Science.gov

Sample records for activities gastrointestinal fermentation

  1. Persistence of anticancer activity in berry extracts after simulated gastrointestinal digestion and colonic fermentation.

    PubMed

    Brown, Emma M; McDougall, Gordon J; Stewart, Derek; Pereira-Caro, Gema; González-Barrio, Rocio; Allsopp, Philip; Magee, Pamela; Crozier, Alan; Rowland, Ian; Gill, Chris I R

    2012-01-01

    Fruit and vegetable consumption is associated at the population level with a protective effect against colorectal cancer. Phenolic compounds, especially abundant in berries, are of interest due to their putative anticancer activity. After consumption, however, phenolic compounds are subject to digestive conditions within the gastrointestinal tract that alter their structures and potentially their function. However, the majority of phenolic compounds are not efficiently absorbed in the small intestine and a substantial portion pass into the colon. We characterized berry extracts (raspberries, strawberries, blackcurrants) produced by in vitro-simulated upper intestinal tract digestion and subsequent fecal fermentation. These extracts and selected individual colonic metabolites were then evaluated for their putative anticancer activities using in vitro models of colorectal cancer, representing the key stages of initiation, promotion and invasion. Over a physiologically-relevant dose range (0-50 µg/ml gallic acid equivalents), the digested and fermented extracts demonstrated significant anti-genotoxic, anti-mutagenic and anti-invasive activity on colonocytes. This work indicates that phenolic compounds from berries undergo considerable structural modifications during their passage through the gastrointestinal tract but their breakdown products and metabolites retain biological activity and can modulate cellular processes associated with colon cancer. PMID:23185422

  2. Influence of feeding alternative fiber sources on the gastrointestinal fermentation, digestive enzyme activities and mucosa morphology of growing Greylag geese.

    PubMed

    He, L W; Meng, Q X; Li, D Y; Zhang, Y W; Ren, L P

    2015-10-01

    The objective of this trial was to study the influence of dietary fiber sources on the gastrointestinal fermentation, digestive enzyme activity, and mucosa morphology of growing Greylag geese. In total, 240 Greylag geese (28-day-old) were allocated to 4 treatments (15 pens/treatment) differing in dietary fiber source: corn straw silage (CSS group), steam-exploded corn straw (SECS group), steam-exploded wheat straw (SEWS group), or steam-exploded rice straw (SERS group). At 112 days of age, 15 birds per group were euthanized to collect samples. No difference (P > 0.05) was found on all the gastrointestinal pH values and ammonia-nitrogen concentrations between the groups. The CSS and SERS groups had a lower (P < 0.05) proportion of acetic acid in the gizzard than the SECS and SEWS groups. The CSS group had a higher VFA concentration in the jejunum (P < 0.05) and acetic acid proportion (P < 0.01) in the ceca, and a lower (P < 0.01) butyric acid proportion than the other groups except for the SECS group. The SECS group had a higher (P < 0.01) acetic acid proportion and lower (P < 0.05) proportions of propionic acid and valeric acid in the ceca than the SEWS and SERS groups. Different fiber sources resulted in different VFA profiles, especially in the gizzard and ceca. Almost all gastrointestinal protease activities of the CSS group were higher (P < 0.05) than the other groups, along with lower (P < 0.01) amylase activities in the duodenum, jejunum, ileum, and ceca. Lipase activity in proventriculus was highest (P < 0.01) in the SEWS group and its cecal activity was lower (P < 0.01) in the SECS and SEWS groups than the CSS and SERS groups with a higher (P < 0.01) lipase activity in the CSS group than the SERS group. The SECS and SERS groups had a higher cellulase activity in the ceca than the CSS and SEWS groups, with a higher (P < 0.01) rectal cellulase activity in the SERS group than the other groups. There was no

  3. Bacteria, colonic fermentation, and gastrointestinal health.

    PubMed

    Macfarlane, George T; Macfarlane, Sandra

    2012-01-01

    The colonic microbiota plays an important role in human digestive physiology and makes a significant contribution to homeostasis in the large bowel. The microbiome probably comprises thousands of different bacterial species. The principal metabolic activities of colonic microorganisms are associated with carbohydrate and protein digestion. Nutrients of dietary and host origin support the growth of intestinal organisms. Short-chain fatty acids (SCFAs), predominantly acetate, propionate, and butyrate, are the principal metabolites generated during the catabolism of carbohydrates and proteins. In contrast, protein digestion yields a greater diversity of end products, including SCFAs, amines, phenols, indoles, thiols, CO2, H2, and H2S, many of which have toxic properties. The majority of SCFAs are absorbed from the gut and metabolized in various body tissues, making a relatively small but significant contribution to the body's daily energy requirements. Carbohydrate fermentation is, for the most part, a beneficial process in the large gut, because the growth of saccharolytic bacteria stimulates their requirements for toxic products associated with putrefaction, for incorporation into cellular proteins, thereby protecting the host. However, as digestive materials move along the gut, carbohydrates become depleted, which may be linked to the increased prevalence of colonic disease in the distal bowel. PMID:22468341

  4. Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Ruminal fermentation, gastrointestinal morphology, and microbial community.

    PubMed

    Xiao, J X; Alugongo, G M; Chung, R; Dong, S Z; Li, S L; Yoon, I; Wu, Z H; Cao, Z J

    2016-07-01

    The aim of this study was to evaluate the effects of Saccharomyces cerevisiae fermentation products (SCFP) in the calf starter and milk on ruminal fermentation, gastrointestinal morphology, and microbial community in the first 56 d of life. Thirty Holstein bull calves were randomly assigned to 1 of 3 groups: a texturized calf starter containing 0 (CON), 0.5, or 1% SCFP (XPC, Diamond V, Cedar Rapids, IA) of dry matter from d 4 to 56. In addition, the XPC-supplemented calves were fed with 1 g/d SCFP (SmartCare, Diamond V, Cedar Rapids, IA) in milk from d 2 to 30. All calves were fed 4 L of colostrum within 1 h of birth and were subsequently fed milk twice daily until weaned on d 56. Rumen fluid was collected by an esophageal tube 4 h after the morning feeding on d 28 and 56 to determine ruminal pH, ammonia-N, and volatile fatty acids concentrations. On d 56, 15 (5 per treatment) calves were harvested and slaughter weight, gastrointestinal morphology parameters, and bacteria community were recorded. Papilla length, width, and surface area were measured from 5 locations within the rumen. Villus height, width, surface area, crypt depth, and villus height-to-crypt depth ratio were measured in the duodenum, jejunum, and ileum. Next-generation sequencing technology was used to test the microbial community of the rumen and duodenum samples on d 28 and 56. Data were analyzed by MIXED procedure in SAS (SAS Institute Inc., Cary, NC) with contrast statements to declare CON versus all SCFP and 0.5 versus 1% SCFP in starter grains. Ruminal pH, ammonia-N, and total volatile fatty acids were not altered by SCFP. However, the supplemented groups exhibited higher ruminal butyrate concentrations coinciding with higher Butyrivibrio and lower Prevotella richness than CON group. Supplementation of SCFP increased papilla length in the rumen. In the small intestine, SCFP reduced crypt depth of jejunum, and increased villus height-to-crypt depth ratio in all segments of the small intestine

  5. Antiresorptive Activity of Bacillus-Fermented Antler Extracts: Inhibition of Osteoclast Differentiation

    PubMed Central

    Choi, Sik-Won; Moon, Seong-Hee; Yang, Hye Jeong; Kwon, Dae Young; Son, Young-Jin; Yu, Ri; Kim, Young Su; Kim, So I.; Chae, Eun Jeong; Park, Sang-Joon; Kim, Seong Hwan

    2013-01-01

    Antlers have been traditionally used for thousands of years as a natural product with medicinal and pharmaceutical properties. In developing healthy foods, Bacillus-mediated fermentation is widely used to enhance the biological activity of nutrients in foods. Recently, fermentation was shown to enhance the osteogenic activity of antlers. This study aimed to elucidate the antiresorptive activity of Bacillus-fermented antler and its mode of action. We found that Bacillus-fermented antler extract strongly inhibited osteoclast differentiation by downregulating the expression and activity of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1). This extract also inhibited the activation of phospholipase Cγ2 (PLCγ2), a signaling molecule that could regulate NFATc1 transcriptional activity. This suggested that Bacillus-fermented antler extract could inhibit PLCγ2-NFATc1 signaling required for bone resorption and cell fusion. Consequently, Bacillus-fermented antler extract might benefit osteoclast-related disorders, including osteoporosis; furthermore, it may improve gastrointestinal activity. PMID:23509596

  6. METHOD OF SUPPRESSING GASTROINTESTINAL UREASE ACTIVITY

    DOEpatents

    Visek, W.J.

    1963-04-23

    This patent shows a method of increasing the growth rate of chicks. Certain diacyl substituted ureas such as alloxan, murexide, and barbituric acid are added to their feed, thereby suppressing gastrointestinal urease activity and thus promoting growth. (AEC)

  7. Continuous consumption of fermented milk containing Bifidobacterium bifidum YIT 10347 improves gastrointestinal and psychological symptoms in patients with functional gastrointestinal disorders.

    PubMed

    Urita, Yoshihisa; Goto, Mayu; Watanabe, Toshiyasu; Matsuzaki, Makoto; Gomi, Atsushi; Kano, Mitsuyoshi; Miyazaki, Kouji; Kaneko, Hironori

    2015-01-01

    The aim of this study was to investigate whether consumption of probiotic fermented milk containing Bifidobacterium bifidum YIT 10347 improves symptoms in patients with functional gastrointestinal disorders (FGID). Thirty-seven FGID patients (18 male, 19 female) aged 12-80 years (mean ± SD, 52.6 ± 17.5 years) whose condition had not improved despite being seen at several medical institutions consumed 100 mL/day of B. bifidum YIT 10347 fermented milk for 4 weeks. Symptoms were evaluated after the enrollment period (BL: baseline), sample consumption period (CP) and 4 weeks after the CP (FP: follow-up period). Gastrointestinal symptoms were evaluated using the Gastrointestinal Symptom Rating Scale (GSRS) and the Frequency Scale for the Symptoms of Gastroesophageal Reflux Disease (FSSG); psychological symptoms were evaluated using the Profile of Mood States (POMS) short form. Concentrations of salivary stress markers and the oxidative stress marker urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured. GSRS subscale scores for abdominal pain, diarrhea, and constipation significantly improved relative to BL after consumption of the fermented milk, as did FSSG subscale scores for symptoms of acid-related dyspepsia. Some subjective psychological symptoms improved. POMS scores significantly improved, and "Anger-Hostility" subscale scores significantly decreased after the consumption period, while "Vigor" subscale scores marginally increased during the consumption period. The concentrations of urinary 8-OHdG and the stress marker salivary cortisol were significantly lower at CP but returned to baseline levels at FP. Continuous consumption of B. bifidum YIT 10347 fermented milk is expected to improve gastrointestinal symptoms and reduce psychological stress in FGID patients. PMID:25918671

  8. Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion.

    PubMed

    Correa-Betanzo, J; Allen-Vercoe, E; McDonald, J; Schroeter, K; Corredig, M; Paliyath, G

    2014-12-15

    Wild blueberries are rich in polyphenols and have several potential health benefits. Understanding the factors that affect the bioaccessibility and bioavailability of polyphenols is important for evaluating their biological significance and efficacy as functional food ingredients. Since the bioavailability of polyphenols such as anthocyanins is generally low, it has been proposed that metabolites resulting during colonic fermentation may be the components that exert health benefits. In this study, an in vitro gastrointestinal model comprising sequential chemostat fermentation steps that simulate digestive conditions in the stomach, small intestine and colon was used to investigate the breakdown of blueberry polyphenols. The catabolic products were isolated and biological effects tested using a normal human colonic epithelial cell line (CRL 1790) and a human colorectal cancer cell line (HT 29). The results showed a high stability of total polyphenols and anthocyanins during simulated gastric digestion step with approximately 93% and 99% of recovery, respectively. Intestinal digestion decreased polyphenol- and anthocyanin- contents by 49% and 15%, respectively, by comparison to the non-digested samples. During chemostat fermentation that simulates colonic digestion, the complex polyphenol mixture was degraded to a limited number of phenolic compounds such as syringic, cinnamic, caffeic, and protocatechuic acids. Only acetylated anthocyanins were detected in low amounts after chemostat fermentation. The catabolites showed lowered antioxidant activity and cell growth inhibition potential. Results suggest that colonic fermentation may alter the biological activity of blueberry polyphenols. PMID:25038707

  9. Evaluation of the effect of supplementing fermented milk with quinoa flour on probiotic activity.

    PubMed

    Casarotti, Sabrina N; Carneiro, Bruno M; Penna, Ana Lúcia B

    2014-10-01

    In this work, we investigated the effect of supplementing fermented milk with quinoa flour as an option to increase probiotic activity during fermented milk production and storage. Fermented milk products were produced with increasing concentrations of quinoa flour (0, 1, 2, or 3g/100g) and submitted to the following analyses at 1, 14, and 28 d of refrigerated storage: postacidification, bacterial viability, resistance of probiotics to simulated gastrointestinal (GI) conditions, and adhesion of probiotics to Caco-2 cells in vitro. The kinetics of acidification were measured during the fermentation process. The time to reach maximum acidification rate, time to reach pH 5.0, and time to reach pH 4.6 (end of fermentation) were similar for all treatments. Adding quinoa flour had no effect on fermentation time; however, it did contribute to postacidification of the fermented milk during storage. Quinoa flour did not affect counts of Bifidobacterium animalis ssp. lactis BB-12 or Lactobacillus acidophilus La-5 during storage, it did not protect the probiotic strains during simulated GI transit, and it did not have a positive effect on the adhesion of probiotic bacteria to Caco-2 cells in vitro. Additionally, the adhesion of strains to Caco-2 cells decreased during refrigerated storage of fermented milk. Although the addition of up to 3% quinoa flour had a neutral effect on probiotic activity, its incorporation to fermented milk can be recommended because it is an ingredient with high nutritive value, which may increase the appeal of the product to consumers. PMID:25087036

  10. Effects of forage provision to young calves on rumen fermentation and development of the gastrointestinal tract.

    PubMed

    Castells, L; Bach, A; Aris, A; Terré, M

    2013-08-01

    Fifteen Holstein male calves were randomly assigned to 1 of 3 dietary treatments according to age and body weight (BW) to determine the effects of feeding different forages sources on rumen fermentation and gastrointestinal tract (GIT) development. Treatments consisted of a starter (20% crude protein, 21% neutral detergent fiber) fed alone (CON) or supplemented with alfalfa (AH) or with oat hay (OH). All calves received 2L of milk replacer (MR) at 12.5% dry matter twice daily until 49 d of age. Calves received 2L of the same MR from 50 to 56 d of age and were weaned at 57 d of age. Individual starter, forage, and MR intakes were recorded daily and BW was recorded weekly. A rumen sample was taken weekly to determine rumen pH and volatile fatty acid concentrations. Three weeks after weaning, animals were harvested and each anatomical part of the GIT was separated and weighed with and without contents. Rumen pH was lower in CON than in OH and AH calves. Furthermore, acetate proportion in the rumen liquid tended to be greater in AH than in CON and OH treatments. Total GIT weight, expressed as a percentage of BW, tended to be greater in AH compared with the other 2 treatments. Rumen tissue tended to weigh more in CON than in OH animals. Animals with access to forage tended to have a greater expression of monocarboxylate transporter 1 than CON calves. In conclusion, calves supplemented with oat hay have a better rumen environment than calves offered no forage and do not have an increased gut fill. PMID:23706491

  11. Ovarian function and gastrointestinal motor activity.

    PubMed

    Palomba, S; Di Cello, A; Riccio, E; Manguso, F; La Sala, G B

    2011-12-01

    Gastrointestinal disorders are strictly related to the ovary function. In fact, it is noted that the prevalence of visceral pain disorders such as irritable bowel syndrome, gastroesophageal reflux disease, gallbladder and biliary tract diseases are significantly higher in women. Furthermore, symptom such as nausea, vomiting, abdominal pain, distension, satiety, bloating, diarrhoa or constipation, frequently appears in relation with pregnancy, luteal phase of the menstrual cycle or perimenopausal and menopausal states. Further support for the contribution of ovarian steroids to functional gastrointestinal disorders comes from studies demonstrating that pharmacological ovariectomy reduces abdominal pain symptoms. Therefore, addressing the influence of sex and sex hormones in the modulation of visceral pain appears critical to develop new strategies of diagnosis and therapy sex-directed for gastro-intestinal disorders. PMID:22322653

  12. The activity of paclitaxel in gastrointestinal tumors.

    PubMed

    Ajani, J A; Ilson, D H; Kelsen, D P

    1995-10-01

    Gastrointestinal malignancies, which are common around the world, are relatively refractory to available cancer chemotherapeutic agents, necessitating a search for new agents able to improve palliation and survival of patients with advanced disease. Currently, metastatic or local-regional unresectable carcinoma of the esophagus or gastroesophageal junction carries a dismal prognosis. Paclitaxel (Taxol; Bristol-Myers Squibb Company, Princeton, NJ), a new mitotic spindle inhibitor, has been studied in patients with advanced gastrointestinal carcinoma. In this phase II National Cancer Institute-sponsored study, previously untreated patients with unresectable local-regional or metastatic carcinoma of the esophagus or gastroesophageal junction (either squamous cell carcinoma or adenocarcinoma) received a starting dose of paclitaxel of 250 mg/m2 administered by a 24-hour intravenous infusion (with premedication) repeated every 21 days; all patients received subcutaneous granulocyte colony-stimulating factor 5 micrograms/kg daily 24 hours after the completion of the paclitaxel infusion. Fifty-one of 53 patients were assessable for response and response duration. Thirty-three patients had adenocarcinoma and 18 had squamous cell carcinoma. Sixteen (31%) patients achieved a response (one complete and 15 partial) and 11 (22%) achieved a minor response. Among 33 patients with adenocarcinoma, 12 (36%; 95% confidence interval, 14% to 58%) achieved either a complete (one patient) or partial (11 patients) response and six patients (18%) had a minor response. Four (22%; 95% confidence interval, 3% to 41%) of 18 patients with squamous cell carcinoma had a partial response and four (22%) had a minor response. At a median follow-up of 12+ months, 28 patients remain alive with an actuarial median survival duration of 10.2 months (range, 2 to 20+ months). These data suggest that paclitaxel is active against adenocarcinoma as well as squamous cell carcinoma of the esophagus. In a

  13. Clostridium perfringens challenge and dietary fat type affect broiler chicken performance and fermentation in the gastrointestinal tract.

    PubMed

    Józefiak, D; Kierończyk, B; Rawski, M; Hejdysz, M; Rutkowski, A; Engberg, R M; Højberg, O

    2014-06-01

    The aim of the present work was to examine how different fats commonly used in the feed industry affect broiler performance, nutrient digestibility and microbial fermentation in the gastrointestinal tract of broiler chickens challenged with virulent Clostridium perfringens strains. Two experiments were carried out, each including 480-day-old male broilers (Ross 308), which were randomly distributed to eight experimental groups using six replicate pens per treatment and 10 birds per pen. In Experiment 1, birds were fed diets containing soybean oil, palm kernel fatty acid distillers, rendered pork fat and lard. In Experiment 2, birds were fed diets containing rapeseed oil, coconut oil, beef tallow and palm oil. In both experiments, the birds were either not challenged or challenged with a mixture of three C. perfringens type A strains. Irrespective of the fat type present in the diet, C. perfringens did not affect broiler chicken body weight gain (BWG) and mortality in either of the two experiments. The BWG was affected by dietary fat type in both experiments, indicating that the fatty acid composition of the fat source affects broiler growth performance. In particular, the inclusion of animal fats tended to improve final BW to a greater extent compared with the inclusion of unsaturated vegetable oils. In Experiment 2, irrespective of the dietary fat type present in the diet, C. perfringens challenge significantly impaired feed conversion ratio in the period from 14 to 28 days (1.63 v. 1.69) and at 42 days (1.65 v. 1.68). In both experiments apparent metabolizable energy values were affected by dietary fat type. Irrespective of the fat type present in the diet, C. perfringens challenge decreased the digesta pH in the crop and ileum, but had no effect in cecal contents. Moreover, in Experiment 1, total organic acid concentration in the ileum was two to three times lower on soybean oil diets as compared with other treatments, indicating that C. perfringens as well as

  14. Effects of milk components and food additives on survival of three bifidobacteria strains in fermented milk under simulated gastrointestinal tract conditions

    PubMed Central

    Ziarno, Małgorzata

    2015-01-01

    Background In the dairy industry, probiotic strains of Bifidobacterium are introduced into the composition of traditional starter cultures intended for the production of fermented foods, or sometimes are the sole microflora responsible for the fermentation process. In order to be able to reach the intestines alive and fulfil their beneficial role, probiotic strains must be able to withstand the acidity of the gastric juices and bile present in the duodenum. Objective The paper reports effects of selected fermented milk components on the viability of three strains of bifidobacteria in fermented milk during subsequent incubation under conditions representing model digestive juices. Design The viability of the bifidobacterial cells was examined after a 3-h incubation of fermented milk under simulated gastric juice conditions and then after 5-h incubation under simulated duodenum juice conditions. The Bifidobacterium strains tested differed in their sensitivity to the simulated conditions of the gastrointestinal juices. Results Bifidobacterial cell viability in simulated intestinal juices was dependent on the strain used in our experiments, and product components acted protectively towards bifidobacterial cells and its dose. Conclusions Bifidobacterial cells introduced into the human gastrointestinal tract as food ingredients have a good chance of survival during intestinal transit and to reach the large intestine thanks to the protective properties of the food components and depending on the strain and composition of the food. PMID:26546945

  15. Carnosinase activity of human gastrointestinal mucosa.

    PubMed Central

    Sadikali, F; Darwish, R; Watson, W C

    1975-01-01

    Carnosinase, the dipeptidase which hydrolyses carnosine and other histidine-containing dipeptides, was assayed in mucosal tissues of the human and of the rat gut. Kinetic properties of the intestinal enzyme were found to be similar to carnosinase of other animal tissues. Little or no activity was detected in human gastric or colonic mucosa, and the levels were lower in duodenal than jejunal mucosa. The distribution of carnosinase is similar to that of the disaccharidases. Mean carnosinase activity was 8-8 units/g weight in 15 patients with histologically normal mucosa compared with 5-7 units in five with villous atrophy. The enzyme levels increased with histological improvement of the mucosa in patients with coeliac disease on a gluten-free diet. Tolerance curves for carnosine and its constitutent amino acids showed malabsorption of the dipeptide in a patient with carnosinase deficiency. It is concluded that the intestinal mucosa has much less hydrolase activity for carnosine than for glycylglycine and other dipeptidases, and the relatively slow hydrolysis appears to be the rate-limiting step in the total absorptive process. PMID:1237444

  16. Sustained gastrointestinal activity of dendronized polymer-enzyme conjugates

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Gregor; Grotzky, Andrea; Lukić, Ružica; Matoori, Simon; Luciani, Paola; Yu, Hao; Zhang, Baozhong; Walde, Peter; Schlüter, A. Dieter; Gauthier, Marc A.; Leroux, Jean-Christophe

    2013-07-01

    Methods to stabilize and retain enzyme activity in the gastrointestinal tract are investigated rarely because of the difficulty of protecting proteins from an environment that has evolved to promote their digestion. Preventing the degradation of enzymes under these conditions, however, is critical for the development of new protein-based oral therapies. Here we show that covalent conjugation to polymers can stabilize orally administered therapeutic enzymes at different locations in the gastrointestinal tract. Architecturally and functionally diverse polymers are used to protect enzymes sterically from inactivation and to promote interactions with mucin on the stomach wall. Using this approach the in vivo activity of enzymes can be sustained for several hours in the stomach and/or in the small intestine. These findings provide new insight and a firm basis for the development of new therapeutic and imaging strategies based on orally administered proteins using a simple and accessible technology.

  17. Effect of probiotic-fermented milk administration on gastrointestinal survival of Lactobacillus casei ATCC 393 and modulation of intestinal microbial flora.

    PubMed

    Sidira, Marianthi; Galanis, Alex; Ypsilantis, Petros; Karapetsas, Athanasios; Progaki, Zoi; Simopoulos, Constantinos; Kourkoutas, Yiannis

    2010-01-01

    The aim of the present study was to assess the survival of free and immobilized Lactobacillus casei ATCC 393 on apple pieces, contained in probiotic-fermented milk, after gastrointestinal (GI) transit and to investigate the potential regulation of intestinal microbial flora in a rat model. In in vitro GI stress tolerance tests, immobilized L. casei ATCC 393 exhibited significantly higher survival rates compared to free cells. At a second stage, probiotic-fermented milk produced by either free or immobilized cells was administered orally at a single dose or daily for 9 days in Wistar rats. By 12 h after single-dose administration, both free and immobilized cells were detected by microbiological and molecular analysis at levels ≥6 logCFU/g of feces. Moreover, daily administration led to significant reduction of staphylococci, enterobacteria, coliforms and streptococci counts. In conclusion, L. casei ATCC 393 contained in fermented milk survived GI transit and modulated intestinal microbiota. PMID:21160205

  18. Biologically active amines in fermented and non-fermented commercial soybean products from the Spanish market.

    PubMed

    Toro-Funes, N; Bosch-Fuste, J; Latorre-Moratalla, M L; Veciana-Nogués, M T; Vidal-Carou, M C

    2015-04-15

    Biologically active amines were determined in commercial soybean products. The antioxidant polyamines were found in both non-fermented and fermented soybean products. Natto and tempeh showed the highest content of polyamines (75-124 and 11-24 mg/kg of spermidine and spermine, respectively). On the other hand, the bacterial-related biogenic amines, tyramine, histamine, tryptamine and β-phenylethylamine, were detected in practically all fermented products with a high variability. The highest contents were found in sufu, tamari and soybean paste. Extremely high tyramine and histamine contents, 1700 and 700 mg/kg, respectively, found in some sufu samples could be unhealthy. However, biogenic amines observed in the other soybean products should not be a risk for healthy consumers. However, individuals who take monoamine and diamine oxidase inhibitors drugs should be strongly recommended to avoid this kind of products in order to suffer no adverse health effects. These biogenic amines were not detected in non-fermented soybean products. PMID:25466133

  19. Production of carboxylates from high rate activated sludge through fermentation.

    PubMed

    Cagnetta, C; Coma, M; Vlaeminck, S E; Rabaey, K

    2016-10-01

    The aim of this work was to study the key parameters affecting fermentation of high rate activated A-sludge to carboxylates, including pH, temperature, inoculum, sludge composition and iron content. The maximum volatile fatty acids production was 141mgCg(-1) VSSfed, at pH 7. Subsequently the potential for carboxylate and methane production for A-sludge from four different plants at pH 7 and 35°C were compared. Initial BOD of the sludge appeared to be key determining carboxylate yield from A-sludge. Whereas methanogenesis could be correlated linearly to the quantity of ferric used for coagulation, fermentation did not show a dependency on iron presence. This difference may enable a strategy whereby A-stage sludge is separated to achieve fermentation, and iron dosing for phosphate removal is only implemented at the B-stage. PMID:27020399

  20. Comparative analysis of the gene expression profile of probiotic Lactobacillus casei Zhang with and without fermented milk as a vehicle during transit in a simulated gastrointestinal tract.

    PubMed

    Wang, Jicheng; Zhong, Zhi; Zhang, Wenyi; Bao, Qiuhua; Wei, Aibin; Meng, He; Zhang, Heping

    2012-06-01

    Studies have found that the survival of probiotics could be strongly enhanced with dairy products as delivery vehicles, but the molecular mechanism by which this might occur has seldom been mentioned. In this study, microarray technology was used to detect the gene expression profile of Lactobacillus casei Zhang with and without fermented milk used as a delivery vehicle during transit in simulated gastrointestinal juice. Numerous genes of L. casei Zhang in strain suspension were upregulated compared to those from L. casei Zhang in fermented milk. These data might indicate that L. casei Zhang is stimulated directly without the protection of fermented milk, and the high-level gene expression observed here may be a stress response at the transcriptional level. A large proportion of genes involved in translation and cell division were downregulated in the bacteria that were in strain suspension during transit in simulated intestinal juice. This may impede protein biosynthesis and cell division and partially explain the lower viability of L. casei Zhang during transit in the gastrointestinal tract without the delivery vehicle. PMID:22564557

  1. Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content.

    PubMed

    Wüst, Pia K; Horn, Marcus A; Drake, Harold L

    2011-01-01

    The earthworm gut provides ideal in situ conditions for ingested heterotrophic soil bacteria capable of anaerobiosis. High amounts of mucus- and plant-derived saccharides such as glucose are abundant in the earthworm alimentary canal, and high concentrations of molecular hydrogen (H(2)) and organic acids in the alimentary canal are indicative of ongoing fermentations. Thus, the central objective of this study was to resolve potential links between fermentations and active fermenters in gut content of the anecic earthworm Lumbricus terrestris by 16S ribosomal RNA (rRNA)-based stable isotope probing, with [(13)C]glucose as a model substrate. Glucose consumption in anoxic gut content microcosms was rapid and yielded soluble organic compounds (acetate, butyrate, formate, lactate, propionate, succinate and ethanol) and gases (carbon dioxide and H(2)), products indicative of diverse fermentations in the alimentary canal. Clostridiaceae and Enterobacteriaceae were users of glucose-derived carbon. On the basis of the detection of 16S rRNA, active phyla in gut contents included Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Tenericutes and Verrucomicrobia, taxa common to soils. On the basis of a 16S rRNA gene similarity cutoff of 87.5%, 82 families were detected, 17 of which were novel family-level groups. These findings (a) show the large diversity of soil taxa that might be active during gut passage, (b) show that Clostridiaceae and Enterobacteriaceae (fermentative subsets of these taxa) are selectively stimulated by glucose and might therefore be capable of consuming mucus- and plant-derived saccharides during gut passage and (c) indicate that ingested obligate anaerobes and facultative aerobes from soil can concomitantly metabolize the same source of carbon. PMID:20613788

  2. Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content

    PubMed Central

    Wüst, Pia K; Horn, Marcus A; Drake, Harold L

    2011-01-01

    The earthworm gut provides ideal in situ conditions for ingested heterotrophic soil bacteria capable of anaerobiosis. High amounts of mucus- and plant-derived saccharides such as glucose are abundant in the earthworm alimentary canal, and high concentrations of molecular hydrogen (H2) and organic acids in the alimentary canal are indicative of ongoing fermentations. Thus, the central objective of this study was to resolve potential links between fermentations and active fermenters in gut content of the anecic earthworm Lumbricus terrestris by 16S ribosomal RNA (rRNA)-based stable isotope probing, with [13C]glucose as a model substrate. Glucose consumption in anoxic gut content microcosms was rapid and yielded soluble organic compounds (acetate, butyrate, formate, lactate, propionate, succinate and ethanol) and gases (carbon dioxide and H2), products indicative of diverse fermentations in the alimentary canal. Clostridiaceae and Enterobacteriaceae were users of glucose-derived carbon. On the basis of the detection of 16S rRNA, active phyla in gut contents included Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Tenericutes and Verrucomicrobia, taxa common to soils. On the basis of a 16S rRNA gene similarity cutoff of 87.5%, 82 families were detected, 17 of which were novel family-level groups. These findings (a) show the large diversity of soil taxa that might be active during gut passage, (b) show that Clostridiaceae and Enterobacteriaceae (fermentative subsets of these taxa) are selectively stimulated by glucose and might therefore be capable of consuming mucus- and plant-derived saccharides during gut passage and (c) indicate that ingested obligate anaerobes and facultative aerobes from soil can concomitantly metabolize the same source of carbon. PMID:20613788

  3. Biodiversity of brewery yeast strains and their fermentative activities.

    PubMed

    Berlowska, Joanna; Kregiel, Dorota; Rajkowska, Katarzyna

    2015-01-01

    We investigated the genetic, biochemical, fermentative and physiological characteristics of brewery yeast strains and performed a hierarchical cluster analysis to evaluate their similarity. We used five different ale and lager yeast strains, originating from different European breweries and deposited at the National Collection of Yeast Cultures (UK). Ale and lager strains exhibited different genomic properties, but their assimilation profiles and pyruvate decarboxylase activities corresponded to their species classifications. The activity of another enzyme, succinate dehydrogenase, varied between different brewing strains. Our results confirmed that ATP and glycogen content, and the activity of the key metabolic enzymes succinate dehydrogenase and pyruvate decarboxylase, may be good general indicators of cell viability. However, the genetic properties, physiology and fermentation capacity of different brewery yeasts are unique to individual strains. PMID:25267007

  4. Potential benefits and hazards of physical activity and exercise on the gastrointestinal tract

    PubMed Central

    PETERS, H; DE VRIES, W R; VANBERGE-HENEGOUW..., G; AKKERMANS, L

    2001-01-01

    G P VANBERGE-HENEGOUWEN, L M A AKKERMANS Gastrointestinal Research Unit
Departments of Surgery and Gastroenterology
University Medical Centre Utrecht, Utrecht, The Netherlands
 This review describes the current state of knowledge on the hazards of exercise and the potential benefits of physical activity on the gastrointestinal tract. In particular, acute strenuous exercise may provoke gastrointestinal symptoms such as heartburn or diarrhoea. A substantial part (20-50%) of endurance athletes are hampered by these symptoms which may deter them from participation in training and competitive events. Nevertheless, these acute symptoms are transient and do not hamper the athlete's health in the long term. The only exception is repeated gastrointestinal bleeding during training and competition, which in the long term may occasionally lead to iron deficiency and anaemia. In contrast, repetitive exercise periods at a relatively low intensity may have protective effects on the gastrointestinal tract. There is strong evidence that physical activity reduces the risk of colon cancer by up to 50%. Less convincing evidence exists for cholelithiasis and constipation. Physical activity may reduce the risk of diverticulosis, gastrointestinal haemorrhage, and inflammatory bowel disease although this cannot be substantiated firmly. Up to now, underlying mechanisms are poorly understood although decreased gastrointestinal blood flow, neuro-immuno-endocrine alterations, increased gastrointestinal motility, and mechanical bouncing during exercise are postulated. Future research on exercise associated digestive processes should give more insight into the relationship between physical activity and the function of the gastrointestinal tract.

 PMID:11171839

  5. Mycelial fermentation characteristics and antiproliferative activity of Phellinus vaninii Ljup

    PubMed Central

    Hu, Wei; Liu, Shuai; Zhang, Yuexin; Xun, Deng; Xu, Chunping

    2014-01-01

    Background: The mycelial fermentation of higher fungi were investigated to posses various bioactivities. Materials and Methods: The mycelial growth and pellet morphology in a 5-L bioreactor were investigated. The mycelial broth containing biomass and extracellular products harvested from the fermentor was tested for antiproliferative activity of colon cancer LoVo cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide assay. Results: The maximum mycelial concentration in a 5-L bioreactor was 12.5 g/L after 8 days cultivation. Further investigation in the mycelial pellets during the fermentation period revealed that the mean diameter of the pellet morphology was positively correlated with mycelial biomass (R2 = 0.82, P < 0.05) and broth viscosity (R2 = 0.90, P < 0.01), significantly. The ethyl acetate extract showed the most significant effects, increasing the inhibition rate up to 87.5% after 48 h at concentration of 1000 μg/mL. Conclusion: The results demonstrated the feasibility of P. vaninii Ljup mycelial fermentation for large-scale production of bioactive and medicinal compounds. PMID:25422542

  6. Angiotensin I-Converting Enzyme Inhibitor Activity on Egg Albumen Fermentation

    PubMed Central

    Nahariah, N.; Legowo, A. M.; Abustam, E.; Hintono, A.

    2015-01-01

    Lactobacillus plantarum is used for fermentation of fish products, meat and milk. However, the utilization of these bacteria in egg processing has not been done. This study was designed to evaluate the potential of fermented egg albumen as a functional food that is rich in angiotensin I-converting enzyme inhibitors activity (ACE-inhibitor activity) and is antihypertensive. A completely randomized design was used in this study with six durations of fermentation (6, 12, 18, 24, 30, and 36 h) as treatments. Six hundred eggs obtained from the same chicken farm were used in the experiment as sources of egg albumen. Bacteria L. plantarum FNCC 0027 used in the fermentation was isolated from cow’s milk. The parameters measured were the total bacteria, dissolved protein, pH, total acid and the activity of ACE-inhibitors. The results showed that there were significant effects of fermentation time on the parameters tested. Total bacteria increased significantly during fermentation for 6, 12, 18, and 24 h and then decreased with the increasing time of fermentation to 30 and 36 h. Soluble protein increased significantly during fermentation to 18 h and then subsequently decreased during of fermentation to 24, 30, and 36 h. The pH value decreased markedly during fermentation. The activities of ACE-inhibitor in fermented egg albumen increased during fermentation to 18 h and then decreased with the increasing of the duration of fermentation to 24, 30, and 36 h. The egg albumen which was fermented for 18 h resulted in a functional food that was rich in ACE-inhibitor activity. PMID:25715689

  7. Quality and antioxidant activity of ginseng seed processed by fermentation strains

    PubMed Central

    Lee, Myung-Hee; Lee, Young-Chul; Kim, Sung-Soo; Hong, Hee-Do; Kim, Kyung-Tack

    2014-01-01

    Background Fermentation technology is widely used to alter the effective components of ginseng. This study was carried out to analyze the characteristics and antioxidant activity of ginseng seeds fermented by Bacillus, Lactobacillus, and Pediococcus strains. Methods For ginseng seed fermentation, 1% of each strain was inoculated on sterilized ginseng seeds and then incubated at 30°C for 24 h in an incubator. Results The total sugar content, acidic polysaccharides, and phenolic compounds, including p-coumaric acid, were higher in extracts of fermented ginseng seeds compared to a nonfermented control, and highest in extracts fermented with B. subtilis KFRI 1127. Fermentation led to higher antioxidant activity. The 2,2′-azine-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity was higher in ginseng seeds fermented by Bacillus subtilis than by Lactobacillus and Pediococcus, but Superoxide dismutase (SOD) enzyme activity was higher in ginseng seeds fermented by Lactobacillus and Pediococcus. Conclusion Antioxidant activities measured by ABTS and SOD were higher in fermented ginseng seeds compared to nonfermented ginseng seeds. These results may contribute to improving the antioxidant activity and quality of ginseng subjected to fermentation treatments. PMID:26045692

  8. Anthelmintic activity of albendazole against gastrointestinal nematodes in calves.

    PubMed

    Benz, G W; Ernst, J V

    1977-09-01

    Anthelmintic activities of albendazole were evaluated in a controlled experiment. Forty calves experimentally infected with gastrointestinal nematodes were allotted to 4 groups. Calves in group 1 were used as nonmedicated controls; calves in groups 2, 3, and 4 were given (by oral route) a suspension containing albendazole at dose concentrations of 2.5, 5.0, and 7.5 mg/kg of body weight on the 35th day after administration of infective nematode larvae. In groups 2, 3, and 4 calves, average overall reductions (based on geometric means) were 77.1, 93.6, and 98.1%, respectively. These reductions were highly significant (P less than 0.01) in calves given doses of 5.0 and 7.5 mg/kg, and were significant (P less than 0.05) in calves given the 2.5-mg/kg dose. Ostertagia ostertagi, Trichostrongylus axei, Cooperia onchophora, Cooperia punctata, and Oesophagostomum radiatum removals at the 5.0- and 7.5-mg/kg dose levels were all highly significant (P less than 0.01); whereas, removals of Haemonchus contortus were not significant, even at the 7.5-mg/kg dose level. PMID:921039

  9. Anthelmintic activity of Indigofera tinctoria against gastrointestinal nematodes of sheep

    PubMed Central

    Meenakshisundaram, Ambalathaduvar; Harikrishnan, Tirunelveli Jayagopal; Anna, Thavasi

    2016-01-01

    Aim: Gastrointestinal (GI) nematodes are considered as a major constraint for successful sheep production. Control of these parasites heavily relies on the use of chemical anthelmintics. Over the past decades, the development of anthelmintic resistance to various groups of anthelmintics and problem of drug residues in animal products has awakened interest in medicinal plants as an alternative source of anthelmintics. Hence, this study was undertaken to evaluate the anthelmintic efficacy of Indigofera tinctoria by scientifically validated in vitro and in vivo tests approved by the World Association for the Advancement of Veterinary Parasitology. Materials and Methods: In vitro assays such as egg hatch assay for ovicidal and larval migration inhibition and larval development assay for larvicidal properties were used to investigate in vitro effect of extracts on strongyle egg and larvae, respectively. Fecal egg count reduction test was conducted in vivo to evaluate the therapeutic efficacy of the extracts administered orally at dose rates of 125, 250, 500 mg/kg to sheep naturally infected with mixed GI nematodes. Results: Ethanolic extract of I. tinctoria demonstrated significant (p<0.01) inhibition on egg hatching at concentrations of 40 mg/ml and 80 mg/ml. In in vivo assay, the ethanolic extract of I. tinctoria reduced the fecal egg count ranging between 30.82% and 47.78% at various doses (125, 250 and 500 mg/kg). Although there was a slight variation, all the hematological parameters were within the normal range reported for sheep. Except for alanine transaminase, the overall mean of all the serum biochemical profile was within the normal range for sheep. Conclusion: Based on the results obtained by in vitro and in vivo assay, the ethanolic extract of I. tinctoria possesses anthelmintic activity and could replace the chemical anthelmintics used presently. PMID:27051192

  10. A comparison of antioxidative and anti-inflammatory activities of sword beans and soybeans fermented with Bacillus subtilis.

