Sample records for activity eva glove

  1. EVA Glove Research Team

    NASA Technical Reports Server (NTRS)

    Strauss, Alvin M.; Peterson, Steven W.; Main, John A.; Dickenson, Rueben D.; Shields, Bobby L.; Lorenz, Christine H.

    1992-01-01

    The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area.

  2. Extravehicular activities limitations study. Volume 2: Establishment of physiological and performance criteria for EVA gloves

    NASA Technical Reports Server (NTRS)

    Ohara, John M.; Briganti, Michael; Cleland, John; Winfield, Dan

    1988-01-01

    One of the major probelms faced in Extravehicular Activity (EVA) glove development has been the absence of concise and reliable methods to measure the effects of EVA gloves on human hand capabilities. This report describes the development of a standardized set of tests designed to assess EVA-gloved hand capabilities in six measurement domains: Range of Motion, Strength, Tactile Perception, Dexterity, Fatigue, and Comfort. Based on an assessment of general human hand functioning and EVA task requirements several tests within each measurement domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand as a baseline and the EVA glove at operating pressure. A test program was conducted to evaluate the tests using a representative EVA glove. Eleven test subjects participated in a repeated-measures design. The report presents the results of the tests in each capability domain.

  3. The Effects of Extravehicular Activity (EVA) Glove Pressure on Tactility

    NASA Technical Reports Server (NTRS)

    Thompson, Shelby; Miranda, Mesloh; England, Scott; Benson, Elizabeth; Rajulu, Sudhakar

    2010-01-01

    The purpose of the current study was to quantify finger tactility, while wearing a Phase VI Extravehicular Activity (EVA) glove. Subjects were fully suited in an Extravehicular Mobility Unit (EMU) suit. Data was collected under three conditions: bare-handed, gloved at 0 psi, and gloved at 4.3 psi. In order to test tactility, a series of 30 tactile stimuli (bumps) were created that varied in both height and width. With the hand obscured, subjects applied pressure to each bump until detected tactilely. The amount of force needed to detect each bump was recorded using load cells located under a force-plate. The amount of force needed to detect a bump was positively related to width, but inversely related to height. In addition, as the psi of the glove increased, more force was needed to detect the bump. In terms of application, it was possible to determine the optimal width and height a bump needs to be for a specific amount of force applied for tactility.

  4. Investigation of the effects of extravehicular activity (EVA) gloves on performance

    NASA Technical Reports Server (NTRS)

    Bishu, Ram R.; Klute, Glenn

    1993-01-01

    The objective was to assess the effects of extravehicular activity (EVA) gloves at different pressures on human hand capabilities. A factorial experiment was performed in which three types of EVA gloves were tested at five pressure differentials. The independent variables tested in this experiment were gender, glove type, pressure differential, and glove make. Six subjects participated in an experiment where a number of dexterity measures, namely time to tie a rope, and the time to assemble a nut and bolt were recorded. Tactility was measured through a two point discrimination test. The results indicate that with EVA gloves strength is reduced by nearly 50 percent, there is a considerable reduction in dexterity, performance decrements increase with increasing pressure differential, and some interesting gender glove interactions were observed, some of which may have been due to the extent (or lack of) fit of the glove to the hand. The implications for the designer are discussed.

  5. Power assist EVA glove development

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1992-01-01

    Structural modeling of the EVA glove indicates that flexibility in the metacarpophalangeal (MCP) joint can be improved by selectively lowering the elasticity of the glove fabric. Two strategies are used to accomplish this. One method uses coil springs on the back of the glove to carry the tension in the glove skin due to pressurization. These springs carry the loads normally borne by the glove fabric, but are more easily deformed. An active system was also designed for the same purpose and uses gas filled bladders attached to the back of the EVA glove that change the dimensions of the back of the glove and allow the glove to bend at the MCP joint, thus providing greater flexibility at this joint. A threshold control scheme was devised to control the action of the joint actuators. Input to the controller was provided by thin resistive pressure sensors placed between the hand and the pressurized glove. The pressure sensors consist of a layer of polyester film that has a thin layer of ink screened on the surface. The resistivity of the ink is pressure dependent, so an extremely thin pressure sensor can be fabricated by covering the ink patch with another layer of polyester film and measuring the changing resistance of the ink with a bridge circuit. In order to sense the force between the hand and the glove at the MCP joint, a sensor was placed on the palmar face of the middle finger. The resultant signal was used by the controller to decide whether to fill or exhaust the bladder actuators on the back of the glove. The information from the sensor can also be used to evaluate the effectiveness of a given control scheme or glove design since the magnitude of the measured pressures gives some idea of the torque required to bend a glove finger at the MCP joint. Tests of this actuator, sensor, and control system were conducted in an 57.2 kPa glove box by performing a series of 90 degree finger bends with a glove without an MCP joint assembly, a glove with the coil spring assembly, and with the four fingered actuated glove. The tests of these three glove designs confirm the validity of the model.

  6. A prototype power assist EVA glove

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1991-01-01

    The most recent generation of space suit EVA gloves has addressed the problem of loose fit and stiffness in the fingers, but it remains difficult to build a glove assembly with low metacarpophalangeal joint stiffness. Fatigue due to constantly displacing the glove from a neutral position has been reported as the limiting factor in some EVA activities. This paper outlines an actuation system that uses gas filled bladders attached to the back of the EVA glove to provide the necessary force to bend the glove at the metacarpal joint, thus providing greater endurance during finger grasping tasks. A simple on-off controller senses hand movement through small pressure sensors between the finger and the glove restraint. The controller then fills or exhausts the bladders on the back of the glove to effectively move the neutral position of the glove as the hand inside moves.

  7. Extra-Vehicular Activity (EVA) glove evaluation test protocol

    NASA Technical Reports Server (NTRS)

    Hinman-Sweeney, E. M.

    1994-01-01

    One of the most critical components of a space suit is the gloves, yet gloves have traditionally presented significant design challenges. With continued efforts at glove development, a method for evaluating glove performance is needed. This paper presents a pressure-glove evaluation protocol. A description of this evaluation protocol, and its development is provided. The protocol allows comparison of one glove design to another, or any one design to bare-handed performance. Gloves for higher pressure suits may be evaluated at current and future design pressures to drive out differences in performance due to pressure effects. Using this protocol, gloves may be evaluated during design to drive out design problems and determine areas for improvement, or fully mature designs may be evaluated with respect to mission requirements. Several different test configurations are presented to handle these cases. This protocol was run on a prototype glove. The prototype was evaluated at two operating pressures and in the unpressurized state, with results compared to bare-handed performance. Results and analysis from this test series are provided, as is a description of the configuration used for this test.

  8. Evaluation of a Hybrid Elastic EVA Glove

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Akin, David

    2002-01-01

    The hybrid elastic design is based upon an American Society for Engineering Education (ASEE) glove designed by at the Space Systems Laboratory (SSL) in 1985. This design uses an elastic restraint layer instead of convolute joints to achieve greater dexterity and mobility during EVA (extravehicular activity). Two pilot studies and a main study were conducted using the hybrid elastic glove and 4000-series EMU (extravehicular activity unit) glove. Data on dexterity performance, joint range of motion, grip strength and perceived exertion was assessed for the EMU and hybrid elastic gloves with correlations to a barehanded condition. During this study, 30 test subjects performed multiple test sessions using a hybrid elastic glove and a 4000- series shuttle glove in a 4.3psid pressure environment. Test results to date indicate that the hybrid elastic glove performance is approximately similar to the performance of the 4000-series glove.

  9. The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength

    NASA Technical Reports Server (NTRS)

    Mesloh, Miranda; England, Scott; Benson, Elizabeth; Thompson, Shelby; Rajulu, Sudhakar

    2010-01-01

    The purpose of this study was to characterize hand strength, while wearing a Phase VI Extravehicular Activity (EVA) glove in an Extravehicular Mobility Unit (EMU) suit. Three types of data were collected: hand grip, lateral pinch, and pulp-2 pinch, wider three different conditions: bare-handed, gloved with no Thermal Micrometeoroid Garment (TMG), and glove with TMG. In addition, during the gloved conditions, subjects were tested when unpressurized and pressurized (43 psi). As a percentage of bare-hand strength, the TMG condition showed reduction in grip strength to 55% unpressurized and 46% pressurized. Without the TMG, grip strength increased to 66% unpressurized and 58% pressurized of bare-hand strength. For lateral pinch strength, the reduction in strength was the same for both pressure conditions and with and without the TMG, about 8.5% of bare-hand Pulp-2 pinch strength with no TMG showed an increase to 122% unpressurized and 115% pressurized of bare-hand strength. While wearing the TMG, pulp-2 pinch strength was 115% of bare-hand strength for both pressure conditions.

  10. High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort

    NASA Technical Reports Server (NTRS)

    Reid, C. R.; Benson, E.; England, S.; Charvat, J.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

    2015-01-01

    Human hands play a significant role during Extravehicular Activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. Because of this high frequency usage, hand and arm related injuries are known to occur during EVA and EVA training in the NBL. The primary objectives of this investigation were to: 1) document all known EVA glove related injuries and circumstances of these incidents, 2) determine likely risk factors, and 3) recommend interventions where possible that could be implemented in the current and future glove designs. METHODS: The investigation focused on the discomforts and injuries of U.S. crewmembers who had worn the pressurized Extravehicular Mobility Unit (EMU) spacesuit and experienced 4000 Series or Phase VI glove related incidents during 1981 to 2010 for either EVA ground training or in-orbit flight. We conducted an observational retrospective case-control investigation using 1) a literature review of known injuries, 2) data mining of crew injury, glove sizing, and hand anthropometry databases, 3) descriptive statistical analyses, and finally 4) statistical risk correlation and predictor analyses to better understand injury prevalence and potential causation. Specific predictor statistical analyses included use of principal component analyses (PCA), multiple logistic regression, and survival analyses (Cox proportional hazards regression). Results of these analyses were computed risk variables in the forms of odds ratios (likelihood of an injury occurring given the magnitude of a risk variable) and hazard ratios (likelihood of time to injury occurrence). Due to the exploratory nature of this investigation, we selected predictor variables significant at p=0.15. RESULTS: Through 2010, there have been a total of 330 NASA crewmembers, from which 96 crewmembers performed 322 EVAs during 1981-2010, resulting in 50 crewmembers being injured inflight and 44 injured during 11,704 ground EVA training events. Of the 196 glove related injury incidents, 106 related to EVA and 90 to EVA training. Over these 196 incidents, 277 total injuries (126 flight; 151 training) were reported and were then grouped into 23 types of injuries. Of EVA flight injuries, 65% were commonly reported to the hand (in general), metacarpophalangeal (MCP) joint, and finger (not including thumb) with fatigue, abrasion, and paresthesia being the most common injury types (44% of total flight injuries). Training injuries totaled to more than 70% being distributed to the fingernail, MCP joint, and finger crotch with 88% of the specific injuries listed as pain, erythema, and onycholysis. Of these training injuries, when reporting pain or erythema, the most common location was the index finger, but when reporting onycholysis, it was the middle finger. Predictor variables specific to increased risk of onycholysis included: female sex (OR=2.622), older age (OR=1.065), increased duration in hours of the flight or training event (OR=1.570), middle finger length differences in inches between the finger and the EVA glove (OR=7.709), and use of the Phase VI glove (OR=8.535). Differentiation between training and flight and injury reporting during 2002-2004 were significant control variables. For likelihood of time to first onycholysis injury, there was a 24% reduction in rate of reporting for each year increase in age. Also, more experienced crewmembers, based on number of EVA flight or training events completed, were less likely to report an onycholysis injury (3% less for every event). Longer duration events also found reporting rates to occur 2.37 times faster for every hour of length. Crewmembers with larger hand size reported onycholysis 23% faster than those with smaller hand size. Finally, for every 1/10th of an inch increase in difference between the middle finger length and the glove, the rate of reporting increased by 60%. DISCUSSION: One key finding was that the Series 4000 glove had a lower injury risk than the Phase VI, which provides a platform for

  11. The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Mesloh, Miranda; Thompson, Shelby; England, Scott; Benson, Liz

    2009-01-01

    With the new vision of space travel aimed at traveling back to the Moon and eventually to Mars, NASA is designing a new spacesuit glove. The purpose of this study was to baseline hand strength while wearing the current Extravehicular Activity (EVA) glove, the Phase VI. By varying the pressure in the glove, hand strength could be characterized as a function of spacesuit pressure. This finding is of extreme importance when evaluating missions that require varying suit pressures associated with different operations within NASA's current human spaceflight program, Constellation. This characterization fed directly into the derivation of requirements for the next EVA glove. This study captured three types of maximum hand strength: grip, lateral pinch, and pulp-2 pinch. All three strengths were measured under varying pressures and compared to a bare-hand condition. The resulting standardized data was reported as a percentage of the bare-hand strength. The first wave of tests was performed while the subjects, four female and four male, were wearing an Extravehicular Mobility Unit (EMU) suit supported by a suit stand. This portion of the test collected data from the barehand, suited unpressurized, and suited pressurized (4.3 psi) conditions. In addition, the effects of the Thermal Micrometeoroid Garment (TMG) on hand strength were examined, with the suited unpressurized and pressurized cases tested with and without a TMG. It was found that, when pressurized and with the TMG, the Phase VI glove reduced applied grip strength to a little more than half of the subject s bare-hand strength. The lateral pinch strength remained relatively constant while the pulp-2 pinch strength actually increased with pressure. The TMG was found to decrease maximum applied grip strength by an additional 10% for both pressurized and unpressurized cases, while the pinch strengths saw little to no change. In developing requirements based on human subjects, it is important to attempt to derive results that encompass the variation within the entire population. The current EMU does not accommodate humans at the extremes of the anthropometric spectrum. To account for this and to ensure that these requirements cover the population, another phase of testing will be conducted in a differential pressure glove box. This phase will focus on smaller females and very large males that do not have a properly fitted EMU suit. Instead, they would wear smaller or larger gloves and be tested in the glove box as a means to compare and contrast their strength capabilities against the EMU accommodated hand size subjects. The glove box s ability to change pressures easily will also allow for a wider range of glove pressures to be tested. Compared to the data collected on the subjects wearing the EMU suit, it is expected that there will be similar ratios to bare-hand. It is recommended that this topic be sent to the Physical Ergonomics Board for review.

