivalent chromium complexes in mice.

    PubMed

    Li, Fang; Wu, Xiangyang; Zou, Yanmin; Zhao, Ting; Zhang, Min; Feng, Weiwei; Yang, Liuqing

    2012-05-01

    Three different ligands (rutin, folate and stachyose) of chromium(III) complexes were compared to examine whether they have similar effect on anti-hyperglycemic activity as well as the acute toxicity status. Anti-hyperglycemic activities of chromium rutin complex (CrRC), chromium folate complex (CrFC) and chromium stachyose complex (CrSC) were examined in alloxan-induced diabetic mice with daily oral gavage for a period of 2 weeks at the dose of 0.5-3.0 mg Cr/kg. Acute toxicities of CrRC and CrFC were tested using ICR mice at the dose of 1.0-5.0 g/kg with a single oral gavage and observed for a period of 2 weeks. Biological activities results indicated that only CrRC and CrFC could decrease blood glucose level, reduce the activities of aspartate transaminase, alanine transaminase, alkaline phosphatase, and increase liver glycogen level. In acute toxicity study, LD(50) values for both CrRC and CrFC were above 5.0 g/kg. The minimum lethal dose for CrFC was above 5.0 g/kg, while that for CrRC was 1.0 g/kg. Anti-diabetic activity of those chromium complexes was not similar and their acute toxicities were also different. CrFC represent an optimal chromium supplement among those chromium complexes with potential therapeutic value to control blood glucose in diabetes and non-toxicity in acute toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Lead Toxicity to the Performance, Viability, And Community Composition of Activated Sludge Microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, L; Zhi, W; Liu, YS

    Lead (Pb) is a prominent toxic metal in natural and engineered systems. Current knowledge on Pb toxicity to the activated sludge has been limited to short-term (<= 24 h) toxicity. The effect of extended Pb exposure on process performance, bacterial viability, and community compositions remains unknown. We quantified the 24-h and 7-day Pb toxicity to chemical oxygen demand (COD) and NH3-N removal, bacterial viability, and community compositions using lab-scale experiments. Our results showed that 7-day toxicity was significantly higher than the short-term 24-h toxicity. Ammonia-oxidizing bacteria were more susceptible than the heterotrophs to Pb toxicity. The specific oxygen uptake ratemore » responded quickly to Pb addition and could serve as a rapid indicator for detecting Pb pollutions. Microbial viability decreased linearly with the amount of added Pb at extended exposure. The bacterial community diversity was markedly reduced with elevated Pb concentrations. Surface analysis suggested that the adsorbed form of Pb could have contributed to its toxicity along with the dissolved form. Our study provides for the first time a systematic investigation of the effect of extended exposure of Pb on the performance and microbiology of aerobic treatment processes, and it indicates that long-term Pb toxicity has been underappreciated by previous studies.« less

  14. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    NASA Astrophysics Data System (ADS)

    Kvitek, L.; Panacek, A.; Prucek, R.; Soukupova, J.; Vanickova, M.; Kolar, M.; Zboril, R.

    2011-07-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  15. Loss of 5‐lipoxygenase activity protects mice against paracetamol‐induced liver toxicity

    PubMed Central

    Pu, Shiyun; Ren, Lin; Liu, Qinhui; Kuang, Jiangying; Shen, Jing; Cheng, Shihai; Zhang, Yuwei; Jiang, Wei; Zhang, Zhiyong; Jiang, Changtao

    2015-01-01

    Background and Purpose Paracetamol (acetaminophen) is the most widely used over‐the‐counter analgesic and overdosing with paracetamol is the leading cause of hospital admission for acute liver failure. 5‐Lipoxygenase (5‐LO) catalyses arachidonic acid to form LTs, which lead to inflammation and oxidative stress. In this study, we examined whether deletion or pharmacological inhibition of 5‐LO could protect mice against paracetamol‐induced hepatic toxicity. Experimental Approach Both genetic deletion and pharmacological inhibition of 5‐LO in C57BL/6J mice were used to study the role of this enzyme in paracetamol induced liver toxicity. Serum and tissue biochemistry, H&E staining, and real‐time PCR were used to assess liver toxicity. Key Results Deletion or pharmacological inhibition of 5‐LO in mice markedly ameliorated paracetamol‐induced hepatic injury, as shown by decreased serum alanine transaminase and aspartate aminotransferase levels and hepatic centrilobular necrosis. The hepatoprotective effect of 5‐LO inhibition was associated with induction of the antitoxic phase II conjugating enzyme, sulfotransferase2a1, suppression of the pro‐toxic phase I CYP3A11 and reduction of the hepatic transporter MRP3. In 5‐LO−/− mice, levels of GSH were increased, and oxidative stress decreased. In addition, PPAR α, a nuclear receptor that confers resistance to paracetamol toxicity, was activated in 5‐LO−/− mice. Conclusions and Implications The activity of 5‐LO may play a critical role in paracetamol‐induced hepatic toxicity by regulating paracetamol metabolism and oxidative stress. PMID:26398229

  16. Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity.

    PubMed

    Kołtowski, Michał; Charmas, Barbara; Skubiszewska-Zięba, Jadwiga; Oleszczuk, Patryk

    2017-02-01

    The objective of the study was to determine the effect of various methods of biochar activation on the ecotoxicity of soils with various properties and with various content and origin of contaminants. The biochar produced from willow (at 700°C) was activated by 1) microwaves (in a microwave reactor under an atmosphere of water vapour), 2) carbon dioxide (in the quartz fluidized bed reactor) and 3) superheated steam (in the quartz fluidized bed reactor). Three different soils were collected from industrial areas. The soils were mixed with biochar and activated biochars at the dose of 5% and ecotoxicological parameters of mixture was evaluated using two solid phase test - Phytotoxkit F (Lepidium sativum) and Collembolan test (Folsomia candida) and one liquid phase test - Microtox® (Vibrio fischeri). Biochar activation had both positive and negative impacts, depending on the activation method, kind of bioassay and kind of soil. Generally, biochar activated by microwaves increased the effectiveness of ecotoxicity reduction relative to non-activated biochars. Whereas, biochar activated with CO 2 most often cause a negative effect manifested by deterioration or as a lack of improvement in relation to non-activated biochar or to non-amended soil. It was also demonstrated that the increase of biochar specific surface area caused a significant reduction of toxicity of water leachates from the studied soils. Effectiveness of the reduction of leachate toxicity was weakened in the presence of dissolved organic carbon in the soil. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity.

    PubMed

    Shim, Taeyong; Yoo, Jisu; Ryu, Changkook; Park, Yong-Kwon; Jung, Jinho

    2015-12-01

    This study aims to evaluate the physiochemical properties, sorption characteristics, and toxicity effects of biochar (BC) produced from Miscanthus sacchariflorus via slow pyrolysis at 500°C and its steam activation product (ABC). Although BC has a much lower surface area than ABC (181 and 322m(2)g(-1), respectively), the Cu sorption capacities of BC and ABC are not significantly different (p>0.05). A two-compartment model successfully explains the sorption of BC and ABC as being dominated by fast and slow sorption processes, respectively. In addition, both BC and ABC efficiently eliminate the toxicity of Cu towards Daphnia magna. However, ABC itself induced acute toxicity to D. magna, which is possibly due to increased aromaticity upon steam activation. These findings suggest that activation of BC produced from M. sacchariflorus at a pyrolytic temperature of 500°C may not be appropriate in terms of Cu sorption and toxicity reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Biochar application to hardrock mine tailings: Soil quality, microbial activity, and toxic element sorption

    USGS Publications Warehouse

    Kelly, Charlene N.; Peltz, Christopher D.; Stanton, Mark R.; Rutherford, David W.; Rostad, Colleen E.

    2014-01-01

    Waste rock piles from historic mining activities remain unvegetated as a result of metal toxicity and high acidity. Biochar has been proposed as a low-cost remediation strategy to increase soil pH and reduce leaching of toxic elements, and improve plant establishment. In this laboratory column study, biochar made from beetle-killed pine wood was assessed for utility as a soil amendment by mixing soil material from two mine sites collected near Silverton, Colorado, USA with four application rates of biochar (0%, 10%, 20%, 30% vol:vol). Columns were leached seven times over 65 days and leachate pH and concentration of toxic elements and base cations were measured at each leaching. Nutrient availability and soil physical and biological parameters were determined following the incubation period. We investigated the hypotheses that biochar incorporation into acidic mine materials will (1) reduce toxic element concentrations in leaching solution, (2) improve soil parameters (i.e. increase nutrient and water holding capacity and pH, and decrease compaction), and (3) increase microbial populations and activity. Biochar directly increased soil pH (from 3.33 to 3.63 and from 4.07 to 4.77 in the two materials) and organic matter content, and decreased bulk density and extractable salt content in both mine materials, and increased nitrate availability in one material. No changes in microbial population or activity were detected in either mine material upon biochar application. In leachate solution, biochar increased base cations from both materials and reduced the concentrations of Al, Cd, Cu, Pb, and Zn in leachate solution from one material. However, in the material with greater toxic element content, biochar did not reduce concentrations of any measured dissolved toxic elements in leachate and resulted in a potentially detrimental release of Cd and Zn into solution at concentrations above that of the pure mine material. The length of time of effectiveness and specific

  19. A categorical structure-activity relationship analysis of the developmental toxicity of antithyroid drugs.

    PubMed

    Cunningham, Albert R; Carrasquer, C Alex; Mattison, Donald R

    2009-01-01

    The choice of therapeutic strategies for hyperthyroidism during pregnancy is limited. Surgery and radioiodine are typically avoided, leaving propylthiouracil and methimazole in the US. Carbimazole, a metabolic precursor of methimazole, is available in some countries outside of the US. In the US propylthiouracil is recommended because of concern about developmental toxicity from methimazole and carbimazole. Despite this recommendation, the data on developmental toxicity of all three agents are extremely limited and insufficient to support a policy given the broad use of methimazole and carbimazole around the world. In the absence of new human or animal data we describe the development of a new structure-activity relationship (SAR) model for developmental toxicity using the cat-SAR expert system. The SAR model was developed from data for 323 compounds evaluated for human developmental toxicity with 130 categorized as developmental toxicants and 193 as nontoxicants. Model cross-validation yielded a concordance between observed and predicted results between 79% to 81%. Based on this model, propylthiouracil, methimazole, and carbimazole were observed to share some structural features relating to human developmental toxicity. Thus given the need to treat women with Graves's disease during pregnancy, new molecules with minimized risk for developmental toxicity are needed. To help meet this challenge, the cat-SAR method would be a useful in screening new drug candidates for developmental toxicity as well as for investigating their mechanism of action.

  20. Synthesis, DNA Cleavage Activity, Cytotoxicity, Acetylcholinesterase Inhibition, and Acute Murine Toxicity of Redox-Active Ruthenium(II) Polypyridyl Complexes.

    PubMed

    Alatrash, Nagham; Narh, Eugenia S; Yadav, Abhishek; Kim, Mahn-Jong; Janaratne, Thamara; Gabriel, James; MacDonnell, Frederick M

    2017-07-06

    Four mononuclear [(L-L) 2 Ru(tatpp)] 2+ and two dinuclear [(L-L) 2 Ru(tatpp)Ru(L-L) 2 ] 4+ ruthenium(II) polypyridyl complexes (RPCs) containing the 9,11,20,22-tetraazatetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (tatpp) ligand were synthesized, in which L-L is a chelating diamine ligand such as 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me 4 phen) or 4,7-diphenyl-1,10-phenanthroline (Ph 2 phen). These Ru-tatpp analogues all undergo reduction reactions with modest reducing agents, such as glutathione (GSH), at pH 7. These, plus several structurally related but non-redox-active RPCs, were screened for DNA cleavage activity, cytotoxicity, acetylcholinesterase (AChE) inhibition, and acute mouse toxicity, and their activities were examined with respect to redox activity and lipophilicity. All of the redox-active RPCs show single-strand DNA cleavage in the presence of GSH, whereas none of the non-redox-active RPCs do. Low-micromolar cytotoxicity (IC 50 ) against malignant H358, CCL228, and MCF7 cultured cell lines was mainly restricted to the redox-active RPCs; however, they were substantially less toxic toward nonmalignant MCF10 cells. The IC 50 values for AChE inhibition in cell-free assays and the acute toxicity of RPCs in mice revealed that whereas most RPCs show potent inhibitory action against AChE (IC 50 values <15 μm), Ru-tatpp complexes as a class are surprisingly well tolerated in animals relative to other RPCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Diane E.; Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA; Hoover, Benjamin

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6more » syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and

  2. Activation of AhR-mediated toxicity pathway by emerging ...

    EPA Pesticide Factsheets

    Polychlorinated diphenyl sulfides (PCDPSs) are a group of environmental pollutants for which limited toxicological information is available. This study tested the hypothesis that PCDPSs could activate the mammalian aryl hydrocarbon receptor (AhR) mediated toxicity pathways. Eighteen PCDPSs were tested in the H4IIE-luc transactivation assay, with 13/18 causing concentration-dependent AhR activation. Potencies of several congeners were similar to those of mono-ortho substituted polychlorinated biphenyls. A RNA sequencing (RNA-seq)-based transcriptomic analysis was performed on H4IIE cells treated with two PCDPS congeners, 2,2',3,3',4,5,6-hepta-CDPS, and 2,4,4',5-tetra-CDPS. Results of RNA-seq revealed a remarkable modulation on a relatively short gene list by exposure to the tested concentrations of PCDPSs, among which, Cyp1 responded with the greatest fold up-regulation. Both the identities of the modulated transcripts and the associated pathways were consistent with targets and pathways known to be modulated by other types of AhR agonists and there was little evidence for significant off-target effects within the cellular context of the H4IIE bioassay. The results suggest AhR activation as a toxicologically relevant mode of action for PCDPSs suggests the utility of AhR-related toxicity pathways for predicting potential hazards associated with PCDPS exposure in mammals and potentially other vertebrates. Polychlorinated diphenyl sulfides (PCDPSs) are a group of en

  3. Validating potential toxicity assays to assess petroleum hydrocarbon toxicity in polar soil.

    PubMed

    Harvey, Alexis Nadine; Snape, Ian; Siciliano, Steven Douglas

    2012-02-01

    Potential microbial activities are commonly used to assess soil toxicity of petroleum hydrocarbons (PHC) and are assumed to be a surrogate for microbial activity within the soil ecosystem. However, this assumption needs to be evaluated for frozen soil, in which microbial activity is limited by liquid water (θ(liquid)). Influence of θ(liquid) on in situ toxicity was evaluated and compared to the toxicity endpoints of potential microbial activities using soil from an aged diesel fuel spill at Casey Station, East Antarctica. To determine in situ toxicity, gross mineralization and nitrification rates were determined by the stable isotope dilution technique. Petroleum hydrocarbon-contaminated soil (0-8,000 mg kg(-1)), packed at bulk densities of 1.4, 1.7, and 2.0 g cm(-3) to manipulate liquid water content, was incubated at -5°C for one, two, and three months. Although θ(liquid) did not have a significant effect on gross mineralization or nitrification, gross nitrification was sensitive to PHC contamination, with toxicity decreasing over time. In contrast, gross mineralization was not sensitive to PHC contamination. Toxic response of gross nitrification was comparable to potential nitrification activity (PNA) with similar EC25 (effective concentration causing a 25% effect in the test population) values determined by both measurement endpoints (400 mg kg(-1) for gross nitrification compared to 200 mg kg(-1) for PNA), indicating that potential microbial activity assays are good surrogates for in situ toxicity of PHC contamination in polar regions. Copyright © 2011 SETAC.

  4. Structurally-diverse, PPARγ-activating environmental toxicants induce adipogenesis and suppress osteogenesis in bone marrow mesenchymal stromal cells

    PubMed Central

    Watt, James; Schlezinger, Jennifer J.

    2015-01-01

    Environmental obesogens are a newly recognized category of endocrine disrupting chemicals that have been implicated in contributing to the rising rates of obesity in the United States. While obesity is typically regarded as an increase in visceral fat, adipocyte accumulation in the bone has been linked to increased fracture risk, lower bone density, and osteoporosis. Exposure to environmental toxicants that activate peroxisome proliferator activated receptor γ (PPARγ), a critical regulator of the balance of differentiation between adipogenesis and osteogenesis, may contribute to the increasing prevalence of osteoporosis. However, induction of adipogenesis and suppression of osteogenesis are separable activities of PPARγ, and ligands may selectively alter these activities. It currently is unknown whether suppression of osteogenesis is a common toxic endpoint of environmental PPARγ ligands. Using a primary mouse bone marrow culture model, we tested the hypothesis that environmental toxicants acting as PPARγ agonists divert the differentiation pathway of bone marrow-derived multipotent mesenchymal stromal cells towards adipogenesis and away from osteogenesis. The toxicants tested included the organotins tributyltin and triphenyltin, a ubiquitous phthalate metabolite (mono-(2-ethylhexyl) phthalate, MEHP), and two brominated flame retardants (tetrabromobisphenol-a, TBBPA, and mono-(2-ethylhexyl) tetrabromophthalate, METBP). All of the compounds activated PPARγ1 and 2. All compounds increased adipogenesis (lipid accumulation, Fabp4 expression) and suppressed osteogenesis (alkaline phosphatase activity, Osx expression) in mouse primary bone marrow cultures, but with different potencies and efficacies. Despite structural dissimilarities, there was a strong negative correlation between efficacies to induce adipogenesis and suppress osteogenesis, with the organotins being distinct in their exceptional ability to suppress osteogenesis. As human exposure to a mixture of

  5. 4-Alkynylphenylsilatranes: Insecticidal activity, mammalian toxicity, and mode of action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horsham, M.A.; Palmer, C.J.; Cole, L.M.

    1990-08-01

    4-Ethynyl- and 4-(prop-1-ynyl)phenylsilatranes (N(CH{sub 2}CH{sub 2}O){sub 3}SiR, R = C{sub 6}H{sub 4}-4-C{triple bond}CH or C{sub 6}H{sub 4}-4-C{triple bond}CCH{sub 3}) are highly toxic to houseflies (pretreated with piperonyl butoxide) and milkweed bugs (topical LD{sub 50}s 3-14 {mu}g/g) and to mice (intraperitoneal LD{sub 50}s 0.4-0.9 mg/kg), and they are moderately potent inhibitors of the ({sup 35}S)-tert-butylbicyclophosphorothionate or TBPS binding site (GABA-gated chloride channel) of mouse brain membranes. Scatchard analysis indicates noncompetitive interaction of 4-ethynylphenylsilatrane with the TBPS binding site. Phenylsilatrane analogues with 4-substituents of H, CH{sub 3}, Cl, Br, and C{triple bond}CSi(CH{sub 3}){sub 3} are highly toxic to mice but have littlemore » or no activity in the insect and receptor assays. Radioligand binding studies with (4-{sup 3}H)phenylsilatrane failed to reveal a specific binding site in mouse brain. Silatranes with R = H, CH{sub 3}, CH{sub 2}Cl, CH{double bond}CH{sub 2}, OCH{sub 2}CH{sub 3}, and C{sub 6}H{sub 4}-4-CH{sub 2}CH{sub 3} are of little or no activity in the insect and mouse toxicity and TBPS binding site assays as are the trithia and monocyclic analogues of phenylsilatrane. 4-Alkynylphenylsilatranes are new probes to examine the GABA receptor-ionophore complex of insects and mammals.« less

  6. Quantitative Structure--Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure

    EPA Science Inventory

    Background: Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. Objective: In this study, a combinatorial QSAR approach has been employed for the creation of robust and predictive models of acute toxi...

  7. Mixture toxicity of wood preservative products in the fish embryo toxicity test.

    PubMed

    Coors, Anja; Dobrick, Jan; Möder, Monika; Kehrer, Anja

    2012-06-01

    Wood preservative products are used globally to protect wood from fungal decay and insects. We investigated the aquatic toxicity of five commercial wood preservative products, the biocidal active substances and some formulation additives contained therein, as well as six generic binary mixtures of the active substances in the fish embryo toxicity test (FET). Median lethal concentrations (LC50) of the single substances, the mixtures, and the products were estimated from concentration-response curves and corrected for concentrations measured in the test medium. The comparison of the experimentally observed mixture toxicity with the toxicity predicted by the concept of concentration addition (CA) showed less than twofold deviation for all binary mixtures of the active substances and for three of the biocidal products. A more than 60-fold underestimation of the toxicity of the fourth product by the CA prediction was detected and could be explained fully by the toxicity of one formulation additive, which had been labeled as a hazardous substance. The reason for the 4.6-fold underestimation of toxicity of the fifth product could not be explained unambiguously. Overall, the FET was found to be a suitable screening tool to verify whether the toxicity of formulated wood preservatives can reliably be predicted by CA. Applied as a quick and simple nonanimal screening test, the FET may support approaches of applying component-based mixture toxicity predictions within the environmental risk assessment of biocidal products, which is required according to European regulations. Copyright © 2012 SETAC.

  8. Examining the antimicrobial activity and toxicity to animal cells of different types of CO-releasing molecules.

    PubMed

    Nobre, Lígia S; Jeremias, Hélia; Romão, Carlos C; Saraiva, Lígia M

    2016-01-28

    Transition metal carbonyl complexes used as CO-releasing molecules (CORMs) for biological and therapeutic applications may exhibit interesting antimicrobial activity. However, understanding the chemical traits and mechanisms of action that rule this activity is required to establish a rationale for the development of CORMs into useful antibiotics. In this work the bactericidal activity, the toxicity to eukaryotic cells, and the ability of CORMs to deliver CO to bacterial and eukaryotic cells were analysed for a set of seven CORMs that differ in the transition metal, ancillary ligands and the CO release profile. Most of these CORMs exhibited bactericidal properties that decrease in the following order: CORM-2 > CORM-3 > ALF062 > ALF850 > ALF186 > ALF153 > [Fe(SBPy3)(CO)](BF4)2. A similar yet not entirely coincident decreasing order was found for their induction of intracellular reactive oxygen species (ROS) in E. coli. In contrast, studies in model animal cells showed that for any given CORM, the level of intracellular ROS generated was negligible when compared with that measured inside bacteria. Importantly, these CORMs were in general not toxic to eukaryotic cells, namely murine macrophages, kidney LLC-PK1 epithelial cells, and liver cell line HepG2. CORM-2 and CORM-3 delivered CO to the intracellular space of both E. coli and the two types of tested eukaryotic cells, yet toxicity was only elicited in the case of E. coli. CO delivered by ALF186 into the intercellular space did not enter E. coli cells and the compound was not toxic to either bacteria or to eukaryotic cells. The Fe(ii) carbonyl complex [Fe(SBPy3)(CO)](2+) had the reverse, undesirable toxicity profile, being unexpectedly toxic to eukaryotic cells and non-toxic to E. coli. ALF153, the most stable complex in the whole set, was essentially devoid of toxicity or ROS induction ability in all cells. These results suggest that CORMs have a relevant therapeutic potential as antimicrobial drugs since (i) they

  9. Anti-giardia activity and acute toxicity of a methanol extract of Senna racemosa bark.

    PubMed

    Caamal-Fuentes, Edgar E; Graniel-Sabido, Manlio; Mena-Rejón, Gonzalo J; Moo-Puc, Rosa E

    2016-12-04

    Senna racemosa (Mill.) H.S. Irwin & Barneby (syn. Cassia racemosa Mill.) is a plant used in traditional Mayamedicinal practices to treat diarrhea. A methanol extract of S. racemosa bark has been shown to have in vitro activity against Giardia intestinalis. No studies of its efficacy and toxicity in in vivo models have been done. The present study objective was to analyze the activity of this methanol extract of S. racemosa bark against Giardia intestinalis trophozoites in experimentally infected mice, and evaluate its toxicological effects in rats. S. racemosa was collected in Merida, Yucatan, Mexico (21°58'N, 89°36'W) in June 2005. The bark methanol extract was obtained and high performance liquid chromatography (HPLC-DAD) was used to generate a constituent profile. In vivo anti-giardia activity was assayed with an experimental model of G. intestinalis infection in neonatal CD-1 mice. Nine doses ranging from 0.25-15mg extract/kg body weight were tested to determine the dose required to kill 50% of the trophozoites (ED 50 ). An acute toxicity assay was run in which one of four single doses (200, 1000, 2000 and3000mg/kg body weight) was orally administered to adult Wistar rats. Animal weight, death rates, toxic effects and behavioral parameters were observed over a 14-d period. They were then euthanized and a necropsy performed. The S. racemosa bark extract inhibited growth of G. intestinalis (ED 50 =1.14mg/Kg) in neonatal CD-1 mice. No toxic or lethal effects were observed even at the highest dosage (3000mg/Kg), and neither were signs of toxicity observed in internal organs. The active compounds chrysophanol and physcion were present in the extract at a 1.76 ratio. The results strongly support traditional use of S. racemosa bark for treatment of diarrhea caused by Giardia intestinalis infection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities.

    PubMed

    Peters, Diane E; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A; Leppla, Stephen H; Bugge, Thomas H

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5-3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. Published by Elsevier Inc.

  11. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    PubMed Central

    Peters, Diane E.; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A.; Leppla, Stephen H.; Bugge, Thomas H.

    2014-01-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; Mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA- activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32%–87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. PMID:24971906

  12. OVERVIEW AND PRESENT STATUS OF THE TOXIC PFIESTERIA COMPLEX (DINOPHYCEAE). (R825551)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization.

    PubMed

    Egorova, Ksenia S; Ananikov, Valentine P

    2014-02-01

    Rapid progress in the field of ionic liquids in recent decades led to the development of many outstanding energy-conversion processes, catalytic systems, synthetic procedures, and important practical applications. Task-specific optimization emerged as a sharpening stone for the fine-tuning of structure of ionic liquids, which resulted in unprecedented efficiency at the molecular level. Ionic-liquid systems showed promising opportunities in the development of green and sustainable technologies; however, the chemical nature of ionic liquids is not intrinsically green. Many ionic liquids were found to be toxic or even highly toxic towards cells and living organisms. In this Review, we show that biological activity and cytotoxicity of ionic liquids dramatically depend on the nature of a biological system. An ionic liquid may be not toxic for particular cells or organisms, but may demonstrate high toxicity towards another target present in the environment. Thus, a careful selection of biological activity data is a must for the correct assessment of chemical technologies involving ionic liquids. In addition to the direct biological activity (immediate response), several indirect effects and aftereffects are of primary importance. The following principal factors were revealed to modulate toxicity of ionic liquids: i) length of an alkyl chain in the cation; ii) degree of functionalization in the side chain of the cation; iii) anion nature; iv) cation nature; and v) mutual influence of anion and cation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Biological screening of some Turkish medicinal plant extracts for antimicrobial and toxicity activities.

    PubMed

    Turker, A U; Usta, C

    2008-01-20

    Screening of antibacterial activity and toxicity of 22 aqueous plant extracts from 17 Turkish plants was conducted. Antibacterial activity was performed with six bacteria including Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pyogenes, Staphylococcus aureus and Staphylococcus epidermidis. Extracts of Tussilago farfara leaves, Helichyrsum plicatum flowers, Solanum dulcamara aerial parts and Urtica dioica leaves gave the best inhibitory activity against S. pyogenes, S. aureus and S. epidermidis. Of the 22 plant extracts, 20 extracts displayed toxicity (LC50 was <1000 mg L(-1)) in the brine shrimp bioassay. For radish seed bioassay, two different determinations (root length and seed germination) were performed with a comparison between two concentrations (50,000 mg L(-1) and 10,000 mg L(-1)). At low concentration (10,000 mg L(-1)), S. dulcamara aerial parts and Primula vulgaris leaf extracts were observed to inhibit the root length more than the other plant extracts. Also, the most inhibitive plant extract for seed germination was obtained with S. dulcamara aerial parts.

  15. STRUCTURE-ACTIVITY APPROACHES AND DATA EXPLORATION TOOLS FOR PRIORITIZING AND ASSESSING THE TOXICITY OF HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory


    STRUCTURE-ACTIVITY APPROACHES AND DATA EXPLORATION TOOLS FOR PRIORITIZING AND ASSESSING THE TOXICITY OF HAZARDOUS AIR POLLUTANTS

    Hazardous Air Pollutants (HAPs) refers to a set of structurally diverse environmental chemicals, many with limited toxicity data, that have...

  16. In silico analysis of Pycnoporus cinnabarinus laccase active site with toxic industrial dyes.

    PubMed

    Prasad, Nirmal K; Vindal, Vaibhav; Narayana, Siva Lakshmi; Ramakrishna, V; Kunal, Swaraj Priyaranjan; Srinivas, M

    2012-05-01

    Laccases belong to multicopper oxidases, a widespread class of enzymes implicated in many oxidative functions in various industrial oxidative processes like production of fine chemicals to bioremediation of contaminated soil and water. In order to understand the mechanisms of substrate binding and interaction between substrates and Pycnoporus cinnabarinus laccase, a homology model was generated. The resulted model was further validated and used for docking studies with toxic industrial dyes- acid blue 74, reactive black 5 and reactive blue 19. Interactions of chemical mediators with the laccase was also examined. The docking analysis showed that the active site always cannot accommodate the dye molecules, due to constricted nature of the active site pocket and steric hindrance of the residues whereas mediators are relatively small and can easily be accommodated into the active site pocket, which, thereafter leads to the productive binding. The binding properties of these compounds along with identification of critical active site residues can be used for further site-directed mutagenesis experiments in order to identify their role in activity and substrate specificity, ultimately leading to improved mutants for degradation of these toxic compounds.

  17. Toxicity and Residual Activity of Insecticides Against Tamarixia triozae (Hymenoptera: Eulophidae), a Parasitoid of Bactericera cockerelli (Hemiptera: Triozidae).

    PubMed

    Luna-Cruz, Alfonso; Rodríguez-Leyva, Esteban; Lomeli-Flores, J Refugio; Ortega-Arenas, Laura D; Bautista-Martínez, Néstor; Pineda, Samuel

    2015-10-01

    Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) is one of the most economically important pests of potato, tomato, and peppers in Central America, Mexico, the United States, and New Zealand. Its control is based on the use of insecticides; however, recently, the potential of the eulophid parasitoid Tamarixia triozae (Burks) (Hymenoptera: Eulophidae) for population regulation has been studied. Because T. triozae is likely to be exposed to insecticides on crops, the objective of this study was to explore the compatibility of eight insecticides with this parasitoid. The toxicity and residual activity (persistence) of spirotetramat, spiromesifen, beta-cyfluthrin, pymetrozine, azadirachtin, imidacloprid, abamectin, and spinosad against T. triozae adults were assessed using a method based on the residual contact activity of each insecticide on tomato leaf discs collected from treated plants growing under greenhouse conditions. All eight insecticides were toxic to T. triozae. Following the classification of the International Organization of Biological Control, the most toxic were abamectin and spinosad, which could be placed in toxicity categories 3 and 4, respectively. The least toxic were azadirachtin, pymetrozine, spirotetramat, spiromesifen, imidacloprid, and beta-cyfluthrin, which could be placed in toxicity category 2. In terms of persistence, by day 5, 6, 9, 11, 13, 24, and 41 after application, spirotetramat, azadirachtin, spiromesifen, pymetrozine, imidacloprid, beta-cyfluthrin, abamectin, and spinosad could be considered harmless, that is, placed in toxicity category 1 (<25% mortality of adults). The toxicity and residual activity of some of these insecticides allow them to be considered within integrated pest management programs that include T. triozae. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Toxicity of ionic liquids: database and prediction via quantitative structure-activity relationship method.

    PubMed

    Zhao, Yongsheng; Zhao, Jihong; Huang, Ying; Zhou, Qing; Zhang, Xiangping; Zhang, Suojiang

    2014-08-15

    A comprehensive database on toxicity of ionic liquids (ILs) is established. The database includes over 4000 pieces of data. Based on the database, the relationship between IL's structure and its toxicity has been analyzed qualitatively. Furthermore, Quantitative Structure-Activity relationships (QSAR) model is conducted to predict the toxicities (EC50 values) of various ILs toward the Leukemia rat cell line IPC-81. Four parameters selected by the heuristic method (HM) are used to perform the studies of multiple linear regression (MLR) and support vector machine (SVM). The squared correlation coefficient (R(2)) and the root mean square error (RMSE) of training sets by two QSAR models are 0.918 and 0.959, 0.258 and 0.179, respectively. The prediction R(2) and RMSE of QSAR test sets by MLR model are 0.892 and 0.329, by SVM model are 0.958 and 0.234, respectively. The nonlinear model developed by SVM algorithm is much outperformed MLR, which indicates that SVM model is more reliable in the prediction of toxicity of ILs. This study shows that increasing the relative number of O atoms of molecules leads to decrease in the toxicity of ILs. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Activation of AhR-mediated toxicity pathway by emerging pollutants polychlorinated diphenyl sulfides

    EPA Science Inventory

    Polychlorinated diphenyl sulfides (PCDPSs) are a group of environmental pollutants for which limited toxicological information is available. This study tested the hypothesis that PCDPSs could activate the mammalian aryl hydrocarbon receptor (AhR) mediated toxicity pathways. Eight...

  20. Relationship between 4-hydroxyanisole toxicity and dopa oxidase activity for three melanoma cell lines.

    PubMed

    Rodriguez-Vicente, J; Vicente-Ortega, V; Canteras-Jordana, M; Calderon-Rubiales, F

    1997-10-01

    We studied the response of mouse B16F10 and SK-MEL-28 and SK-MEL-1 human melanoma cell lines to treatment with 4-hydroxyanisole (4-HA), and attempted to relate the response to the dopa oxidase levels and the morphological characteristics of each cell line. Clear dose-response curves were observed after 24 h of treatment in each cell line, the 4-HA being more toxic to the B16F10 cells, with an ID50 value of 215 microM. This was much lower than that observed for the SK-MEL-28 and SK-MEL-1 cell lines (ID50 of 5.98 mM and 7.17 mM, respectively). There was a direct relationship between toxicity levels and dopa oxidase activity, since the highest specific activity was obtained for B16F10 (15.9 mU), while lower activity was registered for SK-MEL-28 (4.59 mU) and SK-MEL-1 (1.24 mU), which also showed lower 4-HA toxicity. Morphologically, we observed the typical characteristics of cellular injury, with swelling and dilation of the internal membranes and organelles, an increased number of vacuoles, and an increased number of abnormal multilamellar melanosomes or thick clumps of irregularly distributed melanin. On the other hand, we observed that the two cell lines with the lowest dopa oxidase activity contained more mature fully melanized melanosomes than B16F10, pointing to possible alterations in the melanosome transference mechanism and lower enzymatic activity in the mature melanosomes of these two human cell lines.

  1. Teaching about Hazardous and Toxic Materials. Teaching Activities in Environmental Education Series.

    ERIC Educational Resources Information Center

    Disinger, John F.; Lisowski, Marylin

    Designed to assist practitioners of both formal and non-formal settings, this 18th volume of the ERIC Clearinghouse for Science, Mathematics, and Environmental Education's Teaching Activities in Environmental Education series specifically focuses on the theme of hazardous and toxic materials. Initially, basic environmental concepts that deal with…

  2. Synthesis, antibacterial and anti-MRSA activity, in vivo toxicity and a structure-activity relationship study of a quinoline thiourea.

    PubMed

    Dolan, Niamh; Gavin, Declan P; Eshwika, Ahmed; Kavanagh, Kevin; McGinley, John; Stephens, John C

    2016-01-15

    We report the synthesis, antibacterial evaluation of a series of thiourea-containing compounds. 1-(3,5-Bis(trifluoromethyl)phenyl)-3-((S)-(6-methoxyquinolin-4-yl)-((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)thiourea 5, was the most active against a range of Gram-positive and Gram-negative bacteria, and exhibited bacteriostatic activity against methicillin resistant Staphylococcus aureus (MRSA) comparable to that of the well-known antibacterial agent vancomycin. Quinoline thiourea 5 was subjected to a detailed structure-activity relationship study, with 5 and its derivatives evaluated for their bacteriostatic activity against both Gram-negative and Gram-positive bacteria. A number of structural features important for the overall activity of quinoline thiourea 5 have been identified. A selection of compounds, including 5, was also evaluated for their in vivo toxicity using the larvae of the Greater wax moth, Galleria mellonella. Compound 5, and a number of derivatives, were found to be non-toxic to the larvae of Galleria mellonella. A new class of antibiotic can result from the further development of this family of compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Distributed Structure Searchable Toxicity

    EPA Pesticide Factsheets

    The Distributed Structure Searchable Toxicity (DSSTox) online resource provides high quality chemical structures and annotations in association with toxicity data. It helps to build a data foundation for improved structure-activity relationships and predictive toxicology. DSSTox publishes summarized chemical activity representations for structure-activity modeling and provides a structure browser. This tool also houses the chemical inventories for the ToxCast and Tox21 projects.

  4. In vitro antibacterial activity and acute toxicity studies of aqueous-methanol extract of Sida rhombifolia Linn. (Malvaceae)

    PubMed Central

    2010-01-01

    Background Many bacteria among the Enterobacteria family are involved in infectious diseases and diarrhoea. Most of these bacteria become resistant to the most commonly used synthetic drugs in Cameroon. Natural substances seem to be an alternative to this problem. Thus the aim of this research was to investigate the in vitro antibacterial activity of the methanol and aqueous-methanol extracts of Sida rhombifolia Linn (Malvaceae) against seven pathogenic bacteria involved in diarrhoea. Acute toxicity of the most active extract was determined and major bioactive components were screened. Methods The agar disc diffusion and the agar dilution method were used for the determination of inhibition diameters and the Minimum Inhibitory Concentration (MICs) respectively. The acute toxicity study was performed according WHO protocol. Results The aqueous-methanol extract (1v:4v) was the most active with diameters of inhibition zones ranging from 8.7 - 23.6 mm, however at 200 μg/dic this activity was relatively weak compared to gentamycin. The MICs of the aqueous-methanol extract (1v:4v) varied from 49.40 to 78.30 μg/ml. Salmonella dysenteriae was the most sensitive (49.40 μg/ml). For the acute toxicity study, no deaths of rats were recorded. However, significant increase of some biochemical parameters such as aspartate amino-transferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and creatinine (CRT) were found. The phytochemical analysis of the aqueous methanol extract indicated the presence of tannins, polyphenols, alkaloids, glycosides, flavonoids and saponins Conclusion The results showed that the aqueous-methanol extract of S. rhombifolia exhibited moderate antibacterial activity. Some toxic effects were found when rats received more than 8 g/kg bw of extract. Antibacterial; Enterobacteria; Acute toxicity; Phytochemical analysis PMID:20663208

  5. The taste of toxicity: A quantitative analysis of bitter and toxic molecules.

    PubMed

    Nissim, Ido; Dagan-Wiener, Ayana; Niv, Masha Y

    2017-12-01

    The role of bitter taste-one of the few basic taste modalities-is commonly assumed to signal toxicity and alert animals against consuming harmful compounds. However, it is known that some toxic compounds are not bitter and that many bitter compounds have negligible toxicity while having important health benefits. Here we apply a quantitative analysis of the chemical space to shed light on the bitterness-toxicity relationship. Using the BitterDB dataset of bitter molecules, The BitterPredict prediction tool, and datasets of toxic compounds, we quantify the identity and similarity between bitter and toxic compounds. About 60% of the bitter compounds have documented toxicity and only 56% of the toxic compounds are known or predicted to be bitter. The LD 50 value distributions suggest that most of the bitter compounds are not very toxic, but there is a somewhat higher chance of toxicity for known bitter compounds compared to known nonbitter ones. Flavonoids and alpha acids are more common in the bitter dataset compared with the toxic dataset. In contrast, alkaloids are more common in the toxic datasets compared to the bitter dataset. Interestingly, no trend linking LD 50 values with the number of activated bitter taste receptors (TAS2Rs) subtypes is apparent in the currently available data. This is in accord with the newly discovered expression of TAS2Rs in several extra-oral tissues, in which they might be activated by yet unknown endogenous ligands and play non-gustatory physiological roles. These results suggest that bitter taste is not a very reliable marker for toxicity, and is likely to have other physiological roles. © 2017 IUBMB Life, 69(12):938-946, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  6. Total phenolic, antioxidant, antimicrobial activities and toxicity study of Gynotroches axillaris blume (Rhizophoraceae)

    PubMed Central

    Abed, Salam Ahmed; Sirat, Hasnah Mohd; Taher, Muhammad

    2013-01-01

    The antioxidant activity and the total phenolic content, as well as the influence of petroleum ether, chloroform and methanol extracts from the leaves of Gynotroches axillaris, on microorganisms were studied. The total phenolic contents were evaluated by using Folin-Ciocalteu reagent and the obtained values ranged from 70.0 to 620 mg GAE/g. The efficiency of antioxidation, which was identified through the scavenging of free radical DPPH, exhibited that the highest IC50 was in the methanolic extract (44.7 µg/mL) as compared to the standard ascorbic acid (25.83 µg/mL) and to standard BHT (17.2 µg/mL). In vitro antimicrobial activity of extracts was tested against Gram-negative bacteria, Gram-positive bacteria and fungi. Methanol extract showed activity in the range (225-900 μg/mL) with both types, while petroleum ether and chloroform extracts were only active with Bacillus subtilis. The three extracts strongly inhibited all fungi with activity 225-450 μg/mL. The toxicity test against brine shrimps indicated that all extracts were non-toxic with LC50 value more than 1000 µg/mL. The finding of this study supports the safety of these extracts to be used in medical treatments. PMID:26600731

  7. SAR STUDY OF NASAL TOXICITY: LESSONS FOR MODELING SMALL TOXICITY DATASETS

    EPA Science Inventory

    Most toxicity data, particularly from whole animal bioassays, are generated without the needs or capabilities of structure-activity relationship (SAR) modeling in mind. Some toxicity endpoints have been of sufficient regulatory concern to warrant large scale testing efforts (e.g....

  8. Thermoregulatory Responses to Environmental Toxicants: The Interaction of Thermal Stress and Toxicant Exposure

    DTIC Science & Technology

    2008-01-01

    of active laboratory investigation for over a century. It has been recognized since the late 1890s from studies conducted in small laboratory species...showed that the active alkaloid colchicine is more toxic in mice than frogs, suggesting that the warmer Tc of mammals may enhance drug toxicity. Ideally...interferon activity and leukocyte function, to limit the sequelae associated with infectious or inflammatory conditions (Heron and Berg, 1978; Johansen et al

  9. Toxicity Estimation Software Tool (TEST)

    EPA Science Inventory

    The Toxicity Estimation Software Tool (TEST) was developed to allow users to easily estimate the toxicity of chemicals using Quantitative Structure Activity Relationships (QSARs) methodologies. QSARs are mathematical models used to predict measures of toxicity from the physical c...

  10. Developmental Exposure to a Dopaminergic Toxicant Produces Altered Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after developmental exposure to various classes of prototypic drugs that act on the central nervous system. ...

  11. The antibacterial activity and toxicity of enrofloxacin are decreased by nanocellulose conjugated with aminobenzyl purin.

    PubMed

    Yasini, Seyed Ali; Zadeh, Mohammad Hossein Balal; Shahdadi, Hossein

    2015-11-01

    The first aim of this study was to synthesize nanocellulose conjugated with aminobenzyl purin (NCABP), and the second aim was to evaluate the effect of NCABP on both toxicity and antibacterial activity of enrofloxacin. Here, the adsorption of enrofloxacin by NCABP was first modeled by molecular dynamic (MD) simulation. In the next step, NCABP was synthesized, and was exposed to enrofloxacin, 1000 μg mL(-1), at various conditions. Then, the quantity of adsorption and release was separately measured. Furthermore, both toxicity and antibacterial activity of NCABP, enrofloxacin, and (NCABP+enrofloxacin) were separately evaluated. In this study, MD simulation clearly showed the adsorption after 50 picoseconds. The adsorption tests revealed that the increase of incubation time and NCABP concentration, at range of 50-200 μg mL(-1), led to increase of adsorption. Moreover, the decrease of pH led to increase of adsorption. Interestingly, NCABP could adsorb enrofloxacin, up to 1000 μg mL(-1), in different types of meat. Moreover, the increase of incubation time and temperature did not release enrofloxacin, but the increase of pH increased release. This study showed that both toxicity and antibacterial activity of enrofloxacin were decreased when exposed together with NCABP. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Alpha-ketoglutarate reduces ethanol toxicity in Drosophila melanogaster by enhancing alcohol dehydrogenase activity and antioxidant capacity.

    PubMed

    Bayliak, Maria M; Shmihel, Halyna V; Lylyk, Maria P; Storey, Kenneth B; Lushchak, Volodymyr I

    2016-09-01

    Ethanol at low concentrations (<4%) can serve as a food source for fruit fly Drosophila melanogaster, whereas at higher concentrations it may be toxic. In this work, protective effects of dietary alpha-ketoglutarate (AKG) against ethanol toxicity were studied. Food supplementation with 10-mM AKG alleviated toxic effects of 8% ethanol added to food, and improved fly development. Two-day-old adult flies, reared on diet containing both AKG and ethanol, possessed higher alcohol dehydrogenase (ADH) activity as compared with those reared on control diet or diet with ethanol only. Native gel electrophoresis data suggested that this combination diet might promote post-translational modifications of ADH protein with the formation of a highly active ADH form. The ethanol-containing diet led to significantly higher levels of triacylglycerides stored in adult flies, and this parameter was not altered by AKG supplement. The influence of diet on antioxidant defenses was also assessed. In ethanol-fed flies, catalase activity was higher in males and the levels of low molecular mass thiols were unchanged in both sexes compared to control values. Feeding on a mixture of AKG and ethanol did not affect catalase activity but caused a higher level of low molecular mass thiols compared to ethanol-fed flies. It can be concluded that both a stimulation of some components of antioxidant defense and the increase in ADH activity may be responsible for the protective effects of AKG diet supplementation in combination with ethanol. The results suggest that AKG might be useful as a treatment option to neutralize toxic effects of excessive ethanol intake and to improve the physiological state of D. melanogaster and other animals, potentially including humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure.

    PubMed

    Zhu, Hao; Martin, Todd M; Ye, Lin; Sedykh, Alexander; Young, Douglas M; Tropsha, Alexander

    2009-12-01

    Few quantitative structure-activity relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity end points. In this study, a comprehensive data set of 7385 compounds with their most conservative lethal dose (LD(50)) values has been compiled. A combinatorial QSAR approach has been employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to chemicals. To enable fair comparison between the predictive power of models generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology), a modeling subset of the entire data set was selected that included all 3472 compounds used in TOPKAT's training set. The remaining 3913 compounds, which were not present in the TOPKAT training set, were used as the external validation set. QSAR models of five different types were developed for the modeling set. The prediction accuracy for the external validation set was estimated by determination coefficient R(2) of linear regression between actual and predicted LD(50) values. The use of the applicability domain threshold implemented in most models generally improved the external prediction accuracy but expectedly led to the decrease in chemical space coverage; depending on the applicability domain threshold, R(2) ranged from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted LD(50) for every compound using all five models. The consensus models afforded higher prediction accuracy for the external validation data set with the higher coverage as compared to individual constituent models. The validated consensus LD(50) models developed in this study can be used as reliable computational predictors of in vivo acute toxicity.

  14. Preclinical studies on toxicity, antitumour activity and pharmacokinetics of cisplatin and three recently developed derivatives.

    PubMed

    Lelieveld, P; Van der Vijgh, W J; Veldhuizen, R W; Van Velzen, D; Van Putten, L M; Atassi, G; Danguy, A

    1984-08-01

    Preclinical studies were performed in mice, rats and dogs of cis-diamminedichloroplatinum(II) (CDDP) and its derivatives cis-1,1-di(aminomethyl) cyclohexane platinum(II) sulphate (TNO-6), cis-diammine-1,1-cyclobutanedicarboxylate platinum(II) (CBDCA) and cis-dichloro, trans-dihydroxybis-isopropylamine platinum(IV) (CHIP). In mice toxicity and antitumour activity were determined. All three derivatives were at least as toxic as CDDP for haemopoietic stem cells and were less active than CDDP against the mouse tumours leukaemia L1210 and osteosarcoma C22LR. Toxicology studies in rats revealed no renal toxicity after a single dose of TNO-6. Fractionated doses of TNO-6 and CBDCA did cause renal toxicity but less than CDDP. CHIP produced little or no kidney damage. In dogs, TNO-6 (1.5 mg/kg) produced more severe kidney damage--although this was reversible--than CDDP (2 mg/kg). Half-lives of distribution were 4.0-5.1 min for TNO-6 and 9.7 min for CDDP, while half-lives of elimination were 3.6-6.6 days and 5.9 days respectively. Plasma levels, normalized for the dose, were at least two times higher after TNO-6 than after CDDP. Twelve weeks after drug administration, plasma levels were undetectable, while tissue concentrations could still be measured. The platinum concentration in kidney cortex was higher after CDDP than after TNO-6.

  15. Comparison of active constituents, acute toxicity, anti-nociceptive and anti-inflammatory activities of Porana sinensis Hemsl., Erycibe obtusifolia Benth. and Erycibe schmidtii Craib.

    PubMed

    Chen, Zhiyong; Liao, Liping; Zhang, Zijia; Wu, Lihong; Wang, Zhengtao

    2013-11-25

    Erycibe obtusifolia and Erycibe schmidtii, which belong to the same genus as Erycibe, are widely used in traditional medicine for the treatment of joint pain and rheumatoid arthritis (RA). Porana sinensis has become a widely used substitute for Erycibe obtusifolia and Erycibe schmidtii as they have declined in the wild. In the present work, the content of the main active components, the acute toxicity, the anti-nociceptive and anti-inflammatory activities of Porana sinensis, Erycibe obtusifolia and Erycibe schmidtii were compared, and the mechanisms of anti-nociceptive and anti-inflammatory activities were discussed. A quantitative HPLC (high performance liquid chromatography) method was first developed to compare the content of the main active components (scopoletin, scopolin and chlorogenic acid). The anti-inflammatory and anti-nociceptive activities of 40% ethanolic extracts of the three plants were compared using the models of xylene-induced ear edema, formalin-induced inflammation, carrageenan-induced air pouch inflammation, acetic acid-induced writhing and formalin-induced nociception. The acute toxicity of the 40% ethanolic extracts of the three plants was studied. The assay suggested a large content of scopoletin, scopolin and chlorogenic acid in the three plants. The 40% ethanolic extracts of the three plants were almost non-toxic at the dose of 5g/kg and all of them showed significant anti-inflammatory effects in the tests of xylene-induced ear edema and formalin-induced inflammation. In the carrageenan-induced air pouch inflammation test, the synthesis of PGE2 was significantly inhibited by all the extracts. They significantly inhibited the number of contortions induced by acetic acid and the second phase of the formalin-induced licking response. Naloxone was not able to reverse the analgesic effect of these extracts. The study identifies the similarity of the three plants in their main active components as well as acute toxicity, anti-nociceptive and

  16. In vitro antibacterial activity and acute toxicity studies of aqueous-methanol extract of Sida rhombifolia Linn. (Malvaceae).

    PubMed

    Assam, Assam J P; Dzoyem, J P; Pieme, C A; Penlap, V B

    2010-07-27

    Many bacteria among the Enterobacteria family are involved in infectious diseases and diarrhoea. Most of these bacteria become resistant to the most commonly used synthetic drugs in Cameroon. Natural substances seem to be an alternative to this problem. Thus the aim of this research was to investigate the in vitro antibacterial activity of the methanol and aqueous-methanol extracts of Sida rhombifolia Linn (Malvaceae) against seven pathogenic bacteria involved in diarrhoea. Acute toxicity of the most active extract was determined and major bioactive components were screened. The agar disc diffusion and the agar dilution method were used for the determination of inhibition diameters and the Minimum Inhibitory Concentration (MICs) respectively. The acute toxicity study was performed according WHO protocol. The aqueous-methanol extract (1v:4v) was the most active with diameters of inhibition zones ranging from 8.7 - 23.6 mm, however at 200 microg/dic this activity was relatively weak compared to gentamycin. The MICs of the aqueous-methanol extract (1v:4v) varied from 49.40 to 78.30 microg/ml. Salmonella dysenteriae was the most sensitive (49.40 microg/ml). For the acute toxicity study, no deaths of rats were recorded. However, significant increase of some biochemical parameters such as aspartate amino-transferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and creatinine (CRT) were found. The phytochemical analysis of the aqueous methanol extract indicated the presence of tannins, polyphenols, alkaloids, glycosides, flavonoids and saponins The results showed that the aqueous-methanol extract of S. rhombifolia exhibited moderate antibacterial activity. Some toxic effects were found when rats received more than 8 g/kg bw of extract.

  17. Improving anticancer activity and reducing systemic toxicity of doxorubicin by self-assembled polymeric micelles

    NASA Astrophysics Data System (ADS)

    Gou, MaLing; Shi, HuaShan; Guo, Gang; Men, Ke; Zhang, Juan; Zheng, Lan; Li, ZhiYong; Luo, Feng; Qian, ZhiYong; Zhao, Xia; Wei, YuQuan

    2011-03-01

    In an attempt to improve anticancer activity and reduce systemic toxicity of doxorubicin (Dox), we encapsulated Dox in monomethoxy poly(ethylene glycol)-poly(ɛ-caprolactone) (MPEG-PCL) micelles by a novel self-assembly procedure without using surfactants, organic solvents or vigorous stirring. These Dox encapsulated MPEG-PCL (Dox/MPEG-PCL) micelles with drug loading of 4.2% were monodisperse and ~ 20 nm in diameter. The Dox can be released from the Dox/MPEG-PCL micelles; the Dox-release at pH 5.5 was faster than that at pH 7.0. Encapsulation of Dox in MPEG-PCL micelles enhanced the cellular uptake and cytotoxicity of Dox on the C-26 colon carcinoma cell in vitro, and slowed the extravasation of Dox in the transgenic zebrafish model. Compared to free Dox, Dox/MPEG-PCL micelles were more effective in inhibiting tumor growth in the subcutaneous C-26 colon carcinoma and Lewis lung carcinoma models, and prolonging survival of mice bearing these tumors. Dox/MPEG-PCL micelles also induced lower systemic toxicity than free Dox. In conclusion, incorporation of Dox in MPEG-PCL micelles enhanced the anticancer activity and decreased the systemic toxicity of Dox; these Dox/MPEG-PCL micelles are an interesting formulation of Dox and may have potential clinical applications in cancer therapy.

  18. Comparison of the toxicity of some metals and their tetracyanide complexes on the respiration of non acclimated activated sludges.

    PubMed

    Morozzi, G; Cenci, G

    1978-12-01

    The toxic effect of the metal ions of cadmium, zinc, nickel and mercury and their tetracyanide salt complexes, on the activated sludge not previously acclimated, has been studied. The evaluation of the effect was carried out using both the Warburg and TTC-method. The results obtained have shown that the toxicity of the cadmium and zinc complexes is higher than that of the corresponding metals, while the toxicity of Ni(CN)4(2-) is lower than that of the corresponding metals. No differences have been found between the effect of mercury and the corresponding tetracyanide complex. From the data obtained it appears that it is not possible to generalize about the biological effect of complexation with the CN- group, but it should be stated that, generally, there are substantial differences between metals and their cyanide complexes as far as toxicity for activated sludge is concerned.

  19. Toxic Hazards Research Unit

    NASA Technical Reports Server (NTRS)

    Macewen, J. D.; Vernot, E. H.

    1971-01-01

    The activities of the Toxic Hazards Research Unit (THRU) for the period of June 1970 through May 1971 reviewed. Modification of the animal exposure facilities primarily for improved human safety but also for experimental integrity and continuity are discussed. Acute toxicity experiments were conducted on hydrogen fluoride (HF), hydrogen chloride (HCl), nitrogen dioxide (NO2), and hydrogen cyanide (HCN) both singly and in combination with carbon dioxide (CO). Additional acute toxicity experiments were conducted on oxygen difluoride (OF2) and chlorine pentafluoride (ClF5). Subacute toxicity studies were conducted on methylisobutylketone and dichloromethane (methylene dichloride). The interim results of further chronic toxicity experiments on monomethylhydrazine (MMH) are also described.

  20. Assessment of toxicity and biodegradability on activated sludge of priority and emerging pollutants.

    PubMed

    Tobajas, Montserrat; Verdugo, Verónica; Polo, Alicia M; Rodriguez, Juan J; Mohedano, Angel F

    2016-01-01

    Several methods for evaluating the toxicity and biodegradability of hazardous pollutants (chlorinated compounds, chemical additives and pharmaceuticals) have been studied in this work. Different bioassays using representative bacteria of marine and terrestrial ecosystems such as Vibrio fischeri and Pseudomonas putida have been used to assess the ecotoxicity. Activated sludge was used to analyse the effect of those pollutants in a biological reactor of a sewage treatment plant (STP). The results demonstrate that none of the compounds is toxic to activated sludge, except ofloxacin to P. putida. The additives tested can be considered moderately toxic according to the more sensitive V. fischeri assays, whereas the EC50 values of the pharmaceuticals depend on the specific microorganism used in each test. Regarding the biodegradability, respirometric measurements were carried out for fast biodegradability assessment and the Zahn-Wellens test for inherent biodegradability. The evolution of the specific oxygen uptake rate (SOUR) showed that only diethyl phthalate was easily biodegradable and acetylsalicylic acid was partially biodegradable (98% and 65% degradation, respectively). The persistence of dichloromethane, ofloxacin and hidrochlorothiazide was confirmed along the 28 days of the Zahn-Wellens test whereas 1,1,1-trichloroethane showed inherent biodegradability (74% removal). Most of the chlorinated compounds, pharmaceuticals, bisphenol A and ethylenediaminetetraacetic acid were partially degraded in 28 d with total organic carbon (TOC) reduction ranging from 21% to 51%. Sulphamethoxazole showed certain biodegradation (50% removal) with TOC decrease around 31%, which indicates the formation of non-biodegradable by-products.

  1. In vivo analgesic activity, toxicity and phytochemical screening of the hydroalcoholic extract from the leaves of Psidium cattleianum Sabine.

    PubMed

    Alvarenga, Felipe Queiroz; Mota, Bárbara C F; Leite, Marcel N; Fonseca, Jaciara M S; Oliveira, Dario A; Royo, Vanessa de Andrade; e Silva, Márcio L A; Esperandim, Viviane; Borges, Alexandre; Laurentiz, Rosangela S

    2013-10-28

    Psidium cattleianum Sabine is extensively used in Brazilian traditional medicine to treat several diseases including painful disorders. Aim of the study to investigate the toxicity and the possible analgesic activities of the hydroalcoholic extract from the leaves of Psidium cattleianum Sabine (ELPCS), to support its use in folk medicine. To screen the major phytochemical constituents of this extract and evaluate their antioxidant activity. ELPCS was assessed for its antioxidant activity using the DPPH model. Its analgesic activity was examined using mouse models of acetic acid-induced writhing and hot plate paw licking models. The major phytochemical constituents of the extract were screened; their toxicity on LLC-MK2 mammalian cells was evaluated. ELPCS exhibited significant peripheral analgesic activity at doses of 60, 80, 100, 200 and 400mg/kg in mice, but it did not display central analgesic activity and not was toxic to LLC-MK2 cell (LD50>400 µg/mL). The extract exhibited free radical scavenging activity as evidenced by IC50 values (15.9 µg/mL) obtained by the DPPH method. Phytochemical screening detected flavonoids, saponins, cardiac glycosides, anthraquinones, and tannins. The results of the experimental studies proved the analgesic activity of ELPCS and supported the traditional use of this plant. © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Phenolic profile and antioxidant activity from non-toxic Mexican Jatropha curcas L. shell methanolic extracts.

    PubMed

    Perea-Domínguez, Xiomara Patricia; Espinosa-Alonso, Laura Gabriela; Hosseinian, Farah; HadiNezhad, Mehri; Valdez-Morales, Maribel; Medina-Godoy, Sergio

    2017-03-01

    Jatropha curcas seed shells are the by-product obtained during oil extraction process. Recently, its chemical composition has gained attention since its potential applications. The aim of this study was to identify phenolic compounds profile from a non-toxic J. curcas shell from Mexico, besides, evaluate J. curcas shell methanolic extract (JcSME) antioxidant activity. Free, conjugate and bound phenolics were fractionated and quantified (606.7, 193.32 and 909.59 μg/g shell, respectively) and 13 individual phenolic compounds were detected by HPLC. The radical-scavenging activity of JcSME was similar to Trolox and ascorbic acid by DPPH assay while by ABTS assay it was similar to BHT. Effective antioxidant capacity by ORAC was found (426.44 ± 53.39 μmol Trolox equivalents/g shell). The Mexican non-toxic J. curcas shell is rich in phenolic compounds with high antioxidant activity; hence, it could be considerate as a good source of natural antioxidants.

  3. The effect of toxic carbon source on the reaction of activated sludge in the batch reactor.

    PubMed

    Wu, Changyong; Zhou, Yuexi; Zhang, Siyu; Xu, Min; Song, Jiamei

    2018-03-01

    The toxic carbon source can cause higher residual effluent dissolved organic carbon than easily biodegraded carbon source in activated sludge process. In this study, an integrated activated sludge model is developed as the tool to understand the mechanism of toxic carbon source (phenol) on the reaction, regarding the carbon flows during the aeration period in the batch reactor. To estimate the toxic function of phenol, the microbial cells death rate (k death ) is introduced into the model. The integrated model was calibrated and validated by the experimental data and it was found the model simulations matched the all experimental measurements. In the steady state, the toxicity of phenol can result in higher microbial cells death rate (0.1637 h -1 vs 0.0028 h -1 ) and decay rate coefficient of biomass (0.0115 h -1 vs 0.0107 h -1 ) than acetate. In addition, the utilization-associated products (UAP) and extracellular polymeric substances (EPS) formation coefficients of phenol are higher than that of acetate, indicating that more carbon flows into the extracellular components, such as soluble microbial products (SMP), when degrading toxic organics. In the non-steady state of feeding phenol, the yield coefficient for growth and maximum specific growth rate are very low in the first few days (1-10 d), while the decay rate coefficient of biomass and microbial cells death rate are relatively high. The model provides insights into the difference of the dynamic reaction with different carbon sources in the batch reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Antitumor Activity and Toxicity of Salts of Inorganic Group IIIa Metals: Aluminum, Gallium, Indium, and Thallium

    PubMed Central

    Hart, Michael M.; Adamson, Richard H.

    1971-01-01

    The toxicity and antitumor activity of salts of the Group IIIa metals aluminum, gallium, indium, and thallium were determined. With the (lethal dose)50 as a measure, the decreasing order of toxicity was TlCl3 ≥ In(NO3)3 > Ga(NO3)3 > Al(NO3)3. All four metals exhibited antitumor activity, but when the tumor was inoculated by a route different from that of the drug, only Ga+3 and, to a lesser extent, In+3 inhibited tumor growth. Ga(NO3)3 was found to inhibit the growth of three out of four rodent solid tumors. Gallium therefore has potential therapeutic usefulness for treatment of solid tumors in man. PMID:5283954

  5. Mechanisms of olfactory toxicity of the herbicide 2,6-dichlorobenzonitrile: Essential roles of CYP2A5 and target-tissue metabolic activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Fang; Zhou Xin; Behr, Melissa

    The herbicide 2,6-dichlorobenzonitril (DCBN) is a potent and tissue-specific toxicant to the olfactory mucosa (OM). The toxicity of DCBN is mediated by cytochrome P450 (P450)-catalyzed bioactivation; however, it is not known whether target-tissue metabolic activation is essential for toxicity. CYP2A5, expressed abundantly in both liver and OM, was previously found to be one of the P450 enzymes active in DCBN bioactivation in vitro. The aims of this study were to determine the role of CYP2A5 in DCBN toxicity in vivo, by comparing the extents of DCBN toxicity between Cyp2a5-null and wild-type (WT) mice, and to determine whether hepatic microsomal P450more » enzymes (including CYP2A5) are essential for the DCBN toxicity, by comparing the extents of DCBN toxicity between liver-Cpr-null (LCN) mice, which have little P450 activity in hepatocytes, and WT mice. We show that the loss of CYP2A5 expression did not alter systemic clearance of DCBN (at 25 mg/kg); but it did inhibit DCBN-induced non-protein thiol depletion and cytotoxicity in the OM. Thus, CYP2A5 plays an essential role in mediating DCBN toxicity in the OM. In contrast to the results seen in the Cyp2a5-null mice, the rates of systemic DCBN clearance were substantially reduced, while the extents of DCBN-induced nasal toxicity were increased, rather than decreased, in the LCN mice, compared to WT mice. Therefore, hepatic P450 enzymes, although essential for DCBN clearance, are not necessary for DCBN-induced OM toxicity. Our findings form the basis for a mechanism-based approach to assessing the potential risks of DCBN nasal toxicity in humans.« less

  6. Active foraging for toxic prey during gestation in a snake with maternal provisioning of sequestered chemical defences

    PubMed Central

    Kojima, Yosuke; Mori, Akira

    2015-01-01

    Many animals sequester dietary defensive compounds and incorporate them into the offspring, which protects the young against predation. One possible but poorly investigated question is whether females of such species actively prey upon toxic diets. The snake Rhabdophis tigrinus sequesters defensive steroids from toads consumed as prey; it also feeds on other amphibians. Females produce chemically armed offspring in direct proportion to their own level of toad-derived toxins by provisioning the toxins to their eggs. Our field observations of movements and stomach contents of radio-tracked R. tigrinus showed that gravid snakes preyed upon toads by actively foraging in the habitat of toads, even though toads were a scarce resource and toad-searching may incur potential costs. Our Y-maze experiments demonstrated that gravid females were more likely to trail the chemical cues of toads than were males or non-gravid females. These results showed behavioural switching in females and active foraging for scarce, toxic prey during gestation. Because exploitation of toads by gravid females results in their offspring being more richly endowed with prey-derived toxins, active foraging for toxic prey is expected to be an adaptive antipredator trait, which may enhance chemical defence in offspring. PMID:25392472

  7. Induction of lcc2 expression and activity by Agaricus bisporus provides defence against Trichoderma aggressivum toxic extracts

    PubMed Central

    Sjaarda, Calvin P; Abubaker, Kamal S; Castle, Alan J

    2015-01-01

    Laccases are used by fungi for several functions including defence responses to stresses associated with attack by other fungi. Laccase activity changes and the induction of two laccase genes, lcc1 and lcc2, in Agaricus bisporus were measured in response to toxic extracts of medium in which Trichoderma aggressivum, the cause of green mould disease, was grown. A strain of A. bisporus that shows resistance to the extracts showed higher basal levels and greater enzymatic activity after extract exposure than did a sensitive strain. Furthermore, pre-incubation of T. aggressivum extract with laccases reduced toxicity. Faster induction and greater numbers of lcc2 transcripts in response to the extract were noted in the resistant strain than in the sensitive strain. The timing and increase in lcc2 transcript abundance mirrored changes in total laccase activity. No correlation between resistance and lcc1 transcription was apparent. Transcript abundance in transformants with a siRNA construct homologous to both genes varied widely. A strong negative correlation between transcript abundance and sensitivity of the transformant to toxic extract was observed in plate assays. These results indicated that laccase activity and in particular that encoded by lcc2 contributes to toxin metabolism and by extension green mould disease resistance. PMID:25824278

  8. Active foraging for toxic prey during gestation in a snake with maternal provisioning of sequestered chemical defences.

    PubMed

    Kojima, Yosuke; Mori, Akira

    2015-01-07

    Many animals sequester dietary defensive compounds and incorporate them into the offspring, which protects the young against predation. One possible but poorly investigated question is whether females of such species actively prey upon toxic diets. The snake Rhabdophis tigrinus sequesters defensive steroids from toads consumed as prey; it also feeds on other amphibians. Females produce chemically armed offspring in direct proportion to their own level of toad-derived toxins by provisioning the toxins to their eggs. Our field observations of movements and stomach contents of radio-tracked R. tigrinus showed that gravid snakes preyed upon toads by actively foraging in the habitat of toads, even though toads were a scarce resource and toad-searching may incur potential costs. Our Y-maze experiments demonstrated that gravid females were more likely to trail the chemical cues of toads than were males or non-gravid females. These results showed behavioural switching in females and active foraging for scarce, toxic prey during gestation. Because exploitation of toads by gravid females results in their offspring being more richly endowed with prey-derived toxins, active foraging for toxic prey is expected to be an adaptive antipredator trait, which may enhance chemical defence in offspring. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Evaluation of the anti-mycobacterium tuberculosis activity and in vivo acute toxicity of Annona sylvatic

    PubMed Central

    2014-01-01

    Background The recent emergence of extensively multidrug-resistant Mycobacterium tuberculosis strains has further complicated the control of tuberculosis. There is an urgent need for the development of new molecular candidates antitubercular drugs. Medicinal plants have been an excellent source of leads for the development of drugs. The aim of this study was to evaluate the in vitro activity of 28 alcoholic extracts and essential oils of native and exotic Brazilian plants against Mycobacterium tuberculosis and to further study these extracts through chemical fractionation, the isolation of their constituents, and an evaluation of the in vivo acute toxicity of the active extracts. To the best of our knowledge this is the first chemical characterization, antituberculosis activity and acute toxicity evaluation of Annona sylvatica. Methods The anti-mycobacterial activity of these extracts and their constituent compounds was evaluated using the resazurin reduction microtiter assay (REMA). To investigate the acute toxicity of these extracts in vivo, female Swiss mice were treated with the extracts at doses of 500, 1000 and 2000 mg · kg-1 of body weight. The extracts were characterized by LC-MS, and the constituents were isolated and identified by chromatographic analysis of spectroscopic data. Results Of the 28 extracts, the methanol extract obtained from the leaves of Annona sylvatica showed anti-mycobacterial activity with an minimal inhibitory concentration (MIC) of 184.33 μg/mL, and the ethyl acetate fraction (EAF) resulting from liquid-liquid partitioning of the A. sylvatica extract showed an MIC of 115.2 μg/mL. The characterization of this extract by LC-MS identified flavonoids and acetogenins as its main constituents. The phytochemical study of the A. sylvatica EAF resulted in the isolation of quercetin, luteolin, and almunequin. Conclusions Among the compounds isolated from the EAF, luteolin and almunequin were the most promising, with MICs of 236.8

  10. Activating thyrotropin receptor mutations are present in nonadenomatous hyperfunctioning nodules of toxic or autonomous multinodular goiter.

    PubMed

    Tonacchera, M; Agretti, P; Chiovato, L; Rosellini, V; Ceccarini, G; Perri, A; Viacava, P; Naccarato, A G; Miccoli, P; Pinchera, A; Vitti, P

    2000-06-01

    Toxic multinodular goiter, a heterogeneous disease producing hyperthyroidism, is frequently found in iodine-deficient areas. The pathogenesis of this common clinical entity is still unclear. The aim of the present study was to search for activating TSH receptor (TSHr) or Gs alpha mutations in areas of toxic or functionally autonomous multinodular goiters that appeared hyperfunctioning at thyroid scintiscan but did not clearly correspond to definite nodules at physical or ultrasonographic examination. Surgical tissue specimens from nine patients were carefully dissected, matching thyroid scintiscan and thyroid ultrasonography, to isolate hyperfunctioning and nonfunctioning areas even if they did not correspond to well-defined nodules. TSHr and Gs alpha mutations were searched for by direct sequencing after PCR amplification of genomic DNA. Only 2 adenomas were identified at microscopic examination, whereas the remaining 18 hyperfunctioning areas corresponded to hyperplastic nodules containing multiple aggregates of micromacrofollicules not surrounded by a capsule. Activating TSHr mutations were detected in 14 of these 20 hyperfunctioning areas, whereas no mutation was identified in nonfunctioning nodules or areas contained in the same gland. No Gs alpha mutation was found. In conclusion, activating TSHr mutations are present in the majority of nonadenomatous hyperfunctioning nodules scattered throughout the gland in patients with toxic or functionally autonomous multinodular goiter.