    PubMed

    Han, Seon Su; Hur, Sun Jin; Lee, Si Kyung

    2015-08-01

    This study was conducted to determine the antioxidative and anti-inflammatory activities of non-fermented or Bacillus subtilis-fermented soybeans and sword beans (red and white). The total flavonoid content in both sword bean types was higher (1.9-2.5-fold) than that in soybeans. The total phenolic content in fermented red sword beans was 2.5-fold greater than that in non-fermented red sword beans. HPLC profiles revealed that gallic acid, methyl gallate, and ellagic acid were major phenolic components of non-fermented/fermented red sword beans. DPPH radical scavenging activity and ferric-reducing antioxidant power were higher in fermented red sword beans than in other beans. Non-fermented/fermented red sword beans had higher nitrite scavenging activity than butylated hydroxytoluene and non-fermented/fermented soybeans. The hyaluronidase inhibitory activity of non-fermented/fermented red sword beans was higher (1.5-2.6-fold) than that of non-fermented/fermented soybeans. These results suggest that B. subtilis-fermented sword beans are potential natural antioxidant sources and anti-inflammatory agents for the food industry. PMID:26149963

  11. Evaluation of In Vitro Anti-Inflammatory Activities and Protective Effect of Fermented Preparations of Rhizoma Atractylodis Macrocephalae on Intestinal Barrier Function against Lipopolysaccharide Insult

    PubMed Central

    Bose, Shambhunath; Kim, Hojun

    2013-01-01

    Lipopolysaccharide (LPS), a potent inducer of systemic inflammatory responses, is known to cause impairment of intestinal barrier function. Here, we evaluated the in vitro protective effect of an unfermented formulation of Rhizoma Atractylodis Macrocephalae (RAM), a traditional Chinese herbal medicine widely used in the treatment of many digestive and gastrointestinal disorders, and two fermented preparations of RAM, designated as FRAM-1 (prepared in Luria-Bertani broth) and FRAM-2 (prepared in glucose), on intestinal epithelial cells (IECs) against LPS insult. In general, fermented formulations, especially FRAM-2, but not unfermented RAM, exerted an appreciable protective effect on IECs against LPS-induced perturbation of membrane resistance and permeability. Both fermented formulations exhibited appreciable anti-inflammatory activities in terms of their ability to inhibit LPS-induced gene expression and induced production of a number of key inflammatory mediators and cytokines in RAW 264.7 macrophage cells. However, in most cases, FRAM-2 exhibited stronger anti-inflammatory effects than FRAM-1. Our findings also suggest that suppression of nuclear factor-κβ (NF-κβ) activity might be one of the possible mechanisms by which the fermented RAM exerts its anti-inflammatory effects. Collectively, our results highlight the benefits of using fermented products of RAM to protect against LPS-induced inflammatory insult and impairment in intestinal barrier function. PMID:23573125

  12. Inhibitory effect of pinaverium bromide on gastrointestinal contractile activity in conscious dogs.

    PubMed

    Itoh, Z; Takahashi, I

    1981-01-01

    The inhibitory effect of 4-(6-bromoveratryl)-4-(2-[2-(6,6-dimethyl-2-norpinyl)-ethoxy]-ethyl)-morpholinium hydroxide (pinaverium bromide), a quaternary ammonium derivative, on the contractile activity of the gastrointestinal tract from the stomach to the colon was investigated in six conscious dogs. Gastrointestinal motor activity was monitored by means of chronically implanted force transducers. Pinaverium bromide was continuously administered i.v. for 30 min in doses of 10 and 20 mg/kg/h during both the digestive and interdigestive states. It was found that pinaverium bromide strongly inhibited gastrointestinal contractile activity during both the digestive and interdigestive states; contractions in the stomach were most strongly inhibited; however, those in the small and large bowels were also significantly inhibited. No significant side effects in the circulatory and respiratory systems and the gastrointestinal tract such as nausea, vomiting or diarrhea were observed during and after the infusion of this agent. PMID:7197953

  13. Characterization and in vitro biological activities of Thai traditional fermented shrimp pastes.

    PubMed

    Kleekayai, Thanyaporn; Saetae, Donlaporn; Wattanachaiyingyong, Ongart; Tachibana, Shinjiro; Yasuda, Masaaki; Suntornsuk, Worapot

    2015-03-01

    In this work, chemical and biological characteristics of two types of Thai fermented shrimp paste, Kapi Ta Dam and Kapi Ta Deang, at different fermentation periods and their raw materials were investigated. Kapi had low water activity and high proteins with high glutamic acid and lysine. Both Kapis, which had different sources, showed similar characteristics. The number of lactic acid bacteria in the products increased during the early stages of fermentation. Free α-amino acid contents in the products increased with the fermentation time. The water extracts from Kapi products showed strong antioxidative activities against ABTS(+) radical, and ACE inhibitory activity but they did not exhibit antimicrobial activity against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Salmonella Typhimurium. Biological activities in Kapi could be developed by fermentation process, enzymatic hydrolysis of proteins and non-enzymatic browning reactions. Kapi could, thus, serve as a potential source of natural bioactive substances. PMID:25745266

  14. Streptomyces sp. TEM 33 possesses high lipolytic activity in solid-state fermentation in comparison with submerged fermentation.

    PubMed

    Cadirci, Bilge Hilal; Yasa, Ihsan; Kocyigit, Ali

    2016-01-01

    Solid-state fermentation (SSF) is a bioprocess that doesn't need an excess of free water, and it offers potential benefits for microbial cultivation for bioprocesses and product development. In comparing the antibiotic production, few detailed reports could be found with lipolytic enzyme production by Streptomycetes in SSF. Taking this knowledge into consideration, we prefer to purify Actinomycetes species as a new source for lipase production. The lipase-producing strain Streptomyces sp. TEM 33 was isolated from soil and lipase production was managed by solid-state fermentation (SSF) in comparison with submerged fermentation (SmF). Bioprocess-affecting factors like initial moisture content, incubation time, and various carbon and nitrogen additives and the other enzymes secreted into the media were optimized. Lipase activity was measured as 1.74 ± 0.0005 U/g dry substrate (gds) by the p-nitrophenylpalmitate (pNPP) method on day 6 of fermentation with 71.43% final substrate moisture content. In order to understand the metabolic priority in SSF, cellulase and xylanase activity of Streptomyces sp. TEM33 was also measured. The microorganism degrades the wheat bran to its usable form by excreting cellulases and xylanases; then it secretes the lipase that is necessary for degrading the oil in the medium. PMID:25285910

  15. Isolation and characterization of polysaccharides with the antitumor activity from Tuber fruiting bodies and fermentation system.

    PubMed

    Zhao, Wei; Wang, Xiao-Hua; Li, Hong-Mei; Wang, Shi-Hua; Chen, Tao; Yuan, Zhan-Peng; Tang, Ya-Jie

    2014-03-01

    Fifty-two polysaccharides were isolated from the fermentation systems of Tuber melanosporum, Tuber indicum, Tuber sinense, Tuber aestivum and the fruiting bodies of Tuber indicum, Tuber himalayense, Tuber sinense by elution with an activated carbon column. Polysaccharides from Tuber fermentation system exhibited relatively higher in vitro antitumor activity against HepG2, A549, HCT-116, SK-BR-3, and HL-60 cells than those from Tuber fruiting bodies. All polysaccharides were mainly composed of D-mannose, D-glucose, and D-galactose, which suggested that the polysaccharides from Tuber fruiting bodies and fermentation system have identical chemical compositions. The results of antitumor activity and structural identification indicated that the polysaccharide fractions could promote antitumor activity. Tuber polysaccharides from Tuber fermentation system exhibited relatively higher than that from Tuber fruiting bodies. These results confirm the potential of Tuber fermentation mycelia for use as an alternative resource for its fruiting bodies. PMID:24272369

  16. Computed tomography angiography in patients with active gastrointestinal bleeding*

    PubMed Central

    Reis, Fatima Regina Silva; Cardia, Patricia Prando; D'Ippolito, Giuseppe

    2015-01-01

    Gastrointestinal bleeding represents a common medical emergency, with considerable morbidity and mortality rates, and a prompt diagnosis is essential for a better prognosis. In such a context, endoscopy is the main diagnostic tool; however, in cases where the gastrointestinal hemorrhage is massive, the exact bleeding site might go undetected. In addition, a trained professional is not always present to perform the procedure. In an emergency setting, optical colonoscopy presents limitations connected with the absence of bowel preparation, so most of the small bowel cannot be assessed. Scintigraphy cannot accurately demonstrate the anatomic location of the bleeding and is not available at emergency settings. The use of capsule endoscopy is inappropriate in the acute setting, particularly in the emergency department at night, and is a highly expensive method. Digital angiography, despite its high sensitivity, is invasive, presents catheterization-related risks, in addition to its low availability at emergency settings. On the other hand, computed tomography angiography is fast, widely available and minimally invasive, emerging as a promising method in the diagnostic algorithm of these patients, being capable of determining the location and cause of bleeding with high accuracy. Based on a critical literature review and on their own experience, the authors propose a computed tomography angiography protocol to assess the patient with gastrointestinal bleeding. PMID:26811556

  17. Antimicrobial activity of fermented Theobroma cacao pod husk extract.

    PubMed

    Santos, R X; Oliveira, D A; Sodré, G A; Gosmann, G; Brendel, M; Pungartnik, C

    2014-01-01

    Theobroma cacao L. contains more than 500 different chemical compounds some of which have been traditionally used for their antioxidant, anti-carcinogenic, immunomodulatory, vasodilatory, analgesic, and antimicrobial activities. Spontaneous aerobic fermentation of cacao husks yields a crude husk extract (CHE) with antimicrobial activity. CHE was fractioned by solvent partition with polar solvent extraction or by silica gel chromatography and a total of 12 sub-fractions were analyzed for chemical composition and bioactivity. CHE was effective against the yeast Saccharomyces cerevisiae and the basidiomycete Moniliophthora perniciosa. Antibacterial activity was determined using 6 strains: Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis (Gram-positive) and Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella choleraesuis (Gram-negative). At doses up to 10 mg/mL, CHE was not effective against the Gram-positive bacteria tested but against medically important P. aeruginosa and S. choleraesuis with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Sub-fractions varied widely in activity and strongest antibacterial activity was seen with CHE8 against S. choleraesuis (MIC of 1.0 mg/mL) and CHE9 against S. epidermidis (MIC of 2.5 mg/mL). All bioactive CHE fractions contained phenols, steroids, or terpenes, but no saponins. Fraction CHE9 contained flavonoids, phenolics, steroids, and terpenes, amino acids, and alkaloids, while CHE12 had the same compounds but lacked flavonoids. PMID:25299086

  18. Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables.

    PubMed

    Feng, Junchang; Liu, Pilong; Yang, Xin; Zhao, Xin

    2015-12-01

    The purpose of this study was to select strains of lactic acid bacteria (LAB) by their in vitro adhesive and immunomodulatory properties for potential use as probiotics. In this study, 16 randomly selected LAB strains from fermented vegetables (sauerkraut, bean and cabbage) were first screened for their tolerance to acid, bile salts, pepsin and pancreatin, bacterial inhibitory activities and abilities to adherence to Caco-2 cells. Then, 4 strains with the highest adhesion abilities were selected for further studies of their immunomodulatory properties and inhibitory effects against Salmonella adhesion and invasion to Caco-2 cells in vitro. The results showed that these 16 LAB strains effectively survived in simulated gastrointestinal condition and inhibited growth of six tested pathogens. Lactobacillus rhamnosus P1, Lactobacillus plantarum P2, Lactobacillus rhamnosus P3 and Lactobacillus casei P4 had the highest abilities to adhere to Caco-2 cells. Furthermore, L. plantarum P2 strain showed higher abilities to induce expression of tumor necrosis factor-α and interleukin-12 by splenic monocytes and strongly inhibited the adhesion and invasion of S. enteritidis ATCC13076 to Caco-2 cells. These results suggest that Lactobacillus strains P2 could be used as a probiotic candidate in food against Salmonella infection. PMID:26340935

  19. The potential probiotic Lactobacillus rhamnosus CTC1679 survives the passage through the gastrointestinal tract and its use as starter culture results in safe nutritionally enhanced fermented sausages.

    PubMed

    Rubio, Raquel; Martín, Belén; Aymerich, Teresa; Garriga, Margarita

    2014-09-01

    The human-derived potential probiotic strain Lactobacillus rhamnosus CTC1679 was used as a starter culture in reduced fat and sodium low-acid fermented sausages (fuets) to assess its ability to survive through the gastrointestinal tract (GIT) in a human intervention study consisting of 5 healthy volunteers who consumed 25 g fuet a day for 21 days. Faecal samples were analysed during and after consumption. L. rhamnosus CTC1679 produced a transient colonisation of the human GIT and persisted during the ingestion period of fuet containing L. rhamnosus CTC1679 at levels ca. 8log CFU/g. After 3 days of non-consumption, the strain was still recovered in the faeces of all the volunteers. To evaluate the safety of the nutritionally enhanced manufactured fuets, a challenge test was designed in a separately manufactured batch. L. rhamnosus CTC1679 was able to grow, survive and dominate (levels ca. 10(8) CFU/g) the endogenous lactic acid bacteria (LAB), prevented the growth of Listeria monocytogenes throughout the whole ripening process of the fuets and eliminated Salmonella. After 35 days of storage at 4 °C, L. monocytogenes was not detected, achieving absence in 25 g of the product. The application of high hydrostatic pressure (HHP) treatment (600 MPa for 5 min) at the end of ripening (day 14) produced an immediate reduction of L. monocytogenes to levels <1log CFU/g. After 35 days of storage at 4 °C the pathogen was not detected. Thus, the strain L. rhamnosus CTC1679 is a suitable starter culture for producing safe potentially probiotic fermented sausages. PMID:24998181

  20. Impact of dietary protein on microbiota composition and activity in the gastrointestinal tract of piglets in relation to gut health: a review.

    PubMed

    Rist, V T S; Weiss, E; Eklund, M; Mosenthin, R

    2013-07-01

    In pigs, the microbial ecosystem of the gastrointestinal tract (GIT) is influenced by various factors; however, variations in diet composition have been identified as one of the most important determinants. Marked changes in fermentation activities and microbial ecology may occur when altering the diet, for example, from milk to solid feed during weaning. In that way, access of pathogens to the disturbed ecosystem is alleviated, leading to infectious diseases and diarrhea. Thus, there is increasing interest in improving intestinal health by use of dietary ingredients suitable to beneficially affect the microbial composition and activity. For example, fermentable carbohydrates have been shown to promote growth of beneficial Lactobacillus species and bifidobacteria, thereby enhancing colonization resistance against potential pathogens or production of short-chain fatty acids, which can be used as energy source for epithelial cells. On the other hand, fermentation of protein results in the production of various potentially toxic products, such as amines and NH3, and is often associated with growth of potential pathogens. In that way, excessive protein intake has been shown to stimulate the growth of potentially pathogenic species such as Clostridium perfringens, and to reduce fecal counts of beneficial bifidobacteria. Therefore, it seems to be a promising approach to support growth and metabolic activity of the beneficial microbiota by developing suitable feeding strategies. For example, a reduction of dietary CP content and, at the same time, dietary supplementation with fermentable carbohydrates have proven to successfully suppress protein fermentation. In addition, the intestinal microbiota seems to be sensible to variations in dietary protein source, such as the use of highly digestible protein sources may reduce growth of protein-fermenting and potentially pathogenic species. The objective of the present review is to assess the impact of dietary protein on

  1. Antitumor activity of fermented noni exudates and its fractions.

    PubMed

    Li, Jinhua; Chang, Leng-Chee; Wall, Marisa; Wong, D K W; Yu, Xianzhong; Wei, Yanzhang

    2013-01-01

    Noni has been extensively used in folk medicine by Polynesians for over 2000 year. Recent studies have shown that noni has a wide spectrum of therapeutic activities including inhibition of angiogenesis, anti-inflammatory effects and anti-cancer activities. Intraperitoneal (i.p.) injection of fermented noni exudates (fNE) were previously found to induce significant tumor rejection in a S180 mouse sarcoma tumor model, while natural killer (NK) cells were demonstrated to be markedly involved in fNE-induced antitumor activity. In this study, fNE was partitioned into three fractions and their antitumor effects were examined using i.p. injection or as water supplement. The in vivo animal study results showed that when delivered by i.p. injection, n-butanol fraction of fNE (BuOH) effectively rejected (100%) tumor challenge and eradicated existing tumors (75%). When delivered as a water supplement, 62.5% of the mice receiving the n-butanol or ethyl acetate fractions resisted tumor cells. The tumor-resistant mice effectively rejected more and higher doses of tumor challenge, indicating that the immune system was activated. The findings confirm those of an earlier study showing fNE to have anti-tumor activity and demonstrating that the n-butanol fraction of fNE contains active antitumor components, to be further identified. More importantly, the antitumor effect of fNE and its fractions as water supplements renders a significant potential for identifying novel and powerful new dietary products for cancer prevention. PMID:24649140

  2. The colonization of a simulator of the human intestinal microbial ecosystem by a probiotic strain fed on a fermented oat bran product: effects on the gastrointestinal microbiota.

    PubMed

    Kontula, P; Jaskari, J; Nollet, L; De Smet, I; von Wright, A; Poutanen, K; Mattila-Sandholm, T

    1998-08-01

    The effects of Lactobacillus-GG-fermented oat bran product on the microbiota and its metabolic activity in the human gut were investigated, using a simulator of the human intestinal microbial ecosystem (SHIME), by analysing the bacterial population, shortchain fatty acids and gas production. In addition, the effects of fermented oat bran supernatant and supernatant samples from reactors 4, 5 and 6 (large intestine) on the growth of Escherichia coli IHE 13047, Enterococcus faecalis VTT E-93203, Lactobacillus rhamnosus VTT E-94522 (Lactobacillus GG) and Lactococcus lactis subsp. lactis VTT E-90414 were monitored to ascertain possible stimulatory/inhibitory effects by an in vitro turbidometric method. Our experiments showed that Lactobacillus GG colonized the SHIME reactor and this colonization could be maintained for several weeks without extra supplementation. Oat bran feeding also favoured the growth of bifidobacteria and caused an increase in the production of acetic, propionic and butyric acid as well as CH4 and CO2. However, the effects of oat bran, either on bacterial populations or on their metabolic activity, were not directly dose-dependent. In turbidometric measurements, the supernatant of fermented oat bran exerted an inhibitory effect of Lactobacillus GG, but stimulated the growth of enterococci. PMID:9763692

  3. Traditional fermentation increases goitrogenic activity in pearl millet.

    PubMed

    Elnour, A; Liedén, S; Bourdoux, P; Eltom, M; Khalid, S A; Hambraeus, L

    1998-01-01

    Epidemiological evidence suggests that millet might play a role in the etiology of endemic goiter. Recently, we showed that a traditional fermentation procedure of two pearl millet (Pennisetum americanum L. Lecke) cultivars grown in Sudan modified their effects on the weight of the thyroid gland and thyroid hormone profile in rats. In the present study, we report that this fermentation procedure reduced the ash contents of millet by about 40% and removed considerable amounts of Mg (>50%), Zn (27-39%) and K (45%). Other minerals (Ca, Fe, Cu) were not affected. Feeding of one fermented cultivar resulted in significant reduction in bone Mg and Zn contents, whereas feeding of the other fermented cultivar resulted in reduction of bone Mg only. Dietary Mg intake and bone Mg contents correlated negatively with serum T3. Groups fed the millet diets had higher serum Se level compared to those fed wheat or casein diets and feeding of fermented millet resulted in a further increase in serum Se level. Thus our data indicate that in rats the enhanced effects of millet on the thyroid induced by fermentation is likely related to removal of minerals from millet and/or chemical transformation of the goitrogens contained in millet. PMID:9895422

  4. A Review on the Anti-Inflammatory Activity of Pomegranate in the Gastrointestinal Tract

    PubMed Central

    Colombo, Elisa; Sangiovanni, Enrico; Dell'Agli, Mario

    2013-01-01

    Several biological activities of pomegranate have been widely described in the literature, but the anti-inflammatory effect in the gastrointestinal tract has not been reviewed till now. The aim of the present paper is to summarize the evidence for or against the efficacy of pomegranate for coping with inflammatory conditions of the gastro-intestinal tract. The paper has been organized in three parts: (1) the first one is devoted to the modifications of pomegranate active compounds in the gastro-intestinal tract; (2) the second one considering the literature regarding the anti-inflammatory effect of pomegranate at gastric level; (3) the third part considers the anti-inflammatory effect of pomegranate in the gut. In vivo studies performed on the whole fruit or juice, peel, and flowers demonstrate antiulcer effect in a variety of animal models. Ellagic acid was the main responsible for this effect, although other individual ellagitannins could contribute to the biological activity of the mixture. Different preparations of pomegranate, including extracts from peels, flowers, seeds, and juice, show a significant anti-inflammatory activity in the gut. No clinical studies have been found, thus suggesting that future clinical studies are necessary to clarify the beneficial effects of pomegranate in the gastrointestinal tract. PMID:23573120

  5. Nitrogen availability of grape juice limits killer yeast growth and fermentation activity during mixed-culture fermentation with sensitive commercial yeast strains.

    PubMed Central

    Medina, K; Carrau, F M; Gioia, O; Bracesco, N

    1997-01-01

    The competition between selected or commercial killer strains of type K2 and sensitive commercial strains of Saccharomyces cerevisiae was studied under various conditions in sterile grape juice fermentations. The focus of this study was the effect of yeast inoculation levels and the role of assimilable nitrogen nutrition on killer activity. A study of the consumption of free amino nitrogen (FAN) by pure and mixed cultures of killer and sensitive cells showed no differences between the profiles of nitrogen assimilation in all cases, and FAN was practically depleted in the first 2 days of fermentation. The effect of the addition of assimilable nitrogen and the size of inoculum was examined in mixed killer and sensitive strain competitions. Stuck and sluggish wine fermentations were observed to depend on nitrogen availability when the ratio of killer to sensitive cells was low (1:10 to 1:100). A relationship between the initial assimilable nitrogen content of must and the proportion of killer cells during fermentation was shown. An indirect relationship was found between inoculum size and the percentage of killer cells: a smaller inoculum resulted in a higher proportion of killer cells in grape juice fermentations. In all cases, wines obtained with pure-culture fermentations were preferred to mixed-culture fermentations by sensory analysis. The reasons why killer cells do not finish fermentation under competitive conditions with sensitive cells are discussed. PMID:9212430

  6. Science Study Aids 7: Fermentation - Activities of a Fabulous Fungus.

    ERIC Educational Resources Information Center

    McConnell, Bill

    This publication is the seventh of a series of seven supplementary investigative materials for use in secondary science classes providing up-to-date research-related investigations. This unit is structured for grades 7 through 10. It is concerned with the roles of fermentation processes in the agriculture and food industry. The guide enables…

  7. Antioxidant activity and fatty acid profile of fermented milk prepared by Pediococcus pentosaceus.

    PubMed

    Balakrishnan, Gayathri; Agrawal, Renu

    2014-12-01

    Probiotics are the class of beneficial microorganisms that have positive influence on the health when ingested in adequate amounts. Probiotic fermented milk is one of the dairy products that is prepared by using probiotic lactic acid bacteria. The study comprised preparation of fermented milk from various sources such as cow, goat and camel. Pediococcus pentosaceus which is a native laboratory isolate from cheese was utilized for the product formation. Changes in functional properties in the fermented milks obtained from three different species were evaluated. Antioxidant activity determined by DPPH assay showed activity in probiotic fermented milk obtained from all the products being highest in goat milk (93 %) followed by product from camel milk (86 %) and then product from cow milk (79 %). The composition of beneficial fatty acids such as stearic acid, oleic acid and linoleic acid were higher in fermented milk than the unfermented ones. Results suggested that probiotic bacteria are able to utilize the nutrients in goat and camel milk more efficiently compared to cow milk. Increase in antioxidant activity and fatty acid profile of fermented milks enhances the therapeutic value of the products. PMID:25477694

  8. Bioproduction of volatile fatty acid from the fermentation of waste activated sludge for in situ denitritation.

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Wang, Shuying

    2016-04-01

    Waste activated sludge (WAS) fermentation integrated with denitritation (the reduction of nitrite to dinitrogen gas) at different pHs was investigated in batch-mode reactors over a 24-day period. The results showed that in comparison with controlled pHs, the volatile fatty acid (VFA) bioproduction for in situ denitritation was significantly improved at uncontrolled pH. VFA fermented from WAS was quickly consumed by denitritation at uncontrolled pH, which accelerated sludge degradation. On the other hand, sludge digestion was benefited from the alkalinity produced from denitritation, while methanogenesis was prohibited by alkalinity and nitrite. The integrated sludge fermentation and denitritation can be cost-effectively applied to wastewater treatment plants, so that organic substrates (e.g., VFAs) are produced for denitritation via simultaneous sludge fermentation, which enables WAS reutilization and enhances nitrogen removal efficiency without the need of external carbon sources. PMID:26475401

  9. Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass.

    PubMed

    Huang, Jingang; Zhou, Rongbing; Chen, Jianjun; Han, Wei; Chen, Yi; Wen, Yue; Tang, Junhong

    2016-07-01

    Anaerobic co-fermentation of waste activated sludge (WAS) and henna plant biomass (HPB) for the enhanced production of volatile fatty acids (VFAs) was investigated. The results indicated that VFAs was the main constituents of the released organics; the accumulation of VFAs was much higher than that of soluble carbohydrates and proteins. HPB was an advantageous substrate compared to WAS for VFAs production; and the maximum VFAs concentration in an HPB mono-fermentation system was about 2.6-fold that in a WAS mono-fermentation system. In co-fermentation systems, VFAs accumulation was positively related to the proportion of HPB in the mixed substrate, and the accumulated VFAs concentrations doubled when HPB was increased from 25% to 75%. HPB not only adjust the C/N ratio; the associated and/or released lawsone might also have a positive electron-shuttling effect on VFAs production. PMID:27003793

  10. Aroma-active ester profile of ale beer produced under different fermentation and nutritional conditions.

    PubMed

    Hiralal, Lettisha; Olaniran, Ademola O; Pillay, Balakrishna

    2014-01-01

    A broad range of aroma-active esters produced during fermentation are vital for the complex flavour of beer. This study assessed the influence of fermentation temperature, pH, and wort nutritional supplements on the production of yeast-derived ester compounds and the overall fermentation performance. The best fermentation performance was achieved when wort was supplemented with 0.75 g/l l-leucine resulting in highest reducing sugar and FAN (free amino nitrogen) utilization and ethanol production. At optimum fermentation pH of 5, 38.27% reducing sugars and 35.28% FAN was utilized resulting in 4.07% (v/v) ethanol. Wort supplemented with zinc sulphate (0.12 g/l) resulted in 5.01% ethanol (v/v) production and 54.32% reducing sugar utilization. Increase in fermentation temperature from 18°C to room temperature (± 22.5°C) resulted in 17.03% increased ethanol production and 14.42% and 62.82% increase in total acetate ester concentration and total ethyl ester concentration, respectively. Supplementation of worth with 0.12 g/l ZnSO4 resulted in 2.46-fold increase in both isoamyl acetate and ethyl decanoate concentration, while a 7.05-fold and 1.96-fold increase in the concentration of isoamyl acetate and ethyl decanoate, respectively was obtained upon 0.75 g/l l-leucine supplementation. Wort supplemented with l-leucine (0.75 g/l) yielded the highest beer foam head stability with a rating of 2.67, while highest yeast viability was achieved when wort was supplemented with 0.12 g/l zinc sulphate. Results from this study suggest that supplementing wort with essential nutrients required for yeast growth and optimizing the fermentation conditions could be an effective way of improving fermentation performance and controlling aroma-active esters in beer. PMID:23845914

  11. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens.

    PubMed

    Nowak, Adriana; Śliżewska, Katarzyna; Otlewska, Anna

    2015-12-01

    Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 μM/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 μM methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 μM hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation. PMID:26404012

  12. Dietary supplementation with fermented legumes modulate hyperglycemia and acetylcholinesterase activities in Streptozotocin-induced diabetes.

    PubMed

    Ademiluyi, Adedayo O; Oboh, Ganiyu; Boligon, Aline A; Athayde, Margareth L

    2015-12-01

    The study investigated the hypoglycemic and anticholinesterase activities of some fermented legumes (bambara groundnut and locust bean) in Streptozotocin (STZ)-induced diabetic rats. The rats were made diabetic by intraperitoneal administration of STZ (35mg/kg b.w.) and were fed diets containing fermented legumes (10% inclusion) for 14 days. The effect of the diets on blood glucose, pancreatic glutathione peroxidase (GPx) activity, reduced glutathione (GSH) and malondialdehyde (MDA) contents, α-amylase, intestinal α-glucosidase and acetylcholinesterase activities were studied. Significant (P<0.05) increase in blood glucose, pancreatic MDA, α-amylase, intestinal α-glucosidase and acetylcholinesterase activities with concomitant decrease in pancreatic GPx and GSH contents were observed in diabetic rats. However, this trend was reversed in rats fed fermented legumes supplemented diets for 14 days. The HPLC-DAD finger printing revealed the presence of gallic acid, catechin, caffeic acid, epicatechin, rutin, isoquercitrin, quercitrin, quercetin and kaempferol as the dominant phenolic compounds of the fermented legumes. However, possible contributing role of some bioactive peptides could not be ruled out. Hence, the hypoglycemic and antiacetylcholinesterase activities of the fermented legume condiments could be attributed to their constituent phytochemicals. PMID:26349771

  13. Effects of boiling and in vitro gastrointestinal digestion on the antioxidant activity of Sonchus oleraceus leaves.

    PubMed

    Mawalagedera, S M M R; Ou, Zong-Quan; McDowell, Arlene; Gould, Kevin S

    2016-03-01

    Leaves of Sonchus oleraceus L. are especially rich in phenolic compounds and have potent extractable antioxidants. However, it is not known how their antioxidant activity changes after cooking and gastrointestinal digestion. We recorded the profile of phenolics and their associated antioxidant activity in both raw and boiled S. oleraceus leaf extracts after in vitro gastric and intestinal digestion, and quantified their antioxidant potentials using Caco-2 and HepG2 cells. Boiling significantly diminished the oxygen radical absorbance capacity (ORAC) and concentrations of ascorbate and chicoric acid in the soluble fractions. In contrast, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and concentrations of caftaric and chlorogenic acids were unaffected. Phenolics in the soluble fraction were absorbed into cultured human cells and exerted antioxidant activity. Only chlorogenic acid content remained stable during gastrointestinal digestion. S. oleraceus appears to be an excellent dietary source of phenolic antioxidants. PMID:26891707

  14. Amaranth peptides from simulated gastrointestinal digestion: antioxidant activity against reactive species.

    PubMed

    Delgado, María C Orsini; Galleano, Mónica; Añón, María C; Tironi, Valeria A

    2015-03-01

    We evaluated the capacity of simulated gastrointestinal digests or alcalase hydrolysates of protein isolates from amaranth to scavenge diverse physiologically relevant reactive species. The more active hydrolysate was obtained with the former method. Moreover, a prior alcalase treatment of the isolate followed by the same simulated gastrointestinal digestion did not improve the antioxidant capacity in any of the assays performed and even produced a negative effect under some conditions. Gastrointestinal digestion produced a strong increment in the scavenging capacity against peroxyl radicals (ORAC assay), hydroxyl radicals (ESR-OH assay), and peroxynitrites; thus decreasing the IC50 values to approximately 20, 25, and 20%, respectively, of the levels attained with the nonhydrolyzed proteins. Metal chelation (HORAC assay) also enhanced respect to isolate levels, but to a lesser extent (decreasing IC50 values to only 50%). The nitric-oxide- and superoxide-scavenging capacities of the digests were not relevant with respect to the methodologies used. The gastrointestinal digests from amaranth proteins acted against reactive species by different mechanisms, thus indicating the protein isolate to be a potential polyfunctional antioxidant ingredient. PMID:25577328

  15. Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity

    PubMed Central

    Lievin, V; Peiffer, I; Hudault, S; Rochat, F; Brassart, D; Neeser, J; Servin, A

    2000-01-01

    BACKGROUND AND AIMS—The gastrointestinal microflora exerts a barrier effect against enteropathogens. The aim of this study was to examine if bifidobacteria, a major species of the human colonic microflora, participates in the barrier effect by developing antimicrobial activity against enterovirulent bacteria.
METHODS—Antibacterial activity was examined in vitro against a wide range of Gram negative and Gram positive pathogens. Inhibition of Salmonella typhimurium SL1334 cell association and cell invasion was investigated in vitro using Caco-2 cells. Colonisation of the gastrointestinal tract in vivo by bifidobacteria was examined in axenic C3/He/Oujco mice. Antimicrobial activity was examined in vivo in axenic C3/He/Oujco mice infected by the lethal S typhimurium C5 strain.
RESULTS—Fourteen human bifidobacterium strains isolated from infant stools were examined for antimicrobial activity. Two strains (CA1 and F9) expressed antagonistic activity against pathogens in vitro, inhibited cell entry, and killed intracellular S typhimurium SL1344 in Caco-2 cells. An antibacterial component(s) produced by CA1 and F9 was found to be a lipophilic molecule(s) with a molecular weight of less than 3500. In the axenic C3/He/Oujco mice, CA1 and F9 strains colonised the intestinal tract and protected mice against S typhimurium C5 lethal infection.
CONCLUSION—Several bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity, suggesting that they could participate in the "barrier effect" produced by the indigenous microflora.


Keywords: bifidobacteria; infant microflora; gastrointestinal infection; antimicrobial; microbial infection; intestinal cells PMID:11034580

  16. Therapeutic inhibition of Jak activity inhibits progression of gastrointestinal tumors in mice.

    PubMed

    Stuart, Emma; Buchert, Michael; Putoczki, Tracy; Thiem, Stefan; Farid, Ryan; Elzer, Joachim; Huszar, Dennis; Waring, Paul M; Phesse, Toby J; Ernst, Matthias

    2014-02-01

    Aberrant activation of the latent transcription factor STAT3 and its downstream targets is a common feature of epithelial-derived human cancers, including those of the gastrointestinal tract. Mouse models of gastrointestinal malignancy implicate Stat3 as a key mediator of inflammatory-driven tumorigenesis, in which its cytokine/gp130/Janus kinase (Jak)-dependent activation provides a functional link through which the microenvironment sustains tumor promotion. Although therapeutic targeting of STAT3 is highly desirable, such molecules are not available for immediate clinical assessment. Here, we investigated whether the small-molecule Jak1/2 inhibitor AZD1480 confers therapeutic benefits in two mouse models of inflammation-associated gastrointestinal cancer, which are strictly dependent of excessive Stat3 activation. We confirm genetically that Cre-mediated, tumor cell-specific reduction of Stat3 expression arrests the growth of intestinal-type gastric tumors in gp130(F/F) mice. We find that systemic administration of AZD1480 readily replicates this effect, which is associated with reduced Stat3 activation and correlates with diminished tumor cell proliferation and increased apoptosis. Likewise, AZD1480 therapy also conferred a cytostatic effect on established tumors in a colitis-associated colon cancer model in wild-type mice. As predicted from our genetic observations in gp130(F/F) mice, the therapeutic effect of AZD1480 remains fully reversible upon cessation of compound administration. Collectively, our results provide the first evidence that pharmacologic targeting of excessively activated wild-type Jak kinases affords therapeutic suppression of inflammation-associated gastrointestinal cancers progression in vivo. PMID:24398427

  17. Antisecretory activity of plants used to treat gastrointestinal disorders in Mexico.

    PubMed

    Velázquez, Claudia; Calzada, Fernando; Torres, Javier; González, Felipe; Ceballos, Guillermo

    2006-01-01

    Aqueous and methanolic extracts from 26 medicinal plants used in Mexico to treat gastrointestinal disorders were screened to evaluate their antisecretory activity on cholera toxin-induced intestinal secretion in rat jejunal loops model. Extracts were tested at a dose of 300 mg/kg. From 56 samples tested, both extracts from Chiranthodendron pentadactylon, Hippocratea excelsa and Ocimum basilicum were the most potent with inhibition values ranging from 68.0 to 87.6%. On the other hand, the methanolic extract of Geranium mexicanum (aerial parts) and the aqueous extract of Bocconia frutescens showed the highest activity with inhibition values of 93.4 and 86.0%, respectively. The results obtained in this study give some scientific support to the use of the Mexican medicinal plants employed for the treatment of gastrointestinal disorders such as diarrhea. PMID:16174555

  18. The Hymenolepis diminuta-golden hamster (Mesocricetus auratus) model for the evaluation of gastrointestinal anticestode activity.

    PubMed

    Ostlind, D A; Mickle, W G; Smith, S K; Cifelli, S; Ewanciw, D V

    2004-08-01

    A novel laboratory anticestode assay was developed using Hymenolepis diminuta in the hamster. The commercial anticestode compounds, praziquantel, bunamidine, and niclosamide were active against patent infections of Hymenolepis diminuta in golden hamsters (Mesocricetus auratus) when given orally at 3.125, 100, and 200 mg/kg, respectively. The gastrointestinal nematode anthelmintics, cambendazole and mebendazole, were active at 50 mg/kg. Rafoxanide (fasciolicide) was active at 25 mg/kg, the lowest level tested. The coccidiostat, nicarbazin, was active at experimental levels (800 mg/kg and up). The anthelmintic-ectoparasiticide (endectocide), ivermectin, was inactive against the tapeworm at 0.5 mg/kg, as expected. PMID:15357098

  19. In vitro probiotic characterization of Lactobacillus strains from fermented radish and their anti-adherence activity against enteric pathogens.

    PubMed

    Damodharan, Karthiyaini; Palaniyandi, Sasikumar Arunachalam; Yang, Seung Hwan; Suh, Joo-Won

    2015-11-01

    In this study, we evaluated the probiotic properties of Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus fermentum strains isolated from fermented radish. All the strains survived the simulated oro-gastrointestinal transit condition and showed significantly higher adherence to Caco-2 cells compared with the probiotic strain Lactobacillus rhamnosus GG. The strains showed broad-spectrum antimicrobial activity, autoaggregation, and coaggregation capacity with pathogens. Furthermore, the Lactobacillus strains inhibited the adherence of Yersinia enterocolitica subsp. enterocolitica, Shigella boydii, and Salmonella choleraesuis to the Caco-2 cell line. The strains possessed bile salt hydrolase activity and their cholesterol-lowering activity in vitro was above 50% in the presence of bile. Strains of L. plantarum and L. pentosus possessed the plantaricin-encoding plnEF gene. In addition, the Lactobacillus strains maintained about 80% cell viability after freeze-drying in the presence of a combination of 5% skim milk and 5% maltodextrin as cryoprotectant, and 70% recovery of cell viability was observed in the absence of any cryoprotectant. PMID:26382558

  20. Colonic Fermentation: A Neglected Topic in Human Physiology Education

    ERIC Educational Resources Information Center

    Valeur, Jorgen; Berstad, Arnold

    2010-01-01

    Human physiology textbooks tend to limit their discussion of colonic functions to those of absorbing water and electrolytes and storing waste material. However, the colon is a highly active metabolic organ, containing an exceedingly complex society of microbes. By means of fermentation, gastrointestinal microbes break down nutrients that cannot be…

  1. Fructo-oligosaccharides purification from a fermentative broth using an activated charcoal column.

    PubMed

    Nobre, C; Teixeira, J A; Rodrigues, L R

    2012-02-15

    In this study, a simple and efficient process to purify fructo-oligosaccharides (FOS) from a fermentative broth was proposed using a single activated charcoal column. The FOS adsorption onto the activated charcoal was modeled by a pseudo-second order model. Several volumes and concentrations of water/ethanol were studied to optimize the selective desorption of sugars from the broth mixture at 25°C. Mixtures containing 50.6% (w/w) of FOS (FOS content in the fermentative broth) were purified to 92.9% (w/w) with a FOS recovery of 74.5% (w/w). Moreover, with the proposed process, fractions with purity up to 97% (w/w) of FOS were obtained. This purification process was also found to be efficient in the desalting of the fermentative broth. PMID:22100432

  2. Improving the antioxidant activity and enriching salvianolic acids by the fermentation of Salvia miltiorrhizae with Geomyces luteus.