  12. High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort

    NASA Technical Reports Server (NTRS)

    Reid, C. R.; Benosn, E.; England, S.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

    2014-01-01

    Human hands play a significant role during extravehicular activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. It is because of this high frequency usage that hand- and arm-related injuries and discomfort are known to occur during training in the NBL and while conducting EVAs. Hand-related injuries and discomforts have been occurring to crewmembers since the days of Apollo. While there have been numerous engineering changes to the glove design, hand-related issues still persist. The primary objectives of this study are therefore to: 1) document all known EVA glove-related injuries and the circumstances of these incidents, 2) determine likely risk factors, and 3) recommend ergonomic mitigations or design strategies that can be implemented in the current and future glove designs. METHODS: The investigator team conducted an initial set of literature reviews, data mining of Lifetime Surveillance of Astronaut Health (LSAH) databases, and data distribution analyses to understand the ergonomic issues related to glove-related injuries and discomforts. The investigation focused on the injuries and discomforts of U.S. crewmembers who had worn pressurized suits and experienced glove-related incidents during the 1980 to 2010 time frame, either during training or on-orbit EVA. In addition to data mining of the LSAH database, the other objective of the study was to find complimentary sources of information such as training experience, EVA experience, suit-related sizing data, and hand-arm anthropometric data to be tied to the injury data from LSAH. RESULTS: Past studies indicated that the hand was the most frequently injured part of the body during both EVA and NBL training. This study effort thus focused primarily on crew training data in the NBL between 2002 and 2010. Of the 87 recorded training incidents, 19 occurred to women and 68 to men. While crew ages ranged from thirties to fifties, the age category most affected was in the forties range. Incident rate calculations (incidents per 100 training runs) revealed that the 2002, 2003, and 2004 time periods registered the highest reported incident rate levels (3.4, 6.1, and 4.1 respectively) when compared to the following years (all = 1.0). In addition to general hand-arm discomfort being the highest reported result from training, specific types of hand injuries or symptoms included erythema, fingernail delamination, abrasions, muscle soreness/fatigue, paresthesia, bruising, blanching, and edema. Specific body locations most affected by hand injuries included the metacarpophalangeal joints, fingernails, finger crotches, fingers in general, interphalangeal joints, and fingertips. Causes of injuries reported in the LSAH data were primarily attributed to the forces that the gloved hands were exposed to due to hand intensive tasks and/or poor glove sizing. DISCUSSION: Although the age data indicate that most injuries are reported by male crewmembers in their forties, that is also the dominant gender and age range of most EVA crew therefore it is not an unexpected finding. Age and gender analysis will continue as more details on the uninjured population is accrued. While there is a reasonable mechanism to link training quantity to injury, the results were inconsistent and point to the need for a consistent method of suit-related injury screening and documentation. For instance, the high-incident rate levels for the years 2002 to 2004 could be attributed to a comprehensive medical review of crewmembers post-NBL EVA training that occurred from July 19, 2002 to January 16, 2004. Furthermore, there could have been increased awareness from an investigation at the NBL. These investigations may have temporarily increased the fidelity of reported injuries and discomforts during these dates as compared to surrounding years, when injury signs and symptom were no longer actively being investigated but rather voluntarily reported. Data mining for possible mechanistic factors continues and include

  13. EVA Glove Sensor Feasbility II Abstract

    NASA Technical Reports Server (NTRS)

    Melone, Kate

    2014-01-01

    The main objectives for the glove project include taking various measurements from human subjects during and after they perform different tasks in the glove box, acquiring data from these tests and determining the accuracy of these results, interpreting and analyzing this data, and using the data to better understand how hand injuries are caused during EVAs.1 Some of these measurements include force readings, temperature readings, and micro-circulatory blood flow.1 The three glove conditions tested were ungloved (a comfort glove was worn to house the sensors), Series 4000, and Phase VI. The general approach/procedure for the glove sensor feasibility project is as follows: 1. Prepare test subject for testing. This includes attaching numerous sensors (approximately 50) to the test subject, wiring, and weaving the sensors and wires in the glove which helps to keep everything together. This also includes recording baseline moisture data using the Vapometer and MoistSense. 2. Pressurizing the glove box. Once the glove box is pressurized to the desired pressure (4.3 psid), testing can begin. 3. Testing. The test subject will perform a series of tests, some of which include pinching a load cell, making a fist, pushing down on a force plate, and picking up metal pegs, rotating them 90 degrees, and placing them back in the peg board. 4. Post glove box testing data collection. After the data is collected from inside the glove box, the Vapometer and MoistSense device will be used to collect moisture data from the subject's hand. 5. Survey. At the conclusion of testing, he/she will complete a survey that asks questions pertaining to comfort/discomfort levels of the glove, glove sizing, as well as offering any additional feedback.

  14. Effects of EVA spacesuit glove on grasping and pinching tasks

    NASA Astrophysics Data System (ADS)

    Appendino, Silvia; Battezzato, Alessandro; Chen Chen, Fai; Favetto, Alain; Mousavi, Mehdi; Pescarmona, Francesco

    2014-03-01

    The human hand has a wide range of degrees of freedom, allowing a great variety of movements, and is also one of the most sensitive parts of the human body. Due to these characteristics, it is the most important tool for astronauts to perform extravehicular activities (EVA). However, astronauts must wear mandatory EVA equipment to be protected from the harsh conditions in space and this strongly reduces hand performance, in particular as regards dexterity, tactile perception, mobility and fatigue. Several studies have been conducted to determine the influence of the EVA glove on manual capabilities, both in the past and more recently. This study presents experimental data regarding the performance decline occurring in terms of force and fatigue in the execution of grasping and pinching tasks when wearing an EVA glove, in pressurized and unpressurized conditions, compared with barehanded potential. Results show that wearing the unpressurized EVA glove hinders grip and lateral pinch performances, dropping exerted forces to about 50-70%, while it barely affects two- and three-finger pinch performances. On the other hand, wearing the pressurized glove worsens performances in all cases, reducing forces to about 10-30% of barehanded potential. The results are presented and compared with the previous literature.

  15. Phase VI Advanced EVA Glove Development and Certification for the International Space Station

    Microsoft Academic Search

    David Graziosi; James Stein; Amy Ross; Joseph Kosmo

    Since the early 1980's, the Shuttle Extra Vehicular Activity (EVA) glove design has evolved to meet the challenge of space based tasks. These tasks have typically been satellite retrieval and repair or EVA based flight experiments. With the start of the International Space Station (ISS) assembly, the number of EVA based missions is increasing far beyond what has been required

  16. FY13 High Performance EVA Glove (HPEG) Collaboration: Glove Injury Data Mining Effort - Training Data Overview

    NASA Technical Reports Server (NTRS)

    Reid, Christopher; Benson, Elizabeth; England, Scott; Charvat, Jacqueline; Norcross, Jason; McFarland, Shane; Rajulu, Sudhakar

    2014-01-01

    From the time hand-intensive tasks were first created for EVAs, discomforts and injuries have been noted.. There have been numerous versions of EVA gloves for US crew over the past 50 years, yet pain and injuries persist. The investigation team was tasked with assisting in a glove injury assessment for the High Performance EVA Glove (HPEG) project.center dot To aid in this assessment, the team was asked to complete the following objectives: - First, to develop the best current understanding of what glove-related injuries have occurred to date, and when possible, identify the specific mechanisms that caused those injuries - Second, to create a standardized method for comparison of glove injury potential from one glove to another. center dot The overall goal of the gloved hand injury assessment is to utilize ergonomics in understanding how these glove injuries are occurring, and to propose mitigations to current designs or design changes in the next generation of EVA gloves.

  17. The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane M.; Norcross, Jason R.; Rajulu, Sudhakar

    2014-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis.

  18. The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane; Norcross, Jason R.; Rajulu, Sudhakar

    2014-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis

  19. Extravehicular Activity (EVA) 101: Constellation EVA Systems

    NASA Technical Reports Server (NTRS)

    Jordan, Nicole C.

    2007-01-01

    A viewgraph presentation on Extravehicular Activity (EVA) Systems is shown. The topics include: 1) Why do we need space suits? 2) Protection From the Environment; 3) Primary Life Support System (PLSS); 4) Thermal Control; 5) Communications; 6) Helmet and Extravehicular Visor Assy; 7) Hard Upper Torso (HUT) and Arm Assy; 8) Display and Controls Module (DCM); 9) Gloves; 10) Lower Torso Assembly (LTA); 11) What Size Do You Need?; 12) Boot and Sizing Insert; 13) Boot Heel Clip and Foot Restraint; 14) Advanced and Crew Escape Suit; 15) Nominal & Off-Nominal Landing; 16) Gemini Program (mid-1960s); 17) Apollo EVA on Service Module; 18) A Bold Vision for Space Exploration, Authorized by Congress; 19) EVA System Missions; 20) Configurations; 21) Reduced Gravity Program; and 22) Other Opportunities.

  20. [Study of mechanical effects of the EVA glove on finger base with finite element modeling].

    PubMed

    Li, Zhuoyou; Ding, Li; Yue, Guodong

    2013-08-01

    The hand strength of astronauts, when they are outside the space capsule, is highly influenced by the residual pressure (the pressure difference between inside pressure and outside one of the suit) of extravehicular activity spacesuit glove and the pressure exerted by braided fabric. The hand strength decreases significantly on extravehicular activity, severely reducing the operation efficiency. To measure mechanical influence caused by spacesuit glove on muscle-tendon and joints, the present paper analyzes the movement anatomy and biomechanical characteristics of gripping, and then proposes a grip model. With phalangeal joint simplified as hinges, seven muscles as a finger grip energy unit, the Hill muscle model was used to compute the effects. We also used ANSYS in this study to establish a 3-D finite element model of an index finger which included both bones and muscles with glove, and then we verified the model. This model was applied to calculate the muscle stress in various situations of bare hands or hands wearing gloves in three different sizes. The results showed that in order to achieve normal grip strength with the influence caused by superfluous press, the finger's muscle stress should be increased to 5.4 times of that in normal situation, with most of the finger grip strength used to overcome the influence of superfluous pressure. When the gap between the finger surface and the glove is smaller, the mechanical influence which superfluous press made will decrease. The results would provide a theoretical basis for the design of the EVA Glove. PMID:24059053

  1. EVA space suit Evaporative Cooling/Heating Glove System (ECHGS)

    NASA Technical Reports Server (NTRS)

    Coss, F. A.

    1976-01-01

    A new astronaut glove, the Evaporative Cooling/Heating Glove System (ECHGS), was designed and developed to allow the handling of objects between -200 F and +200 F. Active heating elements, positioned at each finger pad, provide additional heat to the finger pads from the rest of the finger. A water evaporative cooling system provides cooling by the injection of water to the finger areas and the subsequent direct evaporation to space. Thin, flexible insulation has been developed for the finger areas to limit thermal conductivity. Component and full glove tests have shown that the glove meets and exceeds the requirements to hold a 11/2 inch diameter bar at + or - 200 F for three minutes within comfort limits. The ECHGS is flexible, lightweight and comfortable. Tactility is reasonable and small objects can be identified especially by the fingertips beyond the one half width active elements.

  2. A human factors evaluation of Extravehicular Activity gloves

    NASA Technical Reports Server (NTRS)

    O'Hara, John M.; Briganti, Michael; Cleland, John; Winfield, Dan

    1989-01-01

    One of the major problems faced in Extravehicular Activity (EVA) glove development has been the absence of concise and reliable methods to measure the effects of EVA gloves on human-hand capabilities. NASA has sponsored a program to develop a standardized set of tests designed to assess EVA-gloved hand capabilities in six performance domains: Range of Motion, Strength, Tactile Perception, Dexterity, Fatigue, and Comfort. Based upon an assessment of general human-hand functioning and EVA task requirements, several tests within each performance domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand, an EVA glove without pressure, an EVA glove at operation pressure. Thus, the differential effect on performance of the glove with and without pressure was tested. Bare hand performance was used to 'calibrate' the effects. Ten subjects participated in the test setup as a repeated-measures experimental design. The paper will report the results of the test program.

  3. Simplified Abrasion Test Methodology for Candidate EVA Glove Lay-Ups

    NASA Technical Reports Server (NTRS)

    Rabel, Emily; Aitchison, Lindsay

    2015-01-01

    During the Apollo Program, space suit outer-layer fabrics were badly abraded after performing just a few extravehicular activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots that penetrated the outer-layer fabric into the thermal protection layers after less than 8 hrs of surface operations. Current plans for the exploration planetary space suits require the space suits to support hundreds of hours of EVA on a lunar or Martian surface, creating a challenge for space suit designers to utilize materials advances made over the last 40 years and improve on the space suit fabrics used in the Apollo Program. Over the past 25 years the NASA Johnson Space Center Crew and Thermal Systems Division has focused on tumble testing as means of simulating wear on the outer layer of the space suit fabric. Most recently, in 2009, testing was performed on 4 different candidate outer layers to gather baseline data for future use in design of planetary space suit outer layers. In support of the High Performance EVA Glove Element of the Next Generation Life Support Project, testing a new configuration was recently attempted in which require 10% of the fabric per replicate of that need in 2009. The smaller fabric samples allowed for reduced per sample cost and flexibility to test small samples from manufacturers without the overhead to have a production run completed. Data collected from this iteration was compared to that taken in 2009 to validate the new test method. In addition the method also evaluated the fabrics and fabric layups used in a prototype thermal micrometeoroid garment (TMG) developed for EVA gloves under the NASA High Performance EVA Glove Project. This paper provides a review of previous abrasion studies on space suit fabrics, details methodologies used for abrasion testing in this particular study, results of the validation study, and results of the TMG testing.

  4. Feasibility Assessment of an EVA Glove Sensing Platform to Evaluate Potential Hand Injury Risk Factors

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane M.

    2015-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). When the gloves are pressurized, they restrict movement and create pressure points during tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally more severe injuries such as onycholysis. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals that 58% of total astronaut hand and arm injuries from NBL training between 1993 and 2010 occurred either to the fingernail, MCP, or fingertip. The purpose of this study was to assess the potential of using small sensors to measure force acting on the fingers and hand within pressurized gloves and other variables such as blood perfusion, skin temperature, humidity, fingernail strain, skin moisture, among others. Tasks were performed gloved and ungloved in a pressurizable glove box. The test demonstrated that fingernails saw greater transverse strain levels for tension or compression than for longitudinal strain, even during axial fingertip loading. Blood perfusion peaked and dropped as the finger deformed during finger presses, indicating an initial dispersion and decrease of blood perfusion levels. Force sensitive resistors to force plate comparisons showed similar force curve patterns as fingers were depressed, indicating suitable functionality for future testing. Strategies for proper placement and protection of these sensors for ideal data collection and longevity through the test session were developed and will be implemented going forward for future testing.

  5. Hypervelocity Impacts on ISS Handrails and Evaluation of Alternative Materials to Prevent Extravehicular Mobility Unit (EMU) Glove Damage During EVA

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Eruc; Davis, B. Alan; Ordonez, Erick

    2009-01-01

    During post-flight processing of STS-116, damage to crewmember Robert Curbeam's Phase VI Glove Thermal Micrometeoroid Garment was discovered. This damage consisted of: loss of RTV-157 palm pads on the thumb area on the right glove, a 0.75 inch cut in the Vectran adjacent to the seam and thumb pad (single event cut), constituting the worst glove damage ever recorded for the U.S. space program. The underlying bladder and restraint were found not be damaged by this event. Evaluation of glove damage found that the outer Vectran fibers were sliced as a result of contact with a sharp edge or pinch point rather than general wear or abrasion (commonly observed on the RTV pads). Damage to gloves was also noted on STS-118 and STS-120. One potential source of EMU glove damages are sharp crater lips on external handrails, generated by micrometeoroid and orbital debris (MMOD) impacts. In this paper, the results of a hypervelocity impact (HVI) test program on representative and actual ISS handrails are presented. These tests were performed in order to characterize impact damage profiles on ISS handrails and evaluate alternatives for limiting risk to future missions. It was determined that both penetrating and non-penetrating MMOD impacts on aluminum and steel ISS handrails are capable of generating protruding crater profiles which exceed the heights required for EMU glove abrasion risk by an order of magnitude. Testing demonstrated that flexible overwraps attached to the outside of existing handrails are capable of limiting contact between hazardous crater formations and crewmember gloves during extravehicular activity (EVA). Additionally, replacing metallic handrails with high strength, low ductility, fiber reinforced composite materials would limit the formation of protruding crater lips on new ISS modules.