  11. Potent antibacterial, antioxidant and toxic activities of extracts from Passiflora suberosa L. leaves

    PubMed Central

    Bandara, Kumudu R.V.; Padumadasa, Chayanika

    2018-01-01

    Passiflora suberosa L. belonging to the family Passifloraceae is an important medicinal plant used in traditional medicinal system in Sri Lanka to treat diabetes, hypertension and skin diseases. We extracted P. suberosa leaves under reflux conditions using different solvents (hexane, chloroform, methanol and water), then subjected to phytochemical screening. Alkaloids, flavonoids and saponins and saponins and anthraquinones were present in hexane and chloroform extracts. Alkaloids, unsaturated sterols, triterpenes, saponins, flavonoids and tannins were observed in both methanol and aqueous extracts. Proanthocyanidins were observed only in the aqueous extract. Hence, aqueous and methanol extracts with most classes of phytochemicals present were subjected to antimicrobial, antioxidant, antihaemolytic activities and Brine shrimp lethality studies. Antibacterial activity and minimum inhibition concentrations were evaluated using three Gram-positive (Bacillus subtilis, Staphylococcus aureus and Enterococcus faecium) and three Gram-negative bacteria (Pseudumonas aeruginosa, Salmonella typhimuriam and Escherichia coli). The results indicated that only the methanol extract of P. suberosa exhibited antibacterial activities against all the strains of Gram-negative and Gram-positive bacterial with stronger activity against Gram-negative bacteria. DPHH (2,2-diphenyl-1-picrylhydrazy) scavenging assay was adopted to evaluate antioxidant properties while antihaemolytic and toxic activities were studied respectively using cow blood and Brine shrimp lethality assay. The IC50 values of the aqueous extract in both antioxidant and antihaemolytic assays were significantly lower than the standard ascorbic acid. Similar results were observed in the Brine shrimp lethality assay. In conclusion both aqueous and methanol extracts of P. suberosa leaves showed the presence of majority of phytochemicals including proanthocyanidins. Antibacterial activity was obtained only for methanol extract

  12. Removal of toxic chemicals from water with activated carbon

    USGS Publications Warehouse

    Dawson, V.K.; Marking, L.L.; Bills, T.D.

    1976-01-01

    Activated carbon was effective in removing fish toxicants and anesthetics from water solutions. Its capacity to adsorb 3-trifluoromethyl-4-nitrophenol (TFM), antimycin, NoxfishA? (5% rotenone), Dibrorms, juglone, MSa??222, and benzocaine ranged from 0.1 to 64 mg per gram of carbon. The adsorptive capacity (end point considered as a significant discharge) of activated carbon for removal of TFM was determined at column depths of 15, 30, and 60 cm; temperatures of 7, 12, 17, and 22 C; pH's of 6.5, 7.5, 8.5, and 9.5; and flow rates of 50, 78, 100, 200, and 940 ml/min. Adsorptive capacity increased when the contact time was increased by reducing the flow rate or increasing the column depth. The adsorptive capacity was not significantly influenced by temperature but was substantially higher at pH 6.5 than at the other pH's tested. A practical and efficient filter for purifying chemically treated water was developed.

  13. Vulnerability to glutamate toxicity of dopaminergic neurons is dependent on endogenous dopamine and MAPK activation.

    PubMed

    Izumi, Yasuhiko; Yamamoto, Noriyuki; Matsuo, Takaaki; Wakita, Seiko; Takeuchi, Hiroki; Kume, Toshiaki; Katsuki, Hiroshi; Sawada, Hideyuki; Akaike, Akinori

    2009-07-01

    Dopaminergic neurons are more vulnerable than other types of neurons in cases of Parkinson disease and ischemic brain disease. An increasing amount of evidence suggests that endogenous dopamine plays a role in the vulnerability of dopaminergic neurons. Although glutamate toxicity contributes to the pathogenesis of these disorders, the sensitivity of dopaminergic neurons to glutamate toxicity has not been clarified. In this study, we demonstrated that dopaminergic neurons were preferentially affected by glutamate toxicity in rat mesencephalic cultures. Glutamate toxicity in dopaminergic neurons was blocked by inhibiting extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase, and p38 MAPK. Furthermore, depletion of dopamine by alpha-methyl-dl-p-tyrosine methyl ester (alpha-MT), an inhibitor of tyrosine hydroxylase (TH), protected dopaminergic neurons from the neurotoxicity. Exposure to glutamate facilitated phosphoryration of TH at Ser31 by ERK, which contributes to the increased TH activity. Inhibition of ERK had no additive effect on the protection offered by alpha-MT, whereas alpha-MT and c-jun N-terminal kinase or p38 MAPK inhibitors had additive effects and yielded full protection. These data suggest that endogenous dopamine is responsible for the vulnerability to glutamate toxicity of dopaminergic neurons and one of the mechanisms may be an enhancement of dopamine synthesis mediated by ERK.

  14. Subchronic Toxicity Study in Rats of Two New Ethyl-Carbamates with Ixodicidal Activity

    PubMed Central

    Prado-Ochoa, María Guadalupe; Abrego-Reyes, Víctor Hugo; Velázquez-Sánchez, Ana María; Muñoz-Guzmán, Marco Antonio; Ramírez-Noguera, Patricia; Angeles, Enrique; Alba-Hurtado, Fernando

    2014-01-01

    Female and male Wistar rats were used to determine the subchronic oral toxicities of two new ethyl-carbamates with ixodicidal activities (ethyl-4-bromphenyl-carbamate and ethyl-4-chlorphenyl-carbamate). The evaluated carbamates were administered in the drinking water (12.5, 25 and 50 mg/kg/day) for 90 days. Exposure to the evaluated carbamates did not cause mortality or clinical signs and did not affect food consumption or weight gain. However, exposure to these carbamates produced alterations in water consumption, hematocrit, percentages of reticulocytes, plasma proteins, some biochemical parameters (aspartate aminotransferase, gamma-glutamyl transpeptidase, cholinesterase, and creatinine activities), thiobarbituric acid reactive substances, and the relative weight of the spleen. Histologically, slight pathological alterations were found in the liver that were consistent with the observed biochemical alterations. The nonobserved adverse effect levels (NOAELs) of the evaluated carbamates were 12.5 mg/kg/day for both the female and male rats. The low severity and reversibility of the majority of the observed alterations suggest that the evaluated carbamates have low subchronic toxicity. PMID:24818142

  15. Succinate dehydrogenase activity regulates PCB3-quinone-induced metabolic oxidative stress and toxicity in HaCaT human keratinocytes.

    PubMed

    Xiao, Wusheng; Sarsour, Ehab H; Wagner, Brett A; Doskey, Claire M; Buettner, Garry R; Domann, Frederick E; Goswami, Prabhat C

    2016-02-01

    Polychlorinated biphenyls (PCBs) and their metabolites are environmental pollutants that are known to have adverse health effects. 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ), a quinone metabolite of 4-monochlorobiphenyl (PCB3, present in the environment and human blood) is toxic to human skin keratinocytes, and breast and prostate epithelial cells. This study investigates the hypothesis that 4-ClBQ-induced metabolic oxidative stress regulates toxicity in human keratinocytes. Results from Seahorse XF96 Analyzer showed that the 4-ClBQ treatment increased extracellular acidification rate, proton production rate, oxygen consumption rate and ATP content, indicative of metabolic oxidative stress. Results from a q-RT-PCR assay showed significant increases in the mRNA levels of hexokinase 2 (hk2), pyruvate kinase M2 (pkm2) and glucose-6-phosphate dehydrogenase (g6pd), and decreases in the mRNA levels of succinate dehydrogenase (complex II) subunit C and D (sdhc and sdhd). Pharmacological inhibition of G6PD-activity enhanced the toxicity of 4-ClBQ, suggesting that the protective function of the pentose phosphate pathway is functional in 4-ClBQ-treated cells. The decrease in sdhc and sdhd expression was associated with a significant decrease in complex II activity and increase in mitochondrial levels of ROS. Overexpression of sdhc and sdhd suppressed 4-ClBQ-induced inhibition of complex II activity, increase in mitochondrial levels of ROS, and toxicity. These results suggest that the 4-ClBQ treatment induces metabolic oxidative stress in HaCaT cells, and while the protective function of the pentose phosphate pathway is active, inhibition of complex II activity sensitizes HaCaT cells to 4-ClBQ-induced toxicity.

  16. Acute toxicity and anti-fatigue activity of polysaccharide-rich extract from corn silk.

    PubMed

    Zhao, He-Peng; Zhang, Yang; Liu, Zhuo; Chen, Jiang-Yue; Zhang, Song-Yan; Yang, Xiu-Dong; Zhou, Hong-Li

    2017-06-01

    The aim of this study was to evaluate the safety and potential of PCS as the anti-fatigue functional food. PCS was prepared by water extracting-alcohol precipitating method, and its chemical compositions of monosaccharide were analyzed. Then, acute toxicity and anti-fatigue activity of PCS were evaluated. PCS is composed of Rha, Arab, Xyl, Man, Glu, and Gal, its molar ratio is 0.17: 0.30: 0.26: 0.35: 1.00: 0.57. No mortality and general symptoms of toxicity were observed in the PCS treated mice (7.5, 15, and 20g/kg body weight), the body weight and food consumption were not significantly changed compared with the normal control group. The relative weights of main organ, and biochemical indicators also did not markedly change. PCS can significantly prolong the duration of the swimming time to exhaustion in mice, decrease BUN, LA levels, increase LDH activities, and the contents of HG in the PCS treated mice. The dose of 400mg/kg body weight is the optimal dose for anti-fatigue activity both in male and female mice. In conclusion, PCS is a promising traditional natural-based therapeutic remedy for relieving fatigue with high safety. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Co-Formulants in Glyphosate-Based Herbicides Disrupt Aromatase Activity in Human Cells below Toxic Levels

    PubMed Central

    Defarge, Nicolas; Takács, Eszter; Lozano, Verónica Laura; Mesnage, Robin; Spiroux de Vendômois, Joël; Séralini, Gilles-Eric; Székács, András

    2016-01-01

    Pesticide formulations contain declared active ingredients and co-formulants presented as inert and confidential compounds. We tested the endocrine disruption of co-formulants in six glyphosate-based herbicides (GBH), the most used pesticides worldwide. All co-formulants and formulations were comparably cytotoxic well below the agricultural dilution of 1% (18–2000 times for co-formulants, 8–141 times for formulations), and not the declared active ingredient glyphosate (G) alone. The endocrine-disrupting effects of all these compounds were measured on aromatase activity, a key enzyme in the balance of sex hormones, below the toxicity threshold. Aromatase activity was decreased both by the co-formulants alone (polyethoxylated tallow amine—POEA and alkyl polyglucoside—APG) and by the formulations, from concentrations 800 times lower than the agricultural dilutions; while G exerted an effect only at 1/3 of the agricultural dilution. It was demonstrated for the first time that endocrine disruption by GBH could not only be due to the declared active ingredient but also to co-formulants. These results could explain numerous in vivo results with GBHs not seen with G alone; moreover, they challenge the relevance of the acceptable daily intake (ADI) value for GBHs exposures, currently calculated from toxicity tests of the declared active ingredient alone. PMID:26927151

  18. Structure-activity relationships for chloro- and nitrophenol toxicity in the pollen tube growth test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schueuermann, G.; Somashekar, R.K.; Kristen, U.

    Acute toxicity of 10 chlorophenols and 10 nitrophenols with identical substitution patterns is analyzed with the pollen tube growth (PTG) test. Concentration values of 50% growth inhibition (IC50) between 0.1 and 300 mg/L indicate that the absolute sensitivity of this alternative biotest is comparable to conventional aquatic test systems. Analysis of quantitative structure-activity relationships using lipophilicity (log K{sub ow}), acidity (pK{sub a}), and quantum chemical parameters to model intrinsic acidity, solvation interactions, and nucleophilicity reveals substantial differences between the intraseries trends of log IC50. With chlorophenols, a narcotic-type relationship is derived, which, however, shows marked differences in slope and interceptmore » when compared to reference regression equations for polar narcosis. Regression analysis of nitrophenol toxicity suggests interpretation in terms of two modes of action: oxidative uncoupling activity is associated with a pK{sub a} window from 3.8 to 8.5, and more acidic congeners with diortho-substitution show a transition from uncoupling to a narcotic mode of action with decreasing pK{sub a} and log K{sub ow}. Model calculations for phenol nucleophilicity suggest that differences in the phenol readiness for glucuronic acid conjugation as a major phase-II detoxication pathway have no direct influence on acute PTG toxicity of the compounds.« less

  19. Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test.

    PubMed

    Klüver, Nils; Vogs, Carolina; Altenburger, Rolf; Escher, Beate I; Scholz, Stefan

    2016-12-01

    Fish embryos have become a popular model in ecotoxicology and toxicology. The fish embryo acute toxicity test (FET) with the zebrafish embryo was recently adopted by the OECD as technical guideline TG 236 and a large database of concentrations causing 50% lethality (LC 50 ) is available in the literature. Quantitative Structure-Activity Relationships (QSARs) of baseline toxicity (also called narcosis) are helpful to estimate the minimum toxicity of chemicals to be tested and to identify excess toxicity in existing data sets. Here, we analyzed an existing fish embryo toxicity database and established a QSAR for fish embryo LC 50 using chemicals that were independently classified to act according to the non-specific mode of action of baseline toxicity. The octanol-water partition coefficient K ow is commonly applied to discriminate between non-polar and polar narcotics. Replacing the K ow by the liposome-water partition coefficient K lipw yielded a common QSAR for polar and non-polar baseline toxicants. This developed baseline toxicity QSAR was applied to compare the final mode of action (MOA) assignment of 132 chemicals. Further, we included the analysis of internal lethal concentration (ILC 50 ) and chemical activity (La 50 ) as complementary approaches to evaluate the robustness of the FET baseline toxicity. The analysis of the FET dataset revealed that specifically acting and reactive chemicals converged towards the baseline toxicity QSAR with increasing hydrophobicity. The developed FET baseline toxicity QSAR can be used to identify specifically acting or reactive compounds by determination of the toxic ratio and in combination with appropriate endpoints to infer the MOA for chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Haem peroxidase activity in Daphnia magna: a biomarker for sub-lethal toxicity assessments of kerosene-contaminated groundwater.

    PubMed

    Connon, Richard; Dewhurst, Rachel E; Crane, Mark; Callaghan, Amanda

    2003-10-01

    A novel biomarker was developed in Daphnia magna to detect organic pollution in groundwater. The haem peroxidase assay, which is an indirect means of measuring oxidase activity, was particularly sensitive to kerosene contamination. Exposure to sub-lethal concentrations of kerosene-contaminated groundwater resulted in a haem peroxidase activity increase by dose with a two-fold activity peak at 25%. Reproduction in D. magna remained unimpaired when exposed to concentrations below 25% for 21 days, and a decline in fecundity was only observed at concentrations above the peak in enzyme activity. The measurement of haem peroxidase activity in D. magna detected sublethal effects of kerosene in just 24 h, whilst offering information on the health status of the organisms. The biomarker may be useful in determining concentrations above which detrimental effects would occur from long-term exposure for fuel hydrocarbons. Moreover, this novel assay detects exposure to chemicals in samples that would normally be classified as non-toxic by acute toxicity tests.

  1. Anti-leishmanial and toxicity activities of some selected Iranian medicinal plants.

    PubMed

    Kheiri Manjili, Hamidreza; Jafari, Hamidreza; Ramazani, Ali; Davoudi, Noushin

    2012-11-01

    Leishmaniasis is caused by protozoan parasites belonging to the genus Leishmania. Cutaneous leishmaniasis is the most common form of leishmaniasis in Iran. As there is not any vaccine for leishmaniasis, treatment is important to prevent the spreading of parasites. There is, therefore, a need to develop newer drugs from different sources. The aim of this study was to assess anti-leishmanial activity of the ethanolic extracts of 17 different medicinal plants against Leishmania major promastigotes and macrophage cell line J774. The selection of the hereby studied 17 plants was based on the existing information on their local ethnobotanic history. Plants were dried, powdered, and macerated in a hydroalcoholic solution. Resulting extracts have been assessed for in vitro anti-leishmanial and brine shrimp toxicity activities. Four plants, Caesalpinia gilliesii, Satureia hortensis, Carum copticum heirm, and Thymus migricus, displayed high anti-leishmanial activity (IC50, 9.76 ± 1.27, 15.625 ± 3.76, 15.625 ± 5.46, and 31.25 ± 15.44 μM, respectively) and were toxic against the J774 macrophage cell line at higher concentrations than those needed to inhibit the parasite cell growth (IC50, 45.13 ± 3.17, 100.44 ± 17.48, 43.76 ± 0.78, and 39.67 ± 3.29 μM, respectively). Glucantime as positive control inhibited the growth of L. major promastigotes with IC50 = 254 μg/ml on promastigotes (1 × 10(6)/100 μ/well) of a log phase culture, without affecting the growth of J774 macrophages. These data revealed that C. gilliesii, S. hortensis, C. copticum heirm, and T. migricus extracts contain active compounds, which could serve as alternative agents in the control of cutaneous leishmaniasis. The activity of these herbs against L. major promastigotes and macrophage cell line J774 was reported for the first time in our study.

  2. The toxic effects of diethyl phthalate on the activity of glutamine synthetase in greater duckweed (Spirodela polyrhiza L.).

    PubMed

    Cheng, Tai-Sheng

    2012-11-15

    The toxic effects of diethyl phthalate (DEP), a potent allelochemical, on the enzyme activity and polypeptide accumulation of glutamine synthetase (GS) in greater duckweed were investigated. In our previous studies, DEP induced oxidative responses at concentrations from 0.5 to 2 mM in greater duckweed and the antioxidant enzymes played important roles in the defense strategy against DEP stress. In this study, DAB-H(2)O(2) and NBT stain for superoxide radicals (O(2)(·-)), lipid peroxidation, HSP70, and ammonia accumulation in DEP-treated duckweed tissues revealed adverse effect of DEP in plant growth. Biochemical analysis and physiological methods were combined to investigate GS activity and polypeptide accumulation under DEP-induced stress. The results showed that GS activity was reduced with the increasing concentration of DEP, indicative of enhanced toxic effect. Immunoblot analysis with chloroplast soluble fractions indicated that the chloroplastic GS (GS2) polypeptide from greater duckweed was degraded under DEP stress conditions. The response of GS2 to the DEP stress may be modulated by means of redox change in plant tissues, chloroplasts, and chloroplast lysates. The results suggest that DEP is toxic to the greater duckweed by inhibition of the GS isoenzymes in nitrogen assimilation and the GS2 plays important roles in the adaptation strategy against DEP toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Novel L-amino acid oxidase with algicidal activity against toxic cyanobacterium Microcystis aeruginosa synthesized by a bacterium Aquimarina sp.

    PubMed

    Chen, Wen Ming; Sheu, Fu Sian; Sheu, Shih Yi

    2011-09-10

    A brownish yellow pigmented bacterial strain, designated antisso-27, was recently isolated from a water area of saltpan in Southern Taiwan. Phylogenetic analyses based on 16S rRNA gene sequences indicate that strain antisso-27 belongs the genus Aquimarina in the family Flavobacteriacea and its only closest neighbor is Aquimarina spongiae (96.6%). Based on screening for algicidal activity, strain antisso-27 exhibits potent activity against the toxic cyanobacterium Microcystis aeruginosa. Both the strain antisso-27 bacterial culture and its culture filtrate show algicidal activity against the toxic cyanobacterium, indicating that an algicidal substance is released from strain antisso-27. The algicidal activity of strain antisso-27 occurs during the late stationary phase of bacterial growth. Strain antisso-27 can synthesize an algicidal protein with a molecular mass of 190 kDa, and its isoelectric point is approximately 9.4. This study explores the nature of this algicidal protein such as L-amino acid oxidase with broad substrate specificity. The enzyme is most active with L-leucine, L-isoleucine, L-methionine and L-valine and the hydrogen peroxide generated by its catalysis mediates algicidal activity. This is the first report on an Aquimarina strain algicidal to the toxic M. aeruginosa and the algicidal activity is generated through its enzymatic activity of L-amino acid oxidase. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Effectivity of advanced wastewater treatment: reduction of in vitro endocrine activity and mutagenicity but not of in vivo reproductive toxicity.

    PubMed

    Giebner, Sabrina; Ostermann, Sina; Straskraba, Susanne; Oetken, Matthias; Oehlmann, Jörg; Wagner, Martin

    2018-02-01

    Conventional wastewater treatment plants (WWTPs) have a limited capacity to eliminate micropollutants. One option to improve this is tertiary treatment. Accordingly, the WWTP Eriskirch at the German river Schussen has been upgraded with different combinations of ozonation, sand, and granulated activated carbon filtration. In this study, the removal of endocrine and genotoxic effects in vitro and reproductive toxicity in vivo was assessed in a 2-year long-term monitoring. All experiments were performed with aqueous and solid-phase extracted water samples. Untreated wastewater affected several endocrine endpoints in reporter gene assays. The conventional treatment removed the estrogenic and androgenic activity by 77 and 95 %, respectively. Nevertheless, high anti-estrogenic activities and reproductive toxicity persisted. All advanced treatment technologies further reduced the estrogenic activities by additional 69-86 % compared to conventional treatment, resulting in a complete removal of up to 97 %. In the Ames assay, we detected an ozone-induced mutagenicity, which was removed by subsequent filtration. This demonstrates that a post treatment to ozonation is needed to minimize toxic oxidative transformation products. In the reproduction test with the mudsnail Potamopyrgus antipodarum, a decreased number of embryos was observed for all wastewater samples. This indicates that reproductive toxicants were eliminated by neither the conventional nor the advanced treatment. Furthermore, aqueous samples showed higher anti-estrogenic and reproductive toxicity than extracted samples, indicating that the causative compounds are not extractable or were lost during extraction. This underlines the importance of the adequate handling of wastewater samples. Taken together, this study demonstrates that combinations of multiple advanced technologies reduce endocrine effects in vitro. However, they did not remove in vitro anti-estrogenicity and in vivo reproductive toxicity. This

  5. BMY 30047: A novel topically active retinoid with low local and systemic toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, X.; Quigley, J.; Tramposch, K.M.

    In the treatment of various dermatological disorders, topically applied retinoids have potential therapeutic use with the advantage of improved localized activity and lower toxicity over systemically administered retinoids. However, most retinoids cause a significant degree of local irritation. In the present study, the ability to produce local activity with low local irritation potential was evaluated with a novel retinoic acid derivative. BMY 30047 (11-cis, 13-cis-12-hydroxymethylretinoic acid delta-lactone) is one of a series of retinoic acid derivatives in which the carboxyl function of the polar end was modified with the aim of achieving reduced local irritation and systemic toxicity while retainingmore » the local therapeutic effect. BMY 30047 was evaluated and compared with all-trans retinoic acid for topical retinoid activity in several preclinical assay systems, including the utricle reduction assay in rhino mice, 12-o-tetradecanoylphorbol 13-acetate ester-stimulated ornithine decarboxylase induction in hairless mice and the UV light-induced photodamaged skin model in hairless mice. BMY 30047 was assessed for retinoid-type side effects by evaluating the skin irritation potential in rabbits after repeated topical application, and hypervitaminosis A-inducing potential in mice after i.p. injection. BMY 30047 demonstrated significant topical retinoid activity in several in vivo models with less skin irritation potential relative to the most used clinical concentrations of all-trans retinoic acid. BMY 30047 also showed very little systemic activity and did not produce any evidence of hypervitaminosis A syndrome at systemic doses 20 times greater than the no-effect dose of all-trans retinoic acid.« less

  6. Toxicity of perfluorooctanoic acid towards earthworm and enzymatic activities in soil.

    PubMed

    He, Wenxiang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-07-01

    Perfluorooctanoic acid (PFOA) is a widespread persistent organic contaminant in the environment that has recently raised much of regulatory and public concern. Therefore, assessment of its ecological risk is a top priority research. Hence, this study investigated the toxicity of PFOA to beneficial microbial processes in the soil such as activities of dehydrogenase, urease and potential nitrification in addition to earthworm survival, weight loss and PFOA bioaccumulation in two contrasting soils. In general, PFOA caused inhibition of all the measured microbial processes in a dose-dependent manner and the inhibition was higher in Williamtown (WT) soil than Edinburgh (EB) soil. Thus, WT soil being sandy in nature with low clay content showed higher PFOA bioavailability and hence showed higher toxicity. There was no mortality in earthworms exposed up to 100 mg PFOA/kilogram soil in both the soils; however, there was a significant weight loss from 25 mg/kg onwards. This study clearly demonstrates that soil contamination of PFOA can lead to adverse effects on soil health.

  7. Toxicity assessment of common xenobiotic compounds on municipal activated sludge: comparison between respirometry and Microtox.

    PubMed

    Ricco, Giuseppina; Tomei, M C M Concetta; Ramadori, Roberto; Laera, Giuseppe

    2004-04-01

    The toxicity of four xenobiotic compounds 3,5-dichlorophenol, formaldehyde, 4-nitrophenol and dichloromethane, representative of industrial wastewater contaminants was evaluated by a simple respirometric procedure set up on the basis of OECD Method 209 and by the Microtox bioassay. Very good reproducibility was observed for both methods, the variation coefficients being in the range of 2-10% for the respirometric procedure and 6-15% for Microtox, values that can be considered very good for a biological method. Comparison of EC(50) data obtained with the two methods shows that in both cases 3,5-dichlorophenol is more toxic than other compounds investigated and dichloromethane has a very low toxicity value. Intermediate EC(50) values were found for the two other chemicals, formaldehyde and 4-nitrophenol. Moreover, the Microtox EC(50) values are generally lower (except for dichloromethane) than the respirometric ones: these differences could be explained by the fact that the Microtox method uses a pure culture of marine species and, therefore, should not necessarily be expected to behave like a community of activated sludge bacteria. In conclusion, both methods can be usefully applied for toxicity detection in wastewater treatment plants but it is advisable to take into account that Microtox is more sensitive than respirometry in estimating the acute toxicity effect on the biomass operating in the plant.

  8. An Experimental Comparison of Two Different Technetium Source Activities Which Can Imitate Thyroid Scintigraphy in Case of Thyroid Toxic Nodule

    PubMed Central

    Miftari, Ramë; Fejza, Ferki; Bicaj, Xhavit; Nura, Adem; Topciu, Valdete; Bajrami, Ismet

    2014-01-01

    Purpose: In cases of thyroid toxic autonomous nodule, anterior projection of Tc-99m pertechnetate image shows a hot nodule that occupies most, or the entire thyroid lobe with near-total or total suppression of the contra lateral lobe. In this case is very difficult to distinguish toxic nodule from lobe agenesis. Our interest was to estimate and determinate the rate of radioactivity when the source with high activity can make total suppression of the second source with low activity in same conditions with thyroid scintigraphy procedures. Material and methodology: Thyroid scintigraphy was performed with Technetium 99 meta stable pertechnetate. A parallel high resolution low energy collimator was used as an energy setting of 140 KeV photo peak for T-99m. Images are acquired at 200 Kilo Counts in the anterior projection with the collimator positioned as close as the patient’s extended neck (approximately in distance of 18 cm). The scintigraphy of thyroid gland was performed 15 minutes after intravenous administration of 1.5 mCi Tc-99m pertechnetate. Technetium 99 meta stable radioactive sources with different activity were used for two scintigraphies studies, performed in same thyroid scintigraphy acquisition procedures. In the first study, were compared the standard source with high activity A=11.2 mCi with sources with variable activities B=1.33 mCi; 1.03 mCi; 0.7 mCi; 0.36 mCi; and 0.16mCi) in distance of 1.5cm from each other sources, which is approximately same with distance between two thyroid lobes. In the second study were compared the sources with low activity in proportion 70:1(source A = 1.5 mCi and source B=0.021mCi). As clinical studies we preferred two different patents with different thyroid disorders. There were one patient with thyroid toxic nodule in the right lobe, therefore the second patient was with left thyroid nodule agenesis. Results: During our examination, we accurately determined that two radioactive sources in proportion 70:1 will be

  9. Aquatic toxicity of acrylates and methacrylates: quantitative structure-activity relationships based on Kow and LC50

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinert, K.H.

    1987-12-01

    Recent EPA scrutiny of acrylate and methacrylate monomers has resulted in restrictive consent orders and Significant New Use Rules under the Toxic Substances Control Act, based on structure-activity relationships using mouse skin painting studies. The concern is centered on human health issues regarding worker and consumer exposure. Environmental issues, such as aquatic toxicity, are still of concern. Understanding the relationships and environmental risks to aquatic organisms may improve the understanding of the potential risks to human health. This study evaluates the quantitative structure-activity relationships from measured log Kow's and log LC50's for Pimephales promelas (fathead minnow) and Carassius auratus (goldfish).more » Scientific support of the current regulations is also addressed. Two monomer classes were designated: acrylates and methacrylates. Spearman rank correlation and linear regression were run. Based on this study, an ecotoxicological difference exists between acrylates and methacrylates. Regulatory activities and scientific study should reflect this difference.« less

  10. Aluminum toxicity in tomato. Part 2.Leaf gas exchange, chlorophyll content, and invertase activity

    Treesearch

    L. Simon; M. Kieger; Shi-Jean S. Sung; T.J. Smalley

    1994-01-01

    The effect of aluminum (Al) toxicity on leaf gas exchange, leaf chlorophyll content, and sucrose metabolizing enzyme activity of two tomato cultivars (Lycopersicon esculentum Mill. 'Mountain Pride' and 'Floramerica') was studied to determine the mechanism of growth reduction observed in a related study (Simon et al., 1994, Part 1).Plants were grown...

  11. Evaluation of Toxicity and Antimicrobial Activity of an Ethanolic Extract from Leaves of Morus alba L. (Moraceae)

    PubMed Central

    de Oliveira, Alisson Macário; Mesquita, Matheus da Silva; da Silva, Gabriela Cavalcante; de Oliveira Lima, Edeltrudes; de Medeiros, Paloma Lys; Paiva, Patrícia Maria Guedes; de Souza, Ivone Antônia; Napoleão, Thiago Henrique

    2015-01-01

    This work evaluated an ethanolic extract from Morus alba leaves for toxicity to Artemia salina, oral toxicity to mice, and antimicrobial activity. Phytochemical analysis revealed the presence of coumarins, flavonoids, tannins, and triterpenes in the extract, which did not show toxicity to A. salina nauplii. No mortality and behavioral alterations were detected for mice treated with the extract (300 and 2000 mg/kg b.w.) for 14 days. However, animals that received the highest dose showed reduced MCV and MCHC as well as increased serum alkaline phosphatase activity. In treatments with the extract at both 300 and 2000 mg/kg, there was a reduction in number of leukocytes, with decrease in percentage of lymphocytes and increase in proportion of segmented cells. Histopathological analysis of organs from mice treated with the extract at 2000 mg/kg revealed turgidity of contorted tubules in kidneys, presence of leukocyte infiltration around the liver centrilobular vein, and high dispersion of the spleen white pulp. The extract showed antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Candida krusei, Candida tropicalis, and Aspergillus flavus. In conclusion, the extract contains antimicrobial agents and was not lethal for mice when ingested; however, its use requires caution because it promoted biochemical, hematological, and histopathological alterations. PMID:26246840

  12. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations.

    PubMed

    Salvioni, Lucia; Galbiati, Elisabetta; Collico, Veronica; Alessio, Giulia; Avvakumova, Svetlana; Corsi, Fabio; Tortora, Paolo; Prosperi, Davide; Colombo, Miriam

    2017-01-01

    The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens) and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs) are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases. Water-soluble, negatively charged silver nanoparticles (AgNPs) were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet-visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs. In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells. We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared to currently available colloidal silver, suitable for cosmetic preservatives and pharmaceutical preparations administrable to humans and/or animals as needed.

  13. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations

    PubMed Central

    Salvioni, Lucia; Galbiati, Elisabetta; Collico, Veronica; Alessio, Giulia; Avvakumova, Svetlana; Corsi, Fabio; Tortora, Paolo; Prosperi, Davide; Colombo, Miriam

    2017-01-01

    Background The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens) and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs) are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases. Methods Water-soluble, negatively charged silver nanoparticles (AgNPs) were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet–visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs. Results In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells. Conclusion We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared to currently available colloidal silver, suitable for cosmetic preservatives and pharmaceutical preparations administrable to humans and/or animals as needed. PMID:28408822

  14. Acute toxicity and associated mechanisms of four strobilurins in algae.

    PubMed

    Liu, Xiaoxu; Wang, Yu; Chen, Hao; Zhang, Junli; Wang, Chengju; Li, Xuefeng; Pang, Sen

    2018-06-01

    Strobilurins have been reported highly toxic to non-target aquatic organisms but few illustrated how they cause toxic effects on algae. This study investigated the acute toxicity of Kresoxim-methy (KRE), Pyraclostrobin (PYR), Trifloxystrobin (TRI) and Picoxystrobin (PIC) on two algae and their toxicity mechanisms. Four strobilurins showed lower toxic effects on Chlorella pyrenoidsa but higher on Chlorella vulgaris. bc1 complex activities in C. vulgaris were significantly inhibited by all strobilurins, suggesting bc 1 complex might be the target of strobilurin toxicity in algae. Moreover, SOD, CAT and POD activities were significantly up-regulated by all doses of KRE, PYR and PIC. In contrast, low concentrations of TRI stimulated SOD and POD activities but highest concentration significantly inhibited those activities. Comet assays showed damaged DNA in C. vulgaris by four strobulirins, suggesting their potential genotoxic threats to algae. The results illustrated acute toxicity by strobulirins on algae and their possible toxicity mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Methamphetamine toxicity-induced calcineurin activation, nuclear translocation of nuclear factor of activated T-cells and elevation of cyclooxygenase 2 levels are averted by calpastatin overexpression in neuroblastoma SH-SY5Y cells.

    PubMed

    Chetsawang, Jirapa; Nudmamud-Thanoi, Sutisa; Phonchai, Ruchee; Abubakar, Zuroida; Govitrapong, Piyarat; Chetsawang, Banthit

    2018-06-23

    Methamphetamine (METH) is an addictive stimulant drug that has many negative consequences, including toxic effects to the brain. Recently, the induction of inflammatory processes has been identified as a potential contributing factor to induce neuronal cell degeneration. It has been demonstrated that the expression of inflammatory agents, such as cyclooxygenase 2 (COX-2), depends on the activation of calcineurin (CaN) and nuclear factor of activated T-cells (NFAT). Moreover, the excessive elevation in cytosolic Ca 2+ levels activates the cell death process, including calpain activation in neurons, which was diminished by the overexpression of the calpain inhibitor protein, calpastatin. However, it is unclear whether calpain mediates CaN-NFAT activation in the neurotoxic process. In the present study, we observed that the toxic high dose of METH-treated neuroblastoma SH-SY5Y cells significantly decreased cell viability but increased apoptotic cell death, the active cleaved form of calcineurin, the nuclear translocation of NFAT, and COX-2 levels. Nevertheless, these toxic effects were diminished in METH-treated calpastatin-overexpressing SH-SY5Y cells. These findings might emphasize the role of calpastatin against METH-induced toxicity by a mechanism related to calpain-dependent CaN-NFAT activation-induced COX-2 expression. Copyright © 2018. Published by Elsevier B.V.

  16. Toxicity Reference Database

    EPA Pesticide Factsheets

    The Toxicity Reference Database (ToxRefDB) contains approximately 30 years and $2 billion worth of animal studies. ToxRefDB allows scientists and the interested public to search and download thousands of animal toxicity testing results for hundreds of chemicals that were previously found only in paper documents. Currently, there are 474 chemicals in ToxRefDB, primarily the data rich pesticide active ingredients, but the number will continue to expand.

  17. Modulation of the Substitution Pattern of 5-Aryl-2-Aminoimidazoles Allows Fine-Tuning of Their Antibiofilm Activity Spectrum and Toxicity

    PubMed Central

    Peeters, Elien; Hooyberghs, Geert; Robijns, Stijn; Waldrant, Kai; De Weerdt, Ami; Delattin, Nicolas; Liebens, Veerle; Kucharíková, Soňa; Tournu, Hélène; Verstraeten, Natalie; Dovgan, Barbara; Girandon, Lenart; Fröhlich, Mirjam; De Brucker, Katrijn; Michiels, Jan; Cammue, Bruno P. A.; Thevissen, Karin; Vanderleyden, Jozef; Van der Eycken, Erik

    2016-01-01

    We previously synthesized several series of compounds, based on the 5-aryl-2-aminoimidazole scaffold, that showed activity preventing the formation of Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa biofilms. Here, we further studied the activity spectrum of a number of the most active N1- and 2N-substituted 5-aryl-2-aminoimidazoles against a broad panel of biofilms formed by monospecies and mixed species of bacteria and fungi. An N1-substituted compound showed very strong activity against the biofilms formed by Gram-negative and Gram-positive bacteria and the fungus Candida albicans but was previously shown to be toxic against various eukaryotic cell lines. In contrast, 2N-substituted compounds were nontoxic and active against biofilms formed by Gram-negative bacteria and C. albicans but had reduced activity against biofilms formed by Gram-positive bacteria. In an attempt to develop nontoxic compounds with potent activity against biofilms formed by Gram-positive bacteria for application in antibiofilm coatings for medical implants, we synthesized novel compounds with substituents at both the N1 and 2N positions and tested these compounds for antibiofilm activity and toxicity. Interestingly, most of these N1-,2N-disubstituted 5-aryl-2-aminoimidazoles showed very strong activity against biofilms formed by Gram-positive bacteria and C. albicans in various setups with biofilms formed by monospecies and mixed species but lost activity against biofilms formed by Gram-negative bacteria. In light of application of these compounds as anti-infective coatings on orthopedic implants, toxicity against two bone cell lines and the functionality of these cells were tested. The N1-,2N-disubstituted 5-aryl-2-aminoimidazoles in general did not affect the viability of bone cells and even induced calcium deposition. This indicates that modulating the substitution pattern on positions N1 and 2N of the 5-aryl-2-aminoimidazole scaffold allows fine-tuning of both the

  18. Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages.

    PubMed

    Ma, J-L; Carasco, C; Perot, B; Mauerhofer, E; Kettler, J; Havenith, A

    2012-07-01

    The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R&D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a ∼20kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Jülich, to validate the model in view of future performance studies for dense and large LL-MA waste packages. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Health assessments and other activities of the Agency for Toxic Substances and Disease Registry (ATSDR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this memorandum is provide Department of Energy (DOE) Field Organizations having line management responsibilities for the conduct of environmental restoration activities with information of ATSDR responsibilities and activities at Departmental facilities subject to response actions under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), as amended by the Superfund Amendments and Reauthorization Act (SARA), or corrective actions under the Resource Conservation and Recovery Act (RCRA). ATSDR's duties include: (1) establishing registries of disease and exposure at sites having releases of hazardous substances; (2) when necessary, providing medical care and testing of exposed persons; (3) developing toxicologicalmore » profiles on hazardous substances: (4) maintaining lists of areas closed to public; (5) researching the relationship between exposure to toxic substances and illness: (6) conducting health assessments; (7) responding to petition to conduct a health assessment (anyone may petition ATSDR to perform a health assessment); (8) developing educational materials regarding toxic substances for use by health professionals.« less

  20. Classification of baseline toxicants for QSAR predictions to replace fish acute toxicity studies.

    PubMed

    Nendza, Monika; Müller, Martin; Wenzel, Andrea

    2017-03-22

    Fish acute toxicity studies are required for environmental hazard and risk assessment of chemicals by national and international legislations such as REACH, the regulations of plant protection products and biocidal products, or the GHS (globally harmonised system) for classification and labelling of chemicals. Alternative methods like QSARs (quantitative structure-activity relationships) can replace many ecotoxicity tests. However, complete substitution of in vivo animal tests by in silico methods may not be realistic. For the so-called baseline toxicants, it is possible to predict the fish acute toxicity with sufficient accuracy from log K ow and, hence, valid QSARs can replace in vivo testing. In contrast, excess toxicants and chemicals not reliably classified as baseline toxicants require further in silico, in vitro or in vivo assessments. Thus, the critical task is to discriminate between baseline and excess toxicants. For fish acute toxicity, we derived a scheme based on structural alerts and physicochemical property thresholds to classify chemicals as either baseline toxicants (=predictable by QSARs) or as potential excess toxicants (=not predictable by baseline QSARs). The step-wise approach identifies baseline toxicants (true negatives) in a precautionary way to avoid false negative predictions. Therefore, a certain fraction of false positives can be tolerated, i.e. baseline toxicants without specific effects that may be tested instead of predicted. Application of the classification scheme to a new heterogeneous dataset for diverse fish species results in 40% baseline toxicants, 24% excess toxicants and 36% compounds not classified. Thus, we can conclude that replacing about half of the fish acute toxicity tests by QSAR predictions is realistic to be achieved in the short-term. The long-term goals are classification criteria also for further groups of toxicants and to replace as many in vivo fish acute toxicity tests as possible with valid QSAR

  1. Anti-malarial activity and toxicity assessment of Himatanthus articulatus, a plant used to treat malaria in the Brazilian Amazon.

    PubMed

    Vale, Valdicley V; Vilhena, Thyago C; Trindade, Rafaela C Santos; Ferreira, Márlia Regina C; Percário, Sandro; Soares, Luciana F; Pereira, Washington Luiz A; Brandão, Geraldo C; Oliveira, Alaíde B; Dolabela, Maria F; De Vasconcelos, Flávio

    2015-03-27

    Plasmodium falciparum has become resistant to some of the available drugs. Several plant species are used for the treatment of malaria, such as Himatanthus articulatus in parts of Brazil. The present paper reports the phyto-chemistry, the anti-plasmodial and anti-malarial activity, as well as the toxicity of H. articulatus. Ethanol and dichloromethane extracts were obtained from the powder of stem barks of H. articulatus and later fractionated and analysed. The anti-plasmodial activity was assessed against a chloroquine resistant strain P. falciparum (W2) in vitro, whilst in vivo anti-malarial activity against Plasmodium berghei (ANKA strain) was tested in mice, evaluating the role of oxidative stress (total antioxidant capacity--TEAC; lipid peroxidation--TBARS, and nitrites and nitrates--NN). In addition, cytotoxicity was evaluated using the HepG2 A16 cell-line. The acute oral and sub-chronic toxicity of the ethanol extract were evaluated in both male and female mice. Plumieride was isolated from the ethyl acetate fraction of ethanol extract, Only the dichloromethane extract was active against clone W2. Nevertheless, both extracts reduced parasitaemia in P. berghei-infected mice. Besides, a significant reduction in pulmonary and cerebral levels of NN (nitrites and nitrates) was found, as well as in pulmonary TBARS, indicating a reduced oxidative damage to these organs. The ethanol extract showed low cytotoxicity to HepG2 A16 cells in the concentrations used. No significant changes were observed in the in vivo toxicity studies. The ethanol extract of H. articulatus proved to be promising as anti-malarial medicine and showed low toxicity.

  2. Toxicity study of Vernonia cinerea.

    PubMed

    Latha, L Yoga; Darah, I; Jain, K; Sasidharan, S

    2010-01-01

    The methanol extract of Vernonia cinerea Less (Asteraceae), which exhibited antimicrobial activity, was tested for toxicity. In an acute toxicity study using mice, the median lethal dose (LD(50)) of the extract was greater than 2000 mg/kg, and we found no pathological changes in macroscopic examination by necropsy of mice treated with extract. As well as the oral acute toxicity study, the brine shrimp lethality test was also done. Brine shrimp test LC(50) values were 3.87 mg/mL (6 h) and 2.72 mg/mL (24 h), exhibiting no significant toxicity result. In conclusion, the methanol extract of V. cinerea did not produce toxic effects in mice and brine shrimp.

  3. Discriminating toxicant classes by mode of action. 1. (Eco)toxicity profiles.

    PubMed

    Nendza, Monika; Wenzel, Andrea

    2006-05-01

    Predictive toxicology, particularly quantitative structure-activity relationships (QSARs), require classification of chemicals by mode of action (MOA). MOA is, however, not a constant property of a compound but it varies between species and may change with concentration and duration of exposure. A battery of MOA-specific in-vitro and low-complexity assays, featuring biomolecular targets for major classes of environmental pollutants, provides characteristic responses for (1.) classification of chemicals by MOA, (2.) identification of (eco)toxicity profiles of chemicals, (3.) identification of chemicals with specific MOAs, (4.) indication of most sensitive species, (5.) identification of chemicals that are outliers in QSARs and (6.) selection of appropriate QSARs for predictions. Chemicals covering nine distinct modes of toxic action (non-polar non-specific toxicants (n=14), polar non-specific toxicants (n=18), uncouplers of oxidative phosphorylation (n=25), inhibitors of photosynthesis (n=15), inhibitors of acetylcholinesterase (n=14), inhibitors of respiration (n=3), thiol-alkylating agents (n=9), reactives (irritants) (n=8), estrogen receptor agonists (n=9)) were tested for cytotoxicity in the neutralred assay, oxygen consumption in isolated mitochondria, oxygen production in algae, inhibition of AChE, reaction with GSH and activity in the yeast estrogen receptor assay. Data on in-vivo aquatic toxicity (LC50, EC50) towards fish, daphnids, algae and bacteria were collected from the literature for reasons of comparison and reference scaling. In the MOA-specific in-vitro test battery, most test chemicals are specifically active at low concentrations, though multiple effects do occur. Graphical and statistical evaluation of the individual classes versus MOA 1 (non-polar non-specific toxicants) identifies interactions related to predominant MOA. Discriminant analyses (DA) on subsets of the data revealed correct classifications between 70% (in-vivo data) and >90% (in

  4. Variations in toxicity of semi-coking wastewater treatment processes and their toxicity prediction.

    PubMed

    Ma, Xiaoyan; Wang, Xiaochang; Liu, Yongjun; Gao, Jian; Wang, Yongkun

    2017-04-01

    Chemical analyses and bioassays using Vibrio fischeri and Daphnia magna were conducted to evaluate comprehensively the variation of biotoxicity caused by contaminants in wastewater from a semi-coking wastewater treatment plant (WWTP). Pretreatment units (including an oil-water separator, a phenols extraction tower, an ammonia stripping tower, and a regulation tank) followed by treatment units (including anaerobic-oxic treatment units, coagulation-sedimentation treatment units, and an active carbon adsorption column) were employed in the semi-coking WWTP. Five benzenes, 11 phenols, and five polycyclic aromatic hydrocarbons (PAHs) were investigated as the dominant contaminants in semi-coking wastewater. Because of residual extractant, the phenols extraction process increased acute toxicity to V. fischeri and immobilization and lethal toxicity to D. magna. The acute toxicity of pretreated wastewater to V. fischeri was still higher than that of raw semi-coking wastewater, even though 90.0% of benzenes, 94.8% of phenols, and 81.0% of PAHs were removed. After wastewater pretreatment, phenols and PAHs were mainly removed by anaerobic-oxic and coagulation-sedimentation treatment processes respectively, and a subsequent active carbon adsorption process further reduced the concentrations of all target chemicals to below detection limits. An effective biotoxicity reduction was found during the coagulation-sedimentation and active carbon adsorption treatment processes. The concentration addition model can be applied for toxicity prediction of wastewater from the semi-coking WWTP. The deviation between the measured and predicted toxicity results may result from the effects of compounds not detectable by instrumental analyses, the synergistic effect of detected contaminants, or possible transformation products. Copyright © 2016. Published by Elsevier Inc.

  5. Degradation of fluoroquinolone antibiotics during ionizing radiation treatment and assessment of antibacterial activity, toxicity and biodegradability of the products

    NASA Astrophysics Data System (ADS)

    Tegze, Anna; Sági, Gyuri; Kovács, Krisztina; Homlok, Renáta; Tóth, Tünde; Mohácsi-Farkas, Csilla; Wojnárovits, László; Takács, Erzsébet

    2018-06-01

    This work aimed at investigating the ionizing radiation induced degradation of two fluoroquinolone antibiotics: norfloxacin and ciprofloxacin. At 0.1 mmol dm-3 concentration a low dose, 2 kGy was sufficient to degrade the initial molecules. However, despite of the high removal efficiency the degrees of both the mineralization and the oxidation were low, ∼10% and ∼25%, respectively. (The difference between the results obtained in norfloxacin and ciprofloxacin solutions was not statistically significant.) Broth microdilution tests carried out on Staphylococcus aureus evidenced removal of antibacterial activity in samples irradiated with 2 kGy. Acute toxicity determined on Vibrio fischeri bacteria showed increased toxicity at low doses indicating that the early degradation products were more toxic than the initial molecules. The results of biodegradation experiments performed in activated sludge have shown that the degradation products have become available to the metabolic processes of the microorganisms.

  6. Toxic fungi.

    PubMed

    Lampe, K F

    1979-01-01

    Much progress in the areas of identification of active components and elucidation of the toxic mechanisms for the principal poisonous mushrooms has been made in the past decade. This affords a more rational approach to therapeutic management which has consequently resulted in a decrease in the morbidity and mortality associated with these species. However, the effectiveness of a large number of adjuvants for Amanita phalloides poisoning still needs critical laboratory evaluation. The current status of knowledge concerning the toxic potential and contituents of many mushroom species, including the gastroenteric irritants, is inadequate. The problem of geographic variation or genetic strain in the concentration of toxins of many species also requires further investigation. The recent awareness and interest in the pharmacology and toxicology of uncultivated mushrooms in North America and Great Britain should encourage continued active research.

  7. Mycorrhizal fungi modulate phytochemical production and antioxidant activity of Cichorium intybus L. (Asteraceae) under metal toxicity.

    PubMed

    Rozpądek, P; Wężowicz, K; Stojakowska, A; Malarz, J; Surówka, E; Sobczyk, Ł; Anielska, T; Ważny, R; Miszalski, Z; Turnau, K

    2014-10-01

    Cichorium intybus (common chicory), a perennial plant, common in anthropogenic sites, has been the object of a multitude of studies in recent years due to its high content of antioxidants utilized in pharmacy and food industry. Here, the role of arbuscular mycorrhizal fungi (AMF) in the biosynthesis of plant secondary metabolites and the activity of enzymatic antioxidants under toxic metal stress was studied. Plants inoculated with Rhizophagus irregularis and non-inoculated were grown on non-polluted and toxic metal enriched substrata. The results presented here indicate that AMF improves chicory fitness. Fresh and dry weight was found to be severely affected by the fungi and heavy metals. The concentration of hydroxycinnamates was increased in the shoots of mycorrhizal plants cultivated on non-polluted substrata, but no differences were found in plants cultivated on metal enriched substrata. The activity of SOD and H2O2 removing enzymes CAT and POX was elevated in the shoots of mycorrhizal plants regardless of the cultivation environment. Photochemical efficiency of inoculated chicory was significantly improved. Our results indicate that R. irregularis inoculation had a beneficial role in sustaining the plants ability to cope with the deleterious effects of metal toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Use of multi-dose activated charcoal in phenytoin toxicity secondary to genetic polymorphism.

    PubMed

    Chan, Betty S H; Sellors, Kate; Chiew, Angela L; Buckley, Nicholas A

    2015-02-01

    Phenytoin is metabolised in the liver by cytochrome (CYP)2C9 and 2C19 enzymes. Due to saturation of enzyme capacity, the elimination half-life is prolonged at supratherapeutic levels. Genetic polymorphisms of CYP2C9 and 2C19 are reasonably common and further prolong the elimination of phenytoin. There are conflicting reports regarding whether multiple-dose activated charcoal (MDAC) significantly increases the clearance of phenytoin in poisoning. We present 3 patients with phenytoin toxicity and very slow elimination secondary to reduced CYP enzyme function from genetic polymorphisms. MDAC was used in two patients and led to rapid and large reductions in the measured elimination half-lives. This is contrasted with very prolonged elimination in a third patient who did not receive MDAC. MDAC may play a role in the management of chronic phenytoin toxicity, especially in those with very slow endogenous elimination secondary to genetic polymorphisms.

  9. Toxic effect of nonylphenol on the marine macroalgae Gracilaria lemaneiformis (Gracilariales, Rhodophyta): antioxidant system and antitumor activity.

    PubMed

    Zhong, Mingqin; Yin, Pinghe; Zhao, Ling

    2017-04-01

    The objective of the present work was to evaluate the toxic effect of nonylphenol (NP) on the antioxidant response and antitumor activity of Gracilaria lemaneiformis. An obvious oxidative damage was observed in this study. The thallus exposed to NP showed 1.2-2.0-fold increase in lipid peroxide and displayed a maximum level of 16.58 μmol g -1 Fw on 0.6 mg L -1 for 15-day exposure. The activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) enhanced significantly by 1.1-3.2-fold and subsequently diminished at the high concentrations and prolonged exposure. The results of DNA damage in comet assay also supported that NP was obviously toxic on G. lemaneiformis with increasing the percentage of tail DNA in a dose-dependent manner. Furthermore, the ethanol extract of G. lemaneiformis (EEGL) did exhibit antitumor potential against HepG-2 cells. While decreased in cell inhibition, ROS generation, apoptosis, and caspase-3 in HepG-2 cells treated with the EEGL were observed when G. lemaneiformis was exposed to NP for 15 days, and which were related to exposure concentration of NP. These suggested that NP has strongly toxic effect on the antitumor activity of G. lemaneiformis. The results revealed in this study imply that macroalgae can be useful biomarkers to evaluate marine pollutions.

  10. Toxic Substances in the Environment.

    ERIC Educational Resources Information Center

    Clearing: Nature and Learning in the Pacific Northwest, 1984

    1984-01-01

    Discusses the nature of toxic substances, examining pesticides and herbicides, heavy metals, industrial chemicals, and household substances. Includes a list of major toxic substances (indicating what they are, where they are found, and health concerns) and a student activity on how pesticides enter the food chain. (JN)

  11. In vitro antiretroviral activity and in vivo toxicity of the potential topical microbicide copper phthalocyanine sulfate.

    PubMed

    Styczynski, Ashley R; Anwar, Khandaker N; Sultana, Habiba; Ghanem, Abdelhamid; Lurain, Nell; Chua, Aishi; Ghassemi, Mahmood; Novak, Richard M

    2015-08-30

    Copper has antimicrobial properties and has been studied for its activity against viruses, including HIV. Copper complexed within a phthalocyanine ring, forming copper (II) phthalocyanine sulfate (CuPcS), may have a role in microbicide development when used intravaginally. CuPcS toxicity was tested against cervical epithelial cells, TZM-BL cells, peripheral blood mononuclear cells (PBMC), and cervical explant tissues using cell viability assays. In vivo toxicity was assessed following intravaginal administration of CuPcS in female BALB/C mice and measured using a standardized histology grading system on reproductive tract tissues. Efficacy studies for preventing infection with HIV in the presence of various non-toxic concentrations of CuPcS were carried out in TZM-BL, PBMC, and cervical explant cultures using HIV-1BAL and various pseudovirus subtypes. Non-linear regression was applied to the data to determine the EC50/90 and CC50/90. CuPcS demonstrated inhibition of HIV infection in PBMCs at concentrations that were non-toxic in cervical epithelial cells and PBMCs with EC50 values of approximately 50 μg/mL. Reproductive tract tissue analysis revealed no toxicity at 100 mg/mL. Human cervical explant tissues challenged with HIV in the presence of CuPcS also revealed a dose-response effect at preventing HIV infection at non-toxic concentrations with an EC50 value of 65 μg/mL. These results suggest that CuPcS may be useful as a topical microbicide in concentrations that can be achieved in the female genital tract.

  12. Toxicity of granular activated carbon treated coal gasification water as determined by the Microtox test and Escherichia coli.

    PubMed

    Makino, Y; Adams, J C; McTernan, W F

    1986-01-01

    The Microtox assay and various parameters (growth, ATP concentration and electrochemical detection) of Escherichia coli were used to assess the toxicity of various levels of granular activated carbon treated coal gasification process water. The generation time of E. coli was statistically significantly slower at the level of 50 percent treatment than any other level of treatment. No differences were seen for ATP concentration per cell or in the electrochemical detection methods for any level treatment. There was a very high correlation between total organic carbon removal by GAC treatment and reduction in toxicity as measured by the Microtox system. However, even the treated water which had 91 percent of the TOC removed was still highly toxic.

  13. Effect of Pachybasin on General Toxicity and Developmental Toxicity in Vivo.

    PubMed

    Lin, Yi-Ruu; Peng, Kou-Cheng; Chan, Ming-Huan; Peng, Huan-Lin; Liu, Shu-Ying

    2017-12-06

    To document the safety of pachybasin, a secondary metabolite of Trichoderma harzianum, for use as a bioagricultural agent, it was subjected to general toxicological testing in mice and developmental toxicity in zebrafish. With either 5 or 20 mg kg -1 pachybasin i.p. injection, mice behavioral responses such as motor coordination, spontaneous locomotor activity, or nociceptive pain were not influenced. In long-term effect (daily injection for 14 days), the physiological, hematological, liver, and kidney functions were not altered either. Evidence for the developmental toxicity of pachybasin (10-100 μM) in 72-h exposure period was shown in zebrafish larvae, based on developmental retardation, impairment of chorion, and increase of mortality. In summary, there are no significant general toxicities presented in the pachybasin-treated adult male mice. However, the embryo-toxicity in aquatic biota should be taken into consideration during bioagricultural agent application.

  14. Dioxin Toxicity In Vivo Results from an Increase in the Dioxin-Independent Transcriptional Activity of the Aryl Hydrocarbon Receptor

    PubMed Central

    Céspedes, Miguel Angel; Galindo, Maximo Ibo; Couso, Juan Pablo

    2010-01-01

    The Aryl hydrocarbon receptor (Ahr) is the nuclear receptor mediating the toxicity of dioxins -widespread and persistent pollutants whose toxic effects include tumor promotion, teratogenesis, wasting syndrome and chloracne. Elimination of Ahr in mice eliminates dioxin toxicity but also produces adverse effects, some seemingly unrelated to dioxin. Thus the relationship between the toxic and dioxin-independent functions of Ahr is not clear, which hampers understanding and treatment of dioxin toxicity. Here we develop a Drosophila model to show that dioxin actually increases the in vivo dioxin-independent activity of Ahr. This hyperactivation resembles the effects caused by an increase in the amount of its dimerisation partner Ahr nuclear translocator (Arnt) and entails an increased transcriptional potency of Ahr, in addition to the previously described effect on nuclear translocation. Thus the two apparently different functions of Ahr, dioxin-mediated and dioxin-independent, are in fact two different levels (hyperactivated and basal, respectively) of a single function. PMID:21079739

  15. A Review of the Active Treatments for Toxic Epidermal Necrolysis.

    PubMed

    Kinoshita, Yuri; Saeki, Hidehisa

    2017-01-01

    Toxic epidermal necrolysis (TEN) is a severe adverse drug reaction associated with the separation of skin and mucous membranes at the dermal-epidermal junction. Although it is rare, many treatments have been trialed because of its high mortality rate. Active interventions performed to date include the use of systemic corticosteroids, intravenous immunoglobulins (IVIg), cyclosporine, plasmapheresis, anti-tumor necrosis factor drugs and N-acetylcysteine, but none has been established as the most effective therapy. IVIg and short-term high-dose corticosteroids were regarded as the most promising treatments for TEN in a comprehensive review of all reported TEN cases from 1975-2003. When used with an appropriate dose and timing, the beneficial effects of IVIg can be maximized. Although no randomized controlled trials have been conducted, cyclosporine and plasmapheresis are considered to be beneficial. As no gold standard for active intervention for TEN has been established, the choice of treatment relies partly on the available guidelines and the experience of the dermatologist. There is still much to be investigated regarding the pathogenesis of TEN, and new findings may contribute to the identification of an effective active intervention strategy.

  16. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.

    PubMed

    Hajizadeh, Yaghoub; Onwudili, Jude A; Williams, Paul T

    2011-06-01

    The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275°C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 μg I-TEQ kg(-1) toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 μg I-TEQ kg(-1) in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Evaluation of acute toxicity, antibacterial activity, and mode of action of the hydroethanolic extract of Piper umbellatum L.

    PubMed

    da Silva, Iberê Ferreira; de Oliveira, Ruberlei Godinho; Mendes Soares, Ilsamar; da Costa Alvim, Tarso; Donizeti Ascêncio, Sérgio; de Oliveira Martins, Domingos Tabajara

    2014-01-01

    Piper umbellatum L., Piperaceae, is a shrub that grows up to 3m high. It is commonly known as "capeba" or "pariparoba" in Brazil. Tea prepared using the leaves of this plant is employed in the treatment of infections and inflammatory processes in different countries. Approximately 50 compounds, notably from the flavonoid, alkaloid, terpene, and sterol classes, have been isolated from the leaves of Piper umbellatum. To evaluate the acute toxicity, antibacterial activity, and mode of action of the hydroethanolic extract of Piper umbellatum leaves (HEPu). Acute toxicity of HEPu against CHO-K1 cells was evaluated using a cytotoxicity assay with Alamar Blue and that against mice was assessed by the Hippocratic test. Antibacterial activity of HEPu was tested using the broth microdilution method using a panel of clinically relevant bacteria, and the effects of HEPu on the bacterial membrane were analyzed in detail. A preliminary phytochemical analysis based on coloration/precipitation was performed according to procedure described in the literature. Secondary metabolites detected were analyzed and confirmed by thin layer chromatography (TLC), spectrophotometry, and high performance liquid chromatography (HPLC). Piper umbellatum did not appear to be toxic in the in vitro (IC50>200 µg/mL) cytotoxicity test. When administered in vivo at doses up to 2000 mg/kg p.o., HEPu did not cause any signs or symptoms of toxicity in mice. It demonstrated a good spectrum of antibacterial activity and its mode of action appeared to be associated with changes in the permeability of bacterial membranes; it led to increased entry of hydrophobic antibiotics, efflux of K(+), and nucleotide leakage. Preliminary phytochemical analysis revealed the presence of flavonoids, alkaloids, terpenes, and sterols in the extract. Spectrophotometric and HPLC analysis revealed the presence of the flavonoids rutin and quercetin. In summary, HEPu has antibacterial activity and low acute toxicity in vitro and

  18. Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review.

    PubMed

    Hosseini, Azar; Hosseinzadeh, Hossein

    2018-03-01

    Curcuma longa is a rhizomatous perennial herb that belongs to the family Zingiberaceae, native to South Asia and is commonly known as turmeric. It is used as herbal remedy due to the prevalent belief that the plant has medical properties. C. longa possesses different effects such as antioxidant, anti-tumor, antimicrobial, anti-inflammatory, wound healing, and gastroprotective activities. The recent studies have shown that C. longa and curcumin, its important active ingredient, have protective effects against toxic agents. In this review article, we collected in vitro and animal studies which are related to protective effects of turmeric and its active ingredient against natural and chemical toxic agents. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Na+, K+-activated-ATPase inhibition in rainbow trout: A site for organochlorine pesticide toxicity?

    USGS Publications Warehouse

    Davis, Paul W.; Wedemeyer, Gary A.

    1971-01-01

    1. The Na+, K+-activated, Mg2+-dependent-ATPase enzyme system in a heavy microsomal fraction of rainbow trout (Salmo gairdneri) brain was inhibited in vitro by chlorinated hydrocarbon pesticides.2. T50 (concentration at 50 per cent inhibition) values for dicofol, endosulfan and DDT were 5 × 10−6, 3 × 10−5 and 1 × 10−4 M respectively. Similar inhibition by these pesticides occurred in kidney and gill ATPase preparations.3. An unexpected finding was a failure of the classic inhibitor, ouabain, to block the Na+, K+-activated component of ATPase activity in the gill.4. It is suggested that inhibition of ATPase activity may be a causal factor in the toxic effects of organochlorine pesticides in fishes.

  20. Engineering and Design: Chemical Data Quality Management for Hazardous, Toxic, Radioactive Waste Remedial Activities

    DTIC Science & Technology

    This regulation prescribes Chemical Data Quality Management (CDQM) responsibilities and procedures for projects involving hazardous, toxic and/or radioactive waste (HTRW) materials. Its purpose is to assure that the analytical data meet project data quality objectives. This is the umbrella regulation that defines CDQM activities and integrates all of the other U.S. Army Corps of Engineers (USACE) guidance on environmental data quality management .

  1. Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya.

    PubMed

    Nguta, J M; Mbaria, J M

    2013-07-30

    In Kenya, most people especially in rural areas use traditional medicine and medicinal plants to treat many diseases including malaria. Malaria is of national concern in Kenya, in view of development of resistant strains of Plasmodium falciparum to drugs especially chloroquine, which had been effective and affordable. There is need for alternative and affordable therapy. Many antimalarial drugs have been derived from medicinal plants and this is evident from the reported antiplasmodial activity. The present study reports on the in vivo antimalarial activity and brine shrimp lethality of five medicinal plants traditionally used to treat malaria in Msambweni district, Kenya. A total of five aqueous crude extracts from different plant parts used in traditional medicine for the treatment of malaria were evaluated for their in vivo antimalarial activity using Plasmodium berghei infected Swiss mice and for their acute toxicity using Brine shrimp lethality test. The screened crude plant extracts suppressed parasitaemia as follows: Azadirachta indica (L) Burm. (Meliaceae), 3.1%; Dichrostachys cinerea (L) Wight et Arn (Mimosaceae), 6.3%; Tamarindus indica L. (Caesalpiniaceae), 25.1%; Acacia seyal Del. (Mimosaceae) 27.8% and Grewia trichocarpa Hochst ex A.Rich (Tiliaceae) 35.8%. In terms of toxicity, A.indica root bark extract had an LC50 of 285.8 µg/ml and was considered moderately toxic. T.indica stem bark extract and G.trichocarpa root extract had an LC50 of 516.4 and 545.8 µg/ml respectively and were considered to be weakly toxic while A.seyal and D.cinerea root extracts had a LC50>1000 µg/ml and were therefore considered to be non toxic. The results indicate that the aqueous extracts of the tested plants when used alone as monotherapy had antimalarial activity which was significantly different from that of chloroquine (P≤0.05). The results also suggest that the anecdotal efficacy of the above plants reported by the study community is related to synergism of

  2. Relative toxicity and residual activity of insecticides used in blueberry pest management: mortality of natural enemies.

    PubMed

    Roubos, Craig R; Rodriguez-Saona, Cesar; Holdcraft, Robert; Mason, Keith S; Isaacs, Rufus

    2014-02-01

    A series of bioassays were conducted to determine the relative toxicities and residual activities of insecticides labeled for use in blueberry (Vaccinium corymbosum L.) on natural enemies, to identify products with low toxicity or short duration effects on biological control agents. In total, 14 insecticides were evaluated using treated petri dishes and four commercially available natural enemies (Aphidius colemani Viereck, Orius insidiosus [Say], Chrysoperla rufilabris [Burmeister], and Hippodamia convergens [Guérin-Menéville]). Dishes were aged under greenhouse conditions for 0, 3, 7, or 14 d before introducing insects to test residual activity. Acute effects (combined mortality and knockdown) varied by insecticide, residue age, and natural enemy species. Broad-spectrum insecticides caused high mortality to all biocontrol agents, whereas products approved for use in organic agriculture had little effect. The reduced-risk insecticide acetamiprid consistently caused significant acute effects, even after aging for 14 d. Methoxyfenozide, novaluron, and chlorantraniliprole, which also are classified as reduced-risk insecticides, had low toxicity, and along with the organic products could be compatible with biological control. This study provides information to guide blueberry growers in their selection of insecticides. Further research will be needed to determine whether adoption of a pest management program based on the use of more selective insecticides will result in higher levels of biological control in blueberry.

  3. Mechanistic quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons. 2: An empirical model for the toxicity of 16 polycyclic aromatic hydrocarbons to the duckweed Lemna gibba L. G-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, X.D.; Krylov, S.N.; Ren, L.

    1997-11-01

    Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) occurs via photosensitization reactions (e.g., generation of singlet-state oxygen) and by photomodification (photooxidation and/or photolysis) of the chemicals to more toxic species. The quantitative structure-activity relationship (QSAR) described in the companion paper predicted, in theory, that photosensitization and photomodification additively contribute to toxicity. To substantiate this QSAR modeling exercise it was necessary to show that toxicity can be described by empirically derived parameters. The toxicity of 16 PAHs to the duckweed Lemna gibba was measured as inhibition of leaf production in simulated solar radiation (a light source with a spectrum similar to thatmore » of sunlight). A predictive model for toxicity was generated based on the theoretical model developed in the companion paper. The photophysical descriptors required of each PAH for modeling were efficiency of photon absorbance, relative uptake, quantum yield for triplet-state formation, and the rate of photomodification. The photomodification rates of the PAHs showed a moderate correlation to toxicity, whereas a derived photosensitization factor (PSF; based on absorbance, triplet-state quantum yield, and uptake) for each PAH showed only a weak, complex correlation to toxicity. However, summing the rate of photomodification and the PSF resulted in a strong correlation to toxicity that had predictive value. When the PSF and a derived photomodification factor (PMF; based on the photomodification rate and toxicity of the photomodified PAHs) were summed, an excellent explanatory model of toxicity was produced, substantiating the additive contributions of the two factors.« less

  4. Anti-inflammatory activity and sub-acute toxicity of artemetin.

    PubMed

    Sertié, J A; Basile, A C; Panizza, S; Matida, A K; Zelnik, R

    1990-02-01

    The 5-hydroxy-3,6,7,3',4'-pentamethoxyflavone (artemetin) from Cordia verbenacea DC (Boraginaceae) showed marked anti-inflammatory activity using various experimental models in rats. Artemetin significantly inhibited carrageenin-induced paw edema following oral doses from 30.4 to 153.9 mg.kg-1. The doses of 102.6 and 153.9 mg.kg-1 showed an inhibitory effect similar to that of 50.0 mg.kg-1 of calcium phenylbutazone. The ED50 value of artemetin in rats was estimated to be 67.07 mg.kg-1. Repeated administration of artemetin at doses of 67.07 mg.kg-1 for a 6-day period reduced granuloma formation with a response comparable to that of 20.0 mg.kg-1 of calcium phenylbutazone. This same dose of artemetin also reduced the vascular permeability to intracutaneous histamine. Sub-acute toxicological experiments indicated a very low toxicity.