    PubMed

    Xing, Yun; Cai, Le; Yin, Tian-Peng; Chen, Yang; Yu, Jing; Wang, Ya-Rong; Ding, Zhong-Tao

    2016-05-01

    The antioxidant activities and total phenolic content of fermented Salvia miltiorrhiza with fungus Geomyces luteus were investigated. The results revealed that G. luteus fermentation could significantly improve the antioxidant activity and total phenolic content of S. miltiorrhiza. The main antioxidant constituents were characterized by spectroscopic analysis as salvianolic acids. High-performance liquid chromatography (HPLC) quantification also showed the enhanced content of salvianolic acid B after fermentation. The present study suggests that G. luteus fermentations are effective in the S. miltiorrhiza salvianolic acids' enrichment process. PMID:27143267

  3. Improving the antioxidant activity and enriching salvianolic acids by the fermentation of Salvia miltiorrhizae with Geomyces luteus *

    PubMed Central

    Xing, Yun; Cai, Le; Yin, Tian-peng; Chen, Yang; Yu, Jing; Wang, Ya-rong; Ding, Zhong-tao

    2016-01-01

    The antioxidant activities and total phenolic content of fermented Salvia miltiorrhiza with fungus Geomyces luteus were investigated. The results revealed that G. luteus fermentation could significantly improve the antioxidant activity and total phenolic content of S. miltiorrhiza. The main antioxidant constituents were characterized by spectroscopic analysis as salvianolic acids. High-performance liquid chromatography (HPLC) quantification also showed the enhanced content of salvianolic acid B after fermentation. The present study suggests that G. luteus fermentations are effective in the S. miltiorrhiza salvianolic acids’ enrichment process. PMID:27143267

  4. Phenolic profile and antioxidant activity of extracts prepared from fermented heat-stabilized defatted rice bran.

    PubMed

    Webber, Daniel M; Hettiarachchy, Navam S; Li, Ruiqi; Horax, Ronny; Theivendran, Sivarooban

    2014-11-01

    Heat-stabilized, defatted rice bran (HDRB) serves as a potential source of phenolic compounds which have numerous purported health benefits. An estimated 70% of phenolics present in rice bran are esterified to the arabinoxylan residues of the cell walls. Release of such compounds could provide a value-added application for HDRB. The objective of this study was to extract and quantify phenolics from HDRB using fermentation technology. Out of 8 organisms selected for rice bran fermentation, Bacillus subtilis subspecies subtilis had the maximum phenolic release of 26.8 mg ferulic acid equivalents (FAE) per gram HDRB. Response surface methodology was used to further optimize the release of rice bran phenolics. An optimum of 28.6 mg FAE/g rice bran was predicted at 168 h, 0.01% inoculation level, and 100 mg HDRB/mL. Fermentation of HDRB for 96 h with B. subtilis subspecies subtilis resulted in a significant increase in phenolic yield, phenolic concentration, and radical scavenging capacity. Fermented rice bran had 4.86 mg gentistic acid, 1.38 mg caffeic acid, 6.03 mg syringic acid, 19.02 mg (-)-epicatechin, 4.08 mg p-courmaric acid, 4.64 mg ferulic acid, 10.04 mg sinapic acid, and 17.59 mg benzoic acid per 100 g fermented extract compared to 0.65 mg p-courmaric acid and 0.36 mg ferulic acid per 100 g nonfermented extract. The high phenolic content and antioxidant activity of fermented HDRB extract indicates that rice bran fermentation under optimized condition is a potential means of meeting the demand for an effective and affordable antioxidant. PMID:25307751

  5. Effects of zinc levels on activities of gastrointestinal enzymes in growing rats.

    PubMed

    Jing, M Y; Sun, J Y; Weng, X Y; Wang, J F

    2009-10-01

    The present study investigated the effect of different zinc (Zn) levels on activities of gastrointestinal digestive enzymes of growing rats. Four diets including Zn-adequate (ZA; 46 mg/kg, control), Zn-deficient (ZD; 3 mg/kg), high Zn supply (ZH; 234 mg/kg) and pair-fed in which animals received the ZA diet at restricted amounts reflecting feed intake of the ZD group were fed to rats for 5 weeks. Dietary Zn was supplemented with ZnO. The results showed that Zn deficiency resulted in decreases in body weight, while ZH supply stimulated growth. The activities of sucrase, lactase and lipase were unaffected by dietary Zn levels. Maltase activity, however, was reduced in ZD group and elevated in ZH group. Amylase and protease activities were depressed by zinc deficiency. However, rats fed the Zn-repletion diet displayed higher activity of pepsin, pancreatic amylase and protease. In particular, ZH supply did have no effect on intestinal hydrolases activities. The present study suggested that zinc deficiency impaired the activities of digestive enzymes and growth of animals. However, ZH supply might improve the digestion of nutrients via increasing activities of gastrointestinal hydrolase and probably enhanced animal health. PMID:19178608

  6. S. cerevisiae fermentation activity after moderate pulsed electric field pre-treatments.

    PubMed

    Mattar, Jessy R; Turk, Mohammad F; Nonus, Maurice; Lebovka, Nikolai I; El Zakhem, Henri; Vorobiev, Eugene

    2015-06-01

    The batch fermentation process, inoculated by Pulsed Electric Field (PEF) treated wine yeasts (Saccharomyces cerevisiae Actiflore F33), was studied. PEF treatment was applied to the aqueous yeast suspensions ([Y] = 0.012 g/L) at the electric field strengths of E = 100 and 6000 V/cm using the same treatment protocol (number of pulses n = 1000, pulse duration ti = 100 μs, and pulse repetition time Δt = 100 ms). Electrical conductivity was increasing during and after the PEF treatment, which reflected cell electroporation. Then, fermentation was run for 150 h in an incubator (30 °C) with synchronic agitation. Electro-stimulation was revealing itself by the improvement of fermentation characteristics, and thus increased yeast metabolism. At the end of the lag phase (t = 40 h), fructose consumption in samples with electrically activated inoculum exceeded that of the control samples by ≈ 2.33 times for E = 100 V/cm and by ≈ 3.98 for E = 6000 V/cm. At the end of the log phase (120 h of fermentation), ≈ 30% mass reduction was reached in samples with PEF-treated inocula (E = 6000 V/cm), whereas the same mass reduction of the control sample required approximately 20 extra hours of fermentation. PMID:25204702

  7. Enzyme Activities and Substrate Degradation by Fungal Isolates on Cassava Waste During Solid State Fermentation

    PubMed Central

    Eyini, M.

    2007-01-01

    The growth and bioconversion potential of selected strains growing on cassava waste substrate during solid state fermentation were assessed. Rhizopus stolonifer showed the highest and the fastest utilization of starch and cellulose in the cassava waste substrate. It showed 70% starch utilization and 81% cellulose utilization within eight days. The release of reducing sugars indicating the substrate saccharification or degradation potential of the organisms reached the highest value of 406.5 mg/g by R. stolonifer on cassava waste during the eighth day of fermentation. The protein content was gradually increased (89.4 mg/g) on the eighth day of fermentation in cassava waste by R. stolonifer. The cellulase and amylase activity is higher in R. stolonifer than A. niger and P. chrysosporium. The molecular mass of purified amylase and cellulase seemed to be 75 KDal, 85 KDal respectively. PMID:24015097

  8. Enzyme activities and substrate degradation by fungal isolates on cassava waste during solid state fermentation.

    PubMed

    Pothiraj, C; Eyini, M

    2007-12-01

    The growth and bioconversion potential of selected strains growing on cassava waste substrate during solid state fermentation were assessed. Rhizopus stolonifer showed the highest and the fastest utilization of starch and cellulose in the cassava waste substrate. It showed 70% starch utilization and 81% cellulose utilization within eight days. The release of reducing sugars indicating the substrate saccharification or degradation potential of the organisms reached the highest value of 406.5 mg/g by R. stolonifer on cassava waste during the eighth day of fermentation. The protein content was gradually increased (89.4 mg/g) on the eighth day of fermentation in cassava waste by R. stolonifer. The cellulase and amylase activity is higher in R. stolonifer than A. niger and P. chrysosporium. The molecular mass of purified amylase and cellulase seemed to be 75 KDal, 85 KDal respectively. PMID:24015097

  9. [Glutamatergic neurotransmitter system in regulation of the gastrointestinal tract motor activity].

    PubMed

    Alekseeva, E V; Popova, T S; Sal'nikov, P S

    2015-01-01

    The review include actual facts, demonstrating high probability of glutamatergic neurotransmitter system role in the regulation of the gastrointestinal tract motor activity. These facts suggest significant role of the glutamatergic neurotransmitter system dysfunction in forming motor activity disorders of the digestive tract, including in patients in critical condition. The analysis is based on results of multiple experimental and clinical researches of glutamic acid and other components of the glutamatergic neurotransmitter system in central nervous system and autonomic nervous system (with the accent on the enteral nervous system) in normal conditions and with functioning changes of the glutamatergic neurotransmitter system in case of inflammation, hupoxia, stress and in critical condition. PMID:26852608

  10. Impact of inulin and okara on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions.

    PubMed

    Bedani, Raquel; Rossi, Elizeu Antonio; Isay Saad, Susana Marta

    2013-06-01

    The effect of inulin and/or okara flour on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product (FSP) and on probiotic survival under in vitro simulated gastrointestinal conditions were investigated throughout 28 days of storage at 4 °C. Employing a 2(2) design, four FSP trials were produced from soymilk fermented with ABT-4 culture (La-5, Bb-12, and Streptococcus thermophilus): FSP (control); FSP-I (with inulin, 3 g/100 mL of soymilk); FSP-O (with okara, 5 g/100 mL); FSP-IO (with inulin + okara, ratio 3:5 g/100 mL). Probiotic viabilities ranged from 8 to 9 log cfu/g during the 28 days of storage, and inulin and/or okara flour did not affect the viability of La-5 and Bb-12. Bb-12 resistance to the artificial gastrointestinal juices was higher than for La-5, since the Bb-12 and La-5 populations decreased approximately 0.6 log cfu/g and 3.8 log cfu/g, respectively, throughout storage period. Even though the protective effect of inulin and/or okara flour on probiotic microorganisms was not significant, when compared to a fresh culture, the FSP matrix improved Bb-12 survival on day 1 of storage and may be considered a good vehicle for Bb-12 and could play an important role in probiotic protection against gastrointestinal juices. PMID:23541206

  11. The alteration of components in the fermented Hwangryunhaedok-tang and its neuroprotective activity

    PubMed Central

    Yang, Hye Jin; Weon, Jin Bae; Lee, Bohyoung; Ma, Choong Je

    2011-01-01

    Background: Hwangryunhaedok-tang is a traditional herbal prescription that has sedative activity, hypotensive and anti-bacterial effects. Objective: In this study, we investigated the alteration of contents of components in Hwangryunhaedok-tang, antioxidant activity and neuroprotective activity by fermentation with Lactobacillus acidophilus KFRI 128. Materials and Methods: Contents of three marker compounds (geniposide, berberine and palmatine) and unknown compounds in the Hwangryunhaedok-tang (HR) and the fermented Hwangryunhaedok-tang (FHR) were measured and compared using the established high-performance liqued chromatograph coupled with a photodiode (HPLC-DAD) method. The antioxidant activity of HR and FHR were determined by DPPH free radical and hydrogen peroxide (H2O2) scavenging assay. Also, the neuroprotective activities of HR and FHR against glutamate-induced oxidative stress in a mouse hippocampal cell line (HT22) were evaluated by MTT assay. Results: The contents of geniposide and palmatine were decreased but the content of berberine was increased in the FHR. And the contents of unknown compounds (1), (2), (3), (4) and (5) in the HR were altered by fermentation. Electron donating activity (EDA, %) value of FHR was higher than HR for DPPH radical scavenging activity and H2O2 scavenging activity, respectively. In the MTT assay, FHR showed more potent neuroprotective activity than HR by 513.90%. Conclusion: The FHR using microorganism could convert compounds in HR and enhance the antioxidant and neuroprotective activity. PMID:21969791

  12. Effect of gamma irradiation on the physiological activity of Korean soybean fermented foods, Chungkookjang and Doenjang

    NASA Astrophysics Data System (ADS)

    Byun, Myung-Woo; Son, Jun-Ho; Yook, Hong-Sun; Jo, Cheorun; Kim, Dong-Ho

    2002-06-01

    Effects of gamma irradiation on the physiological activity of Korean soybean fermented foods were investigated. Chungkookjang, the whole cooked soybean product and Doenjang, soybean paste were purchased and irradiated at 5, 10 and 20 kGy of absorbed doses. The physiological activity was evaluated by angiotensin converting enzyme inhibition, xanthine oxidase inhibition, tyrosinase inhibition and radical scavenging ability and results indicated that at 10 kGy or below did not show any significant change on physiological activities by irradiation.

  13. Activation of Intestinal Epithelial Stat3 Orchestrates Tissue Defense during Gastrointestinal Infection

    PubMed Central

    Wittkopf, Nadine; Pickert, Geethanjali; Billmeier, Ulrike; Mahapatro, Mousumi; Wirtz, Stefan; Martini, Eva; Leppkes, Moritz; Neurath, Markus Friedrich; Becker, Christoph

    2015-01-01

    Gastrointestinal infections with EHEC and EPEC are responsible for outbreaks of diarrheal diseases and represent a global health problem. Innate first-line-defense mechanisms such as production of mucus and antimicrobial peptides by intestinal epithelial cells are of utmost importance for host control of gastrointestinal infections. For the first time, we directly demonstrate a critical role for Stat3 activation in intestinal epithelial cells upon infection of mice with Citrobacter rodentium – a murine pathogen that mimics human infections with attaching and effacing Escherichia coli. C. rodentium induced transcription of IL-6 and IL-22 in gut samples of mice and was associated with activation of the transcription factor Stat3 in intestinal epithelial cells. C. rodentium infection induced expression of several antimicrobial peptides such as RegIIIγ and Pla2g2a in the intestine which was critically dependent on Stat3 activation. Consequently, mice with specific deletion of Stat3 in intestinal epithelial cells showed increased susceptibility to C. rodentium infection as indicated by high bacterial load, severe gut inflammation, pronounced intestinal epithelial cell death and dissemination of bacteria to distant organs. Together, our data implicate an essential role for Stat3 activation in intestinal epithelial cells during C. rodentium infection. Stat3 concerts the host response to bacterial infection by controlling bacterial growth and suppression of apoptosis to maintain intestinal epithelial barrier function. PMID:25799189

  14. Anti-colon cancer and antioxidant activities of bovine skim milk fermented by selected Lactobacillus helveticus strains.

    PubMed

    Elfahri, K R; Vasiljevic, T; Yeager, T; Donkor, O N

    2016-01-01

    Bioactive compounds released during milk fermentation by proteolytic cleavage of milk proteins have a role beyond their nutritional importance. This study assessed the proteolytic activity of Lactobacillus helveticus strains ASCC953, ASCC474, ASCC1188, and ASCC1315 and their ability to release bioactive compounds capable of exerting antioxidative and in vitro anticarcinogenic properties during incubation at 37°C in reconstituted skim milk. The performance of these strains was not affected by the pH decline during fermentation. Soluble extracts of fermented milk by L. helveticus 474 showed the highest free radical (1,1-diphenyl-2-picrylhydrazyl) scavenging activity at 12 h of fermentation, followed by a significant reduction of this activity at 24 h compared with the other strains and control (untreated milk). Skim milk fermented by L. helveticus strains contained compounds with anti-colon cancer activity at varied levels during fermentation. The activity (19.03-50.98% growth inhibition) was greatest in the extract obtained after 12 h of fermentation, which markedly declined (5.4-9.94%) at the end of fermentation. Lactobacillus helveticus 1315 released compounds into the skim milk supernatant with a greater growth inhibition (50.98%) on colon cancer HT-29 cell line than the other strains. More importantly, these compounds had no significant inhibition effect on normal, primary colon cells T4056. Whereas these results suggest that milk fermented by L. helveticus strains may release bioactive compounds with important multifunctional properties, the characteristics and activities of these compounds appear highly strain- and fermentation time-dependent. PMID:26601580

  15. Gastrointestinal hypomotility with loss of enteric nicotinic acetylcholine receptors: active immunization model in mice

    PubMed Central

    Meeusen, Jeffrey W.; Haselkorn, Keegan E.; Fryer, James P.; Kryzer, Thomas J.; Gibbons, Simon J.; Xiao, Yingxian; Lennon, Vanda A.

    2012-01-01

    Background Autoimmune gastrointestinal dysmotility (AGID) is a limited form of dysautonomia. The only proven effector to date is IgG specific for ganglionic nicotinic-acetylcholine receptors containing α3 subunits (α3*-nAChR). Rabbits immunized with recombinant α3-polypeptide produce α3*-nAChR autoantibodies, and profound AGID ensues. Human and rabbit α3*-nAChR-specific-IgGs induce transient hypomotility when injected into mice. Here we describe success and problems encountered inducing gastrointestinal hypomotility in mice by active immunization. Methods We repeatedly injected young adult mice of seven different strains susceptible to autoimmunity (spontaneous diabetes or neural antigen immunization-induced myasthenia gravis or encephalomyelitis) with: i) α3-polypeptide, intradermally, or ii) live α3*-nAChR-expressing xenogeneic cells, intraperitoneally. We measured serum α3*-nAChR-IgG twice monthly, and terminally assessed blue dye gastrointestinal transit, total small intestinal α3*-nAChR content (radiochemically) and myenteric plexus neuron numbers (immunohistochemically, ileal-jejunal whole-mount preparations). Key Results Standard cutaneous inoculation with α3-polypeptide was minimally immunogenic, regardless of dose. Intraperitoneally-injected live cells were potently immunogenic. Self-reactive α3*-nAChR-IgG was induced only by rodent immunogen; small intestinal transit slowing and enteric α3*-nAChR loss required high serum levels. Ganglionic neurons were not lost. Conclusions & Inferences AGID is inducible in mice by active immunization. Accompanying enteric α3*-nAChR reduction without neuronal death is consistent with an IgG-mediated rather than T cell-mediated pathogenesis, as is improvement of symptoms in patients receiving antibody-depleting therapies. PMID:23072523

  16. Gastrointestinal growth factors and hormones have divergent effects on Akt activation

    PubMed Central

    Berna, Marc J.; Tapia, Jose A.; Sancho, Veronica; Thill, Michelle; Pace, Andrea; Hoffmann, K. Martin; Gonzalez-Fernandez, Lauro; Jensen, Robert T.

    2009-01-01

    Akt is a central regulator of apoptosis, cell growth and survival. Growth factors and some G-protein-coupled receptors (GPCR) regulate Akt. Whereas growth-factor activation of Akt has been extensively studied, the regulation of Akt by GPCR's, especially gastrointestinal hormones/neurotransmitters, remains unclear. To address this area, in this study the effects of GI growth factors and hormones/neurotransmitters were investigate in rat pancreatic acinar cells which are high responsive to these agents. Pancreatic acini expressed Akt and 5 of 7 known pancreatic growth-factors stimulate Akt phosphorylation (T308, S473) and translocation. These effects are mediated by p85 phosphorylation and activation of PI3K. GI hormones increasing intracellular cAMP had similar effects. However, GI-hormones/neurotransmitters[CCK, bombesin,carbachol] activating phospholipase C (PLC) inhibited basal and growth-factor-stimulated Akt activation. Detailed studies with CCK, which has both physiological and pathophysiological effects on pancreatic acinar cells at different concentrations, demonstrated CCK has a biphasic effect: at low concentrations(pM) stimulating Akt by a Src-dependent mechanism and at higher concentrations(nM) inhibited basal and stimulated Akt translocation, phosphorylation and activation, by de-phosphorylating p85 resulting in decreasing PI3K activity. This effect required activation of both limbs of the PLC-pathway and a protein tyrosine phosphatase, but was not mediated by p44/42 MAPK, Src or activation of a serine phosphatase. Akt inhibition by CCK was also found in vivo and in Panc-1 cancer cells where it inhibited serum-mediated rescue from apoptosis. These results demonstrate that GI growth factors as well as gastrointestinal hormones/neurotransmitters with different cellular basis of action can all regulate Akt phosphorylation in pancreatic acinar cells. This regulation is complex with phospholipase C agents such as CCK, because both stimulatory and inhibitory

  17. Application of Lactobacillus immobilized by Activated Carbon Fiber in Fermentation of Lactic Acid in Starch Wastewater

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Wang, Peng; Chi, Guoda; Huang, Chenyong

    2010-11-01

    Activated carbon fibers (ACF) as the carrier of Lactobacillus was introduced into fermenting system, and a method of modifying the surface of ACF by HNO3-Fe (III) was established. Factors that affect ACF carrier's effect on immobilization of Lactobacillus were studied. HCl, H2SO4, HNO3 and FeCl3 solutions were respectively used to modify the surface properties of ACF. The amount of Fe (III) carried on ACF surface was 0.1563 mol/kg after ACF surface was modified by HNO3 for 5 h and then by 0.1 mol/L FeCl3 for 4 h, when the thickness of Lactobacillus on a single silk of carrier reached 40 μm. When ACF modified by HNO3-Fe (III) was applied in the fermentation of lactic acid in starch industry wastewater, the fermentation period reduced by 8 h and the output of L-lactic acid was 65.5 g/L, which was 3.3% more than that fermented without the carrier.

  18. Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion.

    PubMed

    Rodríguez-Roque, María Janeth; Rojas-Graü, María Alejandra; Elez-Martínez, Pedro; Martín-Belloso, Olga

    2013-01-01

    The aim of this research was to evaluate changes in the phenolic compounds, isoflavones and antioxidant activity of soymilk following in vitro gastrointestinal digestion (including dialysis). Gastric digestion significantly influenced the release of bioactive substances from the soymilk matrix, increasing the concentration of total phenolic components (35% as the sum of individuals and 14% by Folin-Ciocalteu [F-C] method), total isoflavone content (22%) and total antioxidant activity (76%). The concentration of all those compounds was reduced significantly in the duodenal fraction in comparison to gastric digestion and their lowest concentration was observed in the dialysed fraction, where phenolic acids were not detected. The bioaccessibility of soymilk phenolic compounds was 15% as the sum of individuals and 20% by F-C assay; isoflavones 36% and constituents with antioxidant activity 27%. Results suggest that most of these compounds were sufficiently available to be absorbed and could contribute health benefits. PMID:23017414

  19. RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation

    PubMed Central

    2013-01-01

    Background The production of enzymes by an industrial strain requires a complex adaption of the bacterial metabolism to the conditions within the fermenter. Regulatory events within the process result in a dynamic change of the transcriptional activity of the genome. This complex network of genes is orchestrated by proteins as well as regulatory RNA elements. Here we present an RNA-Seq based study considering selected phases of an industry-oriented fermentation of Bacillus licheniformis. Results A detailed analysis of 20 strand-specific RNA-Seq datasets revealed a multitude of transcriptionally active genomic regions. 3314 RNA features encoded by such active loci have been identified and sorted into ten functional classes. The identified sequences include the expected RNA features like housekeeping sRNAs, metabolic riboswitches and RNA switches well known from studies on Bacillus subtilis as well as a multitude of completely new candidates for regulatory RNAs. An unexpectedly high number of 855 RNA features are encoded antisense to annotated protein and RNA genes, in addition to 461 independently transcribed small RNAs. These antisense transcripts contain molecules with a remarkable size range variation from 38 to 6348 base pairs in length. The genome of the type strain B. licheniformis DSM13 was completely reannotated using data obtained from RNA-Seq analyses and from public databases. Conclusion The hereby generated data-sets represent a solid amount of knowledge on the dynamic transcriptional activities during the investigated fermentation stages. The identified regulatory elements enable research on the understanding and the optimization of crucial metabolic activities during a productive fermentation of Bacillus licheniformis strains. PMID:24079885

  20. β-Glucosidase activities of lactic acid bacteria: mechanisms, impact on fermented food and human health.

    PubMed

    Michlmayr, Herbert; Kneifel, Wolfgang

    2014-03-01

    Through the hydrolysis of plant metabolite glucoconjugates, β-glucosidase activities of lactic acid bacteria (LAB) make a significant contribution to the dietary and sensory attributes of fermented food. Deglucosylation can release attractive flavour compounds from glucosylated precursors and increases the bioavailability of health-promoting plant metabolites as well as that of dietary toxins. This review brings the current literature on LAB β-glucosidases into context by providing an overview of the nutritional implications of LAB β-glucosidase activities. Based on biochemical and genomic information, the mechanisms that are currently considered to be critical for the hydrolysis of β-glucosides by intestinal and food-fermenting LAB will also be reviewed. PMID:24330034

  1. Fermented Ginseng Contains an Agonist of Peroxisome Proliferator Activated Receptors α and γ.

    PubMed

    Igami, Kentaro; Shimojo, Yosuke; Ito, Hisatomi; Miyazaki, Toshitsugu; Nakano, Fusako; Kashiwada, Yoshiki

    2016-09-01

    Peroxisome proliferator activated receptor (PPAR) is a nuclear receptor that is one of the transcription factors regulating lipid and glucose metabolism. Fermented ginseng (FG) is a ginseng fermented by Lactobacillus paracasei A221 containing minor ginsenosides and metabolites of fermentation. DNA microarray analysis of rat liver treated with FG indicated that FG affects on lipid metabolism are mediated by PPAR-α. To identify a PPAR-α agonist in FG, PPAR-α transcription reporter assay-guided fractionation was performed. The fraction obtained from the MeOH extract of FG, which showed potent transcription activity of PPAR-α, was fractionated by silica gel column chromatography into 16 subfractions, and further separation and crystallization gave compound 1 together with four known constituents of ginseng, including 20(R)- and 20(S)-protopanaxadiol, and 20(R)- and 20(S)-ginsenoside Rh1. The structure of compound 1 was identified as 10-hydroxy-octadecanoic acid by (1)H- and (13)C-NMR spectra and by EI-MS analysis of the methyl ester of 1. Compound 1 demonstrated much higher transcription activity of PPAR-α than the other isolated compounds. In addition, compound 1 also showed 5.5-fold higher transcription activity of PPAR-γ than vehicle at the dose of 20 μg/mL. In the present study, we identified 10-hydroxy-octadecanoic acid as a dual PPAR-α/γ agonist in FG. Our study suggested that metabolites of fermentation, in addition to ginsenosides, contribute to the health benefits of FG. PMID:27627700

  2. Radiological study of gastrointestinal motor activity after acute cisplatin in the rat. Temporal relationship with pica.

    PubMed

    Cabezos, Pablo Antonio; Vera, Gema; Castillo, Mónica; Fernández-Pujol, Ramón; Martín, María Isabel; Abalo, Raquel

    2008-08-18

    Nausea and vomiting are amongst the most severe dose-limiting side effects of chemotherapy. Emetogenic activity in rats can only be evaluated by indirect markers, such as pica (kaolin intake), or delay in gastric emptying. The aim of this work was to study, by radiological methods, the alterations in gastrointestinal motility induced by acute cisplatin in the rat, and to compare them with the development of pica. Rats received cisplatin (0-6 mg kg(-1)) at day 0. In the pica study, individual food ingestion and kaolin intake were measured each day (from day -3 to day 3). In the radiological study, conscious rats received an intragastric dose of medium contrast 0, 24 or 48 h after cisplatin injection, and serial X-rays were taken 0-24 h after contrast. Cisplatin dose-dependently induced both gastric stasis and stomach distension, showing a strict temporal relationship with the induction of both acute and delayed pica. Radiological methods, which are non-invasive and preserve animals' welfare, are useful to study the effect of emetogenic drugs in the different gastrointestinal regions and might speed up the search for new anti-emetics. PMID:18579450

  3. In vivo anthelmintic activity of ginger against gastrointestinal nematodes of sheep.

    PubMed

    Iqbal, Zafar; Lateef, Muhammad; Akhtar, Muhammad Shoaib; Ghayur, Muhammad Nabeel; Gilani, Anwarul Hassan

    2006-06-30

    This paper describes the anthelmintic activity of Zingiber officinale Roscoe (family Zingiberaceae) rhizome, commonly known as ginger, to justify its traditional use in veterinary medicine. Crude powder (CP) and crude aqueous extract (CAE) of dried ginger (1-3 g/kg) were administered to sheep naturally infected with mixed species of gastrointestinal nematodes. Both CP and CAE exhibited a dose- and a time-dependent anthelmintic effect with respective maximum reduction of 25.6% and 66.6% in eggs per gram (EPG) of faeces on day 10 of post-treatment. Levamisole (7.5 mg/kg), a standard anthelmintic agent, exhibited 99.2% reduction in EPG. This study shows that ginger possesses in vivo anthelmintic activity in sheep thus justifying the age-old traditional use of this plant in helminth infestation. PMID:16443342

  4. Group II p21-activated kinases as therapeutic targets in gastrointestinal cancer

    PubMed Central

    Shao, Yang-Guang; Ning, Ke; Li, Feng

    2016-01-01

    P21-activated kinases (PAKs) are central players in various oncogenic signaling pathways. The six PAK family members are classified into group I (PAK1-3) and group II (PAK4-6). Focus is currently shifting from group I PAKs to group II PAKs. Group II PAKs play important roles in many fundamental cellular processes, some of which have particular significance in the development and progression of cancer. Because of their important functions, group II PAKs have become popular potential drug target candidates. However, few group II PAKs inhibitors have been reported, and most do not exhibit satisfactory kinase selectivity and “drug-like” properties. Isoform- and kinase-selective PAK inhibitors remain to be developed. This review describes the biological activities of group II PAKs, the importance of group II PAKs in the development and progression of gastrointestinal cancer, and small-molecule inhibitors of group II PAKs for the treatment of cancer. PMID:26811660

  5. Antioxidant activity and nutrient release from polyphenol-enriched cheese in a simulated gastrointestinal environment.

    PubMed

    Lamothe, Sophie; Langlois, Ariane; Bazinet, Laurent; Couillard, Charles; Britten, Michel

    2016-03-01

    Green tea polyphenols are recognized for their antioxidant properties and their effects on lipid digestion kinetics. Polyphenols are sensitive to degradation in the intestinal environment. Interactions with dairy proteins could modulate the stability and biological activity of polyphenols during digestion. The objective of this study was to evaluate the release of nutrients (polyphenols, fatty acids and peptides) and the antioxidant activity in polyphenol-enriched cheese containing different levels of calcium in a simulated gastrointestinal environment. The relationship between cheese matrix texture, matrix degradation and nutrient release during digestion was also studied. Green tea extract was added to milk at 0% or 0.1%, and cheeses were produced on a laboratory scale. The level of available calcium was adjusted to low (Ca(low)), regular (Ca(reg)) or high (Ca(high)) during the salting step of the cheese-making process. Cheeses were subjected to simulated digestion. The rate and extent of fatty acid release were 21% lower for Ca(low) cheese than for Ca(reg) and Ca(high) cheeses. The greater adhesiveness of Ca(low) cheese, which resulted in lower rates of matrix degradation and proteolysis, contributed to the reduced rate of lipolysis. The presence of green tea extract in cheese reduced the release of free fatty acids at the end of digestion by 7%. The addition of green tea extract increased cheese hardness but did not influence matrix degradation or proteolysis profiles. The formation of complexes between tea polyphenols and proteins within the cheese matrix resulted in a more than twofold increase in polyphenol recovery in the intestinal phase compared with the control (tea polyphenol extract incubated with polyphenol-free cheese). Antioxidant activity was 14% higher in the digest from polyphenol-enriched cheese than in the control. These results suggest that cheese is an effective matrix for the controlled release of nutrients and for the protection of green

  6. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia

    PubMed Central

    Berney, Michael; Greening, Chris; Conrad, Ralf; Jacobs, William R.; Cook, Gregory M.

    2014-01-01

    Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis, adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H2 when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD+/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments. PMID:25049411

  7. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia.

    PubMed

    Berney, Michael; Greening, Chris; Conrad, Ralf; Jacobs, William R; Cook, Gregory M

    2014-08-01

    Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis, adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H2 when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD(+)/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments. PMID:25049411

  8. Fermentative characteristics and fibrolytic activities of anaerobic gut fungi isolated from wild and domestic ruminants.

    PubMed

    Paul, Shyam S; Kamra, Devki N; Sastry, Vadali R B

    2010-08-01

    Fermentative characteristics and fibrolytic enzyme activities of anaerobic gut fungi from wild (17 isolates) and domestic ruminants (15 isolates) were examined. In a medium containing 0.5% wheat straw and 0.02% cellobiose as energy source, activities of carboxymethyl cellulase (CMCase), avicelase, xylanase, acetyl esterase and protease produced by the fungal isolates were investigated. Average activity of CMCase (17.4 vs. 8.25 mIU ml(-1)), acetyl esterase (134 vs. 57 mIU ml(-1)) and protease (4400 vs. 1683 mIU ml(-1)) were significantly higher in isolates from wild ruminants than those from domestic ruminants. Xylanase and avicelase activities were comparable. When compared irrespective of source, fungal isolates having monocentric growth pattern produced more fibrolytic enzymes than isolates having polycentric growth pattern. CMCase, xylanase, avicelase activities were highest in Neocallimastix isolates. Acetyl esterase activity was highest in Piromyces and Neocallimastix isolates. Protease activity was highest in Piromyces isolates followed closely by Neocallimastix isolates. Between isolates from wild and domestic ruminants few differences were observed in pattern of carbohydrate utilisation and end products of fermentation. Inter-strain differences in the end product formation were apparent. All of the isolates produced acetate, lactate and formate; only a few isolates produced succinate. For isolation of superior fibrolytic isolates of anaerobic fungi, greater emphasis should be given to the screening of enzyme activities of isolates of genera Neocallimastix and Piromyces. PMID:20722299

  9. Anti-Helicobacter pylori activity of plant extracts traditionally used for the treatment of gastrointestinal disorders

    PubMed Central

    Cogo, Laura Lúcia; Monteiro, Cristina Leise Bastos; Miguel, Marilis Dallarmi; Miguel, Obdulio Gomes; Cunico, Miriam Machado; Ribeiro, Marcelo Lima; de Camargo, Eloá Ramalho; Kussen, Gislene Maria Botão; Nogueira, Keite da Silva; Costa, Libera Maria Dalla

    2010-01-01

    The antibacterial activity of plant extracts obtained from Bixa orellana L., Chamomilla recutita L., Ilex paraguariensis A. St.-Hil., Malva sylvestris L., Plantago major L. and Rheum rhaponticum L. has been evaluated against two reference strains and eleven clinical isolates of Helicobacter pylori. All the plant species chosen are used in popular Brazilian cuisine and folk medicine in the treatment of gastrointestinal disorders. Initial screening was made by the disk diffusion test and then minimum inhibitory concentration was determined by the agar dilution method. The results presented in this work demonstrated that among the plant preparations analyzed, B. orellana L., C. recutita L., I. paraguariensis A. St.-Hil. and M. sylvestris L. were capable of inhibiting the in vitro growth of H. pylori. PMID:24031496

  10. Plasticity in gastrointestinal morphology and enzyme activity in lactating striped hamsters (Cricetulus barabensis).

    PubMed

    Zhang, Ji-Ying; Zhao, Xiao-Ya; Wen, Jing; Tan, Song; Zhao, Zhi-Jun

    2016-05-01

    In small mammals, marked phenotypic plasticity of digestive physiology has been shown to make it easier for them to cope with energetically stressful periods, such as lactation. It has been proposed that the capacity of the gut to digest and absorb food is not the limiting factor to sustained energy intake (SusEI) during peak lactation. In this study, plasticity in energy intake and gastrointestinal morphology was examined in striped hamsters at different stages of reproduction and when raising litters of different sizes. Mechanisms associated with digestive enzymes and neuroendocrine hormones underpinning the plasticity were also examined. Females significantly increased energy intake, digestibility, digestive tract mass and the activity of stomach pepsin and small intestine maltase, sucrase and aminopeptidase in peak lactation compared with the non-productive and post-lactating periods. Further, females raising large litters significantly increased energy intake, digestibility, gastrointestinal mass and activity of digestive enzymes, and weaned heavier offspring compared with those nursing small and medium litters, indicating that the significant plasticity of digestive physiology increased reproductive performance. Agouti-related protein (AgRP) mRNA expression in the hypothalamus was up-regulated significantly in females raising large litters relative to those raising small litters. Serum leptin levels, and mRNA expression of hypothalamus neuropeptide Y (NPY) and the anorexigenic neuropeptides pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) did not differ among females raising small, medium and large litters. Leptin levels in lactation may only reflect a state of energy balance rather than being the prime driver of hyperphagia. Some hypothalamic neuropeptides, such as NPY, POMC and CART, may be involved in the limits to the SusEI during lactation. PMID:26944487

  11. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon.

    PubMed

    Yousuf, Ahasa; Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2016-10-01

    Amberlite IRA-67 and activated carbon were tested as promising candidates for carboxylic acid recovery by adsorption. Dark fermentation was performed without pH control and without addition of external inoculum at 37°C in batch mode. Lactic, acetic and butyric acids, were obtained, after 7days of fermentation. The maximum acid removal, 74%, from the Amberlite IRA-67 and 63% from activated carbon was obtained from clarified fermentation broth using 200gadsorbent/Lbroth at pH 3.3. The pH has significant effect and pH below the carboxylic acids pKa showed to be beneficial for both the adsorbents. The un-controlled pH fermentation creates acidic environment, aiding in adsorption by eliminating use of chemicals for efficient removal. This study proposes simple and easy valorization of waste to valuable chemicals. PMID:26898679

  12. Characterization and fibrinolytic activity of Acetobacter sp. FP1 isolated from fermented pine needle extract.

    PubMed

    Park, Jaeyoung; Yoon, Seohyeon; Kim, Seongsim; Lee, Beomgi; Cheong, Hyeonsook

    2012-02-01

    The strain KCTC 11629BP, isolated from spontaneously fermented pine needle extract (FPE), showed fibrinolysis activity. The isolated strain was analyzed in physiological and biochemical experiments. Based on 16S rDNA sequencing and phylogenic tree analysis, the strain was identified to be a part of the genus Acetobacter, with Acetobacter senegalensis and Acetobacter tropicalis as the closest phylogenetic neighbors. Based on genotypic and phenotypic results, it was proposed that bacterial strain KCTC 11629BP represents a species of the genus Acetobacter. The strain was thusly named Acetobacter sp. FP1. In conclusion, Acetobacter sp. FP1 isolated from FPE possesses fibrinolytic activity. PMID:22370351

  13. Production and regulation of lipase activity from Penicillium restrictum in submerged and solid-state fermentations.

    PubMed

    de Azeredo, Luciana A I; Gomes, Patrícia M; Sant'Anna, Geraldo L; Castilho, Leda R; Freire, Denise M G

    2007-05-01

    Different carbon (C) sources, mainly carbohydrates and lipids, have been screened for their capacity to support growth and lipase production by Penicillium restrictum in submerged fermentation (SmF) and in solid-state fermentation (SSF). Completely different physiological behaviors were observed after the addition of easily (oleic acid and glucose) and complex (olive oil and starch) assimilable C sources to the liquid and solid media. Maximal lipolytic activities (12.1 U/mL and 17.4 U/g) by P. restrictum were obtained with olive oil in SmF and in SSF, respectively. Biomass levels in SmF (12.2-14.1 mg/mL) and SSF (7.0-8.0 mg/g) did not varied greatly with the distinct C sources used. High lipase production (12.3 U/g) using glucose was only attained in SSF, perhaps due to the ability of this fermentation process to minimize catabolite repression. PMID:17457647

  14. Characterization of phytochemicals and antioxidant activities of red radish brines during lactic acid fermentation.

    PubMed

    Jing, Pu; Song, Li-Hua; Shen, Shan-Qi; Zhao, Shu-Juan; Pang, Jie; Qian, Bing-Jun

    2014-01-01

    Red radish (Raphanus L.) pickles are popular appetizers or spices in Asian-style cuisine. However, tons of radish brines are generated as wastes from industrial radish pickle production. In this study, we evaluated the dynamic changes in colour properties, phenolics, anthocyanin profiles, phenolic acid composition, flavonoids, and antioxidant properties in radish brines during lactic acid fermentation. The results showed that five flavonoids detected were four anthocyanins and one kaempferol derivative, including pelargonidin-3-digluoside-5-glucoside derivatives acylated with p-coumaric acid, ferulic acid, p-coumaric and manolic acids, or ferulic and malonic acids. Amounts ranged from 15.5-19.3 µg/mL in total monomeric anthocyanins, and kaempferol-3,7-diglycoside (15-30 µg/mL). 4-Hydroxy-benzoic, gentisic, vanillic, syringic, p-coumaric, ferulic, sinapic and salicylic acids were detected in amounts that varied from 70.2-92.2 µg/mL, whereas the total phenolic content was 206-220 µg/mL. The change in colour of the brine was associated with the accumulation of lactic acid and anthocyanins. The ORAC and Fe2+ chelation capacity of radish brines generally decreased, whereas the reducing power measured as FRAP values was increased during the fermentation from day 5 to day 14. This study provided information on the phytochemicals and the antioxidative activities of red radish fermentation waste that might lead to further utilization as nutraceuticals or natural colorants. PMID:25004074

  15. Red Wine Tannin Structure-Activity Relationships during Fermentation and Maceration.

    PubMed

    Yacco, Ralph S; Watrelot, Aude A; Kennedy, James A

    2016-02-01

    The correlation between tannin structure and corresponding activity was investigated by measuring the thermodynamics of interaction between tannins isolated from commercial red wine fermentations and a polystyrene divinylbenzene HPLC column. Must and/or wine samples were collected throughout fermentation/maceration from five Napa Valley wineries. By varying winery, fruit source, maceration time, and cap management practice, it was considered that a reasonably large variation in commercially relevant tannin structure would result. Tannins were isolated from samples collected using low pressure chromatography and were then characterized by gel permeation chromatography and acid-catalyzed cleavage in the presence of excess phloroglucinol (phloroglucinolysis). Corresponding tannin activity was determined using HPLC by measuring the thermodynamics of interaction between isolated tannin and a polystyrene divinylbenzene HPLC column. This measurement approach was designed to determine the ability of tannins to hydrophobically interact with a hydrophobic surface. The results of this study indicate that tannin activity is primarily driven by molecular size. Compositionally, tannin activity was positively associated with seed tannins and negatively associated with skin and pigmented tannins. Although measured indirectly, the extent of tannin oxidation as determined by phloroglucinolysis conversion yield suggests that tannin oxidation at this stage of production reduces tannin activity. Based upon maceration time, this study indicates that observed increases in perceived astringency quality, if related to tannin chemistry, are driven by tannin molecular mass as opposed to pigmented tannin formation or oxidation. Overall, the results of this study give new insight into tannin structure-activity relationships which dominate during extraction. PMID:26766301

  16. Effect of ferrous chloride on biogas production and enzymatic activities during anaerobic fermentation of cow dung and Phragmites straw.