  6. Mobility of a gas-pressurized elastic glove for extravehicular activity

    NASA Astrophysics Data System (ADS)

    Tanaka, Kunihiko; Abe, Chikara; Iwata, Chihiro; Yamagata, Kenji; Murakami, Naoko; Tanaka, Masao; Tanaka, Nobuyuki; Morita, Hironobu

    2010-04-01

    Usability of a gas-pressurized elastic glove for extravehicular activity (EVA) was evaluated by comparing its performance with that of a non-elastic glove like that in the current EVA suit. The right hands of eight healthy volunteers were studied in a chamber. The bare hand at normal ambient pressure, and at -220 mmHg of the chamber pressure (producing the same pressure differential as the current US EVA suit) with each of the gloves. No significant difference in cutaneous blood flow or skin temperature was observed between the gloves. Range of motion (ROM) in the proximal interphalangeal joint of the middle finger with the elastic glove (87.4±4.9°) was significantly wider than that with the non-elastic glove (70.6±2.3°), but the surface electromyography (EMG) amplitude during flexion with the elastic glove was significantly smaller than that with the non-elastic glove (29.3±2.7 mV vs. 46.7±2.3 mV for elastic and non-elastic gloves, respectively). The elastic glove also allowed smaller reduction in grip strength and longer endurance time than the non-elastic glove (-44.3±6.0% vs. -59.4±1.5% from the bare hand grip strength, 26.3±5.7% vs. 10.9±3.1% of the bare hand endurance time, for elastic and non-elastic glove, respectively). The static effects of non-elastic and elastic gloves are similar, but the mobility of the elastic glove is better than that of the non-elastic glove like the one used in the current EVA suit.

  7. Glove-Enabled Computer Operations (GECO): Design and Testing of an Extravehicular Activity Glove Adapted for Human-Computer Interface

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.; Olowin, Aaron; Krepkovich, Eileen; Hannaford, Blake; Lindsay, Jack I. C.; Homer, Peter; Patrie, James T.; Sands, O. Scott

    2013-01-01

    The Glove-Enabled Computer Operations (GECO) system enables an extravehicular activity (EVA) glove to be dual-purposed as a human-computer interface device. This paper describes the design and human participant testing of a right-handed GECO glove in a pressurized glove box. As part of an investigation into the usability of the GECO system for EVA data entry, twenty participants were asked to complete activities including (1) a Simon Says Games in which they attempted to duplicate random sequences of targeted finger strikes and (2) a Text Entry activity in which they used the GECO glove to enter target phrases in two different virtual keyboard modes. In a within-subjects design, both activities were performed both with and without vibrotactile feedback. Participants mean accuracies in correctly generating finger strikes with the pressurized glove were surprisingly high, both with and without the benefit of tactile feedback. Five of the subjects achieved mean accuracies exceeding 99 in both conditions. In Text Entry, tactile feedback provided a statistically significant performance benefit, quantified by characters entered per minute, as well as reduction in error rate. Secondary analyses of responses to a NASA Task Loader Index (TLX) subjective workload assessments reveal a benefit for tactile feedback in GECO glove use for data entry. This first-ever investigation of employment of a pressurized EVA glove for human-computer interface opens up a wide range of future applications, including text chat communications, manipulation of procedureschecklists, cataloguingannotating images, scientific note taking, human-robot interaction, and control of suit andor other EVA systems.

  8. Glove-Enabled Computer Operations (GECO): Design and Testing of an Extravehicular Activity Glove Adapted for Human-Computer Interface

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.; Olowin, Aaron; Krepkovich, Eileen; Hannaford, Blake; Lindsay, Jack I. C.; Homer, Peter; Patrie, James T.; Sands, O. Scott

    2013-01-01

    The Glove-Enabled Computer Operations (GECO) system enables an extravehicular activity (EVA) glove to be dual-purposed as a human-computer interface device. This paper describes the design and human participant testing of a right-handed GECO glove in a pressurized glove box. As part of an investigation into the usability of the GECO system for EVA data entry, twenty participants were asked to complete activities including (1) a Simon Says Games in which they attempted to duplicate random sequences of targeted finger strikes and (2) a Text Entry activity in which they used the GECO glove to enter target phrases in two different virtual keyboard modes. In a within-subjects design, both activities were performed both with and without vibrotactile feedback. Participants' mean accuracies in correctly generating finger strikes with the pressurized glove were surprisingly high, both with and without the benefit of tactile feedback. Five of the subjects achieved mean accuracies exceeding 99% in both conditions. In Text Entry, tactile feedback provided a statistically significant performance benefit, quantified by characters entered per minute, as well as reduction in error rate. Secondary analyses of responses to a NASA Task Loader Index (TLX) subjective workload assessments reveal a benefit for tactile feedback in GECO glove use for data entry. This first-ever investigation of employment of a pressurized EVA glove for human-computer interface opens up a wide range of future applications, including text "chat" communications, manipulation of procedures/checklists, cataloguing/annotating images, scientific note taking, human-robot interaction, and control of suit and/or other EVA systems.

  9. An Approach for Performance Assessments of Extravehicular Activity Gloves

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay; Benosn, Elizabeth

    2014-01-01

    The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for unique mission scenarios outside the Space Shuttle and International Space Station (ISS) Program realm of experience. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Game-Changing Technology group provided start-up funding for the High Performance EVA Glove (HPEG) Project in the spring of 2012. The overarching goal of the HPEG Project is to develop a robust glove design that increases human performance during EVA and creates pathway for future implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability by 100%, and decreasing the potential of gloves to cause injury during use. The HPEG Project focused initial efforts on identifying potential new technologies and benchmarking the performance of current state of the art gloves to identify trends in design and fit leading to establish standards and metrics against which emerging technologies can be assessed at both the component and assembly levels. The first of the benchmarking tests evaluated the quantitative mobility performance and subjective fit of two sets of prototype EVA gloves developed ILC Dover and David Clark Company as compared to the Phase VI. Both companies were asked to design and fabricate gloves to the same set of NASA provided hand measurements (which corresponded to a single size of Phase Vi glove) and focus their efforts on improving mobility in the metacarpal phalangeal and carpometacarpal joints. Four test subjects representing the design-to hand anthropometry completed range of motion, grip/pinch strength, dexterity, and fit evaluations for each glove design in pressurized conditions, with and without thermal micrometeoroid garments (TMG) installed. This paper provides a detailed description of hardware and test methodologies used and lessons learned.

  10. Mobility of a gas-pressurized elastic glove for extravehicular activity

    Microsoft Academic Search

    Kunihiko Tanaka; Chikara Abe; Chihiro Iwata; Kenji Yamagata; Naoko Murakami; Masao Tanaka; Nobuyuki Tanaka; Hironobu Morita

    2010-01-01

    Usability of a gas-pressurized elastic glove for extravehicular activity (EVA) was evaluated by comparing its performance with that of a non-elastic glove like that in the current EVA suit.The right hands of eight healthy volunteers were studied in a chamber. The bare hand at normal ambient pressure, and at ?220mmHg of the chamber pressure (producing the same pressure differential as

  11. Extravehicular Activity (EVA) Hardware & Operations Overview

    NASA Technical Reports Server (NTRS)

    Moore, Sandra; Marmolejo, Jose

    2014-01-01

    The objectives of this presentation are to: Define Extravehicular Activity (EVA), identify the reasons for conducting an EVA, and review the role that EVA has played in the space program; Identify the types of EVAs that may be performed; Describe some of the U.S. Space Station equipment and tools that are used during an EVA, such as the Extravehicular Mobility Unit (EMU), the Simplified Aid For EVA Rescue (SAFER), the International Space Station (ISS) Joint Airlock and Russian Docking Compartment 1 (DC-1), and EVA Tools & Equipment; Outline the methods and procedures of EVA Preparation, EVA, and Post-EVA operations; Describe the Russian spacesuit used to perform an EVA; Provide a comparison between U.S. and Russian spacesuit hardware and EVA support; and Define the roles that different training facilities play in EVA training.

  12. Climbing the Extravehicular Activity (EVA) Wall - Safely

    NASA Technical Reports Server (NTRS)

    Fuentes, Jose; Greene, Stacie

    2010-01-01

    The success of the EVA team, that includes the EVA project office, Crew Office, Mission Operations, Engineering and Safety, is assured by the full integration of all necessary disciplines. Safety participation in all activities from hardware development concepts, certification and crew training, provides for a strong partnership within the team. Early involvement of Safety on the EVA team has mitigated risk and produced a high degree of mission success.

  13. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission Specialists Jerry L. Ross and Lee M.E. Morin work in tandem on the fourth scheduled EVA session for the STS-110 mission aboard the Space Shuttle Orbiter Atlantis. Ross is anchored on the mobile foot restraint on the International Space Station's (ISS) Canadarm2, while Morin works inside the S0 (S-zero) truss. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting a 43-foot-long S0 truss and preparing the Mobile Transporter. The 27,000 pound S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  14. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission astronaut Rex J. Walheim, accompanied by astronaut Steven L. Smith (out of frame) translates along the Destiny laboratory on the International Space Station (ISS) during the third scheduled EVA session. The duo released the locking bolts on the Mobile Transporter and rewired the Station's robotic arm. The STS-110 mission prepared the ISS for future space walks by installing and outfitting the S0 (S-Zero) Truss and the Mobile Transporter. The 43-foot-long S0 truss weighing in at 27,000 pounds was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  15. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission astronauts Steven L. Smith (right) and Rex J. Walheim work in tandem on the third scheduled EVA session in which they released the locking bolts on the Mobile Transporter and rewired the Station's robotic arm (out of frame). Part of the Destiny laboratory and a glimpse of the Earth's horizon are seen in the lower portion of this digital image. The STS-110 mission prepared the International Space Station (ISS) for future spacewalks by installing and outfitting the S0 (S-zero) Truss and the Mobile Transporter. The 43-foot-long S0 truss weighing in at 27,000 pounds was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  16. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    NASA Technical Reports Server (NTRS)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  17. Active Solid State Dosimetry for Lunar EVA

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.; Chen, Liang-Yu.

    2006-01-01

    The primary threat to astronauts from space radiation is high-energy charged particles, such as electrons, protons, alpha and heavier particles, originating from galactic cosmic radiation (GCR), solar particle events (SPEs) and trapped radiation belts in Earth orbit. There is also the added threat of secondary neutrons generated as the space radiation interacts with atmosphere, soil and structural materials.[1] For Lunar exploration missions, the habitats and transfer vehicles are expected to provide shielding from standard background radiation. Unfortunately, the Lunar Extravehicular Activity (EVA) suit is not expected to afford such shielding. Astronauts need to be aware of potentially hazardous conditions in their immediate area on EVA before a health and hardware risk arises. These conditions would include fluctuations of the local radiation field due to changes in the space radiation field and unknown variations in the local surface composition. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.[2

  18. Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT)

    NASA Technical Reports Server (NTRS)

    Brown, Cheryl B.; Conger, Bruce C.; Miranda, Bruno M.; Bue, Grant C.; Rouen, Michael N.

    2007-01-01

    An effort was initiated by NASA/JSC in 2001 to develop an Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT) for the sizing of Extravehicular Activity System (EVAS) architecture and studies. Its intent was to support space suit development efforts and to aid in conceptual designs for future human exploration missions. Its basis was the Life Support Options Performance Program (LSOPP), a spacesuit and portable life support system (PLSS) sizing program developed for NASA/JSC circa 1990. EVAS_SAT estimates the mass, power, and volume characteristics for user-defined EVAS architectures, including Suit Systems, Airlock Systems, Tools and Translation Aids, and Vehicle Support equipment. The tool has undergone annual changes and has been updated as new data have become available. Certain sizing algorithms have been developed based on industry standards, while others are based on the LSOPP sizing routines. The sizing algorithms used by EVAS_SAT are preliminary. Because EVAS_SAT was designed for use by members of the EVA community, subsystem familiarity on the part of the intended user group and in the analysis of results is assumed. The current EVAS_SAT is operated within Microsoft Excel 2003 using a Visual Basic interface system.

  19. Extravehicular Activity (EVA) Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2010-01-01

    Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast

  20. Testing EVA (extravehicular activity) equipment for polar-orbit operations

    SciTech Connect

    Hall, W.N.; Nanevicz, J.E.; Staskus, J.V.

    1985-01-01

    Polar orbit extravehicular activity (EVA) will expose EVA equipment to the conditions in which charging of Defense Meteorological Satellite Program (DMSP) satellites has been measured. Charging can occur when you have darkness, incident energetic electrons, and low neutralizing plasma density. Fluxes of precipitating keV to tens-of-keV electrons, which also cause optical auroas, may be encountered in the high-latitude auroral zone. In addition, a large body such as the Shuttle sweeps out the ambient ionospheric plasma to produce a cavity in its wake. Laboratory test results will be presented that confirm charging and subsequent arc discharge of EVA equipment material samples. Induced current and radiated radio-frequency electromagnetic interference (EMI) were measured form the arc discharges. Such EMI could cause potentially dangerous EVA equipment anomalies. Ground tests of subsystems and the complete EVA equipment system are needed. Orbital tests to validate model predictions and understanding of polar orbit shuttle wake charging will be proposed.

  1. 7. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, IN SPACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, IN SPACE SUIT AFTER TESTING IN NEUTRAL BUOYANCY TANK. AVERAGE COST OF SUIT IS $1,000,000. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  2. STS-109 Extra Vehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Inside the Space Shuttle Columbia's cabin, astronaut Nancy J. Currie, mission specialist, controlled the Remote Manipulator System (RMS) on the crew cabin's aft flight deck to assist fellow astronauts during the STS-109 mission Extra Vehicular Activities (EVA). The RMS was used to capture the telescope and secure it into Columbia's cargo bay. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the Hubble Space Telescope (HST). The Marshall Space Flight Center in Huntsville, Alabama had the responsibility for the design, development, and construction of the HST, which is the most powerful and sophisticated telescope ever built. STS-109 upgrades to the HST included: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  3. STS-109 Extra Vehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut James H. Newman, mission specialist, floats about in the Space Shuttle Columbia's cargo bay while working in tandem with astronaut Michael J. Massimino (out of frame),mission specialist, during the STS-109 mission's second day of extravehicular activity (EVA). Inside Columbia's cabin, astronaut Nancy J. Currie, mission specialist, controlled the Remote Manipulator System (RMS) to assist the two in their work on the Hubble Space Telescope (HST). The RMS was used to capture the telescope and secure it into Columbia's cargo bay.Part of the giant telescope's base, latched down in the payload bay, can be seen behind Newman. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the HST. The Marshall Space Flight Center in Huntsville, Alabama had responsibility for the design, development, and contruction of the HST, which is the most powerful and sophisticated telescope ever built. STS-109 upgrades to the HST included: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  4. Spacesuit Glove-Induced Hand Trauma and Analysis of Potentially Related Risk Variables

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.; Reid, Christopher R.; Norcross, Jason; Charvat, Jacqueline M.

    2015-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). When the gloves are pressurized, they restrict movement and create pressure points during tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally more severe injuries such as onycholysis. Glove injuries, both anecdotal and recorded, have been reported during EVA training and flight persistently through NASA's history regardless of mission or glove model. Theories as to causation such as glove-hand fit are common but often lacking in supporting evidence. Previous statistical analysis has evaluated onycholysis in the context of crew anthropometry only (Opperman et al 2010). The purpose of this study was to analyze all injuries (as documented in the medical records) and available risk factor variables with the goal to determine engineering and operational controls that may reduce hand injuries due to the EVA glove in the future. A literature review and data mining study were conducted between 2012 and 2014. This study included 179 US NASA crew who trained or completed an EVA between 1981 and 2010 (crossing both Shuttle and ISS eras) and wore either the 4000 Series or Phase VI glove during Extravehicular Mobility Unit (EMU) spacesuit EVA training and flight. All injuries recorded in medical records were analyzed in their association to candidate risk factor variables. Those risk factor variables included demographic characteristics, hand anthropometry, glove fit characteristics, and training/EVA characteristics. Utilizing literature, medical records and anecdotal causation comments recorded in crewmember injury data, investigators were able to identify several risk factors associated with increased risk of glove related injuries. Prime among them were smaller hand anthropometry, duration of individual suited exposures, and improper glove-hand fit as calculated by the difference in the anthropometry middle finger length compared to the baseline EVA glove middle finger length.