  5. Novel toxic shock syndrome toxin-1 amino acids required for biological activity.

    PubMed

    Brosnahan, Amanda J; Schaefers, Matthew M; Amundson, William H; Mantz, Mary J; Squier, Christopher A; Peterson, Marnie L; Schlievert, Patrick M

    2008-12-09

    Superantigens interact with T lymphocytes and macrophages to cause T lymphocyte proliferation and overwhelming cytokine production, which lead to toxic shock syndrome. Staphylococcus aureus superantigen toxic shock syndrome toxin-1 is a major cause of menstrual toxic shock syndrome. In general, superantigen-secreting S. aureus remains localized at the vaginal surface, and the superantigen must therefore penetrate the vaginal mucosa to interact with underlying immune cells to cause toxic shock syndrome. A dodecapeptide region (toxic shock syndrome toxin-1 amino acids F119-D130), relatively conserved among superantigens, has been implicated in superantigen penetration of the epithelium. The purpose of this study was to determine amino acids within this dodecapeptide region that are required for interaction with vaginal epithelium. Alanine mutations were constructed in S. aureus toxic shock syndrome toxin-1 amino acids D120 to D130. All mutants maintained superantigenicity, and selected mutants were lethal when given intravenously to rabbits. Toxic shock syndrome toxin-1 induces interleukin-8 from immortalized human vaginal epithelial cells; however, three toxin mutants (S127A, T128A, and D130A) induced low levels of interleukin-8 compared to wild type toxin. When carboxy-terminal mutants (S127A to D130A) were administered vaginally to rabbits, D130A was nonlethal, while S127A and T128A demonstrated delayed lethality compared to wild type toxin. In a porcine ex vivo permeability model, mutant D130A penetrated the vaginal mucosa more quickly than wild type toxin. Toxic shock syndrome toxin-1 residue D130 may contribute to binding an epithelial receptor, which allows it to penetrate the vaginal mucosa, induce interleukin-8, and cause toxic shock syndrome.

  6. Combinatorial QSAR Modeling of Rat Acute Toxicity by Oral Exposure

    EPA Science Inventory

    Quantitative Structure-Activity Relationship (QSAR) toxicity models have become popular tools for identifying potential toxic compounds and prioritizing candidates for animal toxicity tests. However, few QSAR studies have successfully modeled large, diverse mammalian toxicity end...

  7. TOWARDS REFINED USE OF TOXICITY DATA IN ...

    EPA Pesticide Factsheets

    In 2003, an International Life Sciences Institute (ILSI) Working Group examined the potential of statistically based structure-activity relationship (SAR) models for use in screening environmental contaminants for possible developmental toxicants. In 2003, an International Life Sciences Institute (ILSI) Working Group examined the potential of statistically based structure-activity relationship (SAR) models for use in screening environmental contaminants for possible developmental toxicants.

  8. CHEMICAL STRUCTURE INDEXING OF TOXICITY DATA ON ...

    EPA Pesticide Factsheets

    Standardized chemical structure annotation of public toxicity databases and information resources is playing an increasingly important role in the 'flattening' and integration of diverse sets of biological activity data on the Internet. This review discusses public initiatives that are accelerating the pace of this transformation, with particular reference to toxicology-related chemical information. Chemical content annotators, structure locator services, large structure/data aggregator web sites, structure browsers, International Union of Pure and Applied Chemistry (IUPAC) International Chemical Identifier (InChI) codes, toxicity data models and public chemical/biological activity profiling initiatives are all playing a role in overcoming barriers to the integration of toxicity data, and are bringing researchers closer to the reality of a mineable chemical Semantic Web. An example of this integration of data is provided by the collaboration among researchers involved with the Distributed Structure-Searchable Toxicity (DSSTox) project, the Carcinogenic Potency Project, projects at the National Cancer Institute and the PubChem database. Standardizing chemical structure annotation of public toxicity databases

  9. Evaluation of the toxicity and antimicrobial activity of hydroethanolic extract of Arrabidaea chica (Humb. & Bonpl.) B. Verl.

    PubMed

    Mafioleti, Luciano; da Silva Junior, Iberê Ferreira; Colodel, Edson Moleta; Flach, Adriana; Martins, Domingos Tabajara de Oliveira

    2013-11-25

    Arrabidaea chica (Bignoniaceae) is a vine native to the Amazon Rainforest, popularly known as "crajiru" and whose infusion and decoction of the leaves are used to treat diseases such as gastric ulcers, inflammations, infections, anemia, herpes, jaundice among others. It is also used as a natural dye. This work aimed to evaluate the in vitro and in vivo toxicity, antimicrobial activity including analysis of chemical constitution of the hydroethanolic extract of the leaves of Arrabidaea chica (HEAc). Acute and subchronic toxicity of HEAc was evaluated in mice and rats, respectively, and by Alamar blue (cytotoxicity assay) using CHO-K1 cells. Antimicrobial activity of HEAc was tested by broth microdilution method using a panel of bacteria and yeast of clinical interest. The preliminary phytochemical analysis of HEAc was performed by electrospray ionization mass spectrometry [ESI(+)-MS]. Secondary metabolites were quantified by colorimetric methods. When administered in vivo at doses up to 3000 mg/kg v.o., HEAc did not cause any signs and symptoms of acute toxicity in mice and no cytotoxicity in CHO-K1 cells. Administration for 30 days caused leukocytosis (200 mg/kg) and reversible reductions in non-dose dependent of body weight, total weight gain and feed intake in rats given 200mg/kg and 500 mg/kg of HEAc, but were not accompanied by behavioral and clinical changes (laboratory and histopathological) that may have demonstrated evidences of subchronic toxicity HEAc demonstrated a pronounced activity against Helicobacter pylori (MIC=12.5 μg/mL) and moderate activity against Enterococcus faecalis (MIC=100 μg/mL) in broth microdilution. Preliminary phytochemical analysis of HEAc by colorimetric methods revealed that mainly the presence of phenolic compounds (16.6%), especially flavones and flavonols (4.02%). [ESI(+)-MS] fingerprint analyses of HEAc revealed the presence of 3-deoxyanthocyanidins and kaempferol. Our data provide evidence that HEAc is safe and can be

  10. A STRATEGY FOR INTEGRATED ECOLOGICAL RESTORATION OF RIPARIAN BUFFERS IN THE MID-ATLANTIC REGION

    EPA Science Inventory

    Increased sediments, nutrients, and other contaminants in the Mid-Atlantic region contribute to environmental problems ranging from stream degradation to possibly Pfiesteria attacks in Chesapeake Bay. Restoring riparian areas - the filters between terrestrial watersheds and aquat...

  11. DOE contractor's meeting on chemical toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    The Office of Health and Environmental Research (OHER) is required to determine the potential health and environmental effects associated with energy production and use. To ensure appropriate communication among investigators and scientific disciplines that these research studies represent, OHER has sponsored workshops. This document provides a compilation of activities at the Third Annual DOE/OHER Workshop. This year's workshop was broadened to include all OHER activities identified as within the chemical effects area. The workshop consisted of eight sessions entitled Isolation and Detection of Toxic chemicals; Adduct Formation and Repair; Chemical Toxicity (Posters); Metabolism and Genotoxicity; Inhalation Toxicology; Gene Regulation; Metalsmore » Toxicity; and Biological Mechanisms. This document contains abstracts of the information presented by session.« less

  12. Effects of vitamin C on pathology and caspase-3 activity of kidneys with subacute endosulfan toxicity.

    PubMed

    Ozmen, O; Mor, F

    2015-01-01

    Endosulfan is an insecticide that is composed of two stereoisomers: α- and β- endosulfan in an approximate ratio of 70:30. Owing to its widespread use, poisoning of both humans and animals is possible. We examined the toxic effects of endosulfan on New Zealand white rabbit kidneys. Rabbit kidneys were examined histopathologically and caspase-3 activity was detected using immunohistochemistry. Animals were divided into four groups: Group 1 was given a sublethal dose of endosulfan in corn oil by oral gavage daily for 6 weeks, Group 2 was given endosulfan + vitamin C during the same period, Group 3 was given corn oil daily and vitamin C on alternate days, Group 4 was given only corn oil daily throughout the experiment. By the end of experimental period, the concentration of α-endosulfan was greater than the β-endosulfan concentration in the kidneys of both of endosulfan treated groups (Groups 1 and 2). Decreased accumulation of α- and β-endosulfan was observed in Group 2, possibly because of the antioxidant effect of the vitamin C. Histopathological examination revealed hemorrhages, tubule cell necrosis, glomerular infiltration, glomerulosclerosis and proteinaceous material in the tubules, and Bowman spaces in the kidneys of Group 1. Caspase-3 reaction was stronger in Group 1 than in the other groups. Apoptotic activity was most frequent in proximal tubule cells. Endosulfan is toxic to rabbit kidneys. Vitamin C treatment reduced the accumulation of endosulfan in kidneys and reduced its toxicity.

  13. Effect of light intensity on the degree of ammonia toxicity on PSII activity of Arthrospira platensis and Chlorella vulgaris.

    PubMed

    Markou, Giorgos; Muylaert, Koenraad

    2016-09-01

    Herein the effect of increasing light intensity on the degree of ammonia toxicity and its impact on the photosynthetic performance of Arthrospira and Chlorella was investigated using Chl fluorescence as a technique to characterize their photosystem II (PSII) activity. The results revealed that the increase of light intensity amplifies the ammonia toxicity on PSII. Chl fluorescence transients shown that at a given free ammonia (FA) concentration (100mg-N/L), the photochemistry potential decreased by increasing light intensity. The inhibition of the PSII was not reversible either by re-incubating the cells under dark or under decreased FA concentration. Moreover, the decrease of photochemical and non-photochemical quenching (NPQ) of fluorescence suggest that ammonia toxicity decreases the open available PSII centers, as well the inability of PSII to transfer the generated electrons beyond QA. The collapse of NPQ suggests that ammonia toxicity inhibits the photoprotection mechanism(s) and hence renders PSII more sensitive to photoinhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of Environmental Conditions and Toxic Compounds on the Locomotor Activity of Pediculus humanus capitis (Phthiraptera: Pediculidae).

    PubMed

    Ortega-Insaurralde, I; Toloza, A C; Gonzalez-Audino, P; Mougabure-Cueto, G A; Alvarez-Costa, A; Roca-Acevedo, G; Picollo, M I

    2015-09-01

    In this work, we evaluated the effect of environmental variables such as temperature, humidity, and light on the locomotor activity of Pediculus humanus capitis. In addition, we used selected conditions of temperature, humidity, and light to study the effects of cypermethrin and N,N-diethyl-3-methylbenzamide (DEET) on the locomotor activity of head lice. Head lice increased their locomotor activity in an arena at 30°C compared with activity at 20°C. When we tested the influence of the humidity level, the locomotor activity of head lice showed no significant differences related to humidity level, both at 30°C and 20°C. Concerning light influence, we observed that the higher the intensity of light, the slower the movement of head lice. We also demonstrated that sublethal doses of toxics may alter locomotor activity in adults of head lice. Sublethal doses of cypermethrin induced hyperactivated responses in adult head lice. Sublethal doses of DEET evocated hypoactivated responses in head lice. The observation of stereotyped behavior in head lice elicited by toxic compounds proved that measuring locomotor activity in an experimental set-up where environmental conditions are controlled would be appropriate to evaluate compounds of biological importance, such as molecules involved in the host-parasite interaction and intraspecific relationships. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Fumigant Toxicity and Repellence Activity of Camphor Essential Oil from Cinnamonum camphora Siebold Against Solenopsis invicta Workers (Hymenoptera:Formicidae)

    PubMed Central

    Fu, J. T.; Tang, L.; Li, W. S.; Wang, K.; Cheng, D. M.; Zhang, Z. X.

    2015-01-01

    The red imported fire ant (RIFA) Solenopsis invicta Buren causes severe damage to humans and animals as well as the environment. Chemical treatment is the main strategy of RIFA management, which also is potentially toxic to the environment. Plant essential oils (EOs) are considered as potential substance that can be used to control insects. This study aimed to identify the chemical composition of camphor EO and investigate the insecticidal activity on RIFAs. The chemical composition of the EO was analyzed by gas chromatography/mass spectrometry and gas chromatography with flame ionization detection. Results revealed that 36.61% camphor and 30.05% cineole were the major components. The insecticidal activity of camphor EO was assessed against RIFA workers by conducting two different bioassays: fumigant toxicity and repellence. Fumigant toxicity assay results showed that the lethal dose (LC50) of the EO at 24 h was 1.67 and 4.28 μg/ml for minor and major workers, respectively; knockdown time (KT50) was 10.82 and 14.73 h. At 2.55 μg/ml, the highest average mortality of the ants was 84.89% after 72 h. Camphor EO exhibited fumigant toxicity against minor and major workers as indicated by the effects on attacking, feeding, and climbing behaviors. This EO was also strongly repellent to the two size workers of the colony as observed in their behavior against Tenebrio molitor treated with 5 µl EO. The fumigant toxicity and repellence of camphor EO against RIFA indicated that this substance could be a potential alternative for the development of eco-friendly products used to control pests. PMID:26392574

  16. CLASSIFICATION AND IDENTIFICATION OF PFIESTERIA AND PFIESTERIA-LIKE SPECIES. (R827084)

    EPA Science Inventory

    Dinoflagellates can be classified both botanically and zoologically; however, they are
    typically put in the botanical division Pyrrhophyta. As a group they appear most related to the
    protistan ciliates and apicomplexans at the ultrastructure level. Within the Pyrrhophyta ar...

  17. Dioxin-induced up-regulation of the active form of vitamin D is the main cause for its inhibitory action on osteoblast activities, leading to developmental bone toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Noriko; Nishimura, Hisao; Ito, Tomohiro

    2009-05-01

    Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) is known to cause bone toxicity, particularly during animal development, although its action mechanism to cause this toxicity has yet to be elucidated. Mouse pups were exposed to TCDD via dam's milk that were administered orally with 15 {mu}g TCDD/kg b.w. on postnatal day 1. Here we report that TCDD causes up-regulation of vitamin D 1{alpha}-hydroxylase in kidney, resulting in a 2-fold increase in the active form of vitamin D, 1,25-dihydroxyvitamin D{sub 3}, in serum. This action of TCDD is not caused by changes in parathyroid hormone, a decrease in vitamin D degrading enzyme, vitamin D 24-hydroxylase,more » or alterations in serum Ca{sup 2+} concentration. Vitamin D is known to affect bone mineralization. Our data clearly show that TCDD-exposed mice exhibit a marked decrease in osteocalcin and collagen type 1 as well as alkaline phosphatase gene expression in tibia by postnatal day 21, which is accompanied with a mineralization defect in the tibia, lowered activity of osteoblastic bone formation, and an increase in fibroblastic growth factor-23, a sign of increased vitamin D effect. Despite these significant effects of TCDD on osteoblast activities, none of the markers of osteoclast activities was found to be affected. Histomorphometry confirmed that osteoblastic activity, but not bone resorption activity, was altered by TCDD. A prominent lesion commonly observed in these TCDD-treated mice was impaired bone mineralization that is characterized by an increased volume and thickness of osteoids lining both the endosteum of the cortical bone and trabeculae. Together, these data suggest that the impaired mineralization resulting from reduction of the osteoblastic activity, which is caused by TCDD-induced up-regulation of vitamin D, is responsible for its bone developmental toxicity.« less

  18. Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and p-JNK and p-p38 Activation in the Monogonont Rotifer (Brachionus koreanus).

    PubMed

    Jeong, Chang-Bum; Won, Eun-Ji; Kang, Hye-Min; Lee, Min-Chul; Hwang, Dae-Sik; Hwang, Un-Ki; Zhou, Bingsheng; Souissi, Sami; Lee, Su-Jae; Lee, Jae-Seong

    2016-08-16

    In this study, we evaluated accumulation and adverse effects of ingestion of microplastics in the monogonont rotifer (Brachionus koreanus). The dependence of microplastic toxicity on particle size was investigated by measuring several in vivo end points and studying the ingestion and egestion using 0.05-, 0.5-, and 6-μm nonfunctionalized polystyrene microbeads. To identify the defense mechanisms activated in response to microplastic exposure, the activities of several antioxidant-related enzymes and the phosphorylation status of mitogen-activated protein kinases (MAPKs) were determined. Exposure to polystyrene microbeads of all sizes led to significant size-dependent effects, including reduced growth rate, reduced fecundity, decreased lifespan and longer reproduction time. Rotifers exposed to 6-μm fluorescently labeled microbeads exhibited almost no fluorescence after 24 h, while rotifers exposed to 0.05- and 0.5-μm fluorescently labeled microbeads displayed fluorescence until 48 h, suggesting that 6-μm microbeads are more effectively egested from B. koreanus than 0.05- or 0.5-μm microbeads. This observation provides a potential explanation for our findings that microbead toxicity was size-dependent and smaller microbeads were more toxic. In vitro tests revealed that antioxidant-related enzymes and MAPK signaling pathways were significantly activated in response to microplastic exposure in a size-dependent manner.

  19. Evaluation of ecotoxicological effects of benzophenone UV filters: Luminescent bacteria toxicity, genotoxicity and hormonal activity.

    PubMed

    Zhang, Qiuya; Ma, Xiaoyan; Dzakpasu, Mawuli; Wang, Xiaochang C

    2017-08-01

    The widespread use of organic ultraviolet (UV) filters in personal care products raises concerns about their potentially hazardous effects on human and ecosystem health. In this study, the toxicities of four commonly used benzophenones (BPs) UV filters including benzophenone (BP), 2-Hydroxybenzophenone (2HB), 2-Hydroxy-4-methoxybenzophenone (BP3), and 2-Hydroxy-4-methoxybenzophenone-5-sulfonicacid (BP4) in water were assayed in vitro using Vibrio fischeri, SOS/umu assay, and yeast estrogen screen (YES) assay, as well as in vivo using zebrafish larvae. The results showed that the luminescent bacteria toxicity, expressed as logEC 50 , increased with the lipophilicity (logKow) of BPs UV filters. Especially, since 2HB, BP3 and BP4 had different substituent groups, namely -OH, -OCH 3 and -SO 3 H, respectively, these substituent functional groups had a major contribution to the lipophilicity and acute toxicity of these BPs. Similar tendency was observed for the genotoxicity, expressed as the value of induction ratio=1.5. Moreover, all the target BPs UV filters showed estrogenic activity, but no significant influences of lipophilicity on the estrogenicity were observed, with BP3 having the weakest estrogenic efficiency in vitro. Although BP3 displayed no noticeable adverse effects in any in vitro assays, multiple hormonal activities were observed in zebrafish larvae including estrogenicity, anti-estrogenicity and anti-androgenicity by regulating the expression of target genes. The results indicated potential hazardous effects of BPs UV filters and the importance of the combination of toxicological evaluation methods including in vitro and in vivo assays. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. General Toxicity and Antifungal Activity of a New Dental Gel with Essential Oil from Abies Sibirica L

    PubMed Central

    Noreikaitė, Aurelija; Ayupova, Rizvangul; Satbayeva, Elmira; Seitaliyeva, Aida; Amirkulova, Marzhan; Pichkhadze, Guram; Datkhayev, Ubaidilla; Stankeviandccaron;ius, Edgaras

    2017-01-01

    Background The aim of this study was to analyze the antifungal activity and the general toxicity of a new dental gel containing essential oil from the tree Abies sibirica L., which grows in the Republic of Kazakhstan. Material/Methods The essential oil from Abies sibirica L. was obtained by microwave heating method using the STARTE Microwave Extraction System. Adjutants used to prepare the oil were carbomer 974P, glycerin, polysorbate 80, xylitol, triethanolamine, and purified water, all allowed for medical usage. The antifungal activity of the essential oil was assessed by monitoring the optical density of Candida albicans in a microplate reader. The safety was determined by analyzing the acute and subacute toxicity. Results The essential oil obtained by the microwave heating method revealed a higher antifungal activity in comparison with the essential oil obtained by the steam distillation method. No obvious changes were detected in guinea pigs following cutaneous application of the gel. Enteral administration of the essential oil caused minimal functional and histological changes in mice after 4 weeks. The new harmless dental gel containing pine oil from Abies sibirica L. was provided for the purposes of this particular clinical research. Conclusions The high antifungal activity of the gel is the basis for more in-depth studies on its safety and pharmacological activity. PMID:28132065

  1. General Toxicity and Antifungal Activity of a New Dental Gel with Essential Oil from Abies Sibirica L.

    PubMed

    Noreikaitė, Aurelija; Ayupova, Rizvangul; Satbayeva, Elmira; Seitaliyeva, Aida; Amirkulova, Marzhan; Pichkhadze, Guram; Datkhayev, Ubaidilla; Stankevičius, Edgaras

    2017-01-29

    BACKGROUND The aim of this study was to analyze the antifungal activity and the general toxicity of a new dental gel containing essential oil from the tree Abies sibirica L., which grows in the Republic of Kazakhstan. MATERIAL AND METHODS The essential oil from Abies sibirica L. was obtained by microwave heating method using the STARTE Microwave Extraction System. Adjutants used to prepare the oil were carbomer 974P, glycerin, polysorbate 80, xylitol, triethanolamine, and purified water, all allowed for medical usage. The antifungal activity of the essential oil was assessed by monitoring the optical density of Candida albicans in a microplate reader. The safety was determined by analyzing the acute and subacute toxicity. RESULTS The essential oil obtained by the microwave heating method revealed a higher antifungal activity in comparison with the essential oil obtained by the steam distillation method. No obvious changes were detected in guinea pigs following cutaneous application of the gel. Enteral administration of the essential oil caused minimal functional and histological changes in mice after 4 weeks. The new harmless dental gel containing pine oil from Abies sibirica L. was provided for the purposes of this particular clinical research. CONCLUSIONS The high antifungal activity of the gel is the basis for more in-depth studies on its safety and pharmacological activity.

  2. Toxic Constituents Index: A Toxicity-Calibrated Quantitative Evaluation Approach for the Precise Toxicity Prediction of the Hypertoxic Phytomedicine—Aconite

    PubMed Central

    Zhang, Ding-kun; Li, Rui-sheng; Han, Xue; Li, Chun-yu; Zhao, Zhi-hao; Zhang, Hai-zhu; Yang, Ming; Wang, Jia-bo; Xiao, Xiao-he

    2016-01-01

    Complex chemical composition is an important reason for restricting herbal quality evaluation. Despite the multi-components determination method significantly promoted the progress of herbal quality evaluation, however, which mainly concerned the total amount of multiple components and ignored the activity variation between each one, and did not accurately reflect the biological activity of botanical medicines. In this manuscript, we proposed a toxicity calibrated contents determination method for hyper toxic aconite, called toxic constituents index (TCI). Initially, we determined the minimum lethal dose value of mesaconitine (MA), aconitine (AC), and hypaconitine (HA), and established the equation TCI = 100 × (0.3387 ×XMA + 0.4778 ×XAC + 0.1835 ×XHA). Then, 10 batches of aconite were selected and their evaluation results of toxic potency (TP), diester diterpenoid alkaloids (DDAs), and TCI were compared. Linear regression analysis result suggested that the relevance between TCI and TP was the highest and the correlation coefficient R was 0.954. Prediction error values study also indicated that the evaluation results of TCI was highly consistent with that of TP. Moreover, TCI and DDAs were both applied to evaluate 14 batches of aconite samples oriented different origins; from the different evaluation results, we found when the proportion of HA was reached 25% in DDAs, the pharmacopeia method could generate false positive results. All these results testified the accuracy and universality of TCI method. We believe that this study method is rather accurate, simple, and easy operation and it will be of great utility in studies of other foods and herbs. PMID:27378926

  3. Acute and chronic toxicity studies with monochlorobenzene in rainbow trout

    USGS Publications Warehouse

    Dahlich, G.M.; Larson, R.E.; Gingerich, W.H.

    1982-01-01

    The toxicity of monochlorobenzene (CB) was investigated in rainbow trout following acute intraperitoneal (i.p.) administration and chronic exposure via the water in a continuously flowing system for 15 or 30 days. In the acute study overt toxicity and hepatotoxicity were monitored over a 96-h time period. Variables measured to assess toxicity included weight changes, liver weight to body weight ratios, behavioral changes, alanine aminotransferase activity (GPT), sulfobromophthalein (BSP) retention, total plasma protein concentration and liver histopathology. In the chronic study the same measures of toxicity were followed as well as food consumption and alkaline phosphatase (AP) activity. Upon acute i.p. exposure the toxicant (9.8 mmol/kg) caused behavioral changes in the fish which were consistent with the known anesthetic properties of CB in mammals. Elevations in BSP retention and GPT activity, and histopathology indicated that CB was hepatotoxic in fish. The LC50 of CB in trout exposed via the water for 96 h was 4.7 mg/l. Chronic exposure of trout to 2 or 3 mg/l CB resulted in similar behavioral changes as seen in the acute study. Liver toxicity was evident from elevations in GPT activity. BSP retention and AP activity appeared to be affected by the nutritional status of the trout as much as by the CB treatment. After 30 days of exposure to 3 mg/l CB, trout appeared to have developed some tolerance to the toxic effects.

  4. Photostability and toxicity of finasteride, diclofenac and naproxen under simulating sunlight exposure: evaluation of the toxicity trend and of the packaging photoprotection

    PubMed Central

    2013-01-01

    Background Drugs photostability plays two different opposite roles; a real advantage arises considering the longer expiration time of the drugs while the consequent persistence in the environment involves an obvious negative effect bound to their harmfulness. On this basis we tested the photostability and toxicity of three pharmaceutical active principles: Finasteride, Diclofenac and Naproxen. The pure active principles, as well as commercial drugs containing them, were considered; for the last, the protective effect of the packaging was also evaluated. Samples were irradiated according to the ICH Guidelines for photostability testing (The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use); a simulating sunlight source (a mercury-vapor lamp coupled to a tungsten filament one) was used to cover the wavelength range 300–2000 nm; Temperature, Relative Humidity, Irradiance and Illuminance were maintained constant during the photodegradation. The concentrations of the pharmaceutical active principles during the photodegradation were monitored by HPLC with UV/Vis detector. Toxicity tests were performed by means of an amperometric biosensor based on suspended yeast cells. Since the products obtained by the photodegradation process can result as toxic or more toxic than the original molecules, tests were performed first and after the photodegadation. Results After 90 hours of exposure the concentration resulted lowered by 42.9%, 88.4% and 91% for Finasteride, Naproxen and Diclofenac respectively. Toxicity of the pure active principles follows the same order of the photostability. After photodegradation a contribute of the reaction products was evidenced. Conclusions The simple and cheap analytical procedure here proposed, allowed to obtain not only data on photostability and toxicity of the pure active principles but, even if roughly, also useful information on the reactions kinetic and toxicity of the

  5. Filaricidal activities on Onchocerca ochengi and Loa loa, toxicity and phytochemical screening of extracts of Tragia benthami and Piper umbellatum.

    PubMed

    Cho-Ngwa, Fidelis; Monya, Elvis; Azantsa, Boris K; Manfo, Faustin Pascal T; Babiaka, Smith B; Mbah, James A; Samje, Moses

    2016-08-30

    Onchocerciasis is the world's second leading infectious cause of blindness. Its control is currently hampered by the lack of a macrofilaricidal drug and by severe adverse events observed when the lone recommended microfilaricide, ivermectin is administered to individuals co-infected with Loa loa. Therefore, there is the need for a safe and effective macrofilaricidal drug that will be able to cure the infection and break transmission cycles, or at least, an alternative microfilaricide that does not kill L. loa microfilariae (mf). Fourteen extracts from two medicinal plants, Tragia benthami and Piper umbellatum were screened in vitro against Onchocerca ochengi parasite and L. loa mf. Activities of extracts on male worms and microfilariae were assessed by motility reduction, while MTT/Formazan assay was used to assess biochemically the death of female worms. Cytotoxicity and acute toxicity of active extracts were tested on monkey kidney cells and Balb/c mice, respectively. At 500 μg/mL, all extracts showed 100 % activity on Onchocerca ochengi males and microfilariae, while 9 showed 100 % activity on female worms. The methylene chloride extract of Piper umbellatum leaves was the most active on adult male and female worms (IC50s: 16.63 μg/mL and 35.65 μg/mL, respectively). The three most active extracts on Onchocerca ochengi females were also highly active on Loa loa microfilariae, with IC50s of 35.12 - 13.9 μg/mL. Active extracts were generally more toxic to the worms than to cells and showed no acute toxicity to Balb/c mice. Phytochemical screening revealed the presence of saponins, steroids, tannins and flavanoids in the promising extracts. These results unfold potential sources of novel anti-Onchocerca lead compounds and validate the traditional use of the plants in onchocerciasis treatment.

  6. Laboratory studies on antimycin A as a fish toxicant

    USGS Publications Warehouse

    Berger, Bernard L.; Lennon, Robert E.; Hogan, James W.

    1969-01-01

    Liquid and sand formulations of antimycin A were tested in laboratory waters of various temperature, hardness, pH, and turbidity against 31 species of fresh-water fish of various sizes and life stages. Each formulation of toxicant was lethal under all water conditions to fish eggs, fry, fingerlings, and adult fish. Trouts are the most sensitive and catfishes the least sensitive. Of the 31 species, 24 succumb to 5 p.p.b. or less of the toxicant; only certain catfishes survive 25 p.p.b, The order of toxicity to various species of fish suggests that antimycin has possibilities for selective or partial control of certain unwanted fish. Although toxic to fish under ice, antimycin is more active in warm water than in cold. It is slightly more active in soft water than in hard; it is more active and persists far longer in water at pH 5 to 8 than at pH 9 or 10. It is active on fish in either clear and turbid waters, and it can be detoxified by potassium permanganate, The results contributed to registration of antimycin A in Fintrol-5 formulation as a fish toxicant.

  7. In vivo toxicity and antitumor activity of essential oils extract from agarwood (Aquilaria crassna).

    PubMed

    Dahham, Saad Sabbar; Hassan, Loiy E Ahmed; Ahamed, Mohamed B Khadeer; Majid, Aman Shah Abdul; Majid, Amin Malik Shah Abdul; Zulkepli, Nik Noriman

    2016-07-22

    Aquilaria crassna has been used in traditional Asian medicine to treat vomiting, rheumatism, asthma, and cough. Furthermore, earlier studies from our laboratory have revealed that the essential oil extract from agarwood inhibited colorectal carcinoma cells. Despite of the wide range of ethno-pharmacological uses of agarwood, its toxicity has not been previously evaluated through systematic toxicological studies. Therefore, the potential safety of essential oil extract and its in vivo anti-tumor activity had been investigated. In the acute toxicity study, Swiss female mice were given a single dose of the essential oil extract at 2000 mg/kg/day orally and screened for two weeks after administration. Meanwhile, in the sub-chronic study, two different doses of the extract were administered for 28 days. Mortality, clinical signs, body weight changes, hematological and biochemical parameters, gross findings, organ weights, and histological parameters were monitored during the study. Other than that, in vivo anti-tumor study was assessed by using subcutaneous tumors model established in nude mice. The acute toxicity study showed that the LD50 of the extract was greater than 2000 mg/kg. In the repeated dose for 28-day oral toxicity study, the administration of 100 mg/kg and 500 mg/kg of essential oil per body weight revealed insignificant difference in food and water intakes, bodyweight change, hematological and biochemical parameters, relative organ weights, gross findings or histopathology compared to the control group. Nevertheless, the essential oil extract, when supplemented to nude mice, caused significant growth inhibition of the subcutaneous tumor of HCT 116 colorectal carcinoma cells. Collectively, the data obtained indicated that essential oil extract from agarwood might be a safe material, and this essential oil is suggested as a potential anti-colon cancer candidate.

  8. Residual toxicity after biodegradation: interactions among benzene, toluene, and chloroform.

    PubMed

    da Silva Nunes-Halldorson, Vânia; Steiner, Robert L; Smith, Geoffrey B

    2004-02-01

    A microbial enrichment originating from a pristine aquifer was found to aerobically biodegrade benzene and toluene, but not chloroform. This enrichment culture was used to study changes in pollutant toxicity as affected by biodegradative activity. Two assays for toxicity were used: (1) a 48-h acute toxicity test using the freshwater invertebrate Ceriodaphnia dubia and (2) microbial biodegradation activity as affected by the presence of mixed pollutants. At 20-ppm concentrations, toluene was significantly more toxic (99% mortality) to C. dubia than benzene (48% mortality) or chloroform (40% mortality). Also at 20-ppm concentrations, but before biodegradation, toluene was significantly more toxic (88% mortality) to C. dubia than benzene (33% mortality). After biodegradation of 98% of toluene and benzene, significant residual toxicity still remained in the bacterial supernatant: toluene-degraded supernatant caused 33% mortality in C. dubia and benzene-degraded supernatant caused 24% mortality. In the second toxicity assay, examining the effect of mixed pollutants on biodegradation activity, the presence of benzene slowed the biodegradation of toluene, but chloroform had no effect on either benzene or toluene biodegradation. Results indicate that significant toxicity remain after biodegradation and that halogenated aliphatic hydrocarbons may have little or no effect on aromatic hydrocarbon biodegradation at sites impacted by mixed pollutants.

  9. The Effects of Temperature and Hydrostatic Pressure on Metal Toxicity: Insights into Toxicity in the Deep Sea.

    PubMed

    Brown, Alastair; Thatje, Sven; Hauton, Chris

    2017-09-05

    Mineral prospecting in the deep sea is increasing, promoting concern regarding potential ecotoxicological impacts on deep-sea fauna. Technological difficulties in assessing toxicity in deep-sea species has promoted interest in developing shallow-water ecotoxicological proxy species. However, it is unclear how the low temperature and high hydrostatic pressure prevalent in the deep sea affect toxicity, and whether adaptation to deep-sea environmental conditions moderates any effects of these factors. To address these uncertainties we assessed the effects of temperature and hydrostatic pressure on lethal and sublethal (respiration rate, antioxidant enzyme activity) toxicity in acute (96 h) copper and cadmium exposures, using the shallow-water ecophysiological model organism Palaemon varians. Low temperature reduced toxicity in both metals, but reduced cadmium toxicity significantly more. In contrast, elevated hydrostatic pressure increased copper toxicity, but did not affect cadmium toxicity. The synergistic interaction between copper and cadmium was not affected by low temperature, but high hydrostatic pressure significantly enhanced the synergism. Differential environmental effects on toxicity suggest different mechanisms of action for copper and cadmium, and highlight that mechanistic understanding of toxicity is fundamental to predicting environmental effects on toxicity. Although results infer that sensitivity to toxicants differs across biogeographic ranges, shallow-water species may be suitable ecotoxicological proxies for deep-sea species, dependent on adaptation to habitats with similar environmental variability.

  10. Toxicity of phenol and monochlorophenols to growth and metabolic activities of Pseudomonas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, D.S.; Tseng, I.C.

    1996-07-01

    Phenolic compounds are toxic to many organisms and are often present in the effluents from oil refineries, the petrochemical, pesticide, and color and textile industries. Several authors have demonstrated a characteristic pattern of behavioral responses in fishes during phenol exposure. Others have also evaluated the toxicity of halogenated phenolic compounds by screening for effects on the specific growth rates (SGR) and the dehydrogenase activity (DHA) of Escherichia coli. However, little work has been done to determine the effects on biota from short exposures at relatively high concentrations of phenol or monochlorophenols that might occur following a deliberate or accidental dischargemore » to a receiving water. Microorganisms with phenol-degrading capacity have been studied intensively, including cyanobacteria such as Nostoc linckia, yeast such as Trichosporon cutaneum, bacteria such as Pseudomonas putida, and other unidentified species. Among these Pseudomonas has received the most attention and several mutants have been prepared to degrade substituted phenols. This study investigates the initial response of Pseudomonas upon exposure to high concentrations of phenol and chlorophenols by measuring the oxygen uptake rates. A series growth experiment was also conducted in order to compare the kinetic results with standard microbial tests. 12 refs., 3 figs., 1 tab.« less

  11. POSSIBLE EFFECTS OF CHRONIC EXPOSURE TO ENVIRONMENTAL AIRBORNE MANGANESE ON NEUROLOGICAL FUNCTION IN CHILDREN.

    EPA Science Inventory

    Evidence suggests that the estuarine dinoflagellate, Pfiesteria piscicida, and/or morphologically related organisms (Pf-MRO) may release a toxin(s) which kills fish and adversely affects human health. The North Carolina study investigated the potential for persistent health effec...

  12. CHRONIC LYME DISEASE: SYMPTOMS, VISION AND A NEW APPROACH TO TREATMENT BASED ON A THEORY OF NEUROTOXIN-MEDIATED ILLNESS.

    EPA Science Inventory

    Evidence suggests that the estuarine dinoflagellate, Pfiesteria piscicida, and/or morphologically related organisms (Pf-MRO) may release a toxin(s) which kills fish and adversely affects human health. The North Carolina study investigated the potential for persistent health effec...

  13. POSSIBLE ESTUARY ASSOCIATED SYNDROME: SYMPTOMS, VISION & TREATMENT.

    EPA Science Inventory

    Evidence suggests that the estuarine dinoflagellate, Pfiesteria piscicida, and/or morphologically related organisms (Pf-MRO) may release a toxin(s) which kills fish and adversely affects human health. The North Carolina study investigated the potential for persistent health effec...

  14. Active Oxygen Metabolites and Thromboxane in Phorbol Myristate Acetate Toxicity to the Isolated, Perfused Rat Lung.

    NASA Astrophysics Data System (ADS)

    Carpenter, Laurie Jean

    When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in

  15. Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna.

    PubMed

    Cuhra, Marek; Traavik, Terje; Bøhn, Thomas

    2013-03-01

    Low levels of glyphosate based herbicide induced significant negative effects on the aquatic invertebrate Daphnia magna. Glyphosate herbicides such as brands of Roundup, are known to be toxic to daphnids. However, published findings on acute toxicity show significant discrepancies and variation across several orders of magnitude. To test the acute effects of both glyphosate and a commercial formulation of Roundup (hereafter Roundup), we conducted a series of exposure experiments with different clones and age-classes of D. magna. The results demonstrated EC(50) (48) values in the low ppm-range for Roundup as well as for the active ingredient (a.i.) isopropylamine salt of glyphosate (glyphosate IPA) alone. Roundup showed slightly lower acute toxicity than glyphosate IPA alone, i.e. EC(50) values of 3.7-10.6 mg a.i./l, as compared to 1.4-7.2 mg a.i./l for glyphosate IPA. However, in chronic toxicity tests spanning the whole life-cycle, Roundup was more toxic. D. magna was exposed to sublethal nominal concentrations of 0.05, 0.15, 0.45, 1.35 and 4.05 mg a.i./l for 55 days. Significant reduction of juvenile size was observed even in the lowest test concentrations of 0.05 mg a.i./l, for both glyphosate and Roundup. At 0.45 mg a.i./l, growth, fecundity and abortion rate was affected, but only in animals exposed to Roundup. At 1.35 and 4.05 mg a.i./l of both glyphosate and Roundup, significant negative effects were seen on most tested parameters, including mortality. D. magna was adversely affected by a near 100 % abortion rate of eggs and embryonic stages at 1.35 mg a.i./l of Roundup. The results indicate that aquatic invertebrate ecology can be adversely affected by relevant ambient concentrations of this major herbicide. We conclude that glyphosate and Roundup toxicity to aquatic invertebrates have been underestimated and that current European Commission and US EPA toxicity classification of these chemicals need to be revised.

  16. Toxicity and antioxidant capacity of Frangula alnus Mill. bark and its active component emodin.

    PubMed

    Brkanac, Sandra Radić; Gerić, Marko; Gajski, Goran; Vujčić, Valerija; Garaj-Vrhovac, Vera; Kremer, Dario; Domijan, Ana-Marija

    2015-12-01

    In the present study toxicity of Frangula alnus Mill. bark, widely used as laxative, was investigated. Human peripheral blood lymphocytes (HPBLs) were treated with F. alnus bark extract or emodin (emodin is bark component with laxative property), and cytotoxicity, genotoxicity and parameters of oxidative stress were assessed. Also, polyphenol content of bark extract and antioxidant activity of the extract and emodin measured by DPPH, ABTS and FRAP methods were examined. The bark extract (500 μg/ml) produced cell death and DNA damage, while level of ROS changed at 250 μg/ml. Emodin induced cell death and DNA damage at 150 μg/ml and 200 μg/ml, respectively, and the increase of ROS was observed at 25 μg/ml. These results suggest that both, bark extract and emodin, are cyto/genotoxic to HPBLs and that oxidative stress is involved in the mechanism of their toxicity. The results on antioxidant activity showed that, unlike emodin, bark extract possess moderate antioxidant capacity (44.6%, 46.8% and 2.25 mmol Fe(2+)/g measured by DPPH, ABTS and FRAP assay, respectively) that can be related to relatively high phenolic content (116.07 mg/g). However, due to toxicological properties use of F. alnus bark as well as emodin-containing preparations should be taken with caution. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. U-937 Toxicity Testing of Lunar Dust Stimulant (JSC-1A-vf)

    NASA Technical Reports Server (NTRS)

    Bales, Kristyn; Hammond, Dianne; Wallace, William; Jeevarajan, Antony

    2007-01-01

    With NASA planning to extend the human presence to the moon by 2020, the dangers of the lunar environment must be assessed and appropriate countermeasures must be developed. Possible toxic effects of the lunar dust are of particular importance to human health because of the dust's chemical composition, reactivity, and small size. This project focuses on the toxicity of lunar dust stimulant (JSC-1A-vf), in both its active and passive forms, using U-937 human monocyte cells. Simulant was mechanically activated from its passive form by grinding, and its ability to produce hydroxyl radicals was determined. To test for toxicity, active and passivated simulant was diluted in media and applied to the cells for various time periods. Toxicity was then estimated using flow cytometry on the Guava Personal Cell Analysis system. Preliminary results suggest that passivated stimulant is slightly toxic, with an increase in toxicity for activated stimulant. Toxicity results may be affected by cell lysing behavior and quenching of hydroxyl radical production by the cell media.

  18. COHORT STUDIES OF HEALTH EFFECTS AMONG PEOPLE EXPOSED TO ESTUARINE WATERS: NORTH CAROLINA, VIRGINIA, AND MARYLAND. (R827084)

    EPA Science Inventory

    A variety of human symptoms have been associated with exposure to the dinoflagellate
    Pfiesteria and have been grouped together into a syndrome termed "possible estuary-associated
    syndrome," Prospective cohort studies of health effects associated with exposure to estuarine w...

  19. Bioassay-guided isolation of active principles from Nigerian medicinal plants identifies new trypanocides with low toxicity and no cross-resistance to diamidines and arsenicals.

    PubMed

    Ebiloma, Godwin Unekwuojo; Igoli, John Ogbaji; Katsoulis, Evangelos; Donachie, Anne-Marie; Eze, Anthonius; Gray, Alexander Ian; de Koning, Harry P

    2017-04-18

    Leaves from the plant species studied herein are traditionally used in northern Nigeria against various protozoan infections. However, none of these herbal preparations have been standardized, nor have their toxicity to mammalian cells been investigated. In search of improved and non-toxic active antiprotozoal principles that are not cross-resistant with current anti-parasitics, we here report the results of the in vitro screening of extracts from seven selected medicinal plant species (Centrosema pubescens, Moringa oleifera, Tridax procumbens, Polyalthia longifolia, Newbouldia laevis, Eucalyptus maculate, Jathropha tanjorensis), used traditionally to treat kinetoplastid infections in Nigeria, and the isolation of their bioactive principles. To investigate the efficacies of medicinal plant extracts, and of compounds isolated therefrom, against kinetoplastid parasites, assess cross-resistance to existing chemotherapy, and assay their toxicity against mammalian cells in vitro. Plants were extracted with hexane, ethyl acetate and methanol. Active principles were isolated by bioassay-led fractionation, testing for trypanocidal activity, and identified using NMR and mass spectrometry. EC 50 values for their activity against wild-type and multi-drug resistant Trypanosoma brucei were obtained using the viability indicator dye resazurin. Seven medicinal plants were evaluated for activity against selected kinetoplastid parasites. The result shows that crude extracts and isolated active compounds from Polyalthia longifolia and Eucalyptus maculata, in particular, display promising activity against drug-sensitive and multi-drug resistant Trypanosoma brucei. The EC 50 value of a clerodane (16α-hydroxy-cleroda-3,13(14)-Z-dien-15,16-olide) isolated from Polyalthia longifolia was as low as 0.38µg/mL, while a triterpenoid (3β,13β-dihydroxy-urs-11-en-28-oic acid) isolated from Eucalyptus maculata displayed an EC 50 of 1.58µg/mL. None of the isolated compounds displayed toxicity

  20. A bioinspired peptide scaffold with high antibiotic activity and low in vivo toxicity.

    PubMed

    Rabanal, Francesc; Grau-Campistany, Ariadna; Vila-Farrés, Xavier; Gonzalez-Linares, Javier; Borràs, Miquel; Vila, Jordi; Manresa, Angeles; Cajal, Yolanda

    2015-05-29

    Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

  1. Behavioral toxicity of selected radioprotectors

    NASA Astrophysics Data System (ADS)

    Landauer, M. R.; Davis, H. D.; Kumar, K. S.; Weiss, J. F.

    1992-10-01

    Effective radioprotection with minimal behavioral disruption is essential for the selection of protective agents to be used in manned spaceflight. This overview summarizes the studies on the behavioral toxicity of selected radioprotectors classified as phosphorothioates (WR-2721, WR-3689), bioactive lipids (16, 16 dimethylprostaglandin E2(DiPGE2), platelet activating factor (PAF), leukotriene C4), and immunomodulators (glucan, synthetic trehalose dicorynomycolate, and interleukin-1). Behavioral toxicity was examined in laboratory mice using a locomotor activity test. For all compounds tested, there was a dose-dependent decrease in locomotor behavior that paralleled the dose-dependent increase in radioprotection. While combinations of radioprotective compounds (DiPGE2 plus WR-2721) increased radioprotection, they also decreased locomotor activity. The central nervous system stimulant, caffeine, was able to mitigate the locomotor decrement produced by WR-3689 or PAF.

  2. Comparative Analysis of Predictive Models for Liver Toxicity Using ToxCast Assays and Quantitative Structure-Activity Relationships (MCBIOS)

    EPA Science Inventory

    Comparative Analysis of Predictive Models for Liver Toxicity Using ToxCast Assays and Quantitative Structure-Activity Relationships Jie Liu1,2, Richard Judson1, Matthew T. Martin1, Huixiao Hong3, Imran Shah1 1National Center for Computational Toxicology (NCCT), US EPA, RTP, NC...

  3. Assessment of quantitative structure-activity relationship of toxicity prediction models for Korean chemical substance control legislation

    PubMed Central

    Kim, Kwang-Yon; Shin, Seong Eun; No, Kyoung Tai

    2015-01-01

    Objectives For successful adoption of legislation controlling registration and assessment of chemical substances, it is important to obtain sufficient toxicological experimental evidence and other related information. It is also essential to obtain a sufficient number of predicted risk and toxicity results. Particularly, methods used in predicting toxicities of chemical substances during acquisition of required data, ultimately become an economic method for future dealings with new substances. Although the need for such methods is gradually increasing, the-required information about reliability and applicability range has not been systematically provided. Methods There are various representative environmental and human toxicity models based on quantitative structure-activity relationships (QSAR). Here, we secured the 10 representative QSAR-based prediction models and its information that can make predictions about substances that are expected to be regulated. We used models that predict and confirm usability of the information expected to be collected and submitted according to the legislation. After collecting and evaluating each predictive model and relevant data, we prepared methods quantifying the scientific validity and reliability, which are essential conditions for using predictive models. Results We calculated predicted values for the models. Furthermore, we deduced and compared adequacies of the models using the Alternative non-testing method assessed for Registration, Evaluation, Authorization, and Restriction of Chemicals Substances scoring system, and deduced the applicability domains for each model. Additionally, we calculated and compared inclusion rates of substances expected to be regulated, to confirm the applicability. Conclusions We evaluated and compared the data, adequacy, and applicability of our selected QSAR-based toxicity prediction models, and included them in a database. Based on this data, we aimed to construct a system that can be used

  4. Review of toxicity studies performed on an underground coal gasification condensate water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, F.P.

    1987-09-01

    Three studies related to the toxicity of underground coal gasification (UCG) waters have bee conducted: (1) toxicity study of UCG water and its fractions as determined by the Microtox test, (2) toxicity study of biotreated UCG water as determined by the Microtox test, and (3) toxicity study of UCG water to macroinvertebrates. The results of these studies are summarized herein. The gas condensate water from the UCG process is extremely toxic as determined by assays with photoluminescent bacteria (Microtox), benthic (bottom-dwelling) macroinvertebrates (mayflies), and Daphnia magna (water flea). Microtox bioassays reveal that the toxic components of the water reside inmore » both the organophilic and hydrophilic fractions, although the organophilic fraction is notably more toxic. A sequential treatment process reduced the toxicity of the UCG water, as measured by the Microtox test. Solvent extraction (to remove phenols) followed by ammonia stripping yielded a less toxic water. Additional treatment by activated sludge further reduced toxicity. Finally, the addition of powdered activated carbon to the activated sludge yielded the least toxic water. A bioassay technique was developed for lotic (running water) macroinvertebrates (Drunella doddsi and Iron longimanus). The toxicity results were compared with results from the traditional test animal, Daphnia magna. Short-term exposures to the UCG waters were more toxic to Daphnia magna than to Drunella doddsi or Iron longimanus, although the toxicity values begin to merge with longer test exposure. The greater toxicity seems to be related to a thinner exoskeleton. 26 refs., 2 figs., 6 tabs.« less

  5. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats.

    PubMed

    Radwan, Mahasen A; AlQuadeib, Bushra T; Šiller, Lidija; Wright, Matthew C; Horrocks, Benjamin

    2017-11-01

    Amphotericin B (AMB) is used most commonly in severe systemic life-threatening fungal infections. There is currently an unmet need for an efficacious (AMB) formulation amenable to oral administration with better bioavailability and lower nephrotoxicity. Novel PEGylated polylactic-polyglycolic acid copolymer (PLGA-PEG) nanoparticles (NPs) formulations of AMB were therefore studied for their ability to kill Candida albicans (C. albicans). The antifungal activity of AMB formulations was assessed in C. albicans. Its bioavalability was investigated in nine groups of rats (n = 6). Toxicity was examined by an in vitro blood hemolysis assay, and in vivo nephrotoxicity after single and multiple dosing for a week by blood urea nitrogen (BUN) and plasma creatinine (PCr) measurements. The MIC of AMB loaded to PLGA-PEG NPs against C. albicans was reduced two to threefold compared with free AMB. Novel oral AMB delivery loaded to PLGA-PEG NPs was markedly systemically available compared to Fungizone® in rats. The addition of 2% of GA to the AMB formulation significantly (p < 0.05) improved the bioavailability from 1.5 to 10.5% and the relative bioavailability was > 790% that of Fungizone®. The novel AMB formulations showed minimal toxicity and better efficacy compared to Fungizone®. No nephrotoxicity in rats was detected after a week of multiple dosing of AMB NPs based on BUN and PCr, which remained at normal levels. An oral delivery system of AMB-loaded to PLGA-PEG NPs with better efficacy and minimal toxicity was formulated. The addition of glycyrrhizic acid (GA) to AMB NPs formulation resulted in a significant oral absorption and improved bioavailability in rats.

  6. Cytolethal Distending Toxin From Campylobacter jejuni Requires the Cytoskeleton for Toxic Activity.

    PubMed

    Méndez-Olvera, Estela T; Bustos-Martínez, Jaime A; López-Vidal, Yolanda; Verdugo-Rodríguez, Antonio; Martínez-Gómez, Daniel

    2016-10-01

    Campylobacter jejuni is one of the major causes of infectious diarrhea worldwide. The distending cytolethal toxin (CDT) of Campylobacter spp. interferes with normal cell cycle progression. This toxic effect is considered a result of DNase activity that produces chromosomal DNA damage. To perform this event, the toxin must be endocytosed and translocated to the nucleus. The aim of this study was to evaluate the role of the cytoskeleton in the translocation of CDT to the nucleus. Campylobacter jejuni ATCC 33291 and seven isolates donated from Instituto de Biotecnologia were used in this study. The presence of CDT genes in C. jejuni strains was determined by PCR. To evaluate the effect of CDT, HeLa cells were treated with bacterial lysate, and the damage and morphological changes were analyzed by microscopy, immunofluorescence staining, and flow cytometry. To evaluate the role of the cytoskeleton, HeLa cells were treated with either latrunculin A or by nocodazole and analyzed by microscopy, flow cytometry, and immunoquantification (ELISA). The results obtained showed that the eight strains of C. jejuni , including the reference strain, had the ability to produce the toxin. Usage of latrunculin A and nocodazole, two cytoskeletal inhibitors, blocked the toxic effect in cells treated with the toxin. This phenomenon was evident in flow cytometry analysis and immunoquantification of Cdc2-phosphorylated. This work showed that the cytotoxic activity of the C. jejuni CDT is dependent on its endocytosis. The alteration in the microtubules and actin filaments caused a blockage transit of the toxin, preventing it from reaching the nucleus of the cell, as well as preventing DNA fragmentation and alteration of the cell cycle. The CDT toxin appears to be an important element for the pathogenesis of campylobacteriosis, since all clinical isolates showed the presence of cdtA , cdtB and cdtC genes.

  7. Cytolethal Distending Toxin From Campylobacter jejuni Requires the Cytoskeleton for Toxic Activity

    PubMed Central

    Méndez-Olvera, Estela T.; Bustos-Martínez, Jaime A.; López-Vidal, Yolanda; Verdugo-Rodríguez, Antonio; Martínez-Gómez, Daniel

    2016-01-01

    Background Campylobacter jejuni is one of the major causes of infectious diarrhea worldwide. The distending cytolethal toxin (CDT) of Campylobacter spp. interferes with normal cell cycle progression. This toxic effect is considered a result of DNase activity that produces chromosomal DNA damage. To perform this event, the toxin must be endocytosed and translocated to the nucleus. Objectives The aim of this study was to evaluate the role of the cytoskeleton in the translocation of CDT to the nucleus. Methods Campylobacter jejuni ATCC 33291 and seven isolates donated from Instituto de Biotecnologia were used in this study. The presence of CDT genes in C. jejuni strains was determined by PCR. To evaluate the effect of CDT, HeLa cells were treated with bacterial lysate, and the damage and morphological changes were analyzed by microscopy, immunofluorescence staining, and flow cytometry. To evaluate the role of the cytoskeleton, HeLa cells were treated with either latrunculin A or by nocodazole and analyzed by microscopy, flow cytometry, and immunoquantification (ELISA). Results The results obtained showed that the eight strains of C. jejuni, including the reference strain, had the ability to produce the toxin. Usage of latrunculin A and nocodazole, two cytoskeletal inhibitors, blocked the toxic effect in cells treated with the toxin. This phenomenon was evident in flow cytometry analysis and immunoquantification of Cdc2-phosphorylated. Conclusions This work showed that the cytotoxic activity of the C. jejuni CDT is dependent on its endocytosis. The alteration in the microtubules and actin filaments caused a blockage transit of the toxin, preventing it from reaching the nucleus of the cell, as well as preventing DNA fragmentation and alteration of the cell cycle. The CDT toxin appears to be an important element for the pathogenesis of campylobacteriosis, since all clinical isolates showed the presence of cdtA, cdtB and cdtC genes. PMID:27942359

  8. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds.

    PubMed

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-04-01

    Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Antibacterial, modulatory activity of antibiotics and toxicity from Rhinella jimi (Stevaux, 2002) (Anura: Bufonidae) glandular secretions.

    PubMed

    Sales, Débora Lima; Morais-Braga, Maria Flaviana Bezerra; Santos, Antonia Thassya Lucas Dos; Machado, Antonio Judson Targino; Araujo Filho, João Antonio de; Dias, Diógenes de Queiroz; Cunha, Francisco Assis Bezerra da; Saraiva, Rogério de Aquino; Menezes, Irwin Rose Alencar de; Coutinho, Henrique Douglas Melo; Costa, José Galberto Martins; Ferreira, Felipe Silva; Alves, Rômulo Romeu da Nóbrega; Almeida, Waltécio de Oliveira

    2017-08-01

    The increase in microorganisms with resistance to medications has caused a strong preoccupation within the medical and scientific community. Animal toxins studies, such as parotoid glandular secretions from amphibians, possesses a great potential in the development of drugs, such as antimicrobials, as these possess bioactive compounds. It was evaluated Rhinella jimi (Stevaux, 2002) glandular secretions against standard and multi-resistant bacterial strains; the effect of secretions combined with drugs; and determined the toxicity using two biologic in vivo models, and a in vitro model with mice livers. Standard strains were used for the determination of the Minimum Inhibitory Concentration (MIC), while for the modulatory activity of antibiotics, the clinical isolates Escherichia coli 06, Pseudomonas aeruginosa 03 and Staphylococcus aureus 10 were used. Modulatory activity was evaluated by the broth microdilution method with aminoglycosides and β-lactams as target antibiotics. The secretions in association with the antibiotics have a significant reduction in MIC, both the aminoglycosides and β-lactams. The toxicity and cytotoxicity results were lower than the values used in the modulation. R. jimi glandular secretions demonstrated clinically relevant results regarding the modulation of the tested antimicrobials. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Sestrin2 Protects Dopaminergic Cells against Rotenone Toxicity through AMPK-Dependent Autophagy Activation

    PubMed Central

    Hou, Yi-Sheng; Guan, Jun-Jie; Xu, Hai-Dong; Wu, Feng; Sheng, Rui

    2015-01-01

    Dysfunction of the autophagy-lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) was thought to be an important pathogenic mechanism in synuclein pathology and Parkinson's disease (PD). In the present study, we investigated the role of sestrin2 in autophagic degradation of α-synuclein and preservation of cell viability in a rotenone-induced cellular model of PD. We speculated that AMP-activated protein kinase (AMPK) was involved in regulation of autophagy and protection of dopaminergic cells against rotenone toxicity by sestrin2. The results showed that both the mRNA and protein levels of sestrin2 were increased in a TP53-dependent manner in Mes 23.5 cells after treatment with rotenone. Genetic knockdown of sestrin2 compromised the autophagy induction in response to rotenone, while overexpression of sestrin2 increased the basal autophagy activity. Sestrin2 presumably enhanced autophagy in an AMPK-dependent fashion, as sestrin2 overexpression activated AMPK, and genetic knockdown of AMPK abrogated autophagy induction by rotenone. Restoration of AMPK activity by metformin after sestrin2 knockdown recovered the autophagy activity. Sestrin2 overexpression ameliorated α-synuclein accumulation, inhibited caspase 3 activation, and reduced the cytotoxicity of rotenone. These results suggest that sestrin2 upregulation attempts to maintain autophagy activity and suppress rotenone cytotoxicity through activation of AMPK, and that sestrin2 exerts a protective effect on dopaminergic cells. PMID:26031332

  11. America's Poisoned Playgrounds: Children and Toxic Chemicals.

    ERIC Educational Resources Information Center

    Freedberg, Louis

    Next to chemical and farm workers, today's children are at the greatest risk from toxic chemicals. Through their normal play activities, children are exposed to a frightening array of toxic hazards, including lead, pesticides, arsenic, and unknown dangers from abandoned landfills and warehouses. Through a series of documented examples, the author…

  12. Degradation of diclofenac by UV-activated persulfate process: Kinetic studies, degradation pathways and toxicity assessments.

    PubMed

    Lu, Xian; Shao, Yisheng; Gao, Naiyun; Chen, Juxiang; Zhang, Yansen; Xiang, Huiming; Guo, Youluo

    2017-07-01

    Diclofenac (DCF) is the frequently detected non-steroidal pharmaceuticals in the aquatic environment. In this study, the degradation of DCF was evaluated by UV-254nm activated persulfate (UV/PS). The degradation of DCF followed the pseudo first-order kinetics pattern. The degradation rate constant (k obs ) was accelerated by UV/PS compared to UV alone and PS alone. Increasing the initial PS dosage or solution pH significantly enhanced the degradation efficiency. Presence of various natural water constituents had different effects on DCF degradation, with an enhancement or inhibition in the presence of inorganic anions (HCO 3 - or Cl - ) and a significant inhibition in the presence of NOM. In addition, preliminary degradation mechanisms and major products were elucidated using LC-MS/MS. Hydroxylation, decarbonylation, ring-opening and cyclation reaction involving the attack of SO 4 • - or other substances, were the main degradation mechanism. TOC analyzer and Microtox bioassay were employed to evaluate the mineralization and cytotoxicity of solutions treated by UV/PS at different times, respectively. Limited elimination of TOC (32%) was observed during the mineralization of DCF. More toxic degradation products and their related intermediate species were formed, and the UV/PS process was suitable for removing the toxicity. Of note, longer degradation time may be considered for the final toxicity removal. Copyright © 2017. Published by Elsevier Inc.

  13. TOWARDS REFINED USE OF TOXICITY DATA IN STATISTICALLY BASED SAR MODELS FOR DEVELOPMENTAL TOXICITY.

    EPA Science Inventory

    In 2003, an International Life Sciences Institute (ILSI) Working Group examined the potential of statistically based structure-activity relationship (SAR) models for use in screening environmental contaminants for possible developmental toxicants.

  14. WHOLE EFFLUENT TOXICITY: A REPORT FROM THE COLONIES

    EPA Science Inventory

    The purpose of this follow-up activity to the SETAC-sponsored Pellston Workshop on Whole Effluent Toxicity (WET) in 1996 is to "provide technical expert support on scientific guidance involving testing, characterization, and identifying sources of toxicity in complex effluents."

  15. Chemical composition, toxicity and larvicidal and antifungal activities of Persea americana (avocado) seed extracts.

    PubMed

    Leite, João Jaime Giffoni; Brito, Erika Helena Salles; Cordeiro, Rossana Aguiar; Brilhante, Raimunda Sâmia Nogueira; Sidrim, José Júlio Costa; Bertini, Luciana Medeiros; Morais, Selene Maia de; Rocha, Marcos Fábio Gadelha

    2009-01-01

    The present study had the aim of testing the hexane and methanol extracts of avocado seeds, in order to determine their toxicity towards Artemia salina, evaluate their larvicidal activity towards Aedes aegypti and investigate their in vitro antifungal potential against strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis through the microdilution technique. In toxicity tests on Artemia salina, the hexane and methanol extracts from avocado seeds showed LC50 values of 2.37 and 24.13 mg mL-1 respectively. Against Aedes aegypti larvae, the LC50 results obtained were 16.7 mg mL-1 for hexane extract and 8.87 mg mL-1 for methanol extract from avocado seeds. The extracts tested were also active against all the yeast strains tested in vitro, with differing results such that the minimum inhibitory concentration of the hexane extract ranged from 0.625 to 1.25mg L-(1), from 0.312 to 0.625 mg mL-1 and from 0.031 to 0.625 mg mL-1, for the strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis, respectively. The minimal inhibitory concentration for the methanol extract ranged from 0.125 to 0.625 mg mL-1, from 0.08 to 0.156 mg mL-1 and from 0.312 to 0.625 mg mL-1, for the strains of Candida spp., Cryptococcus neoformans and Malassezia pachydermatis, respectively.

  16. GHS additivity formula: can it predict the acute systemic toxicity of agrochemical formulations that contain acutely toxic ingredients?

    PubMed

    Van Cott, Andrew; Hastings, Charles E; Landsiedel, Robert; Kolle, Susanne; Stinchcombe, Stefan

    2018-02-01

    In vivo acute systemic testing is a regulatory requirement for agrochemical formulations. GHS specifies an alternative computational approach (GHS additivity formula) for calculating the acute toxicity of mixtures. We collected acute systemic toxicity data from formulations that contained one of several acutely-toxic active ingredients. The resulting acute data set includes 210 formulations tested for oral toxicity, 128 formulations tested for inhalation toxicity and 31 formulations tested for dermal toxicity. The GHS additivity formula was applied to each of these formulations and compared with the experimental in vivo result. In the acute oral assay, the GHS additivity formula misclassified 110 formulations using the GHS classification criteria (48% accuracy) and 119 formulations using the USEPA classification criteria (43% accuracy). With acute inhalation, the GHS additivity formula misclassified 50 formulations using the GHS classification criteria (61% accuracy) and 34 formulations using the USEPA classification criteria (73% accuracy). For acute dermal toxicity, the GHS additivity formula misclassified 16 formulations using the GHS classification criteria (48% accuracy) and 20 formulations using the USEPA classification criteria (36% accuracy). This data indicates the acute systemic toxicity of many formulations is not the sum of the ingredients' toxicity (additivity); but rather, ingredients in a formulation can interact to result in lower or higher toxicity than predicted by the GHS additivity formula. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Toxicant content, physical properties and biological activity of waterpipe tobacco smoke and its tobacco-free alternatives

    PubMed Central

    Shihadeh, Alan; Schubert, Jens; Klaiany, Joanne; El Sabban, Marwan; Luch, Andreas; Saliba, Najat A

    2015-01-01

    Objectives Waterpipe smoking using sweetened, flavoured tobacco products has become a widespread global phenomenon. In this paper, we review chemical, physical and biological properties of waterpipe smoke. Data sources Peer-reviewed publications indexed in major databases between 1991 and 2014. Search keywords included a combination of: waterpipe, narghile, hookah, shisha along with names of chemical compounds and classes of compounds, in addition to terms commonly used in cellular biology and aerosol sizing. Study selection The search was limited to articles published in English which reported novel data on waterpipe tobacco smoke (WTS) toxicant content, biological activity or particle size and which met various criteria for analytical rigour including: method specificity and selectivity, precision, accuracy and recovery, linearity, range, and stability. Data extraction Multiple researchers reviewed the reports and collectively agreed on which data were pertinent for inclusion. Data synthesis Waterpipe smoke contains significant concentrations of toxicants thought to cause dependence, heart disease, lung disease and cancer in cigarette smokers, and includes 27 known or suspected carcinogens. Waterpipe smoke is a respirable aerosol that induces cellular responses associated with pulmonary and arterial diseases. Except nicotine, smoke generated using tobacco-free preparations marketed for ‘health conscious’ users contains the same or greater doses of toxicants, with the same cellular effects as conventional products. Toxicant yield data from the analytical laboratory are consistent with studies of exposure biomarkers in waterpipe users. Conclusions A sufficient evidence base exists to support public health interventions that highlight the fact that WTS presents a serious inhalation hazard. PMID:25666550

  18. Fish embryo toxicity test: identification of compounds with weak toxicity and analysis of behavioral effects to improve prediction of acute toxicity for neurotoxic compounds.

    PubMed

    Klüver, Nils; König, Maria; Ortmann, Julia; Massei, Riccardo; Paschke, Albrecht; Kühne, Ralph; Scholz, Stefan

    2015-06-02

    The fish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, but concerns have been raised for its predictivity given that a few compounds have been shown to exhibit a weak acute toxicity in the fish embryo. In order to better define the applicability domain and improve the predictive capacity of the fish embryo test, we performed a systematic analysis of existing fish embryo and acute fish toxicity data. A correlation analysis of a total of 153 compounds identified 28 compounds with a weaker or no toxicity in the fish embryo test. Eleven of these compounds exhibited a neurotoxic mode of action. We selected a subset of eight compounds with weaker or no embryo toxicity (cyanazine, picloram, aldicarb, azinphos-methyl, dieldrin, diquat dibromide, endosulfan, and esfenvalerate) to study toxicokinetics and a neurotoxic mode of action as potential reasons for the deviating fish embryo toxicity. Published fish embryo LC50 values were confirmed by experimental analysis of zebrafish embryo LC50 according to OECD guideline 236. Except for diquat dibromide, internal concentration analysis did not indicate a potential relation of the low sensitivity of fish embryos to a limited uptake of the compounds. Analysis of locomotor activity of diquat dibromide and the neurotoxic compounds in 98 hpf embryos (exposed for 96 h) indicated a specific effect on behavior (embryonic movement) for the neurotoxic compounds. The EC50s of behavior for neurotoxic compounds were close to the acute fish toxicity LC50. Our data provided the first evidence that the applicability domain of the fish embryo test (LC50s determination) may exclude neurotoxic compounds. However, neurotoxic compounds could be identified by changes in embryonic locomotion. Although a quantitative prediction of acute fish toxicity LC50 using behavioral assays in fish embryos may not yet be possible, the identification of neurotoxicity could trigger the conduction of a conventional fish

  19. Community-Scale Air Toxics Ambient Monitoring Grant - Closed Announcement FY 2015

    EPA Pesticide Factsheets

    Grant to fund projects designed to assist state, local and tribal communities in identifying air toxics sources, characterizing the degree and extent of local-scale air toxics problems, tracking progress of air toxics reduction activities, etc.

  20. Protective effect of thymoquinone, the active constituent of Nigella sativa fixed oil, against ethanol toxicity in rats

    PubMed Central

    Hosseini, Sayed Masoud; Taghiabadi, Elahe; Abnous, Khalil; Hariri, Alireza Timcheh; Pourbakhsh, Hamed; Hosseinzadeh, Hossein

    2017-01-01

    Objective(s): Long term consumption of ethanol may induce damage to many organs. Ethanol induces its noxious effects through reactive oxygen species production, and lipid peroxidation and apoptosis induction in different tissues and cell types. Previous experiments have indicated the antioxidant characteristics of thymoquinone, the active constituent of Nigella sativa fixed oil, against biologically dangerous reactive oxygen species. This experiment was planned to evaluate the protective effect of thymoquinone against subchronic ethanol toxicity in rats. Materials and Methods: Experiments were performed on six groups. Each group consisted of six animals, including control group (saline, gavage), ethanol-receiving group (3 g/kg/day, gavage), thymoquinone (2.5, 5, 10 mg/Kg/day, intraperitoneally (IP)) plus ethanol and thymoquinone (10 mg/Kg/day, IP) groups. Treatments were carried out in four weeks. Results: Thymoquinone reduced the ethanol-induced increase in the lipid peroxidation and severity of histopathological alteration in liver and kidney tissues. In addition it improved the levels of proinflammatory cytokines in liver tissue. Furthermore, thymoquinone corrected the liver enzymes level including alanine transaminase, aspartate transaminase and alkaline phosphatase in serum and glutathione content in liver and kidney tissues. Other experiments such as Western blot analysis and quantitative real-time RT-PCR revealed that thymoquinone suppressed the expression of Bax/Bcl-2 ratio (both protein and mRNA level), and caspases activation pursuant to ethanol toxicity. Conclusion: This study indicates that thymoquinone may have preventive effects against ethanol toxicity in the liver and kidney tissue through reduction in lipid peroxidation and inflammation, and also interrupting apoptosis. PMID:29085585

  1. Toxicity of insecticides to tsetse flies

    PubMed Central

    Hadaway, A. B.