    PubMed

    Zhang, Huayong; Tian, Yonglan; Wang, Lijun; Mi, Xueyue; Chai, Yang

    2016-06-01

    The effect of ferrous (added as FeCl2) on the anaerobic co-digestion of Phragmites straw and cow dung was studied by investigating the biogas properties, pH values, organic matter degradation (COD) and enzyme activities (cellulase, protease and dehydrogenase) at different stages of mesophilic fermentation. The results showed that Fe(2+) addition increased the cumulative biogas yields by 18.1 % by extending the peak period with high daily biogas yields. Meanwhile, the methane (CH4) contents in the Fe(2+) added groups were generally higher than the control group before the 15th day. The pH values were not significantly impacted by Fe(2+) concentrations during the fermentation process. The COD concentrations, cellulase, protease and dehydrogenase activities varied with the added Fe(2+) concentrations and the stages of the fermentation process. At the beginning stage of fermentation (4th day), Fe(2+) addition increased the biogas production by improving the cellulase and dehydrogenase activities which caused a decline in COD. At the peak stage of fermentation (8th day), Fe(2+) addition enhanced the cellulase and protease activities, and resulted in lower COD contents than the control group. When the biogas yields decreased again (13th day), the COD contents varied similar with the protease and dehydrogenase activities, whilst cellulase activities were not sensitive to Fe(2+) concentrations. At the end of fermentation (26th day), Fe(2+) addition decreased the cellulase activities, led to lower COD contents and finally resulted the lower biogas yields than the control group. Taking the whole fermentation process into account, the promoting effect of Fe(2+) addition on biogas yields was mainly attributed to the extension of the gas production peak stage and the improvement of cellulase activities. PMID:26862032

  17. Pharmacological inhibition of KIT activates MET signaling in gastrointestinal stromal tumors

    PubMed Central

    Cohen, Noah A.; Zeng, Shan; Seifert, Adrian M.; Kim, Teresa S.; Sorenson, Eric C.; Greer, Jonathan B.; Beckman, Michael J.; Santamaria-Barria, Juan A.; Crawley, Megan H.; Green, Benjamin L.; Rossi, Ferdinand; Besmer, Peter; Antonescu, Cristina R.; DeMatteo, Ronald P.

    2015-01-01

    Gastrointestinal stromal tumors (GIST) are the most common adult sarcomas and the oncogenic driver is usually a KIT or PDGFRA mutation. While GIST are often initially sensitive to imatinib or other tyrosine kinase inhibitors, resistance generally develops necessitating backup strategies for therapy. In this study, we determined that a subset of human GIST specimens that acquired imatinib resistance acquired expression of activated forms of the MET oncogene. MET activation also developed after imatinib therapy in a mouse model of GIST (KitV558del/+ mice), where it was associated with increased tumor hypoxia. MET activation also occurred in imatinib-sensitive human GIST cell lines after imatinib treatment in vitro. MET inhibition by crizotinib or RNA interference was cytotoxic to an imatinib-resistant human GIST cell population. Moreover, combining crizotinib and imatinib was more effective than imatinib alone in imatinib-sensitive GIST models. Lastly, cabozantinib, a dual MET and KIT small molecule inhibitor, was markedly more effective than imatinib in multiple preclinical models of imatinib-sensitive and imatinib-resistant GIST. Collectively, our findings showed that activation of compensatory MET signaling by KIT inhibition may contribute to tumor resistance. Furthermore, our work offered a preclinical proof of concept for MET inhibition by cabozantinib as an effective strategy for GIST treatment. PMID:25836719

  18. Anthelmintic activity of Trianthema portulacastrum L. and Musa paradisiaca L. against gastrointestinal nematodes of sheep.

    PubMed

    Hussain, Altaf; Khan, Muhammad Nisar; Iqbal, Zafar; Sajid, Muhammad Sohail; Khan, Muhammad Kasib

    2011-06-30

    Evaluation of anthelmintic effects of Trianthema (T.) portulacastrum L. (Aizoaceae) whole plant and Musa (M.) paradisiaca L. (Musaceae) leaves against prevalent gastrointestinal worms of sheep was done that may justify their traditional use in veterinary clinical medicine. In vitro anthelmintic activity of the crude aqueous methanolic extract (CAME) of both the plants was determined using mature female Haemonchus (H.) contortus and their eggs in adult motility assay (AMA) and egg hatch test (EHT), respectively. In vivo anthelmintic activity of crude powder (CP) and CAME in increasing doses (1.0-8.0 g kg(-1)) was determined in sheep naturally infected with mixed species of nematodes using fecal egg count reduction test (FECRT) and larval counts. The study design also included untreated as well as treated controls. Fecal egg count reduction and larval counts from coprocultures were performed pre- and post-treatments to assess the anthelmintic activity of the plants. CAME of T. portulacastrum and M. paradisiaca showed a strong in vitro anthelmintic activity and pronounced inhibitory effects on H. contortus egg hatching as observed through AMA and EHT, respectively. Both plants exhibited dose and time dependent anthelmintic effects on live worms as well as egg hatching. M. paradisiaca (LC(50)=2.13 μg mL(-1)) was found to be more potent than T. portulacastrum (LC(50)=2.41 μg mL(-1)) in EHT. However, in vivo, maximum reduction in eggs per gram (EPG) of faeces was recorded as 85.6% and 80.7% with CAME of T. portulacastrum and M. paradisiaca at 8.0 g kg(-1) on 15th day post-treatment, respectively as compared to that of Levamisole (7.5 mg kg(-1)) that caused 97.0% reduction in EPG. All the species of gastrointestinal nematodes (GINs), i.e. Haemonchus contortus, Trichostronglyus spp., Oesophagostomum columbianum and Trichuris ovis which were prevalent, found susceptible (P<0.01) to the different doses of CP and CAME of both plants. The data showed that both T

  19. Improvement of the fermentative activity of lactic acid bacteria starter culture by the addition of Mn²⁺.

    PubMed

    Cheng, Xin; Dong, Ying; Su, Ping; Xiao, Xiang

    2014-11-01

    Production of lactic acid bacteria (LAB) starter with raw material has received much scientific investigation, but little information is available on the influences of some trace elements on the growth and fermentative activity of LAB. Based on this fact, this paper aimed to investigate the effects of Mn(2+) on the performance of Lactobacillus plantarum CX-15 starter with Jerusalem artichoke (JA) as the main medium substrate. The results showed that Mn(2+) addition had a significant beneficial affect on the fermentative activity of L. plantarum CX-15 starter. In contrast, the lack of Mn(2+) would cause the subsequent fermentation significantly slower, whether the cell density in starter culture was higher or lower. The possible mechanism of these phenomenons was further elucidated by the time course analysis of the specific activities of metabolism key enzymes during the culture processes of L. plantarum CX-15 starter. Compared to the fermentation processes without Mn(2+) addition, it was found that Mn(2+) addition would enhance the lactate dehydrogenase (LDH) activity but reduce the activities of pyruvate dehydrogenase (PDH) and ATPase activity. Therefore, it could be concluded that the improvement of L. plantarum starter fermentative activity was probably a consequence of Mn(2+) acting as "metabolic switch," which regulated the metabolic flux from pyruvic acid to lactic acid and other metabolism pathway. PMID:25146195

  20. A Compositional Look at the Human Gastrointestinal Microbiome and Immune Activation Parameters in HIV Infected Subjects

    PubMed Central

    Mutlu, Ece A.; Keshavarzian, Ali; Losurdo, John; Swanson, Garth; Siewe, Basile; Forsyth, Christopher; French, Audrey; DeMarais, Patricia; Sun, Yan; Koenig, Lars; Cox, Stephen; Engen, Phillip; Chakradeo, Prachi; Abbasi, Rawan; Gorenz, Annika; Burns, Charles; Landay, Alan

    2014-01-01

    HIV progression is characterized by immune activation and microbial translocation. One factor that may be contributing to HIV progression could be a dysbiotic microbiome. We therefore hypothesized that the GI mucosal microbiome is altered in HIV patients and this alteration correlates with immune activation in HIV. 121 specimens were collected from 21 HIV positive and 22 control human subjects during colonoscopy. The composition of the lower gastrointestinal tract mucosal and luminal bacterial microbiome was characterized using 16S rDNA pyrosequencing and was correlated to clinical parameters as well as immune activation and circulating bacterial products in HIV patients on ART. The composition of the HIV microbiome was significantly different than that of controls; it was less diverse in the right colon and terminal ileum, and was characterized by loss of bacterial taxa that are typically considered commensals. In HIV samples, there was a gain of some pathogenic bacterial taxa. This is the first report characterizing the terminal ileal and colonic mucosal microbiome in HIV patients with next generation sequencing. Limitations include use of HIV-infected subjects on HAART therapy. PMID:24586144

  1. Gingerol activates noxious cold ion channel TRPA1 in gastrointestinal tract.

    PubMed

    Yang, Meng-Qi; Ye, Lin-Lan; Liu, Xiao-Ling; Qi, Xiao-Ming; Lv, Jia-Di; Wang, Gang; Farhan, Ulah-Khan; Waqas, Nawaz; Chen, Ding-Ding; Han, Lei; Zhou, Xiao-Hui

    2016-06-01

    TRPA1 channels are non-selective cation channels that could be activated by plant-derived pungent products, including gingerol, a main active constituent of ginger. Ginger could improve the digestive function; however whether ginger improves the digestive function through activating TRPA1 receptor in gastrointestinal tract has not been investigated. In the present study, gingerol was used to stimulate cell lines (RIN14B or STC-1) while depletion of extracellular calcium. TRPA1 inhibitor (rethenium red) and TRPA1 gene silencing via TRPA1-specific siRNA were also used for mechanistic studies. The intracellular calcium and secretion of serotonin or cholecystokinin were measured by fura-2/AM and ELISA. Stimulation of those cells with gingerol increased intracellular calcium levels and the serotonin or cholecystokinin secretion. The gingerol-induced intracellular calcium increase and secretion (serotonin or cholecystokinin) release were completely blocked by ruthenium red, EGTA, and TRPA1-specific siRNA. In summary, our results suggested that gingerol derived from ginger might improve the digestive function through secretion releasing from endocrine cells of the gut by inducing TRPA1-mediated calcium influx. PMID:27473961

  2. Natural fermentation of lentils. Influence of time, concentration and temperature on protein content, trypsin inhibitor activity and phenolic compound content.

    PubMed

    Tabera, J; Frias, J; Estrella, I; Villa, R; Vidal-Valverde, C

    1995-12-01

    Lentil (Lens culinaris var. vulgaris) flour was naturally fermented for 4 days at different temperatures (28 degrees C, 35 degrees C and 42 degrees C) and concentrations (79 milligrams, 150 milligrams and 221 milligrams). Samples were analysed to establish the changes of total protein content and in vitro protein digestibility, trypsin inhibitor activity (TIA) and phenolic compound content during natural fermentation of lentils. The preparation of lentil flour suspensions to be fermented caused a slight increase in total protein and in vitro protein digestibility content, a decrease of TIA and a sharp decrease the tannin/catechin ratio. During the whole fermentation procedure, the minimum initial lentil concentration and temperature used (79 milligrams, 28 degrees C) achieved the maximum protein content and the lowest tannin/catechin ratio. The TIA was more affected by temperature than by concentration, and a 62.5% reduction was observed at 42 degrees C and 79 milligrams. PMID:8585337

  3. Fermentation process

    SciTech Connect

    Lutzen, N.W.

    1982-02-23

    Fermentation process consists essentially of fermenting a 10-45% w/w aqueous slurry of granular starch for the production of ethanol with an ethanol-producing microorganism in the presence of alpha-amylase and glucoamylase, the conduct of said fermentation being characterized by low levels of dextrin and fermentable sugars in solution in the fermentation broth throughout the fermentation, and thereafter recovering enzymes from the fermentation broth for use anew in fermentation of granular starch.

  4. Comparative in-vitro activity of ciprofloxacin against non-fermenters.

    PubMed

    Husson, M O; Izard, D; Bouillet, L; Leclerc, H

    1985-04-01

    The in-vitro activity of ciprofloxacin, a quinolone-carboxylic acid derivative, was compared with those of carbenicillin, azlocillin, cefsulodin, ceftazidime, tobramycin and amikacin against 187 non-fermenters. Only one of the 131 strains of Pseudomonas spp. was not inhibited by 1 mg/l of ciprofloxacin, while these isolates appeared highly resistant to carbenicillin, azlocillin and cefsulodin. Ciprofloxacin was also the best agent against Flavobacterium, Alcaligenes faecalis and Acinetobacter calcoaceticus with MIC90's respectively of 0.5, 4 and 8 mg/l. This new compound appeared bactericidal, and we found a small or no inoculum effect with ciprofloxacin. PMID:3159710

  5. Entomotoxicity, protease and chitinase activity of Bacillus thuringiensis fermented wastewater sludge with a high solids content.

    PubMed

    Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2009-10-01

    This study investigated the production of biopesticides, protease and chitinase activity by Bacillus thuringiensis grown in raw wastewater sludge at high solids concentration (30 g/L). The rheology of wastewater sludge was modified with addition of Tween-80 (0.2% v/v). This addition resulted in 1.6 and 1.3-fold increase in cell and spore count, respectively. The maximum specific growth rate (micro(max)) augmented from 0.17 to 0.22 h(-1) and entomotoxicity (Tx) increased by 29.7%. Meanwhile, volumetric mass transfer coefficient (k(L)a) showed marked variations during fermentation, and oxygen uptake rate (OUR) increased 2-fold. The proteolytic activity increased while chitinase decreased for Tween amended wastewater sludge, but the entomotoxicity increased. The specific entomotoxicity followed power law when plotted against spore concentration and the relation between Tx and protease activity was linear. The viscosity varied and volume percent of particles increased in Tween-80 amended wastewater sludge and particle size (D(50)) decreased at the end of fermentation. Thus, there was an increase in entomotoxicity at higher suspended solids (30 g/L) as Tween addition improved rheology (viscosity, particle size, surface tension); enhanced maximum growth rate and OUR. PMID:19447031

  6. Impact of extraction parameters on the recovery of lipolytic activity from fermented babassu cake.

    PubMed

    Silva, Jaqueline N; Godoy, Mateus G; Gutarra, Melissa L E; Freire, Denise M G

    2014-01-01

    Enzyme extraction from solid matrix is as important step in solid-state fermentation to obtain soluble enzymes for further immobilization and application in biocatalysis. A method for the recovery of a pool of lipases from Penicillium simplicissimum produced by solid-state fermentation was developed. For lipase recovery different extraction solution was used and phosphate buffer containing Tween 80 and NaCl showed the best results, yielding lipase activity of 85.7 U/g and 65.7 U/g, respectively. The parameters with great impacts on enzyme extraction detected by the Plackett-Burman analysis were studied by Central Composite Rotatable experimental designs where a quadratic model was built showing maximum predicted lipase activity (160 U/g) at 25°C, Tween 80 0.5% (w/v), pH 8.0 and extraction solution 7 mL/g, maintaining constant buffer molarity of 0.1 M and 200 rpm. After the optimization process a 2.5 fold increase in lipase activity in the crude extract was obtained, comparing the intial value (64 U/g) with the experimental design (160 U/g), thus improving the overall productivity of the process. PMID:25090644

  7. Impact of Extraction Parameters on the Recovery of Lipolytic Activity from Fermented Babassu Cake

    PubMed Central

    Silva, Jaqueline N.; Godoy, Mateus G.; Gutarra, Melissa L. E.; Freire, Denise M. G.

    2014-01-01

    Enzyme extraction from solid matrix is as important step in solid-state fermentation to obtain soluble enzymes for further immobilization and application in biocatalysis. A method for the recovery of a pool of lipases from Penicillium simplicissimum produced by solid-state fermentation was developed. For lipase recovery different extraction solution was used and phosphate buffer containing Tween 80 and NaCl showed the best results, yielding lipase activity of 85.7 U/g and 65.7 U/g, respectively. The parameters with great impacts on enzyme extraction detected by the Plackett-Burman analysis were studied by Central Composite Rotatable experimental designs where a quadratic model was built showing maximum predicted lipase activity (160 U/g) at 25°C, Tween 80 0.5% (w/v), pH 8.0 and extraction solution 7 mL/g, maintaining constant buffer molarity of 0.1 M and 200 rpm. After the optimization process a 2.5 fold increase in lipase activity in the crude extract was obtained, comparing the intial value (64 U/g) with the experimental design (160 U/g), thus improving the overall productivity of the process. PMID:25090644

  8. Fermented soshiho-tang with Lactobacillus plantarum enhances the antiproliferative activity in vascular smooth muscle cell

    PubMed Central

    2014-01-01

    Background Soshiho-tang (SST) is a traditional medicine widely used for the treatment of chronic hepatitis. SST has been shown to confer a variety of pharmacological activities, including prevention of hepatotoxicity, promotion of liver regeneration, and modulation of liver fibrosis. In this study, we investigated the antiproliferative activity of native and fermented (FSST) formulations of SST in vascular smooth muscle cells (VSMCs) and examined the potential underlying mechanisms driving these effects. Methods SST, along with preparations fermented with Lactobacillus plantarum KFRI-144 (S-A144), L. amylophilus KFRI-161 (S-A161) and L. bulgaricus KFRI-344 (S-A344), were investigated to determine their effects on the proliferation and viability of VSMCs, along with the signalling pathways underlying these effects. Results S-A144 exhibited a strong, dose-dependent inhibition of VSMC proliferation relative to untreated controls, but the others did not affect. In addition, S-A144 significantly decreased the phosphorylation of Akt and PLCγ1 in a dose-dependent manner and induced cell cycle arrest at the G0/G1 phase characterised by decreased expression of CDKs, cyclins and PCNA. Conclusions The findings suggest that S-A144 exhibit enhanced inhibition of PDGF-BB-induced VSMC proliferation comparison to S-AOR through the suppression of cell cycle progression and expression of cell cycle-related proteins, along with the downregulation of Akt phosphorylation. PMID:24580756

  9. Biological activities of Fructus arctii fermented with the basidiomycete Grifola frondosa.

    PubMed

    Kim, Jin-Hwa; Bae, Jun-Tae; Song, Min-Hyeon; Lee, Geun-Su; Choe, Soo-Young; Pyo, Hyeong-Bae

    2010-12-01

    Fructus arctii extract containing phenolic glycosides was cultured with Grifola frondosa mycelia to produce β-glucosidase and its biological activities were studied. This β-glucosidase converted the glycosides (arctiin and caffeic acid derivatives) into aglycones (arctigenin and caffeic acid). Fermented Fructus arctii extract (G-FAE) with G. frondosa had antioxidant and 5-lipoxygenase inhibitory activities. The photoprotective potential of G-FAE was tested in human dermal fibroblasts (HDF) exposed to ultra-violet A (UVA). It was revealed that G-FAE had an inhibitory effect on human interstitial collagenase (matrix metalloproteinase, MMP-1) expression in UVA-irradiated HDF. The treatment of UVA-irradiated HDF with G-FAE resulted in a dose-dependent decrease in the expression level of MMP-1 mRNA. G-FAE also showed notable stimulation of collagen biosynthetic activity for fibroblasts. These diverse functionalities suggest that G-FAE could be a promising cosmetic ingredient. PMID:21191759

  10. Effect of Condensed Tannins on Bacterial Diversity and Metabolic Activity in the Rat Gastrointestinal Tract

    PubMed Central

    Smith, Alexandra H.; Mackie, Roderick I.

    2004-01-01

    The effect of dietary condensed tannins (proanthocyanidins) on rat fecal bacterial populations was ascertained in order to determine whether the proportion on tannin-resistant bacteria increased and if there was a change in the predominant bacterial populations. After 3 weeks of tannin diets the proportion of tannin-resistant bacteria increased significantly (P < 0.05) from 0.3% ± 5.5% to 25.3% ± 8.3% with a 0.7% tannin diet and to 47.2% ± 5.1% with a 2% tannin diet. The proportion of tannin-resistant bacteria returned to preexposure levels in the absence of dietary tannins. A shift in bacterial populations was confirmed by molecular fingerprinting of fecal bacterial populations by denaturing gradient gel electrophoresis (DGGE). Posttreatment samples were generally still distinguishable from controls after 3.5 weeks. Sequence analysis of DGGE bands and characterization of tannin-resistant isolates indicated that tannins selected for Enterobacteriaceae and Bacteroides species. Dot blot quantification confirmed that these gram-negative bacterial groups predominated in the presence of dietary tannins and that there was a corresponding decrease in the gram-positive Clostridium leptum group and other groups. Metabolic fingerprint patterns revealed that functional activities of culturable fecal bacteria were affected by the presence of tannins. Condensed tannins of Acacia angustissima altered fecal bacterial populations in the rat gastrointestinal tract, resulting in a shift in the predominant bacteria towards tannin-resistant gram-negative Enterobacteriaceae and Bacteroides species. PMID:14766594

  11. Matrix Effects on the Stability and Antioxidant Activity of Red Cabbage Anthocyanins under Simulated Gastrointestinal Digestion

    PubMed Central

    Podsędek, Anna; Koziołkiewicz, Maria

    2014-01-01

    Red cabbage is, among different vegetables, one of the major sources of anthocyanins. In the present study an in vitro digestion method has been used to assay the influence of the physiological conditions in the stomach and small intestine, as well as faecal microflora on anthocyanins stability in red cabbage and anthocyanin-rich extract. The recovery of anthocyanins during in vitro gastrointestinal digestion was strongly influenced by food matrix. The results showed that other constituents present in cabbage enhanced the stability of anthocyanins during the digestion. The amount of anthocyanins (HPLC method) and antioxidant capacity (ABTS and FRAP assays) strongly decreased after pancreatic-bile digestion in both matrices but total phenolics content (Folin-Ciocalteu assay) in these digestions was higher than in initial samples. Incubation with human faecal microflora caused further decline in anthocyanins content. The results obtained suggest that intact anthocyanins in gastric and products of their decomposition in small and large intestine may be mainly responsible for the antioxidant activity and other physiological effects after consumption of red cabbage. PMID:24575407

  12. Mechanisms of Electrical Activation and Conduction in the Gastrointestinal System: Lessons from Cardiac Electrophysiology.

    PubMed

    Tse, Gary; Lai, Eric Tsz Him; Yeo, Jie Ming; Tse, Vivian; Wong, Sunny Hei

    2016-01-01

    The gastrointestinal (GI) tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP) are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field. PMID:27303305

  13. Nitrogenase diversity and activity in the gastrointestinal tract of the wood-eating catfish Panaque nigrolineatus.

    PubMed

    McDonald, Ryan; Zhang, Fan; Watts, Joy E M; Schreier, Harold J

    2015-12-01

    The Amazonian catfish, Panaque nigrolineatus, consume large amounts of wood in their diets. The nitrogen-fixing community within the gastrointestinal (GI) tract of these catfish was found to include nifH phylotypes that are closely related to Clostridium sp., Alpha and Gammaproteobacteria, and sequences associated with GI tracts of lower termites. Fish fed a diet of sterilized palm wood were found to contain nifH messenger RNA within their GI tracts, displaying high sequence similarity to the nitrogen-fixing Bradyrhizobium group. Nitrogenase activity, measured by acetylene reduction assays, could be detected in freshly dissected GI tract material and also from anaerobic enrichment cultures propagated in nitrogen-free enrichment media; nifH sequences retrieved from these cultures were dominated by Klebsiella- and Clostridium-like sequences. Microscopic examination using catalyzed reporter deposition-enhanced immunofluorescence revealed high densities of nitrogenase-containing cells colonizing the woody digesta within the GI tract, as well as cells residing within the intestinal mucous layer. Our findings suggest that the P. nigrolineatus GI tract provides a suitable environment for nitrogen fixation that may facilitate production of reduced nitrogen by the resident microbial population under nitrogen limiting conditions. Whether this community is providing reduced nitrogen to the host in an active or passive manner and whether it is present in a permanent or transient relationship remains to be determined. The intake of a cellulose rich diet and the presence of a suitable environment for nitrogen fixation suggest that the GI tract microbial community may allow a unique trophic niche for P. nigrolineatus among fish. PMID:25909976

  14. Nitrogenase diversity and activity in the gastrointestinal tract of the wood-eating catfish Panaque nigrolineatus

    PubMed Central

    McDonald, Ryan; Zhang, Fan; Watts, Joy E M; Schreier, Harold J

    2015-01-01

    The Amazonian catfish, Panaque nigrolineatus, consume large amounts of wood in their diets. The nitrogen-fixing community within the gastrointestinal (GI) tract of these catfish was found to include nifH phylotypes that are closely related to Clostridium sp., Alpha and Gammaproteobacteria, and sequences associated with GI tracts of lower termites. Fish fed a diet of sterilized palm wood were found to contain nifH messenger RNA within their GI tracts, displaying high sequence similarity to the nitrogen-fixing Bradyrhizobium group. Nitrogenase activity, measured by acetylene reduction assays, could be detected in freshly dissected GI tract material and also from anaerobic enrichment cultures propagated in nitrogen-free enrichment media; nifH sequences retrieved from these cultures were dominated by Klebsiella- and Clostridium-like sequences. Microscopic examination using catalyzed reporter deposition-enhanced immunofluorescence revealed high densities of nitrogenase-containing cells colonizing the woody digesta within the GI tract, as well as cells residing within the intestinal mucous layer. Our findings suggest that the P. nigrolineatus GI tract provides a suitable environment for nitrogen fixation that may facilitate production of reduced nitrogen by the resident microbial population under nitrogen limiting conditions. Whether this community is providing reduced nitrogen to the host in an active or passive manner and whether it is present in a permanent or transient relationship remains to be determined. The intake of a cellulose rich diet and the presence of a suitable environment for nitrogen fixation suggest that the GI tract microbial community may allow a unique trophic niche for P. nigrolineatus among fish. PMID:25909976

  15. Mechanisms of Electrical Activation and Conduction in the Gastrointestinal System: Lessons from Cardiac Electrophysiology

    PubMed Central

    Tse, Gary; Lai, Eric Tsz Him; Yeo, Jie Ming; Tse, Vivian; Wong, Sunny Hei

    2016-01-01

    The gastrointestinal (GI) tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP) are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field. PMID:27303305

  16. Microbial community analysis during continuous fermentation of thermally hydrolysed waste activated sludge.

    PubMed

    Cirne, D G; Bond, P; Pratt, S; Lant, P; Batstone, D J

    2012-01-01

    Acidogenic fermentation of thermally hydrolysed waste activated sludge was carried out at laboratory scale in two reactors operated under different hydraulic retention times (HRT). Process performance was assessed in terms of volatile fatty acid (VFA) composition and yield. The diversity of the microbial population was investigated by constructing a 16S rRNA gene library and subsequent phylogenetic analysis of clones. Fluorescence in situ hybridization (FISH) was used to assess the relative abundance of different bacterial groups. Bacteroidetes and Firmicutes were the dominant taxonomic groups representing 93% of the total sequences obtained in the reactor with 4 d HRT. A similar VFA yield (0.4-0.5 g VFA(COD) g SCOD(-1)) was obtained for the HRTs tested (1-4 d), indicating that extended retention times were not useful. Within Firmicutes, Clostridia was the major group detected in the clone sequences. These had close affiliation to Sporanaerobacter acetigenes, suggesting organisms of this group were important for hydrolysis of the protein fraction of the substrate. However, FISH analysis failed to detect the major portion of the bacteria, and this is most likely due to the lack of appropriate probes. This work emphasizes the diversity of fermentative communities, and indicates that more work is needed to identify and detect the important members. PMID:22173402

  17. Evaluation of surfactants on waste activated sludge fermentation by pyrosequencing analysis.

    PubMed

    Zhou, Aijuan; Liu, Wenzong; Varrone, Cristiano; Wang, Youzhao; Wang, Aijie; Yue, Xiuping

    2015-09-01

    The effects of three widely-used surfactants on waste activated sludge (WAS) fermentation and microbial community structures were investigated. Rhamnolipid bio-surfactants (RL) showed more positive effects on WAS hydrolysis and acidification compared to chemosynthetic surfactants, such as sodium dodecylsulphate (SDS) and sodium dodecyl benzene sulfonate (SDBS). The highest SCOD and VFAs concentrations obtained with RL were 1.15-fold and 1.16-fold that of SDS, and up to 1.73 and 3.63 times higher than those obtained with SDBS. Pyrosequencing analysis showed that an evident reduction in bacterial diversity in surfactant-treated WAS. Moreover, acid-producing bacteria (such as Megasphaera and Oscillibacter), detected with RL, were (6.8% and 6.4% in proportion) more abundant than with SDS, and were rarely found in SDBS and the control. The results also revealed that RL allowed efficient hydrolysis enhancement and was favorable to functional microorganisms for further acidification during WAS fermentation. PMID:26081163

  18. Herbicidal Activity of Glucosinolate Degradation Products in Fermented Meadowfoam (Limnanthes alba) Seed Meal

    PubMed Central

    STEVENS, JAN F.; REED, RALPH L.; ALBER, SUSAN; PRITCHETT, LARRY; MACHADO, STEPHEN

    2009-01-01

    Meadowfoam (Limnanthes alba) is an oilseed crop grown in western Oregon. After extraction of the oil from the seeds, the remaining seed meal contains 2-4% of the glucosinolate, glucolimnanthin. We investigated the effect of fermentation of seed meal on its chemical composition and the effect of the altered composition on downy brome (Bromus tectorum) coleoptile emergence. Incubation of enzyme-inactive seed meal with enzyme-active seeds (1% by weight) resulted in complete degradation of glucolimnanthin and formation of 3-methoxybenzyl isothiocyanate in 28% yield. Fermentation in the presence of an aqueous solution of FeSO4 (10 mM) resulted in the formation of 3-methoxyphenylacetonitrile and 2-(3-methoxyphenyl)ethanethioamide, a novel natural product. The formation of the isothiocyanate, the nitrile and the thioamide, as a total, correlated with an increase of herbicidal potency of seed meal (r2 = 0.96). The results of this study open new possibilities for the refinement of glucosinolate-containing seed meals for use as bioherbicides. PMID:19170637

  19. Starter Culture Selection for Making Chinese Sesame-Flavored Liquor Based on Microbial Metabolic Activity in Mixed-Culture Fermentation

    PubMed Central

    Wu, Qun; Ling, Jie

    2014-01-01

    Selection of a starter culture with excellent viability and metabolic activity is important for inoculated fermentation of traditional food. To obtain a suitable starter culture for making Chinese sesame-flavored liquor, the yeast and bacterium community structures were investigated during spontaneous and solid-state fermentations of this type of liquor. Five dominant species in spontaneous fermentation were identified: Saccharomyces cerevisiae, Pichia membranaefaciens, Issatchenkia orientalis, Bacillus licheniformis, and Bacillus amyloliquefaciens. The metabolic activity of each species in mixed and inoculated fermentations of liquor was investigated in 14 different cocultures that used different combinations of these species. The relationships between the microbial species and volatile metabolites were analyzed by partial least-squares (PLS) regression analysis. We found that S. cerevisiae was positively correlated to nonanal, and B. licheniformis was positively associated with 2,3-butanediol, isobutyric acid, guaiacol, and 4-vinyl guaiacol, while I. orientalis was positively correlated to butyric acid, isovaleric acid, hexanoic acid, and 2,3-butanediol. These three species are excellent flavor producers for Chinese liquor. Although P. membranaefaciens and B. amyloliquefaciens were not efficient flavor producers, the addition of them alleviated competition among the other three species and altered their growth rates and flavor production. As a result, the coculture of all five dominant species produced the largest amount of flavor compounds. The result indicates that flavor producers and microbial interaction regulators are important for inoculated fermentation of Chinese sesame-flavored liquor. PMID:24814798

  20. Use of the dynamic gastro-intestinal model TIM to explore the survival of the yogurt bacterium Streptococcus thermophilus and the metabolic activities induced in the simulated human gut.

    PubMed

    Uriot, Ophélie; Galia, Wessam; Awussi, Ahoefa Ablavi; Perrin, Clarisse; Denis, Sylvain; Chalancon, Sandrine; Lorson, Emilie; Poirson, Chantal; Junjua, Maira; Le Roux, Yves; Alric, Monique; Dary, Annie; Blanquet-Diot, Stéphanie; Roussel, Yvonne

    2016-02-01

    Streptococcus thermophilus, a lactic acid bacterium used to produce yogurts and cheeses is more and more considered for its potential probiotic properties. This implies that additional information should be obtained regarding its survival and metabolic activity in the human Gastro-Intestinal Tract (GIT). In this study, we screened 30 S. thermophilus strains for urease, small heat shock protein, and amino-acid decarboxylase functions which may play a role in survival in the upper part of the GIT. The survival kinetics of 4 strains was investigated using the TIM, a physiologically relevant in vitro dynamic gastric and small intestinal model. The three strains LMD9, PB18O and EBLST20 showed significantly higher survival than CNRZ21 in all digestive compartments of the TIM, which may be related to the presence of urease and heat shock protein functions. When LMD9 bacterial cells were delivered in a fermented milk formula, a significant improvement of survival in the TIM was observed compared to non-fermented milk. With the RIVET (Recombinase In Vivo Expression Technology) method applied to the LMD9 strain, a promoter located upstream of hisS, responsible for the histidyl-transfer RNA synthesis, was found to be specifically activated in the artificial stomach. The data generated on S. thermophilus survival and its adaptation capacities to the digestive tract are essential to establish a list of biomarkers useful for the selection of probiotic strains. PMID:26611166

  1. The effect of monensin concentration on dry matter intake, ruminal fermentation, short-chain fatty acid absorption, total tract digestibility, and total gastrointestinal barrier function in beef heifers.

    PubMed

    Wood, K M; Pinto, A C J; Millen, D D; Kanafany Guzman, R; Penner, G B

    2016-06-01

    In a 4 × 4 Latin square design (24-d periods), 4 ruminally cannulated Hereford × Angus/Simmental heifers were used to evaluate the effect of increasing levels of monensin concentration on DMI, ruminal fermentation, short-chain fatty acid (SCFA) absorption across the reticulorumen, and total tract barrier function. Heifers were fed a barley-based finishing diet (76% rolled barley grain, 12% barley silage, 8% mineral and vitamin supplement, and 4% canola meal) containing 0, 22, 33 or 48 mg/kg monensin. Urinary recovery of Cr-EDTA was used as an indicator of total tract barrier function (d 18 to 20). Days 20 to 23 were used to evaluate ruminal fermentation and total tract digestibility measurements, and SCFA absorption was measured using the temporarily isolated and washed reticulorumen technique on d 24. Data were analyzed using PROC MIXED of SAS with linear and quadratic contrasts to evaluate the effect of increasing monensin dose. Increasing monensin linearly decreased DMI (10.0, 9.9, 9.3, and 9.1 kg/d for diets containing 0, 22, 33 or 48 mg/kg monensin, respectively; = 0.01) but did not affect the variation in DMI among days. Urinary Cr-EDTA recovery was not ( ≥ 0. 61) affected by increasing dose of monensin, nor was ruminal pH (mean, minimum, maximum, duration less than 5.5, and area under curve; ≥ 0.21). The acetate-to-propionate ratio linearly decreased (1.9, 1.8, 1.4, and 1.3 for diets containing 0, 22, 33 or 48 mg/kg monensin, respectively; = 0.03) with increasing monensin. There was no response ( ≥ 0. 17) for the rate of SCFA absorption with monensin concentration. Total tract ethanol soluble carbohydrate digestibility linearly increased (77.2, 84.7, 88.0, and 94.0% for diets containing 0, 22, 33 or 48 mg/kg monensin, respectively; = 0.003) whereas starch digestibility quadratically responded (93.8, 93.9, 88.0, and 94.0% for diets containing 0, 22, 33 or 48 mg/kg monensin, respectively; < 0.001), where 33 mg/kg inclusion of monensin had a minimal

  2. Effect of polyhydroxyalkanoates on dark fermentative hydrogen production from waste activated sludge.

    PubMed

    Wang, Dongbo; Zeng, Guangming; Chen, Yinguang; Li, Xiaoming

    2015-04-15

    Polyhydroxyalkanoates (PHA), an intracellular energy and carbon storage polymer, can be accumulated in activated sludge in substantial quantities under wastewater dynamic treatment (i.e., substrate feast-famine) conditions. However, its influence on hydrogen production has never been investigated before. This study therefore evaluated the influences of PHA level and composition in waste activated sludge (WAS) on hydrogen production. The results showed that with the increase of sludge PHA content from 25 to 178 mg per gram volatile suspended solids (VSS) hydrogen production from WAS alkaline anaerobic fermentation increased from 26.5 to 58.7 mL/g VSS. The composition of PHA was also found to affect hydrogen production. When the dominant composition shifted from polyhydroxybutyrate (PHB) to polyhydroxyvalerate (PHV), the amount of generated hydrogen decreased from 51.2 to 41.1 mL/g VSS even under the same PHA level (around 130 mg/g VSS). The mechanism studies exhibited that the increased PHA content accelerated both the cell solubilization and the hydrolysis process of solubilized substrates. Compared with the PHB-dominant sludge, the increased PHV fraction not only slowed the hydrolysis process but also caused more propionic acid production, with less theoretical hydrogen generation in this fermentation type. It was also found that the increased PHA content enhanced the soluble protein conversion of non-PHA biomass. Further investigations with enzyme analyses showed that both the key hydrolytic enzyme activities and hydrogen-forming enzyme activities were in the sequence of the PHB-dominant sludge > the PHV-dominant sludge > the low PHA sludge, which was in accord with the observed order of hydrogen yield. PMID:25697693

  3. Chitin extraction from crab shells by Bacillus bacteria. Biological activities of fermented crab supernatants.

    PubMed

    Hajji, Sawssen; Ghorbel-Bellaaj, Olfa; Younes, Islem; Jellouli, Kemel; Nasri, Moncef

    2015-08-01

    Crab shells waste were fermented using six protease-producing Bacillus species (Bacillus subtilis A26, Bacillus mojavensis A21, Bacillus pumilus A1, Bacillus amyloliquefaciens An6, Bacillus licheniformis NH1 and Bacillus cereus BG1) for the production of chitin and fermented-crab supernatants (FCSs). In medium containing only crab shells, the highest demineralization DM was obtained with B. licheniformis NH1 (83±0.5%) and B. pumilus A1 (80±0.6%), while the highest deproteinization (DP) was achieved with A1 (94±1%) followed by NH1 (90±1.5%) strains. Cultures conducted in medium containing crab shells waste supplemented with 5% (w/v) glucose, were found to remarkably promote demineralization efficiency, and enhance slightly deproteinization rates. FTIR spectra of chitins showed the characteristics bands of α-chitin. FCSs showed varying degrees of antioxidant activities which were in a dose-dependent manner (p<0.01). In fact, FCS produced by B. amyloliquefaciens An6 exhibited the highest DPPH free radical-scavenging activity (92% at 4 mg/ml), while the lowest hydroxyl radical-scavenging activity (60% at 4 mg/ml) was obtained with B. subtilis A26 hydrolysates. However, the highest reducing power (OD700nm=2 at 0.5 mg/ml) was obtained by B.amyloliquefaciens An6 hydrolysates. These results suggest that crab hydrolysates are good sources of natural antioxidants. Further, FCSs were found to exhibit antibacterial activity against Gram-positive and Gram-negative bacteria. PMID:25910648

  4. Production and anti-diabetic activity of soluble dietary fiber from apricot pulp by Trichoderma viride fermentation.

    PubMed

    Cui, Jie; Gu, Xin; Zhang, Qiaohui; Ou, Yangjie; Wang, Jianzhong

    2015-05-01

    Soluble dietary fiber (SDF) was prepared by Trichoderma viride fermentation by using apricot pulp as the raw material. A four-factor and three-level response surface methodology was applied to optimize the fermentation conditions affecting the extraction rate of SDF. The optimum fermentation conditions were listed: crude enzyme volume, 9.59 mL g(-1); fermentation temperature, 43 °C; initial pH, 5.36; fermentation time, 6.47 h. Under these conditions, 15.69% yield was obtained and its relative error with the predicted theoretical value (15.87%) was 1.14%. The dietary fiber content of SDF was 84.0% whereas it was found to be 43.1% in apricot pulp flour. The anti-diabetic effect of apricot pulp SDF on rat models of diabetes was investigated. Both the blood glucose level and body weight were significantly changed in apricot pulp SDF-treated groups compared with the diabetic group (p < 0.01) after intragastric administration for 28 days. In addition, SDF elicited inhibitory effects on the α-glucosidase activity with an IC50 of 17.458 mg mL(-1). These results implied that apricot pulp SDF relieved the symptoms of diabetic rats. PMID:25882161

  5. Polycyclic Aromatic Hydrocarbon Affects Acetic Acid Production during Anaerobic Fermentation of Waste Activated Sludge by Altering Activity and Viability of Acetogen.

    PubMed

    Luo, Jingyang; Chen, Yinguang; Feng, Leiyu

    2016-07-01

    Till now, almost all the studies on anaerobic fermentation of waste activated sludge (WAS) for bioproducts generation focused on the influences of operating conditions, pretreatment methods and sludge characteristics, and few considered those of widespread persistent organic pollutants (POPs) in sludge, for example, polycyclic aromatic hydrocarbons (PAHs). Herein, phenanthrene, which was a typical PAH and widespread in WAS, was selected as a model compound to investigate its effect on WAS anaerobic fermentation for short-chain fatty acids (SCFAs) accumulation. Experimental results showed that the concentration of SCFAs derived from WAS was increased in the presence of phenanthrene during anaerobic fermentation. The yield of acetic acid which was the predominant SCFA in the fermentation reactor with the concentration of 100 mg/kg dry sludge was 1.8 fold of that in the control. Mechanism exploration revealed that the present phenanthrene mainly affected the acidification process of anaerobic fermentation and caused the shift of the microbial community to benefit the accumulation of acetic acid. Further investigation showed that both the activities of key enzymes (phosphotransacetylase and acetate kinase) involved in acetic acid production and the quantities of their corresponding encoding genes were enhanced in the presence of phenanthrene. Viability tests by determining the adenosine 5'-triphosphate content and membrane potential confirmed that the acetogens were more viable in anaerobic fermentation systems with phenanthrene, which resulted in the increased production of acetic acid. PMID:27267805

  6. Alterations in enterocyte mitochondrial respiratory function and enzyme activities in gastrointestinal dysfunction following brain injury

    PubMed Central

    Zhu, Ke-Jun; Huang, Hong; Chu, Hui; Yu, Hang; Zhang, Shi-Ming

    2014-01-01

    ± 6, day 7: 88 ± 11, P < 0.01). The changes in α-ketoglutaric dehydrogenase (KGDH) activity were similar to PDH, except that the decrease in KGDH activity began at 12 h after TBI (12 h: 90 ± 12, 24 h: 80 ± 9, day 2: 76 ± 15, day 3: 68 ± 7, day 7: 90 ± 13, P < 0.01). No significant change in malate dehydrogenase (MDH) activity was observed. CONCLUSION: Rat enterocyte mitochondrial respiratory function and enzyme activities are inhibited following TBI. Mitochondrial dysfunction may play an important role in TBI-induced gastrointestinal dysfunction. PMID:25071356

  7. Differential effects on the cyanogenic glycoside content of fermenting cassava root pulp by beta-glucosidase and microbial activities.