  5. Spacesuit Glove-Induced Hand Trauma and Analysis of Potentially Related Risk Variables

    NASA Technical Reports Server (NTRS)

    Charvat, Chacqueline M.; Norcross, Jason; Reid, Christopher R.; McFarland, Shane M.

    2015-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). When the gloves are pressurized, they restrict movement and create pressure points during tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally more severe injuries such as onycholysis. Glove injuries, both anecdotal and recorded, have been reported during EVA training and flight persistently through NASA's history regardless of mission or glove model. Theories as to causation such as glove-hand fit are common but often lacking in supporting evidence. Previous statistical analysis has evaluated onycholysis in the context of crew anthropometry only. The purpose of this study was to analyze all injuries (as documented in the medical records) and available risk factor variables with the goal to determine engineering and operational controls that may reduce hand injuries due to the EVA glove in the future. A literature review and data mining study were conducted between 2012 and 2014. This study included 179 US NASA crew who trained or completed an EVA between 1981 and 2010 (crossing both Shuttle and ISS eras) and wore either the 4000 Series or Phase VI glove during Extravehicular Mobility Unit (EMU) spacesuit EVA training and flight. All injuries recorded in medical records were analyzed in their association to candidate risk factor variables. Those risk factor variables included demographic characteristics, hand anthropometry, glove fit characteristics, and training/EVA characteristics. Utilizing literature, medical records and anecdotal causation comments recorded in crewmember injury data, investigators were able to identify several risk factors associated with increased risk of glove related injuries. Prime among them were smaller hand anthropometry, duration of individual suited exposures, and improper glove-hand fit as calculated by the difference in the anthropometry middle finger length compared to the baseline EVA glove middle finger length.

  6. Application of Spacesuit Glove Requirements Tools to Athletic and Personal Protective Equipment

    NASA Technical Reports Server (NTRS)

    England, Scott; Benson, Elizabeth; Melsoh, Miranda; Thompson, Shelby; Rajulu, Sudhakar

    2010-01-01

    Despite decades of ongoing improvement, astronauts must still struggle with inhibited dexterity and accelerated fatigue due to the requirement of wearing a pressurized Extra-Vehicular Activity (EVA) glove. Recent research in the Anthropometry and Biomechanics Facility at NASA's Johnson Space Center has focused on developing requirements for improvements in the design of the next generation of EVA glove. In the course of this research, it was decided to expand the scope of the testing to include a variety of commercially available athletic and consumer gloves to help provide a more recognizable comparison for investigators and designers to evaluate the current state of EVA glove mobility and strength. This comparison is being provided with the hope that innovative methods may help commercial development of gloves for various athletic and personal protective endeavors.

  7. 8. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, GETTING OUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, GETTING OUT OF SPACE SUIT AFTER TESTING IN NEUTRAL BUOYANCY TANK. AVERAGE COST OF SUIT $1,000,000. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  8. The Effects of Extravehicular Activity Gloves on Human Hand Performance

    Microsoft Academic Search

    Melissa H. Welsh; David L. Akin

    Past approaches to space suit glove evaluation have primarily been subjective. This report details efforts at the University of Maryland Space Systems Laboratory to use standardized dexterity tests and advanced biomechanics instrumentation to provide objective measures of glove performance. Ten subjects participated in the study. Tests were conducted barehanded, and wearing pressurized and unpressurized space suit gloves. Data on performance

  9. Glove Gardens

    NSDL National Science Digital Library

    Chicago Children's Museum

    2008-01-01

    In this activity, learners create a garden in a disposable glove. They learn about the conditions necessary to make the seeds sprout and actively participate in caring for their plants. Learners sign a "Glove Garden Owner's Agreement" (included in PDF) outlining what they must do to care for their gardens. Learners also make predictions about how fast and tall their plants will grow and then measure and record the results.

  10. A new preoxygenation procedure for extravehicular activity (EVA).

    PubMed

    Webb, J T; Pilmanis, A A

    1998-01-01

    A 10.2 psi staged-decompression schedule or a 4-hour preoxygenation at 14.7 psi is required prior to extravehicular activity (EVA) to reduce decompression sickness (DCS) risk. Results of recent research at the Air Force Research Laboratory (AFRL) showed that a 1-hour resting preoxygenation followed by a 4-hour, 4.3 psi exposure resulted in 77% DCS risk (N=26), while the same profile beginning with 10 min of exercise at 75% of VO2peak during preoxygenation reduced the DCS risk to 42% (P<.03; N=26). A 4-hour preoxygenation without exercise followed by the 4.3 psi exposure resulted in 47% DCS risk (N=30). The 1-hour preoxygenation with exercise and the 4-hour preoxygenation without exercise results were not significantly different. Elimination of either 3 hours of preoxygenation or 12 hours of staged-decompression are compelling reasons to consider incorporation of exercise-enhanced preoxygenation. PMID:11541597

  11. An Approach for Performance Based Glove Mobility Requirements

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay; Benson, Elizabeth; England, Scott

    2015-01-01

    The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for exploration missions. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Space Technology Mission Directorate's Game-Changing Development Program provided start-up funding for the High Performance EVA Glove (HPEG) Element as part of the Next Generation Life Support (NGLS) Project in the fall of 2013. The overarching goal of the HPEG Element is to develop a robust glove design that increases human performance during EVA and creates pathway for implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability in on-pristine environments, and decreasing the potential of gloves to cause injury during use. The HPEG Element focused initial efforts on developing quantifiable and repeatable methodologies for assessing glove performance with respect to mobility, injury potential, thermal conductivity, and abrasion resistance. The team used these methodologies to establish requirements against which emerging technologies and glove designs can be assessed at both the component and assembly levels. The mobility performance testing methodology was an early focus for the HPEG team as it stems from collaborations between the SSA Development team and the JSC Anthropometry and Biomechanics Facility (ABF) that began investigating new methods for suited mobility and fit early in the Constellation Program. The combined HPEG and ABF team used lessons learned from the previous efforts as well as additional reviews of methodologies in physical and occupational therapy arenas to develop a protocol that assesses gloved range of motion, strength, dexterity, tactility, and fit in comparative quantitative terms and also provides qualitative insight to direct hardware design iterations. The protocol was evaluated using five experienced test subjects wearing the EMU pressurized to 4.3psid with three different glove configurations. The results of the testing are presented to illustrate where the protocol is and is not valid for benchmark comparisons. The process for requirements development based upon the results is also presented along with suggested performance values for the High Performance EVA Gloves to be procured in fiscal year 2015.

  12. Use MACES IVA Suit for EVA Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an Intra-Vehicular Activity (IVA) suit for a spacewalk or Extra-Vehicular Activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Lab (NBL) environment. The Space Shuttle Advanced Crew Escape Suit (ACES) has been modified (MACES) to integrate with the Orion spacecraft. The first several missions of the Orion MPCV spacecraft will not have mass available to carry an EVA specific suit so any EVA required will have to be performed by the MACES. Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or if a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, carrying tools, body stabilization, equipment handling, and use of tools. Hardware configurations included with and without TMG, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on ISS mockups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstration of the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determination of critical sizing factors, and need for adjustment of suit work envelop. The early testing has demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission specific modifications for umbilical management or PLSS integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.

  13. A CMOS Fractional Frequency Synthesizer for a Fully Integrated S-Band Extravehicular Activity (EVA) Radio Transceiver

    E-print Network

    Foli, Eugene B

    2014-04-28

    Extravehicular activity (EVA) is an important aspect of space explorations. It enables astronauts carry out tasks outside the protective environment of the spacecraft cabin. The crew requires EVA radio transceivers to transmit and receive...

  14. Risk Management in EVA

    NASA Technical Reports Server (NTRS)

    Hall, Jonathan; Lutomski, M.

    2006-01-01

    This viewgraph presentation reviews the use of risk management in Extravehicular Activities (EVA). The contents include: 1) EVA Office at NASA - JSC; 2) EVA Project Risk Management: Why and When; 3) EVA Office Risk Management: How; 4) Criteria for Closing a Risk; 5) Criteria for Accepting a Risk; 6) ISS IRMA Reference Card Data Entry Requirement s; 7) XA/ EVA Office Risk Activity Summary; 8) EVA Significant Change Summary; 9) Integrated Risk Management Application (XA) Matrix, March 31, 2004; 10) ISS Watch Item: 50XX Summary Report; and 11) EVA Project RM Usefulness

  15. STS-110 Astronaut Jerry Ross Performs Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. In this photograph, Astronaut Jerry L. Ross, mission specialist, anchored on the end of the Canadarm2, moves near the newly installed S0 truss. Astronaut Lee M. E. Morin, mission specialist, (out of frame), worked in tandem with Ross during this fourth and final scheduled session of EVA for the STS-110 mission. The final major task of the space walk was the installation of a beam, the Airlock Spur, between the Quest Airlock and the S0. The spur will be used by space walkers in the future as a path from the airlock to the truss.

  16. STS-61B Astronaut Spring During EASE Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), the EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Spring was working on the EASE during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  17. Testing and evaluation for astronaut extravehicular activity (EVA) operability.

    PubMed

    Shields, N; King, L C

    1998-09-01

    Because it is the human component that defines space mission success, careful planning is required to ensure that hardware can be operated and maintained by crews on-orbit. Several methods exist to allow researchers and designers to better predict how hardware designs will behave under the harsh environment of low Earth orbit, and whether designs incorporate the necessary features for Extra Vehicular Activity (EVA) operability. Testing under conditions of simulated microgravity can occur during the design concept phase when verifying design operability, during mission training, or concurrently with on-orbit mission operations. The bulk of testing is focused on normal operations, but also includes evaluation of credible mission contingencies or "what would happen if" planning. The astronauts and cosmonauts who fly these space missions are well prepared and trained to survive and be productive in Earth's orbit. The engineers, designers, and training crews involved in space missions subject themselves to Earth based simulation techniques that also expose them to extreme environments. Aircraft falling ten thousand feet, alternating g-loads, underwater testing at 45 foot depth, enclosure in a vacuum chamber and subject to thermal extremes, each carries with it inherent risks to the humans preparing for space missions. PMID:12190075

  18. Automatic antenna switching design for Extra Vehicular Activity (EVA) communication system

    NASA Technical Reports Server (NTRS)

    Randhawa, Manjit S.

    1987-01-01

    An Extra Vehicular Activity (EVA) crewmember had two-way communications with the space station in the Ku-band frequency (12 to 18 GHz). The maximum range of the EVA communications link with the space station is approximately one kilometer for nominal values for transmitter power, antenna gains, and receiver noise figure. The EVA Communications System, that will continue to function regardless of the astronaut's position and orientation, requires an antenna system that has full spherical coverage. Three or more antennas that can be flush mounted on the astronaut's space suit (EMU) and/or his propulsive backpack (MMU), will be needed to provide the desired coverage. As the astronaut moves in the space station, the signal received by a given EVA antenna changes. An automatic antenna switching system is needed that will switch the communication system to the antenna with the largest signal strength. A design for automatic antenna switching is presented and discussed.

  19. Human Research Program Human Health Countermeasures Element Extravehicular Activity (EVA) Risk Standing Review Panel (SRP)

    NASA Technical Reports Server (NTRS)

    Norfleet, William; Harris, Bernard

    2009-01-01

    The Extravehicular Activity (EVA) Risk Standing Review Panel (SRP) was favorably impressed by the operational risk management approach taken by the Human Research Program (HRP) Integrated Research Plan (IRP) to address the stated life sciences issues. The life sciences community at the Johnson Space Center (JSC) seems to be focused on operational risk management. This approach is more likely to provide risk managers with the information they need at the time they need it. Concerning the information provided to the SRP by the EVA Physiology, Systems, and Performance Project (EPSP), it is obvious that a great deal of productive activity is under way. Evaluation of this information was hampered by the fact that it often was not organized in a fashion that reflects the "Gaps and Tasks" approach of the overall Human Health Countermeasures (HHC) effort, and that a substantial proportion of the briefing concerned subjects that, while interesting, are not part of the HHC Element (e.g., the pressurized rover presentation). Additionally, no information was provided on several of the tasks or how they related to work underway or already accomplished. This situation left the SRP having to guess at the efforts and relationship to other elements, and made it hard to easily map the EVA Project efforts currently underway, and the data collected thus far, to the gaps and tasks in the IRP. It seems that integration of the EPSP project into the HHC Element could be improved. Along these lines, we were concerned that our SRP was split off from the other participating SRPs at an early stage in the overall agenda for the meeting. In reality, the concerns of EPSP and other projects share much common ground. For example, the commonality of the concerns of the EVA and exercise physiology groups is obvious, both in terms of what reduced exercise capacity can do to EVA capability, and how the exercise performed during an EVA could contribute to an overall exercise countermeasure prescription.

  20. Astronaut Extravehicular Activity : safety, injury & countermeasures; &, Orbital collisions & space debris : incidence, impact & international policy

    E-print Network

    Opperman, Roedolph A. (Roedolph Adriaan)

    2010-01-01

    Extravehicular Activity (EVA) spacesuits are a key enabling technology which allow astronauts to survive and work in the harsh environment of space. Of the entire spacesuit, the gloves may perhaps be considered the most ...

  1. Exploration EVA System

    NASA Technical Reports Server (NTRS)

    Kearney, Lara

    2004-01-01

    In January 2004, the President announced a new Vision for Space Exploration. NASA's Office of Exploration Systems has identified Extravehicular Activity (EVA) as a critical capability for supporting the Vision for Space Exploration. EVA is required for all phases of the Vision, both in-space and planetary. Supporting the human outside the protective environment of the vehicle or habitat and allow ing him/her to perform efficient and effective work requires an integrated EVA "System of systems." The EVA System includes EVA suits, airlocks, tools and mobility aids, and human rovers. At the core of the EVA System is the highly technical EVA suit, which is comprised mainly of a life support system and a pressure/environmental protection garment. The EVA suit, in essence, is a miniature spacecraft, which combines together many different sub-systems such as life support, power, communications, avionics, robotics, pressure systems and thermal systems, into a single autonomous unit. Development of a new EVA suit requires technology advancements similar to those required in the development of a new space vehicle. A majority of the technologies necessary to develop advanced EVA systems are currently at a low Technology Readiness Level of 1-3. This is particularly true for the long-pole technologies of the life support system.

  2. Results from an Investigation into Extra-Vehicular Activity (EVA) Training Related Shoulder Injuries

    NASA Technical Reports Server (NTRS)

    Johnson, Brian J.; Williams, David R.

    2004-01-01

    The number and complexity of extravehicular activities (EVAs) required for the completion and maintenance of the International Space Station (ISS) is unprecedented. The training required to successfully complete this magnitude of space walks presents a real risk of overuse musculoskeletal injuries to the EVA crew population. There was mounting evidence raised by crewmembers, trainers, and physicians at the Johnson Space Center (JSC) between 1999 and 2002 that suggested a link between training in the Neutral - Buoyancy Lab (NBL) and the several reported cases of shoulder injuries. The short- and long-term health consequences of shoulder injury to astronauts in training as well as the potential mission impact associated with surgical intervention to assigned EVA crew point to this as a critical problem that must be mitigated. Thus, a multi-directorate tiger team was formed in December of 2002 led by the EVA Office and Astronaut Office at the JSC. The primary objectives of this Tiger Team were to evaluate the prevalence of these injuries and substantiate the relationship to training in the NBL with the crew person operating in the EVA Mobility Unit (EMU). Between December 2002 and June of 2003 the team collected data, surveyed crewmembers, consulted with a variety of physicians, and performed tests. The results of this effort were combined with the vast knowledge and experience of the Tiger Team members to formulate several findings and over fifty recommendations. This paper summarizes those findings and recommendations as well as the process by which these were determined. The Tiger Team concluded that training in the NBL was directly linked to several major and minor shoulder injuries that had occurred. With the assistance of JSC flight surgeons, outside consultants, and the lead crewmember/physician on the team, the mechanisms of injury were determined. These mechanisms were then linked to specific aspects of the hardware design, operational techniques, and the training environment. During the 1999 to 2003 time frame many variables converged to make it impossible to determine with any accuracy which one or two root causes were primarily involved. Therefore a broad range of recommendations was established to prevent future injury to crewmembers training in the NBL in the near term. Many of these recommendations are lessons learned that are essentially timeless and therefore should be passed on to future EVA endeavors to ensure that hardware designs and operational techniques utilized in the future consider the demands of training on the human body here on earth.