    1972-01-01

    New insecticides have been evaluated for toxicity to tsetse flies and compared with organochlorine compounds currently in use. The most toxic compounds and their estimated median lethal doses in nanograms per fly by topical application in solution to teneral Glossina austeni were: resmethrin 4, fenthion 8, dieldrin 10, propoxur 12, chlorfenvinphos 12, tetrachlorvinphos 20, and dichlorvos 20. There was little variation in the susceptibility of teneral male and female flies, young fed flies, and fed stud males with all the compounds tested (dieldrin, resmethrin, tetrachlorvinphos, bromophos, and propoxur) and increased tolerance in old fed pregnant flies occurred only with dieldrin and resmethrin. There was also little variation in the susceptibility of teneral flies of the two species G. austeni and G. morsitans. In contact toxicity tests with water dispersible powder deposits on plywood, propoxur was highly active initially but lost its effectiveness after only a few weeks, whereas tetrachlorvinphos was less active initially but more persistent. PMID:4537853

  2. Toxics in My Home? You Bet! Curriculum on Household Toxics for Grades K-3.

    ERIC Educational Resources Information Center

    Purin, Gina; And Others

    This curriculum consists of a one-week course of study designed to introduce K-3 students to (or increase their awareness of) toxic substances commonly found in the home. It includes an introduction/conceptual framework and four learning activities for four concept areas (and an optional word puzzle). Each activity includes a statement of purpose,…

  3. Copper sulphate (CuSO4) toxicity on tissue phosphatases activity and carbohydrates turnover in Achatina fulica.

    PubMed

    Ramalingam, K; Indra, D

    2002-04-01

    A time course study on the sublethal toxicity of CuSO4 on tissue carbohydrate metabolites level and their phosphatases activity in Achatina fulica revealed differential response. The levels of total carbohydrates and glycogen in the body mass muscle, foot muscle and hemolymph revealed their involvement in the endogenous derivation of energy during stress. The same metabolites in digestive gland revealed its importance to reproduction and development. The lactate accumulated in all the tissues implied the mechanism of CuSO4 toxicosis in the metabolic acidosis. The decrease of pyruvate in foot muscle, body mass muscle and hemolymph inferred the preponderance of glycolysis in energy derivation. In contrast, the pyruvate concentration in digestive gland revealed its differential response in the stress metabolic sequence of changes, as a unique tissue. The lactate/pyruvate ratio and the calcium content in tissues constitute direct evidences for the snails adaptation to toxic stress.

  4. A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model

    PubMed Central

    2012-01-01

    Background The decoction of the aerial parts of Rhynchosia recinosa (A.Rich.) Bak. [Fabaceae] is used in combination with the stem barks of Ozoroa insignis Del. (Anacardiaceae), Maytenus senegalensis (Lam.) Excell. [Celastraceae] Entada abyssinica Steud. ex A.Rich [Fabaceae] and Lannea schimperi (Hochst.)Engl. [Anacardiaceae] as a traditional remedy for managing peptic ulcers. However, the safety and efficacy of this polyherbal preparation has not been evaluated. This study reports on the phytochemical profile and some biological activities of the individual plant extracts and a combination of extracts of the five plants. Methods A mixture of 80% ethanol extracts of R. recinosa, O. insignis, M. senegalensis, E. abyssinica and L. schimperi at doses of 100, 200, 400 and 800 mg/kg body wt were evaluated for ability to protect Sprague Dawley rats from gastric ulceration by an ethanol-HCl mixture. Cytoprotective effect was assessed by comparison with a negative control group given 1% tween 80 in normal saline and a positive control group given 40 mg/kg body wt pantoprazole. The individual extracts and their combinations were also tested for antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922), Salmonella typhi (NCTC 8385), Vibrio cholerae (clinical isolate), and Klebsiella pneumoniae (clinical isolate) using the microdilution method. In addition the extracts were evaluated for brine shrimp toxicity and acute toxicity in mice. Phytochemical tests were done using standard methods to determine the presence of tannins, saponins, steroids, cardiac glycosides, flavonoids, alkaloids and terpenoids in the individual plant extracts and in the mixed extract of the five plants. Results The combined ethanolic extracts of the 5 plants caused a dose-dependent protection against ethanol/HCl induced ulceration of rat gastric mucosa, reaching 81.7% mean protection as compared to 87.5% protection by 40 mg/kg body wt pantoprazole. Both the individual

  5. Toxic Hazards Research Unit annual technical report, 1972

    NASA Technical Reports Server (NTRS)

    Macewen, J. D.; Vernot, E. H.

    1972-01-01

    The activities of the Toxic Hazards Research Unit (THRU) for the period of June 1971 through May 1972 are reviewed in this report. Acute inhalation toxicity experiments were conducted on hydrogen chloride (HCl) gas and aerosol, ethyl bromide (C2H5Br), hydrogen bromide (HBr), hydrogen sulfide (H2S), ammonia (NH3), chlorine (CL2), and silane (SiH4). Subacute toxicity studies were conducted on chlorine pentafluoride (ClF5), dichloromethane (CH2Cl2) and coal tar volatiles. Further toxicity studies of subacute and chronic responses to inhaled monomethylhydrazine (MMH) are also described.

  6. In Vitro Activity of Manuka Honey and Polyhexamethylene Biguanide on Filamentous Fungi and Toxicity to Human Cell Lines

    PubMed Central

    Yabes, Joseph M.; White, Brian K.; Murray, Clinton K.; Sanchez, Carlos J.; Mende, Katrin; Beckius, Miriam L.; Zera, Wendy C.; Wenke, Joseph C.; Akers, Kevin S.

    2016-01-01

    Soft-tissue invasive fungal infections are increasingly recognized as significant entities directly contributing to morbidity and mortality. They complicate clinical care, requiring aggressive surgical debridement and systemic antifungal therapy. To evaluate new topical approaches to therapy, we examined the antifungal activity and cytotoxicity of Manuka Honey (MH) and polyhexamethylene biguanide (PHMB). The activities of multiple concentrations of MH (40%, 60%, 80%) and PHMB (0.01%, 0.04%, 0.1%) against 13 clinical mold isolates were evaluated using a time-kill assay between 5 min and 24 h. Concentrations were selected to represent current clinical use. Cell viability was examined in parallel for human epidermal keratinocytes, dermal fibroblasts and osteoblasts, allowing determination of the 50% viability (LD50) concentration. Antifungal activity of both agents correlated more closely with exposure time than concentration. Exophiala and Fusarium growth was completely suppressed at 5 min for all PHMB concentrations, and at 12 and 6 h, respectively, for all MH concentrations. Only Lichtheimia had persistent growth to both agents at 24 h. Viability assays displayed concentration-and time-dependent toxicity for PHMB. For MH, exposure time predicted cytotoxicity only when all cell types were analyzed in aggregate. This study demonstrates that MH and PHMB possess primarily time-dependent antifungal activity, but also exert in vitro toxicity on human cells which may limit clinical use. Further research is needed to determine ideal treatment strategies to optimize antifungal activity against molds while limiting cytotoxicity against host tissues in vivo. PMID:27601610

  7. Toxicity evaluation of cordycepin and its delivery system for sustained in vitro anti-lung cancer activity

    NASA Astrophysics Data System (ADS)

    Aramwit, Pornanong; Porasuphatana, Supatra; Srichana, Teerapol; Nakpheng, Titpawan

    2015-03-01

    In the previous study, we have found that the cordycepin which was extracted from Cordyceps mycelia produced by growing Cordyceps militaris on the dead larva of Bombyx mori silkworms showed the anti-proliferative effect toward lung cancer cells without toxicity to non-cancer cells. In this work, the cordycepin was tested for its in vitro mutagenicity and in vivo toxicity. From the Ames test and subacute toxicity test using oral administration in a rat model, the cordycepin was proved to be a non-mutagenic and non-toxic compound. The hematology and blood chemistry as well as the microanatomical characteristic of the tissues of rats fed with cordycepin every day for consecutive 30 days were comparable to those of the normal ones. Then, the cordycepin was incorporated in gelatin type A (GA) and gelatin type B (GB) nanoparticles aimed to sustain its release and activity. The cordycepin incorporated in both GA and GB nanoparticles showed the sustained release profiles. GA nanoparticles could encapsulate cordycepin at higher encapsulation efficiency due to the attractive electrostatic interaction between the positive-charged GA and the negative-charged cordycepin. However, GA nanoparticles released cordycepin at the higher amount possibly because of the large surface area of small size nanoparticles. Comparing to GB nanoparticles, the higher amount of cordycepin released from GA nanoparticles showed the higher anti-proliferative and anti-migratory effects on A549 lung cancer cells. In conclusion, GA nanoparticles were suggested as a suitable carrier for the sustained release of cordycepin. The GA nanoparticles releasing cordycepin could be an effective and non-invasive material for the treatment of lung cancer cells.

  8. Assessment of antidiabetic activity and acute toxicity of leaf extracts from Physalis peruviana L. in guinea-pig

    PubMed Central

    Kasali, Félicien Mushagalusa; Kadima, Justin Ntokamunda; Mpiana, Pius Tshimankinda; Ngbolua, Koto-te-Nyiwa; Tshibangu, Damien Sha-Tshibey

    2013-01-01

    Objective To verify the antidiabetic activity of leaf extracts from Physalis peruviana L. popularly used in the Eastern part of the Democratic Republic of the Congo and to point out the possible toxicity. Method Aqueous decoctions prepared from dried leaves powder were administrated to guinea pigs at the dose range of 100 mg/kg to 3.2 g/kg of body weight. The hypoglycemic activity was evaluated by glucose tolerance test, loading animals with glucose 4 g/kg and measuring blood glucose concentrations at various times. The effect was compared to the control and glibenclamide as antidiabetic reference drug. Acute toxicity was evaluated by recording mortality rate, changes on blood biomarkers and damage caused to vital organs. Results At a dose of 100 mg/kg, the aqueous extract induced a significant reduction of peak concentration at 30 min after glucose loading as compared with control or reference (P<0.05). At doses greater than 400 mg, some alterations on blood, kidney and liver markers were observed. Upper 800 mg/kg, mortality was observed with LD50 estimated at about 1 280 mg/kg. At the autopsy, vital organs were in haemorrhage and swelling state. Conclusion The crude aqueous extracts from the leaves of Physalis peruviana L. present hypoglycemic activity in animal model, but at high doses the plant may cause severe intoxication.

  9. Antibacterial activity of neem nanoemulsion and its toxicity assessment on human lymphocytes in vitro

    PubMed Central

    Jerobin, Jayakumar; Makwana, Pooja; Suresh Kumar, RS; Sundaramoorthy, Rajiv; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-01-01

    Neem (Azadirachta indica) is recognized as a medicinal plant well known for its antibacterial, antimalarial, antiviral, and antifungal properties. Neem nanoemulsion (NE) (O/W) is formulated using neem oil, Tween 20, and water by high-energy ultrasonication. The formulated neem NE showed antibacterial activity against the bacterial pathogen Vibrio vulnificus by disrupting the integrity of the bacterial cell membrane. Despite the use of neem NE in various biomedical applications, the toxicity studies on human cells are still lacking. The neem NE showed a decrease in cellular viability in human lymphocytes after 24 hours of exposure. The neem NE at lower concentration (0.7–1 mg/mL) is found to be nontoxic while it is toxic at higher concentrations (1.2–2 mg/mL). The oxidative stress induced by the neem NE is evidenced by the depletion of catalase, SOD, and GSH levels in human lymphocytes. Neem NE showed a significant increase in DNA damage when compared to control in human lymphocytes (P<0.05). The NE is an effective antibacterial agent against the bacterial pathogen V. vulnificus, and it was found to be nontoxic at lower concentrations to human lymphocytes. PMID:26491309

  10. Antibacterial activity of neem nanoemulsion and its toxicity assessment on human lymphocytes in vitro.

    PubMed

    Jerobin, Jayakumar; Makwana, Pooja; Suresh Kumar, R S; Sundaramoorthy, Rajiv; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-01-01

    Neem (Azadirachta indica) is recognized as a medicinal plant well known for its antibacterial, antimalarial, antiviral, and antifungal properties. Neem nanoemulsion (NE) (O/W) is formulated using neem oil, Tween 20, and water by high-energy ultrasonication. The formulated neem NE showed antibacterial activity against the bacterial pathogen Vibrio vulnificus by disrupting the integrity of the bacterial cell membrane. Despite the use of neem NE in various biomedical applications, the toxicity studies on human cells are still lacking. The neem NE showed a decrease in cellular viability in human lymphocytes after 24 hours of exposure. The neem NE at lower concentration (0.7-1 mg/mL) is found to be nontoxic while it is toxic at higher concentrations (1.2-2 mg/mL). The oxidative stress induced by the neem NE is evidenced by the depletion of catalase, SOD, and GSH levels in human lymphocytes. Neem NE showed a significant increase in DNA damage when compared to control in human lymphocytes (P<0.05). The NE is an effective antibacterial agent against the bacterial pathogen V. vulnificus, and it was found to be nontoxic at lower concentrations to human lymphocytes.

  11. Antioxidant, Cytotoxic, and Toxic Activities of Propolis from Two Native Bees in Brazil: Scaptotrigona depilis and Melipona quadrifasciata anthidioides

    PubMed Central

    Bonamigo, Thaliny; Campos, Jaqueline Ferreira; Alfredo, Tamaeh Monteiro; Balestieri, José Benedito Perrella; Cardoso, Claudia Andrea Lima; Paredes-Gamero, Edgar Julian; de Picoli Souza, Kely

    2017-01-01

    Propolis is a natural mixture of compounds produced by various bee species, including stingless bees. This compound has been shown to exhibit antioxidant, antiproliferative, and antitumor activities. The present study aimed to determine the chemical constituents as well as the antioxidant, cytotoxic, and toxic activities of ethanol extracts of propolis obtained from the stingless bees Scaptotrigona depilis and Melipona quadrifasciata anthidioides, which are found in Brazil. Phytosterols, terpenes, phenolic compounds, and tocopherol were identified in the ethanol extracts of propolis (EEPs) in different concentrations. The compounds stigmasterol, taraxasterol, vanilic acid, caffeic acid, quercetin, luteolin, and apigenin were found only in EEP-M. The EEPs were able to scavenge the free radicals 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and protected human erythrocytes against lipid peroxidation, with the latter effect being demonstrated by their antihemolytic activity and inhibition of malondialdehyde formation. The EEPs showed cytotoxic activity against erythroleukemic cells and necrosis was the main mechanism of death observed. In addition, the concentrations at which the EEPs were cytotoxic were not toxic against Caenorhabditis elegans. In this context, it is concluded that EEP-S and EEP-M show antioxidant and cytotoxic activities and are promising bioactive mixtures for the control of diseases associated with oxidative stress and tumor cell proliferation. PMID:28377794

  12. Antioxidant, Cytotoxic, and Toxic Activities of Propolis from Two Native Bees in Brazil: Scaptotrigona depilis and Melipona quadrifasciata anthidioides.

    PubMed

    Bonamigo, Thaliny; Campos, Jaqueline Ferreira; Alfredo, Tamaeh Monteiro; Balestieri, José Benedito Perrella; Cardoso, Claudia Andrea Lima; Paredes-Gamero, Edgar Julian; de Picoli Souza, Kely; Dos Santos, Edson Lucas

    2017-01-01

    Propolis is a natural mixture of compounds produced by various bee species, including stingless bees. This compound has been shown to exhibit antioxidant, antiproliferative, and antitumor activities. The present study aimed to determine the chemical constituents as well as the antioxidant, cytotoxic, and toxic activities of ethanol extracts of propolis obtained from the stingless bees Scaptotrigona depilis and Melipona quadrifasciata anthidioides , which are found in Brazil. Phytosterols, terpenes, phenolic compounds, and tocopherol were identified in the ethanol extracts of propolis (EEPs) in different concentrations. The compounds stigmasterol, taraxasterol, vanilic acid, caffeic acid, quercetin, luteolin, and apigenin were found only in EEP-M. The EEPs were able to scavenge the free radicals 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and protected human erythrocytes against lipid peroxidation, with the latter effect being demonstrated by their antihemolytic activity and inhibition of malondialdehyde formation. The EEPs showed cytotoxic activity against erythroleukemic cells and necrosis was the main mechanism of death observed. In addition, the concentrations at which the EEPs were cytotoxic were not toxic against Caenorhabditis elegans . In this context, it is concluded that EEP-S and EEP-M show antioxidant and cytotoxic activities and are promising bioactive mixtures for the control of diseases associated with oxidative stress and tumor cell proliferation.

  13. Efficacy validation of synthesized retinol derivatives In vitro: stability, toxicity, and activity.

    PubMed

    Han, Hye-Sook; Kwon, Youn-Ja; Park, Myoung-Soon; Park, Si-Ho; Cho, So-Mi Kim; Rho, Young-Soy; Kim, Jin-Wou; Sin, Hong-Sig; Um, Soo-Jong

    2003-08-15

    Retinol (vitamin A) is used as an antiwrinkle agent in the cosmetics industry. However, its photo-instability makes it unsuitable for use in general cosmetic formulations. To improve the photo-stability of retinol, three derivatives (3, 4, and 5) were synthesized and their biological activities were analyzed. 1H NMR and HPLC analysis indicated that derivatives 3 and 5 were much more stable than retinol under our sunlight exposure conditions. When human adult fibroblasts were treated, the IC(50) of derivative 3 was 96 microM, which is similar to that of retinol, as determined by the MTT assay. Derivatives 4 and 5 were 2.5 and 8 times more toxic than retinol, respectively. At 1 microM treatment, like retinol, derivatives 3 and 4 were specifically active for RARalpha out of six retinoid receptors (RAR/RXRalpha, beta, gamma). Dose-dependent analysis confirmed that derivative 4 was as active as retinol and the other two derivatives were less active for RARalpha. The effect of our derivatives on the expression of collagenase, an indicator of wrinkle formation, was measured using the transient co-expression of c-Jun and RT-PCR in HaCaT cells. Collagenase promoter activity, which is increased by c-Jun expression, was reduced 42% by retinol treatment. The other derivatives inhibited collagenase promoter activity similarly. These results were further confirmed by RT-PCR analysis of the collagenase gene. Taken together, our results suggest that retinol derivative 3 is a promising antiwrinkle agent based on its higher photo-stability, lower RARalpha activity (possibly indicating reduced side effects), and similar effect on collagenase expression.

  14. Chemical structure of carbamoylating groups and their relationship to bone marrow toxicity and antiglioma activity of bifunctionally alkylating and carbamoylating nitrosoureas.

    PubMed

    Ali-Osman, F; Giblin, J; Berger, M; Murphy, M J; Rosenblum, M L

    1985-09-01

    Although the antitumor effects of chloroethylnitrosoureas have been shown to be due primarily to DNA-DNA cross-linking by the alkylating moieties of these agents, the basis of the often accompanying bone marrow toxicity has been more controversial. We report on the relative bone marrow toxicity of four model nitrosoureas with different alkylating and carbamoylating activities: 1,3-bis(2-chloroethyl)-1-nitrosourea; 1,3-bis(trans-4-hydroxycyclohexyl)-1-nitrosourea; chlorozotozin, (2-[3-(2-chloroethyl)-3 -nitrosoureido]-2-deoxy-D-glucopyranose); and -3-(beta-D-glucopyranosyl)-1-nitrosourea. Inhibitions of DNA, RNA, and protein synthesis in murine bone marrow cells and of colony growth of myeloid precursor cells (granulocyte-macrophage colony-forming units) were used as in vitro end points of myelotoxicity. Further, we determined the antiglioma activity of the four nitrosoureas on two human gliomas in a clonogenic tumor cell assay and studied the effect of the non-nitrosourea carbamoylators potassium cyanate, chloroethyl isocyanate, cyclohexyl isocyanate, ethyl isocyanate, and ethyl isothiocyanate on granulocyte-macrophage colony-forming units. The results show that, at equivalent drug exposures, clonogenic glioma cell kill was significant and comparative for 1,3-bis(2-chloroethyl)-1-nitrosourea, 1-(2-chloroethyl)-3-(beta-D-glucopyranosyl)-1-nitrosourea, and chlorozotocin; 1,3-bis(trans-4-hydroxycyclohexyl)-1-nitrosourea showed little activity. In contrast, granulocyte-macrophage colony-forming unit toxicity was low with chlorozotocin and 1-(2-chloroethyl)-3-(beta-D-glucopyranosyl)-1-nitrosourea and very high with 1,3-bis(2-chloroethyl)-1-nitrosourea and 1,3-bis(trans-4-hydroxycyclohexyl)-1-nitrosourea. Of the isocyanates, bone marrow toxicity was highest with chloroethyl isocyanate and cyclohexyl isocyanate, intermediate with ethyl isocyanate, and lowest with KOCN and ethyl isothiocyanate. Our results indicate that (a) bifunctional alkylation is essential for

  15. Cytochrome P4501A induction in avian hepatocyte cultures exposed to polychlorinated biphenyls: Comparisons with AHR1-mediated reporter gene activity and in ovo toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, Gillian E., E-mail: gmann017@uottawa.ca; Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3; Mundy, Lukas J., E-mail: lukas.mundy@ec.gc.ca

    2013-01-01

    Avian-specific toxic equivalency factors (TEFs) were developed by the World Health Organization to simplify environmental risk assessments of dioxin-like compounds (DLCs), but TEFs do not account for differences in the toxic and biochemical potencies of DLCs among species of birds. Such variability may be due to differences in species sensitivity to individual DLCs. The sensitivity of avian species to DLCs was recently associated with the identity of amino acids 324 and 380 in the aryl hydrocarbon receptor 1 (AHR1) ligand binding domain. A luciferase reporter gene (LRG) assay, measuring AHR1-mediated induction of a cytochrome P450 1A5 (CYP1A5) reporter gene, inmore » combination with a species' AHR1 ligand binding domain sequence, were also shown to predict avian species sensitivity to polychlorinated biphenyls (PCBs) and PCB relative potency in a given species. The goals of the present study were to (1) characterize the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and PCBs 126, 77, 105 and 118 on induction of ethoxyresorufin O-deethylase (EROD) activity and CYP1A4/5 mRNA in chicken, ring-necked pheasant and Japanese quail embryo hepatocytes and (2) compare these in vitro results to those previously generated by the LRG assay and in ovo toxicity studies. EROD activity and CYP1A4/5 mRNA expression data support and complement the findings of the LRG assay. CYP1A enzyme activity and mRNA expression were significantly correlated both with luciferase activity and in ovo toxicity induced by PCBs. Relative potency values were generally similar between the LRG and EROD assays and indicate that the relative potency of some PCBs may differ among species. -- Highlights: ► The chicken isn't the most sensitive species to CYP1A induction by PCB 105 and 118. ► The relative potency of PCBs differs between avian species. ► EROD activity was correlated with luciferase activity from the LRG assay. ► EROD activity was a better predictor of toxicity

  16. Use of the ciliated protozoan Tetrahymena pyriformis for the assessment of toxicity and quantitative structure--activity relationships of xenobiotics: comparison with the Microtox test.

    PubMed

    Bogaerts, P; Bohatier, J; Bonnemoy, F

    2001-07-01

    Cytotoxicity and quantitative structure-activity relationships of 13 inorganic and 21 organic substances were determined using three bioassays performed on the ciliated protozoan Tetrahymena pyriformis and the luminescent bacterium Vibrio fischeri. The best concordance of toxicity results was observed between the T. pyriformis FDA--esterase activity and population growth inhibition tests for the organic compounds. The sensitivity of these two assays is compared with that of the Microtox test. The T. pyriformis FDA test showed a high sensitivity is most cases. The aim of the current research was to determine whether the relative toxicity of metal ions and organic molecules, with these three bioassays, was predictable using three ion characteristics and hydrophobicity, respectively. For metal ions, the variable that best modeled the toxicity data obtained with the two T. pyriformis tests was the softness index [sigma(p), i.e., (coordinate bond energy of the metal fluoride--coordinate bond energy of the metal iodide)/(coordinate bond energy of the metal fluoride)]. No correlation was found with the Microtox test. For organic compounds, a significant correlation was observed between the hydrophobicity coefficient and the toxicity data. This correlation is closer with the two tests using Tetrahymena. Copyright 2001 Academic Press.

  17. Small molecule fluoride toxicity agonists.

    PubMed

    Nelson, James W; Plummer, Mark S; Blount, Kenneth F; Ames, Tyler D; Breaker, Ronald R

    2015-04-23

    Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here, we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Small Molecule Fluoride Toxicity Agonists

    PubMed Central

    Nelson1, James W.; Plummer, Mark S.; Blount, Kenneth F.; Ames, Tyler D.; Breaker, Ronald R.

    2015-01-01

    SUMMARY Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch-reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. PMID:25910244

  19. Purified terephthalic acid wastewater biodegradation and toxicity.

    PubMed

    Zhang, Xu-xiang; Wan, Yu-qiu; Cheng, Shu-pei; Sun, Shi-lei; Zhu, Cheng-jun; Li, Wei-xin; Zhang, Xiao-chun; Wang, Gui-lin; Lu, Jian-hua; Luo, Xiang; Gu, Ji-dong

    2005-01-01

    The biodegradation and toxicity of the purified terephthalic acid (PTA) processing wastewater was researched at NJYZ pilot with the fusant strain Fhhh in the carrier activated sludge process (CASP). Sludge loading rate (SLR) for Fhhh to COD of the wastewater was 1.09 d(-1) and to PTA in the wastewater was 0.29 d(-1). The results of bioassay at the pilot and calculation with software Ebis3 showed that the 48h-LC50 (median lethal concentration) to Daphnia magna for the PTA concentration in the wastewater was only 1/10 of that for the chemical PTA. There were 5 kinds of benzoate pollutants and their toxicities existing in the wastewater at least. The toxicity parameter value of the pure chemical PTA cannot be used to predicate the PTA wastewater toxicity. The toxicity of the NJYZ PTA wastewater will be discussed in detail in this paper.

  20. A relational learning approach to Structure-Activity Relationships in drug design toxicity studies.

    PubMed

    Camacho, Rui; Pereira, Max; Costa, Vítor Santos; Fonseca, Nuno A; Adriano, Carlos; Simões, Carlos J V; Brito, Rui M M

    2011-09-16

    It has been recognized that the development of new therapeutic drugs is a complex and expensive process. A large number of factors affect the activity in vivo of putative candidate molecules and the propensity for causing adverse and toxic effects is recognized as one of the major hurdles behind the current "target-rich, lead-poor" scenario. Structure-Activity Relationship (SAR) studies, using relational Machine Learning (ML) algorithms, have already been shown to be very useful in the complex process of rational drug design. Despite the ML successes, human expertise is still of the utmost importance in the drug development process. An iterative process and tight integration between the models developed by ML algorithms and the know-how of medicinal chemistry experts would be a very useful symbiotic approach. In this paper we describe a software tool that achieves that goal--iLogCHEM. The tool allows the use of Relational Learners in the task of identifying molecules or molecular fragments with potential to produce toxic effects, and thus help in stream-lining drug design in silico. It also allows the expert to guide the search for useful molecules without the need to know the details of the algorithms used. The models produced by the algorithms may be visualized using a graphical interface, that is of common use amongst researchers in structural biology and medicinal chemistry. The graphical interface enables the expert to provide feedback to the learning system. The developed tool has also facilities to handle the similarity bias typical of large chemical databases. For that purpose the user can filter out similar compounds when assembling a data set. Additionally, we propose ways of providing background knowledge for Relational Learners using the results of Graph Mining algorithms. Copyright 2011 The Author(s). Published by Journal of Integrative Bioinformatics.

  1. Mechanisms for regulating oxygen toxicity in phytophagous insects.

    PubMed

    Ahmad, S; Pardini, R S

    1990-01-01

    The antioxidant enzymatic defense of insects for the regulation of oxygen toxicity was investigated. Insect species examined were lepidopterous larvae of the cabbage looper (Trichoplusia ni), southern armyworm (Spodoptera eridania), and black swallowtail (Papilio polyxenes). These phytophagous species are subject to both endogenous and exogenous sources of oxidative stress from toxic oxygen radicals, hydrogen peroxide (H2O2) and lipid peroxides (LOOH). In general, the constitutive levels of the enzymes superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GT), and its peroxidase activity (GTpx), and glutathione reductase (GR), correlate well with natural feeding habits of these insects and their relative susceptibility to prooxidant plant allelochemicals, quercetin (a flavonoid), and xanthotoxin (a photoactive furanocoumarin). Induction of SOD activity which rapidly destroys superoxide radicals, appears to be the main response to dietary prooxidant exposure. A unique observation includes high constitutive activity of CAT and a broader subcellular distribution in all three insects than observed in most mammalian species. These attributes of CAT appear to be important in the prevention of excessive accumulation of cytotoxic H2O2. Unlike mammalian species, insects possess very low levels of a GPOX-like activity toward H2O2. Irrefutable proof that this activity is due to a selenium-dependent GPOX found in mammals, is lacking at this time. However, the activity of selenium-independent GTpx is unusually high in insects, suggesting that GTpx and not GPOX plays a prominent role in scavenging deleterious LOOHs. The GSSG generated from the GPOX and GTpx reactions may be reduced to GSH by GR activity. A key role of SOD in protecting insects from prooxidant toxicity was evident when its inhibition resulted in enhanced toxicity towards prooxidants. The role of antioxidant compounds in protecting these insects from toxic forms of oxygen has not been explored in

  2. Response of nitrogen metabolism to boron toxicity in tomato plants.

    PubMed

    Cervilla, L M; Blasco, B; Ríos, J J; Rosales, M A; Rubio-Wilhelmi, M M; Sánchez-Rodríguez, E; Romero, L; Ruiz, J M

    2009-09-01

    Boron (B) toxicity has become important in areas close to the Mediterranean Sea where intensive agriculture has been developed. The objective of this research was to study the effects of B toxicity (0.5 mM and 2.0 mM B) on nitrogen (N) assimilation of two tomato cultivars that are often used in these areas. Leaf biomass, relative leaf growth rate (RGR(L)), concentration of B, nitrate (NO(3) (-)), ammonium (NH(4) (+)), organic N, amino acids and soluble proteins, as well as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthase (GS), glutamate synthetase (GOGAT) and glutamate dehydrogenase (GDH) activities were analysed in leaves. Boron toxicity significantly decreased leaf biomass, RGR(L), organic N, soluble proteins, and NR and NiR activities. The lowest NO(3) (-) and NH(4) (+) concentration in leaves was recorded when plants were supplied with 2.0 mM B in the root medium. Total B, amino acids, activities of GS, GOGAT and GDH increased under B toxicity. Data from the present study prove that B toxicity causes inhibition of NO(3) (-) reduction and increases NH(4) (+) assimilation in tomato plants.

  3. Anticancer activities of emetine prodrugs that are proteolytically activated by the prostate specific antigen (PSA) and evaluation of in vivo toxicity of emetine derivatives.

    PubMed

    Akinboye, Emmanuel S; Rosen, Marc D; Bakare, Oladapo; Denmeade, Samuel R

    2017-12-15

    Emetine is a small molecule protein synthesis inhibitor that is toxic to all cell types and therefore suitable for complete killing of all types of heterogeneous cancer cells within a tumor. It becomes significantly inactive (non-toxic) when derivatized at its N-2' secondary amine. This provides a strategy for targeting emetine to cancerous tumor without killing normal cells. In this report, PSA activatable peptide prodrugs of emetine were synthesized. To overcome steric hindrances and enhance protease specific cleavage, a 2-stage prodrug activation process was needed to release emetine in cancer cells. In this 2-stage process, emetine prodrug intermediates are coupled to PSA peptide substrate (Ac-His-Ser-Ser-Lys-Leu-Gln) to obtain the full prodrug. Both prodrug intermediates 10 (Ala-Pro-PABC-Emetine) and 14 (Ser-Leu-PABC-Emetine) were evaluated for kinetics of hydrolysis to emetine and potency [Where PABC = p-aminobenzyloxycarbonyl]. While both intermediates quantitatively liberate emetine when incubated under appropriate conditions, upon coupling of PSA substrate to give the full prodrugs, only prodrug 16, the prodrug obtained from 14 was hydrolyzable by PSA. Cytotoxicity studies in PSA producing LNCaP and CWR22Rv1 confirm the activation of the prodrug by PSA with an IC 50 of 75 nM and 59 nM respectively. The cytotoxicity of 16 is significantly reduced in cell lines that do not produce PSA. Further, in vivo toxicity studies are done on these prodrugs and other derivatives of emetine. The results show the significance of conformational modulation in obtaining safe emetine prodrugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Use of recombinant human activated protein C in nonmenstrual staphylococcal toxic shock syndrome.

    PubMed

    Nasa, Prashant; Sehrawat, Deepak; Kansal, Sudha; Chawla, Rajesh

    2010-07-01

    Toxic shock syndrome (TSS) is a serious, potentially life-threatening condition resulting from an overwhelming immunological response to an exotoxin released by Staphylococcus aureus and group A streptococci. High index of suspicion, early diagnosis and aggressive therapeutic measures must be instituted in view of high mortality of the TSS. In recent years, new agents have been tested to reduce morbidity and mortality in patients with severe sepsis, in addition to standard supportive measures. Among them, recombinant human activated protein C (rhAPC) has been reported to significantly reduce mortality and morbidity in patients with severe sepsis and two or more acute organ failures. We describe our experience with this drug in the early reversal of septic shock from TSS.

  5. A novel toxic alkaloid from poison hemlock (Conium maculatum L., Apiaceae): identification, synthesis and antinociceptive activity.

    PubMed

    Radulović, Niko; Dorđević, Nevenka; Denić, Marija; Pinheiro, Mariana Martins Gomes; Fernandes, Patricia Dias; Boylan, Fabio

    2012-02-01

    2-Pentylpiperidine, named conmaculatin, a novel volatile alkaloid related to coniine was identified from the renowned toxic weed Conium maculatum L. (Apiaceae). The structure of conmaculatin was corroborated by synthesis (8 steps starting from cyclohexanol, overall yield 12%). Conmaculatin's strong peripheral and central antinociceptive activity in mice was observed in a narrow dose range (10-20mg/kg). It was found to be lethal in doses higher than 20mg/kg. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Phospholipase B activity and organophosphorus compound toxicity in cultured neural cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, David J.; Langford, Lynda; Barbour, Helen R.

    2007-03-15

    Organophosphorus compounds (OP) such as phenyl saligenin phosphate (PSP) and mipafox (MPX) which cause delayed neuropathy, inhibit neuropathy target esterase (NTE), while OPs such as paraoxon (PXN) react more readily with acetylcholinesterase. In yeast and mammalian cell lines, NTE has been shown to have phospholipase B (PLB) activity which deacylates intracellular phosphatidylcholine to glycerophosphocholine (GroPCho) and can be detected by metabolic labeling with [{sup 14}C]choline. Here we investigated PLB activity in primary cultures of mouse neural cells. In cortical and cerebellar granule neurons and astrocytes, [{sup 14}C]GroPCho labeling was inhibited by PSP and MPX: phenyl dipentylphosphinate (PDPP), a non-neuropathic NTEmore » inhibitor, was more potent, while PXN, was substantially less so. In all three cell types, conversion of [{sup 14}C]phosphatidylcholine to [{sup 14}C]GroPCho over 24 h was relatively small (2.3-14%). Consequently, even with > 80% inhibition of [{sup 14}C]GroPCho production, increased [{sup 14}C]phosphatidylcholine was not detected. At concentrations of 1-10 {mu}M, only PSP was cytotoxic to cortical and cerebellar granule neurons after 24-h exposure. Moreover, dramatic changes in glial cell morphology were induced by PSP, but not PDPP or MPX, with rapid (2-3 h) rounding up of astrocytes and of Schwann cells in cultures of dissociated mouse dorsal root ganglia. We conclude that PLB activity is present in a variety of cultured mouse neural cell types but that acute loss of this activity is not cytotoxic. Conversely, the rapid toxic effects of PSP in vitro suggest that a serine hydrolase distinct from NTE is required continuously by neurons and glia.« less

  7. REGARDING PFIESTERIA. (R827084)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Studies on the antimicrobial activity and brine shrimp toxicity of Zeyheria tuberculosa (Vell.) Bur. (Bignoniaceae) extracts and their main constituents

    PubMed Central

    Bastos, Maria Lysete A; Lima, Maria Raquel F; Conserva, Lucia M; Andrade, Vânia S; Rocha, Eliana MM; Lemos, Rosangela PL

    2009-01-01

    Background Due to the indiscriminate use of antimicrobial drugs, the emergence of human pathogenic microorganisms resistant to major classes of antibiotics has been increased and has caused many clinical problems in the treatment of infectious diseases. Thus, the aim of this study was to evaluate for the first time the in vitro antimicrobial activity and brine shrimp lethality of extracts and isolated compounds from Zeyheria tuberculosa (Vell.) Bur., a species used in Brazilian folk medicine for treatment of cancer and skin diseases. Methods Using the disc diffusion method, bioautography assay and brine shrimp toxicity test (Artemia salina Leach), we studied the antimicrobial activity and lethality of extracts and isolated compounds against three microorganisms strains, including Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria and yeasts (Candida albicans). Results In this study, the extracts inhibited S. aureus (8.0 ± 0.0 to 14.0 ± 0.0 mm) and C. albicans (15.3 ± 0.68 to 25.6 ± 0.4 mm) growth. In the brine shrimp test, only two of them showed toxic effects (LC50 29.55 to 398.05 μg/mL) and some extracts were non-toxic or showed weak lethality (LC50 705.02 to > 1000 μg/mL). From these extracts, four flavones [5,6,7,8-tetramethoxyflavone (1), 5,6,7-trimethoxyflavone (2), 4'-hydroxy-5,6,7,8-tetramethoxyflavone (3), and 4'-hydroxy-5,6,7-trimethoxyflavone (4)] were isolated through bioassay-guided fractionation and identified based on the 1D and 2D NMR spectral data. By bioautography assays, compounds 1 [S. aureus (16.0 ± 0.0 mm) and C. albicans (20.0 ± 0.0 mm)] and 3 [S. aureus (10.3 ± 0.6 mm) and C. albicans (19.7 ± 0.6 mm)] inhibited both microorganisms while 2 inhibited only S. aureus (11.7 ± 0.6 mm). Compound 4 did not restrain the growth of any tested microorganism. Conclusion Our results showed that extracts and isolated flavones from Z. tuberculosa may be particularly useful against two pathogenic

  9. JS-K, a GST-activated nitric oxide donor prodrug, enhances chemo-sensitivity in renal carcinoma cells and prevents cardiac myocytes toxicity induced by Doxorubicin.

    PubMed

    Qiu, Mingning; Ke, Longzhi; Zhang, Sai; Zeng, Xin; Fang, Zesong; Liu, Jianjun

    2017-08-01

    Doxorubicin, a highly effective and widely used anthracycline antibiotic in multiple chemotherapy regimens, has been limited by its cardiotoxicity. The aim of this study is to investigate the effect of nitric oxide donor prodrug JS-K on proliferation and apoptosis in renal carcinoma cells and cardiac myocytes toxicity induced by Doxorubicin and to explore possible p53-related mechanism in renal carcinoma cells. The effect of JS-K on anti-cancer activity of Doxorubicin was investigated in renal carcinoma cells via detecting cell proliferation, cytotoxicity, cell death and apoptosis and expressions of apoptotic-related proteins. Effect of p53 on the combination of JS-K and Doxorubicin was determined using p53 inhibitor Pifithrin-α and p53 activator III. Furthermore, the effect of JS-K on cardiac myocytes toxicity of Doxorubicin was investigated in H9c2 (2-1) cardiac myocytes via measuring cell growth, cell death and apoptosis, expressions of proteins involved in apoptosis and intracellular reactive oxygen species. We demonstrated that JS-K could increase Doxorubicin-induced renal carcinoma cell growth suppression and apoptosis and could increase expressions of proteins that are involved in apoptosis. Additionally, Pifithrin-α reversed the promoting effect of JS-K on Doxorubicin-induced renal carcinoma cell apoptosis; conversely, the p53 activator III exacerbated the promoting effect of JS-K on Doxorubicin-induced renal carcinoma cell apoptosis. Furthermore, JS-K protected H9c2 (2-1) cardiac myocytes against Doxorubicin-induced toxicity and decreased Doxorubicin-induced reactive oxygen species production. JS-K enhances the anti-cancer activity of Doxorubicin in renal carcinoma cells by upregulating p53 expression and prevents cardiac myocytes toxicity of Doxorubicin by decreasing oxidative stress.

  10. Modulation of the biological activities of meningococcal endotoxins by association with outer membrane proteins is not inevitably linked to toxicity.

    PubMed Central

    Quakyi, E K; Hochstein, H D; Tsai, C M

    1997-01-01

    Meningococcal sepsis results partly from overproduction of host cytokines after macrophages interact with endotoxin. To obtain less toxic and highly immunomodulatory meningococcal endotoxins for prophylactic purposes, we investigated the relationship between endotoxicity and immunomodulatory activity of several endotoxin preparations from Neisseria meningitidis group B. Using the D-galactosamine-sensitized mouse model to determine endotoxin lethality, we found that the toxicity of purified lipooligosaccharide (LOS) from M986, a group B disease strain, was three to four times higher than those of purified LOSs from the noncapsulated strains M986-NCV-1 and OP-, the truncated-LOS mutant. The LOSs of outer membrane vesicles (OMVs) and detergent-treated OMVs (D-OMVs) from the three strains were 2 to 3 and over 300 times less toxic than the purified LOSs, respectively. Intraperitoneal administration of these preparations induced production of tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6) in serum 2 h after injections. However, repeated doses of low- and high-toxicity preparations induced lower amounts of TNF-alpha and IL-6, i.e., LOS tolerance. Injection of mice with low doses of LOS was as effective as injection with high doses in inducing tolerance. Peritoneal macrophages from tolerant mice pretreated with either high- or low-toxicity LOS preparations produced only a fraction of the amounts of TNF-alpha and IL-6 produced by control groups in response to LOS ex vivo. Despite tolerance to LOS induced by pretreatment with reduced-toxicity preparations, killing of N. meningitidis M986 by macrophages from these animals was enhanced. Protection was achieved when mice treated with LOS, and especially that of D-OMVs, were challenged with live N. meningitidis. The least toxic LOS, that in D-OMVs, was most effective in inducing hyporesponsiveness to endotoxin in mice but protected them against challenge with N. meningitidis. No inevitable link between toxicity

  11. Interactions of cisplatin with non-DNA targets and their influence on anticancer activity and drug toxicity: the complex world of the platinum complex.

    PubMed

    Mezencev, Roman

    2015-01-01

    Since the discovery of its anticancer activity in 1970s, cisplatin and its analogs have become widely used in clinical practice, being administered to 40-80% of patients undergoing chemotherapy for solid tumors. The fascinating story of this drug continues to evolve presently, which includes advances in our understanding of complexity of molecular mechanisms involved in its anticancer activity and drug toxicity. While genomic DNA has been generally recognized as the most critical pharmacological target of cisplatin, the results reported across multiple disciplines suggest that other targets and molecular interactions are likely involved in the anticancer mode of action, drug toxicity and resistance of cancer cells to this remarkable anticancer drug. This article reviews interactions of cisplatin with non-DNA targets, including RNAs, proteins, phospholipids and carbohydrates in the context of its pharmacological activity and drug toxicity. Some of these non-DNA targets and associated mechanisms likely act in a highly concerted manner towards the biological outcome in cisplatin-treated tumors; therefore, the understanding of complexity of cisplatin interactome may open new avenues for modulation of its clinical efficacy or for designing more efficient platinum-based anticancer drugs to reproduce the success of cisplatin in the treatment of highly curable testicular germ cell tumors in its therapeutic applications to other cancers.

  12. Environmental toxicants and male reproductive function

    PubMed Central

    Wong, Elissa W.P; Lie, Pearl P.Y; Li, Michelle W.M; Su, Linlin; Siu, Erica R; Yan, Helen H.N; Mannu, Jayakanthan; Mathur, Premendu P; Bonanomi, Michele; Silvestrini, Bruno; Mruk, Dolores D

    2011-01-01

    Environmental toxicants, such as cadmium and bisphenol A (BPA) are endocrine disruptors. In utero, perinatal or neonatal exposure of BPA to rats affect the male reproductive function, such as the blood-testis barrier (BTB) integrity. This effect of BPA on BTB integrity in immature rats is likely mediated via a loss of gap junction function at the BTB, failing to coordinate tight junction and anchoring junction function at the site to maintain the immunological barrier integrity. This in turn activates the extracellular signal-regulated kinases 1/2 (Erk1/2) downstream and an increase in protein endocytosis, destabilizing the BTB. The cadmium-induced disruption of testicular dysfunction is mediated initially via its effects on the occludin/ZO-1/focal adhesion kinase (FAK) complex at the BTB, causing redistribution of proteins at the Sertoli-Sertoli cell interface, leading to the BTB disruption. The damaging effects of these toxicants to testicular function are mediated by mitogen-activated protein kinases (MAPK) downstream, which in turn perturbs the actin bundling and accelerates the actin-branching activity, causing disruption of the Sertoli cell tight junction (TJ)-barrier function at the BTB and perturbing spermatid adhesion at the apical ectoplasmic specialization (apical ES, a testis-specific anchoring junction type) that leads to premature release of germ cells from the testis. However, the use of specific inhibitors against MAPK was shown to block or delay the cadmium-induced testicular injury, such as BTB disruption and germ cell loss. These findings suggest that there may be a common downstream p38 and/or Erk1/2 MAPK-based signaling pathway involving polarity proteins and actin regulators that is shared between different toxicants that induce male reproductive dysfunction. As such, the use of inhibitors and/or antagonists against specific MAPKs can possibly be used to “manage” the illnesses caused by these toxicants and/or “protect” industrial

  13. A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity

    PubMed Central

    Xiong, Rui; Zhou, Wenbo; Siegel, David; Kitson, Russell R. A.; Freed, Curt R.; Moody, Christopher J.

    2015-01-01

    A potential cause of neurodegenerative diseases, including Parkinson’s disease (PD), is protein misfolding and aggregation that in turn leads to neurotoxicity. Targeting Hsp90 is an attractive strategy to halt neurodegenerative diseases, and benzoquinone ansamycin (BQA) Hsp90 inhibitors such as geldanamycin (GA) and 17-(allylamino)-17-demethoxygeldanamycin have been shown to be beneficial in mutant A53T α-synuclein PD models. However, current BQA inhibitors result in off-target toxicities via redox cycling and/or arylation of nucleophiles at the C19 position. We developed novel 19-substituted BQA (19BQA) as a means to prevent arylation. In this study, our data demonstrated that 19-phenyl-GA, a lead 19BQA in the GA series, was redox stable and exhibited little toxicity relative to its parent quinone GA in human dopaminergic SH-SY5Y cells as examined by oxygen consumption, trypan blue, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), and apoptosis assays. Meanwhile, 19-phenyl-GA retained the ability to induce autophagy and potentially protective heat shock proteins (HSPs) such as Hsp70 and Hsp27. We found that transduction of A53T, but not wild type (WT) α-synuclein, induced toxicity in SH-SY5Y cells. 19-Phenyl-GA decreased oligomer formation and toxicity of A53T α-synuclein in transduced cells. Mechanistic studies indicated that mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase signaling was activated by A53T but not WT α-synuclein, and 19-phenyl-GA decreased mTOR activation that may be associated with A53T α-synuclein toxicity. In summary, our results indicate that 19BQAs such as 19-phenyl-GA may provide a means to modulate protein-handling systems including HSPs and autophagy, thereby reducing the aggregation and toxicity of proteins such as mutant A53T α-synuclein. PMID:26405178

  14. Mitochondrial Toxicity Studied with the PBMC of Children from the Chinese National Pediatric Highly Active Antiretroviral Therapy Cohort

    PubMed Central

    Liu, Daojie; Yin, Jiming; Qiao, Luxin; Shi, Ying; Dong, Yaowu; Li, Ning; Zhang, Fujie; Chen, Dexi

    2013-01-01

    As the backbone of highly active antiretroviral therapy (HAART), nucleoside reverse transcriptase inhibitors (NRTIs) have effectively improved outcomes for HIV-infected patients. However, long-term treatment with NRTIs can cause a series of pathologies associated with mitochondrial toxicity. To date, the status and mechanism of mitochondrial toxicity induced by NRTIs are still not clear, especially in HIV-infected children. As part of the national pediatric HAART program in China, our study focused on mitochondrial toxicity and its potential mechanism in HIV-1-infected children who were divided into two groups based on their duration of treatment with NRTIs: one group received treatment for less than 36 months and one group was treated for 36 to 72 months. The control group comprised age-matched non-HIV-infected children. Blood lactic acid and ATP levels in peripheral blood mononuclear cells (PBMCs) were measured to evaluate mitochondrial function, and mtDNA copies and mutations in PBMCs were determined for detecting mtDNA lesions. Simultaneously, TK2 and P53R2 gene expression in PBMC was measured. As compared with the control group, blood lactic acid levels in both NRTI treatment groups were significantly higher, whereas ATP levels and mtDNA mutation rates in PBMCs did not differ between the control and the two NRTI treatment groups. Both NRTI treatment groups exhibited significant mtDNA loss. N Moreover, we found that P53R2 mRNA expression and protein levels were significantly reduced in both treatment groups and that TK2 mRNA expression and protein levels were induced in the long-term NRTI treatment group. These results suggest that mitochondrial toxicity occurs in long-term HAART patients and that P53R2 and TK2 levels in PBMCs are useful biomarkers for detecting mitochondrial toxicity in patients on long-term treatment with NRTIs. PMID:23468942

  15. Percutaneous penetration, melanin activation and toxicity evaluation of a phytotherapic formulation for vitiligo therapeutic.

    PubMed

    Truite, Cecília Valente Rodrigues; Philippsen, Gisele Strieder; Ueda-Nakamura, Tânia; Natali, Maria Raquel Marçal; Dias Filho, Benedito Prado; Bento, Antonio Carlos; Baesso, Mauro Luciano; Nakamura, Celso Vataru

    2007-01-01

    The aim of this work was to apply photoacoustic spectroscopy for the ex vivo determination of the penetration rate of a phytotherapic formulation for vitiligo therapeutic, with or without salicylic acid as the promoter agent. In addition, the compound toxicity and morphophysiology effects were evaluated for different concentrations of salicylic acid. The experiments were performed as a function of the period of time of treatment in a well-controlled group of rabbits. Toxic effects were not observed with any of the tested products. All formulations containing salicylic acid induced cutaneous reaction which was dose dependent. The histological analysis showed that the use of the medication was associated with an increased comedogenic effect in relation to the control group, regardless of salicylic acid concentration. Inflammatory reactions and acanthosis were observed only in the animals treated with formulations containing higher concentrations of salicylic acid, while none of these effects were detected with the use of the formulation containing 2.5% (wt/vol) of salicylic acid. Photoacoustic depth monitoring showed that both formulations, with or without salicylic acid, propagated through the skin up to the melanocytes region, suggesting that the transport of the active agent may occur through the epithelial structure without the need of using queratinolitic substances, which are known to induce side effects in the animals.

  16. IDENTICAL RIBOSOMAL DNA SEQUENCE DATA FROM PFIESTERIA PISCICIDA (DINOPHYCEAE) ISOLATES WITH DIFFERENT TOXICITY PHENOTYPES. (R827084)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  17. Evaluation of acute and subacute toxicity and mutagenic activity of the aqueous extract of pecan shells [Carya illinoinensis (Wangenh.) K. Koch].

    PubMed

    Porto, Luiz Carlos Santos; da Silva, Juliana; Ferraz, Alexandre de Barros Falcão; Corrêa, Dione Silva; dos Santos, Marcela Silva; Porto, Caroline Dalla Lana; Picada, Jaqueline Nascimento

    2013-09-01

    The infusion of pecan shells has been used to prevent and control hypercholesterolemia, diabetes and toxicological diseases. The aim of the present study was to evaluate toxicity and mutagenic effects of pecan shells aqueous extract (PSAE). Wistar rats were treated with a single dose of 300 or 2000 mg/kg of PSAE in the acute toxicity test. For the subacute test, the animals received 10 or 100 mg/kg of PSAE for 28 days. The mutagenicity was evaluated using Salmonella/microsome assay in TA1535, TA1537, TA98, TA100 and TA102 S. typhimurium strains in the presence and absence of metabolic activation (S9 mix) and micronucleus test in bone marrow. HPLC analyses indicated the presence of tannins, flavonoids, gallic and ellagic acids. Except for triglycerides, all treated groups presented normal hematological and biochemical parameters. Lower levels of triglycerides and weight loss were observed in the 100 mg/kg group. Mutagenic activities were not detected in S. typhimurium strains and by the micronucleus test. Based on these results, PSAE was not able to induce chromosomal or point mutations, under the conditions tested. The 100mg/kg dose showed significant antihyperlipidemic action, with no severe toxic effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Toxicity assessment on combined biological treatment of pharmaceutical industry effluents.

    PubMed

    Inanc, B; Calli, B; Alp, K; Ciner, F; Mertoglu, B; Ozturk, I

    2002-01-01

    This paper describes the wastewater characterization and aerobic/anaerobic treatability (oxygen uptake rate and biogas production measurement) of chemical-synthesis based pharmaceutical industry effluents in a nearby baker's yeast industry treatment plant. Preliminary experiments by the industry had indicated strong anaerobic toxicity. On the other hand, aerobic treatability was also uncertain due to complexity and unknown composition of the wastewater. The work in this study has indicated that the effluents of the pharmaceutical industry can be treated without toxicity in the aerobic stage of the treatment plant. Methanogenic activity tests with anaerobic sludge from the anaerobic treatment stage of the wastewater treatment plant and acetate as substrate have confirmed the strong toxicity, while showing that 30 min aeration or coagulation with an alum dose of 300 mg/l is sufficient for reducing the toxicity almost completely. Powdered activated carbon, lime and ferric chloride (100-1,000 mg/l) had no effect on reduction of the toxicity. Consequently, the pharmaceutical industry was recommended to treat its effluents in the anaerobic stage of the nearby baker's yeast industry wastewater treatment plan at which there will be no VOC emission and toxicity problem, provided that pretreatment is done.

  19. PHOTOACTIVATED TOXICITY IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Most aquatic organisms have evolved mechanisms to minimize damage by ultraviolet (UV) radiation. Many terrestrial species have additionally had to adapt to plant compounds (e.g. furanocoumarins) that are extremely toxic when activated by UV radiation. Over evolutionary time, it i...

  20. Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe).

    PubMed

    Seo, Seon-Mi; Kim, Junheon; Kang, Jaesoon; Koh, Sang-Hyun; Ahn, Young-Joon; Kang, Kyu-Suk; Park, Il-Kwon

    2014-07-01

    This study investigated the fumigant toxicity of 4 Asteraceae plant essential oils and their constituents against the Japanese termite Reticulitermes speratus Kolbe. Fumigant toxicity varied with plant essential oils or constituents, exposure time, and concentration. Among the tested essential oils, those from Chamaemelum nobile exhibited the strongest fumigant toxicity, followed by those from Santolina chamaecyparissus, Ormenis multicaulis, and Eriocephalus punctulatus at 2 days after treatment. In all, 15, 24, 19, and 9 compounds were identified in the essential oils from C. nobile, E. punctulatus, O. multicaulis, and S. chamaecyparissus, respectively, by using gas chromatography, gas chromatography-mass spectrometry, or open-column chromatography. The identified compounds were tested individually for their fumigant toxicity against Japanese termites. Among the test compounds, trans-pinocarveol, caryophyllene oxide, sabinene hydrate, and santolina alcohol showed strong fumigant toxicity against Japanese termites. Acetylcholinesterase (AChE) inhibition activity of the identified compounds from C. nobile, E. punctulatus, O. multicaulis, and S. chamaecyparissus essential oils were tested to determine the mode of their action. The IC50 values of (+)-α-pinene, (-)-limonene, (-)-α-pinene, β-pinene, and β-phellandrene against Japanese termite AChE were 0.03, 0.13, 0.41, 0.42, and 0.67mg/mL, respectively. Further studies are warranted to determine the potential of these essential oils and their constituents as fumigants for termite control. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. The Role of Intestinal Microbiota in Development of Irinotecan Toxicity and in Toxicity Reduction through Dietary Fibres in Rats

    PubMed Central

    Lin, Xiaoxi B.; Farhangfar, Arazm; Valcheva, Rosica; Sawyer, Michael B.; Dieleman, Levinus; Schieber, Andreas; Gänzle, Michael G.; Baracos, Vickie

    2014-01-01

    CPT-11 is a drug used as chemotherapy for colorectal cancer. CPT-11 causes toxic side-effects in patients. CPT-11 toxicity has been attributed to the activity of intestinal microbiota, however, intestinal microbiota may also have protective effects in CP!-11 chemotherapy. This study aimed to elucidate mechanisms through which microbiota and dietary fibres could modify host health. Rats bearing a Ward colon carcinoma were treated with a two-cycle CPT-11/5-fluorouracil therapy recapitulating clinical therapy of colorectal cancer. Animals were fed with a semi-purified diet or a semi-purified diet was supplemented with non-digestible carbohydrates (isomalto-oligosaccharides, resistant starch, fructo-oligosaccharides, or inulin) in 3 independent experiments. Changes in intestinal microbiota, bacteria translocating to mesenteric lymphnodes, cecal GUD activity, and cecal SCFA production, and the intestinal concentration of CPT-11 and its metabolites were analysed. Non-digestible carbohydrates significantly influenced feed intake, body weight and other indicators of animal health. The identification of translocating bacteria and their quantification in cecal microbiota indicated that overgrowth of the intestine by opportunistic pathogens was not a major contributor to CPT-11 toxicity. Remarkably, fecal GUD activity positively correlated to body weight and feed intake but negatively correlated to cecal SN-38 concentrations and IL1-β. The reduction in CPT-11 toxicity by non-digestible carbohydrates did not correlate to stimulation of specific bacterial taxa. However, cecal butyrate concentrations and feed intake were highly correlated. The protective role of intestinal butyrate production was substantiated by a positive correlation of the host expression of MCT1 (monocarboxylate transporter 1) with body weight as well as a positive correlation of the abundance of bacterial butyryl-CoA gene with cecal butyrate concentrations. These correlations support the interpretation

  2. First Evidence of Altererythrobacter sp. LY02 with Indirect Algicidal Activity on the Toxic Dinoflagellate, Alexandrium tamarense.

    PubMed

    Li, Yi; Liu, Lei; Xu, Yanting; Guan, Chengwei; Lei, Xueqian; Zheng, Wei; Wang, Hailei; Zheng, Tianling

    2016-10-01

    Alexandrium tamarense is a toxic harmful algal blooms (HABs) causing species, which poses great threat to human health and marine economy. In this study, we isolated an algicidal bacterium Altererythrobacter sp. LY02 towards to A. tamarense and later investigated the algicidal activity, algicidal mode, characteristics of algicidal active substance and algicidal procedure. The results indicated that the cell-free filtrate of strain LY02 showed high algicidal effect on algal growth, however, bacterial cells almost lost algicidal activity. The algicidal active substance was temperature- and pH-stability, and its molecular weight was less than 1000 Da, and was a non-proteinaceous material or non-polysaccharide, mid-polar substance. Under the algicidal effect of active substance, the morphology and structure of A. tamarense cells were seriously damaged as well as organelles. Our study confirmed that the algicidal active substance could be used as an excellent bio-agent for controlling HABs caused by A. tamarense.

  3. Acute lethal toxicity of environmental pollutants to aquatic organisms.

    PubMed

    Yen, Jui-Hung; Lin, Kuo-Hsiung; Wang, Yei-Shung

    2002-06-01

    The acute lethal toxicity of environment pollutants including chlorophenol, haloalkane, quinone, and substituted nitrobenzene (i.e., nitrophenol, nitrobenzene, nitrotoluene, and aniline) compounds to aquatic organisms was determined. Determination of toxicity of chemicals was performed with chlorella, daphnia, carp, and tilapia. The toxicity of chlorophenols had no relation to the number of chlorine atoms on the benzene ring, but monochlorophenol had lower activity than more chlorine-substituted compounds. The tolerance levels of daphnia and carp to haloalkanes was found to be higher than that of chlorella; toxicity to chlorella was several hundred times higher than to daphnia. The toxicity of naphthoquinone compounds to chlorella and carp was higher than that of anthraquinone. A compound with a monochloride substitution on anthraquinone ring was less toxic to carp than those substituted with amine, hydroxyl, and dichlorine groups. Nitrobenzene compounds with an additional substitution group on the p position were extremely toxic to daphnia and carp. (c) 2002 Elsevier Science (USA).

  4. Assessing Aromatic-Hydrocarbon Toxicity to Fish Early Life Stages Using Passive-Dosing Methods and Target-Lipid and Chemical-Activity Models.

    PubMed

    Butler, Josh D; Parkerton, Thomas F; Redman, Aaron D; Letinski, Daniel J; Cooper, Keith R

    2016-08-02

    Aromatic hydrocarbons (AH) are known to impair fish early life stages (ELS). However, poorly defined exposures often confound ELS-test interpretation. Passive dosing (PD) overcomes these challenges by delivering consistent, controlled exposures. The objectives of this study were to apply PD to obtain 5 d acute embryo lethality and developmental data and 30 d chronic embryo-larval survival and growth-effects data using zebrafish with different AHs; to analyze study and literature toxicity data using target-lipid (TLM) and chemical-activity (CA) models; and to extend PD to a mixture and test the assumption of AH additivity. PD maintained targeted exposures over a concentration range of 6 orders of magnitude. AH toxicity increased with log Kow up to pyrene (5.2). Pericardial edema was the most sensitive sublethal effect that often preceded embryo mortality, although some AHs did not produce developmental effects at concentrations causing mortality. Cumulative embryo-larval mortality was more sensitive than larval growth, with acute-to-chronic ratios of <10. More-hydrophobic AHs did not exhibit toxicity at aqueous saturation. The relationship and utility of the TLM-CA models for characterizing fish ELS toxicity is discussed. Application of these models indicated that concentration addition provided a conservative basis for predicting ELS effects for the mixture investigated.

  5. Use of recombinant human activated protein C in nonmenstrual staphylococcal toxic shock syndrome

    PubMed Central

    Nasa, Prashant; Sehrawat, Deepak; kansal, Sudha; Chawla, Rajesh

    2010-01-01

    Toxic shock syndrome (TSS) is a serious, potentially life-threatening condition resulting from an overwhelming immunological response to an exotoxin released by Staphylococcus aureus and group A streptococci. High index of suspicion, early diagnosis and aggressive therapeutic measures must be instituted in view of high mortality of the TSS. In recent years, new agents have been tested to reduce morbidity and mortality in patients with severe sepsis, in addition to standard supportive measures. Among them, recombinant human activated protein C (rhAPC) has been reported to significantly reduce mortality and morbidity in patients with severe sepsis and two or more acute organ failures. We describe our experience with this drug in the early reversal of septic shock from TSS. PMID:21253349

  6. Toxic Encephalopathy

    PubMed Central

    Kim, Jae Woo

    2012-01-01

    This article schematically reviews the clinical features, diagnostic approaches to, and toxicological implications of toxic encephalopathy. The review will focus on the most significant occupational causes of toxic encephalopathy. Chronic toxic encephalopathy, cerebellar syndrome, parkinsonism, and vascular encephalopathy are commonly encountered clinical syndromes of toxic encephalopathy. Few neurotoxins cause patients to present with pathognomonic neurological syndromes. The symptoms and signs of toxic encephalopathy may be mimicked by many psychiatric, metabolic, inflammatory, neoplastic, and degenerative diseases of the nervous system. Thus, the importance of good history-taking that considers exposure and a comprehensive neurological examination cannot be overemphasized in the diagnosis of toxic encephalopathy. Neuropsychological testing and neuroimaging typically play ancillary roles. The recognition of toxic encephalopathy is important because the correct diagnosis of occupational disease can prevent others (e.g., workers at the same worksite) from further harm by reducing their exposure to the toxin, and also often provides some indication of prognosis. Physicians must therefore be aware of the typical signs and symptoms of toxic encephalopathy, and close collaborations between neurologists and occupational physicians are needed to determine whether neurological disorders are related to occupational neurotoxin exposure. PMID:23251840

  7. Determination of water quality, toxicity and estrogenic activity in a nearshore marine environment in Rio de Janeiro, Southeastern Brazil.

    PubMed

    do Nascimento, Marilia Teresa Lima; Santos, Ana Dalva de Oliveira; Felix, Louise Cruz; Gomes, Giselle; de Oliveira E Sá, Mariana; da Cunha, Danieli Lima; Vieira, Natividade; Hauser-Davis, Rachel Ann; Baptista Neto, José Antonio; Bila, Daniele Maia

    2018-03-01

    Endocrine disrupting compounds (EDCs) can be found in domestic sewage, wastewater treatment plant effluents, natural water, rivers, lakes and in the marine environment. Jurujuba Sound, located in the state of Rio de Janeiro, Southeastern Brazil, receives untreated sewage into its waters, one the main sources of aquatic contamination in this area. In this context, the aim of the present study was to evaluate the estrogenic potential of water sampled from different depths and from areas with differential contamination levels throughout Jurujuba Sound. Water quality was evaluated and acute toxicity assays using Allviibrio fischeri were conducted, while estrogenic activity of the water samples was determined by a Yeast Estrogen Screening assay (YES). Water quality was mostly within the limits established for marine waters by the Brazilian legislation, with only DOC and ammoniacal nitrogen levels above the maximum permissible limits. No acute toxicity effects were observed in the Allivibrio fisheri assay. The YES assay detected moderate estrogenic activity in bottom water samples from 3 sampling stations, ranging from 0.5 to 3.2ngL -1 , as well as in one surface water sample. Estrogenic activity was most frequently observed in samples from the bottom of the water column, indicating adsorption of estrogenic compounds to the sediment. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dual effects of N-acetyl-L-cysteine dependent on NQO1 activity: Suppressive or promotive of 9,10-phenanthrenequinone-induced toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyooka, Tatsushi; Shinmen, Takuya; Aarts, Jac M.M.J.G.

    2012-11-01

    A typical antioxidant, N-acetyl-L-cysteine (NAC) generally protects cells from oxidative damage induced by reactive oxygen species (ROS). 9,10-Phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust particles, produces ROS in redox cycling following two-electron reduction by NAD(P)H:quinone oxidoreductase 1 (NQO1), which has been considered as a cause of its cyto- and genotoxicity. In this study, we show that NAC unexpectedly augments the toxicity of 9,10-PQ in cells with low NQO1 activity. In four human skin cell lines, the expression and the activity of NQO1 were lower than in human adenocarcinoma cell lines, A549 and MCF7. In the skin cells, the cytotoxicitymore » of 9,10-PQ was significantly enhanced by addition of NAC. The formation of DNA double strand breaks accompanying phosphorylation of histone H2AX, was also remarkably augmented. On the other hand, the cyto- and genotoxicity were suppressed by addition of NAC in the adenocarcinoma cells. Two contrasting experiments: overexpression of NQO1 in CHO-K1 cells which originally expressed low NQO1 levels, and knock‐down of NQO1 in the adenocarcinoma cell line A549 by transfection of RNAi, also showed that NAC suppressed 9,10-PQ-induced toxicity in cell lines expressing high NQO1 activity and enhanced it in cell lines with low NQO1 activity. The results suggested that dual effects of NAC on the cyto- and genotoxicity of 9,10-PQ were dependent on tissue-specific NQO1 activity. -- Highlights: ► NAC augmented the cytotoxicity of 9,10-PQ in skin cell lines. ► 9,10-PQ-induced DSBs accompanying γ-H2AX were also augmented by NAC. ► NAC suppressed the cyto- and genotoxicity of 9,10-PQ in adenocarcinoma cell lines. ► The dual effects of NAC on toxicity of 9,10-PQ were dependent on NQO1 activity.« less

  9. Toxic effects of ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate on soil enzyme activity and soil microbial community diversity.

    PubMed

    Sun, Xi; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Su, Benying; Liu, Tong; Zhang, Cheng; Gao, Chong; Shao, Yuting

    2017-01-01

    Ionic liquids (ILs) were considered as "green" solvents and have been used widely because of their excellent properties. But ILs are not as "green" as has been suggested, and the toxic effects of ILs on organisms have been shown in recent years. In the present study, the toxic effects of the IL 1-octyl-3-methylimidazolium tetrafluoroborate ([Omim]BF 4 ) on soil enzyme activity and soil microbial communities at three different concentrations (1.0, 5.0 and 10.0mg/kg) and a control treatment over 40 days of incubation time (sampled on days 10, 20, 30 and 40) were examined under laboratory conditions. The concentrations of [Omim]BF 4 in soils were detected by high performance liquid chromatography (HPLC) and the results indicated that [Omim]BF 4 were maintained stable in the soil during the exposure period. However, the enzyme activity results showed that urease activity was stimulated on day 20 and then decreased after 30 days of incubation. The activity of β-glucosidase was stimulated after 20 days of incubation in both treatment groups. Moreover, both dehydrogenase and acid phosphatase were inhibited at a high level (10.0mg/kg) only on day 20. The analysis of terminal restriction fragment length polymorphism (T-RFLP) revealed that the soil microbial community structures were altered by [Omim]BF 4 and that the soil microbial diversity and evenness of high levels (5.0mg/kg and 10.0mg/kg) treatments were decreased. Moreover, the dominant structure of the microbial communities was not changed by [Omim]BF 4 . Furthermore, the abundance of the ammonia monooxygenase (amoA) genes of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) was examined using real time polymerase chain reaction (RT-PCR). The results revealed that the copy numbers of the amoA-gene were decreased by [Omim]BF 4 with the 5.0 and 10.0mg/kg treatments. Based on the experiment, we concluded that high levels (5.0 and 10.0mg/kg) of [Omim]BF 4 could have significantly toxic effects on

  10. Structure-Activity Relationship Studies on Derivatives of Eudesmanolides from Inula Helenium as Toxicants against Aedes Aegypti Larvae and Adults

    DTIC Science & Technology

    2010-01-01

    flavonoids , sesquiterpenoids, and triterpenoids, among others, were CHEMISTRY & BIODIVERSITY – Vol. 7 (2010)1682 Table 1. Larvicidal Activities of Various...Gainesville, FL 32608, USA c) Department of Chemistry , Louisiana State University, Baton Rouge, Louisiana 70803, USA AnAedes aegypti larval toxicity...bioassay was performed on compounds representing many classes of natural compounds including polyacetylenes, phytosterols, flavonoids

  11. Nitric oxide overcomes Cd and Cu toxicity in in vitro-grown tobacco plants through increasing contents and activities of rubisco and rubisco activase.

    PubMed

    Khairy, Alaaldin Idris H; Oh, Mi Jeong; Lee, Seung Min; Kim, Da Som; Roh, Kwang Soo

    2016-06-01

    Toxic heavy metals such as cadmium (Cd) and copper (Cu) are global problems that are a growing threat to the environment. Despite some heavy metals are required for plant growth and development, others are considered toxic elements and do not play any known physiological role in plant cells. Elevated doses of Cd or Cu cause toxicity in plants and generate damages due to the stress condition and eventually cause a significant reduction in quantity and quality of crop plants. The nitric oxide (NO) donor sodium nitroprusside (SNP) is reported to alleviate the toxicity of some heavy metals like Cd and Cu. In the current study, the role of NO in alleviating stresses of Cd and Cu was investigated in in vitro -grown tobacco ( Nicotiana tabacum ) Based on plant growth, total chlorophyll contents, contents and activities of rubisco and rubisco activase. According to the results of this study, the growth and total chlorophyll contents of Cd/Cu stressed plants were hugely decreased in the absence of SNP, while the supplementation of SNP resulted in a significant increase of both fresh weight and total chlorophyll contents. Remarkable reductions of Rubisco and rubisco activase contents and activities were observed in Cd and Cu-induced plants. SNP supplementation showed the highest contents and activities of rubisco and rubisco activase compared to the control and Cu/Cd-stressed plants. Taken together, our findings suggest that SNP could play a protective role in regulation of plant responses to abiotic stresses such as Cd and Cu by enhancing Rubisco and Rubisco activase.