    PubMed

    Maduagwu, E N

    1983-03-01

    The degradation of cyanogenic glycosides was studied in spontaneously fermenting cassava root pulp and in fresh pulp samples pretreated to prevent either endogenous beta-glycosidase activity, fermentation, or both. The rate of disappearance of the glycosides, as measured by hydrocyanic acid (HCN) production in situ, in membrane-sterilised media or in samples containing 1% sodium iodoacetate, was comparable with the untreated control in which 85% of the substrate was broken down within 72 h. Pretreatment of the fresh pulp with the beta-glucosidase inhibitor 1,5-gluconolactone (1%) markedly reduced the rate of disappearance of the cyanogens while inclusion of glucose in this test medium at the 3% level appeared to induce some hydrolysis. Loss of bound (glycosidic) cyanide in sterilised medium containing the glucosidase inhibitor was negligible. The results suggest that the contribution of the fermentation process in cyanide detoxification of pulped cassava roots is minimal. PMID:6404010

  8. Gastrointestinal fistula

    MedlinePlus

    Entero-enteral fistula; Enterocutaneous fistula; Fistula - gastrointestinal ... cause diarrhea , malabsorption of nutrients, and dehydration . Entero-enteral fistulas may have no symptoms. Enterocutaneous fistulas cause ...

  9. Influence of solid state fermentation by Trichoderma spp. on solubility, phenolic content, antioxidant, and antimicrobial activities of commercial turmeric.

    PubMed

    Mohamed, Saleh A; Saleh, Rashad M; Kabli, Saleh A; Al-Garni, Saleh M

    2016-05-01

    The influence of solid state fermentation (SSF) by Trichoderma spp. on the solubility, total phenolic content, antioxidant, and antibacterial activities of turmeric was determined and compared with unfermented turmeric. The solubility of turmeric was monitored by increase in its phenolic content. The total phenolic content of turmeric extracted by 80% methanol and water after SSF by six species of Trichoderma spp. increased significantly from 2.5 to 11.3-23.3 and from 0.5 to 13.5-20.4 GAE/g DW, respectively. The antioxidant activities of fermented turmeric were enhanced using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS), and ferric ion-reducing antioxidant power (FRAP) assays. The antibacterial activity of fermented turmeric against human-pathogenic bacteria Escherichia coli, Streptococcus agalactiae, Staphylococcus aureus, Entreococcus faecalis, Methicillin-Resistant S. aureus, Klebsiella pneumonia, and Pseudomonas aeruginosae showed a broad spectrum inhibitory effect. In conclusion, the results indicated the potentials of using fermented turmeric as natural antioxidant and antimicrobial material for food applications. PMID:27023794

  10. Novel endomorphin-1 analogs with C-terminal oligoarginine-conjugation display systemic antinociceptive activity with less gastrointestinal side effects.

    PubMed

    Wang, Chang-lin; Qiu, Ting-ting; Diao, Yu-xiang; Zhang, Yao; Gu, Ning

    2015-09-01

    In recent study, in order to improve the bioavailability of endomorphin-1 (EM-1), we designed and synthesized a series of novel EM-1 analogs by replacement of L-Pro(2) by β-Pro, D-Ala or Sar, together with C-terminal oligoarginine-conjugation. Our results indicated that the introduction of D-Ala and β-Pro in position 2, along with oligoarginine-conjugation, didn't significantly decrease the μ-affinity and in vitro bioactivity, and the enhancement of arginine residues did not markedly influence the μ-affinity of these analogs. All analogs displayed a significant enhancement of stability, which may be due to increased resistance to proline-specific enzymatic degradation. Moreover, following intracerebroventricular (i.c.v.) administration, analogs 1, 2, 4 and 5 produced significant antinociception and increased duration of action, with the ED50 values being about 1.8- to 4.2-fold less potent than that of EM-1. In addition, our results indicated that no significant antinociceptive activity of EM-1 was seen following subcutaneous (s.c.) injection, whereas analogs 1, 2, 4 and 5 with equimolar dose induced significant and prolonged antinociception by an opioid and central mechanism. Herein, we further examined the gastrointestinal transit and colonic propulsive latencies of EM-1 and its four analogs administered centrally and peripherally. I.c.v. administration of EM-1 and analogs 1, 2, 4 and 5 significantly delayed gastrointestinal transit and colonic bead propulsion in mice, but the inhibitory effects induced by these analogs were largely attenuated. It is noteworthy that no significant gastrointestinal side effects induced by these four analogs were observed after s.c. administration. Our results demonstrated that combined modifications of EM-1 with unnatural amino acid substitutions and oligoarginine-conjugation gave an efficient strategy to improve the analgesic profile of EM-1 analogs but with less gastrointestinal side effects when administered peripherally

  11. In vitro Screening of Essential Oil Active Compounds for Manipulation of Rumen Fermentation and Methane Mitigation.

    PubMed

    Joch, M; Cermak, L; Hakl, J; Hucko, B; Duskova, D; Marounek, M

    2016-07-01

    The objective of this study was to investigate the effects of 11 active compounds of essential oils (ACEO) on rumen fermentation characteristics and methane production. Two trials were conducted. In trial 1, ACEO (eugenol, carvacrol, citral, limonene, 1,4-cineole, p-cymene, linalool, bornyl acetate, α-pinene, and β-pinene) at a dose of 1,000 μL/L were incubated for 24 h in diluted rumen fluid with a 70:30 forage:concentrate substrate (16.2% crude protein; 36.6% neutral detergent fiber). Three fistulated Holstein cows were used as donors of rumen fluid. The reduction in methane production was observed with nine ACEO (up to 86% reduction) compared with the control (p<0.05). Among these, only limonene, 1,4-cineole, bornyl acetate, and α-pinene did not inhibit volatile fatty acid (VFA) production, and only bornyl acetate produced less methane per mol of VFA compared with the control (p<0.05). In a subsequent trial, the effects on rumen fermentation and methane production of two concentrations (500 and 2,000 μL/L) of bornyl acetate, the most promising ACEO from the first trial, were evaluated using the same in vitro incubation method that was used in the first trial. In trial 2, monensin was used as a positive control. Both doses of bornyl acetate decreased (p<0.05) methane production and did not inhibit VFA production. Positive effects of bornyl acetate on methane and VFA production were more pronounced than the effects of monensin. These results confirm the ability of bornyl acetate to decrease methane production, which may help to improve the efficiency of energy use in the rumen. PMID:26954157

  12. In vitro Screening of Essential Oil Active Compounds for Manipulation of Rumen Fermentation and Methane Mitigation

    PubMed Central

    Joch, M.; Cermak, L.; Hakl, J.; Hucko, B.; Duskova, D.; Marounek, M.

    2016-01-01

    The objective of this study was to investigate the effects of 11 active compounds of essential oils (ACEO) on rumen fermentation characteristics and methane production. Two trials were conducted. In trial 1, ACEO (eugenol, carvacrol, citral, limonene, 1,4-cineole, p-cymene, linalool, bornyl acetate, α-pinene, and β-pinene) at a dose of 1,000 μL/L were incubated for 24 h in diluted rumen fluid with a 70:30 forage:concentrate substrate (16.2% crude protein; 36.6% neutral detergent fiber). Three fistulated Holstein cows were used as donors of rumen fluid. The reduction in methane production was observed with nine ACEO (up to 86% reduction) compared with the control (p<0.05). Among these, only limonene, 1,4-cineole, bornyl acetate, and α-pinene did not inhibit volatile fatty acid (VFA) production, and only bornyl acetate produced less methane per mol of VFA compared with the control (p<0.05). In a subsequent trial, the effects on rumen fermentation and methane production of two concentrations (500 and 2,000 μL/L) of bornyl acetate, the most promising ACEO from the first trial, were evaluated using the same in vitro incubation method that was used in the first trial. In trial 2, monensin was used as a positive control. Both doses of bornyl acetate decreased (p<0.05) methane production and did not inhibit VFA production. Positive effects of bornyl acetate on methane and VFA production were more pronounced than the effects of monensin. These results confirm the ability of bornyl acetate to decrease methane production, which may help to improve the efficiency of energy use in the rumen. PMID:26954157

  13. Terpenoid bioactive compound from Streptomyces rochei (M32): taxonomy, fermentation and biological activities.

    PubMed

    Pazhanimurugan, Raasaiyah; Radhakrishnan, Manikkam; Shanmugasundaram, Thangavel; Gopikrishnan, Venugopal; Balagurunathan, Ramasamy

    2016-10-01

    The present study emphasized the production of biologically active terpenoid compound from Streptomyces rochei M32, which was isolated from Western Ghats ecosystem, South India. The presence of resistant genes like mecA, vanA of Staphylococcus aureus and bla SHV, bla TEM of Pseudomonas aeruginosa was confirmed by molecular studies. The isolated compound from Streptomyces rochei M32 inhibited wide range of standard and clinical drug resistant pathogens and enteric pathogens. The rice bran supplemented basal medium influenced the active compound production on 8th day of fermentation and yielded 1875 mg of crude extract from 10 g of rice bran substrate. Purification and characterization of crude ethyl acetate extract was achieved by preparative thin layer chromatography. The active fraction was identified as terpenoid class compound by chemical screening. Based on the results of spectral studies (NMR, LC-MS, FTIR, etc.), the active compound was tentatively identified as 1, 19-bis (3-hydroxyazetidin-1-yl) nonadeca-5, 14-diene-1, 8, 12, 19-tetraone with molecular weight 462.41 g/mol. Minimum inhibitory concentration value ranges between 7.6 and 31.2 µg/mL against test organisms was observed. The cytotoxicity results on cervical cancer (HeLa) cell line showed IC50 value of 2.034 µg/mL. The corresponding compound is not previously reported from any microbial resources. PMID:27562595

  14. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr

    SciTech Connect

    Apel, William; Peyton, Brent; Gerlach, Robin; Lee, Brady

    2006-06-01

    Predicting the potential migration of metals and radionuclides from waste pits and trenches will require understanding the effects of carbon and electron flow through these environments. Important aspects of this flow include the physiological activity of cellulolytic and non-cellulolytic fermentative microbial populations, as well as the subsequent activity of metal and radionuclide reducing bacteria. The activity of subsurface fermentative microbial populations is significantly understudied even though these organisms can affect contaminant migration by at least two mechanisms. In the first mechanism, products of the fermentation process can act as chelators for metals and radionuclides increasing their transport through underlying geological media. The second mechanism is the reduction and immobilization of metals and radionuclides since some fermentative bacteria have been shown to directly reduce metals and radionuclides, while their fermentation products can provide carbon and energy for respiratory metal reducing bacteria that can also reduce oxidized metals and radionuclides.

  15. Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae.

    PubMed

    Schmidt, Cristiano G; Gonçalves, Letícia M; Prietto, Luciana; Hackbart, Helen S; Furlong, Eliana B

    2014-03-01

    The solid-state fermentation (SSF) has been employed as a form making available a higher content of functional compounds from agroindustrial wastes. In this work, the effect of SSF with the Rhizopus oryzae fungus on the phenolic acid content of rice bran was studied. Phenolic extracts derived from rice bran and fermented rice bran were evaluated for their ability to reduce free radical 1,1-diphenyl-2-picrihidrazil (DPPH) and for the ability to inhibit the enzymes peroxidase and polyphenol oxidase. The phenolic compound content increased by more than two times with fermentation. A change in the content of phenolic acids was observed, with ferulic acid presenting the greatest increase with the fermentation, starting from 33μg/g in rice bran and reaching 765μg/g in the fermented bran. [corrected]. The phenolic extracts showed an inhibition potential for DPPH and for the peroxidase enzyme, however did not inhibit the polyphenol oxidase enzyme. PMID:24176356

  16. Improvement of methane production from waste activated sludge by on-site photocatalytic pretreatment in a photocatalytic anaerobic fermenter.

    PubMed

    Liu, Chunguang; Shi, Wansheng; Li, Huifang; Lei, Zhongfang; He, Leilei; Zhang, Zhenya

    2014-03-01

    This paper reports a new technology that using on-site TiO2-photocatalytic pretreatment in the anaerobic digestion of waste activated sludge (WAS) can enhance WAS degradation and methane production in a novel photocatalytic anaerobic fermenter. The fermenter consists of a photocatalytic unit and a digestion unit. The photocatalytic unit can constantly supply soluble organics and has less negative effect on the activity of methanogens at the optimal photocatalytic time of 4h per day. After anaerobic digestion for 35days, 1266.7ml/l-sludge of methane, 67.4% of volatile solid (VS) reduction and 60.5% of total chemical oxygen demand (TCOD) removal were achieved in the photocatalytic anaerobic fermenter, compared with 923.2ml/l-sludge of methane, 48.9% of VS reduction and 43.5% TCOD removal in the control fermenter. The results indicate that timely utilization of solubilized organics by methanogens could avoid further mineralization by TiO2-photocatalysis, which not only improves methane production but also enhances WAS degradation. PMID:24462880

  17. Enhanced anti-oxidative activity and lignocellulosic ethanol production by biotin addition to medium in Pichia guilliermondii fermentation.

    PubMed

    Qi, Kai; Xia, Xiao-Xia; Zhong, Jian-Jiang

    2015-01-01

    Commercialization of lignocellulosic ethanol fermentation requires its high titer, but the reactive oxygen species (ROS) accumulation during the bioprocess damaged the cells and compromised this goal. To improve the cellular anti-oxidative activity during non-detoxified corncob residue hydrolysate fermentation, seed cells were prepared to possess a higher level of intracellular biotin pool (IBP), which facilitated the biosyntheses of catalase and porphyrin. As a result, the catalase activity increased by 1.3-folds compared to control while the ROS level reduced by 50%. Cell viability in high-IBP cells was 1.7-folds of control and the final ethanol titer increased from 31.2 to 41.8 g L(-1) in batch fermentation. The high-IBP cells were further used for repeated-batch fermentation in the non-detoxified lignocellulosic hydrolysate, and the highest titer and average productivity of ethanol reached 63.7 g L(-1) and 1.2 g L(-1)h(-1). The results were favorable to future industrial application of this lignocellulosic bioethanol process. PMID:25864029

  18. Maximizing the utilization of Laminaria japonica as biomass via improvement of alginate lyase activity in a two-phase fermentation system.

    PubMed

    Oh, Yuri; Xu, Xu; Kim, Ji Young; Park, Jong Moon

    2015-08-01

    Brown seaweed contains up to 67% of carbohydrates by dry weight and presents high potential as a polysaccharide feedstock for biofuel production. To effectively use brown seaweed as a biomass, degradation of alginate is the major challenge due to its complicated structure and low solubility in water. This study focuses on the isolation of alginate degrading bacteria, determining of the optimum fermentation conditions, as well as comparing the conventional single fermentation system with the two-phase fermentation system which is separately using alginate and mannitol extracted from Laminaria japonica. Maximum yield of organic acids production and volatile solids reduction obtained were 0.516 g/g and 79.7%, respectively, using the two-phase fermentation system in which alginate fermentation was carried out at pH 7 and mannitol fermentation at pH 8. The two-phase fermentation system increased the yield of organic acids production by 1.14 times and led to a 1.45-times reduction of VS when compared to the conventional single fermentation system at pH 8. The results show that the two-phase fermentation system improved the utilization of alginate by separating alginate from mannitol leading to enhanced alginate lyase activity. PMID:26098412

  19. Isolation and biological activity of triglycerides of the fermented mushroom of Coprinus Comatus

    PubMed Central

    2012-01-01

    Background Although many physiological functions of Coprinus comatus have been reported, there has been no report on the antinociceptive activity of Coprinus comatus. Therefore, the objective of the present study is to demonstrate the production, isolation, and biological properties of triglycerides (TFC) of the fermented mushroom of Coprinus comatus. Methods The effects of TFC on cytokines levels, total antioxidant activity, antinociceptive effects in vivo, LD50 and tactile hyperalgesia were analyzed respectively. Results TFC treatment decreased the levels of cytokines and total antioxidant status (TAOS) and inhibited the acetic acid-induced abdominal constrictions in mice. In addition, TFC reduced CFA-induced tactile hyperalgesia in a dose-dependent manner and the LD50 of TFC was determined to be 400 mg/kg. However, TFC did not significantly inhibit the reaction time to thermal stimuli in the hot-plate test. Conclusions TFC showed anti-inflammatory, antioxidant, peripheral antinociceptive and antihyperalgesic activity in various models of inflammatory pain. The data suggest that TFC may be a viable treatment option for inflammatory pain. PMID:22531110

  20. Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybeans by solid state fermentation with Bacillus subtilis BCRC 14715.

    PubMed

    Juan, Ming-Yen; Chou, Cheng-Chun

    2010-08-01

    In the present study, a solid state fermentation of black soybeans with Bacillus subtilis BCRC 14715 was performed. The effect of fermentation on the changes of total phenolic and flavonoid content and antioxidant activities including 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging effect, and Fe(2+)-chelating ability exerted by various solvent (water, 80% methanol, 80% ethanol, 80% acetone) extracts of black soybeans was examined. It was found that fermentation enhanced the total phenolic and flavonoid content as well as antioxidant activity of the black soybean extract. Among the various extracts examined, the acetone extract of fermented black soybeans showed the highest total phenolic and flavonoid content. The acetone extract and the methanol extract of fermented black soybeans showed the highest DPPH free radical-scavenging effect and Fe(2+)-chelating ability, respectively. Analysis of extraction yields showed that the active principle associated with the DPPH radical-scavenging effect was most efficiently extracted from black soybeans using water, regardless of fermentation. Water and methanol effectively extract the Fe(2+)-chelating principles from non-fermented and fermented black soybeans, respectively. PMID:20510775

  1. Antimicrobial activity against Shigella sonnei and probiotic properties of wild lactobacilli from fermented food.

    PubMed

    Zhang, Yingchun; Zhang, Lanwei; Du, Ming; Yi, Huaxi; Guo, Chunfeng; Tuo, Yanfeng; Han, Xue; Li, Jingyan; Zhang, Lili; Yang, Lin

    2011-12-20

    Four lactobacilli strains (Lactobacillus paracasei subp. paracasei M5-L, Lactobacillus rhamnosus J10-L, Lactobacillus casei Q8-L and L. rhamnosus GG (LGG), were systematically assessed for the production of antimicrobial substances active towards Shigella sonnei, Escherichia coli and Salmonella typhimurium. Agar-well assay showed that the four lactobacilli strains displayed strong antibacterial activity towards S. sonnei. The nature of antimicrobial substances was also investigated and shown to be dependent on the production of organic acids, in particular the lactic acid. Time-kill assay showed that the viability of the S. sonnei was decreased by 2.7-3.6logCFU/ml after contact with CFCS (cell-free culture supernatants) of four lactobacilli for 2h, which confirmed the result of the agar-well assay. Further analysis of the organic acid composition in the CFCS revealed that the content of lactic acid range from 227 to 293mM. In addition, the aggregations properties, adherence properties and tolerance to simulated gastrointestinal conditions were also investigated in vitro tests. The result suggested that the M5-L, J10-L and Q8-L strains possess desirable antimicrobial activity towards S. sonnei and probiotic properties as LGG and could be potentially used as novel probiotic strains in the food industry. PMID:21466951

  2. Fermented milks and milk products as functional foods--a review.

    PubMed

    Shiby, V K; Mishra, H N

    2013-01-01

    Fermented foods and beverages possess various nutritional and therapeutic properties. Lactic acid bacteria (LAB) play a major role in determining the positive health effects of fermented milks and related products. The L. acidophilus and Bifidobacteria spp are known for their use in probiotic dairy foods. Cultured products sold with any claim of health benefits should meet the criteria of suggested minimum number of more than 10⁶ cfu/g at the time of consumption. Yoghurt is redefined as a probiotic carrier food. Several food powders like yoghurt powder and curd (dahi) powder are manufactured taking into consideration the number of organisms surviving in the product after drying. Such foods, beverages and powders are highly acceptable to consumers because of their flavor and aroma and high nutritive value. Antitumor activity is associated with the cell wall of starter bacteria and so the activity remains even after drying. Other health benefits of fermented milks include prevention of gastrointestinal infections, reduction of serum cholesterol levels and antimutagenic activity. The fermented products are recommended for consumption by lactose intolerant individuals and patients suffering from atherosclerosis. The formulation of fermented dietetic preparations and special products is an expanding research area. The health benefits, the technology of production of fermented milks and the kinetics of lactic acid fermentation in dairy products are reviewed here. PMID:23391015

  3. In vitro fermentation of chewed mango and banana: particle size, starch and vascular fibre effects.

    PubMed

    Low, Dorrain Y; Williams, Barbara A; D'Arcy, Bruce R; Flanagan, Bernadine M; Gidley, Michael J

    2015-08-01

    Fruits (and vegetables) contain cellular structures that are not degraded by human digestive enzymes. Therefore, the structure of the insoluble fraction of swallowed fruits is mostly retained until intestinal microbial fermentation. In vitro fermentation of mango and banana cell structures, which survived in vivo mastication and in vitro gastrointestinal digestion, were incubated with porcine faecal inoculum and showed intensive metabolic activity. This included degradation of cell walls, leading to the release of encapsulated cell contents for further microbial metabolism. Production of cumulative gas, short chain fatty acids and ammonia were greater for mango than for banana. Microscopic and spectroscopic analyses showed this was due to a major fermentation-resistant starch fraction present in banana, that was absent in mango. This study demonstrated distinctive differences in the fermentability of banana and mango, reflecting a preferential degradation of (parenchyma) fleshy cell walls over resistant starch in banana, and the thick cellulosic vascular fibres in mango. PMID:26215214

  4. Selection of Lactobacillus plantarum strains to use as starters in fermented table olives: Oleuropeinase activity and phage sensitivity.

    PubMed

    Zago, Miriam; Lanza, Barbara; Rossetti, Lia; Muzzalupo, Innocenzo; Carminati, Domenico; Giraffa, Giorgio

    2013-05-01

    Fermented table olives (Olea europaea L.) are largely diffused in the Mediterranean area. Olives are picked at different stages of maturity and after harvesting, processed to eliminate the characteristic bitterness caused by the presence of the oleuropein glucoside and to become suitable for human consumption. The spontaneous fermentation of table olives mainly depends on lactic acid bacteria (LAB), and in particular on Lactobacillus plantarum which plays an important role in the degradation of oleuropein. The hydrolysis of oleuropein is attributed to the β-glucosidase and esterase activities of the indigenous LAB microflora. This study investigated the potential of L. plantarum strains isolated from dairy products and olives to be used as starters for fermented table olives. Forty-nine strains were typed by RAPD-PCR and investigated for the presence of the β-glucosidase (bglH) gene. The full sequence of the bglH gene was carried out. All the 49 L. plantarum strains were also tested for phage resistance. A total of six strains were selected on the basis of genotypic polymorphism, bglH gene sequence analysis, and phage resistance profile. These strains were further characterized to assess the acidifying capability, the growth at different temperatures, the tolerance to different NaCl concentrations, and the oleuropeinolytic activity. Although further characterizations are required, especially concerning the influence on sensory properties, L. plantarum proved to have the potential to be used as a debittering and fermentative agent in starter culture for fermented table olives. PMID:23498181

  5. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.

    PubMed

    Sasano, Yu; Watanabe, Daisuke; Ukibe, Ken; Inai, Tomomi; Ohtsu, Iwao; Shimoi, Hitoshi; Takagi, Hiroshi

    2012-04-01

    Lignocellulosic biomass is a promising source for bioethanol production, because it is abundant worldwide and has few competing uses. However, the treatment of lignocelllulosic biomass with weak acid to release cellulose and hemicellulose generates many kinds of byproducts including furfural and 5-hydroxymethylfurfural, which inhibit fermentation by yeast, because they generate reactive oxygen species (ROS) in cells. In order to acquire high tolerance to oxidative stress in bioethanol yeast strains, we focused on the transcription activator Msn2 of Saccharomyces cerevisiae, which regulates numerous genes involved in antioxidative stress responses, and constructed bioethanol yeast strains that overexpress Msn2 constitutively. The Msn2-overexpressing bioethanol strains showed tolerance to oxidative stress, probably due to the high-level expression of various antioxidant enzyme genes. Unexpectedly, these strains showed ethanol sensitivity compared with the control strain, probably due to imbalance of the expression level between Msn2 and Msn4. In the presence of furfural, the engineered strains exhibited reduced intracellular ROS levels, and showed rapid growth compared with the control strain. The fermentation test in the presence of furfural revealed that the Msn2-overexpressing strains showed improvement of the initial rate of fermentation. Our results indicate that overexpression of the transcription activator Msn2 in bioethanol yeast strains confers furfural tolerance by reducing the intracellular ROS levels and enhances the initial rate of fermentation in the presence of furfural, suggesting that these strains are capable of adapting rapidly to various compounds that inhibit fermentation by inducing ROS accumulation. Our results not only promise to improve bioethanol production from lignocellulosic biomass, but also provide novel insights for molecular breeding of industrial yeast strains. PMID:22178024

  6. Effects of Flavonoids on Rumen Fermentation Activity, Methane Production, and Microbial Population

    PubMed Central

    Abdullah, Norhani; Oskoueian, Armin

    2013-01-01

    This research was carried out to evaluate the effects of flavone, myricetin, naringin, catechin, rutin, quercetin, and kaempferol at the concentration of 4.5% of the substrate (dry matter basis) on the rumen microbial activity in vitro. Mixture of guinea grass and concentrate (60 : 40) was used as the substrate. The results showed that all the flavonoids except naringin and quercetin significantly (P < 0.05) decreased the dry matter degradability. The gas production significantly (P < 0.05) decreased by flavone, myricetin, and kaempferol, whereas naringin, rutin, and quercetin significantly (P < 0.05) increased the gas production. The flavonoids suppressed methane production significantly (P < 0.05). The total VFA concentration significantly (P < 0.05) decreased in the presence of flavone, myricetin, and kaempferol. All flavonoids except naringin and quercetin significantly (P < 0.05) reduced the carboxymethyl cellulase, filter paperase, xylanase, and β-glucosidase activities, purine content, and the efficiency of microbial protein synthesis. Flavone, myricetin, catechin, rutin, and kaempferol significantly (P < 0.05) reduced the population of rumen microbes. Total populations of protozoa and methanogens were significantly (P < 0.05) suppressed by naringin and quercetin. The results of this research demonstrated that naringin and quercetin at the concentration of 4.5% of the substrate (dry matter basis) were potential metabolites to suppress methane production without any negative effects on rumen microbial fermentation. PMID:24175289

  7. Anti-Inflammatory and Antinociceptive Activities of Untreated, Germinated, and Fermented Mung Bean Aqueous Extract

    PubMed Central

    Ali, Norlaily Mohd; Mohd Yusof, Hamidah; Yeap, Swee-Keong; Ho, Wan-Yong; Beh, Boon-Kee; Koh, Soo-Peng; Abdullah, Mohd Puad; Alitheen, Noorjahan Banu

    2014-01-01

    Evaluation of anti-inflammatory and antinociceptive activities of untreated mung bean (MB), germinated mung bean (GMB), and fermented mung bean (FMB) was performed on both in vitro (inhibition of inflammatory mediator, nitric oxide(NO)) and in vivo (inhibition of ear oedema and reduction of response to pain stimulus) studies. Results showed that both GMB and FMB aqueous extract exhibited potent anti-inflammatory and antinociceptive activities in a dose-dependent manner. In vitro results showed that GMB and FMB were potent inflammatory mediator (NO) inhibitors at both 2.5 and 5 mg/mL. Further in vivo studies showed that GMB and FMB aqueous extract at 1000 mg/kg can significantly reduce ear oedema in mice caused by arachidonic acid. Besides, both 200 mg/kg and 1000 mg/kg concentrations of GMB and FMB were found to exhibit potent antinociceptive effects towards hotplate induced pain. With these, it can be concluded that GMB and FMB aqueous extract exhibited potential anti-inflammatory and antinociceptive effects. PMID:25045389

  8. [The suicide phenomenon and fermentative metabolic activity in strains of the Aeromonas group isolated from feces].

    PubMed

    Reina, J; Serra, A; Borrell, N; Gómez, J

    1992-11-01

    We study the "suicide" phenomena as well as metabolic pathways of mixed acids (methyl red test, MR) and butylene glycol (Voges-Proskauer, VP), in 107 strains belonging to mesophilic Aeromonas group, isolated from stools. The strains have been identified as A. hydrophila, 28 cases (26.1%), A. sobria 26 cases (24.3%) and A. caviae 53 cases (49.6%). All A. caviae strains behave homogeneously as F+, RM+ and VP-, independently of temperature (30 or 37 degrees C). A. hydrophila strains only showed their trend to "suicide" at 37 degrees C, being this behavior linked to RM test positivity. At 30 degrees C all strains were NS and RM-, keeping always positive the VP test (both temperatures). In A. sobria we have recorded changes in their behavior related to the temperature of incubation. At 37 degrees C, 57.7% were NS, whereas at 30 degrees C, 69.2% showed the same phenotype. The metabolic activity had remained stable, therefore F+ strains were VP and RM+, and NS strains were VP+ and RM-. It seems that FS is a phenotypic behavior of this bacterial group species and temperature-dependent, and also is related to a fermentative metabolic activity modulation of each of them. PMID:1489794

  9. A new method for monitoring the extracellular proteolytic activity of wine yeasts during alcoholic fermentation of grape must.

    PubMed

    Chasseriaud, Laura; Miot-Sertier, Cécile; Coulon, Joana; Iturmendi, Nerea; Moine, Virginie; Albertin, Warren; Bely, Marina

    2015-12-01

    The existing methods for testing proteolytic activity are time consuming, quite difficult to perform, and do not allow real-time monitoring. Proteases have attracted considerable interest in winemaking and some yeast species naturally present in grape must, such as Metschnikowia pulcherrima, are capable of expressing this activity. In this study, a new test is proposed for measuring proteolytic activity directly in fermenting grape must, using azocasein, a chromogenic substrate. Several yeast strains were tested and differences in proteolytic activity were observed. Moreover, analysis of grape must proteins in wines revealed that protease secreted by Metschnikowia strains may be active against wine proteins. PMID:26529648

  10. Antioxidant activity in plasma and rumen papillae development in lambs fed fermented apple pomace.

    PubMed

    Rodríguez-Muela, C; Rodríguez, H E; Arzola, C; Díaz-Plascencia, D; Ramírez-Godínez, J A; Flores-Mariñelarena, A; Mancillas-Flores, P F; Corral, G

    2015-05-01

    The effect of fermented apple pomace (FAP) on animal health, antioxidant activity (AA), hematic biometry (HBm) and the development of ruminal epithelium were investigated in a study with 24 finishing lambs (BW = 25.4 ± 3.3 Kg). Lambs were grouped by sex (12 male and 12 female) and fed (n = 6 per group of treatment) a basal fattening diet (Control diet, T1) or the basal diet supplemented to include 10.91% of fermented apple pomace (FAP diet, T2). The animals were kept 56 d in individual metabolic cages, with ad libitum access to water and feed. Two blood samples were collected from each animal on d 0, 28, and 56 to determine AA in plasma and hematic biometry (HBm). Four samples of ruminal tissue were taken postmortem to evaluate the development of ruminal epithelium based on the length (LP) and width (WP) of papillae. AA and HBm data were analyzed with a mixed model (fixed effects: diet, sampling, sex, and their interaction; using the experimental unit nested in the effect of the diet as the random effect). LP and WP were analyzed with a hierarchical model, as simple and nested effects in the sampling site, where the fixed effects were the diet and the sex of the animal and their interaction. There was an effect of diet on AA, which was higher (P < 0.06) in T2 vs. T1 at 56 d (24.34 vs. 21.79 mM Fe2). Leukocytes increased (P < 0.05) from 7.52*10(3) ± 1.29*10/(3)μL to 9.14*10(3) ± 1.24*10(3)/μL in all the animals in the experiment, with a marked increased (P < 0.05) at 28 d after beginning of the feeding period, with values within the normal range for this species and without effect of the diet (P > 0.05) for the other indicators of HBm. Males' LP was higher in T2 than in T1 (P < 0.05). It was concluded that the use of FAP in the diets of finishing sheep reaped benefits on animal health and the development of rumen epithelium by improving antioxidant activity in plasma and stimulating the growth of papillae. PMID:26020331

  11. Reduction of fermentation lag phase in biofuel production using a novel activated biochar material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic feedstocks can be prepared for ethanol fermentation by treatment with a dilute mineral acid catalyst that hydrolyzes the hemicellulose and possibly cellulose into soluble carbohydrates. The acid catalyzed reaction scheme is sequential, whereby released monosaccharides are further de...

  12. The inhibitory activity of Lactobacillus spp. isolated from breast milk on gastrointestinal pathogenic bacteria of nosocomial origin.

    PubMed

    Jara, Solange; Sánchez, Magaly; Vera, Rodrigo; Cofré, Jaime; Castro, Erica

    2011-12-01

    Milk acts as a mean for transporting many essential substances from the mother to the child. In human beings, milk includes several predominant bacteria, such as staphylococci, streptococci, micrococci, lactobacilli, enterococci, lactococci and bifidobacteria. Besides, its intake favors the predominance of bifidobacteria and lactobacilli in the child's intestinal microbiota. The present work explores the isolation and selection of lactobacilli strains with probiotic potential, focusing in their degree of hydrophobicity and antagonism against important gastrointestinal nosocomial pathogens. 98 lactobacilli were isolated from 48 breast milk samples, with most strains belonging to the obligately homofermentative group (36.7%). 63% of the isolated strains showed a high degree of hydrophobicity when tested on three solvents and were selected for detecting antimicrobial activity against gastrointestinal pathogens, including Escherichia coli, Shigella spp, Pseudomonas spp and Salmonella spp strains. When applying the agar diffusion test, many isolated strains presented inhibitory activity against pathogenic strains. We observed that: Salmonella enteriditis was the most inhibited pathogen, and the strains with the most inhibitory power were AR2 and O1 (both highly hydrophobic lactic acid bacteria), which showed an opposing effect against all nosocomial pathogens tested. Although more in vitro, in vivo or clinical data would be needed before any conclusion on the probiotic properties of the strains can be drawn, our results demonstrate that some of the tested strains may have good probiotic potential for their inclusion in products targeting infants. PMID:21846506

  13. Gastrointestinal Infections.

    PubMed

    Alby, Kevin; Nachamkin, Irving

    2016-06-01

    Gastrointestinal infections in the immunocompromised host are caused by the common bacterial, viral, fungal, and parasitic agents that also cause infections in the immunocompetent host. Of special consideration is that immunocompromised patients may be at increased risk for infection or disease severity and by pathogens not seen in the competent host. This chapter reviews the various agents, risk factors, and diagnostic approaches to detect gastrointestinal infections in this patient population. PMID:27337464

  14. Hypoglycemic and Hepatoprotective Activity of Fermented Fruit Juice of Morinda citrifolia (Noni) in Diabetic Rats

    PubMed Central

    Nayak, B. Shivananda; Marshall, Julien R.; Isitor, Godwin; Adogwa, Andrew

    2011-01-01

    Morinda citrifolia is a medicinal plant used to treat diabetes and liver diseases. The fermented fruit juice of the M. Citrifolia (optical density = 1.25) was used to study the hypoglycemic and hepatoprotective properties in diabetes-induced rats. The rats were randomly distributed into 4 groups (control, diabetic experimental, diabetic standard, and diabetic untreated) of 6 each. Diabetes was induced by administering Streptozotocin (50 mg/kg body weight). Fasting blood glucose, body mass, liver tissue glycogen content, and the extent of liver degeneration were assessed. Diabetic experimental animals were treated with M. citrifolia juice (2 ml/kg, twice a day) and diabetic standard with reference hypoglycemic drug, glibenclamide orally for 20 days. Both the groups exhibited a significant reduction in blood glucose level of 150 mg/dl ±15.88 and 125 mg/dl ±3.89, respectively, as compared to diabetic untreated with FBS = 360.0 mg/dl ±15.81, (P < .003). On 10th day of experiment, diabetic experimental animals exhibited a decrease in body mass (10.2 g, 5.11%) which increased significantly by the 20th day (6 g, 3.0%, P < .022). Histological study of liver tissue obtained from untreated diabetic animals revealed significant fatty degeneration as compared to other three groups. The data of this study proved the hypoglycemic and hepatoprotective activity of M. citrifolia. PMID:20981320

  15. Levansucrase optimization using solid state fermentation and levan biological activities studies.

    PubMed

    Esawy, Mona A; Abdel-Fattah, Azza M; Ali, Mamdouh M; Helmy, Wafaa A; Salama, Bassem M; Taie, Hanan A A; Hashem, Amal M; Awad, Ghada E A

    2013-07-01

    Bacillus subtilis NRC1aza produced levansucrase under solid state fermentation using starch as support. A sequential optimization strategy, based on statistical experimental designs is employed to enhance enzyme productivity. First, a 2-level Plackett-Burman design was applied for bioprocess parameters screen that significantly increase levansucrase production. Second optimization step was performed using fractional factorial design in order to optimize the amounts of highest positive variables that had significant effect on levansucrase productivity. Maximal enzyme productivity of 170 U/gds was achieved in presence of glucose, yeast extract, and pH 8. In vitro, experiments confirmed that LevCR and LevQT had an antitumor activity against different animal and human cancer cell lines by demonstrating inhibitory effects on growth of Ehrlich ascites carcinoma cell line, human MCF-7 breast and liver HepG2 cancer cell lines, in particular LevQT was found to be efficacious compared to anticancer drug, cisplatin. Result focused in LevCR as strong fibrinolytic agent. PMID:23688489

  16. Mycelial fermentation characteristics and anti-fatigue activities of a Chinese caterpillar fungus, Ophiocordyceps sinensis strain Cs-HK1 (Ascomycetes).

    PubMed

    Wu, Jian-Yong; Leung, Hong-Po; Wang, Wen-Qiang; Xu, Chunping

    2014-01-01

    Mycelial fermentation of an Ophiocordyceps sinensis strain Cs-HK1 was carried out in various volumes of stirred-tank fermenters from 1.6-L and 15-L laboratory scale to 2000-L industrial scale. The mycelial growth in most fermenters had a higher rate, due probably to more efficient oxygen supply, than in shake-flasks. The mycelial fermentation was successfully scaled up to 2000-L industrial fermenters, achieving 30 g/L maximum biomass in 5 days. The Cs-HK1 mycelia formed hairy and fluffy pellets in the fermentation medium and the mycelial broth exhibited pseudoplastic rheology following the power law, with the flow behavior index n decreasing from 0.5 to 0.3, and the flow consistency K and the apparent viscosity µα increasing with time and biomass concentration. The mycelial broth containing biomass and extracellular products harvested from 2000-L fermenters was tested for anti-fatigue activities in forced animal swimming experiments. The mycelium hot water extract showed the most significant effects, increasing the swimming endurance of mice up to 100%, and also increasing the glycogen levels and reducing the lactic acid and blood urea nitrogen levels significantly. The results demonstrated the feasibility of Cs-HK1 mycelial fermentation for large-scale production of bioactive and medicinal materials. PMID:24941032

  17. Lactic Acid Bacterial Starter Culture with Antioxidant and γ-Aminobutyric Acid Biosynthetic Activities Isolated from Flatfish-Sikhae Fermentation.

    PubMed

    Won, Yeong Geol; Yu, Hyun-Hee; Chang, Young-Hyo; Hwang, Han-Joon

    2015-12-01

    The aim of this study is to select a lactic acid bacterial strain as a starter culture for flatfish-Sikhae fermentation and to evaluate its suitability for application in a food system. Four strains of lactic acid bacteria isolated from commercial flatfish-Sikhae were identified and selected as starter culture candidates through investigation of growth rates, salt tolerance, food safety, and functional properties such as antioxidative and antimicrobial activities. The fermentation properties of the starter candidates were also examined in food systems prepared with these strains (candidate batch) in comparison with a spontaneous fermentation process without starter culture (control batch) at 15°C. The results showed that the candidate YG331 batch had better fermentation properties such as viable cell count, pH, and acidity than the other experimental batches, including the control batch. The results are expressed according to selection criteria based on a preliminary sensory evaluation and physiochemical investigation. Also, only a small amount of histamine was detected with the candidate YG331 batch. The radical scavenging activity of the candidate batches was better compared with the control batch, and especially candidate YG331 batch showed the best radical scavenging activity. Also, we isolated another starter candidate (identified as Lactobacillus brevis PM03) with γ-aminobutyric acid (GABA)-producing activity from commercial flatfish-Sikhae products. The sensory scores of the candidate YG331 batch were better than those of the other experimental batches in terms of flavor, color, and overall acceptance. In this study, we established selection criteria for the lactic acid bacterial starter for the flatfish-Sikhae production and finally selected candidate YG331 as the most suitable starter. PMID:26348620

  18. [Gastrointestinal bleeding].