  3. Augmented robotic device for EVA hand manoeuvres

    NASA Astrophysics Data System (ADS)

    Matheson, Eloise; Brooker, Graham

    2012-12-01

    During extravehicular activities (EVAs), pressurised space suits can lead to difficulties in performing hand manoeuvres and fatigue. This is often the cause of EVAs being terminated early, or taking longer to complete. Assistive robotic gloves can be used to augment the natural motion of a human hand, meaning work can be carried out more efficiently with less stress to the astronaut. Lightweight and low profile solutions must be found in order for the assistive robotic glove to be easily integrated with a space suit pressure garment. Pneumatic muscle actuators combined with force sensors are one such solution. These actuators are extremely light, yet can output high forces using pressurised gases as the actuation drive. Their movement is omnidirectional, so when combined with a flexible exoskeleton that itself provides a degree of freedom of movement, individual fingers can be controlled during flexion and extension. This setup allows actuators and other hardware to be stored remotely on the user's body, resulting in the least possible mass being supported by the hand. Two prototype gloves have been developed at the University of Sydney; prototype I using a fibreglass exoskeleton to provide flexion force, and prototype II using torsion springs to achieve the same result. The gloves have been designed to increase the ease of human movements, rather than to add unnatural ability to the hand. A state space control algorithm has been developed to ensure that human initiated movements are recognised, and calibration methods have been implemented to accommodate the different characteristics of each wearer's hands. For this calibration technique, it was necessary to take into account the natural tremors of the human hand which may have otherwise initiated unexpected control signals. Prototype I was able to actuate the user's hand in 1 degree of freedom (DOF) from full flexion to partial extension, and prototype II actuated a user's finger in 2 DOF with forces achieved comparable to those of a natural, healthy hand. The minimum mass held by the user on the hand was 240 g, with remote hardware, including a compressed air bottle, having a further mass of 1.6 kg. These results indicate that the design is able to augment human motion in a low profile, low mass package, and could be a valuable addition to a space suit during an EVA.

  4. Mitigation of EMU Cut Glove Hazard from Micrometeoroid and Orbital Debris Impacts on ISS Handrails

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Eric L.; Davis, Bruce A.; Ordonez, Erick

    2009-01-01

    Recent cut damages sustained on crewmember gloves during extravehicular activity (ISS) onboard the International Space Station (ISS) have been caused by contact with sharp edges or a pinch point according to analysis of the damages. One potential source are protruding sharp edged crater lips from micrometeoroid and orbital debris (MMOD) impacts on metallic handrails along EVA translation paths. A number of hypervelocity impact tests were performed on ISS handrails, and found that mm-sized projectiles were capable of inducing crater lip heights two orders of magnitude above the minimum value for glove abrasion concerns. Two techniques were evaluated for mitigating the cut glove hazard of MMOD impacts on ISS handrails: flexible overwraps which act to limit contact between crewmember gloves and impact sites, and; alternate materials which form less hazardous impact crater profiles. In parallel with redesign efforts to increase the cut resilience of EMU gloves, the modifications to ISS handrails evaluated in this study provide the means to significantly reduce cut glove risk from MMOD impact craters

  5. Dynamic analysis of astronaut motions in microgravity: Applications for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    1995-01-01

    Simulations of astronaut motions during extravehicular activity (EVA) tasks were performed using computational multibody dynamics methods. The application of computational dynamic simulation to EVA was prompted by the realization that physical microgravity simulators have inherent limitations: viscosity in neutral buoyancy tanks; friction in air bearing floors; short duration for parabolic aircraft; and inertia and friction in suspension mechanisms. These limitations can mask critical dynamic effects that later cause problems during actual EVA's performed in space. Methods of formulating dynamic equations of motion for multibody systems are discussed with emphasis on Kane's method, which forms the basis of the simulations presented herein. Formulation of the equations of motion for a two degree of freedom arm is presented as an explicit example. The four basic steps in creating the computational simulations were: system description, in which the geometry, mass properties, and interconnection of system bodies are input to the computer; equation formulation based on the system description; inverse kinematics, in which the angles, velocities, and accelerations of joints are calculated for prescribed motion of the endpoint (hand) of the arm; and inverse dynamics, in which joint torques are calculated for a prescribed motion. A graphical animation and data plotting program, EVADS (EVA Dynamics Simulation), was developed and used to analyze the results of the simulations that were performed on a Silicon Graphics Indigo2 computer. EVA tasks involving manipulation of the Spartan 204 free flying astronomy payload, as performed during Space Shuttle mission STS-63 (February 1995), served as the subject for two dynamic simulations. An EVA crewmember was modeled as a seven segment system with an eighth segment representing the massive payload attached to the hand. For both simulations, the initial configuration of the lower body (trunk, upper leg, and lower leg) was a neutral microgravity posture. In the first simulation, the payload was manipulated around a circular trajectory of 0.15 m radius in 10 seconds. It was found that the wrist joint theoretically exceeded its ulnal deviation limit by as much as 49. 8 deg and was required to exert torques as high as 26 N-m to accomplish the task, well in excess of the wrist physiological limit of 12 N-m. The largest torque in the first simulation, 52 N-m, occurred in the ankle joint. To avoid these problems, the second simulation placed the arm in a more comfortable initial position and the radius and speed of the circular trajectory were reduced by half. As a result, the joint angles and torques were reduced to values well within their physiological limits. In particular, the maximum wrist torque for the second simulation was only 3 N-m and the maximum ankle torque was only 6 N-m.

  6. Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Kesterson, Matthew; Bue, Grant; Trevino, Luis

    2006-01-01

    In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series off tubes through which cooling water is circulated. To better predict the effectiveness of the LCG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained. Currently, increasing the fabric s thermal conductivity along with also examining an increase in the cooling tube conductivity to more efficiently remove the excess heat generated during EVA is being simulated. Initial trials varied cooling water temperature, water flow rate, garment conductivity, tube conductivity, and total number of cooling tubes in the LCVG. Results indicate that the total number of cooling tubes could be reduced to 22 and still achieve the desired heat removal rate of 361 W. Further improvements are being made to the garment network used in the model to account for temperature gradients associated with the spacing of the cooling tubes over the surface of the garment

  7. EVA-SCRAM operations

    NASA Technical Reports Server (NTRS)

    Flanigan, Lee A.; Tamir, David; Weeks, Jack L.; Mcclure, Sidney R.; Kimbrough, Andrew G.

    1994-01-01

    This paper wrestles with the on-orbit operational challenges introduced by the proposed Space Construction, Repair, and Maintenance (SCRAM) tool kit for Extra-Vehicular Activity (EVA). SCRAM undertakes a new challenging series of on-orbit tasks in support of the near-term Hubble Space Telescope, Extended Duration Orbiter, Long Duration Orbiter, Space Station Freedom, other orbital platforms, and even the future manned Lunar/Mars missions. These new EVA tasks involve welding, brazing, cutting, coating, heat-treating, and cleaning operations. Anticipated near-term EVA-SCRAM applications include construction of fluid lines and structural members, repair of punctures by orbital debris, refurbishment of surfaces eroded by atomic oxygen, and cleaning of optical, solar panel, and high emissivity radiator surfaces which have been degraded by contaminants. Future EVA-SCRAM applications are also examined, involving mass production tasks automated with robotics and artificial intelligence, for construction of large truss, aerobrake, and reactor shadow shield structures. Realistically achieving EVA-SCRAM is examined by addressing manual, teleoperated, semi-automated, and fully-automated operation modes. The operational challenges posed by EVA-SCRAM tasks are reviewed with respect to capabilities of existing and upcoming EVA systems, such as the Extravehicular Mobility Unit, the Shuttle Remote Manipulating System, the Dexterous End Effector, and the Servicing Aid Tool.

  8. Survey of Software Problems with Impacts to 'Campout' Protocol Extravehicular Activity (EVA) Prebreathe

    NASA Technical Reports Server (NTRS)

    Diderich, Greg; Matty, Christopher M.

    2009-01-01

    During International Space Station campout protocol ExtraVehicular Activity (EVA) preparations, the crew is isolated overnight in the small airlock volume in a reduced pressure, oxygen enriched atmosphere. As such, there are special considerations for the software in terms of air composition, pressure control and emergency responses. For one, the ISS software must monitor and manage two distinct atmospheres. Also, the small airlock volume is especially sensitive to small changes in the environment, and what would be a minor emergency in the larger vehicle volume can have catastrophic results in the isolated airlock. Finally, in cases of emergency, the crew needs to rapidly egress the airlock, which requires an aggressive automatic repressurization to equalize pressure on the hatch. This paper will describe the software which is modified for the airlock campout protocol. In addition, the paper will describe the software problems and hardware problems with software workarounds which have affected campout protocol.

  9. A Human Machine Interface for EVA

    NASA Astrophysics Data System (ADS)

    Hartmann, L.

    EVA astronauts work in a challenging environment that includes high rate of muscle fatigue, haptic and proprioception impairment, lack of dexterity and interaction with robotic equipment. Currently they are heavily dependent on support from on-board crew and ground station staff for information and robotics operation. They are limited to the operation of simple controls on the suit exterior and external robot controls that are difficult to operate because of the heavy gloves that are part of the EVA suit. A wearable human machine interface (HMI) inside the suit provides a powerful alternative for robot teleoperation, procedure checklist access, generic equipment operation via virtual control panels and general information retrieval and presentation. The HMI proposed here includes speech input and output, a simple 6 degree of freedom (dof) pointing device and a heads up display (HUD). The essential characteristic of this interface is that it offers an alternative to the standard keyboard and mouse interface of a desktop computer. The astronaut's speech is used as input to command mode changes, execute arbitrary computer commands and generate text. The HMI can respond with speech also in order to confirm selections, provide status and feedback and present text output. A candidate 6 dof pointing device is Measurand's Shapetape, a flexible "tape" substrate to which is attached an optic fiber with embedded sensors. Measurement of the modulation of the light passing through the fiber can be used to compute the shape of the tape and, in particular, the position and orientation of the end of the Shapetape. It can be used to provide any kind of 3d geometric information including robot teleoperation control. The HUD can overlay graphical information onto the astronaut's visual field including robot joint torques, end effector configuration, procedure checklists and virtual control panels. With suitable tracking information about the position and orientation of the EVA suit, the overlaid graphical information can be registered with the external world. For example, information about an object can be positioned on or beside the object. This wearable HMI supports many applications during EVA including robot teleoperation, procedure checklist usage, operation of virtual control panels and general information or documentation retrieval and presentation. Whether the robot end effector is a mobile platform for the EVA astronaut or is an assistant to the astronaut in an assembly or repair task, the astronaut can control the robot via a direct manipulation interface. Embedded in the suit or the astronaut's clothing, Shapetape can measure the user's arm/hand position and orientation which can be directly mapped into the workspace coordinate system of the robot. Motion of the users hand can generate corresponding motion of the robot end effector in order to reposition the EVA platform or to manipulate objects in the robot's grasp. Speech input can be used to execute commands and mode changes without the astronaut having to withdraw from the teleoperation task. Speech output from the system can provide feedback without affecting the user's visual attention. The procedure checklist guiding the astronaut's detailed activities can be presented on the HUD and manipulated (e.g., move, scale, annotate, mark tasks as done, consult prerequisite tasks) by spoken command. Virtual control panels for suit equipment, equipment being repaired or arbitrary equipment on the space station can be displayed on the HUD and can be operated by speech commands or by hand gestures. For example, an antenna being repaired could be pointed under the control of the EVA astronaut. Additionally arbitrary computer activities such as information retrieval and presentation can be carried out using similar interface techniques. Considering the risks, expense and physical challenges of EVA work, it is appropriate that EVA astronauts have considerable support from station crew and ground station staff. Reducing their dependence on such personnel may under many circumst

  10. Thermoregulation and heat exchange in a nonuniform thermal environment during simulated extended EVA. Extravehicular activities

    NASA Technical Reports Server (NTRS)

    Koscheyev, V. S.; Leon, G. R.; Hubel, A.; Nelson, E. D.; Tranchida, D.

    2000-01-01

    BACKGROUND: Nonuniform heating and cooling of the body, a possibility during extended duration extravehicular activities (EVA), was studied by means of a specially designed water circulating garment that independently heated or cooled the right and left sides of the body. The purpose was to assess whether there was a generalized reaction on the finger in extreme contradictory temperatures on the body surface, as a potential heat status controller. METHOD: Eight subjects, six men and two women, were studied while wearing a sagittally divided experimental garment with hands exposed in the following conditions: Stage 1 baseline--total body garment inlet water temperature at 33 degrees C; Stage 2--left side inlet water temperature heated to 45 degrees C; right side cooled to 8 degrees C; Stage 3--left side inlet water temperature cooled to 8 degrees C, right side heated to 45 degrees C. RESULTS: Temperatures on each side of the body surface as well as ear canal temperature (Tec) showed statistically significant Stage x Side interactions, demonstrating responsiveness to the thermal manipulations. Right and left finger temperatures (Tfing) were not significantly different across stages; their dynamic across time was similar. Rectal temperature (Tre) was not reactive to prevailing cold on the body surface, and therefore not informative. Subjective perception of heat and cold on the left and right sides of the body was consistent with actual temperature manipulations. CONCLUSIONS: Tec and Tre estimates of internal temperature do not provide accurate data for evaluating overall thermal status in nonuniform thermal conditions on the body surface. The use of Tfing has significant potential in providing more accurate information on thermal status and as a feedback method for more precise thermal regulation of the astronaut within the EVA space suit.

  11. Rubber Blubber Gloves

    NSDL National Science Digital Library

    American Museum of Natural History

    2012-06-26

    In this experiment, learners work in pairs to create two gloves -- one that contains a layer of shortening (blubber) inside, and one that doesn't. By putting both glove-covered hands in a bucket of cold water, learners will find out if the blubber-covered hand feels warmer than the hand without the fat layer. Use this activity to explain how marine mammals live in extremely cold environments. Learners will also discover what it means to have a variable and a control during an experiment.

  12. The use of an extended ventilation tube as a countermeasure for EVA-associated upper extremity medical issues

    NASA Astrophysics Data System (ADS)

    Jones, J. A.; Hoffman, R. B.; Buckland, D. A.; Harvey, C. M.; Bowen, C. K.; Hudy, C. E.; Strauss, S.; Novak, J.; Gernhardt, M. L.