  12. Overview of T.E.S.T. (Toxicity Estimation Software Tool)

    EPA Science Inventory

    This talk provides an overview of T.E.S.T. (Toxicity Estimation Software Tool). T.E.S.T. predicts toxicity values and physical properties using a variety of different QSAR (quantitative structure activity relationship) approaches including hierarchical clustering, group contribut...

  13. Removal of toxic zinc from water/wastewater using eucalyptus seeds activated carbon: non-linear regression analysis.

    PubMed

    Senthil Kumar, Ponnusamy; Saravanan, Anbalagan; Anish Kumar, Kodyingil; Yashwanth, Ramesh; Visvesh, Sridharan

    2016-08-01

    In the present study, a novel activated carbon was prepared from low-cost eucalyptus seeds, which was utilised for the effectively removal of toxic zinc from the water/wastewater. The prepared adsorbent was studied by Fourier transform infrared spectroscopy and scanning electron microscopic characterisation studies. Adsorption process was experimentally performed for optimising the influencing factors such as adsorbent dosage, solution pH, contact time, initial zinc concentration, and temperature for the maximum removal of zinc from aqueous solution. Adsorption isotherm of zinc removal was ensued Freundlich model, and the kinetic model ensued pseudo-second order model. Langmuir monolayer adsorption capacity of the adsorbent for zinc removal was evaluated as 80.37 mg/g. The results of the thermodynamic studies suggested that the adsorption process was exothermic, thermodynamically feasible and impulsive process. Finally, a batch adsorber was planned to remove zinc from known volume and known concentration of wastewater using best obeyed model such as Freundlich. The experimental details showed the newly prepared material can be effectively utilised as a cheap material for the adsorption of toxic metal ions from the contaminated water.

  14. Analyzing the effectiveness of using branchial NKA activity as a biomarker for assessing waterborne copper toxicity in tilapia (Oreochromis mossambicus): A damage-based modeling approach.

    PubMed

    Wu, Su-Mei; Tsai, Jeng-Wei; Tzeng, Wen-Nan; Chen, Wei-Yu; Shih, Wan-Yu

    2015-06-01

    Branchial Na(+)-K(+)-ATPase (NKA) activity has been suggested as a promising biomarker for assessing metal stress in aquatic organisms. However, studies that systematically show the effectiveness of using NKA activity to detect metal exposure and toxicity at the individual level are limited. In this study, we aimed to determine whether branchial NKA activity mechanistically responds to the accumulation of waterborne copper (Cu) and accounts for observed toxicity over time under environmentally-relevant and aquafarming Cu exposure levels (0.2, 1 and 2 mg L(-1)). Temporal trends in Cu accumulation and the corresponding responses of branchial NKA activity resulting from Cu exposure were investigated in laboratory experiments conducted on juvenile tilapia (Oreochromis mossambicus), a freshwater teleost that shows potential as a bioindicator of real-time and historical metal pollution. We used the process-based damage assessment model (DAM) to inspect the time course of Cu toxicity by integrating the compensation process between Cu-induced inhibition and repair of branchial NKA activity. NKA activity acted as a sensitive biomarker for Cu exposure and accumulation in tilapia, which showed induced impairment of osmoregulation and lethality when they were exposed to environmentally relevant levels (0.2 mg L(-1)), but not to higher exposure levels (1 and 2 mg L(-1)) in aquaculture farms or contaminated aquatic ecosystems. This study highlights the benefits and limitations of using branchial NKA activity as a sensitive biomarker to assess the health status of a fish population and its ecosystem. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cryochemical modification, activity, and toxicity of dioxidine

    NASA Astrophysics Data System (ADS)

    Vernaya, O. I.; Shabatin, V. P.; Shabatina, T. I.; Khvatov, D. I.; Semenov, A. M.; Yudina, T. P.; Danilov, V. S.

    2017-02-01

    Dioxidine nanoparticles are prepared via cryochemical modification of the pharmacopoeial dioxidine substance. The form of the cryomodified dioxidine is characterized by data from 1H NMR spectroscopy; X-ray diffraction analysis; such thermal analytical methods as TG and DSC; low-temperature argon adsorption; and transmission electron microscopy. It is shown that the cryomodified samples are synthesized in the form of dioxidine nanocrystals 50-300 nm in size, with a crystal structure differing from that of the initial pharmacopoeial substance. The prepared cryomodified dioxidine nanoparticles inhibit the growth of E. coli 52, S. aureus 144, M. cyaneum 98, and B. cereus 9 better than the initial pharmacopoeial substance, and have comparable chronic toxicity.

  16. QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP (QSAR) MODELS TO PREDICT CHEMICAL TOXICITY FOR VARIOUS HEALTH ENDPOINTS

    EPA Science Inventory

    Although ranking schemes based on exposure and toxicity have been developed to aid in the prioritization of research funds for identifying chemicals of regulatory concern, there are significant gaps in the availability of experimental toxicity data for most health endpoints. Pred...

  17. Assessment of toxicity and differential antimicrobial activity of methanol extract of rhizome of Simaba ferruginea A. St.-Hil. and its isolate canthin-6-one.

    PubMed

    Gazoni, Vanessa Fátima; Balogun, Sikiru Olaitan; Arunachalam, Karuppusamy; Oliveira, Darley Maria; Filho, Valdir Cechinel; Lima, Samara Rosolem; Colodel, Edson Moleta; Soares, Ilsamar Mendes; Ascêncio, Sérgio Donizeti; Martins, Domingos Tabajara de Oliveira

    2018-09-15

    Simaba ferruginea A. St.-Hil., Simaroubaceae, popularly known as "calunga" is a typical subtropical shrub used in Central Brazil mainly for infection, anti-inflammatory, analgesic and gastric duodenal-ulcers. It presents in its composition the alkaloid canthin-6-one, an alkaloid indole β-carboxylic. This study aims to investigate the toxicity, antimicrobial activities of methanol extract of Simaba ferruginea (MESf) and canthin-6-one by using different experimental models. The present study evaluated the phytochemical analysis by high performance liquid chromatography (HPLC), toxicological potential of MESf and canthin-6-one, using the cytotoxicity, genotoxicity assays with CHO-K1 cells and in vivo acute test in mice. Antimicrobial activity was evaluated by the broth microdilution assays, while the antimicrobial mechanism of action was also assessed using different in vitro bacterial and fungal models. The HPLC analysis of MESf revealed the presence of canthin-6-one, kaempferol and morin. Differential in vitro toxicities were observed between MESf and canthin-6-one. In the cytotoxicity assay, MESf presented toxicity against CHO-K1, while canthin-6-one did not. In the case of in vitro genotoxicity, both showed to be potentially genotoxic. In the in vivo toxicity study, both MESf (up to 1000 mg/kg) and cantin-6-one (up to 100 mg/kg) caused no toxicologically relevant alterations and are thus considered not to be toxic. MESf was shown to be relatively safe with NOAEL (100 mg/kg) when administrate in mice. Both MESf and canthin-6-one also showed differential antimicrobial activities. On one hand, MESf demonstrated good spectrum of antibacterial action against Staphylococcus aureus (MIC 12.5 μg/mL) and Escherichia coli (MIC 25 μg/mL) and moderate activity against Enterococcus faecalis and Shigella flexneri (MIC 200 μg/mL) but no antifungal effect. On the hand, canthin-6-one showed no antibacterial activity, except against Staphylococcus aureus (100

  18. Inhibition of autophagy promotes CYP2E1-dependent toxicity in HepG2 cells via elevated oxidative stress, mitochondria dysfunction and activation of p38 and JNK MAPK☆

    PubMed Central

    Wu, Defeng; Cederbaum, Arthur I.

    2013-01-01

    Autophagy has been shown to be protective against drug and alcohol-induced liver injury. CYP2E1 plays a role in the toxicity of ethanol, carcinogens and certain drugs. Inhibition of autophagy increased ethanol-toxicity and accumulation of fat in wild type and CYP2E1 knockin mice but not in CYP2E1 knockout mice as well as in HepG2 cells expressing CYP2E1 (E47 cells) but not HepG2 cells lacking CYP2E1 (C34 cells). The goal of the current study was to evaluate whether modulation of autophagy can affect CYP2E1-dependent cytotoxicity in the E47 cells. The agents used to promote CYP2E1 –dependent toxicity were a polyunsaturated fatty acid, arachidonic acid (AA), buthionine sulfoximine (BSO), which depletes GSH, and CCl4, which is metabolized to the CCl3 radical. These three agents produced a decrease in E47 cell viability which was enhanced upon inhibition of autophagy by 3-methyladenine (3-MA) or Atg 7 siRNA. Toxicity was lowered by rapamycin which increased autophagy and was much lower to the C34 cells which do not express CYP2E1. Toxicity was mainly necrotic and was associated with an increase in reactive oxygen production and oxidative stress; 3-MA increased while rapamycin blunted the oxidative stress. The enhanced toxicity and ROS formation produced when autophagy was inhibited was prevented by the antioxidant N-Acetyl cysteine. AA, BSO and CCl4 produced mitochondrial dysfunction, lowered cellular ATP levels and elevated mitochondrial production of ROS. This mitochondrial dysfunction was enhanced by inhibition of autophagy with 3-MA but decreased when autophagy was increased by rapamycin. The mitogen activated protein kinases p38 MAPK and JNK were activated by AA especially when autophagy was inhibited and chemical inhibitors of p38 MAPK and JNK lowered the elevated toxicity of AA produced by 3-MA. These results show that autophagy was protective against the toxicity produced by several agents known to be activated by CYP2E1. Since CYP2E1 plays an important role

  19. Evaluation of the potential cardioprotective activity of some Saudi plants against doxorubicin toxicity.

    PubMed

    Ashour, Osama M; Abdel-Naim, Ashraf B; Abdallah, Hossam M; Nagy, Ayman A; Mohamadin, Ahmed M; Abdel-Sattar, Essam A

    2012-01-01

    Doxorubicin (DOX) is an anthracycline antibiotic widely used as a chemotherapeutic agent in the treatment of several tumours. However, its cardiac toxicity limits its use at maximum therapeutic doses. Most studies implicated increased oxidative stress as the major determinant of DOX cardiotoxicity. The local Saudi flora is very rich in a variety of plants of quite known folkloric or traditional medicinal uses. Tribulus macropterus Boiss., Olea europaea L. subsp. africana (Mill.) P. S. Green, Tamarix aphylla (L.) H. Karst., Cynomorium coccineum L., Cordia myxa L., Calligonum comosum L' Hér, and Withania somnifera (L.) Dunal are Saudi plants known to have antioxidant activities. The aim of the current study was to explore the potential protective effects of methanolic extracts of these seven Saudi plants against DOX-induced cardiotoxicity in rats. Two plants showed promising cardioprotective potential in the order Calligonum comosum > Cordia myxa. The two plant extracts showed potent in vitro radical scavenging and antioxidant properties. They significantly protected against DOX-induced alterations in cardiac oxidative stress markers (GSH and MDA) and cardiac serum markers (CK-MB and LDH activities). Additionally, histopathological examination indicated a protection against DOX-induced cardiotoxicity. In conclusion, C. comosum and C. myxa exerted protective activity against DOX-induced cardiotoxicity, which is, at least partly, due to their antioxidant effect.

  20. Efficacy of attractive toxic sugar baits (ATSB) against Aedes albopictus with garlic oil encapsulated in beta-Cyclodextrin as the active ingredient

    USDA-ARS?s Scientific Manuscript database

    We tested the efficacy of attractive toxic sugar bait (ATSB) with garlic oil microencapsulated in beta-cyclodextrin as active ingredient against Aedes albopictus in suburban Haifa, Israel. Two three-acre gardens with high numbers of Ae. albopictus were chosen for perimeter spray treatment with ATSB ...

  1. Toxic shock syndrome

    MedlinePlus

    Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...

  2. Anti-inflammatory, Antioxidant and Antimicrobial Activity Characterization and Toxicity Studies of Flowers of "Jarilla", a Medicinal Shrub from Argentina.

    PubMed

    Moreno, Alejandra; Nuño, Gabriela; Cuello, Soledad; Sayago, Jorge E; Alberto, María Rosa; Zampini, Catiana; Isla, María Inés

    2015-06-01

    Zuccagnia punctata Cav. (Fabaceae) is an Argentine medicinal aromatic shrub (jarilla pispito, puspus, lata and jarilla macho). The chalcones were identified as pigments responsible for the yellow color of the flowers. Hydroethanolic extracts were obtained both from fresh flowers and from flowers dried by lyophilization. The extracts were standardized by their phenolic and flavonoids content. Their fingerprints by HPLC-DAD indicated the presence of two chalcones as major compounds (2',4'-dihydroxychalcone and 2',4'-dihydroxy-3'-methoxychalcone). Both extracts showed the same total phenolic, non-flavonoid phenolic and flavonoid phenolic content and their phenolic profiles were similar. The polyphenolic extracts exhibited antioxidant (free radical scavenging and inhibitory activity on lipoperoxidation) and anti-inflammatory (inhibition of lipoxygenase and cyclooxygenase enzymes) activities. The flower extracts were active against six Candida species with MIC values between 60 and 120 μg GAE x mL(-1) and were also active on methicillin-resistant Staphylococcus aureus (MIC: 250 μg GAE x mL(-1)) and Enterococcus faecalis (MIC: 500 μg GAE x mL(-1)). The extracts were neither toxic (Artemia salina test) nor mutagenic (Ames test). Jarilla flowers could be considered as a new dietary supplement that could help to prevent pathologies associated with oxidative stress and the polyphenolic extract obtained from them could be considered as a standardized phytotherapeutic product with antimicrobial, antioxidant and anti-inflammatory activities. The aim of this work was to determine the pigments responsible for the yellow color of the flowers of Z. punctata and to evaluate the functional properties of the polyphenolic extract of the flowers. The toxicity (Artemia salina) and mutagenic activity (Ames test) of the extract were also evaluated.

  3. Heterocyclic Schiff bases as non toxic antioxidants: Solvent effect, structure activity relationship and mechanism of action

    NASA Astrophysics Data System (ADS)

    Shanty, Angamaly Antony; Mohanan, Puzhavoorparambil Velayudhan

    2018-03-01

    Phenolic heterocyclic imine based Schiff bases from Thiophene-2-carboxaldehyde and Pyrrole-2-carboxaldehyde were synthesized and characterized as novel antioxidants. The solvent effects of these Schiff bases were determined and compared with standard antioxidants, BHA employing DPPH assay and ABTS assay. Fixed reaction time and Steady state measurement were used for study. IC50 and EC50 were calculated. Structure-activity relationship revealed that the electron donating group in the phenolic ring increases the activity where as the electron withdrawing moiety decreases the activity. The Schiff base derivatives showed antioxidant property by two different pathways namely SPLET and HAT mechanisms in DPPH assay. While in ABTS method, the reaction between ABTS radical and Schiff bases involves electron transfer followed by proton transfer (ET-PT) mechanism. The cytotoxicity of these compounds has been evaluated by MTT assay. The results showed that all these compounds are non toxic in nature.

  4. Effect of ultrasonic and ozone pre-treatments on pharmaceutical waste activated sludge's solubilisation, reduction, anaerobic biodegradability and acute biological toxicity.

    PubMed

    Pei, Jin; Yao, Hong; Wang, Hui; Shan, Dan; Jiang, Yichen; Ma, Lanqianya; Yu, Xiaohua

    2015-09-01

    Ultrasonic and ozone pre-treatment technologies were employed in this study to improve the anaerobic digestion efficiency of pharmaceutical waste activated sludge. The sludge solubilisation achieved 30.01% (150,000 kJ/kg TS) and 28.10% (0.1g O3/g TS) after ultrasonic treatment and ozone treatment. The anaerobic biodegradability after ultrasonic treatment was higher compared to ozonation due to the higher cumulative methane volume observed after 6 days (249 ml vs 190 ml). The ozonated sludge released the highest concentration of Cu(2+) into the liquid phase (6.640 mg L(-1)) compared to 0.530 mg/L for untreated sludge and 0.991 mg/L for sonicated sludge. The acute toxicity test measured by luminescent bacteria showed that anaerobic digestion could degrade toxic compounds and result in a reduction in toxicity. The main mechanism of action led to some differences in the treated sludge exhibiting higher potential for methane production from pharmaceutical waste sludge with ultrasonic treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. DOPA Decarboxylase Modulates Tau Toxicity.

    PubMed

    Kow, Rebecca L; Sikkema, Carl; Wheeler, Jeanna M; Wilkinson, Charles W; Kraemer, Brian C

    2018-03-01

    The microtubule-associated protein tau accumulates into toxic aggregates in multiple neurodegenerative diseases. We found previously that loss of D 2 -family dopamine receptors ameliorated tauopathy in multiple models including a Caenorhabditis elegans model of tauopathy. To better understand how loss of D 2 -family dopamine receptors can ameliorate tau toxicity, we screened a collection of C. elegans mutations in dopamine-related genes (n = 45) for changes in tau transgene-induced behavioral defects. These included many genes responsible for dopamine synthesis, metabolism, and signaling downstream of the D 2 receptors. We identified one dopamine synthesis gene, DOPA decarboxylase (DDC), as a suppressor of tau toxicity in tau transgenic worms. Loss of the C. elegans DDC gene, bas-1, ameliorated the behavioral deficits of tau transgenic worms, reduced phosphorylated and detergent-insoluble tau accumulation, and reduced tau-mediated neuron loss. Loss of function in other genes in the dopamine and serotonin synthesis pathways did not alter tau-induced toxicity; however, their function is required for the suppression of tau toxicity by bas-1. Additional loss of D 2 -family dopamine receptors did not synergize with bas-1 suppression of tauopathy phenotypes. Loss of the DDC bas-1 reduced tau-induced toxicity in a C. elegans model of tauopathy, while loss of no other dopamine or serotonin synthesis genes tested had this effect. Because loss of activity upstream of DDC could reduce suppression of tau by DDC, this suggests the possibility that loss of DDC suppresses tau via the combined accumulation of dopamine precursor levodopa and serotonin precursor 5-hydroxytryptophan. Published by Elsevier Inc.

  6. Elimination of Cu(II) toxicity by powdered waste sludge (PWS) addition to an activated sludge unit treating Cu(II) containing synthetic wastewater.

    PubMed

    Pamukoglu, M Yunus; Kargi, Fikret

    2007-09-05

    Copper(II) ion toxicity onto activated sludge organisms was eliminated by addition of powdered waste sludge (PWS) to the feed wastewater for removal of Cu(II) ions by biosorption before biological treatment. The synthetic feed wastewater containing 14 or 22 mgl(-1) Cu(II) was mixed with PWS in a mixing tank where Cu(II) ions were adsorbed onto PWS and the mixture was fed to a sedimentation tank to separate Cu(II) containing PWS from the feed wastewater. The activated sludge unit fed with the effluent of the sedimentation tank was operated at a hydraulic residence time (HRT) of 10h and sludge age (SRT) of 10 days. To investigate Cu(II), COD and toxicity removal performance of the activated sludge unit at different PWS loadings, the system was operated at different PWS loading rates (0.1-1 gPWSh(-1)) while the Cu(II) loading rate was constant throughout the operation. Percent copper, COD and toxicity removals increased with increasing PWS loading rate due to increased adsorption of Cu(II) onto PWS yielding low Cu(II) contents in the feed. Biomass concentration in the aeration tank increased and the sludge volume index (SVI) decreased with increasing PWS loading rate due to elimination of Cu(II) from the feed wastewater by PWS addition. PWS addition to the Cu(II) containing wastewater was proven to be effective for removal of Cu(II) by biosorption before biological treatment. Approximately, 1 gPWSh(-1) should be added for 28 mgCuh(-1) loading rate for complete removal of Cu(II) from the feed wastewater to obtain high COD removals in the activated sludge unit.

  7. Toxic influence of silver and uranium salts on activated sludge of wastewater treatment plants and synthetic activated sludge associates modeled on its pure cultures.

    PubMed

    Tyupa, Dmitry V; Kalenov, Sergei V; Skladnev, Dmitry A; Khokhlachev, Nikolay S; Baurina, Marina M; Kuznetsov, Alexander Ye

    2015-01-01

    Toxic impact of silver and uranium salts on activated sludge of wastewater treatment facilities has been studied. Some dominating cultures (an active nitrogen fixer Agrobacterium tumifaciens (A.t) and micromyces such as Fusarium nivale, Fusarium oxysporum, and Penicillium glabrum) have been isolated and identified as a result of selection of the activated sludge microorganisms being steadiest under stressful conditions. For these cultures, the lethal doses of silver amounted 1, 600, 50, and 300 µg/l and the lethal doses of uranium were 120, 1,500, 1,000, and 1,000 mg/l, respectively. A.tumifaciens is shown to be more sensitive to heavy metals than micromyces. Synthetic granular activated sludge was formed on the basis of three cultures of the isolated micromyces steadiest against stress. Its granules were much more resistant to silver than the whole native activated sludge was. The concentration of silver causing 50 % inhibition of synthetic granular activated sludge growth reached 160-170 μg/l as far as for the native activated sludge it came only to 100-110 μg/l.

  8. General aspects of metal toxicity.

    PubMed

    Kozlowski, H; Kolkowska, P; Watly, J; Krzywoszynska, K; Potocki, S

    2014-01-01

    This review is focused on the general mechanisms of metal toxicity in humans. The possible and mainly confirmed mechanisms of their action are discussed. The metals are divided into four groups due to their toxic effects. First group comprises of metal ions acting as Fenton reaction catalyst mainly iron and copper. These types of metal ions participate in generation of the reactive oxygen species. Metals such as nickel, cadmium and chromium are considered as carcinogenic agents. Aluminum, lead and tin are involved in neurotoxicity. The representative of the last group is mercury, which may be considered as a generally toxic metal. Fenton reaction is a naturally occurring process producing most active oxygen species, hydroxyl radical: Fe(2+) + He2O2 ↔ Fe(3+) + OH(-) + OH(•) It is able to oxidize most of the biomolecules including DNA, proteins, lipids etc. The effect of toxicity depends on the damage of molecules i.e. production site of the hydroxyl radical. Chromium toxicity depends critically on its oxidation state. The most hazardous seems to be Cr(6+) (chromates) which are one of the strongest inorganic carcinogenic agents. Cr(6+) species act also as oxidative agents damaging among other nucleic acids. Redox inactive Al(3+), Cd(2+) or Hg(2+) may interfere with biology of other metal ions e.g. by occupying metal binding sites in biomolecules. All these aspects will be discussed in the review.

  9. Molluscicidal activity and mechanism of toxicity of a novel salicylanilide ester derivative against Biomphalaria species.

    PubMed

    He, Ping; Wang, Weisi; Sanogo, Benjamin; Zeng, Xin; Sun, Xi; Lv, Zhiyue; Yuan, Dongjuan; Duan, Liping; Wu, Zhongdao

    2017-08-10

    Schistosomiasis mansoni is one of the most important, but often neglected, tropical diseases transmitted by snails of the genus Biomphalaria. Control of the intermediate host snail plays a crucial role in preventing the spread of schistosomiasis. However, there is only one molluscicide, niclosamide, recommended by the World Health Organization. Niclosamide has been used for several decades but is toxic to non-target organisms. Therefore, it is necessary to optimize the scaffold of niclosamide and develop novel molluscicides with enhanced potency and decreased toxicity to non-target organisms. In this study, a candidate compound was analyzed by nuclear magnetic resonance and mass spectrometry. The molluscicidal potential against Biomphalaria species and cercaricidal potential against S. mansoni were evaluated using the immersion method. Furthermore, the preliminary mechanism was studied through cellular enzyme tests and electron microscopy. 5-chloro-2-[(2-chloro-4-nitrophenyl)carbamoyl]phenyl-4-methoxybenzoate (salicylanilidate), a novel salicylanilide ester derivative, was derived from niclosamide. The 50% lethal concentration to B. glabrata, B. straminea and B. pfeifferi was 0.261 mg/l, 0.172 mg/l and 0.241 mg/l, respectively. The effective dose required to completely kill S. mansoni cercariae was 0.625 mg/l for salicylanilidate and 0.125 mg/l for niclosamide. However, salicylanilidate was approximately 100-fold less toxic to the fish Danio rerio than niclosamide. Furthermore, salicylanilidate reduced the enzymatic activities of nitric oxide synthase (NOS), lactate dehydrogenase (LDH) and acetylcholinesterase (AChE) in the snail, demonstrating that it could affect neurohypophysis transmission and energy metabolism. Severe swelling in the tentacle and deformation of cilia in the tentacle and mantle were observed through scanning electron microscopy. The results of transmission electron microscopy showed that salicylanilidate could damage critical organelles in

  10. Toxicity characterization of urban stormwater with bioanalytical tools.

    PubMed

    Tang, Janet Y M; Aryal, Rupak; Deletic, Ana; Gernjak, Wolfgang; Glenn, Eva; McCarthy, David; Escher, Beate I

    2013-10-01

    Stormwater harvesting has become an attractive alternative strategy to address the rising demand for urban water supply due to limited water sources and population growth. Nevertheless, urban stormwater is also a major source of surface water pollution. Runoff from different urban catchments with source contributions from anthropogenic activities and various land uses causes variable contaminant profiles, thus posing a challenging task for environmental monitoring and risk assessment. A thorough understanding of raw stormwater quality is essential to develop appropriate treatment facilities for potential indirect potable reuse of stormwater. While some of the key chemical components have previously been characterized, only scarce data are available on stormwater toxicity. We benchmarked stormwater samples from urban, residential and industrial sites across various Australian capital cities against samples from the entire water cycle, from sewage to drinking water. Six biological endpoints, targeting groups of chemicals with modes of toxic action of particular relevance for human and environmental health, were investigated: non-specific toxicity (Microtox and combined algae test), the specific modes of action of phytotoxicity (combined algae test), dioxin-like activity (AhR-CAFLUX), and estrogenicity (E-SCREEN), as well as reactive toxicity encompassing genotoxicity (umuC) and oxidative stress (AREc32). Non-specific toxicity was highly variable across sites. The baseline toxicity equivalent concentrations of the most polluted samples were similar to secondary treated effluent from wastewater treatment plants. Phytotoxicity results correlated well with the measured herbicide concentrations at all sites. High estrogenicity was found in two sampling events and could be related to sewage overflow. Genotoxicity, dioxin-like activity, and oxidative stress response were evident in only three of the samples where the stormwater drain was beside a heavy traffic road

  11. Pharmacological assay of Cordia verbenacea V: oral and topical anti-inflammatory activity, analgesic effect and fetus toxicity of a crude leaf extract.

    PubMed

    Sertié, J A A; Woisky, R G; Wiezel, G; Rodrigues, M

    2005-05-01

    Cordia verbenacea D.C. (Borraginaceae) is a perennial bush plant that grows widely along the southeastern coast of Brazil. Its leaves have been used in folk medicine for their anti-ulcer, anti-inflammatory and cicatrizing activities. We have already described the anti-inflammatory properties of C. verbenacea and its low toxicity in different acute animal models. In the present study, we investigated the anti-inflammatory activity in sub-chronic animal models of a crude leaf lyophilized extract when administered by oral route or topically applied, and concomitantly, its analgesic potency and toxicity to the fetus. Topical administration of the extract inhibited nystatin-induced edema proportionally to the doses used, and this effect at a dose of 4.56 mg/kg body wt. was similar to that observed with 6.0 mg/kg body wt. of naproxen. In miconazole-induced edema, the leaf extract at a dose of 1.24 mg/kg body wt., orally administered, has a very similar effect as compared to nimezulide (2.5 mg/kg body wt.) and dexamethasone (0.2 mg/kg body wt.). At an oral dose of 2.48 mg/kg body wt. the extract showed a very low analgesic effect, and total absence of fetus toxicity at doses of less than 7.44 mg/kg body wt.

  12. Potential toxicity of nonregulated asbestiform minerals: balangeroite from the western Alps. Part 2: Oxidant activity of the fibers.

    PubMed

    Turci, Francesco; Tomatis, Maura; Gazzano, Elena; Riganti, Chiara; Martra, Gianmario; Bosia, Amalia; Ghigo, Dario; Fubini, Bice

    2005-01-08

    The asbestiform mineral balangeroite [(Mg,Fe2+,Fe3+,Mn2+)42Si16O54(OH)36], whose toxic potential is unknown, is associated with chrysotile asbestos in the western Alps (Balangero mine, Piedmont, Italy). In order to examine whether such fibers may contribute to the oxidative damage produced by local asbestos dusts when inhaled, balangeroite was studied by means of both cell-free and cellular tests, comparing the results with those concerning the most pathogenic asbestos form, crocidolite. Similarly to the crocidolite surface, iron was mobilized from balangeroite by chelators, to a different extent: deferoxamine > ascorbic acid > ferrozine. Poorly coordinated surface ions, as evaluated from the adsorption of NO as a probe molecule (by both calorimetry and infrared spectroscopy), are even more abundant on balangeroite than on crocidolite. The spin trapping technique shows that surface iron-derived Fenton activity (HO* from H2O2) is similar for the two fiber types, while a pretreatment in ascorbic acid, by reducing previously oxidized surface iron, activates the potential to cleave a C-H bond (yielding *CO2- from formate anion). Balangeroite, like crocidolite, produces nitrite accumulation, lipid peroxidation, and NO synthase activation in a human lung epithelial cell line (A549). All these findings, regarded as features related to the toxic potential of asbestos, suggest that balangeroite may be a potentially hazardous fiber per se and could be partly responsible for lung diseases reported in epidemiological studies in exposed miners.

  13. Antidiarrheal Activity of Dissotis multiflora (Sm) Triana (Melastomataceae) Leaf Extract in Wistar Rats and Subacute Toxicity Evaluation

    PubMed Central

    Ndoye Foe, Chantal Florentine; Njankouo Ndam, Youchahou; Njayou, Frédéric Nico; Fonkoua, Marie Christine; Etoa, François-Xavier

    2017-01-01

    The present work was undertaken to evaluate antidiarrheal activity of ethanolic leaf extract of Dissotis multiflora (Sm) Triana (D. multiflora) on Shigella flexneri-induced diarrhea in Wistar rats and its subacute toxicity. Diarrhea was induced by oral administration of 1.2 × 109 cells/mL S. flexneri to rats. Antidiarrheal activity was investigated in rats with the doses of 111.42 mg/kg, 222.84 mg/kg, and 445.68 mg/kg. The level of biochemical parameters was assessed and organs histology examined by 14 days' subacute toxicity. S. flexneri stool load decreased significantly in dose-dependent manner. The level of ALT increased (p < 0.05) in male rats treated with the dose of 445.68 mg/kg while creatinine level increased in rats treated with both doses. In female rats, a significant decrease (p < 0.05) of the level of AST and creatinine was noted in rats treated with the dose of 222.84 mg/kg of D. multiflora. Histological exams of kidney and liver of treated rats showed architectural modifications at the dose of 445.68 mg/kg. This finding suggests that D. multiflora leaf extract is efficient against diarrhea caused by S. flexneri but the treatment with doses lower than 222.84 mg/kg is recommended while further study is required to define the exact efficient nontoxic dose. PMID:29234391

  14. [The drop in toxicity and the rise in the effectiveness of antineoplastic chemotherapy by correcting the activity of liver monooxygenases: from the experiment to the clinical practice].

    PubMed

    Bogush, T A; Bogush, E A; Durnov, L A; Syrkin, A B

    2002-01-01

    The paper reviews both the data available in the literature and the authors' own results of long-term experimental and clinical investigations of the involvement of hepatic monooxygenases (HMO) in the biological activity of antitumor drugs. It reports data of evaluation of HMO activity in pediatric and adult cancer patients, which has shown a decrease in HMO activity in one third of patients without clinical signs of hepatopathy and two thirds of those with toxic hepatic damages after prior chemotherapy. Decreased HMO activity has been found to be stimulated with the enzyme inductor zyxorin. Altered biochemical parameters, such as total bilirubin, ALT and AST, can be corrected with HNO, even if they show a 10-fold deviation from the normal physiological level. The efficacy of zyxorin was tested in patients with advanced cancer and concomitant toxic or viral hepatic disorders (grades II-IV by the WHO classification). Stimulation of inhibited HMO activity allows both decrease and prevention of the manifestations of hepatic toxicity due to anticancer chemotherapy providing a beneficial effect, the dose of cytostatics being not reduced. The authors concluded that the findings provide strong evidence for their assumption that the efficiency of antitumor chemotherapy can be enhanced in patients with concurrent hepatic abnormality by stimulating monooxygenases whose activity is diminished in the majority of these patients.

  15. Sensitive detection of chemical agents and toxic industrial chemicals using active open-path FTIRs

    NASA Astrophysics Data System (ADS)

    Walter, William T.

    2004-03-01

    Active open-path FTIR sensors provide more sensitive detection of chemical agents than passive FTIRs, such as the M21 RSCAAL and JSLSCAD, and at the same time identify and quantify toxic industrial chemicals (TIC). Passive FTIRs are bistatic sensors relying on infrared sources of opportunity. Utilization of earth-based sources of opportunity limits the source temperatures available for passive chemical-agent FTIR sensors to 300° K. Active FTIR chemical-agent sensors utilize silicon carbide sources, which can be operated at 1500° K. The higher source temperature provides more than an 80-times increase in the infrared radiant flux emitted per unit area in the 7 to 14 micron spectral fingerprint region. Minimum detection limits are better than 5 μgm/m3 for GA, GB, GD, GF and VX. Active FTIR sensors can (1) assist first responders and emergency response teams in their assessment of and reaction to a terrorist threat, (2) provide information on the identification of the TIC present and their concentrations and (3) contribute to the understanding and prevention of debilitating disorders analogous to the Gulf War Syndrome for military and civilian personnel.

  16. STRUCTURE TOXICITY IN RELATIONSHIPS FOR A,B-UNSATURATED ALCOHOLS IN FISH

    EPA Science Inventory

    Previous toxicity testing with fathead minnows (Pimephales promelas) indicated that some unsaturated acetylenic and allylic alcohols can be metabolically activated, via alcohol dehydrogenase, to highly toxic a,B-unsaturated aldehydes and ketones or allene derivatives. lthough sev...

  17. Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: Implications for mitigating cadmium toxicity in environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balmuri, Sricharani Rao

    Cadmium (Cd), classified as human carcinogen, is an extremely toxic heavy metal pollutant, and there is an increasing environmental concern for cadmium exposure through anthropogenic sources including cigarette smoke. Though Cd based nanoparticles such as cadmium oxide (CdO) are being widely used in a variety of clinical and industrial applications, the toxicity of CdO nanoparticles has not been well characterized. Herein we report the toxicity of CdO nanoparticles employing zebrafish as a model. Two different CdO nanoparticles were prepared, calcination of Cd(OH){sub 2} without any organic molecule (CdO-1) and calcination of Cd-citrate coordination polymer (CdO-2), to evaluate and compare themore » toxicity of these two different CdO nanoparticles. Results show that zebrafish exposed to CdO-2 nanoparticles expressed reduced toxicity as judged by lower oxidative stress levels, rescue of liver carboxylesterases and reduction in metallothionein activity compared to CdO-1 nanoparticles. Histopathological observations also support our contention that CdO-1 nanoparticles showed higher toxicity relative to CdO-2 nanoparticles. The organic unit of Cd-citrate coordination polymer might have converted into carbon during calcination that might have covered the surface of CdO nanoparticles. This carbon surface coverage can control the release of Cd{sup 2+} ions in CdO-2 compared to non-covered CdO-1 nanoparticles and hence mitigate the toxicity in the case of CdO-2. This was supported by atomic absorption spectrophotometer analyses of Cd{sup 2+} ions release from CdO-1 and CdO-2 nanoparticles. Thus the present study clearly demonstrates the toxicity of CdO nanoparticles in an aquatic animal and also indicates that the toxicity could be substantially reduced by carbon coverage. This could have important implications in terms of anthropogenic release and environmental pollution caused by Cd and human exposure to Cd{sup 2+} from sources such as cigarette smoke. - Highlights:

  18. ECVAM and new technologies for toxicity testing.

    PubMed

    Bouvier d'Yvoire, Michel; Bremer, Susanne; Casati, Silvia; Ceridono, Mara; Coecke, Sandra; Corvi, Raffaella; Eskes, Chantra; Gribaldo, Laura; Griesinger, Claudius; Knaut, Holger; Linge, Jens P; Roi, Annett; Zuang, Valérie

    2012-01-01

    relevance that need to be modeled in test methods for toxicity testing (2) to enable the reconstruction of reductionist test systems modeling at a reduced level of complexity the target system/organ of interest (e.g., through tissue engineering, use of human-derived cell lines and stem cells etc.), (3) to allow the measurement of specific mechanisms relevant for a given health endpoint in such test methods (e.g., through gene and protein expression, changes in metabolites, receptor activation, changes in neural activity etc.), (4) to allow to measure toxicity mechanisms at higher throughput rates through the use of automated testing. In this chapter, we discuss the potential impact of new technologies on the development, optimization and use of empirical testing methods, grouped according to important toxicological endpoints. We highlight, from an ECVAM perspective, the areas of topical toxicity, skin absorption, reproductive and developmental toxicity, carcinogenicity/genotoxicity, sensitization, hematopoeisis and toxicokinetics and discuss strategic developments including ECVAM's database service on alternative methods. Neither the areas of toxicity discussed nor the highlighted new technologies represent comprehensive listings which would be an impossible endeavor in the context of a book chapter. However, we feel that these areas are of utmost importance and we predict that new technologies are likely to contribute significantly to test development in these fields. We summarize which new technologies are expected to contribute to the development of new alternative testing methods over the next few years and point out current and planned ECVAM projects for each of these areas.

  19. Mutant LRRK2 Toxicity in Neurons Depends on LRRK2 Levels and Synuclein But Not Kinase Activity or Inclusion Bodies

    PubMed Central

    Skibinski, Gaia; Nakamura, Ken; Cookson, Mark R.

    2014-01-01

    By combining experimental neuron models and mathematical tools, we developed a “systems” approach to deconvolve cellular mechanisms of neurodegeneration underlying the most common known cause of Parkinson's disease (PD), mutations in leucine-rich repeat kinase 2 (LRRK2). Neurons ectopically expressing mutant LRRK2 formed inclusion bodies (IBs), retracted neurites, accumulated synuclein, and died prematurely, recapitulating key features of PD. Degeneration was predicted from the levels of diffuse mutant LRRK2 that each neuron contained, but IB formation was neither necessary nor sufficient for death. Genetic or pharmacological blockade of its kinase activity destabilized LRRK2 and lowered its levels enough to account for the moderate reduction in LRRK2 toxicity that ensued. By contrast, targeting synuclein, including neurons made from PD patient-derived induced pluripotent cells, dramatically reduced LRRK2-dependent neurodegeneration and LRRK2 levels. These findings suggest that LRRK2 levels are more important than kinase activity per se in predicting toxicity and implicate synuclein as a major mediator of LRRK2-induced neurodegeneration. PMID:24403142

  20. Organic Anion Transporting Polypeptide (OATP)2B1 Contributes to Gastrointestinal Toxicity of Anticancer Drug SN-38, Active Metabolite of Irinotecan Hydrochloride.

    PubMed

    Fujita, Daichi; Saito, Yoshimasa; Nakanishi, Takeo; Tamai, Ikumi

    2016-01-01

    Gastrointestinal toxicity, such as late-onset diarrhea, is a significant concern in irinotecan hydrochloride (CPT-11)-containing regimens. Prophylaxis of late-onset diarrhea has been reported with use of Japanese traditional (Kampo) medicine containing baicalin and with the antibiotic cefixime, and this has been explained in terms of inhibition of bacterial deconjugation of SN-38-glucuronide since unconjugated SN-38 (active metabolite of CPT-11) is responsible for the gastrointestinal toxicity. It is also prerequisite for SN-38 to be accumulated in intestinal tissues to exert toxicity. Based on the fact that liver-specific organic anion transporting polypeptide (OATP)1B1, a member of the same family as OATP2B1, is known to be involved in hepatic transport of SN-38, we hypothesized that intestinal transporter OATP2B1 contributes to the accumulation of SN-38 in gastrointestinal tissues, and its inhibition would help prevent associated toxicity. We found that uptake of SN-38 by OATP2B1-expressing Xenopus oocytes was significantly higher than that by control oocytes. OATP2B1-mediated uptake of SN-38 was saturable, pH dependent, and decreased in the presence of baicalin, cefixime, or fruit juices such as apple juice. In vivo gastrointestinal toxicity of SN-38 in mice caused by oral administration for consecutive 5 days was prevented by coingestion of apple juice. Thus, OATP2B1 contributes to the uptake of SN-38 by intestinal tissues, triggering gastrointestinal toxicity. So, in addition to the reported inhibition of bacterial β-glucuronidase by cefixime or baicalin, inhibition of OATP2B1 may also contribute to prevention of gastrointestinal toxicity. Apple juice may be helpful for prophylaxis of late-onset diarrhea observed in CPT-11 therapy without disturbance of the intestinal microflora. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Royal jelly attenuates azathioprine induced toxicity in rats.

    PubMed

    Ahmed, Walaa M S; Khalaf, A A; Moselhy, Walaa A; Safwat, Ghada M

    2014-01-01

    In the present study, we investigated the potential protective effects of royal jelly against azathioprine-induced toxicity in rat. Intraperitoneal administration of azathioprine (50 mg/kgB.W.) induced a significant decrease in RBCs count, Hb concentration, PCV%, WBCs count, differential count and platelet count, hepatic antioxidant enzymes (reduced glutathione and glutathione s-transferase) and increase of serum transaminases (alanine aminotransferase and aspartate aminotransferase enzymes) activities, alkaline phosphatase and malondialdehyde formation. Azathioprine induced hepatotoxicity was reflected by marked pathological changes in the liver. Oral administration of royal jelly (200 mg/kgB.W.) was efficient in counteracting azathioprine toxicity whereas it altered the anemic condition, leucopenia and thrombocytopenia induced by azathioprine. Furthermore, royal jelly exerted significant protection against liver damage induced by azathioprine through reduction of the elevated activities of serum hepatic enzymes. Moreover, royal jelly blocked azathioprine-induced lipid peroxidation through decreasing the malondialdehyde formation. In conclusion, royal jelly possesses a capability to attenuate azathioprine-induced toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Activated Charcoal Does Not Reduce Duration of Phenytoin Toxicity in Hospitalized Patients.

    PubMed

    Cumpston, Kirk; Stromberg, Paul; Wills, Brandon K; Rose, S Rutherfoord

    2016-01-01

    Phenytoin toxicity frequently results in a prolonged inpatient admission. Several publications avow multidose activated charcoal (MDAC) will enhance the elimination of phenytoin. However, these claims are not consistent, and the mechanism of enhanced eliminaiton is unproven. The aim of this investigation is to compare the time to reach a clinical composite end point in phenytoin overdose patients treated with no activated charcoal (NoAC), single-dose activated charcoal (SDAC), and MDAC. This was a retrospective study using electronic poison center data. Patients treated in a health care facility with phenytoin concentrations >20 mg/L were included. Patients were grouped by use of SDAC, MDAC, and NoAC. The primary end points were either time to resolution of symptoms, hospital discharge, or the case was closed by a toxicologist. After applying inclusion and exclusion criteria, 132 cases were included for analysis. There were 88 NoAC, 13 SDAC, and 31 MDAC cases. The groups were similar in symptomatology, age, and chronicity of expsoure. Mean peak phenytoin concentrations (SD) were 42 mg/L (12), 41 mg/L (11), and 42 mg/L (11) for NoAC, SDAC, and MDAC, respectively. Mean time to reach the study end point was 39 hours [95% confidence interval (CI), 31-48], 52 hours (95% CI, 36-68), and 60 hours (95% CI, 45-75) for NoAC, SDAC, and MDAC, respectively. The groups appeared similar with respect to peak phenytoin concentrations and prevalence of signs and symptoms. In this observational series, the use of activated charcoal was associated with increased time to reach the composite end point of clinical improvement.

  3. FDA toxicity databases and real-time data entry.

    PubMed

    Arvidson, Kirk B

    2008-11-15

    Structure-searchable electronic databases are valuable new tools that are assisting the FDA in its mission to promptly and efficiently review incoming submissions for regulatory approval of new food additives and food contact substances. The Center for Food Safety and Applied Nutrition's Office of Food Additive Safety (CFSAN/OFAS), in collaboration with Leadscope, Inc., is consolidating genetic toxicity data submitted in food additive petitions from the 1960s to the present day. The Center for Drug Evaluation and Research, Office of Pharmaceutical Science's Informatics and Computational Safety Analysis Staff (CDER/OPS/ICSAS) is separately gathering similar information from their submissions. Presently, these data are distributed in various locations such as paper files, microfiche, and non-standardized toxicology memoranda. The organization of the data into a consistent, searchable format will reduce paperwork, expedite the toxicology review process, and provide valuable information to industry that is currently available only to the FDA. Furthermore, by combining chemical structures with genetic toxicity information, biologically active moieties can be identified and used to develop quantitative structure-activity relationship (QSAR) modeling and testing guidelines. Additionally, chemicals devoid of toxicity data can be compared to known structures, allowing for improved safety review through the identification and analysis of structural analogs. Four database frameworks have been created: bacterial mutagenesis, in vitro chromosome aberration, in vitro mammalian mutagenesis, and in vivo micronucleus. Controlled vocabularies for these databases have been established. The four separate genetic toxicity databases are compiled into a single, structurally-searchable database for easy accessibility of the toxicity information. Beyond the genetic toxicity databases described here, additional databases for subchronic, chronic, and teratogenicity studies have been prepared.

  4. FDA toxicity databases and real-time data entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arvidson, Kirk B.

    Structure-searchable electronic databases are valuable new tools that are assisting the FDA in its mission to promptly and efficiently review incoming submissions for regulatory approval of new food additives and food contact substances. The Center for Food Safety and Applied Nutrition's Office of Food Additive Safety (CFSAN/OFAS), in collaboration with Leadscope, Inc., is consolidating genetic toxicity data submitted in food additive petitions from the 1960s to the present day. The Center for Drug Evaluation and Research, Office of Pharmaceutical Science's Informatics and Computational Safety Analysis Staff (CDER/OPS/ICSAS) is separately gathering similar information from their submissions. Presently, these data are distributedmore » in various locations such as paper files, microfiche, and non-standardized toxicology memoranda. The organization of the data into a consistent, searchable format will reduce paperwork, expedite the toxicology review process, and provide valuable information to industry that is currently available only to the FDA. Furthermore, by combining chemical structures with genetic toxicity information, biologically active moieties can be identified and used to develop quantitative structure-activity relationship (QSAR) modeling and testing guidelines. Additionally, chemicals devoid of toxicity data can be compared to known structures, allowing for improved safety review through the identification and analysis of structural analogs. Four database frameworks have been created: bacterial mutagenesis, in vitro chromosome aberration, in vitro mammalian mutagenesis, and in vivo micronucleus. Controlled vocabularies for these databases have been established. The four separate genetic toxicity databases are compiled into a single, structurally-searchable database for easy accessibility of the toxicity information. Beyond the genetic toxicity databases described here, additional databases for subchronic, chronic, and teratogenicity studies have been

  5. Application of quantitative structure activity relationship (QSAR) models to predict ozone toxicity in the lung.

    PubMed

    Kafoury, Ramzi M; Huang, Ming-Ju

    2005-08-01

    The sequence of events leading to ozone-induced airway inflammation is not well known. To elucidate the molecular and cellular events underlying ozone toxicity in the lung, we hypothesized that lipid ozonation products (LOPs) generated by the reaction of ozone with unsaturated fatty acids in the epithelial lining fluid and cell membranes play a key role in mediating ozone-induced airway inflammation. To test our hypothesis, we ozonized 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) and generated LOPs. Confluent human bronchial epithelial cells were exposed to the derivatives of ozonized POPC-9-oxononanoyl, 9-hydroxy-9-hydroperoxynonanoyl, and 8-(5-octyl-1,2,4-trioxolan-3-yl-)octanoyl-at a concentration of 10 muM, and the activity of phospholipases A2 (PLA2), C (PLC), and D (PLD) was measured (1, 0.5, and 1 h, respectively). Quantitative structure-activity relationship (QSAR) models were utilized to predict the biological activity of LOPs in airway epithelial cells. The QSAR results showed a strong correlation between experimental and computed activity (r = 0.97, 0.98, 0.99, for PLA2, PLC, and PLD, respectively). The results indicate that QSAR models can be utilized to predict the biological activity of the various ozone-derived LOP species in the lung. Copyright 2005 Wiley Periodicals, Inc.

  6. Serotonin toxicity involving MDMA (ecstasy) and moclobemide.

    PubMed

    Pilgrim, J L; Gerostamoulos, D; Woodford, N; Drummer, Olaf H

    2012-02-10

    The use of MDMA (ecstasy) in Australia is a widespread and growing problem, promoting acute toxicity and disease which can lead to premature death in users. We report four cases of fatal serotonin toxicity caused by the combination of MDMA and moclobemide, a reversible MAO-A inhibitor with potent serotonergic activity. Despite the highly reported toxicity of this drug combination, there are very few reports of fatalities attributed to a MDMA and moclobemide interaction. Pathology and toxicology reports, initial police reports and coroners' findings were examined to determine the circumstances of the deaths. Symptoms of some of the four cases as reported by paramedics and medical staff included hyperthermia, hyperkalemia, profuse sweating, twitching and shaking. Two cases involved moclobemide concentrations consistent with common prescribed doses, while the other two cases involved much higher concentrations often associated with toxicity. Three of these cases presented with some form of heart disease. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Antimicrobial activity, acute toxicity and cytoprotective effect of Crassocephalum vitellinum (Benth.) S. Moore extract in a rat ethanol-HCl gastric ulcer model

    PubMed Central

    2014-01-01

    Background A decoction of Crassocephallum vitellinum (Benth.) S. Moore (Asteraceae) is used in Kagera Region to treat peptic ulcers. This study seeks to evaluate an aqueous ethanol extract of aerial parts of the plant for safety and efficacy. Methods An 80% ethanolic extract of C. vitellinum at doses of 100, 200, 400 and 800 mg/kg body wt was evaluated for ability to protect Sprague Dawley rats from acidified ethanol gastric ulceration in comparison with 40 mg/kg body wt pantoprazole. The extract and its dichloromethane, ethyl acetate, and aqueous fractions were also evaluated for acute toxicity in mice, brine shrimp toxicity, and antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922), Salmonella typhi (NCTC 8385), Vibrio cholera (clinical isolate), and Streptococcus faecalis (clinical isolate). The groups of phytochemicals present in the extract were also determined. Results The ethanolic extract of C. vitellinum dose-dependently protected rat gastric mucosa against ethanol/HCl insult to a maximum of 88.3% at 800 mg/kg body wt, affording the same level of protection as by 40 mg/kg body wt pantoprazole. The extract also exhibited weak antibacterial activity against S. typhi and E. coli, while its ethyl acetate, dichloromethane and aqueous fractions showed weak activity against K. pneumonia, S.typhi, E. coli and V. cholera. The extract was non-toxic to mice up to 5000 mg/kg body wt, and the total extract (LC50 = 37.49 μg/ml) and the aqueous (LC50 = 87.92 μg/ml), ethyl acetate (LC50 = 119.45 μg/ml) and dichloromethane fractions (88.79 μg/ml) showed low toxicity against brine shrimps. Phytochemical screening showed that the extract contains tannins, saponins, flavonoids, and terpenoids. Conclusion The results support the claims by traditional healers that a decoction of C.vitellinum has antiulcer activity. The mechanism of cytoprotection is yet to be determined but the phenolic compounds present in the

  8. Evaluation of antimicrobial activity of glycerol monolaurate nanocapsules against American foulbrood disease agent and toxicity on bees.

    PubMed

    Lopes, Leonardo Q S; Santos, Cayane G; de Almeida Vaucher, Rodrigo; Gende, Liesel; Raffin, Renata P; Santos, Roberto C V

    2016-08-01

    The American Foulbrood Disease (AFB) is a fatal larval bee infection. The etiologic agent is the bacterium Paenibacillus larvae. The treatment involves incineration of all contaminated materials, leading to high losses. The Glycerol Monolaurate (GML) is a known antimicrobial potential compound, however its use is reduced due to its low solubility in water and high melting point. The nanoencapsulation of some drugs offers several advantages like improved stability and solubility in water. The present study aimed to evaluate the antimicrobial activity against P. larvae and the toxicity in bees of GML nanoparticles. The nanocapsules were produced and presented mean diameter of 210 nm, polydispersity index of 0.044, and zeta potential of -23.4 mV demonstrating the acceptable values to predict a stable system. The microdilution assay showed that it is necessary 142 and 285 μg/mL of GML nanocapsules to obtain a bacteriostatic and bactericidal effect respectively. The time-kill curve showed the controlled release of compound, exterminating the microorganism after 24 h. The GML nanocapsules were able to kill the spore form of Paenibacillus larvae while the GML do not cause any effect. The assay in bees showed that the GML has a high toxicity while the GML nanoparticles showed a decrease on toxic effects. Concluding, the formulation shows positive results in the action to combat AFB besides not causing damage to bees. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Estimating the Potential Toxicity of Chemicals Associated with Hydraulic Fracturing Operations Using Quantitative Structure-Activity Relationship Modeling.

    PubMed

    Yost, Erin E; Stanek, John; DeWoskin, Robert S; Burgoon, Lyle D

    2016-07-19

    The United States Environmental Protection Agency (EPA) identified 1173 chemicals associated with hydraulic fracturing fluids, flowback, or produced water, of which 1026 (87%) lack chronic oral toxicity values for human health assessments. To facilitate the ranking and prioritization of chemicals that lack toxicity values, it may be useful to employ toxicity estimates from quantitative structure-activity relationship (QSAR) models. Here we describe an approach for applying the results of a QSAR model from the TOPKAT program suite, which provides estimates of the rat chronic oral lowest-observed-adverse-effect level (LOAEL). Of the 1173 chemicals, TOPKAT was able to generate LOAEL estimates for 515 (44%). To address the uncertainty associated with these estimates, we assigned qualitative confidence scores (high, medium, or low) to each TOPKAT LOAEL estimate, and found 481 to be high-confidence. For 48 chemicals that had both a high-confidence TOPKAT LOAEL estimate and a chronic oral reference dose from EPA's Integrated Risk Information System (IRIS) database, Spearman rank correlation identified 68% agreement between the two values (permutation p-value =1 × 10(-11)). These results provide support for the use of TOPKAT LOAEL estimates in identifying and prioritizing potentially hazardous chemicals. High-confidence TOPKAT LOAEL estimates were available for 389 of 1026 hydraulic fracturing-related chemicals that lack chronic oral RfVs and OSFs from EPA-identified sources, including a subset of chemicals that are frequently used in hydraulic fracturing fluids.

  10. Diet composition exacerbates or attenuates soman toxicity in rats: implied metabolic control of nerve agent toxicity.

    PubMed

    Myers, Todd M; Langston, Jeffrey L

    2011-06-01

    To evaluate the role of diet composition on nerve agent toxicity, rats were fed four distinct diets ad libitum for 28 d prior to challenge with 110 μg/kg (1.0 LD(50), sc) soman. The four diets used were a standard rodent diet, a choline-enriched diet, a glucose-enriched diet, and a ketogenic diet. Body weight was recorded throughout the study. Toxic signs and survival were evaluated at key times for up to 72 h following soman exposure. Additionally, acquisition of discriminated shuttlebox avoidance performance was characterized beginning 24h after soman challenge and across the next 8 d (six behavioral sessions). Prior to exposure, body weight was highest in the standard diet group and lowest in the ketogenic diet group. Upon exposure, differences in soman toxicity as a function of diet became apparent within the first hour, with mortality in the glucose-enriched diet group reaching 80% and exceeding all other groups (in which mortality ranged from 0 to 6%). At 72 h after exposure, mortality was 100% in the glucose-enriched diet group, and survival approximated 50% in the standard and choline-enriched diet groups, but equaled 87% in the ketogenic diet group. Body weight loss was significantly reduced in the ketogenic and choline-enriched diet groups, relative to the standard diet group. At 1 and 4h after exposure, rats in the ketogenic diet group had significantly lower toxic sign scores than all other groups. The ketogenic diet group performed significantly better than the standard diet group on two measures of active avoidance performance. The exacerbated soman toxicity observed in the glucose-enriched diet group coupled with the attenuated soman toxicity observed in the ketogenic diet group implicates glucose availability in the toxic effects of soman. This increased glucose availability may enhance acetylcholine synthesis and/or utilization, thereby exacerbating peripheral and central soman toxicity. Published by Elsevier B.V.

  11. Sitophilus granarius L. (Coleoptera) Toxicity and Biological Activities of the Essential Oils of Tanacetum macrophyllum (Waldst. & Kit.) Schultz Bip.

    PubMed

    Polatoğlu, Kaan; Karakoç, Ömer Cem; Demirci, Betül; Gören, Nezhun; Can Başer, Kemal Hüsnü

    2015-01-01

    Insecticides of the natural origin are an important alternative to the synthetic insecticides that are being employed for the preserving stored products. The volatiles obtained from T. cinerariifolium (=Pyrethrum cinerariifolium) is being used for many types of insecticidal applications; however there is a very little information on the insecticidal activity of the essential oils of other Tanacetum species. The main purpose of the present study is to determine the chemical composition of T. macrophyllum (Waldst. & Kit.) Schultz Bip. essential oils and evaluate their insecticidal activity against S. granarius as well as its other beneficial biological activities. Highest contact toxicity was observed in the leaf oil of (88.93%) against S. granarius. The flower oil showed considerable fumigant toxicity against L. minor at 10 mg/mL application concentration (61.86 %) when compared with other samples at the same concentration. The highest DPPH (2,2-Diphenyl-1-picrylhydrazyl) scavenging activity (47.7%) and phosphomolybdenum reducing activity was observed also for the flower oil of T. macrophyllum at 10 mg/mL concentration. The essential oils were analyzed by GC, GC/MS. The flower and leaf oils were characterized with γ-eudesmol 21.5%, (E)-sesquilavandulol 20.3%, copaborneol 8.5% and copaborneol 14.1%, 1,8-cineole 11%, bornyl acetate 9.6%, borneol 6.3% respectively. AHC analysis of the qualitative and quantitative data obtained from the essential oil composition of the T. macrophyllum essential oil from the present research and previous reports pointed out that two different chemotypes could be proposed with current findings which are p-methyl benzyl alcohol/ cadinene and eudesmane chemotypes.

  12. Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses.

    PubMed

    Abrevaya, Ximena C; Sacco, Natalia J; Bonetto, Maria C; Hilding-Ohlsson, Astrid; Cortón, Eduardo

    2015-01-15

    Microbial fuel cells were rediscovered twenty years ago and now are a very active research area. The reasons behind this new activity are the relatively recent discovery of electrogenic or electroactive bacteria and the vision of two important practical applications, as wastewater treatment coupled with clean energy production and power supply systems for isolated low-power sensor devices. Although some analytical applications of MFCs were proposed earlier (as biochemical oxygen demand sensing) only lately a myriad of new uses of this technology are being presented by research groups around the world, which combine both biological-microbiological and electroanalytical expertises. This is the second part of a review of MFC applications in the area of analytical sciences. In Part I a general introduction to biological-based analytical methods including bioassays, biosensors, MFCs design, operating principles, as well as, perhaps the main and earlier presented application, the use as a BOD sensor was reviewed. In Part II, other proposed uses are presented and discussed. As other microbially based analytical systems, MFCs are satisfactory systems to measure and integrate complex parameters that are difficult or impossible to measure otherwise, such as water toxicity (where the toxic effect to aquatic organisms needed to be integrated). We explore here the methods proposed to measure toxicity, microbial metabolism, and, being of special interest to space exploration, life sensors. Also, some methods with higher specificity, proposed to detect a single analyte, are presented. Different possibilities to increase selectivity and sensitivity, by using molecular biology or other modern techniques are also discussed here. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Galactose metabolism and toxicity in Ustilago maydis.

    PubMed

    Schuler, David; Höll, Christina; Grün, Nathalie; Ulrich, Jonas; Dillner, Bastian; Klebl, Franz; Ammon, Alexandra; Voll, Lars M; Kämper, Jörg

    2018-05-01

    In most organisms, galactose is metabolized via the Leloir pathway, which is conserved from bacteria to mammals. Utilization of galactose requires a close interplay of the metabolic enzymes, as misregulation or malfunction of individual components can lead to the accumulation of toxic intermediate compounds. For the phytopathogenic basidiomycete Ustilago maydis, galactose is toxic for wildtype strains, i.e. leads to growth repression despite the presence of favorable carbon sources as sucrose. The galactose sensitivity can be relieved by two independent modifications: (1) by disruption of Hxt1, which we identify as the major transporter for galactose, and (2) by a point mutation in the gene encoding the galactokinase Gal1, the first enzyme of the Leloir pathway. The mutation in gal1(Y67F) leads to reduced enzymatic activity of Gal1 and thus may limit the formation of putatively toxic galactose-1-phosphate. However, systematic deletions and double deletions of different genes involved in galactose metabolism point to a minor role of galactose-1-phosphate in galactose toxicity. Our results show that molecular triggers for galactose toxicity in U. maydis differ from yeast and mammals. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Refined structures of three crystal forms of toxic shock syndrome toxin-1 and of a tetramutant with reduced activity.

    PubMed Central

    Prasad, G. S.; Radhakrishnan, R.; Mitchell, D. T.; Earhart, C. A.; Dinges, M. M.; Cook, W. J.; Schlievert, P. M.; Ohlendorf, D. H.

    1997-01-01

    The structure of toxic shock syndrome toxin-1 (TSST-1), the causative agent in toxic shock syndrome, has been determined in three crystal forms. The three structural models have been refined to R-factors of 0.154, 0.150, and 0.198 at resolutions of 2.05 A, 2.90 A, and 2.75 A, respectively. One crystal form of TSST-1 contains a zinc ion bound between two symmetry-related molecules. Although not required for biological activity, zinc dramatically potentiates the mitogenicity of TSST-1 at very low concentrations. In addition, the structure of the tetramutant TSST-1H [T69I, Y80W, E132K, I140T], which is nonmitogenic and does not amplify endotoxin shock, has been determined and refined in a fourth crystal form (R-factor = 0.173 to 1.9 A resolution). PMID:9194182

  15. More severe toxicity of genetic polymorphisms on MTHFR activity in osteosarcoma patients treated with high-dose methotrexate

    PubMed Central

    Xie, Lu; Guo, Wei; Yang, Yi; Ji, Tao; Xu, Jie

    2018-01-01

    5,10-Methylenetrahydrofolate reductase (MTHFR), a key enzyme for folate metabolism, catalyses the irreversible conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, which is located at the end of the short arm (1p36.3). Two common non-synonymous variants, the C677T (Ala222Val) and A1298C (Glu429Ala), were mainly described with decreased enzymatic activity and an alteration of intracellular folate distribution. Osteosarcomas are currently treated with high dose of methotrexate (MTX). The decreased enzyme activity of MTHFR theoretically could increase the drug action of MTX and at the same time increase toxic and side effect. Germline variants of C677T and A1298C were studied in 59 osteosarcoma patients, with whom the A1298C is detected with particularly low rate of mutant genotype (N = 1, 0.8%) and could not proceed with statistical calculations. 15 patients were wild type of C677T (CC, 25.4%), 20 were heterozygous mutant genotype (CT, 33.9%) and 24 were homozygous mutant genotype (TT, 40.7%). Patients harboring the TT/CT genotype had the same progression-free survival and tumor necrosis rate in comparison with patients having the CC genotype (P = 0.349 and P = 0.465 respectively). And the C677T polymorphisms had no significant correlation with MTX initial plasma concentration (P = 0.867; r = 0.024) and delayed elimination (P = 0.305; r = −0.136). However patients with mutant genotype of C677T were associated with higher degree of liver toxicity (P = 0.043) and fever reaction of MTX (P = 0.050) while G3/G4 hematologic toxicity were more likely to be noticed with TT than CT/CC (P = 0.095). The study suggests that genetic polymorphism of MTHFR C677T in the MTX metabolic pathway seems to be associated with the trend for more side effects statistically, but has no obvious effect on histologic response and survival. PMID:29545912

  16. Effect of trifluoperazine on toxicity, HIF-1α induction and hepatocyte regeneration in acetaminophen toxicity in mice1

    PubMed Central

    Chaudhuri, Shubhra; McCullough, Sandra S.; Hennings, Leah; Brown, Aliza T.; Li, Shun-Hwa; Simpson, Pippa M.; Hinson, Jack A.; James, Laura P.

    2012-01-01

    Oxidative stress and mitochondrial permeability transition (MPT) are important mechanisms in acetaminophen (APAP) toxicity. The MPT inhibitor trifluoperazine (TFP) reduced MPT, oxidative stress, and toxicity in freshly isolated hepatocytes treated with APAP. Since hypoxia inducible factor-one alpha (HIF-1α is induced very early in APAP toxicity, a role for oxidative stress in the induction has been postulated. In the present study, the effect of TFP on toxicity and HIF-1α induction in B6C3F1 male mice treated with APAP was examined. Mice received TFP (10 mg/kg, oral gavage) prior to APAP (200 mg/kg IP) and at 7 and 36 h after APAP. Measures of metabolism (hepatic glutathione and APAP protein adducts) were comparable in the two groups of mice. Toxicity was decreased in the APAP/TFP mice at 2, 4, and 8 h, compared to the APAP mice. At 24 and 48 h, there were no significant differences in toxicity between the two groups. TFP lowered HIF-1α induction but also reduced the expression of proliferating cell nuclear antigen, a marker of hepatocyte regeneration. TFP can also inhibit phospholipase A2, and cytosolic and secretory PLA2 activity levels were reduced in the APAP/TFP mice compared to the APAP mice. TFP also lowered prostaglandin E2 expression, a known mechanism of cytoprotection. In summary, the MPT inhibitor TFP delayed the onset of toxicity and lowered HIF-1α induction in APAP treated mice. TFP also reduced PGE2 expression and hepatocyte regeneration, likely through a mechanism involving PLA2. PMID:22902588

  17. Aquatic toxicity of petroleum products and dispersant agents ...

    EPA Pesticide Factsheets

    The U.S. EPA Office of Research and Development has developed baseline data on the ecotoxicity of selected petroleum products and several chemical dispersants as part of its oil spills research program. Two diluted bitumens (dilbits) from the Alberta Tar Sands were tested for acute and chronic toxicity to standard freshwater and marine organisms given their spill potential during shipment within the United States. Separately, two reference crude oils representing a range of characteristics, and their mixtures with four representative dispersants, were tested to evaluate acute and chronic toxicity to marine organisms in support of Subpart J of the U.S. National Contingency Plan. Water accommodated fractions (WAF) of oil were prepared using traditional slow-stir methods and toxicity tests generally followed U.S. EPA standard effluent testing guidelines. WAFs were characterized for petroleum hydrocarbons including alkyl PAH homologs. The results of these studies will assist the U.S. EPA to assess toxicity data for unconventional oils (dilbits), and establish baseline toxicity data for selected crude oils and dispersant in support of planning and response activities. Abstract reporting the results of EPA's oil and dispersant toxicity testing program

  18. In Vivo and In Vitro Toxicity Evaluation of Hydroethanolic Extract of Kalanchoe brasiliensis (Crassulaceae) Leaves.

    PubMed

    Fonseca, Aldilane Gonçalves; Ribeiro Dantas, Luzia Leiros Sena Fernandes; Fernandes, Júlia Morais; Zucolotto, Silvana Maria; Lima, Adley Antoninni Neves; Soares, Luiz Alberto Lira; Rocha, Hugo Alexandre Oliveira; Lemos, Telma Maria Araújo Moura

    2018-01-01

    The species Kalanchoe brasiliensis , known as "Saião , " has anti-inflammatory, antimicrobial, and antihistamine activities. It also has the quercetin and kaempferol flavonoids, which exert their therapeutic activities. With extensive popular use besides the defined therapeutical properties, the study of possible side effects is indispensable. The objective of this study is to evaluate the toxicity in vitro and in vivo from the hydroethanolic extract of the leaves of K. brasiliensis . The action of the extract (concentrations from 0.1 to 1000 uL/100 uL) in normal and tumor cells was evaluated using the MTT method. Acute toxicity and subchronic toxicity were evaluated in mice with doses of 250 to 1000 mg/kg orally, following recognized protocols. The in vitro results indicated cytotoxic activity for 3T3 cell line (normal) and 786-0 (kidney carcinoma), showing the activity to be concentration-dependent, reaching 92.23% cell inhibition. In vivo , the extract showed no significant toxicity; only liver changes related to acute toxicity and some signs of liver damage, combining biochemical and histological data. In general, the extract showed low or no toxicity, introducing itself as safe for use with promising therapeutic potential.

  19. The anti-caries activity and toxicity of an experimental propolis-containing varnish.

    PubMed

    DE Luca, Mariana Passos; Freires, Irlan Almeida; Gala-García, Alfonso; Santos, Vagner Rodrigues; Vale, Miriam Pimenta; Alencar, Severino Matias de; Rosalen, Pedro Luiz

    2017-06-05

    We investigated the anti-caries effects of an experimental propolis varnish in vivo, and further tested its toxicity against fibroblasts. Fifty-six SPF female Wistar rats were infected with Streptococcus mutans UA159 (SM) and allocated into four groups (n = 14/group): G1, propolis varnish (15%/PV); G2, chitosan varnish (CV/vehicle); G3, gold standard (GS/Duraphat®); and G4, untreated. The animals received a single varnish application on their molars and were submitted to a high cariogenic challenge (Diet-2000, 56% sucrose, and 5% sucrose-added water, ad libitum) for 4 weeks. Total cultivable microbiota and SM were counted, and smooth-surface and sulcal caries were scored. PV, CV and GS cytotoxic effects were tested against fibroblasts. The data were analyzed using ANOVA with the Tukey-Kramer test (p ≤ 0.05). Total microbiota and SM counts did not differ among the treatments (p = 0.78), or in relation to the untreated group (p = 0.52). PV reduced development of smooth-surface enamel caries compared with the untreated group (p = 0.0018), with no significant difference from GS (p = 0.92); however, the PV effects were no longer observed when the dentin was affected. Neither PV nor GS prevented enamel sulcal lesion onset, but GS significantly reduced the severity of dentinal sulcal lesions (p < 0.0001). No significant difference was observed in fibroblast viability between PV and GS (p < 0.0001). In conclusion, PV prevented smooth-surface enamel caries and showed low cell toxicity. Nevertheless, due to the high cariogenic challenge, its effects were not sustained throughout the experiment. Further studies are encouraged to establish a protocol to sustain the long-term anti-caries activity of PV in the oral cavity.

  20. Toxicity of Superparamagnetic Iron Oxide Nanoparticles on Green Alga Chlorella vulgaris

    PubMed Central

    Barhoumi, Lotfi

    2013-01-01

    Toxicity of superparamagnetic iron oxide nanoparticles (SPION) was investigated on Chlorella vulgaris cells exposed during 72 hours to Fe3O4 (SPION-1), Co0.2Zn0.8Fe2O4 (SPION-2), or Co0.5Zn0.5Fe2O4 (SPION-3) to a range of concentrations from 12.5 to 400 μg mL−1. Under these treatments, toxicity impact was indicated by the deterioration of photochemical activities of photosynthesis, the induction of oxidative stress, and the inhibition of cell division rate. In comparison to SPION-2 and -3, exposure to SPION-1 caused the highest toxic effects on cellular division due to a stronger production of reactive oxygen species and deterioration of photochemical activity of Photosystem II. This study showed the potential source of toxicity for three SPION suspensions, having different chemical compositions, estimated by the change of different biomarkers. In this toxicological investigation, algal model C. vulgaris demonstrated to be a valuable bioindicator of SPION toxicity. PMID:24369015

  1. In vitro bioassays reveal that additives are significant contributors to the toxicity of commercial household pesticides.