    PubMed

    Lanas, Ángel

    2015-09-01

    In the Digestive Disease Week in 2015 there have been some new contributions in the field of gastrointestinal bleeding that deserve to be highlighted. Treatment of celecoxib with a proton pump inhibitor is safer than treatment with nonselective NSAID and a proton pump inhibitor in high risk gastrointestinal and cardiovascular patients who mostly also take acetylsalicylic acid. Several studies confirm the need to restart the antiplatelet or anticoagulant therapy at an early stage after a gastrointestinal hemorrhage. The need for urgent endoscopy before 6-12 h after the onset of upper gastrointestinal bleeding episode may be beneficial in patients with hemodynamic instability and high risk for comorbidity. It is confirmed that in Western but not in Japanese populations, gastrointestinal bleeding episodes admitted to hospital during weekend days are associated with a worse prognosis associated with delays in the clinical management of the events. The strategy of a restrictive policy on blood transfusions during an upper GI bleeding event has been challenged. Several studies have shown the benefit of identifying the bleeding vessel in non varicose underlying gastric lesions by Doppler ultrasound which allows direct endoscopic therapy in the patient with upper GI bleeding. Finally, it has been reported that lower gastrointestinal bleeding diverticula band ligation or hemoclipping are both safe and have the same long-term outcomes. PMID:26520197

  19. Interventional nutrition for gastrointestinal disease.

    PubMed

    Hickman, M A

    1998-11-01

    Nutritional intervention plays a key role in the successful management of gastrointestinal disease. This article focuses on several novel areas of nutritional intervention that are becoming increasingly important in gastrointestinal disease, including short-chain fatty acids, omega-3 polyunsaturated fatty acids and glutamine. Short-chain fatty acids are the principal end-products of bacterial fermentation of dietary fibers and have profound effects on normal intestinal cell metabolism and proliferation. Short-chain fatty acids have the potential to improve overall intestinal health, stimulate intestinal healing, and decrease intestinal inflammation. Omega-3 fatty acids, from dietary sources or supplements, may also be useful in decreasing intestinal inflammation and in preventing intestinal cancer. Finally, glutamine also may play an important role in the nutritional management of gastrointestinal disease. PMID:9842113

  20. Inhibitory activity in vitro of probiotic lactobacilli against oral Candida under different fermentation conditions.

    PubMed

    Jiang, Q; Stamatova, I; Kari, K; Meurman, J H

    2015-01-01

    Clinical studies have shown that probiotics positively affect oral health by decreasing gum bleeding and/or reducing salivary counts of certain oral pathogens. Our aim was to investigate the inhibitory effect of six probiotic lactobacilli against opportunistic oral Candida species. Sugar utilisation by both lactobacilli and Candida was also assessed. Agar overlay assay was utilised to study growth inhibition of Candida albicans, Candida glabrata and Candida krusei by Lactobacillus rhamnosus GG, Lactobacillus casei Shirota, Lactobacillus reuteri SD2112, Lactobacillus brevis CD2, Lactobacillus bulgaricus LB86 and L. bulgaricus LB Lact. The inhibitory effect was measured at pH 5.5, 6.4, and 7.2, respectively, and in the presence of five different carbohydrates in growth medium (glucose, fructose, lactose, sucrose, and sorbitol). Growth and final pH values were measured at two-hour time points to 24 h. L. rhamnosus GG showed the strongest inhibitory activity in fructose and glucose medium against C. albicans, followed by L. casei Shirota, L. reuteri SD2112 and L. brevis CD2. None of the lactobacilli tested affected the growth of C. krusei. Only L. rhamnosus GG produced slight inhibitory effect on C. glabrata. The lower pH values led to larger inhibition zones. Sugar fermentation profiles varied between the strains. L. casei Shirota grew in the presence of all sugars tested, whereas L. brevis CD2 could utilise only glucose and fructose. All Candida species metabolised the available sugars but the most rapid growth was observed with C. glabrata. The results suggest that commercially available probiotics differ in their inhibitory activity and carbohydrate utilisation; the above properties are modified by different pH values and sugars with more pronounced inhibition at lower pH. PMID:25380800

  1. Larvicidal activity of Bacillus circulans against the gastrointestinal nematode Haemonchus contortus in sheep.

    PubMed

    Sinott, M C; de Castro, L L Dias; Leite, F L L; Gallina, T; De-Souza, M T; Santos, D F L; Leite, F P L

    2016-01-01

    Efficient control of gastrointestinal parasites is necessary in sheep breeding. However, the available chemically based anthelmintics are becoming less effective due to the development of parasite resistance. An alternative to this problem is biological control. In the present study, we tested the larvicidal effect of Bacillus circulans by administering a spore suspension (2 × 109 colony forming units/ml) orally to lambs naturally infected with Haemonchus contortus. The number of faecal larvae was quantified daily and a significant reduction (~87%, P< 0.05) of larval development was observed after administration of B. circulans. Using a transformed B. circulans with green fluorescent protein, we were able to detect B. circulans in the faeces at 4 h post-administration and 72 h after cessation of its administration. These results suggest the use of B. circulans as a promising biological alternative for parasite control. PMID:26693886

  2. Optimization of hydroxyl radical scavenging activity of exo-polysaccharides from Inonotus obliquus in submerged fermentation using response surface methodology.

    PubMed

    Chen, Hui; Xu, Xiangqun; Zhu, Yang

    2010-04-01

    The objectives of this study were to investigate the effect of fermentation medium on the hydroxyl radical scavenging activity of exo-polysaccharides from Inonotus obliquus by response surface methodology. A two-level fractional factorial design was used to evaluate the effect of different components of medium. Corn flour, peptone, and KH2PO4 were important factors significantly affecting hydroxyl radical scavenging activity. These selected variables were subsequently optimized using path of steepest ascent (descent), a central composite design, and response surface analysis. The optimal medium composition was (% w/v): corn flour 5.30, peptone 0.32, KH2PO4 0.26, MgSO4 0.02, and CaCl2 0.01. Under the optimal condition, the hydroxyl radical scavenging rate (49.4%) was much higher than that using either basal fermentation medium (10.2%) and single variable optimization of fermentation medium (35.5%). The main monosaccharides components of the RSM optimized polysaccharides are rhamnose, arabinose, xylose, mannose, glucose and galactose with molar proportion at 1.45%, 3.63%, 2.17%, 15.94%, 50.00%, and 26.81%. PMID:20467262

  3. Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1.

    PubMed

    Makino, Seiya; Sato, Asako; Goto, Ayako; Nakamura, Marie; Ogawa, Miho; Chiba, Yoshika; Hemmi, Jun; Kano, Hiroshi; Takeda, Kazuyoshi; Okumura, Ko; Asami, Yukio

    2016-02-01

    Yogurt is generally recognized as a beneficial food for our health, but research into its physiological effects has focused mainly on intestinal dysfunctions such as constipation and diarrhea. We previously found yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 (hereafter OLL1073R-1) could reduce risks of catching the common cold and flu in human trials. It was assumed that immunostimulatory exopolysaccharide (EPS) produced from OLL1073R-1 play an important role in this context. However, few studies have examined the immunostimulatory effects of traditional Bulgarian yogurts fermented with different strains of lactobacilli and their metabolites. Therefore, we screened 139 L. delbrueckii ssp. bulgaricus strains and identified OLL1073R-1 as the most robust producer of EPS. This strain was also the only strain that induced the production of IFN-γ in vitro. Oral administration of the EPS or yogurt fermented with OLL1073R-1 and Streptococcus thermophilus OLS3059 (OLL1073R-1 yogurt) augmented natural killer (NK) cell activity and induced IFN-γ production in spleen cells in mice, whereas 2 other yogurts fermented with other strains had no effect on NK cell activity. Cellular preparations of the OLL1073R-1 strain also slightly augmented NK cell activity, but were less effective than EPS itself. The EPS-dependent stimulation of NK cell activity was abrogated in IFN-γ knockout mice and in myeloid differentiation factor 88 knockout mice. Furthermore, IFN-γ production from spleen cells stimulated with EPS was completely blocked with both anti-IL-12 and anti-IL-18 antibodies in vitro. These findings suggest that NK cell activation by OLL1073R-1 yogurt is EPS-dependent, occurs via IL-12- and IL-18-mediated IFN-γ production, and requires myeloid differentiation factor 88. We showed that traditional Bulgarian yogurt could exert immunostimulatory effects by selecting starter strains and part of the mechanisms depend on IFN-γ inducible EPS produced

  4. Enhancement of wheat grain antioxidant activity by solid state fermentation with Grifola spp.

    PubMed

    Postemsky, Pablo; Curvetto, Néstor

    2014-05-01

    Grifola frondosa, Grifola gargal, and Grifola sordulenta are edible and medicinal mushrooms with antioxidant properties. To obtain wheat flour (Wf ) with a higher antioxidant activity than the one exhibited by regular Wf, solid state fermentation (SSF) of wheat grains with mycelia of those Grifola spp. was used to obtain biotransformed wheat grain (BWG) flour. The methanolic extract of control Wf and BWG flour of G. gargal, G. sordulenta, and G. frondosa (GfWG, GgWG, and GsWG, respectively) were studied for their radical scavenging (RS) activity against 2,2-diphenyl-1-picrylhydracyl (DPPH) and their Fe(III) reducing power (RP). The values for RS-EC50 decreased in BWG flour, therefore presenting a higher antioxidant activity: GgWG (0.56 mg/mL), GfWG (0.81 mg/mL), and GsWG (5.80 mg/mL) in comparison to Wf (57.60 mg/mL). The antioxidant content for this RS activity in terms of ascorbic acid content (RS-EQAA) was highest in GfWG, followed by GgWG and GsWG (71.73, 14.46, and 3.02 mg/g, respectively) and lowest in Wf (0.25 mg/g). The RP-EC50 values in GgWG, GfWG, and GsWG were low (0.55, 0.64, and 4.20 mg/mL, respectively) with respect to Wf (55.00 mg/mL). Compared with Wf (0.56 mg/g), the RP capacity in terms of ascorbic acid content (RP-EQAA) was very high in GfWG (193.67 mg/g) followed by GgWG and GsWG (31.42 and 8.74 mg/g, respectively). The high content in gallic acid equivalents was consistent with RS-EQ(AA) and RP-EQ(AA) contents. TLC revealed that antioxidant activity in BWG could be related to the presence of phenolic compounds. Thus, a valuable food alternative can easily be obtained with wheat grains, that is, by markedly increasing their antioxidant value through SSF with Grifola spp. PMID:24552201

  5. Fermented Vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wide variety of fermented foods of the world can be classified by the materials obtained from the fermentation, such as alcohol (beer, wine), organic acid such as lactic acid and acetic acid (vegetables, dairy), carbon dioxide (bread), and amino acids or peptides from protein (fish fermentations...

  6. [The antihypertensive effect of fermented milks].

    PubMed

    Domínguez González, Karina N; Cruz Guerrero, Alma E; Márquez, Humberto González; Gómez Ruiz, Lorena C; García-Garibay, Mariano; Rodríguez Serrano, Gabriela M

    2014-01-01

    There is a great variety of fermented milks containing lactic acid bacteria that present health-promoting properties. Milk proteins are hydrolyzed by the proteolytic system of these microorganisms producing peptides which may also perform other functions in vivo. These peptides are encrypted within the primary structure of proteins and can be released through food processing, either by milk fermentation or enzymatic hydrolysis during gastrointestinal transit. They perform different activities, since they act in the cardiovascular, digestive, endocrine, immune and nervous systems. Bioactive peptides that have an antihypertensive, antithrombotic, antioxidant and hypocholesterolemic effect on the cardiovascular system can reduce the risk factors for chronic disease manifestation and help improve human health. Most studied bioactive peptides are those which exert an antihypertensive effect by inhibiting the angiotensin-converting enzyme (ACE). Recently, the study of these peptides has focused on the implementation of tests to prove that they have an effect on health. This paper focuses on the production of ACEinhibitory antihypertensive peptides from fermented milks, its history, production and in vivo tests on rats and humans, on which its hypotensive effect has been shown. PMID:24721277

  7. Antagonistic activities of some Bifidobacterium sp. strains isolated from resident infant gastrointestinal microbiota on Gram-negative enteric pathogens.

    PubMed

    Delcaru, Cristina; Alexandru, Ionela; Podgoreanu, Paulina; Cristea, Violeta Corina; Bleotu, Coralia; Chifiriuc, Mariana Carmen; Bezirtzoglou, Eugenia; Lazar, Veronica

    2016-06-01

    The gastrointestinal microbiota contributes to the consolidation of the anti-infectious barrier against enteric pathogens. The purpose of this study was to investigate the influence of Bifidobacterium sp. strains, recently isolated from infant gastrointestinal microbiota on the in vitro growth and virulence features expression of enteropathogenic bacterial strains. The antibacterial activity of twelve Bifidobacterium sp. strains isolated from human feces was examined in vitro against a wide range of Gram negative pathogenic strains isolated from 30 infant patients (3 days to 5 years old) with diarrhea. Both potential probiotic strains (Bifidobacterium longum, Bifidobacterium pseudocatenulatum, Bifidobacterium catenulatum, Bifidobacterium breve, Bifidobacterium ruminantium) and enteropathogenic strains (EPEC, EIEC, Klebsiella pneumoniae, Salmonella sp., Yersinia enterocolitica, Pseudomonas aeruginosa) were identified by MALDI-TOF and confirmed serologically when needed. The bactericidal activity, growth curve, adherence to the cellular HEp-2 substratum and production of soluble virulence factors have been assessed in the presence of different Bifidobacterium sp. cultures and fractions (whole culture and free-cell supernatants). Among the twelve Bifidobacterium sp. strains, the largest spectrum of antimicrobial activity against 9 of the 18 enteropathogenic strains was revealed for a B. breve strain recently isolated from infant intestinal feces. The whole culture and free-cell supernatant of B. breve culture decreased the multiplication rate, shortened the log phase and the total duration of the growth curve, with an earlier entrance in the decline phase and inhibited the adherence capacity to a cellular substratum and the swimming/swarming motility too. These results indicate the significant probiotic potential of the B. breve strain. PMID:26921694

  8. Chitinolytic and chitosanolytic activities from crude cellulase extract produced by A. niger grown on apple pomace through Koji fermentation.

    PubMed

    Dhillon, Gurpreet Singh; Brar, Satinder Kaur; Kaur, Surinder; Valero, Jose R; Verma, Mausam

    2011-12-01

    Enzyme extracts of cellulase [filter paper cellulase (FPase) and carboxymethyl cellulase (CMCase)], chitinase, and chitosanase produced by Aspergillus niger NRRL-567 were evaluated. The interactive effects of initial moisture and different inducers for FP cellulase and CMCase production were optimized using response surface methodology. Higher enzyme activities [FPase 79.24+/- 4.22 IU/gram fermented substrate (gfs) and CMCase 124.04+/-7.78 IU/gfs] were achieved after 48 h fermentation in solid-state medium containing apple pomace supplemented with rice husk [1% (w/w)] under optimized conditions [pH 4.5, moisture 55% (v/w), and inducers veratryl alcohol (2 mM/kg), copper sulfate (1.5 mM/kg), and lactose 2% (w/w)] (p<0.05). Koji fermentation in trays was carried out and higher enzyme activities (FPase 96.67+/-4.18 IU/gfs and CMCase 146.50+/-11.92 IU/gfs) were achieved. The nonspecific chitinase and chitosanase activities of cellulase enzyme extract were analyzed using chitin and chitosan substrates with different physicochemical characteristics, such as degree of deacetylation, molecular weight, and viscosity. Higher chitinase and chitosanase activities of 70.28+/-3.34 IU/gfs and 60.18+/-3.82 to 64.20+/-4.12 IU/gfs, respectively, were achieved. Moreover, the enzyme was stable and retained 92-94% activity even after one month. Cellulase enzyme extract obtained from A. niger with chitinolytic and chitosanolytic activities could be potentially used for making low-molecular-weight chitin and chitosan oligomers, having promising applications in biomedicine, pharmaceuticals, food, and agricultural industries, and in biocontrol formulations. PMID:22210619

  9. Activation of futile cycles as an approach to increase ethanol yield during glucose fermentation in Saccharomyces cerevisiae.

    PubMed

    Semkiv, Marta V; Dmytruk, Kostyantyn V; Abbas, Charles A; Sibirny, Andriy A

    2016-04-01

    An increase in ethanol yield by yeast from the fermentation of conventional sugars such as glucose and sucrose is possible by reducing the production of a key byproduct such as cellular biomass. Previously we have reported that overexpression of PHO8 gene encoding non-specific ATP-hydrolyzing alkaline phosphatase can lead to a decrease in cellular ATP content and to an increase in ethanol yield during glucose fermentation by Saccharomyces cerevisiae. In this work we further report on 2 new successful approaches to reduce cellular levels of ATP that increase ethanol yield and productivity. The first approach is based on the overexpression of the heterologous Escherichia coli apy gene encoding apyrase or SSB1 part of the chaperon that exhibit ATPase activity in yeast. In the second approach we constructed a futile cycle by the overexpression of S. cerevisiae genes encoding pyruvate carboxylase and phosphoenolpyruvate carboxykinase in S. cerevisiae. These genetically engineered strains accumulated more ethanol compared to the wild-type strain during alcoholic fermentation. PMID:26890808

  10. Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae.

    PubMed

    Coghe, Stefan; Benoot, Koen; Delvaux, Filip; Vanderhaegen, Bart; Delvaux, Freddy R

    2004-02-11

    The release of ferulic acid and the subsequent thermal or enzymatic decarboxylation to 4-vinylguaiacol are inherent to the beer production process. Phenolic, medicinal, or clove-like flavors originating from 4-vinylguaiacol frequently occur in beer made with wheat or wheat malt. To evaluate the release of ferulic acid and the transformation to 4-vinylguaiacol, beer was brewed with different proportions of barley malt, wheat, and wheat malt. Ferulic acid as well as 4-vinylguaiacol levels were determined by HPLC at several stages of the beer production process. During brewing, ferulic acid was released at the initial mashing phase, whereas moderate levels of 4-vinylguaiacol were formed by wort boiling. Higher levels of the phenolic flavor compound were produced during fermentations with brewery yeast strains of the Pof(+) phenotype. In beer made with barley malt, ferulic acid was mainly released during the brewing process. Conversely, 60-90% of ferulic acid in wheat or wheat malt beer was hydrolyzed during fermentation, causing higher 4-vinylguaiacol levels in these beers. As cereal enzymes are most likely inactivated during wort boiling, the additional release of ferulic acid during fermentation suggests the activity of feruloyl esterases produced by brewer's yeast. PMID:14759156

  11. Lactobacillus paracasei CBA L74 metabolic products and fermented milk for infant formula have anti-inflammatory activity on dendritic cells in vitro and protective effects against colitis and an enteric pathogen in vivo.

    PubMed

    Zagato, Elena; Mileti, Erika; Massimiliano, Lucia; Fasano, Francesca; Budelli, Andrea; Penna, Giuseppe; Rescigno, Maria

    2014-01-01

    The rapid expansion of commercially available fermented food products raises important safety issues particularly when infant food is concerned. In many cases, the activity of the microorganisms used for fermentation as well as what will be the immunological outcome of fermented food intake is not known. In this manuscript we used complex in vitro, ex-vivo and in vivo systems to study the immunomodulatory properties of probiotic-fermented products (culture supernatant and fermented milk without live bacteria to be used in infant formula). We found in vitro and ex-vivo that fermented products of Lactobacillus paracasei CBA L74 act via the inhibition of proinflammatory cytokine release leaving anti-inflammatory cytokines either unaffected or even increased in response to Salmonella typhimurium. These activities are not dependent on the inactivated bacteria but to metabolic products released during the fermentation process. We also show that our in vitro systems are predictive of an in vivo efficacy by the fermented products. Indeed CBA L74 fermented products (both culture medium and fermented milk) could protect against colitis and against an enteric pathogen infection (Salmonella typhimurium). Hence we found that fermented products can act via the inhibition of immune cell inflammation and can protect the host from pathobionts and enteric pathogens. These results open new perspectives in infant nutrition and suggest that L. paracasei CBA L74 fermented formula can provide immune benefits to formula-fed infants, without carrying live bacteria that may be potentially dangerous to an immature infant immune system. PMID:24520333

  12. Novel Regenerative Peptide TP508 Mitigates Radiation-Induced Gastrointestinal Damage By Activating Stem Cells and Preserving Crypt Integrity

    PubMed Central

    Kantara, Carla; Moya, Stephanie M.; Houchen, Courtney W.; Umar, Shahid; Ullrich, Robert L.; Singh, Pomila; Carney, Darrell H.

    2015-01-01

    In recent years, increasing threats of radiation exposure and nuclear disasters have become a significant concern for the United States and countries worldwide. Exposure to high doses of radiation triggers a number of potentially lethal effects. Among the most severe is the gastrointestinal (GI) toxicity syndrome caused by the destruction of the intestinal barrier, resulting in bacterial translocation, systemic bacteremia, sepsis and death. The lack of effective radioprotective agents capable of mitigating radiation-induced damage has prompted a search for novel countermeasures that can mitigate the effects of radiation post-exposure, accelerate tissue repair in radiation-exposed individuals, and prevent mortality. We report that a single injection of regenerative peptide TP508 (rusalatide acetate, Chrysalin®) 24h after lethal radiation exposure (9Gy, LD100/15) appears to significantly increase survival and delay mortality by mitigating radiation-induced intestinal and colonic toxicity. TP508 treatment post-exposure prevents the disintegration of gastrointestinal crypts, stimulates the expression of adherens junction protein E-cadherin, activates crypt cell proliferation, and decreases apoptosis. TP508 post-exposure treatment also up-regulates the expression of DCLK1 and LGR5 markers of stem cells that have been shown to be responsible for maintaining and regenerating intestinal crypts. Thus, TP508 appears to mitigate the effects of GI toxicity by activating radioresistant stem cells and increasing the stemness potential of crypts to maintain and restore intestinal integrity. These results suggest that TP508 may be an effective emergency nuclear countermeasure that could be delivered within 24h post-exposure to increase survival and delay mortality, giving victims time to reach clinical sites for advanced medical treatment. PMID:26280221

  13. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast.

    PubMed

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam; Joerck-Ramberg, Dorte; Ling, Zhihao; Zhou, Nerve; Blevins, James E; Sibirny, Andriy A; Piškur, Jure; Ishchuk, Olena P

    2016-04-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering. PMID:26743658

  14. The DREAM complex in anti-tumor activity of imatinib mesylate in gastrointestinal stromal tumors (GISTs)

    PubMed Central

    DeCaprio, James A.; Duensing, Anette

    2014-01-01

    Purpose of review Although most gastrointestinal stromal tumors (GISTs) respond well to treatment with the small molecule kinase inhibitor imatinib mesylate (Gleevec), the majority of patients achieve disease stabilization and complete remissions are rare. Furthermore, discontinuation of treatment in the presence of residual tumor mass almost inevitably leads to tumor progression. These observations suggest that a subset of tumor cells not only persists under imatinib treatment, but remains viable. The current article reviews the molecular basis for these findings and explores strategies to exploit them therapeutically. Recent findings Although imatinib can induce apoptosis in a subset of GIST cells, it can induce a reversible exit from the cell division cycle and entry into G0, a cell cycle state called quiescence, in the remaining cells. Mechanistically, this process involves the DREAM complex, a newly identified key regulator of quiescence. Interfering with DREAM complex formation either by siRNA-mediated knockdown or by pharmacological inhibition of the regulatory kinase DYRK1A was shown to enhance imatinib-induced GIST cell death. Summary Targeting the DREAM complex and imatinib-induced quiescence could provide opportunities for future therapeutic interventions toward more efficient imatinib responses. PMID:24840522

  15. Both wheat (Triticum aestivum) bran arabinoxylans and gut flora-mediated fermentation products protect human colon cells from genotoxic activities of 4-hydroxynonenal and hydrogen peroxide.

    PubMed

    Glei, Michael; Hofmann, Thomas; Küster, Katrin; Hollmann, Jürgen; Lindhauer, Meinolf G; Pool-Zobel, Beatrice L

    2006-03-22

    Dietary fibers are fermented by the gut flora to yield short chain fatty acids (SCFAs), which inhibit the growth of tumor cells, induce glutathione S-transferases (GSTs), and protect cells from the genotoxic activity of 4-hydroxynonenal (HNE). Here, we investigated effects of wheat bran-derived arabinoxylans and fermentation products on these parameters of chemoprevention. Newly isolated water extractable (WeAx) and alkali extractable arabinoxylans (AeAx) were fermented under anaerobic conditions with human feces. Resulting fermentation supernatants (FSs) were analyzed for SCFAs and used to treat HT29 colon cancer cells. Cell growth, cytotoxicity, antigenotoxicity against hydrogen peroxide (H2O2) or HNE, and GST activity were determined. Nonfermented WeAx decreased H2O2-induced DNA damage by 64%, thus demonstrating chemoprotective properties by this nonfermented wheat bran fiber. The fermentation of WeAx and AeAx resulted in 3-fold increases of SCFA, but all FSs (including the control without arabinoxylans) inhibited the growth of the HT29 cells, reduced the genotoxicity of HNE, and enhanced the activity of GSTs (FS WeAx, 2-fold; FS AeAx, 1.7-fold; and control FS, 1.4-fold), which detoxify HNE. Thus, increases in SCFAs were not reflected by enhanced functional effects. The conclusion is that fermentation mixtures contain modulatory compounds that arise from the feces and might add to the effectiveness of SCFAs. PMID:16536580

  16. Early lactate clearance for predicting active bleeding in critically ill patients with acute upper gastrointestinal bleeding: a retrospective study.

    PubMed

    Wada, Tomoki; Hagiwara, Akiyoshi; Uemura, Tatsuki; Yahagi, Naoki; Kimura, Akio

    2016-08-01

    Not all patients with upper gastrointestinal bleeding (UGIB) require emergency endoscopy. Lactate clearance has been suggested as a parameter for predicting patient outcomes in various critical care settings. This study investigates whether lactate clearance can predict active bleeding in critically ill patients with UGIB. This single-center, retrospective, observational study included critically ill patients with UGIB who met all of the following criteria: admission to the emergency department (ED) from April 2011 to August 2014; had blood samples for lactate evaluation at least twice during the ED stay; and had emergency endoscopy within 6 h of ED presentation. The main outcome was active bleeding detected with emergency endoscopy. Classification and regression tree (CART) analyses were performed using variables associated with active bleeding to derive a prediction rule for active bleeding in critically ill UGIB patients. A total of 154 patients with UGIB were analyzed, and 31.2 % (48/154) had active bleeding. In the univariate analysis, lactate clearance was significantly lower in patients with active bleeding than in those without active bleeding (13 vs. 29 %, P < 0.001). Using the CART analysis, a prediction rule for active bleeding is derived, and includes three variables: lactate clearance; platelet count; and systolic blood pressure at ED presentation. The rule has 97.9 % (95 % CI 90.2-99.6 %) sensitivity with 32.1 % (28.6-32.9 %) specificity. Lactate clearance may be associated with active bleeding in critically ill patients with UGIB, and may be clinically useful as a component of a prediction rule for active bleeding. PMID:26837207

  17. Effects of in situ cobalt ion addition on the activity of a gfp-oph fusion protein: the fermentation kinetics.

    PubMed

    Wu, C F; Valdes, J J; Bentley, W E

    2001-01-01

    The effects of cobalt ion addition and inducer concentration were studied in the fermentation of E. coli BL21 expressing a GFP (green fluorescent protein)-OPH (organophosphorus hydrolase) fusion protein. It was found that cobalt ion addition improved the OPH activity significantly. When 2 mM of CoCl(2) was supplied during the IPTG-induction phase, OPH activity was enhanced approximately 10-fold compared to the case without cobalt or by the addition of cobalt to the cell extracts. Results indicate, therefore, that incorporation of the cobalt during synthesis is needed for enhanced activity. Also, the maximum OPH activity was not linearly related to inducer concentration. A mathematical model was then constructed to simulate these phenomena. Model parameters were determined by constrained least-squares and optimal IPTG and cobalt addition concentrations were obtained, pinpointing the conditions for the maximum productivity. Finally, the GFP fluorescence intensity was found linear to the OPH activity in each fermentation, demonstrating the function of GFP for monitoring its fusion partner's quantity in the bioreactor. PMID:11485418

  18. Fermented broth in tyrosinase- and melanogenesis inhibition.

    PubMed

    Chan, Chin-Feng; Huang, Ching-Cheng; Lee, Ming-Yuan; Lin, Yung-Sheng

    2014-01-01

    Fermented broth has a long history of applications in the food, pharmaceutical and cosmetic industries. Recently, the use of fermented broth in skin care products is in ascendance. This review investigates the efficacy of fermented broth in inhibiting tyrosinase and melanogenesis. Possible active ingredients and hypopigmentation mechanisms of fermented broth are discussed, and potential applications of fermented broth in the cosmetic industry are also addressed. PMID:25255749

  19. Effects of Pleurotus eryngii polysaccharides on bacterial growth, texture properties, proteolytic capacity, and angiotensin-I-converting enzyme-inhibitory activities of fermented milk.

    PubMed

    Li, Siqian; Shah, Nagendra P

    2015-05-01

    Pleurotus eryngii is one of the most favored oyster mushrooms and contains various beneficial bioactive compounds. Polysaccharide extracted from P. eryngii (PEPS) was added as a natural-source ingredient to milk before fermentation, and the effects of additional PEPS on fermented milk were investigated in this study. The PEPS were extracted and added to reconstituted skim milk (12%, wt/vol) at 0.5, 0.25, and 0.125% (wt/vol) and fermented by a non-exopolysaccharide-producing strain, Streptococcus thermophilus Australian Starter Culture Collection (ASCC) 1303 (ST 1303), or an exopolysaccharide-producing Strep. thermophilus ASCC 1275 (ST 1275). Bacterial growth, texture properties, microstructure, proteolytic capacity, and angiotensin-I-converting enzyme-inhibitory activities of fermented milk (FM) were determined during refrigerated storage at 4°C for 21d. Viable counts of starter bacteria in FM with 0.5% PEPS added were the highest. Changes in pH were consistent with changes in titratable acidities for all samples. The FM samples with added PEPS showed denser protein aggregates containing larger serum pores in confocal micrographs compared with those without PEPS at d 0 and 21during refrigerated storage. The values for spontaneous whey separation of FM with added PEPS were significantly higher than those of FM fermented by ST 1303 or ST 1275 without PEPS. The proteolytic activities of ST 1303 of FM with added PEPS were higher than those of FM fermented by ST 1303 without PEPS. The FM with added 0.125% PEPS had similar angiotensin-I-converting enzyme-inhibitory activity to that fermented by ST 1303 without PEPS; both were higher than those of other samples during refrigerated storage. Firmness and gumminess values of FM with added PEPS were higher than those of FM fermented by ST 1303 or ST 1275 without PEPS. PMID:25747830

  20. Functional Properties of Filamentous Fungi Isolated from the Indonesian Fermented Dried Cassava, with Particular Application on Poultry.

    PubMed

    Sugiharto, Sugiharto; Yudiarti, Turrini; Isroli, Isroli

    2015-12-01

    The study aimed to evaluate the probiotic properties, antioxidant activity and fermentative capacity of Acremonium charticola and Rhizopus oryzae isolated from the Indonesian fermented dried cassava, with particular application on poultry. A. charticola inhibited the growth of Escherichia coli and Aspergillus flavus. A. charticola and R. oryzae grew in potato dextrose agar (PDA) adjusted to pH 3 and 8 or in PDA supplemented with bile salt up to 0.8%. After soaking for 8 hr, the survival rate of A. charticola in the simulated gastric juice (pH 2) and bile solutions (2% bile salt) was lower than that of R. oryzae. A. charticola and R. oryzae exhibited strong antioxidant activities. Compared to unfermented cassava pulp (control), the fibre content of cassava pulp tended to be lower after fermentation with A. charticola for 14 days. The populations of A. charticola and R. oryzae were significantly higher in fermented cassava pulp than in unfermented one. Coliform was higher in cassava pulp fermented with R. oryzae or A. charticola + R. oryzae compared to control after 7 days of fermentation, however, the bacteria were not different between A. charticola-fermented cassava pulp and control. Lactic acid bacteria (LAB) were higher in A. charticola- and R. oryzae-fermented cassava pulp than those in control, however, no difference of LAB was observed between A. charticola + R. oryzae-fermented cassava pulp and control. In conclusion, A. charticola exhibited antibacterial, antifungal and antioxidant activity, gastrointestinal persistence and fermentative capacity that may be beneficial for poultry industry. PMID:26839501

  1. Functional Properties of Filamentous Fungi Isolated from the Indonesian Fermented Dried Cassava, with Particular Application on Poultry

    PubMed Central

    Yudiarti, Turrini; Isroli, Isroli

    2015-01-01

    The study aimed to evaluate the probiotic properties, antioxidant activity and fermentative capacity of Acremonium charticola and Rhizopus oryzae isolated from the Indonesian fermented dried cassava, with particular application on poultry. A. charticola inhibited the growth of Escherichia coli and Aspergillus flavus. A. charticola and R. oryzae grew in potato dextrose agar (PDA) adjusted to pH 3 and 8 or in PDA supplemented with bile salt up to 0.8%. After soaking for 8 hr, the survival rate of A. charticola in the simulated gastric juice (pH 2) and bile solutions (2% bile salt) was lower than that of R. oryzae. A. charticola and R. oryzae exhibited strong antioxidant activities. Compared to unfermented cassava pulp (control), the fibre content of cassava pulp tended to be lower after fermentation with A. charticola for 14 days. The populations of A. charticola and R. oryzae were significantly higher in fermented cassava pulp than in unfermented one. Coliform was higher in cassava pulp fermented with R. oryzae or A. charticola + R. oryzae compared to control after 7 days of fermentation, however, the bacteria were not different between A. charticola-fermented cassava pulp and control. Lactic acid bacteria (LAB) were higher in A. charticola- and R. oryzae-fermented cassava pulp than those in control, however, no difference of LAB was observed between A. charticola + R. oryzae-fermented cassava pulp and control. In conclusion, A. charticola exhibited antibacterial, antifungal and antioxidant activity, gastrointestinal persistence and fermentative capacity that may be beneficial for poultry industry. PMID:26839501

  2. Carnauba wax p-methoxycinnamic diesters: Characterisation, antioxidant activity and simulated gastrointestinal digestion followed by in vitro bioaccessibility.

    PubMed

    Freitas, Claisa Andréa Silva; Vieira, Ícaro Gusmão Pinto; Sousa, Paulo Henrique Machado; Muniz, Celli Rodrigues; Gonzaga, Maria Leônia da Costa; Guedes, Maria Izabel Florindo

    2016-04-01

    The beneficial biological effects of cinnamic acid derivatives and the lack of studies on the antioxidant activity and bioavailability of cinnamic esters from carnauba wax, diesters were extracted from carnauba wax powder. Their structural, physical and morphological characteristics, antioxidant activity and in vitro bioaccessibility were measured. p-Methoxycinnamic diester (PCO-C) was identified, which has a crystalline, apolar structure and exhibited significant antioxidant activity (107.27 ± 3.92 μM Trolox/g of dry weight) before and after simulated in vitro gastrointestinal digestion and 32.46% bioaccessibility. In human cells, PCO-C (250 μg/mL) inhibited the production of intracellular reactive oxygen species, with an effect similar to that of Trolox (80 μM). Thermogravimetric analysis showed that PCO-C had high thermal stability and high UV absorption between 250 and 350 nm. These results indicate that this compound is promising as an antioxidant for pharmaceutical and food industry applications, such as the development of active packaging and functional foods. PMID:26593619

  3. Ovicidal and larvicidal activity of extracts of Opuntia ficus-indica against gastrointestinal nematodes of naturally infected sheep.

    PubMed

    Féboli, Aline; Laurentiz, Antonio C; Soares, Suelen C S; Augusto, Jeferson G; Anjos, Luciano A; Magalhães, Lizandra G; Filardi, Rosemeire S; Laurentiz, Rosangela S

    2016-08-15

    This study describes the in vitro anthelmintic activity of extracts from Opuntia ficus indica against gastrointestinal nematodes of sheep. The anthelmintic activity was evaluated by inhibition of egg hatching, larval development and larval migration assays. The residual aqueous fractions from cladodes and fruits showed higher ovicidal activity with EC50 values of 7.2mg/mL and 1.5mg/mL, respectively. The aqueous, hexane, and ethyl acetate fractions from fruits and the aqueous fraction from cladodes inhibited 100% of larval development at the lowest concentration tested (1.56mg/mL). The crude cladode and fruit ethanolic extracts inhibited larval migration and showed EC50 values of 0.74mg/mL and 0.27mg/mL, respectively. Phytochemical screening detected high concentrations of alkaloids, tannins, flavonoids, and saponins in the fruits and cladodes. The results demonstrated that O. ficus exhibits anthelmintic activity in vitro, suggesting that, beyond its nutritional potential, this plant can also be an ally for parasite control in sheep. PMID:27514886

  4. Effects of Dates Pulp Extract and Palm Sap (Phoenix dactylifera L.) on Gastrointestinal Transit Activity in Healthy Rats

    PubMed Central

    Souli, Abdellaziz; Rtibi, Kaïs; Chehimi, Latifa; Sakly, Mohsen; Amri, Mohamed; El-Benna, Jamel

    2014-01-01

    Abstract The current study was performed to measure the chemical composition and the effects of dates pulp extract and palm sap on gastrointestinal transit (GIT) activity in healthy adult rats. In this respect, male Wistar rats fasted for 24 hours were used and received per orally (p.o.) sodium chloride (NaCl) (0,9%) (control group) or various doses of dates pulp extract (150 and 300 mg/kg, body weight [b.w.]) and palm sap (0.4 and 4 mL/kg, b.w.). Two other groups of rats (batch tests) received, respectively, clonidine (an alpha-2 adrenergic agonist, 1 mg/kg, b.w.) and yohimbine (an alpha-2 adrenergic antagonist, 2mg/kg, b.w.). Chemical analysis showed that the dates pulp extract is more rich in sugars and minerals, especially potassium and sucrose, as compared with palm sap composition. On the other hand, in vivo study showed that the aqueous dates pulp extract significantly, and dose dependently, increased the GIT activity while the palm sap slightly increased it. Moreover, a converse effect has been observed using clonidine (decreased 68%) and yohimbine (increased 33%) on the GIT activity. These findings suggest that dates pulp extract and palm sap have a stimulating effect on GIT activity in rats and confirm their use in traditional Tunisian medicine for the treatment of constipation. PMID:24611963

  5. High-resolution Mapping of In Vivo Gastrointestinal Slow Wave Activity Using Flexible Printed Circuit Board Electrodes: Methodology and Validation

    PubMed Central

    DU, PENG; O'GRADY, G.; EGBUJI, J. U.; LAMMERS, W. J.; BUDGETT, D.; NIELSEN, P.; WINDSOR, J. A.; PULLAN, A. J.; CHENG, L. K.

    2014-01-01

    High-resolution, multi-electrode mapping is providing valuable new insights into the origin, propagation, and abnormalities of gastrointestinal (GI) slow wave activity. Construction of high-resolution mapping arrays has previously been a costly and time-consuming endeavor, and existing arrays are not well suited for human research as they cannot be reliably and repeatedly sterilized. The design and fabrication of a new flexible printed circuit board (PCB) multi-electrode array that is suitable for GI mapping is presented, together with its in vivo validation in a porcine model. A modified methodology for characterizing slow waves and forming spatiotemporal activation maps showing slow waves propagation is also demonstrated. The validation study found that flexible PCB electrode arrays are able to reliably record gastric slow wave activity with signal quality near that achieved by traditional epoxy resin-embedded silver electrode arrays. Flexible PCB electrode arrays provide a clinically viable alternative to previously published devices for the high-resolution mapping of GI slow wave activity. PCBs may be mass-produced at low cost, and are easily sterilized and potentially disposable, making them ideally suited to intra-operative human use. PMID:19224368

  6. The influence of douchi starter cultures on the composition of extractive components, microbiological activity, and sensory properties of fermented fish pastes.

    PubMed

    Kasankala, Ladislaus M; Xiong, Youling L; Chen, Jie

    2011-01-01

    Three experiments were conducted to test the hypothesis that douchi cultures could serve as a potential starter for enhancing the quality attributes of fermented silver carp meat. In experiment 1, an active, prefermented douchi culture was incorporated into a fish paste to aid in the fish fermentation (30 d) and facilitate biochemical production of extractive flavor components (PRF). In experiment 2, a fully fermented (30 d) douchi was added to a fish paste and the mixture was fermented for 30 d (PSF). In experiment 3, a fish paste without the douchi culture was fermented for 30 d (CF). Total extracted free amino acids increased by 68.0, 68.6, and 78.8% (P < 0.05) from their initial levels to 2930, 2422, and 1573 mg/mL after 30 d of fermentation for PRF, PSF, and CF fish pastes, respectively, of which, glutamic acid, aspartic acid, alanine, lysine, and leucine were the major amino acids (>100 mg/mL). The concentrations of both formaldehyde-reactive nitrogen and ammonia nitrogen extractives increased significantly (P < 0.05) during fermentation, following the order of PRF > PSF > CF. Low amounts of biogenic amines (<25 ppm) were produced in all samples. Sensory panel evaluation showed that PRF fish pastes had desirable aroma and taste. The douchi-inoculated fermentation could be a novel technique for expanding the utilization, consumption, and the economic values of silver carp meats. Practical Application: Douchi, a fermented soybean product, is a traditional food flavoring ingredient commonly used in China, Japan, and other Asian countries. It is also used in many Chinese cuisines in the United States. On the other hand, fermented seafood made from freshwater fish such as silver carp is known to contain bioactive components believed to promote health. The findings from the present study indicated that douchi as a novel starter can be used to produce fermented silver carp fish pastes with excellent flavor and consumer acceptability. The results may be applicable to

  7. Korean Ginseng Berry Fermented by Mycotoxin Non-producing Aspergillus niger and Aspergillus oryzae: Ginsenoside Analyses and Anti-proliferative Activities.