    Introduction: Onycholysis due to repetitive activity in the space suit glove during Neutral Buoyancy Laboratory (NBL) training and during spaceflight extravehicular activity (EVA) is a common observation. Moisture accumulates in gloves during EVA task performance and may contribute to the development of pain and damage to the fingernails experienced by many astronauts. The study evaluated the use of a long ventilation tube to determine if improved gas circulation into the hand area could reduce hand moisture and thereby decrease the associated symptoms. Methods: The current Extravehicular Mobility Unit (EMU) was configured with a ventilation tube that extended down a single arm of the crew member (E) and compared with the unventilated arm (C). Skin surface moisture was measured on both hands immediately after glove removal and a questionnaire administered to determine subjective measures. Astronauts ( n=6) were examined pre- and post-run. Results: There were consistent trends in the reduction of relative hydration ratios at dorsum ( C=3.34, E=2.11) and first ring finger joint ( C=2.46, E=1.96) when the ventilation tube was employed. Ventilation appeared more effective on the left versus the right hand, implying an interaction with hand anthropometry and glove fit. Symptom score was lower on the hand that had the long ventilation tube relative to the control hand in 2/6 EVA crew members. Conclusions: Increased ventilation to the hand was effective in reducing the risks of hand and nail discomfort symptoms from moderate to low in one-third of the subjects. Improved design in the ventilation capability of EVA spacesuits is expected to improve efficiency of air flow distribution.

  13. Overview of Umbilical Extravehicular Activity (EVA) Interfaces in Life Support Systems on Spacecraft Vehicles and Applications for the Crew Exploration Vehicle (CEV)

    NASA Technical Reports Server (NTRS)

    Peterson, Laurie J.; Jordan, Nicole C.; Barido, Richard A.

    2007-01-01

    Extravehicular Activities (EVAs) for manned spacecraft vehicles have been performed for contingencies and nominal operations numerous times throughout history. This paper will investigate how previous U.S. manned spacecraft vehicles provided life support to crewmembers performing the EVA. Specifically defined are umbilical interfaces with respect to crewmember cooling, drinking water, air (or oxygen), humidity control, and carbon dioxide removal. As historical data is available, the need for planned versus contingency EVAs in previous vehicles as well as details for a nominal EVA day versus a contingency EVA day will be discussed. The hardware used to provide the cooling, drinking water, air (or oxygen), humidity control, and carbon dioxide removal, and the general functions of that hardware, will also be detailed, as information is available. The Crew Exploration Vehicle (CEV or Orion) EVA interfaces will be generically discussed to provide a glimpse of how similar they are to the EVA interfaces in previous vehicles. Conclusions on strategies that should be used for CEV based on previous spacecraft EVA interfaces will be made in the form of questions and recommendations.

  14. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  15. In Vivo Noninvasive Analysis of Human Forearm Muscle Function and Fatigue: Applications to EVA Operations and Training Maneuvers

    NASA Technical Reports Server (NTRS)

    Fotedar, L. K.; Marshburn, T.; Quast, M. J.; Feeback, D. L.

    1999-01-01

    Forearm muscle fatigue is one of the major limiting factors affecting endurance during performance of deep-space extravehicular activity (EVA) by crew members. Magnetic resonance (MR) provides in vivo noninvasive analysis of tissue level metabolism and fluid exchange dynamics in exercised forearm muscles through the monitoring of proton magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (P-31-MRS) parameter variations. Using a space glove box and EVA simulation protocols, we conducted a preliminary MRS/MRI study in a small group of human test subjects during submaximal exercise and recovery and following exhaustive exercise. In assessing simulated EVA-related muscle fatigue and function, this pilot study revealed substantial changes in the MR image longitudinal relaxation times (T2) as an indicator of specific muscle activation and proton flux as well as changes in spectral phosphocreatine-to-phosphate (PCr/Pi) levels as a function of tissue bioenergetic potential.

  16. Insulated Glove Design Brief

    NSDL National Science Digital Library

    Lee Pulis

    2000-01-01

    In this activity, you will be researching, designing, building, and improving an insulated glove system. You will use both technological design and scientific inquiry as processes to investigate and improve the performance of your prototype. This free selection includes the Table of Contents.

  17. Improved Gloves for Firefighters

    NASA Technical Reports Server (NTRS)

    Tschirch, R. P.; Sidman, K. R.; Arons, I. J.

    1983-01-01

    New firefighter's gloves are more flexible and comfortable than previous designs. Since some firefighters prefer gloves made of composite materials while others prefer dip-coated gloves, both types were developed. New gloves also find uses in foundries, steelmills, and other plants where they are substituted for asbestos gloves.

  18. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Blome, Elizabeth; Tetsuya, Sakashita

    2011-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new operations concept will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), and the Japan Aerospace Exploration Agency's (JAXA s) H-II Transfer Vehicle (HTV). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  19. STS-111 Astronaut Chang-Diaz Performs Extra Vehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot; and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valery G. Korzun, commander; and Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks. In this photograph, Astronaut Franklin R. Chang-Diaz participates in the first scheduled session of extra vehicular activity (EVA) for the STS-111 mission. During the space walk, Chang-Diaz and Perrin attached a Power and Data Grapple Fixture onto the ISS's P6 Truss, setting the stage for the future relocation of the P6. The next major task was to remove Service Module Debris Panels from Space Shuttle Endeavour's payload bay and attach them to their temporary location on Pressurized Mating Adapter 1 (PMA-1). The space walkers also removed thermal blankets to prepare the MBS for installation onto the station's Mobile Transporter (MT).

  20. Study to evaluate the effect of EVA on payload systems. Volume 1: Executive summary. [project planning of space missions employing extravehicular activity as a means of cost reduction

    NASA Technical Reports Server (NTRS)

    Patrick, J. W.; Kraly, E. F.

    1975-01-01

    Programmatic benefits to payloads are examined which can result from the routine use of extravehicular activity (EVA) during space missions. Design and operations costs were compared for 13 representative baseline payloads to the costs of those payloads adapted for EVA operations. The EVA-oriented concepts developed in the study were derived from these baseline concepts and maintained mission and program objectives as well as basic configurations. This permitted isolation of cost saving factors associated specifically with incorporation of EVA in a variety of payload designs and operations. The study results were extrapolated to a total of 74 payload programs. Using appropriate complexity and learning factors, net EVA savings were extrapolated to over $551M for NASA and U.S. civil payloads for routine operations. Adding DOD and ESRO payloads increases the net estimated savings of $776M. Planned maintenance by EVA indicated an estimated $168M savings due to elimination of automated service equipment. Contingency problems of payloads were also analyzed to establish expected failure rates for shuttle payloads. The failure information resulted in an estimated potential for EVA savings of $1.9 B.

  1. Efficacy of Wrist/Palm Warming as an EVA Countermeasure to Maintain Finger Comfort in Cold Conditions During EVA

    NASA Technical Reports Server (NTRS)

    Koscheyev, Victor S.; Leon, Gloria R.; Trevino, Robert C.

    2000-01-01

    This study explored the effectiveness of local wrist/palm warming as a potential countermeasure for providing finger comfort during extended duration EVA. Methods: Six subjects (5 males and 1 female) were evaluated in a sagitally divided liquid cooling/warming garment (LCWG) with modified liquid cooling/warming (LCW) gloves in three different experimental conditions. Condition 1: Stage 1- no LCWG; chamber adaptation with LCW glove inlet water temperature 33 C; Stage 2-LCW glove inlet water temperature cooled to 8 C; Stage 3-LCW glove inlet water temperature warmed to 45 C; Condition 2: Stage1-LCWG and LCW glove inlet water temperature 33 C; Stage 2-LCWG inlet temperature cooled to 31 C, LCW gloves, 8 C; Stage 3-LCWG inlet water temperature remains at 31 C, LCW glove inlet water temperature warmed to 45 C; Condition 3: Stage l -LCWG and LCW gloves 33 C; Stage 2-LCWG inlet water temperature cooled to 28 C, LCW gloves, 8 C; Stage 3-LCWG remains at 28 C, LCW glove water temperature warmed to 45 C. Results: Wrist/palm area warming significantly increased finger temperature (Tfing) and blood perfusion in Stage 3 compared to Stage 2. The LCW gloves were most effective in increasing Stage 3 Tfing in Condition 1; and in increasing blood perfusion in Conditions 1 and 2 compared to Condition 3. Ratings of subjective perception of heat in the hand and overall body heat were higher at Stage 3 than Stage 2, with no significant differences across Conditions. Conclusions: Local wrist/palm warming was effective in increasing blood circulation to the distal extremities, suggesting the potential usefulness of this technique for increasing astronaut thermal comfort during EVA while decreasing power requirements. The LCW gloves were effective in heating the highly cooled fingers when the overall body was in a mild heat deficit.

  2. Material selection for highly mobile space suit gloves based on fabric mechanical properties

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1993-01-01

    This paper discusses the factors that control the flexibility of fabric space suit elements by examining a bending model of a pressurized fabric tube. Results from the model are used to evaluate the current direction in highly mobile EVA glove research and suggest that changes are necessary in the glove fabric selection methodology.

  3. Interviews with the Apollo lunar surface astronauts in support of planning for EVA systems design

    NASA Technical Reports Server (NTRS)

    Connors, Mary M.; Eppler, Dean B.; Morrow, Daniel G.

    1994-01-01

    Focused interviews were conducted with the Apollo astronauts who landed on the moon. The purpose of these interviews was to help define extravehicular activity (EVA) system requirements for future lunar and planetary missions. Information from the interviews was examined with particular attention to identifying areas of consensus, since some commonality of experience is necessary to aid in the design of advanced systems. Results are presented under the following categories: mission approach; mission structure; suits; portable life support systems; dust control; gloves; automation; information, displays, and controls; rovers and remotes; tools; operations; training; and general comments. Research recommendations are offered, along with supporting information.

  4. EVA Skills Training

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    Dr. Parazynski and a colleague from Extravehicular Activity (EVA), Robotics, & Crew Systems Operations (DX) worked closely to build the EVA Skills Training Program, and for the first time, defined the gold standards of EVA performance, allowing crewmembers to increase their performance significantly. As part of the program, individuals had the opportunity to learn at their own rate, taking additional water time as required, to achieve that level of performance. This focus on training to one's strengths and weaknesses to bolster them enabled the Crew Office and DX to field a much larger group of spacewalkers for the daunting "wall of EVA" required for the building and maintenance of the ISS. Parazynski also stressed the need for designers to understand the capabilities and the limitations of a human in a spacesuit, as well as opportunities to improve future generations of space. He shared lessons learned (how the Crew Office engaged in these endeavors) and illustrated the need to work as a team to develop these complex systems.

  5. Permeation of Comite ® through protective gloves

    Microsoft Academic Search

    Hanaa Zainal; Shane S. Que Hee

    2006-01-01

    The goal of the study was to assess how protective disposable (Safeskin®) and chemical protective (Sol-Vex®) nitrile gloves were against Comite® emulsifiable concentrate formulation containing propargite (PROP) as active pesticidal ingredient because there were no explicit recommendations for the gloves that should be worn for hand protection. The glove material was exposed in ASTM-type I-PTC-600 permeation cells at 30.0±0.5°C, and

  6. Development of an air-bearing fan for space extravehicular activity (EVA) suit ventilation

    NASA Technical Reports Server (NTRS)

    Fukumoto, Paul; Allen, Norman; Stonesifer, Greg

    1992-01-01

    A high-speed/variable flow fan has been developed for EVA suit ventilation which combines air bearings with a two-pole, toothless permanent-magnet motor. The fan has demonstrated quiet and vibration-free operation and a 2:1 range in flow rate variation. System weight is 0.9 kg, and input powers range from 12.4 to 42 W.

  7. Development of an air-bearing fan for space extravehicular activity (EVA) suit ventilation

    Microsoft Academic Search

    Paul Fukumoto; Norman Allen; Greg Stonesifer

    1992-01-01

    A high-speed\\/variable flow fan has been developed for EVA suit ventilation which combines air bearings with a two-pole, toothless permanent-magnet motor. The fan has demonstrated quiet and vibration-free operation and a 2:1 range in flow rate variation. System weight is 0.9 kg, and input powers range from 12.4 to 42 W.

  8. Interoperability Trends in Extravehicular Activity (EVA) Space Operations for the 21st Century

    NASA Technical Reports Server (NTRS)

    Miller, Gerald E.

    1999-01-01

    No other space operations in the 21 st century more comprehensively embody the challenges and dependencies of interoperability than EVA. This discipline is already functioning at an W1paralleled level of interagency, inter-organizational and international cooperation. This trend will only increase as space programs endeavor to expand in the face of shrinking budgets. Among the topics examined in this paper are hardware-oriented issues. Differences in design standards among various space participants dictate differences in the EVA tools that must be manufactured, flown and maintained on-orbit. Presently only two types of functional space suits exist in the world. However, three versions of functional airlocks are in operation. Of the three airlocks, only the International Space Station (ISS) Joint Airlock can accommodate both types of suits. Due to functional differences in the suits, completely different operating protocols are required for each. Should additional space suit or airlock designs become available, the complexity will increase. The lessons learned as a result of designing and operating within such a system are explored. This paper also examines the non-hardware challenges presented by interoperability for a discipline that is as uniquely dependent upon the individual as EVA. Operation of space suits (essentially single-person spacecrafts) by persons whose native language is not that of the suits' designers is explored. The intricacies of shared mission planning, shared control and shared execution of joint EVA's are explained. For example, once ISS is fully functional, the potential exists for two crewmembers of different nationality to be wearing suits manufactured and controlled by a third nation, while operating within an airlock manufactured and controlled by a fourth nation, in an effort to perform tasks upon hardware belonging to a fifth nation. Everything from training issues, to procedures development and writing, to real-time operations is addressed. Finally, this paper looks to the management challenges presented by interoperability in general. With budgets being reduced among all space-faring nations, the need to expand cooperation in the highly expensive field of human space operations is only going to intensify. The question facing management is not if the trend toward interoperation will continue, but how to best facilitate its doing so. Real-world EVA interoperability experience throughout the ShuttlelMir and ISS Programs is discussed to illustrate the challenges and

  9. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, William; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than 8 EVAs per year for ISS EVA operations in the Post-Shuttle environment and limited availability of cargo upmass on IP launch vehicles. From 2010 forward, EVA operations on-board the ISS without the Space Shuttle will be a paradigm shift in safely operating EVA hardware on orbit and the EVA 2010 effort was initiated to accommodate this significant change in EVA evolutionary history. 1

  10. Rubber Blubber Gloves

    NSDL National Science Digital Library

    In this hands-on OLogy activity, kids learn how blubber acts as insulation between an animal's inner organs and the chilly ocean. The activity begins with look at blubber that explains how it works and how an animal's behavior and environment can affect the thickness of its blubber. The illustrated, step-by-step directions show how to make and test two kinds of gloves,one with a layer of blubber and one without. It includes a fun look at pilot whales and how they use their blowholes to release excess body heat.

  11. Grow a Garden in a Glove

    NSDL National Science Digital Library

    2012-03-22

    Learners use a transparent plastic glove as a container to grow seeds. A different kind of seed can be planted in each finger. A few days after planting, learners will see the seeds begin to sprout in the glove. Use this activity to illustrate the process of germination.

  12. Extravehicular Activity Asteroid Exploration and Sample Collection Capability

    NASA Technical Reports Server (NTRS)

    Sipila, Stephanie A.; Scoville, Zebulon C.; Bowie, Jonathan T.; Buffington, Jesse A.

    2014-01-01

    One of the challenging primary objectives associated with NASA's Asteroid Redirect Crewed Mission (ARCM) is to demonstrate deep space Extravehicular Activity (EVA) and tools and to obtain asteroid samples to return to Earth for further study. Prior Shuttle and International Space Station (ISS) spacewalks have benefited from engineered EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as behavior of the asteroid capture mechanism will complicate EVA translation, tool restraint, and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the Modified Advanced Crew Escape Suit (MACES) suit. This paper will summarize the overall operational concepts for conducting EVAs for the ARCM mission including translation paths and body restraint methods, potential tools used to extract the samples, design implications for the Asteroid Redirect Vehicle (ARV) for EVA, and the results of early development testing of potential EVA tasks.

  13. EVA 2010: Preparing for International Space Station EVA Operations Post-Space Shuttle Retirement

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; West, William W.