    PubMed

    van de Merwe, Jason P; Neale, Peta A; Melvin, Steven D; Leusch, Frederic D L

    2018-06-01

    Pesticides commonly used around households can contain additives of unknown concentrations and toxicity. Given the likelihood of these chemicals washing into urban waterways, it is important to understand the effects that these additives may have on aquatic organisms. The aim of this study was to compare the toxicity of commercially available household pesticides to that of the active ingredient(s) alone. The toxicity of five household pesticides (three herbicides and two insecticides) was investigated using a bacterial cytotoxicity bioassay and an algal photosynthesis bioassay. The commercial products were up to an order of magnitude more toxic than the active ingredient(s) alone. In addition, two commercial products with the same listed active ingredients in the same ratio had a 600× difference in potency. These results clearly demonstrate that additives in commercial formulations are significant contributors to the toxicity of household pesticides. The toxicity of pesticides in aquatic systems is therefore likely underestimated by conventional chemical monitoring and risk assessment when only the active ingredients are considered. Regulators and customers should require more clarity from pesticide manufacturers about the nature and concentrations of not only the active ingredients, but also additives used in commercial formulations. In addition, monitoring programmes and chemical risk assessments schemes should develop a structured approach to assessing the toxic effects of commercial formulations, including additives, rather than simply those of the listed active ingredients. Copyright © 2018. Published by Elsevier B.V.

  2. Review of the photo-induced toxicity of environmental contaminants.

    PubMed

    Roberts, Aaron P; Alloy, Matthew M; Oris, James T

    2017-01-01

    Solar radiation is a vital component of ecosystem function. However, sunlight can also interact with certain xenobiotic compounds in a phenomenon known as photo-induced, photo-enhanced, photo-activated, or photo-toxicity. This phenomenon broadly refers to an interaction between a chemical and sunlight resulting in increased toxicity. Because most aquatic ecosystems receive some amount of sunlight, co-exposure to xenobiotic chemicals and solar radiation is likely to occur in the environment, and photo-induced toxicity may be an important factor impacting aquatic ecosystems. However, photo-induced toxicity is not likely to be relevant in all aquatic systems or exposure scenarios due to variation in important ecological factors as well as physiological adaptations of the species that reside there. Here, we provide an updated review of the state of the science of photo-induced toxicity in aquatic ecosystems. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Pulmonary toxicity of manufactured nanoparticles

    NASA Astrophysics Data System (ADS)

    Peebles, Brian Christopher

    Manufactured nanomaterials have become ubiquitous in science, industry, and medicine. Although electron microscopy and surface probe techniques have improved understanding of the physicochemical properties of nanomaterials, much less is known about what makes nanomaterials toxic. Particulate matter less than 2.5 mum in effective aerodynamic diameter is easily inhaled and taken deep into the lungs. The toxicity of inhaled particulate matter is related to its size and surface chemistry; for instance, the smaller the size of particles, the greater their specific surface area. The chemistry and toxicity of insoluble particles depends on their surface area, since chemical reactions may happen with the environment on the surface. Oxidation and reduction may occur on the surfaces of particles after they are produced. For instance, it is known that carbonaceous particles from vehicle exhaust and industrial emission may interact with reactive species like ozone in their ambient environment, altering the surface chemistry of the particles. Reaction with species in the environment may cause changes in the chemical functionality of the surface and change the toxic properties of the particles when they are inhaled. Furthermore, metals on the surface of inhalable particles can contribute to their toxicity. Much attention has been given to the presence of iron on the surfaces of inhalable particles in the environment. After particle inhalation, particles are endocytosed by alveolar macrophages in the immune response to foreign matter. They are exposed to hydrogen peroxide in the oxidative burst, which can cause the iron-mediated production of hydroxyl free radicals via the Fenton reaction, causing oxidative stress that leads to inflammation and cell death. The toxicity of particles that contain metals depends on the redox activity and bioavailability of the metals, the causes of thich have not yet been adequately explored. In this thesis, electron paramagnetic spectroscopy showed

  4. Sorption and toxicity reduction of pharmaceutically active compounds and endocrine disrupting chemicals in the presence of colloidal humic acid.

    PubMed

    Kim, Injeong; Kim, Hyo-Dong; Jeong, Tae-Yong; Kim, Sang Don

    This study investigated the toxicity changes and sorption of pharmaceuticals and endocrine disrupters in the presence of humic acid (HA). For the sorption experiment, a dead end filtration (DEF) system was used to separate bound and free-form target compounds. An algae growth inhibition test and E-screen assay were conducted to estimate the toxic effect of pharmaceutically active compounds (PhACs) and endocrine disrupting chemicals (EDCs), respectively. The permeate concentration was confirmed using liquid chromatography-mass spectrometry. In the sorption test, we observed significant sorption of PhACs and EDCs on colloidal HA, except for sulfamethoxazole (SMX). The values of log KCOC derived from DEF determinations ranged from 4.40 to 5.03. The removal efficiency varied with the HA concentration and the target chemical properties. Tetracycline and 4-octylphenol showed the highest sorption or removal efficiency (≈50%), even at 5 mg C/L HA. The algal growth inhibition of PhACs and the estrogenic effects of EDCs were significantly decreased in proportion to HA concentrations, except for SMX. In addition, the chemical analysis results showed a positive relationship with the bioassay results. Consequently, the sorption of PhACs and EDCs onto colloidal HA should be emphasized in natural environments because it significantly reduces bioavailable concentrations and toxicity to aquatic organisms.

  5. Toxicity of fluoride to aquatic species and evaluation of toxicity modifying factors.

    PubMed

    Pearcy, Krysta; Elphick, James; Burnett-Seidel, Charlene

    2015-07-01

    The present study was performed to investigate the toxicity of fluoride to a variety of freshwater aquatic organisms and to establish whether water quality variables contribute substantively to modifying its toxicity. Water hardness, chloride, and alkalinity were tested as possible toxicity modifying factors for fluoride using acute toxicity tests with Hyalella azteca and Oncorhynchus mykiss. Chloride appeared to be the major toxicity modifying factor for fluoride in these acute toxicity tests. The chronic toxicity of fluoride was evaluated with a variety of species, including 3 fish (Pimephales promelas, O. mykiss, and Salvelinus namaycush), 3 invertebrates (Ceriodaphnia dubia, H. azteca, and Chironomus dilutus), 1 plant (Lemna minor), and 1 alga (Pseudokirchneriella subcapitata). Hyalella azteca was the most sensitive species overall, and O. mykiss was the most sensitive species of fish. The role of chloride as a toxicity modifying factor was inconsistent between species in the chronic toxicity tests. © 2015 SETAC.

  6. Evaluation of a two-generation reproduction toxicity study adding endpoints to detect endocrine disrupting activity using lindane.

    PubMed

    Matsuura, Ikuo; Saitoh, Tetsuji; Tani, Einosuke; Wako, Yumi; Iwata, Hiroshi; Toyota, Naoto; Ishizuka, Yoshihito; Namiki, Masato; Hoshino, Nobuhito; Tsuchitani, Minoru; Ikeda, Yasuo

    2005-12-01

    A two-generation reproduction toxicity study in rats adding extra endpoints to detect endocrine disrupting activity was conducted using lindane by dietary administration at 0, 10, 60, and 300 ppm, for investigation of its utility. The extra endpoints included anogenital distance (AGD), nipple development, sexual maturation (vaginal opening and preputial separation), estrous cycle, spermatogenesis, sex organ weights, and blood hormone concentrations (thyroid and sex hormones). F1 offspring were examined for emotionality (open field test), motor coordination (rotarod test), as well as learning and memory (pole-climbing test). Hepatic drug-metabolizing enzyme activities were also measured. The results revealed general toxicological effects on parental animals, influence on reproductive function, and altered development of offspring; however, they did not demonstrate any distinct changes in the extra endpoints for detection of endocrine disrupting activity. Adult toxicity was observed in both F0 and F1 animals, including suppressed body weight gain and reduced food consumption in both sexes, and deaths of females at 300 ppm. Convulsions and irritability were observed during the perinatal period in pregnant F1 females given 300 ppm. Pathological examination revealed increased liver weights and centrilobular hepatocellular hypertrophy in both sexes and generations at 10 or 60 ppm and above; in addition, increased kidney weights and increased hyaline droplets in the proximal tubule epithelium, and basophilic renal tubules in males were noted at 10 ppm and above. Pituitary weights were decreased in F0 females and in F1 males and females and adrenal weights were increased in F1 males and females at 300 ppm; however, no histological changes were observed, and manifestations suggesting endocrine disrupting activity related to these changes were lacking. Hypertrophy of the thyroid follicular epithelium in F0 females at 300 ppm and in F1 males at 60 and 300 ppm, and decreases

  7. Dietary compounds as modulators of metals and metalloids toxicity.

    PubMed

    Jadán-Piedra, Carlos; Chiocchetti, Gabriela Matuoka; Clemente, María Jesús; Vélez, Dinoraz; Devesa, Vicenta

    2017-07-07

    A large part of the population is exposed to metals and metalloids through the diet. Most of the in vivo studies on its toxicokinetics and toxicity are conducted by means of exposure through drinking water or by intragastric or intraperitoneal administration of aqueous standards, and therefore they do not consider the effect of the food matrix on the exposure. Numerous studies show that some components of the diet can modulate the toxicity of these food contaminants, reducing their effect on a systemic level. Part of this protective role may be due to a reduction of intestinal absorption and subsequent tissue accumulation of the toxic element, although it may also be a consequence of their ability to counteract the toxicity directly by their antioxidant and/or anti-inflammatory activity, among other factors. The present review provides a compilation of existing information about the effect that certain components of the diet have on the toxicokinetics and toxicity of the metals and metalloids of greatest toxicological importance that are present in food (arsenic, cadmium, lead, and mercury), and of their most toxic chemical species.

  8. Oxidative Stress and Antioxidants in Tomato (Solanum lycopersicum) Plants Subjected to Boron Toxicity

    PubMed Central

    Cervilla, Luis M.; Blasco, Begoña; Ríos, Juan J.; Romero, Luis; Ruiz, Juan M.

    2007-01-01

    Background and Aims Boron (B) toxicity triggers the formation of reactive oxygen species in plant tissues. However, there is still a lack of knowledge as to how B toxicity affects the plant antioxidant defence system. It has been suggested that ascorbate could be important against B stress, although existing information is limited in this respect. The objective of this study was to analyse how ascorbate and some other components of the antioxidant network respond to B toxicity. Methods Two tomato (Solanum lycopersicum) cultivars (‘Kosaco’ and ‘Josefina’) were subjected to 0·05 (control), 0·5 and 2 mm B. The following were studied in leaves: dry weight; relative leaf growth rate; total and free B; H2O2; malondialdehyde; ascorbate; glutathione; sugars; total non-enzymatic antioxidant activity, and the activity of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, ascorbate oxidase and l-galactose dehydrogenase. Key Results The B-toxicity treatments diminished growth and boosted the amount of B, malondialdehyde and H2O2 in the leaves of the two cultivars, these trends being more pronounced in ‘Josefina’ than in ‘Kosaco’. B toxicity increased ascorbate concentration in both cultivars and increased glutathione only in ‘Kosaco’. Activities of antioxidant- and ascorbate-metabolizing enzymes were also induced. Conclusions High B concentration in the culture medium provokes oxidative damage in tomato leaves and induces a general increase in antioxidant enzyme activity. In particular, B toxicity increased ascorbate pool size. It also increased the activity of l-galactose dehydrogenase, an enzyme involved in ascorbate biosynthesis, and the activity of enzymes of the Halliwell–Asada cycle. This work therefore provides a starting point towards a better understanding of the role of ascorbate in the plant response against B stress. PMID:17660516

  9. In Vitro Toxicity Assessment Technique for Volatile ...

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency is tasked with evaluating the human health, environmental, and wildlife effects of over 80,000 chemicals registered for use in the environment and commerce. The challenge is that sparse chemical data exists; traditional toxicity testing methods are slow, costly, involve animal studies, and cannot keep up with a chemical registry that typically grows by at least 1000 chemicals every year. In recent years, High Throughput Screening (HTS) has been used in order to prioritize chemicals for traditional toxicity screening or to complement traditional toxicity studies. HTS is an in vitro approach of rapidly assaying a large number of chemicals for biochemical activity using robotics and automation. However, no method currently exists for screening volatile chemicals such as air pollutants in a HTS fashion. Additionally, significant uncertainty regarding in vitro to in in vivo extrapolation (IVIVE) remains. An approach to bridge the IVIVE gap and the current lack of ability to screen volatile chemicals in a HTS fashion is by using a probe molecule (PrM) technique. The proposed technique uses chemicals with empirical human pharmacokinetic data as PrMs to study toxicity of molecules with no known data for gas-phase analysis. We are currently studying the xenobiotic-metabolizing enzyme CYP2A6 using transfected BEAS-2B bronchial epithelial cell line. The CYP2A6 pathway activity is studied by the formation of cotinine from nicot

  10. Genetic and Biochemical Analysis of High Iron Toxicity in Yeast

    PubMed Central

    Lin, Huilan; Li, Liangtao; Jia, Xuan; Ward, Diane McVey; Kaplan, Jerry

    2011-01-01

    Iron storage in yeast requires the activity of the vacuolar iron transporter Ccc1. Yeast with an intact CCC1 are resistant to iron toxicity, but deletion of CCC1 renders yeast susceptible to iron toxicity. We used genetic and biochemical analysis to identify suppressors of high iron toxicity in Δccc1 cells to probe the mechanism of high iron toxicity. All genes identified as suppressors of high iron toxicity in aerobically grown Δccc1 cells encode organelle iron transporters including mitochondrial iron transporters MRS3, MRS4, and RIM2. Overexpression of MRS3 suppressed high iron toxicity by decreasing cytosolic iron through mitochondrial iron accumulation. Under anaerobic conditions, Δccc1 cells were still sensitive to high iron toxicity, but overexpression of MRS3 did not suppress iron toxicity and did not result in mitochondrial iron accumulation. We conclude that Mrs3/Mrs4 can sequester iron within mitochondria under aerobic conditions but not anaerobic conditions. We show that iron toxicity in Δccc1 cells occurred under both aerobic and anaerobic conditions. Microarray analysis showed no evidence of oxidative damage under anaerobic conditions, suggesting that iron toxicity may not be solely due to oxidative damage. Deletion of TSA1, which encodes a peroxiredoxin, exacerbated iron toxicity in Δccc1 cells under both aerobic and anaerobic conditions, suggesting a unique role for Tsa1 in iron toxicity. PMID:21115478

  11. Interspecies quantitative structure-activity relationships (QSARs) for eco-toxicity screening of chemicals: the role of physicochemical properties.

    PubMed

    Furuhama, A; Hasunuma, K; Aoki, Y

    2015-01-01

    In addition to molecular structure profiles, descriptors based on physicochemical properties are useful for explaining the eco-toxicities of chemicals. In a previous study we reported that a criterion based on the difference between the partition coefficient (log POW) and distribution coefficient (log D) values of chemicals enabled us to identify aromatic amines and phenols for which interspecies relationships with strong correlations could be developed for fish-daphnid and algal-daphnid toxicities. The chemicals that met the log D-based criterion were expected to have similar toxicity mechanisms (related to membrane penetration). Here, we investigated the applicability of log D-based criteria to the eco-toxicity of other kinds of chemicals, including aliphatic compounds. At pH 10, use of a log POW - log D > 0 criterion and omission of outliers resulted in the selection of more than 100 chemicals whose acute fish toxicities or algal growth inhibition toxicities were almost equal to their acute daphnid toxicities. The advantage of log D-based criteria is that they allow for simple, rapid screening and prioritizing of chemicals. However, inorganic molecules and chemicals containing certain structural elements cannot be evaluated, because calculated log D values are unavailable.

  12. Mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia.

    PubMed

    Ali, Shimaa E; Thoen, Even; Evensen, Øystein; Wiik-Nielsen, Jannicke; Gamil, Amr A A; Skaar, Ida

    2014-01-01

    There has been a significant increase in the incidence of Saprolegnia infections over the past decades, especially after the banning of malachite green. Very often these infections are associated with high economic losses in salmonid farms and hatcheries. The use of boric acid to control the disease has been investigated recently both under in vitro and in vivo conditions, however its possible mode of action against fish pathogenic Saprolegnia is not known. In this study, we have explored the transformation in Saprolegnia spores/hyphae after exposure to boric acid (1 g/L) over a period 4-24 h post treatment. Using transmission electron microscopy (TEM), early changes in Saprolegnia spores were detected. Mitochondrial degeneration was the most obvious sign observed following 4 h treatment in about 20% of randomly selected spores. We also investigated the effect of the treatment on nuclear division, mitochondrial activity and function using confocal laser scanning microscopy (CLSM). Fluorescence microscopy was also used to test the effect of treatment on mitochondrial membrane potential and formation of reactive oxygen species. Additionally, the viability and proliferation of treated spores that correlated to mitochondrial enzymatic activity were tested using an MTS assay. All obtained data pointed towards changes in the mitochondrial structure, membrane potential and enzymatic activity following treatment. We have found that boric acid has no effect on the integrity of membranes of Saprolegnia spores at concentrations tested. It is therefore likely that mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia spp.

  13. Mitochondrial Dysfunction Is Involved in the Toxic Activity of Boric Acid against Saprolegnia

    PubMed Central

    Ali, Shimaa E.; Thoen, Even; Evensen, Øystein; Wiik-Nielsen, Jannicke; Gamil, Amr A. A.; Skaar, Ida

    2014-01-01

    There has been a significant increase in the incidence of Saprolegnia infections over the past decades, especially after the banning of malachite green. Very often these infections are associated with high economic losses in salmonid farms and hatcheries. The use of boric acid to control the disease has been investigated recently both under in vitro and in vivo conditions, however its possible mode of action against fish pathogenic Saprolegnia is not known. In this study, we have explored the transformation in Saprolegnia spores/hyphae after exposure to boric acid (1 g/L) over a period 4–24 h post treatment. Using transmission electron microscopy (TEM), early changes in Saprolegnia spores were detected. Mitochondrial degeneration was the most obvious sign observed following 4 h treatment in about 20% of randomly selected spores. We also investigated the effect of the treatment on nuclear division, mitochondrial activity and function using confocal laser scanning microscopy (CLSM). Fluorescence microscopy was also used to test the effect of treatment on mitochondrial membrane potential and formation of reactive oxygen species. Additionally, the viability and proliferation of treated spores that correlated to mitochondrial enzymatic activity were tested using an MTS assay. All obtained data pointed towards changes in the mitochondrial structure, membrane potential and enzymatic activity following treatment. We have found that boric acid has no effect on the integrity of membranes of Saprolegnia spores at concentrations tested. It is therefore likely that mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia spp. PMID:25354209

  14. Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals.

    PubMed

    Allegra, Enrico; Titball, Richard W; Carter, John; Champion, Olivia L

    2018-05-01

    The acute toxicities of 19 chemicals were assessed using G. mellonella larvae. The results obtained were compared against LD50 values derived from in vitro cytotoxicity tests and against in vivo acute oral LD50 values. In general, cell culture systems overestimated the toxicity of chemicals, especially low toxicity chemicals. In contrast, toxicity testing in G. mellonella larvae was found to be a reliable predictor for low toxicity chemicals. For the 9 chemicals tested which were assigned to Globally Harmonised System (GHS) category 5, the toxicity measured in G. mellonella larvae was consistent with their GHS categorisation but cytotoxicity measured in 3T3 or NHK cells predicted 4 out of 9 chemicals as having low toxicity. A more robust assessment of the likely toxicity of chemicals in mammals could be made by taking into account their toxicities in both cell cultures and in G. mellonella larvae. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Toxic Warfare

    DTIC Science & Technology

    2002-02-01

    Prepared for the United States Air Force Approved for public release; distribution unlimited Theodore Karasik Project AIR FORCE R TOXIC WARFARE...Report Documentation Page Report Date 000002002 Report Type N/A Dates Covered (from... to) - Title and Subtitle Toxic Warfare Contract Number Grant...310) 451-6915; Email: order@rand.org Library of Congress Cataloging-in-Publication Data Karasik, Theodore William. Toxic warfare / Theodore Karasik

  16. Toxicity Evaluation of Engineered Nanomaterials: Risk Evaluation Tools (Phase 3 Studies)

    DTIC Science & Technology

    2012-01-01

    report. The second modeling approach was on quantitative structure activity relationships ( QSARs ). A manuscript entitled “Connecting the dots: Towards...expands rapidly. We proposed two types of mechanisms of toxic action supported by the nano- QSAR model , which collectively govern the toxicity of the...interpretative nano- QSAR model describing toxicity of 18 nano-metal oxides to a HaCaT cell line as a model for dermal exposure. In result, by the comparison of

  17. Thresholds of arsenic toxicity to Eisenia fetida in field-collected agricultural soils exposed to copper mining activities in Chile.

    PubMed

    Bustos, Víctor; Mondaca, Pedro; Verdejo, José; Sauvé, Sébastien; Gaete, Hernán; Celis-Diez, Juan L; Neaman, Alexander

    2015-12-01

    Several previous studies highlighted the importance of using field-collected soils-and not artificially-contaminated soils-for ecotoxicity tests. However, the use of field-collected soils presents several difficulties for interpretation of results, due to the presence of various contaminants and unavoidable differences in the physicochemical properties of the tested soils. The objective of this study was to estimate thresholds of metal toxicity in topsoils of 24 agricultural areas historically contaminated by mining activities in Chile. We performed standardized earthworm reproduction tests (OECD 222 and ISO 11268-2) with Eisenia fetida. Total soil concentrations of Cu, As, Zn, and Pb were in the ranges of 82-1295 mg kg(-1), 7-41 mg kg(-1), 86-345 mg kg(-1), and 25-97 mg kg(-1), respectively. In order to differentiate between the effects of different metals, we used regression analysis between soil metal concentrations and earthworm responses, as well as between metal concentrations in earthworm tissues and earthworm responses. Based on regression analysis, we concluded that As was a metal of prime concern for Eisenia fetida in soils affected by Cu mining activities, while Cu exhibited a secondary effect. In contrast, the effects of Zn and Pb were not significant. Soil electrical conductivity was another significant contributor to reproduction toxicity in the studied soils, forcing its integration in the interpretation of the results. By using soils with electrical conductivity ≤ 0.29 dS m(-1) (which corresponds to EC50 of salt toxicity to Eisenia fetida), it was possible to isolate the effect of soil salinity on earthworm reproduction. Despite the confounding effects of Cu, it was possible to determine EC10, EC25 and EC50 values for total soil As at 8 mg kg(-1), 14 mg kg(-1) and 22 mg kg(-1), respectively, for the response of the cocoon production. However, it was not possible to determine these threshold values for juvenile production. Likewise, we were able to

  18. DETECTION OF TOXICANT(S) ON BUILDING SURFACES FOLLOWING CHEMICAL ATTACK

    EPA Science Inventory

    A critical step prior to reoccupation of any facility following a chemical attack is monitoring for toxic compounds on surfaces within that facility. Low level detection of toxicant(s) is necessary to ensure that these compounds have been eliminated after building decontaminatio...

  19. Tropospheric ozone toxicity vs. usefulness of ozone therapy.

    PubMed

    Bocci, Velio Alvaro

    2007-02-01

    There is a general consensus that continuous inhalation of air polluted with ozone is detrimental for the lungs and vital organs. Even if the concentration of tropospheric ozone is slightly above the tolerated dose, toxicity ensues owing to the cumulative dose inhaled for months. However, in medicine ozone is used as a real drug and a precise concentration and therapeutic dosage must be calibrated against the antioxidant capacity of blood. As ozone reacts with blood, it generates pharmacological messengers such as H(2)O(2) and lipid oxidation products (LOPs). These activate several biochemical pathways in blood cells, which after reinfusion are responsible for therapeutic activities lasting several days. Neither acute nor chronic toxicity has been registered.

  20. Haloacetonitriles: metabolism and toxicity.

    PubMed

    Lipscomb, John C; El-Demerdash, Ebtehal; Ahmed, Ahmed E

    2009-01-01

    The haloacetonitriles (HANs) exist in drinking water exclusively as byproducts of disinfection. HANs are found in drinking water more often, and in higher concentrations, when surface water is treated by chloramination. Human exposure occurs through consumption of finished drinking water; oral and dermal contact also occurs, and results from showering, swimming and other activities. HANs are reactive and are toxic to gastrointestinal tissues following oral administration. Such toxicity is characterized by GSH depletion, increased lipid peroxidation, and covalent binding of HAN-associated radioactivity to gut tissues. The presence of GSH in cells is an important protective mechanism against HAN toxicity; depletion of cellular GSH results in increased toxicity. Some studies have demonstrated an apparently synergistic effect between ROS and HAN administration, that may help explain effects observed in GI tissues. ROS are produced in gut tissues, and in vitro evidence indicates that ROS may contribute to the degradation and formation of reactive intermediates from HANs. The rationale for ROS involvement may involve HAN-induced depletion of GSH and the role of GSH in scavenging ROS. In addition to effects on GI tissues, studies show that HAN-derived radiolabel is found covalently bound to proteins and DNA in several organs and tissues. The addition of antioxidants to biologic systems protects against HAN-induced DNA damage. The protection offered by antioxidants supports the role of oxidative stress and the potential for a threshold in han-induced toxicity. However, additional data are needed to substantiate evidence for such a threshold. HANs are readily absorbed from the GI tract and are extensively metabolized. Elimination occurs primarily in urine, as unconjugated one-carbon metabolites. Evidence supports the involvement of mixed function oxidases, the cytochrome P450 enzyme family and GST, in HAN metabolism. Metabolism represents either a detoxification or

  1. Sensitivity or artifact? -- IQ Toxicity Test -- effluent values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, K.R.; Novotny, A.N.; Batista, N.

    1995-12-31

    Several complex effluents were DAPHNIA MAGNA IQ TOXICITY TESTED -- (1.25 hours) and conventionally tested with Daphnia magna (48 hours). In many samples the IQ Technology yielded low EC50 values while the 48 hour exposures yielded no acute toxicity. Possible explanations have been suggested for this occurrence such as: genotoxicity, mutagenicity, substrate interference, and enzyme satiation. To identify the causative agent(s) of this response a Toxicity Identification Evaluation was performed on one of the samples. To define the nature of the response, THE SOS-CHROMOTEST KIT and THE MUTA-CHROMOPLATE KIT were utilized to characterize genotoxicity and mutagenicity respectively. The sample didmore » not test positive for genotoxicity but tested positive for mutagenicity only after activation with S9 enzymes, suggesting the presence of promutagens. Additional work needs to be performed to correlate IQ TOXICITY TEST sensitivity with positive MUTA-CHROMOPLATE response.« less

  2. Isopropyl Caffeate: A Caffeic Acid Derivative—Antioxidant Potential and Toxicity

    PubMed Central

    Montenegro, Camila de Albuquerque; de Oliveira, Kardilandia Mendes; de Oliveira Filho, Abrahão Alves; da Paz, Alexandre Rolim; de Araújo, Marianna Oliveira; Lima, Caliandra Maria Bezerra Luna; Diniz, Margareth de Fátima Formiga Melo; Pessôa, Hilzeth de Luna Freire

    2018-01-01

    Phenolic compounds, among them isopropyl caffeate, possess antioxidant potential, but not without toxicity and/or adverse effects. The present study aimed to evaluate the antioxidant activity and toxicity of isopropyl caffeate through in silico, in vitro and in vivo testing. The results showed that isopropyl caffeate presents no significant theoretical risk of toxicity, with likely moderate bioactivity: GPCR binding, ion channel modulation, nuclear receptor binding, and enzyme inhibition. Isopropyl caffeate induced hemolysis only at the concentrations of 500 and 1000 μg/ml. We observed types A and O erythrocyte protection from osmotic stress, no oxidation of erythrocytes, and even sequestrator and antioxidant behavior. However, moderate toxicity, according to the classification of GHS, was demonstrated through depressant effects on the central nervous system, though there was no influence on water and food consumption or on weight gain, and it did present possible hepatoprotection. We conclude that the effects induced by isopropyl caffeate are due to its antioxidant activity, capable of preventing production of free radicals and oxidative stress, a promising molecule with pharmacological potential. PMID:29849905

  3. Calcium dependence of eugenol tolerance and toxicity in Saccharomyces cerevisiae.

    PubMed

    Roberts, Stephen K; McAinsh, Martin; Cantopher, Hanna; Sandison, Sean

    2014-01-01

    Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA) revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.

  4. Effect of olive mill wastewaters on the oxygen consumption by activated sludge microorganisms: an acute toxicity test method.

    PubMed

    Paixão, S M; Anselmo, A M

    2002-01-01

    The test for inhibition of oxygen consumption by activated sludge (ISO 8192-1986 (E)) was evaluated as a tool for assessing, the acute toxicity of olive mill wastewaters (OMW). According to the ISO test, information generated by this method may be helpful in estimating the effect of a test material on bacterial communities in the aquatic environment, especially in aerobic biological treatment systems. However, the lack of standardized bioassay methodology for effluents imposed that the test conditions were modified and adapted. The experiments were conducted in the presence or absence of an easily biodegradable carbon source (glucose) with different contact times (20 min and 24 h). The results obtained showed a remarkable stimulatory effect of this effluent to the activated sludge microorganisms. In fact, the oxygen uptake rate values increase with increasing effluent concentrations and contact times up to 0.98 microl O(2) h(-1) mg(-1) dry weight for a 100% OMW sample, 24 h contact time, with blanks exhibiting an oxygen uptake rate of ca. 1/10 of this value (0.07-0.10). It seems that the application of the ISO test as an acute toxicity test for effluents should be reconsidered, with convenient adaptation for its utilization as a method of estimating the effect on bacterial communities present in aerobic biological treatment systems. Copyright 2002 John Wiley & Sons, Ltd.

  5. Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization

    PubMed Central

    Huang, Ruili; Xia, Menghang; Sakamuru, Srilatha; Zhao, Jinghua; Shahane, Sampada A.; Attene-Ramos, Matias; Zhao, Tongan; Austin, Christopher P.; Simeonov, Anton

    2016-01-01

    Target-specific, mechanism-oriented in vitro assays post a promising alternative to traditional animal toxicology studies. Here we report the first comprehensive analysis of the Tox21 effort, a large-scale in vitro toxicity screening of chemicals. We test ∼10,000 chemicals in triplicates at 15 concentrations against a panel of nuclear receptor and stress response pathway assays, producing more than 50 million data points. Compound clustering by structure similarity and activity profile similarity across the assays reveals structure–activity relationships that are useful for the generation of mechanistic hypotheses. We apply structural information and activity data to build predictive models for 72 in vivo toxicity end points using a cluster-based approach. Models based on in vitro assay data perform better in predicting human toxicity end points than animal toxicity, while a combination of structural and activity data results in better models than using structure or activity data alone. Our results suggest that in vitro activity profiles can be applied as signatures of compound mechanism of toxicity and used in prioritization for more in-depth toxicological testing. PMID:26811972

  6. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect.

    PubMed

    Kleandrova, Valeria V; Luan, Feng; Speck-Planche, Alejandro; Cordeiro, M Natália D S

    2015-01-01

    The assessment of acute toxicity is one of the most important stages to ensure the safety of chemicals with potential applications in pharmaceutical sciences, biomedical research, or any other industrial branch. A huge and indiscriminate number of toxicity assays have been carried out on laboratory animals. In this sense, computational approaches involving models based on quantitative-structure activity/toxicity relationships (QSAR/QSTR) can help to rationalize time and financial costs. Here, we discuss the most significant advances in the last 6 years focused on the use of QSAR/QSTR models to predict acute toxicity of drugs/chemicals in laboratory animals, employing large and heterogeneous datasets. The advantages and drawbacks of the different QSAR/QSTR models are analyzed. As a contribution to the field, we introduce the first multitasking (mtk) QSTR model for simultaneous prediction of acute toxicity of compounds by considering different routes of administration, diverse breeds of laboratory animals, and the reliability of the experimental conditions. The mtk-QSTR model was based on artificial neural networks (ANN), allowing the classification of compounds as toxic or non-toxic. This model correctly classified more than 94% of the 1646 cases present in the whole dataset, and its applicability was demonstrated by performing predictions of different chemicals such as drugs, dietary supplements, and molecules which could serve as nanocarriers for drug delivery. The predictions given by the mtk-QSTR model are in very good agreement with the experimental results.

  7. [Staphylococcal toxic shock syndrome at a chronic hemodialysis].

    PubMed

    Alaoui, Hassan; Belhadj, Ayoub; Aissaoui, Younes; Seddiki, Rachid; Zoubir, Mohamed; Bougalem, Mohamed

    2017-01-01

    Staphylococcal toxic shock syndrome is an acute and systemic infectious syndrome associated with the super-antigenic activity of staphylococcal toxins. It is a pathology that is rather rare but remains burdened with a considerable mortality despite the therapeutic management. The gateway is usually cutaneous with secondary bacteremic spread could be subject to preventive measures. We report the case of a rapidly fatal staphylococcal toxic shock, developed in a chronic hemodialysis whose entry from the arteriovenous fistula was suspected.

  8. In Vivo and In Vitro Toxicity Evaluation of Hydroethanolic Extract of Kalanchoe brasiliensis (Crassulaceae) Leaves

    PubMed Central

    Lima, Adley Antoninni Neves; Soares, Luiz Alberto Lira

    2018-01-01

    The species Kalanchoe brasiliensis, known as “Saião,” has anti-inflammatory, antimicrobial, and antihistamine activities. It also has the quercetin and kaempferol flavonoids, which exert their therapeutic activities. With extensive popular use besides the defined therapeutical properties, the study of possible side effects is indispensable. The objective of this study is to evaluate the toxicity in vitro and in vivo from the hydroethanolic extract of the leaves of K. brasiliensis. The action of the extract (concentrations from 0.1 to 1000 uL/100 uL) in normal and tumor cells was evaluated using the MTT method. Acute toxicity and subchronic toxicity were evaluated in mice with doses of 250 to 1000 mg/kg orally, following recognized protocols. The in vitro results indicated cytotoxic activity for 3T3 cell line (normal) and 786-0 (kidney carcinoma), showing the activity to be concentration-dependent, reaching 92.23% cell inhibition. In vivo, the extract showed no significant toxicity; only liver changes related to acute toxicity and some signs of liver damage, combining biochemical and histological data. In general, the extract showed low or no toxicity, introducing itself as safe for use with promising therapeutic potential. PMID:29593788

  9. Decomposition of sulfamethoxazole and trimethoprim by continuous UVA/LED/TiO2 photocatalysis: Decomposition pathways, residual antibacterial activity and toxicity.

    PubMed

    Cai, Qinqing; Hu, Jiangyong

    2017-02-05

    In this study, continuous LED/UVA/TiO 2 photocatalytic decomposition of sulfamethoxazole (SMX) and trimethoprim (TMP) was investigated. More than 90% of SMX and TMP were removed within 20min by the continuous photoreactor (with the initial concentration of 400ppb for each). The removal rates of SMX and TMP decreased with higher initial antibiotics loadings. SMX was much easier decomposed in acidic condition, while pH affected little on TMP's decomposition. 0.003% was found to be the optimum H 2 O 2 dosage to enhance SMX photocatalytic decomposition. Decomposition pathways of SMX and TMP were proposed based on the intermediates identified by using LC-MS-MS and GC-MS. Aniline was identified as a new intermediate generated during SMX photocatalytic decomposition. Antibacterial activity study with a reference Escherichia coli strain was also conducted during the photocatalytic process. Results indicated that with every portion of TMP removed, the residual antibacterial activity decreased by one portion. However, the synergistic effect between SMX and TMP tended to slow down the antibacterial activity removal of SMX and TMP mixture. Chronic toxicity studies conducted with Vibrio fischeri exhibited 13-20% bioluminescence inhibition during the decomposition of 1ppm SMX and 1ppm TMP, no acute toxicity to V. fischeri was observed during the photocatalytic process. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Interactive toxicity of chlorpyrifos and parathion in neonatal rats: Role of esterases in exposure sequence-dependent toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kacham, R.; Karanth, S.; Baireddy, P.

    2006-01-15

    We previously reported that sequence of exposure to chlorpyrifos and parathion in adult rats can markedly influence toxic outcome. In the present study, we evaluated the interactive toxicity of chlorpyrifos (8 mg/kg, po) and parathion (0.5 mg/kg, po) in neonatal (7 days old) rats. Rats were exposed to the insecticides either concurrently or sequentially (separated by 4 h) and sacrificed at 4, 8, and 24 h after the first exposure for biochemical measurements (cholinesterase activity in brain, plasma, and diaphragm and carboxylesterase activity in plasma and liver). The concurrently-exposed group showed more cumulative lethality (15/24) than either of the sequentialmore » dosing groups. With sequential dosing, rats treated initially with chlorpyrifos prior to parathion (C/P) exhibited higher lethality (7/23) compared to those treated with parathion before chlorpyrifos (P/C; 1/24). At 8 h after initial dosing, brain cholinesterase inhibition was significantly greater in the C/P group (59%) compared to the P/C group (28%). Diaphragm and plasma cholinesterase activity also followed a relatively similar pattern of inhibition. Carboxylesterase inhibition in plasma and liver was relatively similar among the treatment groups across time-points. Similar sequence-dependent differences in brain cholinesterase inhibition were also noted with lower binary exposures to chlorpyrifos (2 mg/kg) and parathion (0.35 mg/kg). In vitro and ex vivo studies compared relative oxon detoxification of carboxylesterases (calcium-insensitive) and A-esterases (calcium-sensitive) in liver homogenates from untreated and insecticide pretreated rats. Using tissues from untreated rats, carboxylesterases detoxified both chlorpyrifos oxon and paraoxon, while A-esterases only detoxified chlorpyrifos oxon. With parathion pretreatment, A-esterases still detoxified chlorpyrifos oxon while liver from chlorpyrifos pretreated rats had little apparent effect on paraoxon. We conclude that while neonatal rats

  11. Phytochemical screening, acute toxicity, anxiolytic and antidepressant activities of the Nelumbo nucifera fruit.

    PubMed

    Rajput, Muhammad Ali; Khan, Rafeeq Alam

    2017-06-01

    Recently use of herbal therapies and diet rich in flavonoids and vitamin C have increased significantly to treat minor to modest anxiety disorders and various forms of depression. But further research and studies are necessary to evaluate the pharmacological & toxicological effects of plants. Hence present study was designed to conduct phytochemical screening, acute toxicity study, anxiolytic and antidepressant activities of the ethanol extract of Nelumbo nucifera fruit in order to ascertain its therapeutic potential. The qualitative phytochemical screening of the seed pods of the N. nucifera fruit extract exposed the existence of flavonoids, saponins, alkaloids, tannins and terpenoids in it. The acute toxicity of the N. nucifera fruit extract in mice revealed its LD 50 value to be greater than 5000 mg/kg. Antianxiety activity was determined by elevated plus maze and light and dark test using 35 male Wister rats weighing 200-220 g which were equally divided in to 5 groups. The animals used in EPM underwent testing in light and dark box just 30 min after EPM. The antidepressant effect was assessed by forced swimming test using 35 male albino mice weighing 20-25 g equally divided in to 5 groups. In elevated plus maze, N. nucifera fruit extract exhibited substantial rise in number of open arm entries and time spent in open arms at dose 50 mg/kg while highly noteworthy increase in both parameters were observed at extract doses 100 and 200 mg/kg as compared to control. In light dark test highly significant increase in the percentage of time spent in light compartment was observed as compared to control. In forced swimming test highly noteworthy decline in duration of immobility was recorded at doses 100 and 200 mg/kg on 15th day i-e after administration of 14 doses, as compared to control; whereas same doses demonstrated significant decrease as compared to control in duration of immobility after single dose administration i-e on 2nd day of experiment. Thus N

  12. A low-cost non-toxic post-growth activation step for CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Major, J. D.; Treharne, R. E.; Phillips, L. J.; Durose, K.

    2014-07-01

    Cadmium telluride, CdTe, is now firmly established as the basis for the market-leading thin-film solar-cell technology. With laboratory efficiencies approaching 20 per cent, the research and development targets for CdTe are to reduce the cost of power generation further to less than half a US dollar per watt (ref. 2) and to minimize the environmental impact. A central part of the manufacturing process involves doping the polycrystalline thin-film CdTe with CdCl2. This acts to form the photovoltaic junction at the CdTe/CdS interface and to passivate the grain boundaries, making it essential in achieving high device efficiencies. However, although such doping has been almost ubiquitous since the development of this processing route over 25 years ago, CdCl2 has two severe disadvantages; it is both expensive (about 30 cents per gram) and a water-soluble source of toxic cadmium ions, presenting a risk to both operators and the environment during manufacture. Here we demonstrate that solar cells prepared using MgCl2, which is non-toxic and costs less than a cent per gram, have efficiencies (around 13%) identical to those of a CdCl2-processed control group. They have similar hole densities in the active layer (9 × 1014 cm-3) and comparable impurity profiles for Cl and O, these elements being important p-type dopants for CdTe thin films. Contrary to expectation, CdCl2-processed and MgCl2-processed solar cells contain similar concentrations of Mg; this is because of Mg out-diffusion from the soda-lime glass substrates and is not disadvantageous to device performance. However, treatment with other low-cost chlorides such as NaCl, KCl and MnCl2 leads to the introduction of electrically active impurities that do compromise device performance. Our results demonstrate that CdCl2 may simply be replaced directly with MgCl2 in the existing fabrication process, thus both minimizing the environmental risk and reducing the cost of CdTe solar-cell production.

  13. Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes.

    PubMed

    Dehua, Ma; Cong, Liu; Xiaobiao, Zhu; Rui, Liu; Lujun, Chen

    2016-09-01

    This study investigated the changes of toxic compounds in coking wastewater with biological treatment (anaerobic reactor, anoxic reactor and aerobic-membrane bioreactor, A1/A2/O-MBR) and advanced physicochemical treatment (Fenton oxidation and activated carbon adsorption) stages. As the biological treatment stages preceding, the inhibition effect of coking wastewater on the luminescence of Vibrio qinghaiensis sp. Nov. Q67 decreased. Toxic units (TU) of coking wastewater were removed by A1/A2/O-MBR treatment process, however approximately 30 % TU remained in the biologically treated effluent. There is a tendency that fewer and fewer residual organic compounds could exert equal acute toxicity during the biological treatment stages. Activated carbon adsorption further removed toxic pollutants of biologically treated effluent but the Fenton effluent increased acute toxicity. The composition of coking wastewater during the treatment was evaluated using the three-dimensional fluorescence spectra, gas chromatography-mass spectrometry (GC-MS). The organic compounds with high polarity were the main cause of acute toxicity in the coking wastewater. Aromatic protein-like matters in the coking wastewater with low biodegradability and high toxicity contributed mostly to the remaining acute toxicity of the biologically treated effluents. Chlorine generated from the oxidation process was responsible for the acute toxicity increase after Fenton oxidation. Therefore, the incorporation of appropriate advanced physicochemical treatment process, e.g., activated carbon adsorption, should be implemented following biological treatment processes to meet the stricter discharge standards and be safer to the environment.

  14. Discovery of Quinoline-Derived Trifluoromethyl Alcohols, Determination of Their in vivo Toxicity and Anticancer Activity in a Zebrafish Embryo Model.

    PubMed

    Sittaramane, Vinoth; Padgett, Jihan; Salter, Philip; Williams, Ashley; Luke, Shauntelle; McCall, Rebecca; Arambula, Jonathan F; Graves, Vincent B; Blocker, Mark; Van Leuven, David; Bowe, Keturah; Heimberger, Julia; Cade, Hannah C; Immaneni, Supriya; Shaikh, Abid

    2015-11-01

    In this study the rational design, synthesis, and anticancer activity of quinoline-derived trifluoromethyl alcohols were evaluated. Members of this novel class of trifluoromethyl alcohols were identified as potent growth inhibitors in a zebrafish embryo model. Synthesis of these compounds was carried out with an sp(3) -C-H functionalization strategy of methyl quinolines with trifluoromethyl ketones. A zebrafish embryo model was also used to explore the toxicity of ethyl 4,4,4-trifluoro-3-hydroxy-3-(quinolin-2-ylmethyl)butanoate (1), 2-benzyl-1,1,1-trifluoro-3-(quinolin-2-yl)propan-2-ol (2), and trifluoro-3-(isoquinolin-1-yl)-2-(thiophen-2-yl)propan-2-ol (3). Compounds 2 and 3 were found to be more toxic than compound 1; apoptotic staining assays indicated that compound 3 causes increased cell death. In vitro cell proliferation assays showed that compound 2, with an LC50 value of 14.14 μm, has more potent anticancer activity than cisplatin. This novel class of inhibitors provides a new direction in the discovery of effective anticancer agents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Substituent Effects on Desferrithiocin and Desferrithiocin Analogue Iron Clearing and Toxicity Profiles

    PubMed Central

    Bergeron, Raymond J.; Wiegand, Jan; Bharti, Neelam; McManis, James S.

    2012-01-01

    Desferrithiocin (DFT, 1) is a very efficient iron chelator when given orally. However, it is severely nephrotoxic. Structure-activity studies with 1 demonstrated that removal of the aromatic nitrogen to provide desazadesferrithiocin (DADFT, 2) and introduction of either a hydroxyl group or a polyether fragment onto the aromatic ring resulted in orally active iron chelators that were much less toxic than 1. The purpose of the current study was to determine if a comparable reduction in renal toxicity could be achieved by performing the same structural manipulations on 1 itself. Accordingly, three DFT analogues were synthesized. Iron clearing efficiency and ferrokinetics were evaluated in rats and primates; toxicity assessments were carried out in rodents. The resulting DFT ligands demonstrated a reduction in toxicity that was equivalent to that of the DADFT analogues and presented with excellent iron clearing properties. PMID:22889170

  16. Antibacterial properties and toxicity from metallic nanomaterials

    PubMed Central

    Vimbela, Gina V; Ngo, Sang M; Fraze, Carolyn; Yang, Lei; Stout, David A

    2017-01-01

    The era of antibiotic resistance is a cause of increasing concern as bacteria continue to develop adaptive countermeasures against current antibiotics at an alarming rate. In recent years, studies have reported nanoparticles as a promising alternative to antibacterial reagents because of their exhibited antibacterial activity in several biomedical applications, including drug and gene delivery, tissue engineering, and imaging. Moreover, nanomaterial research has led to reports of a possible relationship between the morphological characteristics of a nanomaterial and the magnitude of its delivered toxicity. However, conventional synthesis of nanoparticles requires harsh chemicals and costly energy consumption. Additionally, the exact relationship between toxicity and morphology of nanomaterials has not been well established. Here, we review the recent advancements in synthesis techniques for silver, gold, copper, titanium, zinc oxide, and magnesium oxide nanomaterials and composites, with a focus on the toxicity exhibited by nanomaterials of multidimensions. This article highlights the benefits of selecting each material or metal-based composite for certain applications while also addressing possible setbacks and the toxic effects of the nanomaterials on the environment. PMID:28579779

  17. How toxic is coal ash? A laboratory toxicity case study

    DOE PAGES

    Sherrard, Rick M.; Carriker, Neil; Greeley, Jr., Mark Stephen

    2014-12-08

    Under a consent agreement among the Environmental Protection Agency (EPA) and proponents both for and against stricter regulation, EPA is to issue a new coal ash disposal rule by the end of 2014. Laboratory toxicity investigations often yield conservative estimates of toxicity because many standard test species are more sensitive than resident species, thus could provide information useful to the rule-making. However, few laboratory studies of coal ash toxicity are available; most studies reported in the literature are based solely on field investigations. In this paper, we describe a broad range of toxicity studies conducted for the Tennessee Valley Authoritymore » (TVA) Kingston ash spill, results of which help provide additional perspective on the toxicity of coal ash.« less

  18. So What's a Toxic Waste Site? Kids for Saving Earth News. Action Program #16.

    ERIC Educational Resources Information Center

    Kids for Saving Earth Worldwide, Minneapolis, MN.

    This document provides ideas for activities on toxic waste sites. A toxic tour around the home accompanied by an adult is recommended to discover items that are dangerous for humans and the earth. Activities on understanding forests, pollution problems, recycling, and prevention of pollution for a healthy planet is included. (YDS)

  19. MOAtox: A Comprehensive Mode of Action and Acute Aquatic Toxicity Database for Predictive Model Development

    EPA Science Inventory

    tThe mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity andas an alternative to chemical class-based predictive toxicity modeling. However, the development ofquantitative structure activity relationship (QSAR) and other models has been limite...

  20. Developmental toxicity and structure/activity correlates of glycols and glycol ethers.

    PubMed Central

    Johnson, E M; Gabel, B E; Larson, J

    1984-01-01

    In recent years, the National Toxicology Program (NTP) has selected numerous glycol ethers for testing in routine laboratory mammals to ascertain the magnitude of their ability to injure the conceptus. From the lists available of ongoing and projected NTP test chemicals, a series of glycol ethers was selected for examination in vitro in the hydra assay. Also tested were additional chemicals of similar molecular configuration and/or composition. This short-term screening test placed the 14 glycols and glycol ethers tested into a rank order sequence according to their degree of hazard potential to developmental biology, i.e., their ability to interfere with the developmental events characteristic of all ontogenic systems. They were ranked according to the difference between the lowest dose or concentration overtly toxic to adults (A) and the lowest concentration interfering with development (D) of the artificial embryo of reaggregated adult hydra cells and the A/D ratio. Published data from mammalian studies were available for a few of the test chemicals, and in each instance the hydra assay was in direct agreement with the outcomes reported of the more elaborate and standard animal tests. Ethylene glycol and ethylene glycol monomethyl ether were shown by both standard evaluations in mammals, and by the hydra assay, to disrupt embryos only at or very near to their respective adult toxic doses, whereas the mono-ethyl ether perturbed development at approximately one-fifth of the lowest dose overtly toxic to adults.(ABSTRACT TRUNCATED AT 250 WORDS) Images FIGURE 1. A FIGURE 1. B FIGURE 1. C PMID:6499797

  1. Shape-Related Toxicity of Titanium Dioxide Nanofibres

    PubMed Central

    Allegri, Manfredi; Bianchi, Massimiliano G.; Chiu, Martina; Varet, Julia; Costa, Anna L.; Ortelli, Simona; Blosi, Magda; Bussolati, Ovidio; Poland, Craig A.; Bergamaschi, Enrico

    2016-01-01

    Titanium dioxide (TiO2) nanofibres are a novel fibrous nanomaterial with increasing applications in a variety of fields. While the biological effects of TiO2 nanoparticles have been extensively studied, the toxicological characterization of TiO2 nanofibres is far from being complete. In this study, we evaluated the toxicity of commercially available anatase TiO2 nanofibres using TiO2 nanoparticles (NP) and crocidolite asbestos as non-fibrous or fibrous benchmark materials. The evaluated endpoints were cell viability, haemolysis, macrophage activation, trans-epithelial electrical resistance (an indicator of the epithelial barrier competence), ROS production and oxidative stress as well as the morphology of exposed cells. The results showed that TiO2 nanofibres caused a cell-specific, dose-dependent decrease of cell viability, with larger effects on alveolar epithelial cells than on macrophages. The observed effects were comparable to those of crocidolite, while TiO2 NP did not decrease cell viability. TiO2 nanofibres were also found endowed with a marked haemolytic activity, at levels significantly higher than those observed with TiO2 nanoparticles or crocidolite. Moreover, TiO2 nanofibres and crocidolite, but not TiO2 nanoparticles, caused a significant decrease of the trans-epithelial electrical resistance of airway cell monolayers. SEM images demonstrated that the interaction with nanofibres and crocidolite caused cell shape perturbation with the longest fibres incompletely or not phagocytosed. The expression of several pro-inflammatory markers, such as NO production and the induction of Nos2 and Ptgs2, was significantly increased by TiO2 nanofibres, as well as by TiO2 nanoparticles and crocidolite. This study indicates that TiO2 nanofibres had significant toxic effects and, for most endpoints with the exception of pro-inflammatory changes, are more bio-active than TiO2 nanoparticles, showing the relevance of shape in determining the toxicity of nanomaterials

  2. Translation of Toxicity Data into CW Agent Toxicity Estimates

    DTIC Science & Technology

    2003-07-01

    UNLIMITED UNCLASSIFIED/UNLIMITEDPrepared by Douglas R. Sommerville, PE US Army ECBC, APG, MD Dependence of Toxic Effect on Exposure Time Inhalation (IH...to longer exposure durations. Toxicity estimates for exposure durations ranging from 2 to 360 minutes have been derived for six agents (GA, GB, GD...individuals having effects greater in severity than the defining effect of the ECTYY Cn T = k Toxic load equation 5 6 Edgewood Chemical Biological Center

  3. Acylcarnitine Profiles in Acetaminophen Toxicity in the Mouse: Comparison to Toxicity, Metabolism and Hepatocyte Regeneration

    PubMed Central

    Bhattacharyya, Sudeepa; Pence, Lisa; Beger, Richard; Chaudhuri, Shubhra; McCullough, Sandra; Yan, Ke; Simpson, Pippa; Hennings, Leah; Hinson, Jack; James, Laura

    2013-01-01

    High doses of acetaminophen (APAP) result in hepatotoxicity that involves metabolic activation of the parent compound, covalent binding of the reactive intermediate N-acetyl-p-benzoquinone imine (NAPQI) to liver proteins, and depletion of hepatic glutathione. Impaired fatty acid β-oxidation has been implicated in previous studies of APAP-induced hepatotoxicity. To better understand relationships between toxicity and fatty acid β-oxidation in the liver in APAP toxicity, metabolomic assays for long chain acylcarnitines were examined in relationship to established markers of liver toxicity, oxidative metabolism, and liver regeneration in a time course study in mice. Male B6C3F1 mice were treated with APAP (200 mg/kg IP) or saline and sacrificed at 1, 2, 4, 8, 24 or 48 h after APAP. At 1 h, hepatic glutathione was depleted and APAP protein adducts were markedly increased. Alanine aminotransferase (ALT) levels were elevated at 4 and 8 h, while proliferating cell nuclear antigen (PCNA) expression, indicative of hepatocyte regeneration, was apparent at 24 h and 48 h. Elevations of palmitoyl, oleoyl and myristoyl carnitine were apparent by 2–4 h, concurrent with the onset of Oil Red O staining in liver sections. By 8 h, acylcarnitine levels were below baseline levels and remained low at 24 and 48 h. A partial least squares (PLS) model suggested a direct association of acylcarnitine accumulation in serum to APAP protein adduct and hepatic glutathione levels in mice. Overall, the kinetics of serum acylcarnitines in APAP toxicity in mice followed a biphasic pattern involving early elevation after the metabolism phases of toxicity and later depletion of acylcarnitines. PMID:24958141

  4. Disposition of toxic PCB congeners in snapping turtle eggs: expressed as toxic equivalents of TCDD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, A.M.; Stone, W.B.; Olafsson, P.G.

    1987-11-01

    Studies of snapping turtles, taken from the region of the Upper Hudson River, in New York State, revealed exceedingly high levels of PCBs in the adipose tissue. There is evidence to suggest that large reserves of fat provide protection against chlorinated hydrocarbon toxicity. Such storage may protect snapping turtle eggs from disposition of toxic PCB congeners and account for the apparent absence of reports regarding detrimental effects on the hatchability of eggs from turtles living in the vicinity of the upper Hudson River. The present study was undertaken to determine if indeed these eggs are protected against disposition of toxicmore » PCB congeners by the presence of large reserves of fat. Although tissue volumes play an important role in determining the initial site of disposition, the major factor controlling the elimination of these compounds involves metabolism. For simple halogenated benzenes as well as for more complex halogenated biphenyls, oxidative metabolism catalyzed by P-448, occurs primarily at the site of two adjacent unsubstituted carbon atoms via arene oxide formation leading to the formation of water soluble metabolites. Toxicological studies have demonstrated that the most toxic PCB congeners, isosteriomers of tetrachlorodibenzo-p-dioxin (TCDD), require no metabolic activation. These compounds have chlorine atoms in the meta and para positions of both rings. It may be concluded that the structures of PCB congeners and isomers which favor induction of cytochrome P-448 are also those which are toxic and resist metabolism. It is the objective of the present study to determine if the heavy fat bodies of the female turtle provide a sufficiently large sink to retain the toxic congeners and prevent their incorporation into the eggs.« less

  5. Evaluation of semiochemical toxicity to houseflies and stable flies (Diptera: Muscidae).

    PubMed

    Mann, Rajinder S; Kaufman, Phillip E; Butler, Jerry F

    2010-08-01

    The housefly, Musca domestica L., and stable fly, Stomoxys calcitrans (L.) are cosmopolitan pests of both farm and home environments. Houseflies have been shown to be resistant to a variety of insecticides, and new chemistries are slow to emerge on the market. Toxicities of selected semiochemicals with molecular structures indicative of insecticidal activity were determined against adults from an insecticide-susceptible laboratory strain of houseflies. The three most active semiochemicals were also evaluated against recently colonized housefly and stable fly strains. Nineteen semiochemicals classified as aliphatic alcohols, terpenoids, ketones and carboxylic esters showed toxicity to houseflies and stable flies. Rosalva (LC(50) = 25.98 microg cm(-2)) followed by geranyl acetone and citronellol (LC(50) = 49.97 and 50.02 microg cm(-2)) were identified as the most toxic compounds to houseflies. Permethrin was up to 144-fold more toxic than rosalva on the susceptible strain. However, it was only 35-fold more toxic to the insecticide-tolerant field strain. The compounds generated high toxicity to stable flies, with LC(50) values ranging from 16.30 to 40.41 microg cm(-2). Quantification of LC(50) values of rosalva, citronellol and geranyl acetone against susceptible housefly and field-collected housefly and stable fly strains showed that semiochemicals could serve as potent insecticides for fly control programs. Copyright (c) 2010 Society of Chemical Industry.

  6. Coenzyme Q{sub 10} and alpha-tocopherol protect against amitriptyline toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordero, Mario D.; Dpto. Citologia e Histologia Normal y Patologica, Facultad de Medicina. Universidad de Sevilla. 41009 Sevilla; Moreno-Fernandez, Ana Maria

    Since amitriptyline is a very frequently prescribed antidepressant drug, it is not surprising that amitriptyline toxicity is relatively common. Amitriptyline toxic systemic effects include cardiovascular, autonomous nervous, and central nervous systems. To understand the mechanisms of amitriptyline toxicity we studied the cytotoxic effects of amitriptyline treatment on cultured primary human fibroblasts and zebrafish embryos, and the protective role of coenzyme Q{sub 10} and alpha-tocopherol, two membrane antioxidants. We found that amitriptyline treatment induced oxidative stress and mitochondrial dysfunction in primary human fibroblasts. Mitochondrial dysfunction in amitriptyline treatment was characterized by reduced expression levels of mitochondrial proteins and coenzyme Q{sub 10},more » decreased NADH:cytochrome c reductase activity, and a drop in mitochondrial membrane potential. Moreover, and as a consequence of these toxic effects, amitriptyline treatment induced a significant increase in apoptotic cell death activating mitochondrial permeability transition. Coenzyme Q{sub 10} and alpha-tocopherol supplementation attenuated ROS production, lipid peroxidation, mitochondrial dysfunction, and cell death, suggesting that oxidative stress affecting cell membrane components is involved in amitriptyline cytotoxicity. Furthermore, amitriptyline-dependent toxicity and antioxidant protection were also evaluated in zebrafish embryos, a well established vertebrate model to study developmental toxicity. Amitriptyline significantly increased embryonic cell death and apoptosis rate, and both antioxidants provided a significant protection against amitriptyline embryotoxicity.« less

  7. Biomarker evaluation of skeletal muscle toxicity following clofibrate administration in rats.

    PubMed

    Bodié, Karen; Buck, Wayne R; Pieh, Julia; Liguori, Michael J; Popp, Andreas

    2016-05-01

    The use of sensitive biomarkers to monitor skeletal muscle toxicity in preclinical toxicity studies is important for the risk assessment in humans during the development of a novel compound. Skeletal muscle toxicity in Sprague Dawley Rats was induced with clofibrate at different dose levels for 7 days to compare standard clinical pathology assays with novel skeletal muscle and cardiac muscle biomarkers, gene expression and histopathological changes. The standard clinical pathology assays aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatine kinase (CK) enzyme activity were compared to novel biomarkers fatty acid binding protein 3 (Fabp3), myosin light chain 3 (Myl3), muscular isoform of CK immunoreactivity (three isoforms CKBB, CKMM, CKMB), parvalbumin (Prv), skeletal troponin I (sTnI), cardiac troponin T (cTnT), cardiac troponin I (cTnI), CKMM, and myoglobin (Myo). The biomarker elevations were correlated to histopathological findings detected in several muscles and gene expression changes. Clofibrate predominantly induced skeletal muscle toxicity of type I fibers of low magnitude. Useful biomarkers for skeletal muscle toxicity were AST, Fabp3, Myl3, (CKMB) and sTnI. Measurements of CK enzyme activity by a standard clinical assay were not useful for monitoring clofibrate-induced skeletal muscle toxicity in the rat at the doses used in this study. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  8. Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts.

    PubMed

    Aleksic, Ivana; Ristivojevic, Petar; Pavic, Aleksandar; Radojević, Ivana; Čomić, Ljiljana R; Vasiljevic, Branka; Opsenica, Dejan; Milojković-Opsenica, Dušanka; Senerovic, Lidija

    2018-08-10

    Trapa natans L. (water chestnut or water caltrop) is a widespread aquatic plant, which has been cultivated for food and traditional medicine since ancient times. Pharmacological studies showed that water chestnut exhibits the wide range of biological activities, such as antimicrobial, antioxidative, analgesic, anti-inflammatory, as well as antiulcer. Evaluation of anti-virulence potential and toxicity of T. natans methanol (TnM), acetone (TnA) and ethyl acetate (TnEA) leaf extracts. The anti-quorum sensing activity of Tn extracts was addressed by measuring their effects on biofilm formation, swarming motility and pyocyanin and elastase production in Pseudomonas aeruginosa. Specific P. aeruginosa biosensors were used to identify which of the signaling pathways were affected. The lethal and developmental toxicity of extracts were addressed in vivo using the zebrafish (Danio rerio) model system. The phenolic composition of T. natans leafs extracts was analyzed by a linear ion trap-OrbiTrap hybrid mass spectrometer (LTQ OrbiTrapMS) and UHPLC system configured with a diode array detector (DAD) hyphenated with the triple quadrupole mass spectrometer. Subinhibitory concentrations of Tn leaf extracts (0.2 MIC) inhibited pyocyanin and elastase production up to 50% and 60%, respectively, and reduced swarming zones, comparing to non-treated P. aeruginosa. TnA inhibited biofilm formation by 15%, TnM showed a stimulatory effect on biofilm formation up to 20%, while TnEA showed no effect. The bioactive concentrations of TnM and TnA were not toxic in the zebrafish model system. Twenty-two phenolic compounds were tentatively identified in TnM, where thirteen of them were identified in T. natans for the first time. Tn extracts, as well as their major components, ellagic and ferulic acids, demonstrated the ability to interfere with P. aeruginosa Las and PQS signaling pathways. This study demonstrates anti-virulence potential of Tn leaf extracts against medically important pathogen P

  9. Analyzing cytotoxic effects of selected isothiazol-3-one biocides using the toxic ratio concept and structure-activity relationship considerations.

    PubMed

    Arning, Jürgen; Matzke, Marianne; Stolte, Stefan; Nehen, Frauke; Bottin-Weber, Ulrike; Böschen, Andrea; Abdulkarim, Salha; Jastorff, Bernd; Ranke, Johannes

    2009-12-01

    To demonstrate how baseline toxicity can be separated from other more specific modes of toxic action and to address possible pitfals when dealing with hydrophobic substances, the four isothiazol-3-one biocides N-methylisothiazol-3-one (MIT), 5-chloro-N-methylisothiazol-3-one (CIT), N-octylisothiazol-3-one (OIT), and 4,5-dichloro-N-octylisothiazol-3-one (DCOIT) as an example for reactive electrophilic xenobiotics were tested for their cytotoxic effects on the human hepatoblastoma cell line Hep G2, on the marine bacterium Vibrio fischeri, and on the limnic green alga Scenedesmus vacuolatus. In each of the three test systems, toxic effects were observed in a consistent pattern. The two chlorinated compounds and OIT were found to be significantly more toxic than MIT. As compared to baseline toxicants, the small and polar MIT and CIT exhibited pronounced excess toxicity in each of the three test systems that is presumably triggered by their intrinsic reactivity toward cellular thiols. In contrast, OIT and DCOIT showed mainly toxicities that could be explained by their hydrophobicity. Analyzing and comparing these results using the toxic ratio concept and with data that indicate a dramatic depletion of cellular glutathione levels after incubation with DCOIT reveals that for highly hydrophobic substances, baseline level toxicity in an assay for acute toxicity can lead to an oversight of other more specific modes of toxic action that may cause significant effects that might be less reversible than those caused by unreactive baseline toxicants. This possibility should be taken into account in the hazard assessment of chemicals that are both hydrophobic and reactive.

  10. Searching for a Toxic Key to Unlock the Mystery of Anemonefish and Anemone Symbiosis

    PubMed Central

    Nedosyko, Anita M.; Young, Jeanne E.; Edwards, John W.; Burke da Silva, Karen

    2014-01-01

    Twenty-six species of anemonefish of the genera Amphiprion and monospecific Premnas, use only 10 species of anemones as hosts in the wild (Families: Actiniidae, Stichodactylidae and Thalassianthidae). Of these 10 anemone species some are used by multiple species of anemonefish while others have only a single anemonefish symbiont. Past studies have explored the different patterns of usage between anemonefish species and anemone species; however the evolution of this relationship remains unknown and has been little studied over the past decade. Here we reopen the case, comparing the toxicity of crude venoms obtained from anemones that host anemonefish as a way to investigate why some anemone species are used as a host more than others. Specifically, for each anemone species we investigated acute toxicity using Artemia francisca (LC50), haemolytic toxicity using ovine erythrocytes (EC50) and neurotoxicity using shore crabs (Ozius truncatus). We found that haemolytic and neurotoxic activity varied among host anemone species. Generally anemone species that displayed greater haemolytic activity also displayed high neurotoxic activity and tend to be more toxic on average as indicated by acute lethality analysis. An overall venom toxicity ranking for each anemone species was compared with the number of anemonefish species that are known to associate with each anemone species in the wild. Interestingly, anemones with intermediate toxicity had the highest number of anemonefish associates, whereas anemones with either very low or very high toxicity had the fewest anemonefish associates. These data demonstrate that variation in toxicity among host anemone species may be important in the establishment and maintenance of anemonefish anemone symbiosis. PMID:24878777

  11. Searching for a toxic key to unlock the mystery of anemonefish and anemone symbiosis.

    PubMed

    Nedosyko, Anita M; Young, Jeanne E; Edwards, John W; Burke da Silva, Karen

    2014-01-01

    Twenty-six species of anemonefish of the genera Amphiprion and monospecific Premnas, use only 10 species of anemones as hosts in the wild (Families: Actiniidae, Stichodactylidae and Thalassianthidae). Of these 10 anemone species some are used by multiple species of anemonefish while others have only a single anemonefish symbiont. Past studies have explored the different patterns of usage between anemonefish species and anemone species; however the evolution of this relationship remains unknown and has been little studied over the past decade. Here we reopen the case, comparing the toxicity of crude venoms obtained from anemones that host anemonefish as a way to investigate why some anemone species are used as a host more than others. Specifically, for each anemone species we investigated acute toxicity using Artemia francisca (LC50), haemolytic toxicity using ovine erythrocytes (EC50) and neurotoxicity using shore crabs (Ozius truncatus). We found that haemolytic and neurotoxic activity varied among host anemone species. Generally anemone species that displayed greater haemolytic activity also displayed high neurotoxic activity and tend to be more toxic on average as indicated by acute lethality analysis. An overall venom toxicity ranking for each anemone species was compared with the number of anemonefish species that are known to associate with each anemone species in the wild. Interestingly, anemones with intermediate toxicity had the highest number of anemonefish associates, whereas anemones with either very low or very high toxicity had the fewest anemonefish associates. These data demonstrate that variation in toxicity among host anemone species may be important in the establishment and maintenance of anemonefish anemone symbiosis.

  12. Acute toxicity and sublethal effects of the mixture glyphosate (Roundup Active) and Cosmo-Flux 411F to anuran embryos and tadpoles of four Colombian species.

    PubMed

    Henao Muñoz, Liliana Marcela; Montes Rojas, Claudia Marsela; Bernal Bautista, Manuel Hernando

    2015-03-01

    Glyphosate is the most widely used herbicide in the world with application in agriculture, forestry, industrial weed control, garden and aquatic environments. However, its use is highly controversial for the possible impact on not-target organisms, such as amphibians, which are vanishing at an alarming and rapid rate. Due to the high solubility in water and ionic nature, the glyphosate requires of surfactants to increase activity. In addition, for the control of coca (Erythroxylum coca) and agricultural weeds in Colombia, formulated glyphosate is mixed and sprayed with the adjuvant Cosmo-Flux 411F to increase the penetration and activity of the herbicide. This study evaluates the acute toxic and sublethal effects (embryonic development, tadpole body size, tadpole swimming performance) of the mixture of the formulated glyphosate Roundup Active and Cosmo-Flux 411F to anuran embryos and tadpoles of four Colombian species under 96h laboratory standard tests and microcosms, which are more similar to field conditions as they include soil, sand and macrophytes. In the laboratory, embryos and tadpoles of Engystomops pustulosus were the most tolerant (LC50 = 3904 microg a.e./L; LC50=2 799 pg a.e./L, respectively), while embryos and tadpoles of Hypsiboas crepitans (LC50=2 203 microg a.e./L; LC50=1424 microgg a.e./L, respectively) were the most sensitive. R. humboldti and R. marina presented an intermediate toxicity. Embryos were significantly more tolerant to the mixture than tadpoles, which could be likely attributed to the exclusion of chemicals by the embryonic membranes and the lack of organs, such as gills, which are sensitive to surfactants. Sublethal effects were observed for the tadpole body size, but not for the embryonic development and tadpole swimming performance. In microcosms, no toxicity (LC50 could not be estimated), or sublethal responses were observed at concentrations up to fourfold (14.76 kg glyphosate a.e./ha) the highest field application rate of 3

  13. Pollution Assessment of Toxic and Potentially Toxic Elements in Agricultural Soils of the City Addis Ababa, Ethiopia.