    PubMed

    Li, Zhipeng; Ahn, Hyung Jin; Kim, Nam Yeon; Lee, Yu Na; Ji, Geun Eog

    2016-01-01

    To transform ginsenosides, Korean ginseng berry (KGB) was fermented by mycotoxin non-producing Aspergillus niger and Aspergillus oryzae. Changes of ginsenoside profile and anti-proliferative activities were observed. Results showed that A. niger tended to efficiently transform protopanaxadiol (PPD) type ginsenosides such as Rb1, Rb2, Rd to compound K while A. oryzae tended to efficiently transform protopanaxatriol (PPT) type ginsenoside Re to Rh1 via Rg1. Butanol extracts of fermented KGB showed high cytotoxicity on human adenocarcinoma HT-29 cell line and hepatocellular carcinoma HepG2 cell line while that of unfermented KGB showed little. The minimum effective concentration of niger-fermented KGB was less than 2.5 µg/mL while that of oryzae-fermented KGB was about 5 µg/mL. As A. niger is more inclined to transform PPD type ginsenosides, niger-fermented KGB showed stronger anti-proliferative activity than oryzae-fermented KGB. PMID:27582326

  8. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis.

    PubMed

    Wan, Jingjing; Jing, Yuhang; Zhang, Shicheng; Angelidaki, Irini; Luo, Gang

    2016-10-01

    The present study compared the mesophilic and thermophilic alkaline fermentation of waste activated sludge (WAS) for hydrogen production with focus on homoacetogenesis, which mediated the consumption of H2 and CO2 for acetate production. Batch experiments showed that hydrogen yield of WAS increased from 19.2 mL H2/gVSS at 37 °C and pH 10-80.1 mL H2/gVSS at 55 °C and pH 10. However, the production of volatile fatty acids (mainly acetate) was higher at 37 °C and pH 10 by comparison with 55 °C and pH 10. Hydrogen consumption due to homoacetogenesis was observed at 37 °C and pH 10 but not 55 °C and pH 10. Higher expression levels of genes relating with homoacetogenesis and lower expression levels of genes relating with hydrogen production were found at 37 °C and pH 10 compared to 55 °C and pH 10. The continuous experiment demonstrated the steady-state hydrogen yield of WAS was comparable to that obtained from batch experiments at 55 °C and pH 10, and homoacetogenesis was still inhibited. However, the steady-state hydrogen yield of WAS (6.5 mL H2/gVSS) was much lower than that (19.2 mL H2/gVSS) obtained from batch experiments at 37 °C and pH 10 due to the gradual enrichment of homoacetogens as demonstrated by qPCR analysis. The high-throughput sequencing analysis of 16S rRNA genes showed that the abundance of genus Clostridium, containing several homoacetogens, was 5 times higher at 37 °C and pH 10 than 55 °C and pH 10. PMID:27420808

  9. Changes of Constituents and Activity to Apoptosis and Cell Cycle During Fermentation of Tea

    PubMed Central

    Zhao, Hang; Zhang, Min; Zhao, Lu; Ge, Ya-kun; Sheng, Jun; Shi, Wei

    2011-01-01

    Tea is believed to be beneficial for health, and the effects of the fermentation process on its contributions to apoptosis and cell cycle arrest of gastric cancer cells have not been completely investigated. In this study, the chemical components in green tea, black tea and pu-erh tea aqueous extracts were analyzed and compared. The polysaccharide and caffeine levels were substantially higher in the fermented black tea and pu-erh tea, while the polyphenol level was higher in the unfermented green tea. Hence, a treatment of tea aqueous extract and the components, which are emerging as promising anticancer agents, were pursued to determine whether this treatment could lead to enhance apoptosis and cell cycle arrest. In the human gastric cancer cell line SGC-7901, the cell viability and flow cytometry analysis for apoptotic cells indicated effects in a dose-dependent inhibition manner for the three tea treatment groups. The apoptosis rates were found to be elevated after 48 h of treatment with 31.2, 125, and 500 μg/mL of green tea extract, the higher catechins content may be involved in the mechanism. Cell cycle was arrested in S phase in the fermented black tea and pu-erh tea, and the populations were significantly decreased in G2/M phases, possibly due to the oxidation of tea polyphenols, which causes an increase of theabrownins. CCC-HEL-1 normal cells were not sensitive to tea extract. These findings suggest that the fermentation process causes changes of the compounds which might be involved in the changes of cell proliferation inhibition, apoptosis induction and cell cycle arrest. PMID:21673927

  10. Gastrointestinal pain: unraveling a novel endogenous pathway through uroguanylin/guanylate cyclase-C/cGMP activation.

    PubMed

    Silos-Santiago, Inmaculada; Hannig, Gerhard; Eutamene, Helene; Ustinova, Elena E; Bernier, Sylvie G; Ge, Pei; Graul, Christopher; Jacobson, Sarah; Jin, Hong; Liong, Elaine; Kessler, Marco M; Reza, Tammi; Rivers, Samuel; Shea, Courtney; Tchernychev, Boris; Bryant, Alexander P; Kurtz, Caroline B; Bueno, Lionel; Pezzone, Michael A; Currie, Mark G

    2013-09-01

    The natural hormone uroguanylin regulates intestinal fluid homeostasis and bowel function through activation of guanylate cyclase-C (GC-C), resulting in increased intracellular cyclic guanosine-3',5'-monophosphate (cGMP). We report the effects of uroguanylin-mediated activation of the GC-C/cGMP pathway in vitro on extracellular cGMP transport and in vivo in rat models of inflammation- and stress-induced visceral hypersensitivity. In vitro exposure of intestinal Caco-2 cells to uroguanylin stimulated bidirectional, active extracellular transport of cGMP into luminal and basolateral spaces. cGMP transport was significantly and concentration dependently decreased by probenecid, an inhibitor of cGMP efflux pumps. In ex vivo Ussing chamber assays, uroguanylin stimulated cGMP secretion from the basolateral side of rat colonic epithelium into the submucosal space. In a rat model of trinitrobenzene sulfonic acid (TNBS)-induced visceral hypersensitivity, orally administered uroguanylin increased colonic thresholds required to elicit abdominal contractions in response to colorectal distension (CRD). Oral administration of cGMP mimicked the antihyperalgesic effects of uroguanylin, significantly decreasing TNBS- and restraint stress-induced visceromotor response to graded CRD in rats. The antihyperalgesic effects of cGMP were not associated with increased colonic spasmolytic activity, but were linked to significantly decreased firing rates of TNBS-sensitized colonic afferents in rats in response to mechanical stimuli. In conclusion, these data suggest that the continuous activation of the GC-C/cGMP pathway along the intestinal tract by the endogenous hormones guanylin and uroguanylin results in significant reduction of gastrointestinal pain. Extracellular cGMP produced on activation of GC-C is the primary mediator in this process via modulation of sensory afferent activity. PMID:23748116

  11. Fermentation of quinoa and wheat slurries by Lactobacillus plantarum CRL 778: proteolytic activity.

    PubMed

    Dallagnol, Andrea Micaela; Pescuma, Micaela; De Valdez, Graciela Font; Rollán, Graciela

    2013-04-01

    Quinoa fermentation by lactic acid bacteria (LAB) is an interesting alternative to produce new bakery products with high nutritional value; furthermore, they are suitable for celiac patients because this pseudo-cereal contains no gluten. Growth and lactic acid production during slurry fermentations by Lactobacillus plantarum CRL 778 were greater in quinoa (9.8 log cfu/mL, 23.1 g/L) than in wheat (8.9 log cfu/mL, 13.9 g/L). Lactic fermentation indirectly stimulated flour protein hydrolysis by endogenous proteases of both slurries. However, quinoa protein hydrolysis was faster, reaching 40-100% at 8 h of incubation, while wheat protein hydrolysis was only 0-20%. In addition, higher amounts of peptides (24) and free amino acids (5 g/L) were determined in quinoa compared to wheat. Consequently, greater concentrations (approx. 2.6-fold) of the antifungal compounds (phenyllactic and hydroxyphenyllactic acids) were synthesized from Phe and Tyr in quinoa by L. plantarum CRL 778, an antifungal strain. These promising results suggest that this LAB strain could be used in the formulation of quinoa sourdough to obtain baked goods with improved nutritional quality and shelf life, suitable for celiac patients. PMID:23129182

  12. Production of bioactive polysaccharides by Inonotus obliquus under submerged fermentation supplemented with lignocellulosic biomass and their antioxidant activity.

    PubMed

    Xu, Xiangqun; Hu, Yan; Quan, Lili

    2014-12-01

    The effect of lignocellulose degradation in wheat straw, rice straw, and sugarcane bagasse on the accumulation and antioxidant activity of extra- (EPS) and intracellular polysaccharides (IPS) of Inonotus obliquus under submerged fermentation were first evaluated. The wheat straw, rice straw, and sugarcane bagasse increased the EPS accumulation by 91.4, 78.6, and 74.3 % compared with control, respectively. The EPS and IPS extracts from the three lignocellulose media had significantly higher hydroxyl radical- and 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity than those from the control medium. Of the three materials, wheat straw was the most effective lignocellulose in enhancing the mycelia growth, accumulation and antioxidant activity of I. obliquus polysaccharides (PS). The carbohydrate and protein content, as well as the monosaccharide compositions of the EPS and IPS extracts, were correlated with sugar compositions and dynamic contents during fermentation of individual lignocellulosic materials. The enhanced accumulation of bioactive PS of cultured I. obliquus supplemented with rice straw, wheat straw, and bagasse was evident. PMID:24890137

  13. Influence of fermentation conditions on polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Cordyceps militaris.

    PubMed

    Zhu, Zhen-Yuan; Liu, Xiao-Cui; Dong, Feng-Ying; Guo, Ming-Zhu; Wang, Xiao-Ting; Wang, Zheng; Zhang, Yong-Min

    2016-05-01

    The influence of different fermentation conditions on intracellular polysaccharide (IPS) production and activities of the phosphoglucomutase (PGM), UDPG-pyrophosphorylase (UGP), phosphoglucose isomerase (PGI), UDPG-dehydrogenase (UGD), and glucokinase (GK) implicated in metabolite synthesis in Cordyceps militaris was evaluated. The highest IPS production (327.57 ± 6.27 mg/100 mL) was obtained when the strain was grown in the optimal medium containing glucose (40 g · L(-1)), beef extract (10 g · L(-1)), and CaCO3 (0.5 g · L(-1)), and the initial pH and temperature were 7 and 25 °C, respectively. The activities of PGM, UGP, and PGI were proved to be influenced by the fermentation conditions. A strong correlation between the activities of these enzymes and the production of IPS was found. The transcription level of the pgm gene (encoding PGM) was 1.049 times and 1.467 times compared to the ugp gene and pgi gene (encoding UGP and PGI), respectively, in the optimal culture medium. This result indicated that PGM might be the highly key enzyme to regulate the biosynthesis of IPS of C. militaris in a liquid-submerged culture. Our study might be helpful for further research on the pathway of polysaccharide biosynthesis aimed to improve the IPS production of C. militaris. PMID:26685672

  14. Cacao Fermentation

    PubMed Central

    Martelli, H. L.; Dittmar, H. F. K.

    1961-01-01

    Cacao beans must be subjected to fermentation before they are used in making chocolate, and their commercial value is related to a proper procedure. Saccharomyces rosei, Hansenula anomala, Pichia fermentans, Pichia membranaefaciens, and Trichosporon cutaneum were found in fermenting cacao beans. All species isolated during the investigation grew on cacao pulp, but only S. rosei, H. anomala, and P. fermentans exhibited fermenting capacity on the sugars of cacao pulp. Species of the genus Saccharomyces were identified as the agents responsible for the alcoholic phase of the cacao fermentation. PMID:13767275

  15. Organic Anion Transporting Polypeptide (OATP)2B1 Contributes to Gastrointestinal Toxicity of Anticancer Drug SN-38, Active Metabolite of Irinotecan Hydrochloride.

    PubMed

    Fujita, Daichi; Saito, Yoshimasa; Nakanishi, Takeo; Tamai, Ikumi

    2016-01-01

    Gastrointestinal toxicity, such as late-onset diarrhea, is a significant concern in irinotecan hydrochloride (CPT-11)-containing regimens. Prophylaxis of late-onset diarrhea has been reported with use of Japanese traditional (Kampo) medicine containing baicalin and with the antibiotic cefixime, and this has been explained in terms of inhibition of bacterial deconjugation of SN-38-glucuronide since unconjugated SN-38 (active metabolite of CPT-11) is responsible for the gastrointestinal toxicity. It is also prerequisite for SN-38 to be accumulated in intestinal tissues to exert toxicity. Based on the fact that liver-specific organic anion transporting polypeptide (OATP)1B1, a member of the same family as OATP2B1, is known to be involved in hepatic transport of SN-38, we hypothesized that intestinal transporter OATP2B1 contributes to the accumulation of SN-38 in gastrointestinal tissues, and its inhibition would help prevent associated toxicity. We found that uptake of SN-38 by OATP2B1-expressing Xenopus oocytes was significantly higher than that by control oocytes. OATP2B1-mediated uptake of SN-38 was saturable, pH dependent, and decreased in the presence of baicalin, cefixime, or fruit juices such as apple juice. In vivo gastrointestinal toxicity of SN-38 in mice caused by oral administration for consecutive 5 days was prevented by coingestion of apple juice. Thus, OATP2B1 contributes to the uptake of SN-38 by intestinal tissues, triggering gastrointestinal toxicity. So, in addition to the reported inhibition of bacterial β-glucuronidase by cefixime or baicalin, inhibition of OATP2B1 may also contribute to prevention of gastrointestinal toxicity. Apple juice may be helpful for prophylaxis of late-onset diarrhea observed in CPT-11 therapy without disturbance of the intestinal microflora. PMID:26526067

  16. Phytase transgenic corn in nutrition of laying hens: residual phytase activity and phytate phosphorus content in the gastrointestinal tract.

    PubMed

    Gao, C Q; Ji, C; Zhao, L H; Zhang, J Y; Ma, Q G

    2013-11-01

    The residual activities of transgenic corn-derived and 2 commercial microbial phytases (PA and PB) along the gastrointestinal tract (GIT) of laying hens were compared to evaluate their relative resistance to hydrolysis in the GIT when added to P-deficient diets. The treatments consisted of a negative control (NC) diet containing 0.10 nonphytate P and an NC diet supplemented with transgenic corn-derived phytase (TCDP), PA, and PB at 500 to 5,000 FTU/kg of diet, respectively. Seven diets were fed to Hy-Line Brown laying hens (n = 504; 8 replicates of 9 hens per treatment) for 21 d. At the end of the experiment, the hens were killed and digesta samples from the crop, proventriculus and gizzard, jejunum, and ileum were collected and analyzed for residual phytase activities and phytate P content. Phytase activity in the transgenic corn was determined to be 8,980 FTU/kg of DM. The residual phytase activities along the GIT had increased (P < 0.01) with the addition of TCDP, PA, and PB to the NC diets. The TCDP had higher residual activity (P < 0.05) in the crop, proventriculus and gizzard, jejunum, and ileum as compared with the PA and PB activity. There was a decrease (P < 0.01) in the phytate P content of the digesta from all sources of phytase supplementation in the NC diets. Residual phytate P content decreased caudally along the GIT of hens. The results of this research indicate that phytase expressed in corn is as efficacious as the commercial microbial phytases (PA and PB) in P-deficient diets for the improvement of phytate P digestibility, which would eliminate the need for supplemental phytase and corn separately in laying hen diets. PMID:24135596

  17. Shedding of Clostridium difficile, fecal beta-lactamase activity, and gastrointestinal symptoms in 51 volunteers treated with oral cefixime.

    PubMed Central

    Chachaty, E; Bourneix, C; Renard, S; Bonnay, M; Andremont, A

    1993-01-01

    Microbial changes including the shedding of Clostridium difficile, fecal beta-lactamase activity, and gastrointestinal symptoms were assessed in 51 healthy volunteers given 200 mg of cefixime twice daily for 8 days. The number of organisms of the family Enterobacteriaceae (means +/- standard deviations) dropped from 6.9 +/- 1.1 to 3.9 +/- 1.8 log CFU/g of feces (P < 0.01), whereas counts of enterococci rose from 7.0 +/- 1.5 to 9.0 +/- 1.0 log CFU/g of feces (P < 0.01). Both counts returned to their initial levels 50 days after the cessation of treatment. Cefixime did not significantly modify the frequency of fecal excretion of Pseudomonas aeruginosa, Staphylococcus spp., yeasts, or members of the Enterobacteriaceae resistant to ceftazidime or ampicillin. The proportion of subjects shedding C. difficile rose from 6% before treatment to 57% (P < 0.01) at the end of treatment but returned to 8% 50 days thereafter. No case of pseudomembranous colitis was observed. Stool changes occurred in 13 volunteers during treatment (25%) and in 2 others more than 10 days after the end of treatment (4%). These changes were not significantly associated with the shedding of toxigenic strains of C. difficile or with the presence of toxin A in feces. By contrast, during treatment, stool changes occurred in 8 of the 18 volunteers (44%) who had antibiotic activity in their feces but in only 5 of the 33 (15%) for whom no such activity was found (P < 0.05). The absence of antibiotic activity in the feces was itself linked with the presence of beta-lactamase activity in the feces. Since we had found earlier that fecal beta-lactamase activity afforded protection against alteration in stool consistency during treatments with oral cephalosporins, the present study confirmed our previous preliminary results in this respect. PMID:8363371

  18. Shedding of Clostridium difficile, fecal beta-lactamase activity, and gastrointestinal symptoms in 51 volunteers treated with oral cefixime.

    PubMed

    Chachaty, E; Bourneix, C; Renard, S; Bonnay, M; Andremont, A

    1993-07-01

    Microbial changes including the shedding of Clostridium difficile, fecal beta-lactamase activity, and gastrointestinal symptoms were assessed in 51 healthy volunteers given 200 mg of cefixime twice daily for 8 days. The number of organisms of the family Enterobacteriaceae (means +/- standard deviations) dropped from 6.9 +/- 1.1 to 3.9 +/- 1.8 log CFU/g of feces (P < 0.01), whereas counts of enterococci rose from 7.0 +/- 1.5 to 9.0 +/- 1.0 log CFU/g of feces (P < 0.01). Both counts returned to their initial levels 50 days after the cessation of treatment. Cefixime did not significantly modify the frequency of fecal excretion of Pseudomonas aeruginosa, Staphylococcus spp., yeasts, or members of the Enterobacteriaceae resistant to ceftazidime or ampicillin. The proportion of subjects shedding C. difficile rose from 6% before treatment to 57% (P < 0.01) at the end of treatment but returned to 8% 50 days thereafter. No case of pseudomembranous colitis was observed. Stool changes occurred in 13 volunteers during treatment (25%) and in 2 others more than 10 days after the end of treatment (4%). These changes were not significantly associated with the shedding of toxigenic strains of C. difficile or with the presence of toxin A in feces. By contrast, during treatment, stool changes occurred in 8 of the 18 volunteers (44%) who had antibiotic activity in their feces but in only 5 of the 33 (15%) for whom no such activity was found (P < 0.05). The absence of antibiotic activity in the feces was itself linked with the presence of beta-lactamase activity in the feces. Since we had found earlier that fecal beta-lactamase activity afforded protection against alteration in stool consistency during treatments with oral cephalosporins, the present study confirmed our previous preliminary results in this respect. PMID:8363371

  19. Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors

    PubMed Central

    Dersjant-Li, Yueming; Awati, Ajay; Schulze, Hagen; Partridge, Gary

    2015-01-01

    This review focuses on phytase functionality in the digestive tract of farmed non-ruminant animals and the factors influencing in vivo phytase enzyme activity. In pigs, feed phytase is mainly active in the stomach and upper part of the small intestine, and added phytase activity is not recovered in the ileum. In poultry, feed phytase activities are mainly found in the upper part of the digestive tract, including the crop, proventriculus and gizzard. For fish with a stomach, phytase activities are mainly in the stomach. Many factors can influence the efficiency of feed phytase in the gastrointestinal tract, and they can be divided into three main groups: (i) phytase related; (ii) dietary related and (iii) animal related. Phytase-related factors include type of phytase (e.g. 3- or 6-phytase; bacterial or fungal phytase origin), the pH optimum and the resistance of phytase to endogenous protease. Dietary-related factors are mainly associated with dietary phytate content, feed ingredient composition and feed processing, and total P, Ca and Na content. Animal-related factors include species, gender and age of animals. To eliminate the antinutritional effects of phytate (IP6), it needs to be hydrolyzed as quickly as possible by phytase in the upper part of the digestive tract. A phytase that works over a wide range of pH values and is active in the stomach and upper intestine (along with several other characteristics and in addition to being refractory to endogenous enzymes) would be ideal. © 2014 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25382707

  20. Solid-substrate fermentation of wheat grains by mycelia of indigenous species of the genus Ganoderma (higher Basidiomycetes) to enhance the antioxidant activities.

    PubMed

    Subramaniam, Sarasvathy; Sabaratnam, Vikineswary; Kuppusamy, Umah Rani; Tan, Yee Shin

    2014-01-01

    Species of the genus Ganoderma are a cosmopolitan wood decaying white rot fungi, which has been used by the Asians for therapeutic purposes for centuries. In the present study, solid-substrate fermentation (SSF) of wheat grains (Triticum aestivum L.) was carried out with indigenous Ganoderma australe (KUM60813) and G. neo-japonicum (KUM61076) selected based on ethnomycological knowledge. G. lucidum (VITA GL) (a commercial strain) was also included in the study. Antioxidant activities of the crude ethanol and aqueous extracts of the fermented and unfermented wheat grains were investigated by ferric reducing antioxidant power (FRAP), Trolox equivalent antioxidant capacity (TEAC), diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging ability, and lipid peroxidation assay. Among the six mycelia extracts tested, the ethanol extract from wheat fermented with KUM61076 mycelia showed the most potent antioxidant activities, whereas the ethanol extract of wheat grains fermented with KUM60813 mycelia has a good potential in protecting frying oils against oxidation. Total phenolic content (TPC) in the ethanol extracts were higher than that in the aqueous extract. The wheat grains fermented with G. australe (KUM60813) and G. neo-japonicum KUM61076 have greater antioxidant potential compared to the commercially available G. lucidum (VITA GL). The antioxidant activities of the mycelia extracts had a positive correlation with their phenolic contents. Thus phenolic compounds may play a vital role in the antioxidant activities of the selected Ganoderma spp. PMID:24941167

  1. Aqueous Extracts from Tunisian Diplotaxis: Phenol Content, Antioxidant and Anti-Acetylcholinesterase Activities, and Impact of Exposure to Simulated Gastrointestinal Fluids.

    PubMed

    Bahloul, Nada; Bellili, Sana; Aazza, Smail; Chérif, Ameur; Faleiro, Maria Leonor; Antunes, Maria Dulce; Miguel, Maria Graça; Mnif, Wissem

    2016-01-01

    Antioxidants have been considered essential for preventing cell damage by scavenging deleterious free radicals. The consumption of antioxidant-rich plants is associated with a reduced risk of some chronic diseases. This study evaluates the antioxidant and acetylcholinesterase inhibition activities of aqueous extracts obtained from different parts of Diplotaxis simplex and Diplotaxis harra from Tunisia. The study also aimed to investigate the action of simulated gastrointestinal juice on antioxidant activities of both extracts. The total phenolic, flavone and flavonol, and flavanone and dihydroflavonol contents were determined by Folin-Ciocalteau, aluminum chloride and 2,4-dinitrophenylhydrazine colorimetric methods, respectively. The metal ion chelating activity, acetylcholinesterase inhibition capacity, and free radical scavenging potential of the extracts towards ABTS (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), DPPH (2,2-diphenyl-1-picrylhydrazyl), hydroxyl, superoxide and nitric oxide were also evaluated. The action of simulated gastro-intestinal fluids on the flavone and flavonol content and total antioxidant activity of the flower extracts was surveyed. Extracts from the seeds and flowers of D. simplex and D. harra displayed the highest amounts of phenols (2691.7 and 2694.5 mg Caffeic Acid Equivalent (CAE)/100 mg; 3433.4 and 2647.2 mg CAE/100 mg, respectively) and flavonols/flavones (2144.4 and 2061.1 mg Rutin Equivalent (RE)/100 g; 1922.6 and 1461.1 mg RE/100 g, respectively). The flower and seed extracts exhibited the highest rates of antioxidant and acetylcholinesterase inhibition activities. A decrease in the flavonoid content and antioxidant activity was observed after extract exposure to simulated saliva. Antioxidant and acetylcholinesterase inhibition activities were noted to depend on plant species and plant parts. In vitro gastrointestinal digestion is useful in assessing the bio-accessibility of compounds with biological activities from

  2. Aqueous Extracts from Tunisian Diplotaxis: Phenol Content, Antioxidant and Anti-Acetylcholinesterase Activities, and Impact of Exposure to Simulated Gastrointestinal Fluids

    PubMed Central

    Bahloul, Nada; Bellili, Sana; Aazza, Smail; Chérif, Ameur; Faleiro, Maria Leonor; Antunes, Maria Dulce; Miguel, Maria Graça; Mnif, Wissem

    2016-01-01

    Antioxidants have been considered essential for preventing cell damage by scavenging deleterious free radicals. The consumption of antioxidant-rich plants is associated with a reduced risk of some chronic diseases. This study evaluates the antioxidant and acetylcholinesterase inhibition activities of aqueous extracts obtained from different parts of Diplotaxis simplex and Diplotaxis harra from Tunisia. The study also aimed to investigate the action of simulated gastrointestinal juice on antioxidant activities of both extracts. The total phenolic, flavone and flavonol, and flavanone and dihydroflavonol contents were determined by Folin–Ciocalteau, aluminum chloride and 2,4-dinitrophenylhydrazine colorimetric methods, respectively. The metal ion chelating activity, acetylcholinesterase inhibition capacity, and free radical scavenging potential of the extracts towards ABTS (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), DPPH (2,2-diphenyl-1-picrylhydrazyl), hydroxyl, superoxide and nitric oxide were also evaluated. The action of simulated gastro-intestinal fluids on the flavone and flavonol content and total antioxidant activity of the flower extracts was surveyed. Extracts from the seeds and flowers of D. simplex and D. harra displayed the highest amounts of phenols (2691.7 and 2694.5 mg Caffeic Acid Equivalent (CAE)/100 mg; 3433.4 and 2647.2 mg CAE/100 mg, respectively) and flavonols/flavones (2144.4 and 2061.1 mg Rutin Equivalent (RE)/100 g; 1922.6 and 1461.1 mg RE/100 g, respectively). The flower and seed extracts exhibited the highest rates of antioxidant and acetylcholinesterase inhibition activities. A decrease in the flavonoid content and antioxidant activity was observed after extract exposure to simulated saliva. Antioxidant and acetylcholinesterase inhibition activities were noted to depend on plant species and plant parts. In vitro gastrointestinal digestion is useful in assessing the bio-accessibility of compounds with biological activities

  3. Gastrointestinal motility and functional gastrointestinal diseases.

    PubMed

    Kusano, Motoyasu; Hosaka, Hiroko; Kawada, Akiyo; Kuribayashi, Shiko; Shimoyama, Yasuyuki; Zai, Hiroaki; Kawamura, Osamu; Yamada, Masanobu

    2014-01-01

    Digestive tract motility patterns are closely related to the pathophysiology of functional gastrointestinal diseases (FGID), and these patterns differ markedly between the interdigestive period and the postprandial period. The characteristic motility pattern in the interdigestive period is so-called interdigestive migrating contraction (IMC). IMCs have a housekeeping role in the intestinal tract, and could also be related to FGID. IMCs arising from the stomach are called gastrointestinal IMCs (GI-IMC), while IMCs arising from the duodenum without associated gastric contractions are called intestinal IMCs (I-IMC). It is thought that I-IMCs are abnormal in FGID. Transport of food residue to the duodenum via gastric emptying is one of the most important postprandial functions of the stomach. In patients with functional dyspepsia (FD), abnormal gastric emptying is a possible mechanism of gastric dysfunction. Accordingly, delayed gastric emptying has attracted attention, with prokinetic agents and herbal medicines often being administered in Japan to accelerate gastric emptying in patients who have anorexia associated with dyspepsia. Recently, we found that addition of monosodium L-glutamate (MSG) to a high-calorie liquid diet rich in casein promoted gastric emptying in healthy men. Therefore, another potential method of improving delayed gastric emptying could be activation of chemosensors that stimulate the autonomic nervous system of the gastrointestinal tract, suggesting a role for MSG in the management of delayed gastric emptying in patients with FD. PMID:23886379

  4. Hypocholesterolemic Activity of Monascus Fermented Product in the Absence of Monacolins with Partial Purification for Functional Food Applications

    PubMed Central

    Ajdari, Zahra; Abd Ghani, Maaruf; Khan Ayob, Mohd; Mokhtar, Mazlin; Abbasiliasi, Sahar; Khoramnia, Anahita; Rahman, Heshu Sulaiman; Ariff, Arbakariya B.

    2014-01-01

    Hypercholesterolemia is one of the most common chronic diseases in human. Along with chemical therapy traditional medication is used as hypocholesterolemic remedy, however, with unfavorable side effects. Recently, Monascus fermented product (MFP) has become a popular hypocholesterolemic natural supplement. In the present study, the hypocholesterolemic activity of Monascus purpureus FTC5391 fermented product ethanolic extract (MFPe) was investigated in hypercholesterolemic rats. Results showed that MFPe not only reduced the serum total cholesterol (TC), LDL-C, TG concentration, and TC/HDL-C ratio but also increased the HDL-C. Further, solid phase extraction (SPE) was carried out to obtain the hypocholesterolemic bioactive fraction. The high polar fraction of SPE increased the HDL-C (42%) and decreased the TC (53.3%), LDL-C (47%), and TG (50.7%) levels as well as TC/HDL-C ratio (69.1%) in serum. The GC-MS results of the active fraction revealed two main compounds, isosorbide and erythritol, which act as coronary vasodilator compounds. PMID:24701147

  5. Effects of Freeze-dried Mulberry on Antioxidant Activities and Fermented Characteristics of Yogurt during Refrigerated Storage

    PubMed Central

    2015-01-01

    This study investigated the effect of added freeze-dried mulberry fruit juice (FDMJ) (1, 3 and 5%) on the antioxidant activity and fermented characteristic of yogurt during refrigerated storage. A decrease in pH of yogurt and increase in acidity was observed during fermentation. The yogurts with FDMJ exhibited faster rate of pH reduction than control. Initial lactic acid bacteria count of yogurt was 6.49-6.94 Log CFU/g and increased above 9 Log CFU/g in control and 1% in FDMJ yogurt for 24 h. The total polyphenol and anthocyanin content of FDMJ yogurt was higher than that of control due to the presence of phytochemical contents in mulberry. Moreover, antioxidant activity such as DPPH and reducing power was highest 5% FDMJ yogurt. During cold storage, pH decreased or remained constant in all yogurts with values ranging from 4.08 to 4.78 units. In sensory evaluation, the score of 1% FDMJ yogurt was ranked higher when compared with other yogurts. It is proposed that mulberry fruit juice powder can be used to improve sensory evaluation and enhance functionality of yogurt. PMID:26877641

  6. Gamma irradiation of sorghum flour: Effects on microbial inactivation, amylase activity, fermentability, viscosity and starch granule structure

    NASA Astrophysics Data System (ADS)

    Mukisa, Ivan M.; Muyanja, Charles M. B. K.; Byaruhanga, Yusuf B.; Schüller, Reidar B.; Langsrud, Thor; Narvhus, Judith A.

    2012-03-01

    Malted and un-malted sorghum ( Sorghum bicolor (L.) Moench) flour was gamma irradiated with a dose of 10 kGy and then re-irradiated with 25 kGy. The effects of irradiation on microbial decontamination, amylase activity, fermentability (using an amylolytic L. plantarum MNC 21 strain), starch granule structure and viscosity were determined. Standard methods were used during determinations. The 10 kGy dose had no effect on microbial load of un-malted flour but reduced that of malted flour by 3 log cycles. Re-irradiation resulted in complete decontamination. Irradiation of malt caused a significant ( p<0.05) reduction in alpha and beta amylase activity (22% and 32%, respectively). Irradiation of un-malted flour increased the rates of utilization of glucose and maltose by 53% and 100%, respectively, during fermentation. However, microbial growth, rate of lactic acid production, final lactic acid concentration and pH were not affected. Starch granules appeared normal externally even after re-irradiation, however, granules ruptured and dissolved easily after hydration and gelatinization. Production of high dry matter density porridge (200 g dry matter/L) with a viscosity of 3500 cP was achieved by irradiation of un-malted flout at 10 kGy. Gamma irradiation can be used to decontaminate flours and could be utilized to produce weaning porridge from sorghum.

  7. Food-grade argan oil supplementation in molasses enhances fermentative performance and antioxidant defenses of active dry wine yeast.

    PubMed

    Gamero-Sandemetrio, Esther; Torrellas, Max; Rábena, María Teresa; Gómez-Pastor, Rocío; Aranda, Agustín; Matallana, Emilia

    2015-12-01

    The tolerance of the yeast Saccharomyces cerevisiae to desiccation is important for the use of this microorganism in the wine industry, since active dry yeast (ADY) is routinely used as starter for must fermentations. Both biomass propagation and dehydration cause cellular oxidative stress, therefore negatively affecting yeast performance. Protective treatments against oxidative damage, such as natural antioxidants, may have important biotechnological implications. In this study we analysed the antioxidant capacity of pure chemical compounds (quercetin, ascorbic acid, caffeic acid, oleic acid, and glutathione) added to molasses during biomass propagation, and we determine several oxidative damage/response parameters (lipid peroxidation, protein carbonylation, protective metabolites and enzymatic activities) to assess their molecular effects. Supplementation with ascorbic, caffeic or oleic acids diminished the oxidative damage associated to ADY production. Based on these results, we tested supplementation of molasses with argan oil, a natural food-grade ingredient rich in these three antioxidants, and we showed that it improved both biomass yield and fermentative performance of ADY. Therefore, we propose the use of natural, food-grade antioxidant ingredients, such as argan oil, in industrial processes involving high cellular oxidative stress, such as the biotechnological production of the dry starter. PMID:26621111

  8. Effects of Freeze-dried Mulberry on Antioxidant Activities and Fermented Characteristics of Yogurt during Refrigerated Storage.

    PubMed

    Sung, Jung-Min; Kim, Young-Boong; Kum, Jun-Seok; Choi, Yun-Sang; Seo, Dong-Ho; Choi, Hyun-Wook; Park, Jong-Dae

    2015-01-01

    This study investigated the effect of added freeze-dried mulberry fruit juice (FDMJ) (1, 3 and 5%) on the antioxidant activity and fermented characteristic of yogurt during refrigerated storage. A decrease in pH of yogurt and increase in acidity was observed during fermentation. The yogurts with FDMJ exhibited faster rate of pH reduction than control. Initial lactic acid bacteria count of yogurt was 6.49-6.94 Log CFU/g and increased above 9 Log CFU/g in control and 1% in FDMJ yogurt for 24 h. The total polyphenol and anthocyanin content of FDMJ yogurt was higher than that of control due to the presence of phytochemical contents in mulberry. Moreover, antioxidant activity such as DPPH and reducing power was highest 5% FDMJ yogurt. During cold storage, pH decreased or remained constant in all yogurts with values ranging from 4.08 to 4.78 units. In sensory evaluation, the score of 1% FDMJ yogurt was ranked higher when compared with other yogurts. It is proposed that mulberry fruit juice powder can be used to improve sensory evaluation and enhance functionality of yogurt. PMID:26877641

  9. Hypocholesterolemic activity of monascus fermented product in the absence of monacolins with partial purification for functional food applications.

    PubMed

    Ajdari, Zahra; Abd Ghani, Maaruf; Khan Ayob, Mohd; Bayat, Saadi; Mokhtar, Mazlin; Abbasiliasi, Sahar; Khoramnia, Anahita; Rahman, Heshu Sulaiman; Mehrbod, Parvaneh; Ajdari, Daniel; Ariff, Arbakariya B

    2014-01-01

    Hypercholesterolemia is one of the most common chronic diseases in human. Along with chemical therapy traditional medication is used as hypocholesterolemic remedy, however, with unfavorable side effects. Recently, Monascus fermented product (MFP) has become a popular hypocholesterolemic natural supplement. In the present study, the hypocholesterolemic activity of Monascus purpureus FTC5391 fermented product ethanolic extract (MFPe) was investigated in hypercholesterolemic rats. Results showed that MFPe not only reduced the serum total cholesterol (TC), LDL-C, TG concentration, and TC/HDL-C ratio but also increased the HDL-C. Further, solid phase extraction (SPE) was carried out to obtain the hypocholesterolemic bioactive fraction. The high polar fraction of SPE increased the HDL-C (42%) and decreased the TC (53.3%), LDL-C (47%), and TG (50.7%) levels as well as TC/HDL-C ratio (69.1%) in serum. The GC-MS results of the active fraction revealed two main compounds, isosorbide and erythritol, which act as coronary vasodilator compounds. PMID:24701147

  10. Cucumber fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humans have consumed fermented cucumber products since before the dawn of civilization. Although cucumber fermentation remains largely a traditional process, it has proven to be a consistently safe process by which raw cucumbers are transformed into high quality pickles that have a long shelf-life ...

  11. Fermented Vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter is organized into several sections. The first has information on the history of vegetable fermentation research in the US, dating back to the late 1880s. A overview of commercial cucumber and sauerkraut fermentation practices follows, focusing on the US market, although there is some me...

  12. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum.

    PubMed

    Ano, Yasuhisa; Kutsukake, Toshiko; Hoshi, Ayaka; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE) as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body by consumption of

  13. Identification of a Novel Dehydroergosterol Enhancing Microglial Anti-Inflammatory Activity in a Dairy Product Fermented with Penicillium candidum

    PubMed Central

    Ano, Yasuhisa; Kutsukake, Toshiko; Hoshi, Ayaka; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE) as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body by consumption of

  14. Functional Properties of Microorganisms in Fermented Foods.

    PubMed

    Tamang, Jyoti P; Shin, Dong-Hwa; Jung, Su-Jin; Chae, Soo-Wan

    2016-01-01

    Fermented foods have unique functional properties imparting some health benefits to consumers due to presence of functional microorganisms, which possess probiotics properties, antimicrobial, antioxidant, peptide production, etc. Health benefits of some global fermented foods are synthesis of nutrients, prevention of cardiovascular disease, prevention of cancer, gastrointestinal disorders, allergic reactions, diabetes, among others. The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers. PMID:27199913

  15. Functional Properties of Microorganisms in Fermented Foods

    PubMed Central

    Tamang, Jyoti P.; Shin, Dong-Hwa; Jung, Su-Jin; Chae, Soo-Wan

    2016-01-01

    Fermented foods have unique functional properties imparting some health benefits to consumers due to presence of functional microorganisms, which possess probiotics properties, antimicrobial, antioxidant, peptide production, etc. Health benefits of some global fermented foods are synthesis of nutrients, prevention of cardiovascular disease, prevention of cancer, gastrointestinal disorders, allergic reactions, diabetes, among others. The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers. PMID:27199913

  16. Change in Flavonoid Composition and Antioxidative Activity during Fermentation of Onion (Allium cepa L.) by Leuconostoc mesenteroides with Different Salt Concentrations.

    PubMed

    Lee, Yu Geon; Cho, Jeong-Yong; Kim, Young-Min; Moon, Jae-Hak

    2016-06-01

    The aim of this study is to investigate the change in flavonoid composition and antioxidative activity during fermentation of onion (Allium cepa L.) by Leuconostoc mesenteroides with different NaCl concentrations. In order to qualify and quantify the flavonoids during fermentation of onion, 7 flavonoids, [quercetin 3,7-O-β-d-diglucopyranoside (Q3,7G), quercetin 3,4'-O-β-d-diglucopyranoside (Q3,4'G), quercetin 3-O-β-d-glucopyranoside (Q3G), quercetin 4'-O-β-d-glucopyranoside (Q4'G), isorhamnetin 3-O-β-d-glucopyranoside (IR3G), quercetin (Q), and isorhamnetin (IR)], were isolated and identified from onion. During fermentation, the contents of flavonoid glucosides (Q3,7G, Q3,4'G, Q3G, Q4'G, and IR3G) gradually decreased, whereas the contents of flavonoid aglycones (Q, IR) gradually increased. Decline rates of the flavonoid glucosides increased with the addition of L. mesenteroides. Furthermore, the activity of β-glucosidase, which is produced by L. mesenteroides, is dose-dependently inhibited with different NaCl concentrations during fermentation. The presence of L. mesenteroides enhanced the antioxidative activity of onion as demonstrated using the 1,1-diphenyl-2-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and reducing power assays. The enhancement of antioxidative activity was considered because the content of flavonoid aglycones increased during fermentation. However, the addition of NaCl may decrease the antioxidative activity; we surmise that this phenomenon occurs because of the inhibition of β-glucosidase by NaCl. Therefore, we conclude that the addition of NaCl may be useful for the regulation of antioxidative activity via the control of β-glucosidase action, during the fermentation of flavonoid glucoside-rich foods. PMID:27175820

  17. In vitro anthelmintic activity of the Zizyphus joazeiro bark against gastrointestinal nematodes of goats and its cytotoxicity on Vero cells.