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the OneEVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than 8 EVAs per year for ISS EVA operations in the Post-Shuttle environment and limited availability of cargo upmass on IP launch vehicles. From 2010 forward, EVA operations on-board the ISS without the Space Shuttle will be a paradigm shift in safely operating EVA hardware on orbit and the EVA 2010 effort was initiated to accommodate this significant change in EVA evolutionary history.

  14. Modified Advanced Crew Escape Suit Intravehicular Activity Suit for Extravehicular Activity Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an intravehicular activity (IVA) suit for a spacewalk or extravehicular activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Laboratory (NBL) environment at the Sonny Carter Training Facility near NASA Johnson Space Center in Houston, Texas. The Space Shuttle Advanced Crew Escape Suit was modified to integrate with the Orion spacecraft. The first several missions of the Orion Multi-Purpose Crew Vehicle will not have mass available to carry an EVA-specific suit; therefore, any EVA required will have to be performed by the Modified Advanced Crew Escape Suit (MACES). Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or whether a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects, including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, tool carrying, body stabilization, equipment handling, and tool usage. Hardware configurations included with and without Thermal Micrometeoroid Garment, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on International Space Station mock-ups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstrating the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determining critical sizing factors, and need for adjusting suit work envelope. Early testing demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight-like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission-specific modifications for umbilical management or Primary Life Support System integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.

  15. Tactile Data Entry for Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.; Olowin, Aaron B.; Hannaford, Blake; Sands, O Scott

    2012-01-01

    In the task-saturated environment of extravehicular activity (EVA), an astronaut's ability to leverage suit-integrated information systems is limited by a lack of options for data entry. In particular, bulky gloves inhibit the ability to interact with standard computing interfaces such as a mouse or keyboard. This paper presents the results of a preliminary investigation into a system that permits the space suit gloves themselves to be used as data entry devices. Hand motion tracking is combined with simple finger gesture recognition to enable use of a virtual keyboard, while tactile feedback provides touch-based context to the graphical user interface (GUI) and positive confirmation of keystroke events. In human subject trials, conducted with twenty participants using a prototype system, participants entered text significantly faster with tactile feedback than without (p = 0.02). The results support incorporation of vibrotactile information in a future system that will enable full touch typing and general mouse interactions using instrumented EVA gloves.

  16. Anti-vibration gloves?

    PubMed

    Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

    2015-03-01

    For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. PMID:25381184

  17. Advanced EVA system design requirements study, executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the space station advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related EVA support equipment were established. The EVA mission requirements, environments, and medical and physiological requirements, as well as operational, procedures and training issues were considered.

  18. Therapy gloves for patients with rheumatoid arthritis: a review

    PubMed Central

    Troynikov, Olga; Massy-Westropp, Nicola

    2014-01-01

    Rheumatoid arthritis is a chronic inflammatory disease that causes pain, joint stiffness and swelling leading to impaired hand function and difficulty with daily activities. Wearing therapy gloves has been recommended by occupational therapists as one of the alternative treatment methods for rheumatoid arthritis. This study aims to review the available literature on the effects of wearing therapy gloves on patients’ hand function and symptoms as well as to discuss the attributes of gloves that might influence the glove performance. An electronic databases search of MEDLINE, Physiotherapy Evidence Database, Occupational Therapy Systematic Evaluation of Evidence, Wiley Online Library, ScienceDirect and Cochrane Central Register of Controlled Trial was performed. Eight articles met the inclusion criteria, and covered seven clinical trials and one case study. Seven outcome measures were identified from the included studies and were then classified into two categories: hand function and hand symptoms. The hand symptoms such as pain, stiffness and swelling improve substantially when the therapy gloves are used. However, marginal or no improvement in hand function (with the exception of grip strength) linked to the use of therapy gloves is being reported. Further research is needed to quantify the effectiveness of therapy gloves, especially in improvement of hand function and in patients’ interest in wearing therapy gloves. Furthermore, future studies should include parameters which might influence therapy gloves’ performance, such as duration of trials, interface pressure generated by the gloves on the underlying skin and tissue, glove fit and construction, as well as thermophysiological comfort. PMID:25435925

  19. Therapy gloves for patients with rheumatoid arthritis: a review.

    PubMed

    Nasir, Siti Hana; Troynikov, Olga; Massy-Westropp, Nicola

    2014-12-01

    Rheumatoid arthritis is a chronic inflammatory disease that causes pain, joint stiffness and swelling leading to impaired hand function and difficulty with daily activities. Wearing therapy gloves has been recommended by occupational therapists as one of the alternative treatment methods for rheumatoid arthritis. This study aims to review the available literature on the effects of wearing therapy gloves on patients' hand function and symptoms as well as to discuss the attributes of gloves that might influence the glove performance. An electronic databases search of MEDLINE, Physiotherapy Evidence Database, Occupational Therapy Systematic Evaluation of Evidence, Wiley Online Library, ScienceDirect and Cochrane Central Register of Controlled Trial was performed. Eight articles met the inclusion criteria, and covered seven clinical trials and one case study. Seven outcome measures were identified from the included studies and were then classified into two categories: hand function and hand symptoms. The hand symptoms such as pain, stiffness and swelling improve substantially when the therapy gloves are used. However, marginal or no improvement in hand function (with the exception of grip strength) linked to the use of therapy gloves is being reported. Further research is needed to quantify the effectiveness of therapy gloves, especially in improvement of hand function and in patients' interest in wearing therapy gloves. Furthermore, future studies should include parameters which might influence therapy gloves' performance, such as duration of trials, interface pressure generated by the gloves on the underlying skin and tissue, glove fit and construction, as well as thermophysiological comfort. PMID:25435925

  20. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1988-01-01

    The results are presented of a study to identify specific criteria regarding space station extravehicular activity system (EVAS) hardware requirements. Key EVA design issues include maintainability, technology readiness, LSS volume vs. EVA time available, suit pressure/cabin pressure relationship and productivity effects, crew autonomy, integration of EVA as a program resource, and standardization of task interfaces. A variety of DOD EVA systems issues were taken into consideration. Recommendations include: (1) crew limitations, not hardware limitations; (2) capability to perform all of 15 generic missions; (3) 90 days on-orbit maintainability with 50 percent duty cycle as minimum; and (4) use by payload sponsors of JSC document 10615A plus a Generic Tool Kit and Specialized Tool Kit description. EVA baseline design requirements and criteria, including requirements of various subsystems, are outlined. Space station/EVA system interface requirements and EVA accommodations are discussed in the areas of atmosphere composition and pressure, communications, data management, logistics, safe haven, SS exterior and interior requirements, and SS airlock.

  1. Simple Glove Permeation Models

    Microsoft Academic Search

    Shane S. Que Hee

    1996-01-01

    Glove permeation parameters of organic solvents through glove material (nitrile, neoprene, neox-supported neoprene, polyvinyl alcohol, polyvinylchloride, and natural rubber) published by Ansell Edmont were tested with simple physical parameters for the solvent. Some were based on solvent characteristics (Snyder Polarity P?, dielectric constant, solvent\\/water partition coefficients P, and Hildebrand solubility) and one chromatographic parameter (Snyder elution E°). A simple criterion

  2. EV space suit gloves (passive)

    NASA Technical Reports Server (NTRS)

    Fletcher, E. G.; Dodson, J. D.; Elkins, W.; Tickner, E. G.

    1975-01-01

    A pair of pressure and thermal insulating overgloves to be used with an Extravehicular (EV) suit assembly was designed, developed, fabricated, and tested. The design features extensive use of Nomex felt materials in lieu of the multiple layer insulation formerly used with the Apollo thermal glove. The glove theoretically satisfies all of the thermal requirements. The presence of the thermal glove does not degrade pressure glove tactility by more than the acceptable 10% value. On the other hand, the thermal glove generally degrades pressure glove mobility by more than the acceptable 10% value, primarily in the area of the fingers. Life cycling tests were completed with minimal problems. The thermal glove/pressure glove ensemble was also tested for comfort; the test subjects found no problems with the thermal glove although they did report difficulties with pressure points on the pressure glove which were independent of the thermal glove.

  3. Miniature EVA Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Pozhidaev, Aleksey

    2012-01-01

    As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.

  4. Analysis Of Esd Glove Use

    Microsoft Academic Search

    G. Baumgartner

    1997-01-01

    ESD gloves are supposed to be used to protect sensitive devices and prevent contamination. Tribocharging and dissipation are the ESD properties that are analyzed and compared with non-ESD gloves. Tribocharging is not inhibited by ESD gloves and the dissipation requirement is not that important. Voltage sensitive devices may be damaged by the use of non-ESD or ESD gloves, but energy

  5. EVA Physiology, Systems and Performance [EPSP] Project

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.

    2010-01-01

    This viewgraph presentation gives a general overview of the biomedical and technological challenges of Extravehicular Activity (EVA). The topics covered include: 1) Prebreathe Protocols; 2) Lunar Suit Testing and Development; and 3) Lunar Electric Rover and Exploration Operations Concepts.

  6. Glove box shield

    DOEpatents

    Brackenbush, Larry W. (Richland, WA); Hoenes, Glenn R. (Richland, WA)

    1981-01-01

    According to the present invention, a shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user withdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.

  7. Software For Integration Of EVA And Telerobotics

    NASA Technical Reports Server (NTRS)

    Drews, Michael L.; Smith, Jeffrey H.; Estus, Jay M.; Heneghan, Cate; Zimmerman, Wayne; Fiorini, Paolo; Schenker, Paul S.; Mcaffee, Douglas A.

    1991-01-01

    Telerobotics/EVA Joint Analysis Systems (TEJAS) computer program is hypermedia information software system using object-oriented programming to bridge gap between crew-EVA and telerobotics activities. TEJAS Version 1.0 contains 20 HyperCard stacks using visual, customizable interface of icon buttons, pop-up menus, and relational commands to store, link, and standardize related information about primitives, technologies, tasks, assumptions, and open issues involved in space-telerobot or crew-EVA tasks. Runs on any Apple MacIntosh personal computer.

  8. EVA Physiology and Medical Considerations Working in the Suit

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    This "EVA Physiology and Medical Considerations Working in the Suit" presentation covers several topics related to the medical implications and physiological effects of suited operations in space from the perspective of a physician with considerable first-hand Extravehicular Activity (EVA) experience. Key themes include EVA physiology working in a pressure suit in the vacuum of space, basic EVA life support and work support, Thermal Protection System (TPS) inspections and repairs, and discussions of the physical challenges of an EVA. Parazynski covers the common injuries and significant risks during EVAs, as well as physical training required to prepare for EVAs. He also shares overall suit physiological and medical knowledge with the next generation of Extravehicular Mobility Unit (EMU) system designers.

  9. Surgical Gloves: Current Problems

    Microsoft Academic Search

    Maher O. Osman; Steen L. Jensen

    1999-01-01

    .   One century ago surgical gloves were introduced to practice as part of the new antiseptic technique and originally to protect\\u000a the hands of the surgeon and his assistants from the harmful dermatologic effects of powerful antiseptics (e.g., carbolic\\u000a acid) in use at that time. Since then, the wearing of gloves during surgery has been standard practice. Furthermore, the protection

  10. GLOVEBOX GLOVE CHARACTERIZATION SUMMARY

    SciTech Connect

    Korinko, P.

    2012-05-14

    A task was undertaken to determine primarily the permeation behavior of various glove compounds from four manufacturers. As part of the basic characterization task, the opportunity to obtain additional mechanical and thermal properties presented itself. Consequently, a total of fifteen gloves were characterized for permeation, Thermogravimetric Analysis, Puncture Resistance, Tensile Properties and Dynamic Mechanical Analysis. Detailed reports were written for each characterization technique used. This report contains the summary of the results.

  11. Walking to Olympus: An EVA Chronology

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.; Trevino, Robert C.

    1997-01-01

    Spacewalkers enjoy a view of Earth once reserved for Apollo, Zeus, and other denizens of Mt. Olympus. During humanity's first extravehicular activity (EVA), Alexei Leonov floated above Gibraltar, the rock ancient seafarers saw as the gateway to the great unknown Atlantic. The symbolism was clear, Leonov stepped past a new Gibraltar when he stepped into space. More than 32 years and 154 EVAs later, Jerry Linenger conducted an EVA with Vladimir Tsibliyev as part of International Space Station Phase 1. They floated together above Gibraltar. Today the symbolism has new meaning: humanity is starting to think of stepping out of Earth orbit, space travel's new Gibraltar, and perhaps obtaining a new olympian view, a close-up look at Olympus Mons on Mars. Walking to Olympus: An EVA Chronology chronicles the 154 EVAs conducted from March 1965 to April 1997. It is intended to make clear the crucial role played by EVA in the history of spaceflight, as well as to chronicle the large body of EVA "lessons learned." Russia and the U.S. define EVA differently. Russian cosmonauts are said to perform EVA any time they are in vacuum in a space suit. A U.S. astronaut must have at least his head outside his spacecraft before he is said to perform an EVA. The difference is based in differing spacecraft design philoso- phies. Russian and Soviet spacecraft have always had a specialized airlock through which the EVA cosmonaut egressed, leaving the main habitable volume of the spacecraft pressurized. The U.S. Gemini and Apollo vehicles, on the other hand, depressurized their entire habitable volume for egress. In this document, we apply the Russian definition to Russian EVAS, and the U.S. definition to U.S. EVAS. Thus, for example, Gemini 4 Command Pilot James McDivitt does not share the honor of being first American spacewalker with Ed White, even though he was suited and in vacuum when White stepped out into space. Non-EVA spaceflights are listed in the chronology to provide context and to display the large num- ber of flights in which EVA played a role. This approach also makes apparent significant EVA gaps, for example, the U.S. gap between 1985 and 1991 following the Challenger accident. This NASA History Monograph is an edited extract from an extensive EVA Chronology and Reference Book being produced by the EVA Project Office, NASA Johnson Space Center, Houston, Texas. The larger work will be published as part of the NASA Formal Series in 1998. The authors gratefully acknowledge the assistance rendered by Max Ary, Ashot Bakunts, Gert-Jan Bartelds, Frank Cepollina, Andrew Chaikin, Phillip Clark, Richard Fullerton, Steven Glenn, Linda Godwin, Jennifer Green, Greg Harris, Clifford Hess, Jeffrey Hoffman, David Homan, Steven Hopkins, Nicholas Johnson, Eric Jones, Neville Kidger, Joseph Kosmo, Alexei Lebedev, Mark Lee, James LeBlanc, Dmitri Leshchenskii, Jerry Linenger, Igor Lissov, James McBarron, Clay McCullough, Joseph McMann, Story Musgrave, Dennis Newkirk, James Oberg, Joel Powell, Lee Saegesser, Andy Salmon, Glen Swanson, Joseph Tatarewicz, Kathy Thornton, Chris Vandenberg, Charles Vick, Bert Vis, David Woods, Mike Wright, John Young, and Keith Zimmerman. Special thanks to Laurie Buchanan, John Charles, Janet Kovacevich, Joseph Loftus, Sue McDonald, Martha Munies, Colleen Rapp, and Jerry Ross. Any errors remain the responsibility of the authors.

  12. EVA Radio DRATS 2011 Report

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Bakula, Casey J.

    2012-01-01

    In the Fall of 2011, National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) participated in the Desert Research and Technology Studies (DRATS) field experiments held near Flagstaff, Arizona. The objective of the DRATS outing is to provide analog mission testing of candidate technologies for space exploration, especially those technologies applicable to human exploration of extra- terrestrial rocky bodies. These activities are performed at locations with similarities to extra-terrestrial conditions. This report describes the Extravehicular Activity (EVA) Dual-Band Radio Communication System which was demonstrated during the 2011 outing. The EVA radio system is designed to transport both voice and telemetry data through a mobile ad hoc wireless network and employs a dual-band radio configuration. Some key characteristics of this system include: 1. Dual-band radio configuration. 2. Intelligent switching between two different capability wireless networks. 3. Self-healing network. 4. Simultaneous data and voice communication.