    PubMed

    Aschale, Minbale; Sileshi, Yilma; Kelly-Quinn, Mary; Hailu, Dereje

    2017-02-01

    Due to the significantly fast urban expansion and increased industrial activities, the soils in the farms in Addis Ababa are contaminated by some toxic and potentially toxic elements (As, V, Cr, Fe, Co, Ni, Cu, B, Ba, Sr, Zn, Mn, Pb and Cd) in varying degrees. The mean concentrations of Cr, Ni, As and B in most of the soil farms were found to be higher than the maximum recommended limits. The mean concentrations of Cd, Cu, Pb, Co, Ni and Mn were found to be higher than the background soil concentrations given for uncontaminated soils. Multivariate analyses coupled with correlation analysis were used to identify possible sources. The geo-accumulation index values for Cr, Mn and Pb indicated that the farm soils were unpolluted to moderately polluted as a result of anthropogenic activities. A comprehensive environmental management strategy should be formulated by the government to measure further pollution of the farmland soil.

  14. Investigating the performance of three modified activated sludge processes treating municipal wastewater in organic pollutants removal and toxicity reduction.

    PubMed

    Han, Xue; Zuo, Yu-Ting; Hu, Yu; Zhang, Jie; Zhou, Meng-Xuan; Chen, Mo; Tang, Fei; Lu, Wen-Qing; Liu, Ai-Lin

    2018-02-01

    This study investigated the treatment performance of three types of modified activated sludge processes, i.e., anoxic/oxic (A/O), anaerobic/anoxic/oxic (A2/O) and oxidation ditch process, in treating municipal wastewater by measuring physicochemical and spectroscopic parameters, and the toxicity of the influents and effluents collected from 8 full-scale municipal wastewater treatment plants (MWTPs). The relationships between spectroscopic and physicochemical parameters of the wastewater samples and the applicability of the nematode Caenorhabditis elegans (C. elegans) bioassays for the assessment of the toxic properties of municipal wastewater were also evaluated. The results indicated that the investigated MWTPs employing any of A/O, A2/O and oxidation ditch processes could effectively control the discharge of major wastewater pollutants including biochemical oxygen demand (BOD), chemical oxygen demand, nitrogen and phosphorus. The oxidation ditch process appeared to have the advantage of removing tyrosine-like substances and presented slightly better removal efficiency of tryptophan-like fluorescent (peak T) substances than the A/O and A2/O processes. Both ultraviolet absorbance at 254nm and peak T may be used to characterize the organic load of municipal wastewater, and peak T can be adopted as a gauge of the BOD removal efficacy of municipal wastewater treatment. Using C. elegans-based oxygen consumption rate assay for monitoring municipal wastewater toxicity deserves further investigations. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Benzodiazepine Synthesis and Rapid Toxicity Assay

    ERIC Educational Resources Information Center

    Fletcher, James T.; Boriraj, Grit

    2010-01-01

    A second-year organic chemistry laboratory experiment to introduce students to general concepts of medicinal chemistry is described. Within a single three-hour time window, students experience the synthesis of a biologically active small molecule and the assaying of its biological toxicity. Benzodiazepine rings are commonly found in antidepressant…

  16. In vitro toxicity of welding fumes and their constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, R.M.; Hansen, K.; Madsen, A.F.

    1988-08-01

    Welding fumes from a wide variety of processes and applications were assayed for toxicity with BHK21 cell line and SHE primary cells in culture. The most toxic fumes are those from the manual metal arc welding of stainless steel (MMA/SS) (LD50 = 7-14 microgram/ml), although all other welding fumes tested are toxic, with potencies lower by a factor of 10-200. The activity of MMA/SS is presumably due to the presence of high concentrations of Cr(VI) in the soluble fraction: For all other fumes the lowered activity (LD50 = 80-800 microgram/ml) is limited mostly to the insoluble fraction, and in partmore » can be related to the presence of MnO/sub 2/ and Fe/sub 3/O/sub 4/ which are toxic at such levels in these cell culture assays. Slight discrepancies between survival tests for the two cell lines, and between survival and lactate dehydrogenate release for BHK, indicate a differential response to certain constituents of these complex materials. These results suggest the need for a battery of different types of assays for use in an eventual ranking of exposures for the purpose of relative risk assessment.« less

  17. Identification of phototransformation products of thalidomide and mixture toxicity assessment: an experimental and quantitative structural activity relationships (QSAR) approach.

    PubMed

    Mahmoud, Waleed M M; Toolaram, Anju P; Menz, Jakob; Leder, Christoph; Schneider, Mandy; Kümmerer, Klaus

    2014-02-01

    The fate of thalidomide (TD) was investigated after irradiation with a medium-pressure Hg-lamp. The primary elimination of TD was monitored and structures of phototransformation products (PTPs) were assessed by LC-UV-FL-MS/MS. Environmentally relevant properties of TD and its PTPs as well as hydrolysis products (HTPs) were predicted using in silico QSAR models. Mutagenicity of TD and its PTPs was investigated in the Ames microplate format (MPF) aqua assay (Xenometrix, AG). Furthermore, a modified luminescent bacteria test (kinetic luminescent bacteria test (kinetic LBT)), using the luminescent bacteria species Vibrio fischeri, was applied for the initial screening of environmental toxicity. Additionally, toxicity of phthalimide, one of the identified PTPs, was investigated separately in the kinetic LBT. The UV irradiation eliminated TD itself without complete mineralization and led to the formation of several PTPs. TD and its PTPs did not exhibit mutagenic response in the Salmonella typhimurium strains TA 98, and TA 100 with and without metabolic activation. In contrast, QSAR analysis of PTPs and HTPs provided evidence for mutagenicity, genotoxicity and carcinogenicity using additional endpoints in silico software. QSAR analysis of different ecotoxicological endpoints, such as acute toxicity towards V. fischeri, provided positive alerts for several identified PTPs and HTPs. This was partially confirmed by the results of the kinetic LBT, in which a steady increase of acute and chronic toxicity during the UV-treatment procedure was observed for the photolytic mixtures at the highest tested concentration. Moreover, the number of PTPs within the reaction mixture that might be responsible for the toxification of TD during UV-treatment was successfully narrowed down by correlating the formation kinetics of PTPs with QSAR predictions and experimental toxicity data. Beyond that, further analysis of the commercially available PTP phthalimide indicated that transformation of

  18. [Preclinical prognosis of pyracetam and picamilon safety based on acute toxicity data].

    PubMed

    Bugaeva, L I; Spasov, A A; Verovskiĭ, V E; Iezhitsa, I N

    2003-01-01

    A comparative acute toxicity test of the nootropic drugs piracetam and picamilon was performed on rats. The study was based on the principles of integral evaluation of the drug effect upon the functional and behavioral state of animals. It was found that the conventional therapeutic index does not coincide with the actual therapeutic activity range. Piracetam and picamilon, while exhibiting significantly different toxicity, are characterized by approximately equal ranges of the therapeutic activity.

  19. Thermal Stress and Toxicity

    EPA Science Inventory

    Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at subthermoneutral te...

  20. Evaluation of Toxic Effects of Aeration and Trichloroethylene Oxidation on Methanotrophic Bacteria Grown with Different Nitrogen Sources

    PubMed Central

    Chu, Kung-Hui; Alvarez-Cohen, Lisa

    1999-01-01

    In this study we evaluated specific and nonspecific toxic effects of aeration and trichloroethylene (TCE) oxidation on methanotrophic bacteria grown with different nitrogen sources (nitrate, ammonia, and molecular nitrogen). The specific toxic effects, exerted directly on soluble methane monooxygenase (sMMO), were evaluated by comparing changes in methane uptake rates and naphthalene oxidation rates following aeration and/or TCE oxidation. Nonspecific toxic effects, defined as general cellular damage, were examined by using a combination of epifluorescent cellular stains to measure viable cell numbers based on respiratory activity and measuring formate oxidation activities following aeration and TCE transformation. Our results suggest that aeration damages predominantly sMMO rather than other general cellular components, whereas TCE oxidation exerts a broad range of toxic effects that damage both specific and nonspecific cellular functions. TCE oxidation caused sMMO-catalyzed activity and respiratory activity to decrease linearly with the amount of substrate degraded. Severe TCE oxidation toxicity resulted in total cessation of the methane, naphthalene, and formate oxidation activities and a 95% decrease in the respiratory activity of methanotrophs. The failure of cells to recover even after 7 days of incubation with methane suggests that cellular recovery following severe TCE product toxicity is not always possible. Our evidence suggests that generation of greater amounts of sMMO per cell due to nitrogen fixation may be responsible for enhanced TCE oxidation activities of nitrogen-fixing methanotrophs rather than enzymatic protection mechanisms associated with the nitrogenase enzymes. PMID:9925614

  1. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens.

    PubMed

    Morgens, David W; Wainberg, Michael; Boyle, Evan A; Ursu, Oana; Araya, Carlos L; Tsui, C Kimberly; Haney, Michael S; Hess, Gaelen T; Han, Kyuho; Jeng, Edwin E; Li, Amy; Snyder, Michael P; Greenleaf, William J; Kundaje, Anshul; Bassik, Michael C

    2017-05-05

    CRISPR-Cas9 screens are powerful tools for high-throughput interrogation of genome function, but can be confounded by nuclease-induced toxicity at both on- and off-target sites, likely due to DNA damage. Here, to test potential solutions to this issue, we design and analyse a CRISPR-Cas9 library with 10 variable-length guides per gene and thousands of negative controls targeting non-functional, non-genic regions (termed safe-targeting guides), in addition to non-targeting controls. We find this library has excellent performance in identifying genes affecting growth and sensitivity to the ricin toxin. The safe-targeting guides allow for proper control of toxicity from on-target DNA damage. Using this toxicity as a proxy to measure off-target cutting, we demonstrate with tens of thousands of guides both the nucleotide position-dependent sensitivity to single mismatches and the reduction of off-target cutting using truncated guides. Our results demonstrate a simple strategy for high-throughput evaluation of target specificity and nuclease toxicity in Cas9 screens.

  2. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens

    PubMed Central

    Morgens, David W.; Wainberg, Michael; Boyle, Evan A.; Ursu, Oana; Araya, Carlos L.; Tsui, C. Kimberly; Haney, Michael S.; Hess, Gaelen T.; Han, Kyuho; Jeng, Edwin E.; Li, Amy; Snyder, Michael P.; Greenleaf, William J.; Kundaje, Anshul; Bassik, Michael C.

    2017-01-01

    CRISPR-Cas9 screens are powerful tools for high-throughput interrogation of genome function, but can be confounded by nuclease-induced toxicity at both on- and off-target sites, likely due to DNA damage. Here, to test potential solutions to this issue, we design and analyse a CRISPR-Cas9 library with 10 variable-length guides per gene and thousands of negative controls targeting non-functional, non-genic regions (termed safe-targeting guides), in addition to non-targeting controls. We find this library has excellent performance in identifying genes affecting growth and sensitivity to the ricin toxin. The safe-targeting guides allow for proper control of toxicity from on-target DNA damage. Using this toxicity as a proxy to measure off-target cutting, we demonstrate with tens of thousands of guides both the nucleotide position-dependent sensitivity to single mismatches and the reduction of off-target cutting using truncated guides. Our results demonstrate a simple strategy for high-throughput evaluation of target specificity and nuclease toxicity in Cas9 screens. PMID:28474669

  3. Toxicity of PAMAM-coated gold nanoparticles in different unicellular models.

    PubMed

    Perreault, François; Melegari, Silvia Pedroso; Fuzinatto, Cristiane Funghetto; Bogdan, Nicoleta; Morin, Mario; Popovic, Radovan; Matias, William Gerson

    2014-03-01

    Polyamidoamine (PAMAM) dendrimers are used for many pharmaceutical and biomedical applications. However, the toxicological risks of several PAMAM-based compounds are still not fully evaluated, despite evidences of PAMAM deleterious effects on biological membranes, leading to toxicity. In this report, we investigated the toxicity of generation 0 PAMAM-coated gold nanoparticles (AuG0 NPs) in four different models to determine how different cellular systems are affected by PAMAM-coated NPs. Toxicity was evaluated in two mammalian cell lines, Neuro 2A and Vero, in the green alga Chlamydomonas reinhardtii and the bacteria Vibrio fischeri. AuG0 NP treatments reduced cell metabolic activity in algal and bacterial cells, measured by esterase enzymatic activity (C. reinhardtii) and luminescence emission (V. fischeri). EC50 value after 30 min of treatment was similar in both organisms, with 0.114 and 0.167 mg mL(-1) for C. reinhardtii and V. fischeri, respectively. On the other hand, AuG0 NPs induced no change of mitochondrial activity in mammalian cells after 24 h of treatment to up to 0.4 mg mL(-1) AuG0 NPs. Change in the absorption spectra of AuG0 NP in the mammalian cell culture media may indicate an alteration of NP properties that contributed to the low toxicity of AuG0 NPs in mammalian cells. For a safe development of PAMAM-based nanomaterials, the difference of sensitivity between mammalian and microbial cells, as well as the modulation of NPs toxicity by medium properties, should be taken into account when designing PAMAM NPs for applications that may lead to their introduction in the environment. Copyright © 2012 Wiley Periodicals, Inc.

  4. In vitro anticancer activity, toxicity and structure-activity relationships of phyllostictine A, a natural oxazatricycloalkenone produced by the fungus Phyllosticta cirsii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Calve, Benjamin; Lallemand, Benjamin; Perrone, Carmen

    2011-07-01

    The in vitro anticancer activity and toxicity of phyllostictine A, a novel oxazatricycloalkenone recently isolated from a plant-pathogenic fungus (Phyllosticta cirsii) was characterized in six normal and five cancer cell lines. Phyllostictine A displays in vitro growth-inhibitory activity both in normal and cancer cells without actual bioselectivity, while proliferating cells appear significantly more sensitive to phyllostictine A than non-proliferating ones. The main mechanism of action by which phyllostictine displays cytotoxic effects in cancer cells does not seem to relate to a direct activation of apoptosis. In the same manner, phyllostictine A seems not to bind or bond with DNA asmore » part of its mechanism of action. In contrast, phyllostictine A strongly reacts with GSH, which is a bionucleophile. The experimental data from the present study are in favor of a bonding process between GSH and phyllostictine A to form a complex though Michael attack at C=C bond at the acrylamide-like system. Considering the data obtained, two new hemisynthesized phyllostictine A derivatives together with three other natural phyllostictines (B, C and D) were also tested in vitro in five cancer cell lines. Compared to phyllostictine A, the two derivatives displayed a higher, phyllostictines B and D a lower, and phyllostictine C an almost equal, growth-inhibitory activity, respectively. These results led us to propose preliminary conclusions in terms of the structure-activity relationship (SAR) analyses for the anticancer activity of phyllostictine A and its related compounds, at least in vitro.« less

  5. Microbial biotransformation of DON: molecular basis for reduced toxicity

    NASA Astrophysics Data System (ADS)

    Pierron, Alix; Mimoun, Sabria; Murate, Leticia S.; Loiseau, Nicolas; Lippi, Yannick; Bracarense, Ana-Paula F. L.; Schatzmayr, Gerd; He, Jian Wei; Zhou, Ting; Moll, Wulf-Dieter; Oswald, Isabelle P.

    2016-07-01

    Bacteria are able to de-epoxidize or epimerize deoxynivalenol (DON), a mycotoxin, to deepoxy-deoxynivalenol (deepoxy-DON or DOM-1) or 3-epi-deoxynivalenol (3-epi-DON), respectively. Using different approaches, the intestinal toxicity of 3 molecules was compared and the molecular basis for the reduced toxicity investigated. In human intestinal epithelial cells, deepoxy-DON and 3-epi-DON were not cytotoxic, did not change the oxygen consumption or impair the barrier function. In intestinal explants, exposure for 4 hours to 10 μM DON induced intestinal lesions not seen in explants treated with deepoxy-DON and 3-epi-DON. A pan-genomic transcriptomic analysis was performed on intestinal explants. 747 probes, representing 323 genes, were differentially expressed, between DON-treated and control explants. By contrast, no differentially expressed genes were observed between control, deepoxy-DON and 3-epi-DON treated explants. Both DON and its biotransformation products were able to fit into the pockets of the A-site of the ribosome peptidyl transferase center. DON forms three hydrogen bonds with the A site and activates MAPKinases (mitogen-activated protein kinases). By contrast deepoxy-DON and 3-epi-DON only form two hydrogen bonds and do not activate MAPKinases. Our data demonstrate that bacterial de-epoxidation or epimerization of DON altered their interaction with the ribosome, leading to an absence of MAPKinase activation and a reduced toxicity.

  6. Microbial biotransformation of DON: molecular basis for reduced toxicity

    PubMed Central

    Pierron, Alix; Mimoun, Sabria; Murate, Leticia S.; Loiseau, Nicolas; Lippi, Yannick; Bracarense, Ana-Paula F. L.; Schatzmayr, Gerd; He, Jian Wei; Zhou, Ting; Moll, Wulf-Dieter; Oswald, Isabelle P.

    2016-01-01

    Bacteria are able to de-epoxidize or epimerize deoxynivalenol (DON), a mycotoxin, to deepoxy-deoxynivalenol (deepoxy-DON or DOM-1) or 3-epi-deoxynivalenol (3-epi-DON), respectively. Using different approaches, the intestinal toxicity of 3 molecules was compared and the molecular basis for the reduced toxicity investigated. In human intestinal epithelial cells, deepoxy-DON and 3-epi-DON were not cytotoxic, did not change the oxygen consumption or impair the barrier function. In intestinal explants, exposure for 4 hours to 10 μM DON induced intestinal lesions not seen in explants treated with deepoxy-DON and 3-epi-DON. A pan-genomic transcriptomic analysis was performed on intestinal explants. 747 probes, representing 323 genes, were differentially expressed, between DON-treated and control explants. By contrast, no differentially expressed genes were observed between control, deepoxy-DON and 3-epi-DON treated explants. Both DON and its biotransformation products were able to fit into the pockets of the A-site of the ribosome peptidyl transferase center. DON forms three hydrogen bonds with the A site and activates MAPKinases (mitogen-activated protein kinases). By contrast deepoxy-DON and 3-epi-DON only form two hydrogen bonds and do not activate MAPKinases. Our data demonstrate that bacterial de-epoxidation or epimerization of DON altered their interaction with the ribosome, leading to an absence of MAPKinase activation and a reduced toxicity. PMID:27381510

  7. Toxic effect of two kinds of mineral collectors on soil microbial richness and activity: analysis by microcalorimetry, microbial count, and enzyme activity assay.

    PubMed

    Bararunyeretse, Prudence; Yao, Jun; Dai, Yunrong; Bigawa, Samuel; Guo, Zunwei; Zhu, Mijia

    2017-01-01

    Flotation reagents are hugely and increasingly used in mining and other industrial and economic activities from which an important part is discharged into the environment. China could be the most affected country by the resulting pollution. However, their ecotoxicological dimension is still less addressed and understood. This study aimed to analyze the toxic effect of sodium isobutyl xanthate (SIBX) and sodium isopropyl xanthate (SIPX) to soil microbial richness and activity and to make a comparison between the two compounds in regard to their effects on soil microbial and enzymes activities. Different methods, including microcalorimetry, viable cell counts, cell density, and catalase and fluorescein diacetate (FDA) hydrololase activities measurement, were applied. The two chemicals exhibited a significant inhibitory effect (P < 0.05 or P < 0.01) to all parameters, SIPX being more adverse than SIBX. As the doses of SIBX and SIPX increased from 5 to 300 μg g -1 soil, their inhibitory ratio ranged from 4.84 to 45.16 % and from 16.13 to 69.68 %, respectively. All parameters fluctuated with the incubation time (10-day period). FDA hydrolysis was more directly affected but was relatively more resilient than catalase activity. Potential changes of those chemicals in the experimental media and complementarity between experimental techniques were justified.

  8. VORICONAZOLE TOXICITY IN MULTIPLE PENGUIN SPECIES.

    PubMed

    Hyatt, Michael W; Georoff, Timothy A; Nollens, Hendrik H; Wells, Rebecca L; Clauss, Tonya M; Ialeggio, Donna M; Harms, Craig A; Wack, Allison N

    2015-12-01

    Aspergillosis is a common respiratory fungal disease in penguins managed under human care. Triazole antifungal drugs, including itraconazole, are most commonly used for treatment; however, itraconazole treatment failures from drug resistance are becoming more common, requiring newer treatment options. Voriconazole, a newer triazole, is being used more often. Until recently, no voriconazole pharmacokinetic studies had been performed in penguins, leading to empiric dosing based on other avian studies. This has led to increased anecdotal reporting of apparent voriconazole toxicity in penguins. This report describes 18 probable and 6 suspected cases of voriconazole toxicity in six penguin species from nine institutions: 12 African penguins (Spheniscus demersus), 5 Humboldt penguins (Spheniscus humboldti), 3 Magellanic penguins (Spheniscus magellanicus), 2 gentoo penguins (Pygoscelis papua papua), 1 macaroni penguin (Eudyptes chrysolophus), and 1 emperor penguin (Aptenodytes forsteri). Observed clinical signs of toxicity included anorexia, lethargy, weakness, ataxia, paresis, apparent vision changes, seizure-like activity, and generalized seizures. Similar signs of toxicity have also been reported in humans, in whom voriconazole therapeutic plasma concentration for Aspergillus spp. infections is 2-6 μg/ml. Plasma voriconazole concentrations were measured in 18 samples from penguins showing clinical signs suggestive of voriconazole toxicity. The concentrations ranged from 8.12 to 64.17 μg/ml, with penguins having plasma concentrations above 30 μg/ml exhibiting moderate to severe neurologic signs, including ataxia, paresis, and seizures. These concentrations were well above those known to result in central nervous system toxicity, including encephalopathy, in humans. This case series highlights the importance of species-specific dosing of voriconazole in penguins and plasma therapeutic drug monitoring. Further investigation, including pharmacokinetic studies, is

  9. Effect of H+ ion activity and Ca2+ on the toxicity of metals in the environment.

    PubMed Central

    Hutchinson, T C; Collins, F W

    1978-01-01

    The role of acidity in determining and restricting plant distribution and performance is discussed. In soils especially, a key effect of H+ ion concentration is on the solubility of potentially toxic heavy metals such as aluminum, managenese, zinc, iron, copper, and nickel. Al has been reported from many studies since the 1920's as the key determining toxic factor in acid soils. Some acid-tolerant species have been shown to be especially tolerant of Al, and mechanisms of tolerance have been suggested. Mn is also a commonly toxic factor at soil pH less than 5.0. Calcium has been shown to alleviate Mn toxicity. Low pH soils are also generally low in Ca, K, Na, and P; all essential major elements for plant growth. In lakes and marine situations acidic waters are uncommon as the waters are buffered. Calcium is again ameliorative of metal toxicities. The pH, redox, and valency state are critical in determining nutrient availability and metal speciation. Recent increases in the H+ ion content of precipitation have caused increased acidities of freshwater lakes in Scandinavia and eastern North America, which have depleted biota, including fish populations. PMID:31277

  10. Formation and control of disinfection byproducts and toxicity during reclaimed water chlorination: A review.

    PubMed

    Du, Ye; Lv, Xiao-Tong; Wu, Qian-Yuan; Zhang, Da-Yin; Zhou, Yu-Ting; Peng, Lu; Hu, Hong-Ying

    2017-08-01

    Chlorination is essential to the safety of reclaimed water; however, this process leads to concern regarding the formation of disinfection byproducts (DBPs) and toxicity. This study reviewed the formation and control strategies for DBPs and toxicity in reclaimed water during chlorination. Both regulated and emerging DBPs have been frequently detected in reclaimed water during chlorination at a higher level than those in drinking water, indicating they pose a greater risk to humans. Luminescent bacteria and Daphnia magna acute toxicity, anti-estrogenic activity and cytotoxicity generally increased after chlorination because of the formation of DBPs. Genotoxicity by umu-test and estrogenic activity were decreased after chlorination because of destruction of toxic chemicals. During chlorination, water quality significantly impacted changes in toxicity. Ammonium tended to attenuate toxicity changes by reacting with chlorine to form chloramine, while bromide tended to aggravate toxicity changes by forming hypobromous acid. During pretreatment by ozonation and coagulation, disinfection byproduct formation potential (DBPFP) and toxicity formation potential (TFP) occasionally increase, which is accompanied by DOC removal; thus, the decrease of DOC was limited to indicate the decrease of DBPFP and TFP. It is more important to eliminate the key fraction of precursors such as hydrophobic acid and hydrophilic neutrals. During chlorination, toxicities can increase with the increasing chlorine dose and contact time. To control the excessive toxicity formation, a relatively low chlorine dose and short contact time were required. Quenching chlorine residual with reductive reagents also effectively abated the formation of toxic compounds. Copyright © 2017. Published by Elsevier B.V.

  11. Different design of enzyme-triggered CO-releasing molecules (ET-CORMs) reveals quantitative differences in biological activities in terms of toxicity and inflammation.

    PubMed

    Stamellou, E; Storz, D; Botov, S; Ntasis, E; Wedel, J; Sollazzo, S; Krämer, B K; van Son, W; Seelen, M; Schmalz, H G; Schmidt, A; Hafner, M; Yard, B A

    2014-01-01

    Acyloxydiene-Fe(CO)3 complexes can act as enzyme-triggered CO-releasing molecules (ET-CORMs). Their biological activity strongly depends on the mother compound from which they are derived, i.e. cyclohexenone or cyclohexanedione, and on the position of the ester functionality they harbour. The present study addresses if the latter characteristic affects CO release, if cytotoxicity of ET-CORMs is mediated through iron release or inhibition of cell respiration and to what extent cyclohexenone and cyclohexanedione derived ET-CORMs differ in their ability to counteract TNF-α mediated inflammation. Irrespective of the formulation (DMSO or cyclodextrin), toxicity in HUVEC was significantly higher for ET-CORMs bearing the ester functionality at the outer (rac-4), as compared to the inner (rac-1) position of the cyclohexenone moiety. This was paralleled by an increased CO release from the former ET-CORM. Toxicity was not mediated via iron as EC50 values for rac-4 were significantly lower than for FeCl2 or FeCl3 and were not influenced by iron chelation. ATP depletion preceded toxicity suggesting impaired cell respiration as putative cause for cell death. In long-term HUVEC cultures inhibition of VCAM-1 expression by rac-1 waned in time, while for the cyclohexanedione derived rac-8 inhibition seems to increase. NFκB was inhibited by both rac-1 and rac-8 independent of IκBα degradation. Both ET-CORMs activated Nrf-2 and consequently induced the expression of HO-1. This study further provides a rational framework for designing acyloxydiene-Fe(CO)3 complexes as ET-CORMs with differential CO release and biological activities. We also provide a better understanding of how these complexes affect cell-biology in mechanistic terms.

  12. Toxicity Studies on Antiradiation Agents.

    DTIC Science & Technology

    1979-03-01

    Mice 193-403 WI 2823 Acute Oral and IP Toxicity in Guinea Pigs 193-404 WR 2823 14-Day IV Toxicity in Rats 193-405 WI 2823 Acute IV Toxicity in Dogs ...193-406 W 2823 14-Day Subacute IV Toxicity in Dogs 193-407 WI 2721 28-Day Oral Toxicity in Monkeys 193-408 WI 2529 Acute Oral Toxicity in Mice 193-409... Dogs 193-415 WI 149, 024 Acute IV Toxicity in Monkeys 193-416 WI 149, 024 2-Week IV Toxicity in Dogs 193-417 WI 149, 024 2-Week Toxicity in Monkeys 193

  13. Using Quantitative Structure-Activity Relationship Modeling to Quantitatively Predict the Developmental Toxicity of Halogenated Azole compounds

    EPA Science Inventory

    Developmental toxicity is a relevant endpoint for the comprehensive assessment of human health risk from chemical exposure. However, animal developmental toxicity studies remain unavailable for many environmental contaminants due to the complexity and cost of these types of analy...

  14. Developmental Toxicity

    EPA Science Inventory

    This chapter provides an overview the developmental toxicity resulting from exposure to perfluorinated alkyl acids (PFAAs). The majority of studies of PFAA-induced developmental toxicity have examined effects of perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) a...

  15. Antitumoral activity and toxicity of PEG-coated and PEG-folate-coated pH-sensitive liposomes containing ¹⁵⁹Gd-DTPA-BMA in Ehrlich tumor bearing mice.

    PubMed

    Soares, Daniel Crístian Ferreira; Cardoso, Valbert Nascimento; de Barros, André Luís Branco; de Souza, Cristina Maria; Cassali, Geovanni Dantas; de Oliveira, Mônica Cristina; Ramaldes, Gilson Andrade

    2012-01-23

    In the present study, PEG-coated pH-sensitive and PEG-folate-coated pH-sensitive liposomes containing the ¹⁵⁹Gd-DTPA-BMA were prepared and radiolabeled through neutron activation technique, aiming to study the in vivo antitumoral activity and toxicity on mice bearing a previously-developed solid Ehrlich tumor. The treatment efficacy was verified through tumoral volume increase and histomorphometry studies. The toxicity of formulations was investigated through animal weight variations, as well as hematological and biochemical tests. The results showed that after 31 days of treatment, animals treated with radioactive formulations had a lower increase in tumor volume and a significantly higher percentage of necrosis compared with controls revealed by histomorphometry studies. Furthermore, mice treated with radioactive formulations exhibited lower weight gain without significant hematological or biochemical changes, except for toxicity to hepatocytes which requires more detailed studies. From the results obtained to date, we believe that the radioactive formulations can be considered potential therapeutic agents for cancer. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The influence of physical activity on hair toxic and essential trace element content in male and female students.

    PubMed

    Zaitseva, Irina P; Skalny, Andrey A; Tinkov, Alexey A; Berezkina, Elena S; Grabeklis, Andrei R; Skalny, Anatoly V

    2015-02-01

    The primary aim of the current study is to estimate the effect of different physical activity levels on hair trace element content in male and female students. A total of 113 students (59 women and 54 men) of P. G. Demidov Yaroslavl State University (Yaroslavl, Russia) took part in the current investigation. According to the level of the physical activity, all students were divided into three groups: high, medium, and low physical activity. Essential and toxic metal content (μg/g) in hair samples was assessed by inductively coupled plasma mass spectrometry using NexION 300D + NWR213 (Perkin-Elmer, USA). The obtained data show that hair iodine, zinc, arsenic, nickel, and tin levels are not related to physical activity in male and female students. At the same time, increased physical activity is associated with decreased hair copper, vanadium, bismuth, and mercury content in comparison to the low physical activity groups. Students with higher physical activity are also characterized by significantly higher hair cobalt, iron, manganese, selenium, cadmium, lithium, and lead concentrations. Finally, statistical analysis has revealed maximal gender differences in hair trace element content in the high physical activity groups, whereas in the low activity groups, the hair metal concentrations were nearly similar in females and males.

  17. Myristicin and phenytoin toxicity in an infant

    PubMed Central

    Sivathanu, Shobhana; Sampath, Sowmya; David, Henry Suresh; Rajavelu, Kulandai Kasthuri

    2014-01-01

    A developmentally normal infant presented with repeated episodes of afebrile status epilepticus following nutmeg ingestion. He had developed two episodes of afebrile status epilepticus and had received different treatments earlier, but the details of treatment were not available. On admission, he redeveloped convulsions and loading doses of phenytoin, phenobarbitone and midazolam were administered. However, seizures persisted and extrapyramidal movements, nystagmus and visual dysfunction were noted. Iatrogenic phenytoin toxicity was considered and confirmed by drug levels. His symptoms completely disappeared after discontinuation of phenytoin therapy. The initial seizures were attributed to myristicin, an active component of nutmeg, because of the temporal association. However, the subsequent seizures were due to phenytoin toxicity caused by administration of multiple loading doses. This case highlights that nutmeg, a spice, can cause serious toxic effects like status epilepticus. Furthermore, treatment of status epilepticus with phenytoin can cause iatrogenic seizures due to its narrow therapeutic range. PMID:24903724

  18. Photosynthetic and cellular toxicity of cadmium in Chlorella vulgaris.

    PubMed

    Ou-Yang, Hui-Ling; Kong, Xiang-Zhen; Lavoie, Michel; He, Wei; Qin, Ning; He, Qi-Shuang; Yang, Bin; Wang, Rong; Xu, Fu-Liu

    2013-12-01

    The toxic effects of cadmium (Cd) on the green alga Chlorella vulgaris were investigated by following the response to Cd of various toxicity endpoints (cell growth, cell size, photochemical efficiency of PSII in the light or Φ(PSII), maximal photochemical efficiency or Fv/Fm, chlorophyll a fluorescence, esterase activity, and cell viability). These toxicity endpoints were studied in laboratory batch cultures of C. vulgaris over a long-term 96-h exposure to different Cd concentrations using flow cytometry and pulse amplitude modulated fluorometry. The sequence of sensitivity of these toxicity endpoints was: cell yield > Φ(PSII) ≈ esterase activity > Fv/Fm > chlorophyll a fluorescence ≈ cell viability. It is shown that cell apoptosis or cell death only accounted for a minor part of the reduction in cell yield even at very high algistatic free Cd²⁺ concentrations, and other mechanisms such as blocked cell divisions are major contributors to cell yield inhibition. Furthermore, cadmium may affect both the electron donors and acceptors of the electron transport chain at high free Cd²⁺ concentration. Finally, the resistance of cells to cell death was size-dependent; medium-sized cells had the highest toxicity threshold. The present study brings new insights into the toxicity mechanisms of Cd in C. vulgaris and provides a detailed comparison of the sensitivity of various Cd toxicity endpoints. © 2013 SETAC.

  19. Toxic effects of combined effects of anthracene and UV radiation on Brachionus plicatilis

    NASA Astrophysics Data System (ADS)

    Gao, Ceng; Zhang, Xinxin; Xu, Ningning; Tang, Xuexi

    2017-05-01

    Anthracene is a typical polycyclic aromatic hydrocarbon, with photo activity, can absorb ultraviolet light a series of chemical reactions, aquatic organisms in the ecosystem has a potential light induced toxicity. In this paper, the effects of anthracene and UV radiation on the light-induced toxicity of Brachionus plicatilis were studied. The main methods and experimental results were as follows: (1) The semi-lethal concentration of anthracene in UV light was much lower than that in normal light, The rotifers have significant light-induced acute toxicity. (2) Under UV irradiation, anthracene could induce the increase of ROS and MDA content in B. plicatilis, and the activity of antioxidant enzymes in B. plicatilis significantly changed, Where SOD, GPx activity was induced within 24 hours of the beginning of the experiment. And the content of GPX and CAT was inhibited after 48 hours. Therefore, the anthracite stress induced by UV radiation could more strongly interfere with the ant oxidative metabolism of B. plicatilis, and more seriously cause oxidative damage, significant light-induced toxicity.

  20. Toxicity evaluation of the process effluent streams of a petrochemical industry.

    PubMed

    Reis, J L R; Dezotti, M; Sant'Anna, G L

    2007-02-01

    The physico-chemical characteristics and the acute toxicity of several wastewater streams, generated in the industrial production of synthetic rubber, were determined. The acute toxicity was evaluated in bioassays using different organisms: Danio rerio (fish), Lactuca sativa (lettuce) and Brachionus calyciflorus (rotifer). The removal of toxicity attained in the industrial wastewater treatment plant was also determined upstream and downstream of the activated sludge process. The results obtained indicate that the critical streams in terms of acute toxicity are the effluents from the liquid polymer unit and the spent caustic butadiene washing stage. The biological treatment was able to partially remove the toxicity of the industrial wastewater. However, a residual toxicity level persisted in the biotreated wastewater. The results obtained with Lactuca sativa showed a high degree of reproducibility, using root length or germination index as evaluation parameters. The effect of volatile pollutants on the toxicity results obtained with lettuce seeds was assessed, using ethanol as a model compound. Modifications on the assay procedure were proposed. A strong correlation between the toxic responses of Lactuca sativa and Danio rerio was observed for most industrial effluent streams.

  1. Ignoring Adjuvant Toxicity Falsifies the Safety Profile of Commercial Pesticides

    PubMed Central

    Mesnage, Robin; Antoniou, Michael N.

    2018-01-01

    Commercial formulations of pesticides are invariably not single ingredients. Instead they are cocktails of chemicals, composed of a designated pesticidal “active principle” and “other ingredients,” with the latter collectively also known as “adjuvants.” These include surfactants, antifoaming agents, dyes, etc. Some adjuvants are added to influence the absorption and stability of the active principle and thus promote its pesticidal action. Currently, the health risk assessment of pesticides in the European Union and in the United States focuses almost exclusively on the stated active principle. Nonetheless, adjuvants can also be toxic in their own right with numerous negative health effects having been reported in humans and on the environment. Despite the known toxicity of adjuvants, they are regulated differently from active principles, with their toxic effects being generally ignored. Adjuvants are not subject to an acceptable daily intake, and they are not included in the health risk assessment of dietary exposures to pesticide residues. Here, we illustrate this gap in risk assessment by reference to glyphosate, the most used pesticide active ingredient. We also investigate the case of neonicotinoid insecticides, which are strongly suspected to be involved in bee and bumblebee colony collapse disorder. Authors of studies sometimes use the name of the active principle (for example glyphosate) when they are testing a commercial formulation containing multiple (active principle plus adjuvant) ingredients. This results in confusion in the scientific literature and within regulatory circles and leads to a misrepresentation of the safety profile of commercial pesticides. Urgent action is needed to lift the veil on the presence of adjuvants in food and human bodily fluids, as well as in the environment (such as in air, water, and soil) and to characterize their toxicological properties. This must be accompanied by regulatory precautionary measures to

  2. Studies on the toxic effects of pentachlorophenol on the biological activity of anaerobic granular sludge.

    PubMed

    Liu, Xin-Wen; He, Ruo; Shen, Dong-Sheng

    2008-09-01

    In order to explore the pathway of the anaerobic biotreatment of the wastewater containing pentachlorophenol (PCP) and ensure the normal operation of Upflow Anaerobic Sludge Blanket (UASB) reactor, the anaerobic sludge under different acclimation conditions were selected to seed and start up UASB reactors. Anaerobic toxicity assays were employed to study the biological activity, the tolerance and the capacity to degrade PCP of different anaerobic granular sludge from UASB reactors. Results showed that the anaerobic granular sludge acclimated to chlorophenols (CPs) could degrade PCP more quickly (up to 9.50mg-PCP g(-1)TVS d(-1)). And the anaerobic granular sludge without acclimation to CPs had only a little activity of degrading PCP (less than 0.07 mg-PCP g(-1)TVS d(-1)). Different PCP concentrations (2, 4, 6, 8 mg L(-1)) had different inhibition effects on glucose utilization, volatile fatted acidity (VFA)-degrading and methanogens activity of PCP degradation anaerobic granular sludge, and the biological activity declined with the increase in PCP concentration. The methanogens activity suffered inhibition from PCP more easily. The different acclimation patterns of seeded sludge had distinctly different effects on biological activity of the degradation of PCP of anaerobic granular sludge from UASB reactors. The biological activity of the anaerobic granular sludge acclimated to PCP only was also inhibited. This inhibition was weak compared to that of anaerobic granular sludge acclimated to CPs, further, the activity could recover more quickly in this case. In the same reactor, the anaerobic granular sludge from the mid and base layers showed higher tolerance to PCP than that from super layer or if the sludge is unacclimated to CPs, and the corresponding recovery time of the biological activity in the mid and base layers were short. Acetate-utilizing methanogens and syntrophic propinate degraders were sensitive to PCP, compared to syntrophic butyrate degraders.

  3. Acute toxicity of selected herbicides and surfactants to larvae of the midge Chironomus riparius

    USGS Publications Warehouse

    Buhl, Kevin J.; Faerber, Neil L.

    1989-01-01

    The acute toxicities of eight commercial herbicides and two surfactants to early fourth instar larvae of the midgeChironomus riparius were determined under static conditions. The formulated herbicides tested were Eradicane® (EPTC), Fargo® (triallate), Lasso® (alachlor), ME4 Brominal® (bromoxynil), Ramrod® (propachlor), Rodeo® (glyphosate), Sencor®(metribuzin), and Sutan (+)® (butylate); the two surfactants were Activator N.F.® and Ortho X-77®. In addition, technical grade alachlor, metribuzin, propachlor, and triallate were tested for comparison with the formulated herbicides. The relative toxicity of the commercial formulations, based on percent active ingredient, varied considerably. The EC50 values ranged from 1.23 mg/L for Fargo® to 5,600 mg/L for Rodeo®. Fargo®, ME4 Brominal®, and Ramrod®were moderately toxic to midge larvae; Lasso®, Sutan (+)®, and Eradicane® were slightly toxic; and Sencor® and Rodeo® were practically non-toxic. The 48-hr EC50 values of the two surfactants were nearly identical and were considered moderately toxic to midges. For two of the herbicides in which the technical grade material was tested, the inert ingredients in the formulations had a significant effect on the toxicity of the active ingredients. Fargo® was twice as toxic as technical grade triallate, whereas Sencor® was considerably less toxic than technical grade metribuzin. A comparison of the slope function values indicated that the toxic action of all the compounds occurred within a relatively narrow range. Published acute toxicity data on these compounds for other freshwater biota were tabulated and compared with our results. In general, the relative order of toxicity toC. riparius was similar to those for other freshwater invertebrates and fish. Maximum concentrations of each herbicide in bulk runoff during a projected “critical” runoff event were calculated as a percentage of the application rate lost in a given volume of runoff. A comparison

  4. Ravuconazole self-emulsifying delivery system: in vitro activity against Trypanosoma cruzi amastigotes and in vivo toxicity

    PubMed Central

    Spósito, Pollyanna Álvaro; Mazzeti, Ana Lia; de Oliveira Faria, Caroline; Urbina, Julio A; Pound-Lana, Gwenaelle; Bahia, Maria Terezinha; Mosqueira, Vanessa Furtado

    2017-01-01

    Self-emulsifying drug delivery systems (SEDDSs) are lipid-based anhydrous formulations composed of an isotropic mixture of oil, surfactant, and cosurfactants usually presented in gelatin capsules. Ravuconazole (Biopharmaceutics Classification System [BCS] Class II) is a poorly water-soluble drug, and a SEDDS type IIIA was designed to deliver it in a predissolved state, improving dissolution in gastrointestinal fluids. After emulsification, the droplets had mean hydrodynamic diameters <250 nm, zeta potential values in the range of −45 mV to −57 mV, and showed no signs of ravuconazole precipitation. Asymmetric flow field-flow fractionation with dynamic and multiangle laser light scattering was used to characterize these formulations in terms of size distribution and homogeneity. The fractograms obtained at 37°C showed a polydisperse profile for all blank and ravuconazole–SEDDS formulations but no large aggregates. SEDDS increased ravuconazole in vitro dissolution extent and rate (20%) compared to free drug (3%) in 6 h. The in vivo toxicity of blank SEDDS comprising Labrasol® surfactant in different concentrations and preliminary safety tests in repeated-dose oral administration (20 days) showed a dose-dependent Labrasol toxicity in healthy mice. Ravuconazole–SEDDS at low surfactant content (10%, v/v) in Trypanosoma cruzi-infected mice was safe during the 20-day treatment. The anti-T. cruzi activity of free ravuconazole, ravuconazole–SEDDS and each excipient were evaluated in vitro at equivalent ravuconazole concentrations needed to inhibit 50% or 90% (IC50 and IC90), respectively of the intracellular amastigote form of the parasite in a cardiomyocyte cell line. The results showed a clear improvement of the ravuconazole anti-T. cruzi activity when associated with SEDDS. Based on our results, the repurposing of ravuconazole in SEDDS dosage form is a strategy that deserves further in vivo investigation in preclinical studies for the treatment of human T

  5. Structure-toxicity relationships of acrylic monomers.

    PubMed Central

    Autian, J

    1975-01-01

    Esters of acrylic acid, in particular methyl methacrylate, have wide applications in a number of industrial and consumer products, forming very desirable nonbreakable glass-like materials. In dentistry, the monomers are used to prepare dentures and a variety of filling and coating materials for the teeth. Surgeons utilize the monomers to prepare a cement which helps anchor prosthetic devices to bone. Special types of acrylic monomers such as the cyano derivatives have found a useful application as adhesive materials. Most of the acrylic acid esters are volatile substances and can produce various levels of toxicity if inhaled. A large number of workers thus exposed to the vapors of these esters can develop clinical symptoms and signs of toxicity. This paper will discuss the toxicity of a large number of acrylic esters, and will attempt to show structure-activity relationships where such data are available. General comments will also be made as to the potential health hazards this variety of esters may present to selected segments of the population. PMID:1175551

  6. Structure-toxicity relationships of acrylic monomers.

    PubMed

    Autian, J

    1975-06-01

    Esters of acrylic acid, in particular methyl methacrylate, have wide applications in a number of industrial and consumer products, forming very desirable nonbreakable glass-like materials. In dentistry, the monomers are used to prepare dentures and a variety of filling and coating materials for the teeth. Surgeons utilize the monomers to prepare a cement which helps anchor prosthetic devices to bone. Special types of acrylic monomers such as the cyano derivatives have found a useful application as adhesive materials. Most of the acrylic acid esters are volatile substances and can produce various levels of toxicity if inhaled. A large number of workers thus exposed to the vapors of these esters can develop clinical symptoms and signs of toxicity. This paper will discuss the toxicity of a large number of acrylic esters, and will attempt to show structure-activity relationships where such data are available. General comments will also be made as to the potential health hazards this variety of esters may present to selected segments of the population.

  7. Analysis and prediction of structure-reactive toxicity relationships of substituted aromatic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z.T.; Wang, L.S.; Chen, S.P.

    1996-12-31

    The fundamental differentiation of toxicity is between reactive and nonreactive toxicity. Reactive toxicity is associated with a specific mechanism for the reaction with an enzyme or inhibition of a metabolic pathway, and nonreactive toxicity is related directly to the quantity of toxicant acting upon the cell. The quantitative structure-activity relationships (QSARs) have been successfully used in the nonreactive toxicity, such as prediction of the toxicity of nonreactive compounds based on their solubility in the lipids of organisms. The elements of molecular structure that are most closely related to nonreactive toxicity are those that describe the partitioning of the toxicant intomore » the organism, while QSARs for the reactive toxicity are less common in the environmental toxicology literature. With the recent increase in the use of synthetic substituted benzenes as industrial chemicals, the accurate analysis of the effect of reactive toxic chemicals has become recognized with QSAR. For this purpose, we selected the fish (Carassias auratus) as the test organism, measured the acute toxicity of 50% lethal concentration (LC{sub 50}) of the chemicals and the adenosine triphosphate (ATP) content of the liver cells for the organism. These determined the relationships of the acute toxicity of some substituted benzenes with their physicochemical structural parameters. The effects on the ATP content was also compared to predict biological reactivities of the chemicals, so as to find some clues to explain the mode of mechanism of the toxicity. 17 refs., 1 tab.« less

  8. Chemical analysis and toxicity of seaweed extracts with inhibitory activity against tropical fruit anthracnose fungi.

    PubMed

    Machado, Levi Pompermayer; Matsumoto, Silvia Tamie; Jamal, Claudia Masrouah; da Silva, Marcelo Barreto; Centeno, Danilo da Cruz; Colepicolo Neto, Pio; de Carvalho, Luciana Retz; Yokoya, Nair S

    2014-07-01

    Banana and papaya are among the most important crops in the tropics, with a value amounting to millions of dollars per year. However, these fruits suffer significant losses due to anthracnose, a fungal disease. It is well known that certain seaweed extracts possess antifungal activity, but no published data appear to exist on the practical application of this property. In the present study, five organic Brazilian seaweed extracts were screened for their activity against banana and papaya anthracnose fungi. Furthermore, cytotoxic and mutagenic effects of the extracts were evaluated by the brine shrimp lethality assay and the Allium cepa root-tip mutagenicity test respectively, while their major components were identified by gas chromatography/mass spectrometry. Strong fungus-inhibitory effects of Ochtodes secundiramea and Laurencia dendroidea extracts were observed on both papaya (100 and 98% respectively) and banana (89 and 78% respectively). This impressive activity could be associated with halogenated terpenes, the major components of both extracts. Only Hypnea musciformis extract showed cytotoxic and mutagenic effects. The results of this study suggest the potential use of seaweed extracts as a source of antifungal agents with low toxicity to control anthracnose in papaya and banana during storage. © 2013 Society of Chemical Industry.

  9. In vitro and in vivo acaricidal activity and residual toxicity of spinosad to the poultry red mite, Dermanyssus gallinae.

    PubMed

    George, D R; Shiel, R S; Appleby, W G C; Knox, A; Guy, J H

    2010-10-29

    This paper describes two experiments conducted to examine the acaricidal potential of spinosad against the poultry red mite, Dermanyssus gallinae (De Geer), a serious ectoparasitic pest of laying hens. Spinosad is a natural product derived from the fermentation of the micro-organism Saccharopolyspora spinosa. In vitro testing confirmed that, when applied to a galvanised metal plate to the point of run-off, spinosad was toxic to adult female D. gallinae and suggested that at an application rate of 3.88 g/L a significant residual toxicity of spinosad could be achieved for up to 21 days. A subsequent in vivo experiment in a conventional cage housing system for laying hens demonstrated the acaricidal activity and residual toxicity to D. gallinae of a single application of spinosad when applied at either 1.94 or 3.88 g/L. Residual toxicity of spinosad at both of these application rates was maintained throughout the course of the 28 day post-spray study period, with a peak in product efficacy seen 14 days after spraying. The results suggest that the greater the D. gallinae population the greater will be the toxic effect of spinosad. Although the exact reasons for this are unclear, it can be speculated that conspecifics spread the product between each other more efficiently at higher mite population densities. However, further study is warranted to confirm this possibility. Application of spinosad in vivo had no effect on hen bodyweight or egg production parameters (number and weight), suggesting that this product could be used to effectively control D. gallinae infestations whilst birds are in lay. This paper also describes a novel method for effectively and efficiently achieving replication of treatments in a single poultry house, previously unpopulated with D. gallinae. Individual groups of conventional cages were stocked with hens, seeded with D. gallinae and used as replicates. Independence of replicates was achieved by isolating cage groups from one another using a

  10. Using enzyme bioassays as a rapid screen for metal toxicity

    USGS Publications Warehouse

    Choate, LaDonna M.; Ross, P.E.; Blumenstein, E. P.; Ranville, James F.

    2005-01-01

    Mine tailings piles and abandoned mine soils are often contaminated by a suite of toxic metals, which were released in the mining process. Traditionally, toxicity of such areas has been determined by numerous chemical methods including the Toxicity Characteristic Leachate Procedure (TCLP) and traditional toxicity tests using organisms such as the cladoceran Ceriodaphnia dubia. Such tests can be expensive and time-consuming. Enzymatic bioassays may provide an easier, less costly, and more time-effective toxicity screening procedure for mine tailings and abandoned mine soil leachates. This study evaluated the commercially available MetPLATE™ enzymatic toxicity assay test kit. The MetPLATE™ assay uses a modified strain of Escherichia coli bacteria as the test organism. Toxicity is defined by the activity of β-galactosidase enzyme which is monitored colorometrically with a 96-well spectrophotometer. The study used water samples collected from North Fork Clear Creek, a mining influenced water (MIW) located in Colorado. A great benefit to using the MetPLATE™ assay over the TCLP is that it shows actual toxicity of a sample by taking into account the bioavailability of the toxicants rather than simply measuring the metal concentration present. Benefits of the MetPLATE™ assay over the use of C. dubia include greatly reduced time for the testing process (∼2 hours), a more continuous variable due to a greater number of organisms present in each sample (100,000+), and the elimination of need to maintain a culture of organisms at all times.

  11. Pulmonary Toxicity Studies of Lunar Dusts in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, C.-W.; James, J. T.; Taylor, L.; Zeidler-Erdely, P. C.; Castranova, V.

    2009-01-01

    NASA will build an outpost on the Moon for prolonged human habitation and research. The lunar surface is covered by a layer of fine, reactive dust. Astronauts on the Moon will go in and out of the base for various activities, and will inevitably bring some dust into the living quarters. Depressurizing the airlock so that astronauts can exit for outdoor activities could also bring dust inside the airlock to the habitable area. Concerned about the potential health effects on astronauts exposed to airborne lunar dust, NASA directed the JSC Toxicology Laboratory to determine the pulmonary toxicity of lunar dust. The toxicity data also will be needed by toxicologists to establish safe exposure limits for astronauts residing in the lunar habitat and by environmental engineers to design an appropriate dust mitigation strategy. We conducted a study to examine biomarkers of toxicity (inflammation and cytotoxicity) in lung lavage fluids from mice intrapharyngeally instilled with lunar dust samples; we also collected lung tissue from the mice for histopathological examination 3 months after the dust instillation. Reference dusts (TiO2 and quartz) having known toxicities and industrial exposure limits were studied in parallel with lunar dust so that the relative toxicity of lunar dust can be determined. A 6-month histopathology study has been planned. These instillation experiments will be followed by inhalation studies, which are more labor intensive and technologically difficult. The animal inhalation studies will be conducted first with an appropriate lunar dust simulant to ensure that the exposure techniques to be used with actual lunar dust will be successful. The results of these studies collectively will reveal the toxicological risk of exposures and enable us to establish exposure limits on lunar dust for astronauts living in the lunar habitat.

  12. Toxicity of Eosinophil MBP Is Repressed by Intracellular Crystallization and Promoted by Extracellular Aggregation

    PubMed Central

    Soragni, Alice; Yousefi, Shida; Stoeckle, Christina; Soriaga, Angela B.; Sawaya, Michael R.; Kozlowski, Evelyne; Schmid, Inès; Radonjic-Hoesli, Susanne; Boutet, Sebastien; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Cascio, Duilio; Zatsepin, Nadia A.; Burghammer, Manfred; Riekel, Christian; Colletier, Jacques-Philippe; Riek, Roland; Eisenberg, David; Simon, Hans-Uwe

    2016-01-01

    SUMMARY Eosinophils are white blood cells that function in innate immunity and participate in the pathogenesis of various inflammatory and neoplastic disorders. Their secretory granules contain four cytotoxic proteins, including the eosinophil major basic protein (MBP-1). How MBP-1 toxicity is controlled within the eosinophil itself and activated upon extracellular release is unknown. Here we show how intragranular MBP-1 nanocrystals restrain toxicity, enabling its safe storage, and characterize them with an X-ray-free electron laser. Following eosinophil activation, MBP-1 toxicity is triggered by granule acidification, followed by extracellular aggregation, which mediates the damage to pathogens and host cells. Larger non-toxic amyloid plaques are also present in tissues of eosinophilic patients in a feedback mechanism that likely limits tissue damage under pathological conditions of MBP-1 oversecretion. Our results suggest that MBP-1 aggregation is important for innate immunity and immunopathology mediated by eosinophils and clarify how its polymorphic self-association pathways regulate toxicity intra- and extracellularly. PMID:25728769

  13. Olfactory toxicity in fishes.

    PubMed

    Tierney, Keith B; Baldwin, David H; Hara, Toshiaki J; Ross, Peter S; Scholz, Nathaniel L; Kennedy, Christopher J

    2010-01-21

    Olfaction conveys critical environmental information to fishes, enabling activities such as mating, locating food, discriminating kin, avoiding predators and homing. All of these behaviors can be impaired or lost as a result of exposure to toxic contaminants in surface waters. Historically, teleost olfaction studies have focused on behavioral responses to anthropogenic contaminants (e.g., avoidance). More recently, there has been a shift towards understanding the underlying mechanisms and functional significance of contaminant-mediated changes in fish olfaction. This includes a consideration of how contaminants affect the olfactory nervous system and, by extension, the downstream physiological and behavioral processes that together comprise a normal response to naturally occurring stimuli (e.g., reproductive priming or releasing pheromones). Numerous studies spanning several species have shown that ecologically relevant exposures to common pollutants such as metals and pesticides can interfere with fish olfaction and disrupt life history processes that determine individual survival and reproductive success. This represents one of the pathways by which toxic chemicals in aquatic habitats may increasingly contribute to the decline and at-risk status of many commercially and ecologically important fish stocks. Despite our emerging understanding of the threats that pollution poses for chemical communication in aquatic communities, many research challenges remain. These include: (1) the determination of specific mechanisms of toxicity in the fish olfactory sensory epithelium; (2) an understanding of the impacts of complex chemical mixtures; (3) the capacity to assess olfactory toxicity in fish in situ; (4) the impacts of toxins on olfactory-mediated behaviors that are still poorly understood for many fish species; and (5) the connections between sublethal effects on individual fish and the long-term viability of wild populations. This review summarizes and integrates

  14. Fluvial biofilms: A pertinent tool to assess beta-blockers toxicity.

    PubMed

    Bonnineau, Chloé; Guasch, Helena; Proia, Lorenzo; Ricart, Marta; Geiszinger, Anita; Romaní, Anna M; Sabater, Sergi

    2010-02-18

    Among increasingly used pharmaceutical products, beta-blockers have been commonly reported at low concentrations in rivers and littoral waters of Europe and North America. Little is known about the toxicity of these chemicals in freshwater ecosystems while their presence may lead to chronic pollution. Hence, in this study the acute toxicity of 3 beta-blockers: metoprolol, propranolol and atenolol on fluvial biofilms was assessed by using several biomarkers. Some were indicative of potential alterations in biofilm algae (photosynthetic efficiency), and others in biofilm bacteria (peptidase activity, bacterial mortality). Propranolol was the most toxic beta-blocker, mostly affecting the algal photosynthetic process. The exposure to 531microg/L of propranolol caused 85% of inhibition of photosynthesis after 24h. Metoprolol was particularly toxic for bacteria. Though estimated No-Effect Concentrations (NEC) were similar to environmental concentrations, higher concentrations of the toxic (503microg/L metoprolol) caused an increase of 50% in bacterial mortality. Atenolol was the least toxic of the three tested beta-blockers. Effects superior to 50% were only observed at very high concentration (707mg/L). Higher toxicity of metoprolol and propranolol might be due to better absorption within biofilms of these two chemicals. Since beta-blockers are mainly found in mixtures in rivers, their differential toxicity could have potential relevant consequences on the interactions between algae and bacteria within river biofilms. 2009 Elsevier B.V. All rights reserved.

  15. The activity of the inosine triphosphate pyrophosphatase affects toxicity of 6-mercaptopurine during maintenance therapy for acute lymphoblastic leukemia in Japanese children.

    PubMed

    Tanaka, Yoichi; Manabe, Atsushi; Nakadate, Hisaya; Kondoh, Kensuke; Nakamura, Kozue; Koh, Katsuyoshi; Utano, Tomoyuki; Kikuchi, Akira; Komiyama, Takako

    2012-05-01

    The association between inosine triphosphate pyrophosphatase (ITPA) activity and toxicity of 6-mercaptopurine (6-MP) was retrospectively evaluated in 65 Japanese children with acute lymphoblastic leukemia (ALL). Patients with an ITPA activity of less than 126 μmol/h/gHb presented with hepatotoxicity more frequently than those with higher ITPA activity (p<0.01). The average 6-MP dose during maintenance therapy administered to two patients with the ITPA deficiency was lower than that given to the other patients. Measuring ITPA activity is important for ensuring the safety of maintenance therapy for Asians with ALL because thiopurine S-methyl transferase mutations are rare in the Asian population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Toxic substances alert program

    NASA Technical Reports Server (NTRS)

    Junod, T. L.

    1978-01-01

    A toxicity profile is provided, of 187 toxic substances procured by NASA Lewis Research Center during a 3 1/2 year period, including 27 known or suspected carcinogens. The goal of the program is to assure that the center's health and safety personnel are aware of the procurement and use of toxic substances and to alert and inform the users of these materials as to the toxic characteristics and the control measures needed to ensure their safe use. The program also provides a continuing record of the toxic substances procured, who procured them, what other toxic substances the user has obtained in the past, and where similar materials have been used elsewhere at the center.

  17. Pulmonary Toxicity Studies of Lunar Dusts in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-wing; James, John T.

    2009-01-01

    NASA will build an outpost on the lunar surface for long-duration human habitation and research. The surface of the Moon is covered by a layer of fine, reactive dust, and the living quarters in the lunar outpost are expected to be contaminated by lunar dust. Because the toxicity of lunar dust is not known, NASA has tasked its toxicology laboratory to evaluate the risk of exposure to the dust and to establish safe exposure limits for astronauts working in the lunar habitat. Studies of the pulmonary toxicity of a dust are generally done first in rodents by intratracheal/intrapharyngeal instillation. This toxicity screening test is then followed by an inhalation study, which requires much more of the test dust and is labor intensive. Preliminary results obtained by examining lung lavage fluid from dust-treated mice show that lunar dust was somewhat toxic (more toxic than TiO2, but less than quartz dust). More extensive studies are in progress to further examine lung lavage fluid for biomarkers of toxicity and lung tissues for histopathological lesions in rodents exposed to aged and activated (ground) lunar dust samples. In these studies, reference dusts (TiO2 and quartz) of known toxicities and have industrial exposure limits will be studied in parallel so the relative toxicity of lunar dust can be determined. The results from the instillation studies will be useful for choosing exposure concentrations for the animal inhalation study. The animal inhalation exposure will be conducted with lunar dust simulant prior to the study with the lunar dust. The experiment with the simulate will ensure that the study techniques used with actual lunar dust will be successful. The results of instillation and inhalation studies will reveal the toxicological risk of exposures and are essential for setting exposure limits on lunar dust for astronauts living in the lunar habitat.

  18. Microcystin uptake and biochemical responses in the freshwater clam Corbicula leana P. exposed to toxic and non-toxic Microcystis aeruginosa: Evidence of tolerance to cyanotoxins.

    PubMed

    Pham, Thanh-Luu; Shimizu, Kazuya; Dao, Thanh-Son; Hong-Do, Lan-Chi; Utsumi, Motoo

    2015-01-01

    We investigated the accumulation and adverse effects of toxic and non-toxic Microcystis in the edible clam Corbicula leana . Treated clams were exposed to toxic Microcystis at 100 μg of MC (microcystin)-LR eq  L -1 for 10 days. The experimental organism was then placed in toxin-free water and fed on non-toxic Microcystis for the following 10 days for depuration. Filtering rates (FRs) by C. leana of toxic and non-toxic Microcystis and of the green alga Chlorella vulgaris as a control were estimated. Adverse effects were evaluated though the activity of catalase (CAT), superoxide dismutase (SOD) and glutathione S-transferase (GST). Clam accumulated MCs (up to 12.7 ± 2.5 μg g -1 dry weight (DW) of free MC and 4.2 ± 0.6 μg g -1 DW of covalently bound MC). Our results suggest that although both toxic and non-toxic cyanobacteria caused adverse effects by inducing the detoxification and antioxidant defense system, the clam was quite resistant to cyanotoxins. The estimated MC concentration in C. leana was far beyond the World Health Organization's (WHO) provisional tolerable daily intake (0.04 μg kg -1  day -1 ), suggesting that consuming clams harvested during cyanobacterial blooms carries a high health risk.

  19. Antioxidant activity and protective effect of bee bread (honey and pollen) in aluminum-induced anemia, elevation of inflammatory makers and hepato-renal toxicity.

    PubMed

    Bakour, Meryem; Al-Waili, Noori S; El Menyiy, Nawal; Imtara, Hamada; Figuira, Anna Cristina; Al-Waili, Thia; Lyoussi, Badiaa

    2017-12-01

    Aluminum toxicity might be related to oxidative stress, and the antioxidant activity and protective effect of bee bread, which contains pollen, honey and bees' enzymes, on aluminum induced blood and hepato-renal toxicity was investigated in rats. Chemical analysis and antioxidant capacity of bee bread were conducted. The animal experiment in rats included; group 1: received distilled water (10 ml/kg b.wt), group 2: received aluminum chloride (662.2 mg/kg b.wt), group 3: received aluminum chloride (662.2 mg/kg b.wt) and ethanolic extract of the bee bread (500 mg/kg b.wt), and group 4: received aluminum chloride (662.2 mg/kg b.wt) and ethanolic extract of the bee bread (750 mg/kg b.wt). Doses were given once daily via a gavage. C-reactive protein, transaminases, urea, creatinine, creatinine clearance, sodium and potassium and urine sodium and potassium were determined on day 28 of the experiment. Bee bread contained protein, fat, fiber, ash, carbohydrate, phenol and flavonoids and it exhibited antioxidant activity. Aluminum caused a significant elevation of blood urea, transaminase, C-reactive protein and monocyte count and significantly decreased hemoglobin. These changes were significantly ameliorated by the use of bee bread. Bee bread has an antioxidant property, and exhibited a protective effect on aluminum induced blood and hepato-renal toxicity and elevation of inflammatory markers C-reactive protein, leukocyte and monocyte counts.

  20. Crystal structure of a catalytically active, non-toxic endopeptidase derivative of Clostridium botulinum toxin A.

    PubMed

    Masuyer, Geoffrey; Thiyagarajan, Nethaji; James, Peter L; Marks, Philip M H; Chaddock, John A; Acharya, K Ravi

    2009-03-27

    Botulinum neurotoxins (BoNTs) modulate cholinergic nerve terminals to result in neurotransmitter blockade. BoNTs consists of catalytic (LC), translocation (Hn) and cell-binding domains (Hc). The binding function of the Hc domain is essential for BoNTs to bind the neuronal cell membrane, therefore, removal of the Hc domain results in a product that retains the endopeptidase activity of the LC but is non-toxic. Thus, a molecule consisting of LC and Hn domains of BoNTs, termed LHn, is a suitable molecule for engineering novel therapeutics. The structure of LHA at 2.6 A reported here provides an understanding of the structural implications and challenges of engineering therapeutic molecules that combine functional properties of LHn of BoNTs with specific ligand partners to target different cell types.

  1. Nanomaterials and nanoparticles: sources and toxicity.

    PubMed

    Buzea, Cristina; Pacheco, Ivan I; Robbie, Kevin

    2007-12-01

    This review is presented as a common foundation for scientists interested in nanoparticles, their origin,activity, and biological toxicity. It is written with the goal of rationalizing and informing public health concerns related to this sometimes-strange new science of "nano," while raising awareness of nanomaterials' toxicity among scientists and manufacturers handling them.We show that humans have always been exposed to tiny particles via dust storms, volcanic ash, and other natural processes, and that our bodily systems are well adapted to protect us from these potentially harmful intruders. There ticuloendothelial system, in particular, actively neutralizes and eliminates foreign matter in the body,including viruses and nonbiological particles. Particles originating from human activities have existed for millennia, e.g., smoke from combustion and lint from garments, but the recent development of industry and combustion-based engine transportation has profoundly increased an thropogenic particulate pollution. Significantly, technological advancement has also changed the character of particulate pollution, increasing the proportion of nanometer-sized particles--"nanoparticles"--and expanding the variety of chemical compositions. Recent epidemiological studies have shown a strong correlation between particulate air pollution levels, respiratory and cardiovascular diseases, various cancers, and mortality. Adverse effects of nanoparticles on human health depend on individual factors such as genetics and existing disease, as well as exposure, and nanoparticle chemistry, size, shape,agglomeration state, and electromagnetic properties. Animal and human studies show that inhaled nanoparticles are less efficiently removed than larger particles by the macrophage clearance mechanisms in the lungs, causing lung damage, and that nanoparticles can translocate through the circulatory, lymphatic, and nervous systems to many tissues and organs, including the brain. The key to

  2. INVERSE QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP ANALYSIS FOR IMPROVING PREDICTIONS OF CHEMICAL TOXICITY

    EPA Science Inventory

    The toxic outcomes associated with environmental contaminants are often not due to the chemical form that was originally introduced into the environment, but rather to the chemical having undergone a transformation prior to reaching the vulnerable species. More importantly, the c...

  3. Toxicity of used drilling fluids to mysids (Mysidopsis bahia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaetz, C.T.; Montgomery, R.; Duke, T.W.

    1986-01-01

    Static, acute toxicity tests were conducted with mysids (Mysidopsis bahia) and 11 used drilling fluids (also called drilling muds) obtained from active drilling platforms in the Gulf of Mexico, U.S.A. Each whole mud was tested, along with three phases of each mud: a liquid phase with all particulate materials removed; a suspended particulate phase composed of soluble and lighter particulate fractions; and a solid phase composed mainly of drill cuttings and rapidly settling particulates. These muds represented seven of the eight generic mud types described by the U.S. Environmental Protection Agency for use on the U.S. Outer Continental Shelf. Themore » toxicity of the 11 muds tested was apparently enhanced by the presence of aromatics. Furthermore, one mud tested repeatedly showed loss of toxicity with time, possibly from volatilization of aromatic fractions. The data demonstrated that aromatics in the drilling fluids affected their toxicity to M. bahia.« less

  4. Cadmium toxicity among wildlife in the Colorado Rocky Mountains

    USGS Publications Warehouse

    Larison, J.R.; Likens, G.E.; Fitzpatrick, J.W.; Crock, J.G.

    2000-01-01

    Cadmium is known to be both extremely toxic and ubiquitous in natural environments. It occurs in almost all soils, surface waters and plants, and it is readily mobilized by human activities such as mining. As a result, cadmium has been named as a potential health threat to wildlife species; however, because it exists most commonly in the environment as a trace constituent, reported incidences of cadmium toxicity are rare. Here we have measured trace metals in the food web and tissues of white-tailed ptarmigan (Lagopus leucurus) in Colorado. Our results suggest that cadmium toxicity may be more common among natural populations of vertebrates than has been appreciated to date and that cadmium toxicity may often go undetected or unrecognized. In addition, our research shows that ingestion of even trace quantities of cadmium can influence not only the physiology and health of individual organisms, but also the demographics and the distribution of species.

  5. Virtual Embryo: Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    High-throughput and high-content screening (HTS-HCS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition t...

  6. Evaporation and air-stripping to assess and reduce ethanolamines toxicity in oily wastewater.

    PubMed

    Libralato, G; Ghirardini, A Volpi; Avezzù, F

    2008-05-30

    Toxicity from industrial oily wastewater remains a problem even after conventional activated sludge treatment process, because of the persistence of some toxicant compounds. This work verified the removal efficiency of organic and inorganic pollutants and the effects of evaporation and air-stripping techniques on oily wastewater toxicity reduction. In a lab-scale plant, a vacuum evaporation procedure at three different temperatures and an air-stripping stage were tested on oily wastewater. Toxicity reduction/removal was observed at each treatment step via Microtox bioassay. A case study monitoring real scale evaporation was also done in a full-size wastewater treatment plant (WWTP). To implement part of a general project of toxicity reduction evaluation, additional investigations took into account the monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) role in toxicity definition after the evaporation phase, both as pure substances and mixtures. Only MEA and TEA appeared to contribute towards effluent toxicity.

  7. (Q)SARs to predict environmental toxicities: current status and future needs.

    PubMed

    Cronin, Mark T D

    2017-03-22

    The current state of the art of (Quantitative) Structure-Activity Relationships ((Q)SARs) to predict environmental toxicity is assessed along with recommendations to develop these models further. The acute toxicity of compounds acting by the non-polar narcotic mechanism of action can be well predicted, however other approaches, including read-across, may be required for compounds acting by specific mechanisms of action. The chronic toxicity of compounds to environmental species is more difficult to predict from (Q)SARs, with robust data sets and more mechanistic information required. In addition, the toxicity of mixtures is little addressed by (Q)SAR approaches. Developments in environmental toxicology including Adverse Outcome Pathways (AOPs) and omics responses should be utilised to develop better, more mechanistically relevant, (Q)SAR models.