    PubMed

    Gomes, Danilo Cavalcanti; de Lima, Hélimar Gonçalves; Vaz, Ariádne Vieira; Santos, Nathália Silva; Santos, Francianne Oliveira; Dias, Êuder Reis; Botura, Mariana Borges; Branco, Alexsandro; Batatinha, Maria José Moreira

    2016-08-15

    This study examined the in vitro effect of the Zizyphus joazeiro bark against gastrointestinal nematodes of goats and its cytotoxicity on Vero cells. The ovicidal activity of the crude hydroethanolic extract (CE), its partitioned hexane (HE) and aqueous extract (AE) and saponins fraction (SF), including betulinic acid (BA), a biogenetic compound from this plant found in HE, were investigated using the inhibition of egg hatch assay (EHA). Thereafter, the extracts and the SF were evaluated through the larval motility assay (LMA) and larval migration inhibition assay (LMIA). The AE and SF promoted a complete inhibition of the egg hatch, and the effective concentration to inhibit 50% (EC50) values was 1.9 and 1.3mg/mL, respectively. The highest percentages of inhibition in EHA observed after treatments with CE, HE and BA corresponded to 79, 48 and 17%, respectively. The extracts and SF did not show larvicidal activity in LMA and LMIA. The AE and SF demonstrated cytotoxic effects in 3-4,5-dimethylthiazol-2-yl, 2,5diphenyltetrazolium bromide (MTT) and trypan blue tests; however, SF was more toxic (50% inhibitory concentration, IC50=0.20mg/mL). The chemical characterization of the SF was made through Proton Nuclear Magnetic Resonance ((1)H NMR) and Electrospray Ionization Mass Spectrometry (ESI-MS) analyses, which led to the identification of two saponins known as Joazeiroside B and Lotoside A. The results obtained from the research of this saponin content provide important information about the biological activity, especially the anthelmintic effect present in the plant investigated. That also suggests the types of bioactive compounds that may be responsible for this antiparasitic activity exhibited by the plant extracts. PMID:27514875

  18. Incidence and recent trends in functional gastrointestinal disorders, active component, U.S. Armed Forces, 2005-2014.

    PubMed

    Johnson, Amelia G; Hu, Zheng; Cost, Angelia A

    2016-06-01

    Functional gastrointestinal disorders (FGIDs) are common chronic conditions with an unknown pathophysiology and etiology. FGIDs elevate healthcare costs and cause substantial burden to public health and the military, including diminished readiness, productivity, and quality of life. This retrospective cohort study of active component U.S. military personnel covered a 10-year surveillance period, 2005-2014. The Defense Medical Surveillance System (DMSS) was the data source. Incident cases were identified and rates were calculated and stratified by important covariates. Trends were described over the surveillance period. Incidence rates among deployed personnel were compared to rates in non-deployed personnel, stratified by age and sex. An increasing trend in functional constipation was observed during 2005-2012. Being female, black, in the Army or Air Force, and younger than 20 years of age or 40 years of age or older was associated with higher incidence rates. Deployment-exposed personnel had incidence rates that were 53% higher than those of non-deployed personnel. Elevated rates in personnel younger than 20 years of age and deployed personnel evoke interest concerning readiness and cost implications for the Military Health System. These subgroups should be examined in future studies. PMID:27362344

  19. Antihypertriglyceridemia and Anti-Inflammatory Activities of Monascus-Fermented Dioscorea in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Shi, Yeu-Ching; Liao, Jiunn-Wang; Pan, Tzu-Ming

    2011-01-01

    The rice fermented by Monascus, called red mold rice (RMR), and has a long tradition in East Asia as a dietary staple. Monascus-fermented dioscorea called red mold dioscorea (RMD) contains various metabolites to perform the ability of reducing oxidative stress and anti-inflammatory response. We used Wistar rats and induced diabetes by injecting streptozotocin (STZ, 65 mg/kg i.p.). RMD was administered daily starting six weeks after disease onset. Throughout the experimental period, significantly (P < .05) lowered plasma glucose, triglyceride, cholesterol, free fatty acid and low density lipoprotein levels were observed in the RMD-treated groups. The RMD-treated diabetic rats showed higher activities of glutathione disulfide reductase, glutathione reductase, catalase and superoxide dismutase (P < .05) in the pancreas compared with the diabetic control rats. RMD also inhibited diabetes-induced elevation in the levels of interleukin (IL)-1β, IL-6, interferon-γ and tumor necrosis factor-α. Pancreatic β-cells damaged by STZ in the RMD supplemented groups were ameliorated. The results of this study clearly demonstrated that RMD possesses several treatment-oriented properties, including the control of hyperglycemia, antioxidant effects, pancreatic β-cell protection and anti-inflammatory effects. Considering these observations, it appears that RMD may be a useful supplement to delay the development of diabetes and its complications. PMID:21716679

  20. Nitrogen removal from wastewater and external waste activated sludge reutilization/reduction by simultaneous sludge fermentation, denitrification and anammox (SFDA).

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Zhao, Mengyue; Wang, Shuying

    2016-08-01

    This work demonstrates the feasibility of simultaneous nitrogen removal and external waste activated sludge (WAS) reutilization/reduction by using the synergy of sludge fermentation, denitrification and anammox processes in up-flow reactors (SFDA). Pre-treated domestic wastewater and synthetic wastewater (containing nitrite ∼20mg/L, ammonium ∼10mg/L in both) were fed to 1# and 2# SFDA, respectively. Long-term operation of 1# SFDA was investigated with achieving the peak ammonium removal rate of 0.021 and nitrite removal rate of 0.081kgN/(m(3)d) as nitrogen loading rate elevated from 0.075 to 0.106kgN/(m(3)d). Negative effect of dissolved oxygen on anammox or fermentation in the 2# SFDA was demonstrated negligible due to rapid depletion by microorganisms. Furthermore, a "net" sludge reduction of 38.8% was obtained due to sludge decay and organics consumption by denitrification. The SFDA process was expected to potentially be used for nitrogen removal and WAS reutilization/reduction in full-scale application. PMID:27140818

  1. Anti-obesity activity of the water extract of Lactobacillus paracasei subsp. paracasei NTU 101 fermented soy milk products.

    PubMed

    Cheng, Meng-Chun; Tsai, Tsung-Yu; Pan, Tzu-Ming

    2015-11-01

    The anti-obesity activity of the water extract of soy milk fermented with Lactobacillus paracasei subsp. paracasei NTU 101 (W101) was investigated. A high-fat diet (HFD) was used to induce obesity in rats, and the effects of daily W101 feeding (8 weeks) were observed. The rats fed the HFD and supplemented with low-dose W101 (LW101, 15 mg per kg body weight per day) or high-dose W101 (HW101, 150 mg per kg body weight per day) had significantly reduced final body weight in comparison with that of the HFD group. W101 decreased the formation of lipid plaques in the aorta, reduced the adipocyte cross-sectional area and diameter, and reduced the levels of CCAAT/enhancer-binding protein β (C/EBPβ), peroxisome proliferator associated receptor γ (PPARγ), and C/EBPα. Regarding lipogenesis regulation in adipocytes, W101 suppressed heparin-releasable lipoprotein lipase (HR-LPL) in adipose tissues and inhibited lipid absorption, thereby reducing lipogenesis. Lactobacillus paracasei subsp. paracasei NTU 101-fermented soy milk may be used to develop health foods that prevent obesity. PMID:26299532

  2. Biodiversity and fermentative activity of caecal microbial communities in wild and farm rabbits from Spain.

    PubMed

    Abecia, L; Rodríguez-Romero, N; Yañez-Ruiz, D R; Fondevila, M

    2012-06-01

    In order to study the microbial caecal ecosystem of wild and domestic rabbits through the fermentation characteristics and concentration and diversity of bacterial and archaeal communities, caecal samples from sixteen wild rabbits (WR) were contrasted with two groups (n = 4) of farm rabbits receiving low (LSF) or high (HSF) soluble fibre diets from 28 (weaning) to 51 days of age. DNA was extracted for quantifying bacteria and Archaea by qPCR and for biodiversity analysis of microbial communities by DGGE. Samples from WR had lower caecal pH and ammonia and higher volatile fatty acids concentration than farm animals. Lower acetate and higher butyrate proportions were detected in WR. Bacterial and archaeal DGGE profiles were clearly different between wild and farm rabbits, and diet-affected population of farm rabbits. Similarity index of bacteria was lower than 0.40 among WR, and 0.52 among farm rabbits. In conclusion, caecal fermentation characteristics differ between wild and farm rabbits, which harbour clearly different bacterial and archaeal communities. In farm rabbits, diversity is influenced by the dietary level of soluble fibre. PMID:22561060

  3. The effect of salinity on waste activated sludge alkaline fermentation and kinetic analysis.

    PubMed

    Jin, Baodan; Wang, Shuying; Xing, Liqun; Li, Baikun; Peng, Yongzhen

    2016-05-01

    The effect of salinity on sludge alkaline fermentation at low temperature (20°C) was investigated, and a kinetic analysis was performed. Different doses of sodium chloride (NaCl, 0-25g/L) were added into the fermentation system. The batch-mode results showed that the soluble chemical oxygen demand (SCOD) increased with salinity. The hydrolysate (soluble protein, polysaccharide) and the acidification products (short chain fatty acids (SCFAs), NH4(+)-N, and PO4(3-)-P) increased with salinity initially, but slightly declined respectively at higher level salinity (20g/L or 20-25g/L). However, the hydrolytic acidification performance increased in the presence of salt compared to that without salt. Furthermore, the results of Haldane inhibition kinetics analysis showed that the salt enhanced the hydrolysis rate of particulate organic matter from sludge particulate and the specific utilization of hydrolysate, and decreased the specific utilization of SCFAs. Pearson correlation coefficient analysis indicated that the importance of polysaccharide on the accumulation of SCFAs was reduced with salt addition, but the importance of protein and NH4(+)-N on SCFA accumulation was increased. PMID:27155412

  4. Polyphenols and gastrointestinal diseases

    PubMed Central

    Dryden, Gerald W.; Song, Ming; McClain, Craig

    2014-01-01

    Purpose of review This article will review the role of polyphenols in gastrointestinal diseases. Ingested polyphenols are concentrated in the gastrointestinal tract and are not well absorbed into the rest of the body. Thus, the high luminal concentrations achieved support a potential for therapeutic uses in the gastrointestinal tract. Additionally, there is great interest from the general public in complementary and alternative medicine. Recent findings Dietary polyphenols are a major source of antioxidants consumed by humans. Polyphenols possess not only antioxidant properties but also antiviral, antibacterial, antiinflammatory and anticarcinogenic effects, as well as the ability to modulate certain signaling pathways such as nuclear factor-κB activation. Green tea polyphenols have been shown to have efficacy in various models of inflammatory bowel disease. Silymarin, or milk thistle, is hepatoprotective against many forms of experimental liver injury and is widely used in human liver diseases, such as hepatitis C and alcoholic cirrhosis, with an excellent safety profile (but with unclear efficacy). Summary Substantial in-vitro and animal studies support the beneficial effects of polyphenols in many gastrointestinal diseases. Well designed multicenter trials in humans, such as those called for in the 2005 National Institutes of Health Requests for Applications for Silymarin Centers, will be critical for defining the safety, appropriate dosing and therapeutic efficacy of such agents. PMID:16462174

  5. A comparison of endogenous and microbial proteolytic activities during fast fermentation of silver carp inoculated with Lactobacillus plantarum.

    PubMed

    Yang, Fang; Xia, Wen-Shui; Zhang, Xiao-Wei; Xu, Yan-Shun; Jiang, Qi-Xing

    2016-09-15

    The study was aimed to investigate different roles of endogenous and Lactobacillus plantarum proteases during fast fermentation of silver carp. The results show that endogenous proteases could degrade both sarcoplasmic and myofibrillar proteins. In contrast, L. plantarum had low proteinase activities and could only hydrolyze sarcoplasmic peptides. This indicates that gel properties could be mainly affected by endogenous proteolysis while microbial proteolysis contributed to the production of smaller peptides and free amino acids which may be related to flavor and taste. Texture and free amino acid analyses verified these hypotheses. It shows that endogenous lysosomal proteases were the major contributors for the decrease of gel strength while L. plantarum proteolytic activities could lead to the increase of aspartic acid, glutamic acid, and alanine, which may result in umami and sweet taste; and also lead to a rise in some amino acids which were volatile compounds precursors. PMID:27080883

  6. Radiotherapy combined with TLR7/8 activation induces strong immune responses against gastrointestinal tumors.

    PubMed

    Schölch, Sebastian; Rauber, Conrad; Tietz, Alexandra; Rahbari, Nuh N; Bork, Ulrich; Schmidt, Thomas; Kahlert, Christoph; Haberkorn, Uwe; Tomai, Mark A; Lipson, Kenneth E; Carretero, Rafael; Weitz, Jürgen; Koch, Moritz; Huber, Peter E

    2015-03-10

    In addition to local cytotoxic activity, radiotherapy may also elicit local and systemic antitumor immunity, which may be augmented by immunotherapeutic agents including Toll-like receptor (TLR) 7/8 agonists. Here, we investigated the ability of 3M-011 (854A), a TLR7/8 agonist, to boost the antigen-presenting activity of dendritic cells (DC) as an adjuvant to radiotherapy. The combined treatment induced marked local and systemic responses in subcutaneous and orthotopic mouse models of colorectal and pancreatic cancer. In vitro cytotoxicity assays as well as in vivo depletion experiments with monoclonal antibodies identified NK and CD8 T cells as the cell populations mediating the cytotoxic effects of the treatment, while in vivo depletion of CD11c+ dendritic cells (DC) in CD11c-DTR transgenic mice revealed DC as the pivotal immune hub in this setting. The specificity of the immune reaction was confirmed by ELISPOT assays. TLR7/8 agonists therefore seem to be potent adjuvants to radiotherapy, inducing strong local and profound systemic immune responses to tumor antigens released by conventional therapy. PMID:25609199

  7. Radiotherapy combined with TLR7/8 activation induces strong immune responses against gastrointestinal tumors

    PubMed Central

    Tietz, Alexandra; Rahbari, Nuh N.; Bork, Ulrich; Schmidt, Thomas; Kahlert, Christoph; Haberkorn, Uwe; Tomai, Mark A.; Lipson, Kenneth E.; Carretero, Rafael; Weitz, Jürgen; Koch, Moritz; Huber, Peter E.

    2015-01-01

    In addition to local cytotoxic activity, radiotherapy may also elicit local and systemic antitumor immunity, which may be augmented by immunotherapeutic agents including Toll-like receptor (TLR) 7/8 agonists. Here, we investigated the ability of 3M-011 (854A), a TLR7/8 agonist, to boost the antigen-presenting activity of dendritic cells (DC) as an adjuvant to radiotherapy. The combined treatment induced marked local and systemic responses in subcutaneous and orthotopic mouse models of colorectal and pancreatic cancer. In vitro cytotoxicity assays as well as in vivo depletion experiments with monoclonal antibodies identified NK and CD8 T cells as the cell populations mediating the cytotoxic effects of the treatment, while in vivo depletion of CD11c+ dendritic cells (DC) in CD11c-DTR transgenic mice revealed DC as the pivotal immune hub in this setting. The specificity of the immune reaction was confirmed by ELISPOT assays. TLR7/8 agonists therefore seem to be potent adjuvants to radiotherapy, inducing strong local and profound systemic immune responses to tumor antigens released by conventional therapy. PMID:25609199

  8. Influence of gastrointestinal stress on autoinducer-2 activity of two Lactobacillus species.

    PubMed

    Yeo, Soyoung; Park, Hyunjoon; Ji, Yosep; Park, Soyoung; Yang, Jaesik; Lee, Jieun; Mathara, Julius M; Shin, Heuynkil; Holzapfel, Wilhelm

    2015-07-01

    Quorum sensing is a bacterial communication signalling system that regulates the expression of certain target genes with autoinducers in a cell density-dependent manner. The universal luxS-mediated quorum sensing using the autoinducer-2 (AI-2) signal is present in a wide variety of bacteria with only sparse information on probiotic lactobacilli. Effective probiotics should exhibit tolerance and adaptation to stress conditions typical of the GIT. Adhesion to human intestinal epithelial cells and competitive exclusion of pathogens are also considered important. The AI-2 signal system plays an important role in the response of probiotic lactobacilli to the surrounding environment. Intraspecies-related changes in quorum signalling in the GIT were determined by monitoring the AI-2 activity of two strains each of Lactobacillus rhamnosus and L. plantarum under various stress conditions. Modulation of the AI-2 activity of all the strains was induced by stress responses to pH, bile acid, temperature, osmotic pressure and starvation, and was both species- and strain-specific. AI-2 inhibition correlated with a reduction in the stress-related genes of L. rhamnosus. We therefore suggest that AI-2 quorum signalling of probiotic lactobacilli may represent one way of adapting to the host's ecosystem and of interacting within the intestinal environment. PMID:26092949

  9. Effect of Solar Particle Event Radiation on Gastrointestinal Tract Bacterial Translocation and Immune Activation

    PubMed Central

    Ni, Houping; Balint, Klara; Zhou, Yu; Gridley, Daila S.; Maks, Casey; Kennedy, Ann R.; Weissman, Drew

    2013-01-01

    Space flight conditions within the protection of Earth’s gravitational field have been shown to alter immune responses, which could lead to potentially detrimental pathology. An additional risk of extended space travel outside the Earth’s gravitational field is the effect of solar particle event (SPE) radiation exposure on the immune system. Organisms that could lead to infection include endogenous, latent viruses, colonizing pathogenics, and commensals, as well as exogenous microbes present in the spacecraft or other astronauts. In this report, the effect of SPE-like radiation on containment of commensal bacteria and the innate immune response induced by its breakdown was investigated at the radiation energies, doses and dose rates expected during an extravehicular excursion outside the Earth’s gravitational field. A transient increase in serum lipopolysaccharide was observed 1 day after irradiation and was accompanied by an increase in acute-phase reactants and circulating proinflammatory cytokines, indicating immune activation. Baseline levels were reestablished by 5 days postirradiation. These findings suggest that astronauts exposed to SPE radiation could have impaired containment of colonizing bacteria and associated immune activation. PMID:21294608

  10. Identification and localization of gastrointestinal hormones in the skin of the bullfrog Rana catesbeiana during periods of activity and hibernation.

    PubMed

    Wang, Huan; Zhou, Naizhen; Zhang, Rui; Wu, Yuanyuan; Zhang, Ruidong; Zhang, Shengzhou

    2014-10-01

    Amphibian skin and its secretions contain a wide variety of biogenic amines and biologically active peptides, some of which are either identical or highly homologous to gastrointestinal hormones (GHs) of higher vertebrates. This study investigated the distribution density and immunoreactive (IR) intensity of 5-hydroxytryptamine (5-HT), gastrin (GAS), somatostatin (SS), pancreatic polypeptide (PP), neuropeptide Y (NPY) and glucagon (GLU) IR cells in the skin of the bullfrog Rana catesbeiana during periods of activity and hibernation. The results indicated that the six types of GHs were all present in the bullfrog skin and were most predominant in the epidermis and mucous glands. In dorsal skin, the density of the GHs-IR cells in mucous glands was higher than that in epidermis except for GAS-IR cells. In ventral skin, the density of 5-HT, PP and NPY-IR cells in mucous glands was also higher than that in the epidermis. During hibernation, the density of the six types of GHs-IR cells and the IR intensity of GAS, SS, NPY and GLU-IR cells in the epidermis of dorsal skin increased significantly. The IR intensity of SS, PP and NPY-IR cells in granular glands of ventral skin also increased significantly during hibernation. These results suggested that multiple types of GHs-IR cells present in the skin of R. catesbeiana, may play important roles in the regulation of the physiological functions of skin. Also, adaptive changes in the density and IR intensity of GHs-IR cells occurred during hibernation. PMID:25440532

  11. Inhibition by oxonic acid of gastrointestinal toxicity of 5-fluorouracil without loss of its antitumor activity in rats.

    PubMed

    Shirasaka, T; Shimamoto, Y; Fukushima, M

    1993-09-01

    The possibility of decreasing the gastrointestinal (GI) toxic effects of 5-fluorouracil (5-FU) on the digestive tract such as its injury of cells and induction of diarrhea, without reducing its antitumor activity, was investigated in rats. Oxonic acid was found to inhibit the phosphorylation of 5-FU to 5-fluorouridine-5'-monophosphate catalyzed by pyrimidine phosphoribosyl-transferase in a different manner from allopurinol in cell-free extracts and intact cells in vitro. On p.o. administration of 5-FU (2 mg/kg) and a potent inhibitor of 5-FU degradation to Yoshida sarcoma-bearing rats, oxonic acid (10 mg/kg) was found to inhibit the formation of 5-fluorouridine-5'-monophosphate from 5-FU and its subsequent incorporation into the RNA fractions of small and large intestine but not of tumor and bone marrow tissues. This selective inhibition of 5-FU phosphorylation in the GI tract was due to the much higher concentrations of oxonic acid in GI tissues than in other tissues and the blood. On p.o. administration with the 5-FU derivative, UFT, which is a combined form of 1 M tegafur and 4 M uracil and usually administered p.o. to cancer patients in Japan, oxonic acid (10-50 mg/kg) markedly reduced injury of GI tissues and/or severe diarrhea without influencing the antitumor effect of UFT. These findings suggest that coadministration of oxonic acid suppresses the GI toxicity of 5-FU and its derivatives without affecting their antitumor activity and thus prolongs the life span of cancer-bearing rats. PMID:7689420

  12. Inoculum pre-treatment affects the fermentative activity of hydrogen-producing communities in the presence of 5-hydroxymethylfurfural.

    PubMed

    Bellucci, Micol; Botticella, Giuseppe; Francavilla, Matteo; Beneduce, Luciano

    2016-01-01

    To enhance the productivity of mixed microbial cultures for fermentative bio-hydrogen production, chemical-physical pre-treatments of the original seed are needed to suppress the activity of hydrogen (H2)-consuming microbes. This approach might influence negatively the composition and diversity of the hydrogen-producing community with consequences on the functional stability of the H2-producing systems in case of perturbations. In this study, we aimed at investigating the effect of different types of pre-treatment on the performance of hydrogen production systems in the presence of an inhibitor, such as 5-hydroxymethylfurfural (HMF). The efficiency and the microbial community structure of batch reactors amended with HMF and inoculated with non-pretreated and pretreated (acid, heat shock, and aeration) anaerobic sludge were evaluated and compared with control systems. The type of pre-treatments influenced the microbial community assembly and activity in inhibited systems, with significant effect on the performance. Cumulative H2 production tests showed that the pre-aerated systems (control and HMF inhibited) were the most efficient, while the difference of the lag phase of the pre-acidified control and HMF-added test was negligible. Analyses of the structure of the enriched microbial community in the systems through PCR-denaturing gradient gel electrophoresis (DGGE) followed by band sequencing revealed that the differences in performance were mostly related to shifts in the metabolic pathways rather than in the predominant species. In conclusion, the findings suggest that the use of specific inoculum pre-treatment could contribute to regulate the metabolic activity of the fermentative H2-producing bacteria in order to enhance the bio-energy production. PMID:26428244

  13. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells.

    PubMed

    Kim, Aeyung; Im, Minju; Hwang, Youn-Hwan; Yang, Hye Jin; Ma, Jin Yeul

    2015-01-01

    Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese) is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study, we investigated the anti-cancer effects of JGT using highly tumorigenic HT1080 human fibrosarcoma cells and elucidated the underlying mechanisms. In addition, we examined whether the Lactobacillus fermentation of JGT enhanced its anti-cancer activity using an in vivo xenograft model because fermentation of herbal extracts is thought to strengthen their therapeutic effects. Data revealed that JGT suppressed the growth of cancer cells efficiently by stimulating G1 cell cycle arrest and then inducing apoptotic cell death by causing mitochondrial damage and activating caspases. The phosphorylation of p38 and ERK also played a role in JGT-induced cell death. In vitro experiments demonstrated that JGT fermented with Lactobacillus acidophilus, designated fJGT162, elicited similar patterns of cell death as did non-fermented JGT. Meanwhile, the daily oral administration of 120 mg/kg fJGT162 to HT1080-bearing BALB/c nude mice suppressed tumor growth dramatically (up to 90%) compared with saline treatment, whereas the administration of non-fermented JGT suppressed tumor growth by ~70%. Collectively, these results suggest that JGT and fJGT162 are safe and useful complementary and alternative anti-cancer herbal therapies, and that Lactobacillus fermentation improves the in vivo anti-cancer efficacy of JGT significantly. PMID:26020238

  14. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells

    PubMed Central

    Kim, Aeyung; Im, Minju; Hwang, Youn-Hwan; Yang, Hye Jin; Ma, Jin Yeul

    2015-01-01

    Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese) is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study, we investigated the anti-cancer effects of JGT using highly tumorigenic HT1080 human fibrosarcoma cells and elucidated the underlying mechanisms. In addition, we examined whether the Lactobacillus fermentation of JGT enhanced its anti-cancer activity using an in vivo xenograft model because fermentation of herbal extracts is thought to strengthen their therapeutic effects. Data revealed that JGT suppressed the growth of cancer cells efficiently by stimulating G1 cell cycle arrest and then inducing apoptotic cell death by causing mitochondrial damage and activating caspases. The phosphorylation of p38 and ERK also played a role in JGT-induced cell death. In vitro experiments demonstrated that JGT fermented with Lactobacillus acidophilus, designated fJGT162, elicited similar patterns of cell death as did non-fermented JGT. Meanwhile, the daily oral administration of 120 mg/kg fJGT162 to HT1080-bearing BALB/c nude mice suppressed tumor growth dramatically (up to 90%) compared with saline treatment, whereas the administration of non-fermented JGT suppressed tumor growth by ~70%. Collectively, these results suggest that JGT and fJGT162 are safe and useful complementary and alternative anti-cancer herbal therapies, and that Lactobacillus fermentation improves the in vivo anti-cancer efficacy of JGT significantly. PMID:26020238

  15. Rheological properties and antitumor activity of schizophyllan produced with solid-state fermentation.

    PubMed

    Zhong, Kui; Liu, Liya; Tong, Litao; Zhong, Xin; Wang, Qiang; Zhou, Sumei

    2013-11-01

    Schizophyllan (SPG) was produced by the fungus Schizophyllum commune under solid-state fermentation conditions in this study. SPG was physically characterized and its rheological properties and antitumor effects on S180 tumors in vivo were evaluated. SPG is a neutral polysaccharide with three main fractions, and the major fraction comprises 55.5%, with an average molecular weight 4.65 × 10(7) Da. Steady shear rheological measurements showed the typical pseudoplastic flow behavior of SPG at the experimental concentrations. The power law model was used to fit the shear curves of SPG and both its viscosity and consistency indices changed regularly as the concentration increased. SPG solution showed different viscoelastic behaviors at different concentrations: typical viscoelastic behavior was observed at lower concentrations, whereas solid-like behavior was observed at higher concentrations. Experimental doses of SPG exerted extreme antitumor effects in vivo, and the maximum inhibition rate was almost 70%. PMID:23973493

  16. Hepatoprotective Activity of Dried- and Fermented-Processed Virgin Coconut Oil

    PubMed Central

    Zakaria, Z. A.; Rofiee, M. S.; Somchit, M. N.; Zuraini, A.; Sulaiman, M. R.; Teh, L. K.; Salleh, M. Z.; Long, K.

    2011-01-01

    The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P < .05) reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study. PMID:21318140

  17. A fermentation assay to evaluate the effectiveness of antimicrobial agents on gut microflora.

    PubMed

    Shanmugavelu, S; Ruzickova, G; Zrustova, J; Brooker, J D

    2006-10-01

    The measurement of gas produced as a fermentation end product in vitro was correlated with absorbance as a measure of bacterial growth and was used as a rapid screening procedure to test the antimicrobial activity of certain essential oil and tannin secondary plant metabolites on gastrointestinal microorganisms from chickens. The assay was optimised using Clostridium perfringens and Lactobacillus fermentum, and tested in antimicrobial assays against C. perfringens; the minimum inhibitory concentration for each essential oil and condensed tannin was determined. The effect of penicillin-G on C. perfringens, in both growth and fermentation assays, was similar, and for all secondary metabolites tested, concentrations that inhibited fermentation were also bacteriocidal. The assay was also used to demonstrate the effect of dietary composition and enzyme supplementation on fermentation of mixed gut microflora in vitro; results are compared with in vivo results for the same dietary treatments. The data demonstrate that the effects of bioactive secondary plant products and feed composition on individual organisms or mixed gut microflora can be tested by analysis of fermentative activity in vitro, and that this provides a rapid assay for testing potential poultry feed additives before in vivo trials. PMID:16632004

  18. Anti-Infective Activities of Lactobacillus Strains in the Human Intestinal Microbiota: from Probiotics to Gastrointestinal Anti-Infectious Biotherapeutic Agents

    PubMed Central

    Liévin-Le Moal, Vanessa

    2014-01-01

    SUMMARY A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract. PMID:24696432

  19. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents.

    PubMed

    Liévin-Le Moal, Vanessa; Servin, Alain L

    2014-04-01

    A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract. PMID:24696432

  20. Fermentation industry

    SciTech Connect

    Irvine, R.L.

    1980-06-01

    This article reviews current literature on the fermentation industry. The reuse, recycling and recovery of by-products previously discarded as waste are mentioned, including a Swedish brewery that hopes to reduce discharge of pollutants and the production of single cell protein from a variety of fermentation wastes. The treatment of wastes to produce food substitutes and fertilizers is mentioned together with treatment methods used in distilleries, wineries and in the pharmaceutical industry. (87 References)

  1. Activation of the farnesoid-X receptor protects against gastrointestinal injury caused by non-steroidal anti-inflammatory drugs in mice

    PubMed Central

    Fiorucci, Stefano; Mencarelli, Andrea; Cipriani, Sabrina; Renga, Barbara; Palladino, Giuseppe; Santucci, Luca; Distrutti, Eleonora

    2011-01-01

    BACKGROUND AND PURPOSE Low doses of acetyl salicylic acid (ASA) and non-steroidal anti-inflammatory drugs (NSAIDs) cause gastrointestinal damage. The farnesoid X receptor (FXR) is a bile acid sensor essential for maintenance of intestinal homeostasis. Here, we have investigated whether FXR is required for mucosal protection in models of gastrointestinal injury caused by ASA and NSAIDs and if FXR activation has potential in the treatment or prevention of gastrointestinal injury caused by these agents. EXPERIMENTAL APPROACH FXR+/+ and FXR−/− mice were given ASA (10 to 100 mg·kg−1) or NSAIDs. Gastric and intestinal mucosal damage assessed by measuring lesion scores. FXR were activated by giving mice natural (chenodeoxycholic acid; CDCA) or synthetic (GW4064) FXR agonists. KEY RESULTS FXR, mRNA and protein, was detected in human and mouse stomach. FXR−/− mice were more prone to develop severe gastric and intestinal injury in response to ASA and NSAIDs and showed a severe reduction in the gastrointestinal expression of cystathionine-γ-lyase (CSE), an enzyme required for generation of hydrogen sulphide. CSE expression was reduced by ≈50% in wild-type mice challenged with ASA. Treating wild-type mice but not FXR−/− mice with CDCA or GW4064 protected against gastric injury caused by ASA and NSAIDs, by a CSE-dependent and cycloxygenase- and NO-independent, mechanism. FXR activation by GW4064 rescued mice from intestinal injury caused by naproxen. CONCLUSIONS AND IMPLICATIONS FXR was essential to maintain gastric and intestinal mucosal barriers. FXR agonists protected against gastric injury caused by ASA and NSAIDs by a CSE-mediated mechanism. PMID:21564085

  2. Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths.

    PubMed

    Smith, K A; Filbey, K J; Reynolds, L A; Hewitson, J P; Harcus, Y; Boon, L; Sparwasser, T; Hämmerling, G; Maizels, R M

    2016-03-01

    Helminth infection is frequently associated with the expansion of regulatory T cells (Tregs) and suppression of immune responses to bystander antigens. We show that infection of mice with the chronic gastrointestinal helminth Heligmosomoides polygyrus drives rapid polyclonal expansion of Foxp3(+)Helios(+)CD4(+) thymic (t)Tregs in the lamina propria and mesenteric lymph nodes while Foxp3(+)Helios(-)CD4(+) peripheral (p)Treg expand more slowly. Notably, in partially resistant BALB/c mice parasite survival positively correlates with Foxp3(+)Helios(+)CD4(+) tTreg numbers. Boosting of Foxp3(+)Helios(+)CD4(+) tTreg populations by administration of recombinant interleukin-2 (rIL-2):anti-IL-2 (IL-2C) complex increased worm persistence by diminishing type-2 responsiveness in vivo, including suppression of alternatively activated macrophage and granulomatous responses at the sites of infection. IL-2C also increased innate lymphoid cell (ILC) numbers, indicating that Treg functions dominate over ILC effects in this setting. Surprisingly, complete removal of Tregs in transgenic Foxp3-DTR mice also resulted in increased worm burdens, with "immunological chaos" evident in high levels of the pro-inflammatory cytokines IL-6 and interferon-γ. In contrast, worm clearance could be induced by anti-CD25 antibody-mediated partial depletion of early Treg, alongside increased T helper type 2 responses and without incurring pathology. These findings highlight the overarching importance of the early Treg response to infection and the non-linear association between inflammation and the prevailing Treg frequency. PMID:26286232

  3. Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths

    PubMed Central

    Smith, K A; Filbey, K J; Reynolds, L A; Hewitson, J P; Harcus, Y; Boon, L; Sparwasser, T; Hämmerling, G; Maizels, R M

    2016-01-01

    Helminth infection is frequently associated with the expansion of regulatory T cells (Tregs) and suppression of immune responses to bystander antigens. We show that infection of mice with the chronic gastrointestinal helminth Heligmosomoides polygyrus drives rapid polyclonal expansion of Foxp3+Helios+CD4+ thymic (t)Tregs in the lamina propria and mesenteric lymph nodes while Foxp3+Helios−CD4+ peripheral (p)Treg expand more slowly. Notably, in partially resistant BALB/c mice parasite survival positively correlates with Foxp3+Helios+CD4+ tTreg numbers. Boosting of Foxp3+Helios+CD4+ tTreg populations by administration of recombinant interleukin-2 (rIL-2):anti-IL-2 (IL-2C) complex increased worm persistence by diminishing type-2 responsiveness in vivo, including suppression of alternatively activated macrophage and granulomatous responses at the sites of infection. IL-2C also increased innate lymphoid cell (ILC) numbers, indicating that Treg functions dominate over ILC effects in this setting. Surprisingly, complete removal of Tregs in transgenic Foxp3-DTR mice also resulted in increased worm burdens, with “immunological chaos” evident in high levels of the pro-inflammatory cytokines IL-6 and interferon-γ. In contrast, worm clearance could be induced by anti-CD25 antibody–mediated partial depletion of early Treg, alongside increased T helper type 2 responses and without incurring pathology. These findings highlight the overarching importance of the early Treg response to infection and the non-linear association between inflammation and the prevailing Treg frequency. PMID:26286232

  4. An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid.

    PubMed

    Li, Xiaoming; Zhao, Jianwei; Wang, Dongbo; Yang, Qi; Xu, Qiuxiang; Deng, Yongchao; Yang, Weiqiang; Zeng, Guangming

    2016-02-01

    Short-chain fatty acid (SCFA) production from waste activated sludge (WAS) anaerobic fermentation is often limited by the slow hydrolysis rate and poor substrate availability, thus a long fermentation time is required. This paper reports a new pretreatment approach, i.e., using free nitrous acid (FNA) to pretreat sludge, for significantly enhanced SCFA production. Experimental results showed the highest SCFA production occurred at 1.8 mg FNA/L with time of day 6, which was 3.7-fold of the blank at fermentation time of day 12. Mechanism studies revealed that FNA pretreatment accelerated disruption of both extracellular polymeric substances and cell envelope. It was also found that FNA pretreatment benefited hydrolysis and acidification processes but inhibited the activities of methanogens, thereby promoting the yield of SCFA. In addition, the FNA pretreatment substantially stimulated the activities of key enzymes responsible for hydrolysis and acidification, which were consistent with the improvement of solubilization, hydrolysis and acidification of WAS anaerobic fermentation. PMID:26363316

  5. Gastrointestinal stromal tumour.

    PubMed

    Joensuu, Heikki; Hohenberger, Peter; Corless, Christopher L

    2013-09-14

    Gastrointestinal stromal tumours (GISTs) are mesenchymal neoplasms that arise in the gastrointestinal tract, usually in the stomach or the small intestine and rarely elsewhere in the abdomen. They can occur at any age, the median age being 60-65 years, and typically cause bleeding, anaemia, and pain. GISTs have variable malignant potential, ranging from small lesions with a benign behaviour to fatal sarcomas. Most tumours stain positively for the mast/stem cell growth factor receptor KIT and anoctamin 1 and harbour a kinase-activating mutation in either KIT or PDGFRA. Tumours without such mutations could have alterations in genes of the succinate dehydrogenase complex or in BRAF, or rarely RAS family genes. About 60% of patients are cured by surgery. Adjuvant treatment with imatinib is recommended for patients with a substantial risk of recurrence, if the tumour has an imatinib-sensitive mutation. Tyrosine kinase inhibitors substantially improve survival in advanced disease, but secondary drug resistance is common. PMID:23623056

  6. [Microbiota and gastrointestinal diseases].

    PubMed

    Polanco Allué, I

    2015-12-01

    The bacterial colonisation is established immediately after birth, through direct contact with maternal microbiota, and may be influenced during lactation. There is emerging evidence indicating that quantitative and qualitative changes on gut microbiota contribute to alterations in the mucosal activation of the immune system, leading to intra- or extra-intestinal diseases. A balance between pathogenic and beneficial microbiota throughout childhood and adolescence is important to gastrointestinal health, including protection against pathogens, inhibition of pathogens, nutrient processing (synthesis of vitamin K), stimulation of angiogenesis, and regulation of host fat storage. Probiotics can promote an intentional modulation of intestinal microbiota favouring the health of the host. A review is presented on the modulation of intestinal microbiota on prevention, and adjuvant treatment of some paediatric gastrointestinal diseases. PMID:26534880

  7. Increased fermentation activity and persistent methanogenesis in a model aquifer system following source removal of an ethanol blend release.

    PubMed

    Ma, Jie; Rixey, William G; Alvarez, Pedro J J

    2015-01-01

    The increased probability of groundwater contamination by ethanol-blended fuel calls for improved understanding of how remediation efforts affect the fate and transport of constituents of concern, including the generation and fate of fermentation byproducts. A pilot-scale (8 m³) model aquifer was used to investigate changes in the concentrations of ethanol and its metabolites (methane and volatile fatty acids) after removal of the contamination source. Following the shut-off of a continuous release of a dissolved ethanol blend (10% v:v ethanol, 50 mg/L benzene, and 50 mg/L toluene), fermentation activity was surprisingly stimulated and the concentrations of ethanol metabolites increased. A microcosm experiment showed that this result was due to a decrease in the dissolved ethanol concentration below its toxicity threshold (∼2000 mg/L for this system). Methane generation (>1.5 mg/L of dissolved methane) persisted for more than 100 days after the disappearance of ethanol, despite clean air-saturated water flowing continuously through the tank at a relative high seepage velocity (0.76 m/day). Quantitative real-time PCR showed that functional genes associated with methane metabolism (mcrA for methanogenesis and pmoA for methanotrophy) also persisted in the aquifer material. Persistent methanogenesis was apparently due to the anaerobic degradation of soil-bound organic carbon (e.g., biomass grown on ethanol and other substrates). Overall, this study reflects the complex plume dynamics following source removal, and suggests that monitoring for increases in the concentration of ethanol metabolites that impact groundwater quality should be considered. PMID:25462754

  8. Preventive Effects of a Fermented Dairy Product against Alzheimer’s Disease and Identification of a Novel Oleamide with Enhanced Microglial Phagocytosis and Anti-Inflammatory Activity

    PubMed Central

    Ano, Yasuhisa; Ozawa, Makiko; Kutsukake, Toshiko; Sugiyama, Shinya; Uchida, Kazuyuki; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer’s disease and to identify the responsible component. Here, in a mouse model of Alzheimer’s disease (5xFAD), intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ) and hippocampal inflammation (TNF-α and MIP-1α production), and enhancing hippocampal neurotrophic factors (BDNF and GDNF). A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer’s disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia. PMID:25760987

  9. Preventive effects of a fermented dairy product against Alzheimer's disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity.

    PubMed

    Ano, Yasuhisa; Ozawa, Makiko; Kutsukake, Toshiko; Sugiyama, Shinya; Uchida, Kazuyuki; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer's disease and to identify the responsible component. Here, in a mouse model of Alzheimer's disease (5xFAD), intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ) and hippocampal inflammation (TNF-α and MIP-1α production), and enhancing hippocampal neurotrophic factors (BDNF and GDNF). A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer's disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia. PMID:25760987

  10. Total antioxidant capacity of new natural powdered seasonings after gastrointestinal and colonic digestion.

    PubMed

    Del Pino-García, Raquel; González-SanJosé, María L; Rivero-Pérez, María D; García-Lomillo, Javier; Muñiz, Pilar

    2016-11-15

    New powdered seasonings, rich in natural antioxidant compounds, have successfully been applied recently in different food matrices. Once ingested, the antioxidants contained in these seasonings may exert protective effects against oxidative stress along the gastrointestinal tract. This fact was evaluated by submitting the different seasonings under study to simulated digestion followed by assessing the reducing and antiradical capacities of the digested fractions. Enzymatic gastrointestinal digestion enhanced 2-3 times both antioxidant activities and colonic fermentation increased more than 10-fold the radical scavenging ability of digested fractions compared with undigested seasonings. Digested fractions derived from the seedless wine pomace seasoning presented generally the highest antioxidant properties. The results were evaluated considering bioaccessibility factors to have a more realistic overview of the potential antioxidant capacities of the seasonings and of the probable beneficial effects of their consumption on the prevention of oxidative damage along the gut. PMID:27283687