  8. Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake.

    PubMed

    Ji, Ye; Zhou, Yun; Ma, Chuanxin; Feng, Yan; Hao, Yi; Rui, Yukui; Wu, Wenhao; Gui, Xin; Le, Van Nhan; Han, Yaning; Wang, Yingcai; Xing, Baoshan; Liu, Liming; Cao, Weidong

    2017-01-01

    Previous studies have reported that nanoparticles (NPs) and heavy metals are toxic to the environment. However, the jointed toxicity is not yet well understood. This study was aimed to investigate the combined toxicity of TiO 2 NPs and the heavy metal cadmium (Cd) to plants. Rice (Oryzasativa L.) was selected as the target plant. The rice seedlings were randomly separated into 12 groups and treated with CdCl 2 (0, 10 and 20 mg/L) and TiO 2 NPs (0, 10, 100 and 1000 mg/L). The plant height, biomass and root length indicated significant toxicity of Cd to the growth, but TiO 2 NPs exhibited the potential ability to alleviate the Cd toxicity. Transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS) confirmed the existence of TiO 2 NPs in plants. Elemental analysis of Ti and Cd suggested that the presences of Cd significantly decreased the Ti accumulation in the rice roots in the co-exposure treatments. Interestingly, TiO 2 NPs could lower the Cd uptake and distribution in rice roots and leaves. The results of antioxidant enzyme activity, lipid peroxide as well as phytohormones varied in the different treatments. Comparing with the Cd alone treatment, the net photosynthetic rate and chlorophyll content were significantly increased in the co-exposure treatments, suggesting that TiO 2 NPs could tremendously reduce the Cd toxicity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Nrf2 protects human bladder urothelial cells from arsenite and monomethylarsonous acid toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaojun; Sun Zheng; Chen Weimin

    2007-12-01

    Arsenic is widely spread in our living environment and imposes a big challenge on human health worldwide. Arsenic damages biological systems through multiple mechanisms including the generation of reactive oxygen species. The transcription factor Nrf2 regulates the cellular antioxidant response that protects cells from various insults. In this study, the protective role of Nrf2 in arsenic toxicity was investigated in a human bladder urothelial cell line, UROtsa. Using a UROtsa cell line stably infected with Nrf2-siRNA, we clearly demonstrate that compromised Nrf2 expression sensitized the cells to As(III)- and MMA(III)-induced toxicity. On the other hand, the activation of the Nrf2more » pathway by tert-butylhydroquinone (tBHQ) and sulforaphane (SF), the known Nrf2-inducers, rendered UROtsa cells more resistant to As(III) and MMA(III). Furthermore, the wild-type mouse embryo fibroblast (WT-MEF) cells were protected from As(III)- and MMA(III)-induced toxicity following Nrf2 activation by tBHQ or SF, whereas neither tBHQ nor SF conferred protection in the Nrf2{sup -/-}MEF cells, demonstrating that tBHQ- or SF-mediated protection against As(III)- and MMA(III)-induced toxicity depends on Nrf2 activation. These results, obtained by both loss of function and gain of function analyses, clearly demonstrate the protective role of Nrf2 in arsenic-induced toxicity. The current work lays the groundwork for using Nrf2 activators for therapeutic and dietary interventions against adverse effects of arsenic.« less

  10. TOXICITY CHARACTERIZATION PROCEDURES FOR ORGANIC TOXICANTS IN BULK SEDIMENTS

    EPA Science Inventory

    We have been pursuing development of toxicant characterization, isolation, and identification procedures for organic toxicants that can be applied in the context of 10-d solid-phase sediment tests measuring survival and growth of freshwater in the context of 10-d solid-phase sedi...

  11. Estimating the Potential Toxicity of Chemicals Associated with Hydraulic Fracturing Operations Using Quantitative Structure-Activity Relationship Modeling

    EPA Pesticide Factsheets

    Researchers facilitated evaluation of chemicals that lack chronic oral toxicity values using a QSAR model to develop estimates of potential toxicity for chemicals used in HF fluids or found in flowback or produced water

  12. [Toxicity study of cefmatilen hydrochloride hydrate (S-1090) (3)--One- and three-month repeated oral dose toxicity studies in rats].

    PubMed

    Kato, I; Sato, K; Ueno, M; Inoue, S; Harihara, A; Moriyama, T; Nishimura, K; Yabuuchi, K; Hirata, M; Muraoka, Y; Kitamura, T; Furukawa, H

    2001-05-01

    One- or three-month repeated oral dose toxicity studies of Cefmatilen hydrochloride hydrate (S-1090) in rats were conducted. Doses were set at 80, 200, 500 and 1250 mg potency/kg/day in the one-month toxicity study, and 100, 300 and 1000 mg potency/kg/day in the three-month toxicity study. Body weights increased favorably and no deaths occurred in all treated groups of both studies. The changes observed in both studies were soft feces, abdominal distention, increased food and water consumption, decreases of urine volume and pH, and a decrease of blood neutrophils in almost all treated groups, reddish-brown feces (due to chelated products of S-1090 and its decomposition products with Fe3+ in the diet) in groups dosed at 300 mg potency/kg or more, and a lower mature granulocyte ratio in the bone marrow in groups dosed at 1000 mg potency/kg or more. In necropsy, cecal enlargement with a large amount of muddy content was observed in all treated groups of both studies. In the three-month toxicity study, elevated drug-metabolizing enzyme activities were noted in the liver of the males in the 1000 mg potency/kg group. These changes were slight except for the cecal enlargement and the rats recovered well with drug withdrawal. Since no toxicologically significant changes were noted in either study, the NOAEL of S-1090 was estimated to be 1250 mg potency/kg/day in the one-month toxicity study and 1000 mg potency/kg/day in the three-month toxicity study.

  13. Toxic essential oils. Part V: Behaviour modulating and toxic properties of thujones and thujone-containing essential oils of Salvia officinalis L., Artemisia absinthium L., Thuja occidentalis L. and Tanacetum vulgare L.

    PubMed

    Radulović, Niko S; Genčić, Marija S; Stojanović, Nikola M; Randjelović, Pavle J; Stojanović-Radić, Zorica Z; Stojiljković, Nenad I

    2017-07-01

    Neurotoxic thujones (α- and β-diastereoisomers) are common constituents of plant essential oils. In this study, we employed a statistical approach to determine the contribution of thujones to the overall observed behaviour-modulating and toxic effects of essential oils (Salvia officinalis L., Artemisia absinthium L., Thuja occidentalis L. and Tanacetum vulgare L.) containing these monoterpene ketones. The data from three in vivo neuropharmacological tests on rats (open field, light-dark, and diazepam-induced sleep), and toxicity assays (brine shrimp, and antimicrobial activity against a panel of microorganisms), together with the data from detailed chemical analyses, were subjected to a multivariate statistical treatment to reveal the possible correlation(s) between the content of essential-oil constituents and the observed effects. The results strongly imply that the toxic and behaviour-modulating activity of the oils (hundreds of constituents) should not be associated exclusively with thujones. The statistical analyses pinpointed to a number of essential-oil constituents other than thujones that demonstrated a clear correlation with either the toxicity, antimicrobial effect or the activity on CNS. Thus, in addition to the thujone content, the amount and toxicity of other constituents should be taken into consideration when making risk assessment and determining the regulatory status of plants in food and medicines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Structure-activity relationship studies on the mosquito toxicity and biting deterrency of callicarpenal derivatives.

    PubMed

    Cantrell, Charles L; Klun, Jerome A; Pridgeon, Julia; Becnel, James; Green, Solomon; Fronczek, Frank R

    2009-04-01

    Callicarpenal (=13,14,15,16-tetranorclerod-3-en-12-al=[(1S,2R,4aR,8aR)-1,2,3,4,4a,7,8,8a-octahydro-1,2,4a,5-tetramethylnaphthalen-1-yl]acetaldehyde; 1) has previously demonstrated significant mosquito bite-deterring activity against Aedes aegypti and Anopheles stephensi in addition to repellent activity against host-seeking nymphs of the blacklegged tick, Ixodes scapularis. In the present study, structural modifications were performed on callicarpenal (1) in an effort to understand the functional groups necessary for maintaining and/or increasing its activity and to possibly lead to more effective insect control agents. All modifications in this study targeted the C(12) aldehyde or the C(3) alkene functionalities or combinations thereof. Mosquito biting deterrency appeared to be influenced most by C(3) alkene modification as evidenced by catalytic hydrogenation that resulted in a compound having significantly less effectiveness than 1 at a test amount of 25 nmol/cm2. Oxidation and/or reduction of the C(12) aldehyde did not diminish mosquito biting deterrency, but, at the same time, none of the modifications were more effective than 1 in deterring mosquito biting. Toxicities of synthesized compounds towards Ae. aegypti ranged from an LD50 value of 2.36 to 40.11 microg per mosquito. Similarly, LD95 values ranged from a low of 5.59 to a high of 104.9 microg.

  15. Pharmacological Assessment of the Medicinal Potential of Acacia mearnsii De Wild.: Antimicrobial and Toxicity Activities

    PubMed Central

    Olajuyigbe, Olufunmiso O.; Afolayan, Anthony J.

    2012-01-01

    Acacia mearnsii De Wild. (Fabaceae) is a medicinal plant used in the treatment of microbial infections in South Africa without scientific validation of its bioactivity and toxicity. The antimicrobial activity of the crude acetone extract was evaluated by both agar diffusion and macrobroth dilution methods while its cytotoxicity effect was assessed with brine shrimp lethality assay. The study showed that both bacterial and fungal isolates were highly inhibited by the crude extract. The MIC values for the gram-positive bacteria (78.1–312.5) μg/mL, gram-negative bacteria (39.1–625) μg/mL and fungal isolates (625–5000) μg/mL differ significantly. The bacteria were more susceptible than the fungal strains tested. The antibiosis determination showed that the extract was more (75%) bactericidal than bacteriostatic (25%) and more fungicidal (66.67%) than fungistatic (33.33%). The cytotoxic activity of the extract was observed between 31.25 μg/mL and 500 μg/mL and the LC50 value (112.36 μg/mL) indicates that the extract was nontoxic in the brine shrimp lethality assay (LC50 > 100 μg/mL). These results support the use of A. mearnsii in traditional medicine for treatment of microbial infections. The extract exhibiting significant broad spectrum antimicrobial activity and nontoxic effects has potential to yield active antimicrobial compounds. PMID:22605976

  16. Toxicity, mechanism and health effects of some heavy metals

    PubMed Central

    Jaishankar, Monisha; Tseten, Tenzin; Anbalagan, Naresh; Beeregowda, Krishnamurthy N.

    2014-01-01

    Heavy metal toxicity has proven to be a major threat and there are several health risks associated with it. The toxic effects of these metals, even though they do not have any biological role, remain present in some or the other form harmful for the human body and its proper functioning. They sometimes act as a pseudo element of the body while at certain times they may even interfere with metabolic processes. Few metals, such as aluminium, can be removed through elimination activities, while some metals get accumulated in the body and food chain, exhibiting a chronic nature. Various public health measures have been undertaken to control, prevent and treat metal toxicity occurring at various levels, such as occupational exposure, accidents and environmental factors. Metal toxicity depends upon the absorbed dose, the route of exposure and duration of exposure, i.e. acute or chronic. This can lead to various disorders and can also result in excessive damage due to oxidative stress induced by free radical formation. This review gives details about some heavy metals and their toxicity mechanisms, along with their health effects. PMID:26109881

  17. A role for solvents in the toxicity of agricultural organophosphorus pesticides

    PubMed Central

    Eddleston, Michael; Street, Jonathan M.; Self, Ian; Thompson, Adrian; King, Tim; Williams, Nicola; Naredo, Gregorio; Dissanayake, Kosala; Yu, Ly-Mee; Worek, Franz; John, Harald; Smith, Sionagh; Thiermann, Horst; Harris, John B.; Eddie Clutton, R.

    2012-01-01

    Organophosphorus (OP) insecticide self-poisoning is responsible for about one-quarter of global suicides. Treatment focuses on the fact that OP compounds inhibit acetylcholinesterase (AChE); however, AChE-reactivating drugs do not benefit poisoned humans. We therefore studied the role of solvent coformulants in OP toxicity in a novel minipig model of agricultural OP poisoning. Gottingen minipigs were orally poisoned with clinically relevant doses of agricultural emulsifiable concentrate (EC) dimethoate, dimethoate active ingredient (AI) alone, or solvents. Cardiorespiratory physiology and neuromuscular (NMJ) function, blood AChE activity, and arterial lactate concentration were monitored for 12 h to assess poisoning severity. Poisoning with agricultural dimethoate EC40, but not saline, caused respiratory arrest within 30 min, severe distributive shock and NMJ dysfunction, that was similar to human poisoning. Mean arterial lactate rose to 15.6 [SD 2.8] mM in poisoned pigs compared to 1.4 [0.4] in controls. Moderate toxicity resulted from poisoning with dimethoate AI alone, or the major solvent cyclohexanone. Combining dimethoate with cyclohexanone reproduced severe poisoning characteristic of agricultural dimethoate EC poisoning. A formulation without cyclohexanone showed less mammalian toxicity. These results indicate that solvents play a crucial role in dimethoate toxicity. Regulatory assessment of pesticide toxicity should include solvents as well as the AIs which currently dominate the assessment. Reformulation of OP insecticides to ensure that the agricultural product has lower mammalian toxicity could result in fewer deaths after suicidal ingestion and rapidly reduce global suicide rates. PMID:22365945

  18. Chronic toxicity of selected polycyclic aromatic hydrocarbons to algae and crustaceans using passive dosing.

    PubMed

    Bragin, Gail E; Parkerton, Thomas F; Redman, Aaron D; Letinksi, Daniel J; Butler, Josh D; Paumen, Miriam Leon; Sutherland, Cary A; Knarr, Tricia M; Comber, Mike; den Haan, Klaas

    2016-12-01

    Because of the large number of possible aromatic hydrocarbon structures, predictive toxicity models are needed to support substance hazard and risk assessments. Calibration and evaluation of such models requires toxicity data with well-defined exposures. The present study has applied a passive dosing method to generate reliable chronic effects data for 8 polycyclic aromatic hydrocarbons (PAHs) on the green algae Pseudokirchneriella subcapitata and the crustacean Ceriodaphnia dubia. The observed toxicity of these substances on algal growth rate and neonate production were then compared with available literature toxicity data for these species, as well as target lipid model and chemical activity-based model predictions. The use of passive dosing provided well-controlled exposures that yielded more consistent data sets than attained by past literature studies. Results from the present study, which were designed to exclude the complicating influence of ultraviolet light, were found to be well described by both target lipid model and chemical activity effect models. The present study also found that the lack of chronic effects for high molecular weight PAHs was consistent with the limited chemical activity that could be achieved for these compounds in the aqueous test media. Findings from this analysis highlight that variability in past literature toxicity data for PAHs may be complicated by both poorly controlled exposures and photochemical processes that can modulate both exposure and toxicity. Environ Toxicol Chem 2016;35:2948-2957. © 2016 SETAC. © 2016 SETAC.

  19. [Detection of toxic substances in microbial fuel cells].

    PubMed

    Wang, Jiefu; Niu, Hao; Wu, Wenguo

    2017-05-25

    Microbial fuel cells (MFCs) is a highly promising bioelectrochemical technology and uses microorganisms as catalyst to convert chemical energy directly to electrical energy. Microorganisms in the anodic chamber of MFC oxidize the substrate and generate electrons. The electrons are absorbed by the anode and transported through an external circuit to the cathode for corresponding reduction. The flow of electrons is measured as current. This current is a linear measure of the activity of microorganisms. If a toxic event occurs, microbial activity will change, most likely decrease. Hence, fewer electrons are transported and current decreases as well. In this way, a microbial fuel cell-based biosensor provides a direct measure to detect toxicity for samples. This paper introduces the detection of antibiotics, heavy metals, organic pollutants and acid in MFCs. The existing problems and future application of MFCs are also analyzed.

  20. A toxicity assessment of 30 pharmaceuticals using Aliivibrio fischeri: a comparison of the acute effects of different formulations.

    PubMed

    Jacob, Raquel Sampaio; Santos, Lucilaine Valéria de Souza; de Souza, Ana Flávia Rodrigues; Lange, Liséte Celina

    2016-11-01

    Considerable quantities of different classes of drugs are consumed annually worldwide. These drugs, once disposed, often remain stable, even after conventional or advanced treatments. Although there have been a number of studies on the potential harm caused by drugs when released into the environment, few studies have investigated the toxicity of pharmaceutical excipients. In the present study, the acute toxicity of 30 drugs was tested to Aliivibrio fischeri. Ten different active ingredients were investigated, each in three distinct formulations: generic, similar and reference (brand drug). The aim of the study was to evaluate the harmful potential of drugs frequently sold in drugstores and to assess the contribution of excipients towards the observed acute toxicity. Within the 10 drugs evaluated, only one, dexchlorpheniramine maleate, was not toxic in any formulation. The toxicities of the three formulations were often different, even though the active ingredient has been the same. For some drugs, such as diazepam, glibenclamide, metformin, nimesulide, hydrochlorothiazide and simvastatin, only one or two of the three formulations tested were toxic to A. fischeri. These results highlight the toxicological potential of drug excipients, but not exclusively the toxicity of the active ingredients.

  1. DIRECT AND PHOTOACTIVATED TOXICITY OF A COMPLEX PETROLEUM MIXTURE: A COMPARISON OF SOLUBILIZATION METHODS

    EPA Science Inventory

    This work addresses several issues associated with the toxicity of a complex petroleum mixture (combined kerosene/diesel and crude oil), including developmental effects and early lifestage mortality, method of solubilization, and potential photo-activated and photo-modified toxic...

  2. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash.

    PubMed

    Diaz-Loya, E Ivan; Allouche, Erez N; Eklund, Sven; Joshi, Anupam R; Kupwade-Patil, Kunal

    2012-08-01

    Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5

  3. Huperzine A Alleviates Oxidative Glutamate Toxicity in Hippocampal HT22 Cells via Activating BDNF/TrkB-Dependent PI3K/Akt/mTOR Signaling Pathway.

    PubMed

    Mao, Xiao-Yuan; Zhou, Hong-Hao; Li, Xi; Liu, Zhao-Qian

    2016-08-01

    Oxidative glutamate toxicity is involved in diverse neurological disorders including epilepsy and ischemic stroke. Our present work aimed to assess protective effects of huperzine A (HupA) against oxidative glutamate toxicity in a mouse-derived hippocampal HT22 cells and explore its potential mechanisms. Cell survival and cell injury were analyzed by MTT method and LDH release assay, respectively. The production of ROS was measured by detection kits. Protein expressions of BDNF, phosphor-TrkB (p-TrkB), TrkB, phosphor-Akt (p-Akt), Akt, phosphor-mTOR (p-mTOR), mTOR, phosphor-p70s6 (p-p70s6) kinase, p70s6 kinase, Bcl-2, Bax, and β-actin were assayed via Western blot analysis. Enzyme-linked immunosorbent assay was employed to measure the contents of nerve growth factor, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Our findings illustrated 10 μM HupA for 24 h significantly protected HT22 from cellular damage and suppressed the generation of ROS. Additionally, after treating with LY294002 or wortmannin [the selective inhibitors of phosphatidylinositol 3 kinase (PI3K)], HupA dramatically prevented the down-regulations of p-Akt, p-mTOR, and p-p70s6 kinase in HT22 cells under oxidative toxicity. Furthermore, it was observed that the protein levels of BDNF and p-TrkB were evidently enhanced after co-treatment with HupA and glutamate in HT22 cells. The elevations of p-Akt and p-mTOR were abrogated under toxic conditions after blockade of TrkB by TrkB IgG. Cellular apoptosis was significantly suppressed (decreased caspase-3 activity and enhanced Bcl-2 protein level) after HupA treatment. It was concluded that HupA attenuated oxidative glutamate toxicity in murine hippocampal HT22 cells via activating BDNF/TrkB-dependent PI3K/Akt/mTOR signaling pathway.

  4. Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculata Smith

    PubMed Central

    2011-01-01

    Background Native bees of the tribe Meliponini produce a distinct kind of propolis called geopropolis. Although many pharmacological activities of propolis have already been demonstrated, little is known about geopropolis, particularly regarding its antimicrobial activity against oral pathogens. The present study aimed at investigating the antimicrobial activity of M. fasciculata geopropolis against oral pathogens, its effects on S. mutans biofilms, and the chemical contents of the extracts. A gel prepared with a geopropolis extract was also analyzed for its activity on S. mutans and its immunotoxicological potential. Methods Antimicrobial activities of three hydroalcoholic extracts (HAEs) of geopropolis, and hexane and chloroform fractions of one extract, were evaluated using the agar diffusion method and the broth dilution technique. Ethanol (70%, v/v) and chlorhexidine (0.12%, w/w) were used as negative and positive controls, respectively. Total phenol and flavonoid concentrations were assayed by spectrophotometry. Immunotoxicity was evaluated in mice by topical application in the oral cavity followed by quantification of biochemical and immunological parameters, and macro-microscopic analysis of animal organs. Results Two extracts, HAE-2 and HAE-3, showed inhibition zones ranging from 9 to 13 mm in diameter for S. mutans and C. albicans, but presented no activity against L. acidophilus. The MBCs for HAE-2 and HAE-3 against S. mutans were 6.25 mg/mL and 12.5 mg/mL, respectively. HAE-2 was fractionated, and its chloroform fraction had an MBC of 14.57 mg/mL. HAE-2 also exhibited bactericidal effects on S. mutans biofilms after 3 h of treatment. Significant differences (p < 0.05) in total phenol and flavonoid concentrations were observed among the samples. Signs toxic effects were not observed after application of the geopropolis-based gel, but an increase in the production of IL-4 and IL-10, anti-inflammatory cytokines, was detected. Conclusions In summary

  5. Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculata Smith.

    PubMed

    Liberio, Silvana A; Pereira, Antônio Luís A; Dutra, Richard P; Reis, Aramys S; Araújo, Maria José A M; Mattar, Nadia S; Silva, Lucilene A; Ribeiro, Maria Nilce S; Nascimento, Flávia Raquel F; Guerra, Rosane N M; Monteiro-Neto, Valério

    2011-11-04

    Native bees of the tribe Meliponini produce a distinct kind of propolis called geopropolis. Although many pharmacological activities of propolis have already been demonstrated, little is known about geopropolis, particularly regarding its antimicrobial activity against oral pathogens. The present study aimed at investigating the antimicrobial activity of M. fasciculata geopropolis against oral pathogens, its effects on S. mutans biofilms, and the chemical contents of the extracts. A gel prepared with a geopropolis extract was also analyzed for its activity on S. mutans and its immunotoxicological potential. Antimicrobial activities of three hydroalcoholic extracts (HAEs) of geopropolis, and hexane and chloroform fractions of one extract, were evaluated using the agar diffusion method and the broth dilution technique. Ethanol (70%, v/v) and chlorhexidine (0.12%, w/w) were used as negative and positive controls, respectively. Total phenol and flavonoid concentrations were assayed by spectrophotometry. Immunotoxicity was evaluated in mice by topical application in the oral cavity followed by quantification of biochemical and immunological parameters, and macro-microscopic analysis of animal organs. Two extracts, HAE-2 and HAE-3, showed inhibition zones ranging from 9 to 13 mm in diameter for S. mutans and C. albicans, but presented no activity against L. acidophilus. The MBCs for HAE-2 and HAE-3 against S. mutans were 6.25 mg/mL and 12.5 mg/mL, respectively. HAE-2 was fractionated, and its chloroform fraction had an MBC of 14.57 mg/mL. HAE-2 also exhibited bactericidal effects on S. mutans biofilms after 3 h of treatment. Significant differences (p < 0.05) in total phenol and flavonoid concentrations were observed among the samples. Signs toxic effects were not observed after application of the geopropolis-based gel, but an increase in the production of IL-4 and IL-10, anti-inflammatory cytokines, was detected. In summary, geopropolis produced by M. fasciculata can

  6. Sediment Toxicity Identification Evaluation

    EPA Science Inventory

    Approach combining chemical manipulations and aquatic toxicity testing, generally with whole organisms, to systematically characterize, identify and confirm toxic substances causing toxicity in whole sediments and sediment interstitial waters. The approach is divided into thre...

  7. Pulmonary Toxicity Studies of Lunar Dusts in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-wing; James, John T.; Taylor, Larry

    2008-01-01

    NASA will build an outpost on the lunar surface for long-duration human habitation and research. The surface of the Moon is covered by a layer of fine, reactive dust, and the living quarters in the lunar outpost are expected to be contaminated by lunar dust. NASA established the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) to evaluate the risk of exposure to the dust and to establish safe exposure limits for astronauts working in the lunar habitat. Because the toxicity of lunar dust is not known, LADTAG has recommended investigating its toxicity in the lungs of laboratory animals. After receiving this recommendation, NASA directed the JSC Toxicology Laboratory to determine the pulmonary toxicity of lunar dust in exposed rodents. The rodent pulmonary toxicity studies proposed here are the same as those proposed by the LADTAG. Studies of the pulmonary toxicity of a dust are generally done first in rodents by intratracheal instillation (ITI). This toxicity screening test is then followed by an inhalation study, which requires much more of the test dust and is labor intensive. We succeeded in completing an ITI study on JSC-1 lunar dust simulant in mice (Lam et al., Inhalation Toxicology 14:901-916, 2002, and Inhalation Toxicology 14: 917-928, 2002), and have conducted a pilot ITI study to examine the acute toxicity of an Apollo lunar (highland) dust sample. Preliminary results obtained by examining lung lavage fluid from dust-treated mice show that lunar dust was somewhat toxic (more toxic than TiO2, but less than quartz dust). More extensive studies have been planned to further examine lung lavage fluid for biomarkers of toxicity and lung tissues for histopathological lesions in rodents exposed to aged and activated lunar dust samples. In these studies, reference dusts (TiO2 and quartz) of known toxicities and have industrial exposure limits will be studied in parallel so the relative toxicity of lunar dust can be determined. The ITI results will also be

  8. Metals, toxicity and oxidative stress.

    PubMed

    Valko, M; Morris, H; Cronin, M T D

    2005-01-01

    Metal-induced toxicity and carcinogenicity, with an emphasis on the generation and role of reactive oxygen and nitrogen species, is reviewed. Metal-mediated formation of free radicals causes various modifications to DNA bases, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Lipid peroxides, formed by the attack of radicals on polyunsaturated fatty acid residues of phospholipids, can further react with redox metals finally producing mutagenic and carcinogenic malondialdehyde, 4-hydroxynonenal and other exocyclic DNA adducts (etheno and/or propano adducts). Whilst iron (Fe), copper (Cu), chromium (Cr), vanadium (V) and cobalt (Co) undergo redox-cycling reactions, for a second group of metals, mercury (Hg), cadmium (Cd) and nickel (Ni), the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. Arsenic (As) is thought to bind directly to critical thiols, however, other mechanisms, involving formation of hydrogen peroxide under physiological conditions, have been proposed. The unifying factor in determining toxicity and carcinogenicity for all these metals is the generation of reactive oxygen and nitrogen species. Common mechanisms involving the Fenton reaction, generation of the superoxide radical and the hydroxyl radical appear to be involved for iron, copper, chromium, vanadium and cobalt primarily associated with mitochondria, microsomes and peroxisomes. However, a recent discovery that the upper limit of "free pools" of copper is far less than a single atom per cell casts serious doubt on the in vivo role of copper in Fenton-like generation of free radicals. Nitric oxide (NO) seems to be involved in arsenite-induced DNA damage and pyrimidine excision inhibition. Various studies have confirmed that metals activate signalling pathways and the carcinogenic effect of metals has been related to activation of mainly redox-sensitive transcription factors, involving NF-kappaB, AP-1 and p53

  9. [Effects of mercazolyl and L-thyroxine on the antiedematous activity of immunotropic preparations during development of toxic brain edema and swelling].

    PubMed

    Platonov, I A; Anashchenkova, T A; Andreeva, T A

    2008-01-01

    Dysfunction of thyroid gland plays an important role in the pathogenesis of brain edema and swelling. Toxic brain edema and swelling was modeled under condition of hypo- and hyperfunction of thyroid gland. Mercazolyl and L-thyroxine ambiguously influence the development of toxic brain edema and swelling in rats. L-thyroxin (35.7 microg/kg) favors increase in the water content in brain tissue, which can be considered as synergism with the edematous factor and the formation of brain tissue susceptibility to the development of brain edema and swelling. The administration of mercazolyl (5 mg/kg) and L-thyroxin (35.7 microg/kg) with thymogen (10 microg/kg), thymalin (1.2 mg/kg), cycloferon (0.5 mg/kg) results in decreasing brain tissue density as compared to intact animals. Dysfunction of the thyroid gland leads to changes in pharmacodynamics of immune preparations, which results in a decrease of their antiedematous activity.

  10. Nrf2-dependent protection against acute sodium arsenite toxicity in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuse, Yuji; Nguyen, Vu Thanh; Kobayashi, Makoto, E

    Transcription factor Nrf2 induces a number of detoxifying enzymes and antioxidant proteins to confer protection against the toxic effects of a diverse range of chemicals including inorganic arsenicals. Although a number of studies using cultured cells have demonstrated that Nrf2 has a cell-protective function against acute and high-dose arsenic toxicity, there is no clear in vivo evidence of this effect. In the present study, we genetically investigated the protective role of Nrf2 against acute sodium arsenite toxicity using the zebrafish Nrf2 mutant, nrf2a{sup fh318}. After treatment with 1 mM sodium arsenite, the survival of nrf2a{sup fh318} larvae was significantly shortermore » than that of wild-type siblings, suggesting that Nrf2 protected the zebrafish larvae against high-dose arsenite exposure. To understand the molecular basis of the Nrf2-dependent protection, we analyzed the gene expression profiles after arsenite exposure, and found that the genes involved in the antioxidative function (prdx1 and gclc), arsenic metabolism (gstp1) and xenobiotic elimination (abcc2) were induced in an Nrf2-dependent manner. Furthermore, pre-treatment with sulforaphane, a well-known Nrf2 activator improved the survival of zebrafish larvae after arsenic exposure. Based on these results, we concluded that Nrf2 plays a fundamental and conserved role in protection against acute sodium arsenite toxicity. - Highlights: • The role of Nrf2 under arsenite exposure was valuated using zebrafish. • Nrf2 mutant zebrafish was highly sensitive to acute arsenic toxicity. • Nrf2 induced anti-arsenic genes in response to arsenite. • Sulforaphane attenuated arsenic toxicity through Nrf2 activation. • Nrf2 system plays an important role in the defense against acute arsenic toxicity.« less

  11. Phosphatidate Phosphatase Activity Plays Key Role in Protection against Fatty Acid-induced Toxicity in Yeast*

    PubMed Central

    Fakas, Stylianos; Qiu, Yixuan; Dixon, Joseph L.; Han, Gil-Soo; Ruggles, Kelly V.; Garbarino, Jeanne; Sturley, Stephen L.; Carman, George M.

    2011-01-01

    The PAH1-encoded phosphatidate (PA) phosphatase in Saccharomyces cerevisiae is a pivotal enzyme that produces diacylglycerol for the synthesis of triacylglycerol (TAG) and simultaneously controls the level of PA used for phospholipid synthesis. Quantitative lipid analysis showed that the pah1Δ mutation caused a reduction in TAG mass and an elevation in the mass of phospholipids and free fatty acids, changes that were more pronounced in the stationary phase. The levels of unsaturated fatty acids in the pah1Δ mutant were unaltered, although the ratio of palmitoleic acid to oleic acid was increased with a similar change in the fatty acid composition of phospholipids. The pah1Δ mutant exhibited classic hallmarks of apoptosis in stationary phase and a marked reduction in the quantity of cytoplasmic lipid droplets. Cells lacking PA phosphatase were sensitive to exogenous fatty acids in the order of toxicity palmitoleic acid > oleic acid > palmitic acid. In contrast, the growth of wild type cells was not inhibited by fatty acid supplementation. In addition, wild type cells supplemented with palmitoleic acid exhibited an induction in PA phosphatase activity and an increase in TAG synthesis. Deletion of the DGK1-encoded diacylglycerol kinase, which counteracts PA phosphatase in controlling PA content, suppressed the defect in lipid droplet formation in the pah1Δ mutant. However, the sensitivity of the pah1Δ mutant to palmitoleic acid was not rescued by the dgk1Δ mutation. Overall, these findings indicate a key role of PA phosphatase in TAG synthesis for protection against fatty acid-induced toxicity. PMID:21708942

  12. Transcriptomic and physiological analysis of common duckweed Lemna minor responses to NH4(+) toxicity.

    PubMed

    Wang, Wenguo; Li, Rui; Zhu, Qili; Tang, Xiaoyu; Zhao, Qi

    2016-04-18

    Plants can suffer ammonium (NH4 (+)) toxicity, particularly when NH4 (+) is supplied as the sole nitrogen source. However, our knowledge about the underlying mechanisms of NH4 (+) toxicity is still largely unknown. Lemna minor, a model duckweed species, can grow well in high NH4 (+) environment but to some extent can also suffer toxic effects. The transcriptomic and physiological analysis of L. minor responding to high NH4 (+) may provide us some interesting and useful information not only in toxic processes, but also in tolerance mechanisms. The L. minor cultured in the Hoagland solution were used as the control (NC), and in two NH4 (+) concentrations (NH4 (+) was the sole nitrogen source), 84 mg/L (A84) and 840 mg/L (A840) were used as stress treatments. The NH4 (+) toxicity could inhibit the growth of L. minor. Reactive oxygen species (ROS) and cell death were studied using stained fronds under toxic levels of NH4 (+). The malondialdehyde content and the activities of superoxide dismutase and peroxidase increased from NC to A840, rather than catalase and ascorbate peroxidase. A total of 6.62G nucleotides were generated from the three distinct libraries. A total of 14,207 differentially expressed genes (DEGs) among 70,728 unigenes were obtained. All the DEGs could be clustered into 7 profiles. Most DEGs were down-regulated under NH4 (+) toxicity. The genes required for lignin biosynthesis in phenylpropanoid biosynthesis pathway were up-regulated. ROS oxidative-related genes and programmed cell death (PCD)-related genes were also analyzed and indicated oxidative damage and PCD occurring under NH4 (+) toxicity. The first large transcriptome study in L. minor responses to NH4 (+) toxicity was reported in this work. NH4 (+) toxicity could induce ROS accumulation that causes oxidative damage and thus induce cell death in L. minor. The antioxidant enzyme system was activated under NH4 (+) toxicity for ROS scavenging. The phenylpropanoid pathway was stimulated under

  13. Toxic impact of aldrin on acid and alkaline phosphatase activity of penaeid prawn, Metapenaeus monoceros: In vitro study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, M.S.; Jayaprada, P.; Rao, K.V.R.

    1991-03-01

    The increasing contamination of the aquatic environment by the indiscriminate and widespread use of different kinds of pesticides is a serious problem for environmental biologists. Organochlorine insecticides are more hazardous since they are not only more toxic but also leave residues in nature. The deleterious effects of aldrin on several crustaceans have been studied. But studies concerning the impact of aldrin on biochemical aspects of crustaceans are very much limited. The present study is aimed at probing the in vitro effects of aldrin on the acid and alkaline phosphatase activity levels in selected tissues of penaeid prawn, Metapenaeus monoceros (Fabricius).

  14. Antioxidant and Toxicity Studies of 50% Methanolic Extract of Orthosiphon stamineus Benth

    PubMed Central

    Lim, Chung Pin; Fung Ang, Lee; Por, Lip Yee; Wong, Siew Tung; Asmawi, Mohd. Zaini

    2013-01-01

    The present study evaluated the antioxidant activity and potential toxicity of 50% methanolic extract of Orthosiphon stamineus (Lamiaceae) leaves (MEOS) after acute and subchronic administration in rats. Superoxide radical scavenging, hydroxyl radical scavenging, and ferrous ion chelating methods were used to evaluate the antioxidant properties of the extract. In acute toxicity study, single dose of MEOS, 5000 mg/kg, was administered to rats by oral gavage, and the treated rats were monitored for 14 days. While in the subchronic toxicity study, MEOS was administered orally, at doses of 1250, 2500, and 5000 mg/kg/day for 28 days. From the results, MEOS showed good superoxide radical scavenging, hydroxyl radical scavenging, ferrous ion chelating, and antilipid peroxidation activities. There was no mortality detected or any signs of toxicity in acute and subchronic toxicity studies. Furthermore, there was no significant difference in bodyweight, relative organ weight, and haematological and biochemical parameters between both male and female treated rats in any doses tested. No abnormality of internal organs was observed between treatment and control groups. The oral lethal dose determined was more than 5000 mg/kg and the no-observed-adverse-effect level (NOAEL) of MEOS for both male and female rats is considered to be 5000 mg/kg per day. PMID:24490155

  15. MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development (SETAC abstract)

    EPA Science Inventory

    The mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity and as an alternative to chemical class-based predictive toxicity modeling. However, the development of quantitative structure activity relationship (QSAR) and other models has been limit...

  16. Proposing Novel MAO-B Hit Inhibitors Using Multidimensional Molecular Modeling Approaches and Application of Binary QSAR Models for Prediction of Their Therapeutic Activity, Pharmacokinetic and Toxicity Properties.

    PubMed

    Is, Yusuf Serhat; Durdagi, Serdar; Aksoydan, Busecan; Yurtsever, Mine

    2018-05-07

    Monoamine oxidase (MAO) enzymes MAO-A and MAO-B play a critical role in the metabolism of monoamine neurotransmitters. Hence, MAO inhibitors are very important for the treatment of several neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). In this study, 256 750 molecules from Otava Green Chemical Collection were virtually screened for their binding activities as MAO-B inhibitors. Two hit molecules were identified after applying different filters such as high docking scores and selectivity to MAO-B, desired pharmacokinetic profile predictions with binary quantitative structure-activity relationship (QSAR) models. Therapeutic activity prediction as well as pharmacokinetic and toxicity profiles were investigated using MetaCore/MetaDrug platform which is based on a manually curated database of molecular interactions, molecular pathways, gene-disease associations, chemical metabolism, and toxicity information. Particular therapeutic activity and toxic effect predictions are based on the ChemTree ability to correlate structural descriptors to that property using recursive partitioning algorithm. Molecular dynamics (MD) simulations were also performed to make more detailed assessments beyond docking studies. All these calculations were made not only to determine if studied molecules possess the potential to be a MAO-B inhibitor but also to find out whether they carry MAO-B selectivity versus MAO-A. The evaluation of docking results and pharmacokinetic profile predictions together with the MD simulations enabled us to identify one hit molecule (ligand 1, Otava ID: 3463218) which displayed higher selectivity toward MAO-B than a positive control selegiline which is a commercially used drug for PD therapeutic purposes.

  17. Respirometric biomonitor for the control of industrial effluent toxicity

    NASA Astrophysics Data System (ADS)

    Campanella, Luigi; Favero, G.; Mastrofini, D.; Tomassetti, M.

    1995-10-01

    A yeast cell biosystem has been recently developed for the total toxicity testing of a sample that may contain a number of different polluting species. The method uses an amperometric gas diffusion oxygen sensor as indicating electrode and is based on the perturbation of the respiratory activity of the immobilized yeast Saccharomyces cerevisiae; glucose acts as substrate. Several toxic substances were tested: metal ions, phenol and cationic, anionic or nonionic surfactants. Some results of a monitoring program of an industrial wastewater are also reported and discussed.

  18. Toxicity of essential oil of Satureja khuzistanica: in vitro cytotoxicity and anti-microbial activity.

    PubMed

    Yousefzadi, Morteza; Riahi-Madvar, Ali; Hadian, Javad; Rezaee, Fatemeh; Rafiee, Roya; Biniaz, Mehdi

    2014-01-01

    In nature, essential oils play an important role in the protection of the plants by exerting anti-bacterial, -viral, -fungal, -oxidative, -genotoxic, and free radical scavenging properties, as well as in some cases acting as insecticides. Several Satureja species are used in traditional medicine due to recognized therapeutic properties, namely anti-microbial and cytotoxic activities. The purpose of the present work was to determine the biologic activity of the essential oil of S. khuzistanica Jamzad (Lamiaceae) against four human cancer cell lines, as well as its inhibitory effects against a wide array (i.e. n = 11) of pathogenic bacteria and fungi. The essential oil was isolated by hydro-distillation and analyzed by GC-FID and GC-MS. Carvacrol (92.87%) and limonene (1.2%) were found to be the main components of the isolated oil. Anti-microbial activity of the essential oil was assessed using a disc diffusion method; an MTT cytotoxicity assay was employed to test effects of the oil on each cancer cell line. The oil exhibited considerable anti-microbial activity against the majority of the tested bacteria and fungi. The test oil also significantly reduced cell viability of Vero, SW480, MCF7, and JET 3 cells in a dose-dependent manner, with the IC50 values calculated for each cell type being, respectively, 31.2, 62.5, 125, and 125 μg/ml. Based on the findings, it is concluded that the essential oil of S. khuzistanica and its major constituents have a potential for further use in anti-bacterial and anti-cancer applications, pending far more extensive testing of toxicities in normal (i.e. primary) cells.

  19. Gut as a target for cadmium toxicity.

    PubMed

    Tinkov, Alexey A; Gritsenko, Viktor A; Skalnaya, Margarita G; Cherkasov, Sergey V; Aaseth, Jan; Skalny, Anatoly V

    2018-04-01

    The primary objective of the present study was to review the impact of Cd exposure on gut microbiota and intestinal physiology, as well as to estimate whether gut may be considered as the target for Cd toxicity. The review is based on literature search in available databases. The existing data demonstrate that the impact of Cd on gut physiology is two-sided. First, Cd exposure induces a significant alteration of bacterial populations and their relative abundance in gut (increased Bacteroidetes-to-Firmicutes ratio), accompanied by increased lipopolysaccharide (LPS) production, reflecting changed metabolic activity of the intestinal microbiome. Second, in intestinal wall Cd exposure induces inflammatory response and cell damage including disruption of tight junctions, ultimately leading to increased gut permeability. Together with increased LPS production, impaired barrier function causes endotoxinemia and systemic inflammation. Hypothetically, Cd-induced increase gut permeability may also result in increased bacterial translocation. On the one hand, bacteriolysis may be associated with aggravation of endotoxemia. At the same time, together with Cd-induced impairment of macrophage inflammatory response, increased bacterial translocation may result in increased susceptibility to infections. Such a supposition is generally in agreement with the finding of higher susceptibility of Cd-exposed mice to infections. The changed microbiome metabolic activity and LPS-induced systemic inflammation may have a significant impact on target organs. The efficiency of probiotics in at least partial prevention of the local (intestinal) and systemic toxic effects of cadmium confirms the role of altered gut physiology in Cd toxicity. Therefore, probiotic treatment may be considered as the one of the strategies for prevention of Cd toxicity in parallel with chelation, antioxidant, and anti-inflammatory therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Pharmacokinetic and pharmacogenetic markers of irinotecan toxicity.

    PubMed

    Hahn, Roberta Zilles; Antunes, Marina Venzon; Verza, Simone Gasparin; Perassolo, Magda Susana; Suyenaga, Edna Sayuri; Schwartsmann, Gilberto; Linden, Rafael

    2018-06-22

    Irinotecan (IRI) is a widely used chemotherapeutic drug, mostly used for first-line treatment of colorectal and pancreatic cancer. IRI doses are usually established based on patient's body surface area, an approach associated with large inter-individual variability in drug exposure and high incidence of severe toxicity. Toxic and therapeutic effects of IRI are also due to its active metabolite SN-38, reported to be up to 100 times more cytotoxic than IRI. SN-38 is detoxified by the formation of SN-38 glucuronide, through UGT1A1. Genetic polymorphisms in the UGT1A1 gene are associated to higher exposures to SN-38 and severe toxicity. Pharmacokinetic models to describe IRI and SN-38 kinetic profiles are available, with few studies exploring pharmacokinetic and pharmacogenetic-based dose individualization. The aim of this manuscript is to review the available evidence supporting pharmacogenetic and pharmacokinetic dose individualization of IRI in order to reduce the occurrence of severe toxicity during cancer treatment. The PubMed database was searched, considering papers published in the period from 1995-2017, using the keywords irinotecan, pharmacogenetics, metabolic genotyping, dose individualization, therapeutic drug monitoring, pharmacokinetics and pharmacodynamics, either alone or in combination, with original papers being selected based on the presence of relevant data. The findings of this review confirm the importance of considering individual patient characteristics to select IRI doses. Currently, the most straightforward approach for IRI dose individualization is UGT1A1 genotyping. However, this strategy is sub-optimal due to several other genetic and environmental contributions to the variable pharmacokinetics of IRI and its active metabolite. The use of dried blood spot sampling could allow the clinical application of complex sampling for the clinical use of limited sampling and population pharmacokinetic models for IRI doses individualization. Copyright

  1. Consideration Of The Toxicity of Manufactured Nanoparticles

    NASA Astrophysics Data System (ADS)

    Haasch, Mary L.; McClellan-Green, Patricia; Oberdörster, Eva

    2005-09-01

    Fullerene (C60 and single- and multi-wall carbon nanotubes, SWCNT and MWCNT, respectively) is engineered to be redox active and it is thought that the potential toxicity of fullerene exposure is related to the formation of reactive oxygen species. During manufacture, transport or during scientific investigation, there is a potential for human or environmental exposure to nanoparticles. Several studies regarding human exposure have indicated reasons for concern. There is a lack of studies addressing the toxicity of engineered nanoparticles in aquatic species but one study using the fish, largemouth bass, exposed to fullerene has shown increased (10-17-fold) lipid peroxidation (LPO) in the brain. It is likely that repair enzymes or anti-oxidants may have been induced in gill and liver tissues that had reduced LPO compared to control tissues (Oberdörster, 2004). In support of that hypothesis, suppressive subtractive hybridization was used with liver tissue and the biotransformation enzyme, cytochrome P450, specifically CYP2K4, and other oxidoreductases related to metabolism, along with repair enzymes, were increased while proteins related to normal physiological homeostasis were decreased in fullerene-exposed fish. In a new study involving the exposure of a toxicological model fish species, the fathead minnow (Pimephales promelas) to water-soluble fullerene (nC60), uptake and distribution indicated that nC60 elevated LPO in the brain and induced expression of CYP2 family isozymes in the liver. In an in vitro study, BSA-coated SWCNT interfered with biotransformation enzyme activity. These studies taken together provide support to the hypothesis that the toxicity of manufactured nanoparticles is related to oxidative stress and provide insight into possible mechanisms of toxicity as well as providing information for evaluating the risk to aquatic organisms exposed to manufactured nanoparticles.

  2. A toxicity reduction evaluation for an oily waste treatment plant exhibiting episodic effluent toxicity.

    PubMed

    Erten-Unal, M; Gelderloos, A B; Hughes, J S

    1998-07-30

    A Toxicity Reduction Evaluation (TRE) was conducted on the oily wastewater treatment plant (Plant) at a Naval Fuel Depot. The Plant treats ship and ballast wastes, berm water from fuel storage areas and wastes generated in the fuel reclamation plant utilizing physical/chemical treatment processes. In the first period of the project (Period I), the TRE included chemical characterization of the plant wastewaters, monitoring the final effluent for acute toxicity and a thorough evaluation of each treatment process and Plant operating procedures. Toxicity Identification Evaluation (TIE) procedures were performed as part of the overall TRE to characterize and identify possible sources of toxicity. Several difficulties were encountered because the effluent was saline, test organisms were marine species and toxicity was sporadic and unpredictable. The treatability approach utilizing enhancements, improved housekeeping, and operational changes produced substantial reductions in the acute toxicity of the final effluent. In the second period (Period II), additional acute toxicity testing and chemical characterization were performed through the Plant to assess the long-term effects of major unit process improvements for the removal of toxicity. The TIE procedures were also modified for saline wastewaters to focus on suspected class of toxicants such as surfactants. The TRE was successful in reducing acute toxicity of the final effluent through process improvements and operational modifications. The results indicated that the cause of toxicity was most likely due to combination of pollutants (matrix effect) rather than a single pollutant.

  3. Efficacy of attractive toxic sugar baits (ATSB) against Aedes albopictus with garlic oil encapsulated in beta-cyclodextrin as the active ingredient

    PubMed Central

    Junnila, Amy; Revay, Edita E.; Müller, Gunter C.; Kravchenko, Vasiliy; Qualls, Whitney A.; Xue, Rui-de; Allen, Sandra A.; Beier, John C.; Schlein, Yosef

    2016-01-01

    We tested the efficacy of attractive toxic sugar bait (ATSB) with garlic oil microencapsulated in beta-cyclodextrin as active ingredient against Aedes albopictus in suburban Haifa, Israel. Two three-acre gardens with high numbers of Ae. albopictus were selected for perimeter spray treatment with ATSB and ASB (bait containing no active ingredient). Baits were colored with food dye to verify feeding of the mosquitoes. The mosquito population was monitored by human landing catches and sweep net catches in the surrounding vegetation. Experiments lasted for 44 days. Treatment occurred on day 13. The mosquito population collapsed about 4 days after treatment and continued to drop steadily for 27 days until the end of the study. At the experimental site the average pre-treatment landing rate was 17.2 per 5 mins. Two days post-treatment, the landing rate dropped to 11.4, and continued to drop to an average of 2.6 during the following 26 days. During the same period, the control population was stable. Few sugar fed females (8–10%) approached a human bait and anthrone tests showed relatively small amounts of sugar within their crop/gut. Around 60–70 % of males caught near our human bait were sugar positive which may indicate that the males were feeding on sugar for mating related behavior. From the vegetation treated with the toxic bait, we recovered significantly fewer (about 10–14%) males and females stained by ATSB than at the ASB-treated control. This may indicate that the toxic baits alter the resting behavior of the poisoned mosquitoes within the vegetation. Almost no Ae. albopictus females (5.2 ± 1.4) approached human bait after treatment with ATSB. It therefore appears that microencapsulated garlic oil is an effective pesticide against Ae. albopictus when used in an ATSB system. PMID:26403337

  4. DISTRIBUTED STRUCTURE-SEARCHABLE TOXICITY ...

    EPA Pesticide Factsheets

    The ability to assess the potential genotoxicity, carcinogenicity, or other toxicity of pharmaceutical or industrial chemicals based on chemical structure information is a highly coveted and shared goal of varied academic, commercial, and government regulatory groups. These diverse interests often employ different approaches and have different criteria and use for toxicity assessments, but they share a need for unrestricted access to existing public toxicity data linked with chemical structure information. Currently, there exists no central repository of toxicity information, commercial or public, that adequately meets the data requirements for flexible analogue searching, SAR model development, or building of chemical relational databases (CRD). The Distributed Structure-Searchable Toxicity (DSSTox) Public Database Network is being proposed as a community-supported, web-based effort to address these shared needs of the SAR and toxicology communities. The DSSTox project has the following major elements: 1) to adopt and encourage the use of a common standard file format (SDF) for public toxicity databases that includes chemical structure, text and property information, and that can easily be imported into available CRD applications; 2) to implement a distributed source approach, managed by a DSSTox Central Website, that will enable decentralized, free public access to structure-toxicity data files, and that will effectively link knowledgeable toxicity data s

  5. Ebselen protects against behavioral and biochemical toxicities induced by 3-nitropropionic acid in rats: correlations between motor coordination, reactive species levels, and succinate dehydrogenase activity.

    PubMed

    Wilhelm, Ethel A; Bortolatto, Cristiani F; Jesse, Cristiano R; Luchese, Cristiane

    2014-12-01

    The protective effect of ebselen was investigated against 3-nitropropionic acid (3-NP)-induced behavioral and biochemical toxicities in rats. Ebselen (10 or 25 mg/kg, intragastrically) was administered to rats 30 min before 3-NP (20 mg/kg, intraperitoneally) once a day for a period of 4 days. Locomotor activity, motor coordination, and body weight gain were determined. The striatal content of reactive oxygen species (ROS), reduced glutathione (GSH), ascorbic acid (AA), and protein carbonyl as well as catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) activities was determined 24 h after the last dose of 3-NP. Na(+)/ K(+)-ATPase, succinate dehydrogenase (SDH), and δ-aminolevulinic dehydratase (δ-ALA-D) activities were also determined. The results demonstrated that ebselen at a dose of 25 mg/kg, but not at 10 mg/kg, protected against (1) a decrease in locomotor activity, motor coordination impairment, and body weight loss; (2) striatal oxidative damage, which was characterized by an increase in ROS levels, protein carbonyl content, and GR activity, an inhibition of CAT and GPx activities, and a decrease in GSH levels; and (3) an inhibition of SDH and Na(+)/K(+)-ATPase activities, induced by 3-NP. GST activity and AA levels were not modified by ebselen or 3-NP. Ebselen was not effective against the inhibition of δ-ALA-D activity induced by 3-NP. The results revealed a significant correlation between SDH activity and ROS levels, and SDH activity and latency to fall (rotarod test). The present study highlighted the protective effect of ebselen against 3-NP-induced toxicity in rats.

  6. Extrapolation of toxic indices among test objects

    PubMed Central

    Tichý, Miloň; Rucki, Marián; Roth, Zdeněk; Hanzlíková, Iveta; Vlková, Alena; Tumová, Jana; Uzlová, Rút

    2010-01-01

    Oligochaeta Tubifex tubifex, fish fathead minnow (Pimephales promelas), hepatocytes isolated from rat liver and ciliated protozoan are absolutely different organisms and yet their acute toxicity indices correlate. Correlation equations for special effects were developed for a large heterogeneous series of compounds (QSAR, quantitative structure-activity relationships). Knowing those correlation equations and their statistic evaluation, one can extrapolate the toxic indices. The reason is that a common physicochemical property governs the biological effect, namely the partition coefficient between two unmissible phases, simulated generally by n-octanol and water. This may mean that the transport of chemicals towards a target is responsible for the magnitude of the effect, rather than reactivity, as one would assume suppose. PMID:21331180

  7. A preliminary survey of marine contamination from mining-related activities on Marinduque Island, Philippines: porewater toxicity and chemistry results from a field trip, October 14-19, 2000

    USGS Publications Warehouse

    Carr, R. Scott; Nipper, Marion; Plumlee, Geoffrey S.

    2001-01-01

    As a follow-up of an initial overview of environmental problems caused by mining activities on Marinduque Island, Philippines, USGS and TAMU-CC scientists went to Marinduque in October 2000 to do a preliminary assessment of potential impacts of mining-related activities on the marine environment. Like the previous visit in May 2000, the marine assessment was conducted at the invitation of Philippine Congressman Edmund O. Reyes. In this report we present the results of sediment porewater toxicity tests and chemical analyses. Toxicity tests consist of laboratory analyses for the assessment of adverse effects caused by environmental contaminants to animals or plants. Sediments (sand or mud) are known to accumulate contaminants (e.g., copper and other heavy metals). Therefore, it is common to perform toxicity tests using different phases of the sedimentary environment in order to analyze adverse effects of contaminants accumulated in the sediment. Sediment pore water (or interstitial water, i.e., the water distributed among the sediment grains) is a sedimentary phase which controls the bioavailability of contaminants to bottom dwelling aquatic organisms (both plants and animals). There are several different kinds of organisms with which toxicity tests can be performed. Among those, tests with sea urchin early life stages (gametes and embryos) are very common due to their high sensitivity to contaminants, ease of maintenance under laboratory conditions, and ecological importance, particularly in coral reefs. The basis of these tests is the exposure of gametes or embryos to the pore water to be analyzed for toxicity. If the pore water contains contaminants in levels that can adversely affect a number of marine species, fertilization and/or embryological development of sea urchins is inhibited. Chemical analyses provide additional information and aid in the interpretation of the toxicity test results. For the current study, chemical analyses were performed for the

  8. The phagocytosis and toxicity of amorphous silica.

    PubMed

    Costantini, Lindsey M; Gilberti, Renée M; Knecht, David A

    2011-02-02

    Inhalation of crystalline silica is known to cause an inflammatory reaction and chronic exposure leads to lung fibrosis and can progress into the disease, silicosis. Cultured macrophages bind crystalline silica particles, phagocytose them, and rapidly undergo apoptotic and necrotic death. The mechanism by which particles are bound and internalized and the reason particles are toxic is unclear. Amorphous silica has been considered to be a less toxic form, but this view is controversial. We compared the uptake and toxicity of amorphous silica to crystalline silica. Amorphous silica particles are phagocytosed by macrophage cells and a single internalized particle is capable of killing a cell. Fluorescent dextran is released from endo-lysosomes within two hours after silica treatment and Caspase-3 activation occurs within 4 hours. Interestingly, toxicity is specific to macrophage cell lines. Other cell types are resistant to silica particle toxicity even though they internalize the particles. The large and uniform size of the spherical, amorphous silica particles allowed us to monitor them during the uptake process. In mCherry-actin transfected macrophages, actin rings began to form 1-3 minutes after silica binding and the actin coat disassembled rapidly following particle internalization. Pre-loading cells with fluorescent dextran allowed us to visualize the fusion of phagosomes with endosomes during internalization. These markers provided two new ways to visualize and quantify particle internalization. At 37 °C the rate of amorphous silica internalization was very rapid regardless of particle coating. However, at room temperature, opsonized silica is internalized much faster than non-opsonized silica. Our results indicate that amorphous and crystalline silica are both phagocytosed and both toxic to mouse alveolar macrophage (MH-S) cells. The pathway leading to apoptosis appears to be similar in both cases. However, the result suggests a mechanistic difference

  9. Estimation of toxicity using the Toxicity Estimation Software Tool (TEST)

    EPA Science Inventory

    Tens of thousands of chemicals are currently in commerce, and hundreds more are introduced every year. Since experimental measurements of toxicity are extremely time consuming and expensive, it is imperative that alternative methods to estimate toxicity are developed.

  10. In vivo anti-psoriatic activity, biodistribution, sub-acute and sub-chronic toxicity studies of orally administered methotrexate loaded chitin nanogel in comparison with methotrexate tablet.

    PubMed

    Panonnummal, Rajitha; Jayakumar, R; Anjaneyan, Gopikrishnan; Sabitha, M

    2018-04-15

    The anti-psoriatic efficacy of orally administered methotrexate loaded chitin nanogel (MCNG) was evaluated (two doses- 2.715 mg/kg and 5.143 mg/kg) and compared against orally administered methotrexate tablet MTX (5.143 mg/kg). MCNG at both dose levels of 2.715 mg/kg and 5.143 mg/kg exhibited significant anti-psoriatic activity which is very much comparable with MTX, caused normalization of histological features and inflammatory score associated with induced psoriasis. Biodistribution studies revealed the presence of drug in serum and in vital organs at all the three cases with highest amount in MCNG at 5.143 mg/kg dose, followed by MTX tablet and are lowest in MCNG at 2.715 mg/kg dose. MCNG at the highest dose of 5.143 mg/kg caused liver, lung and kidney toxicities on sub acute toxicity studies and MTX tablet was found to be toxic on liver and lung on sub chronic toxicity studies. MCNG 2.715 mg/kg was found to be safe on both sub acute and sub chronic administrations, suggesting that it can provide sufficient serum and tissue level of methotrexate necessary to clear psoriatic lesions, without inducing systemic toxicity and expected to be a better alternative for orally administered conventional methotrexate tablet for patients who need systemic medications for psoriasis. Copyright © 2018. Published by Elsevier B.V.

  11. FISH KILLS, BOTTOM-WATER HYPOXIA, AND THE TOXIC PFIESTERIA COMPLEX IN THE NEUSE RIVER AND ESTUARY. (R825551)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. Biochemical and Ultrastructural Changes in the Hepatopancreas of Bellamya aeruginosa (Gastropoda) Fed with Toxic Cyanobacteria

    PubMed Central

    Zhu, Jinyong; Lu, Kaihong; Zhang, Chunjing; Liang, Jingjing; Hu, Zhiyong

    2011-01-01

    This study was conducted to investigate ultrastructural alterations and biochemical responses in the hepatopancreas of the freshwater snail Bellamya aeruginosa after exposure to two treatments: toxic cyanobacterium (Microcystis aeruginosa) and toxic cyanobacterial cells mixed with a non-toxic green alga (Scendesmus quadricauda) for a period of 15 days of intoxication, followed by a 15-day detoxification period. The toxic algal suspension induced a very pronounced increase of the activities of acid phosphatases, alkaline phosphatases and glutathione S-transferases (ACP, ALP and GST) in the liver at the later stage of intoxication. During the depuration, enzymatic activity tended to return to the levels close to those in the control. The activity of GST displayed the most pronounced response among different algal suspensions. Severe cytoplasmic vacuolization, condensation and deformation of nucleus, dilation and myeloid-like in mitochondria, disruption of rough endoplasmic reticulum, proliferation of lysosome, telolysosomes and apoptotic body were observed in the tissues. All cellular organelles began recovery after the snails were transferred to the S. quadricauda. The occurrence of a large amount of activated lysosomes and heterolysosomes and augment in activity of detoxification enzyme GST might be an adaptive mechanism to eliminate or lessen cell damage caused by hepatotoxicity to B. aeruginosa. PMID:22125458

  13. Children's Ability to Recognise Toxic and Non-Toxic Fruits

    ERIC Educational Resources Information Center

    Fancovicova, Jana; Prokop, Pavol

    2011-01-01

    Children's ability to identify common plants is a necessary prerequisite for learning botany. However, recent work has shown that children lack positive attitudes toward plants and are unable to identify them. We examined children's (aged 10-17) ability to discriminate between common toxic and non-toxic plants and their mature fruits presented in…

  14. Toxic substances handbook

    NASA Technical Reports Server (NTRS)

    Junod, T. L.

    1979-01-01

    Handbook, published in conjunction with Toxic Substances Alert Program at NASA Lewis Research Center, profiles 187 toxic chemicals in their relatively pure states and include 27 known or suspected carcinogens.

  15. A mixture toxicity approach to predict the toxicity of Ag decorated ZnO nanomaterials.

    PubMed

    Azevedo, S L; Holz, T; Rodrigues, J; Monteiro, T; Costa, F M; Soares, A M V M; Loureiro, S

    2017-02-01

    Nanotechnology is a rising field and nanomaterials can now be found in a vast variety of products with different chemical compositions, sizes and shapes. New nanostructures combining different nanomaterials are being developed due to their enhancing characteristics when compared to nanomaterials alone. In the present study, the toxicity of a nanostructure composed by a ZnO nanomaterial with Ag nanomaterials on its surface (designated as ZnO/Ag nanostructure) was assessed using the model-organism Daphnia magna and its toxicity predicted based on the toxicity of the single components (Zn and Ag). For that ZnO and Ag nanomaterials as single components, along with its mixture prepared in the laboratory, were compared in terms of toxicity to ZnO/Ag nanostructures. Toxicity was assessed by immobilization and reproduction tests. A mixture toxicity approach was carried out using as starting point the conceptual model of Concentration Addition. The laboratory mixture of both nanomaterials showed that toxicity was dependent on the doses of ZnO and Ag used (immobilization) or presented a synergistic pattern (reproduction). The ZnO/Ag nanostructure toxicity prediction, based on the percentage of individual components, showed an increase in toxicity when compared to the expected (immobilization) and dependent on the concentration used (reproduction). This study demonstrates that the toxicity of the prepared mixture of ZnO and Ag and of the ZnO/Ag nanostructure cannot be predicted based on the toxicity of their components, highlighting the importance of taking into account the interaction between nanomaterials when assessing hazard and risk. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Toxic effects of imidacloprid on adult loach (Misgurnus anguillicaudatus).

    PubMed

    Xia, Xiaohua; Xia, Xiaopei; Huo, Weiran; Dong, Hui; Zhang, Linxia; Chang, Zhongjie

    2016-07-01

    The present investigation was aimed to assess the effects of imidacloprid on the survival, genetic materials, hepatic transaminase activity and histopathology of loach (Misgurnus anguillicaudatus). The values of LC50 (24, 48, 72 and 96h) of imidacloprid were 167.7, 158.6, 147.9 and 145.8mg/L, respectively, and the safety concentration was 42.55mg/L. The erythrocyte micronuclei assays and the comet assay results showed that imidacloprid had genetic toxic effect on the loach erythrocytes. To assess the physiological and biochemical damage caused by imidacloprid, the activities of hepatic glutamic-pyruvic transaminase (GPT) and glutamic-oxalacetic transaminase (GOT) were measured and their values declined in treatment groups. Histological examination of testis revealed that imidacloprid treatment resulted in disorganized lobules and cysts structures. In the present work, we also investigated the joint toxicity of pesticides commonly used in paddy fields (imidacloprid and lambda-cyhalothrin) on M. anguillicaudatus, and confirmed that a synergistic effect existing in the binary mixtures. The results of our study provide relevant and comparable toxicity information that are useful for safety application of pesticides. Copyright © 2016. Published by Elsevier B.V.

  17. Sorption and modeling of mass transfer of toxic chemical vapors in activated-carbon fiber-cloth adsorbers

    USGS Publications Warehouse

    Lordgooei, M.; Sagen, J.; Rood, M.J.; Rostam-Abadi, M.

    1998-01-01

    A new activated-carbon fiber-cloth (ACFC) adsorber coupled with an electrothermal regenerator and a cryogenic condenser was designed and developed to efficiently capture and recover toxic chemical vapors (TCVs) from simulated industrial gas streams. The system was characterized for adsorption by ACFC, electrothermal desorption, and cryogenic condensation to separate acetone and methyl ethyl ketone from gas streams. Adsorption dynamics are numerically modeled to predict system characteristics during scale-up and optimization of the process in the future. The model requires diffusivities of TCVs into an activated-carbon fiber (ACF) as an input. Effective diffusivities of TCVs into ACFs were modeled as a function of temperature, concentration, and pore size distribution. Effective diffusivities for acetone at 65 ??C and 30-60 ppmv were measured using a chromatography method. The energy factor for surface diffusion was determined from comparison between the experimental and modeled effective diffusivities. The modeled effective diffusivities were used in a dispersive computational model to predict mass transfer zones of TCVs in fixed beds of ACFC under realistic conditions for industrial applications.

  18. Grewia tiliaefolia and its active compound vitexin regulate the expression of glutamate transporters and protect Neuro2a cells from glutamate toxicity.

    PubMed

    Malar, Dicson Sheeja; Prasanth, Mani Iyer; Shafreen, Rajamohamed Beema; Balamurugan, Krishnaswamy; Devi, Kasi Pandima

    2018-04-25

    Glutamate is a major neurotransmitter involved in several brain functions and glutamate excitotoxicity is involved in Alzheimer's disease (AD). In the current study, the neuroprotective effect of the Indian medicinal plant Grewia tiliaefolia (GT) and its active component vitexin was evaluated in Neuro-2a cells against glutamate toxicity. Neuro-2a cells were exposed to glutamate to cause excitotoxicity and the neuroprotective effect of GT and vitexin were evaluated using biochemical studies (estimation of reactive oxygen species, reactive nitrogen species, protein carbonyl content, lipid peroxidation level, mitochondrial membrane potential and caspase-3 activity), molecular docking studies, gene expression and western blot analysis. Glutamate exposure to Neuro-2a cells induced oxidative stress, loss of membrane potential, suppressed the expression of antioxidant response genes (Nrf-2, HO-1, NQO-1), glutamate transporters (GLAST-1, GLT-1) and induced the expression of NMDAR, Calpain. However, pre-treatment of cells with GT/vitexin inhibited oxidative stress mediated damage by augmenting the expression of Nrf-2/HO-1 pathway, inducing the expression of glutamate transporters and downregulating Calpain, NMDAR. Molecular docking showed that vitexin effectively binds to NMDAR and GSK-3β and thereby can inhibit their activation. GT/vitexin also inhibited glutamate induced Bax expression. Methanol extract of G. tiliaefolia and its active component vitexin can act in an antioxidant dependent mechanism as well as by regulating glutamate in mitigating the toxicity exerted by glutamate in Neuro-2a cells. Our results conclude that GT/vitexin can act as potential drug leads for the therapeutic intervention of AD. Copyright © 2017. Published by Elsevier Inc.

  19. A high throughput passive dosing format for the Fish Embryo Acute Toxicity test.

    PubMed

    Vergauwen, Lucia; Schmidt, Stine N; Stinckens, Evelyn; Maho, Walid; Blust, Ronny; Mayer, Philipp; Covaci, Adrian; Knapen, Dries

    2015-11-01

    High throughput testing according to the Fish Embryo Acute Toxicity (FET) test (OECD Testing Guideline 236) is usually conducted in well plates. In the case of hydrophobic test substances, sorptive and evaporative losses often result in declining and poorly controlled exposure conditions. Therefore, our objective was to improve exposure conditions in FET tests by evaluating a passive dosing format using silicone O-rings in standard 24-well polystyrene plates. We exposed zebrafish embryos to a series of phenanthrene concentrations until 120h post fertilization (hpf), and obtained a linear dilution series. We report effect values for both mortality and sublethal morphological effects based on (1) measured exposure concentrations, (2) (lipid normalized) body residues and (3) chemical activity. The LC50 for 120hpf was 310μg/L, CBR50 (critical body residue) was 2.72mmol/kg fresh wt and La50 (lethal chemical activity) was 0.047. All values were within ranges expected for baseline toxicity. Impaired swim bladder inflation was the most pronounced morphological effect and swimming activity was reduced in all exposure concentrations. Further analysis showed that the effect on swimming activity was not attributed to impaired swim bladder inflation, but rather to baseline toxicity. We conclude that silicone O-rings (1) produce a linear dilution series of phenanthrene in the 120hpf FET test, (2) generate and maintain aqueous concentrations for reliable determination of effect concentrations, and allow for obtaining mechanistic toxicity information, and (3) cause no toxicity, demonstrating its potential as an extension of the FET test when testing hydrophobic chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Developmental Toxicity of Nanoparticles on the Brain.

    PubMed

    Umezawa, Masakazu; Onoda, Atsuto; Takeda, Ken

    2017-01-01

    The toxicity of nanoparticles (nanotoxicology) is being investigated to understand both the health impacts of atmospheric ultrafine particles-the size of which is a fraction (<0.1 μm aerodynamic diameter) of that of PM 2.5 (<2.5 μm diameter)-and the safer use of engineered nanomaterials. Developmental toxicity of nanoparticles has been studied since their transfer from pregnant body to fetal circulation and offspring body was first reported. Here we reviewed the developmental toxicity of nanoparticles on the brain, one of the most important organs in maintenance of mental health and high quality of life. Recently the dose- and size-dependency of transplacental nanoparticle transfer to the fetus was reported. It is important to understand both the mechanism of direct effect of nanoparticles transferred to the fetus and offspring and the indirect effect mediated by induction of oxidative stress and inflammation in the pregnant body. Locomotor activity, learning and memory, motor coordination, and social behavior were reported as potential neurobehavioral targets of maternal nanoparticle exposure. Histopathologically, brain perivascular cells, including perivascular macrophages and surrounding astrocytes, have an important role in waste clearance from the brain parenchyma. They are potentially the most sensitive target of maternal exposure to low-dose nanoparticles. Further investigations will show the detailed mechanism of developmental toxicity of nanoparticles and preventive strategies against intended and unintended nanoparticle exposure. This knowledge will contribute to the safer design of nanoparticles through the development of sensitive and quantitative endpoints for prediction of their developmental toxicity.