  13. 6. VIEW OF INTERIOR GLOVE BOX DURING CONSTRUCTION. GLOVE BOXES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF INTERIOR GLOVE BOX DURING CONSTRUCTION. GLOVE BOXES CONTAINED ALL PRODUCTION OPERATIONS AND WERE INTERCONNECTED BY CONVEYORS. (9/21/59) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  14. Refinement of Optimal Work Envelope for Extra-Vehicular Activity (EVA) Suit Operations

    NASA Technical Reports Server (NTRS)

    Jaramillo, Marcos A.; Angermiller, Bonnie L.; Morency, Richard M.; Rajululu, Sudhakar L.

    2008-01-01

    The purpose of the Extravehicular Mobility Unit (EMU) Work Envelope study is to determine and revise the work envelope defined in NSTS 07700 "System Description and Design Data - Extravehicular Activities" [1], arising from an action item as a result of the Shoulder Injury Tiger Team findings. The aim of this study is to determine a common work envelope that will encompass a majority of the crew population while minimizing the possibility of shoulder and upper arm injuries. There will be approximately two phases of testing: arm sweep analysis to be performed in the Anthropometry and Biomechanics Facility (ABF), and torso lean testing to be performed on the Precision Air Bearing Facility (PABF). NSTS 07700 defines the preferred work envelope arm reach in terms of maximum reach, and defines the preferred work envelope torso flexibility of a crewmember to be a net 45 degree backwards lean [1]. This test served two functions: to investigate the validity of the standard discussed in NSTS 07700, and to provide recommendations to update this standard if necessary.

  15. Permeation of Chemicals Through Glove Box Glove Materials

    Microsoft Academic Search

    Nader Vahdat; James S. Johnson; Amalia Neidhardt; Jeanine Cheng; David Weitzman

    1995-01-01

    A study of the resistance of two commercially available glove box gloves to 20 chemicals used in glove boxes has been carried out. The chemicals tested are members of seven classes of organic and inorganic compounds, namely, inorganic acids, bases, organic acids, alcohols, glycols, chlorinated hydrocarbons, and oils. Hypalon provides protection against all the chemicals except trichloroethylene and carbon tetrachloride.

  16. One hundred US EVAs: a perspective on spacewalks.

    PubMed

    Wilde, Richard C; McBarron, James W; Manatt, Scott A; McMann, Harold J; Fullerton, Richard K

    2002-01-01

    In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program. PMID:12583391

  17. PHYSX Glove Test

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A mock-up of the stainless-steel Pegasus Hypersonic Experiment (PHYSX) Projects experimental 'glove' undergoes hot-loads tests at NASA's Dryden Flight Research Center, Edwards, California. The thermal ground test simulates heats and pressures the wing glove will experience at hypersonic speeds. Quartz heat lamps subject this model of a Pegasus booster rocket's right wing glove to the extreme heats it will experience at speeds approaching Mach 8. The glove has a highly reflective surface, underneath which are hundreds of temperature and pressure sensors that will send hypersonic flight data to ground tracking facilities during the experimental flight. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)

  18. PERMEATION RESISTANCE OF GLOVE MATERIALS TO AGRICULTURAL PESTICIDES

    Microsoft Academic Search

    A. D. Schwope; R. Goydan; D. Ehntholt; U. Frank; A. Nielsen

    1992-01-01

    The toxicities of many agricultural pesticides require that hand protection be used by persons who mix, load, and apply these products, as specified on the label and material safety data sheet. Selection of gloves for formulations that contain organic solvents is particularly problematic because a solvent that permeates the glove can carry with it the active ingredient of the pesticide

  19. Glovebox plug for glove changing

    DOEpatents

    Carlson, David O. (Tesuque, NM); Shalkowski, Jr., Edward (Los Alamos, NM)

    1992-01-01

    A plug for use in plugging a glove opening of a glovebox when the glove is eplaced. An inflated inner tube which is retained between flat plates mounted on a threaded rod is compressed in order to expand its diameter to equal that of the inside of the glove opening.

  20. Glove permeation by organic solvents

    Microsoft Academic Search

    G. O. NELSON; B. Y. LUM; G. J. CARLSON; C. M. WONG; J. S. JOHNSON

    1981-01-01

    We have tested and measured the vapor penetration of 29 common laboratory solvents on 28 protective gloves using gas-phase, infrared spectrophotometric techniques to determine the permeation characteristics. Five different types of permeation behavior were identified. No one glove offered complete protection against all the solvents tested. The permeation rate of the solvent was found to be inversely proportional to glove

  1. EVA 2000: A European\\/Russian space suit concept

    Microsoft Academic Search

    I. P. Abramov

    1995-01-01

    For the European manned space activities an EVA space suit system was being developed in the frame of the Hermes Space Vehicle Programme of the European Space Agency (ESA). The space suit was to serve the needs for all relevant extravehicular activities for the Hermes\\/Columbus operations planned to begin in 2004.For the present Russian manned space programme the relevant EVAs

  2. Permeation of Comite through protective gloves.

    PubMed

    Zainal, Hanaa; Que Hee, Shane S

    2006-09-01

    The goal of the study was to assess how protective disposable (Safeskin) and chemical protective (Sol-Vex) nitrile gloves were against Comite emulsifiable concentrate formulation containing propargite (PROP) as active pesticidal ingredient, because there were no explicit recommendations for the gloves that should be worn for hand protection. The glove material was exposed in ASTM-type I-PTC-600 permeation cells at 30.0+/-0.5 degrees C, and gas chromatography-mass spectrometry used for PROP analysis. Aqueous solutions of Comite at 40.4 mg/mL permeated both Safeskin and Sol-Vex nitrile by 8h. Safeskin showed a mean PROP mass permeated of 176+/-27 microg after 8h compared with a mean mass permeated for Sol-Vex of 3.17+/-4.08 microg. Thus, Sol-Vex was about 56 times more protective than Safeskin for an 8-h exposure. However, the kinetics of the permeation revealed that Safeskin can be worn for at least 200 min before disposal. When undiluted Comite challenged both types of nitrile, much faster permeation was observed. Safeskin gloves showed two steady state periods. The first had lag times (t(l)) values of about 1h, although normalized breakthrough times (t(b)) were < 10 min. The second steady state rate (P(s)) was on average four times the rate of the first period, and the second steady state period t(l) was about three times as long as that of the first steady state period, and about the same t(l) as for the aqueous solution. Sol-Vex gloves exposed continuously to undiluted Comite permeated above the normalized breakthrough threshold beyond 2.7h. A risk assessment revealed that the PROP skin permeation rate of 7.1 ng cm(-2)h(-1) was much slower than the first steady state Safeskin glove P(s) of 62,000 ng cm(-2)h(-1). Infrared analysis showed that the glove surfaces were not degraded by the Comite challenge. The chemically protective Sol-Vex gloves protected adequately against undiluted formulation for about 2.7h, whereas they provided protection for nearly 8h when the formulation was diluted with water to the highest concentration for field application. In contrast, the disposable Safeskin gloves did not protect at all for the undiluted formulation, but did for 200 min when the formulation was diluted with water to the highest concentration for spraying. PMID:16713085

  3. STS-33 EVA Prep and Post with Gregory, Blaha, Carter, Thorton, and Musgrave in FFT

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This video shows the crew in the airlock of the FFT, talking with technicians about the extravehicular activity (EVA) equipment. Thornton and Carter put on EVA suits and enter the airlock as the other crew members help with checklists.

  4. 21 CFR 800.20 - Patient examination gloves and surgeons' gloves; sample plans and test method for leakage defects...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Patient examination gloves and surgeons' gloves...Specific Medical Devices § 800.20 Patient examination gloves and surgeons' gloves...devices, such as surgeons' gloves and patient examination gloves...

  5. EVA - Don't Leave Earth Without It

    NASA Technical Reports Server (NTRS)

    Cupples, J. Scott; Smith, Stephen A.

    2011-01-01

    Modern manned space programs come in two categories: those that need Extravehicular Activity (EVA) and those that will need EVA. This paper discusses major milestones in the Shuttle Program where EVA was used to save payloads, enhance on-orbit capabilities, and build structures in order to ensure success of National Aeronautics and Space Administration (NASA) missions. In conjunction, the Extravehicular Mobility Unit s (EMU) design, and hence, its capabilities evolved as its mission evolved. It is the intent that lessons can be drawn from these case studies so that EVA compatibility is designed into future vehicles and payloads.

  6. The Combination Effects of LiCl and the Active Leflunomide Metabolite, A771726, on Viral-Induced Interleukin 6 Production and EV-A71 Replication

    PubMed Central

    Hung, Hui-Chen; Shih, Shin-Ru; Chang, Teng-Yuan; Fang, Ming-Yu; Hsu, John T.-A.

    2014-01-01

    Enterovirus 71 (EV-A71) is a neurotropic virus that can cause severe complications involving the central nervous system. No effective antiviral therapeutics are available for treating EV-A71 infection and drug discovery efforts are rarely focused to target this disease. Thus, the main goal of this study was to discover existing drugs with novel indications that may effectively inhibit EV-A71 replication and the inflammatory cytokines elevation. In this study, we showed that LiCl, a GSK3? inhibitor, effectively suppressed EV-A71 replication, apoptosis and inflammatory cytokines production (Interleukin 6, Interleukin-1?) in infected cells. Furthermore, LiCl and an immunomodular agent were shown to strongly synergize with each other in suppressing EV-A71 replication. The results highlighted potential new treatment regimens in suppressing sequelae caused by EV-A71 replication. PMID:25412347

  7. Astronaut Dale Gardner holds up for sale sign after EVA

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, having just completed the major portion of his second extravehicular activity (EVA) period in three days, holds up a 'for sale' sign. Astronaut Joseph P. ALlen IV, who also participated in the two EVA's, is reflected in Gardner's helmet visor. A portion of each of two recovered satellites is in the lower right corner, with Westar nearer Discovery's aft.

  8. Astronaut Carl Walz during EVA in Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Carl E. Walz reaches for equipment from the provisional stowage assembly (PSA) in Discvoery's cargo bay during a lengthy period of extravehicular activity (EVA). The hatch to Discovery's airlock is open nearby. Sun glare is evident above the orbiter. The picture was taken with a 35mm camera by astronaut James H. Newman, who shared EVA duties with Walz.

  9. Robot hands and extravehicular activity

    NASA Technical Reports Server (NTRS)

    Marcus, Beth

    1987-01-01

    Extravehicular activity (EVA) is crucial to the success of both current and future space operations. As space operations have evolved in complexity so has the demand placed on the EVA crewman. In addition, some NASA requirements for human capabilities at remote or hazardous sites were identified. One of the keys to performing useful EVA tasks is the ability to manipulate objects accurately, quickly and without early or excessive fatigue. The current suit employs a glove which enables the crewman to perform grasping tasks, use tools, turn switches, and perform other tasks for short periods of time. However, the glove's bulk and resistance to motion ultimately causes fatigue. Due to this limitation it may not be possible to meet the productivity requirements that will be placed on the EVA crewman of the future with the current or developmental Extravehicular Mobility Unit (EMU) hardware. In addition, this hardware will not meet the requirements for remote or hazardous operations. In an effort to develop ways for improving crew productivity, a contract was awarded to develop a prototype anthromorphic robotic hand (ARH) for use with an extravehicular space suit. The first step in this program was to perform a a design study which investigated the basic technology required for the development of an ARH to enhance crew performance and productivity. The design study phase of the contract and some additional development work is summarized.

  10. Glutaraldehyde permeation: Choosing the proper glove

    Microsoft Academic Search

    Susan L. P. Jordan; Mario F. Stowers; Earl G. Trawick; Alan B. Theis

    1996-01-01

    Six different gloves were tested with five different aqueous glutaraldehyde formulations to determine each glove's resistance to permeation. When tested against 2% or 3.4% glutaraldehyde solutions, nitrile rubber, butyl rubber, a synthetic surgical glove, and polyethylene were each impermeable for at least 4 hours. The two latex gloves tested showed glutaraldehyde breakthrough at 45 minutes. When the latex gloves were

  11. Microgravity Science Glovebox - Glove

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows a rubber glove and its attachment ring for the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  12. Exploration EVA Purge Flow Assessment

    NASA Technical Reports Server (NTRS)

    Navarro, Moses; Conger, Bruce; Campbell, Colin

    2011-01-01

    An advanced future spacesuit will require properly sized suit and helmet purge flow rates in order to sustain a crew member with a failed Portable Life Support System (PLSS) during an Extravehicular Activity (EVA). A computational fluid dynamics evaluation was performed to estimate the helmet purge flow rate required to washout carbon dioxide and to prevent the condensing ("fogging") of water vapor on the helmet visor. An additional investigation predicted the suit purge flow rate required to provide sufficient convective cooling to keep the crew member comfortable. This paper summarizes the results of these evaluations.

  13. Glove permeation by organic solvents

    SciTech Connect

    Nelson, G.O.; Lum, B.Y.; Carlson, G.J.; Wong, C.M.; Johnson, J.S.

    1981-03-01

    The vapor penetration of 29 common laboratory solvents on 28 protective gloves has been tested and measured using gas-phase, infrared spectrophotometric techniques to determine the permeation characteristics. Five different types of permeation behavior were identified. No one glove offered complete protection against all the solvents tested. The permeation rate of the solvent was found to be inversely proportional to glove thickness for a given manufacturer's material. Of two solvent mixtures tested, one exhibited a large, positive, synergistic rate.

  14. Emergency vehicle alert system (EVAS)

    NASA Technical Reports Server (NTRS)

    Reed, Bill; Crump, Roger; Harper, Warren; Myneni, Krishna

    1995-01-01

    The Emergency Vehicle Alert System (EVAS) program is sponsored by the NASA/MSFC Technology Utilization (TU) office. The program was conceived to support the needs of hearing impaired drivers. The objective of the program is to develop a low-cost, small device which can be located in a personal vehicle and warn the driver, via a visual means, of the approach of an emergency vehicle. Many different technologies might be developed for this purpose and each has its own advantages and drawbacks. The requirements for an acoustic detection system, appear to be pretty stringent and may not allow the development of a reliable, low-cost device in the near future. The problems include variations in the sirens between various types of emergency vehicles, distortions due to wind and surrounding objects, competing background noise, sophisticated signal processing requirements, and omni-directional coverage requirements. Another approach is to use a Radio Frequency (RF) signal between the Emergency Vehicle (EV) and the Personal Vehicle (PV). This approach requires a transmitter on each EV and a receiver in each PV, however it is virtually assured that a system can be developed which works. With this approach, the real technology issue is how to make a system work as inexpensively as possible. This report gives a brief summary of the EVAS program from its inception and concentrates on describing the activities that occurred during Phase 4. References 1-3 describe activities under Phases 1-3. In the fourth phase of the program, the major effort to be expended was in development of the microcontroller system for the PV, refinement of some system elements and packaging for demonstration purposes. An EVAS system was developed and demonstrated which used standard spread spectrum modems with minor modifications.

  15. A human factors analysis of EVA time requirements

    NASA Technical Reports Server (NTRS)

    Pate, D. W.

    1996-01-01

    Human Factors Engineering (HFE), also known as Ergonomics, is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. A human factors motion and time study was initiated with the goal of developing a database of EVA task times and a method of utilizing the database to predict how long an ExtraVehicular Activity (EVA) should take. Initial development relied on the EVA activities performed during the STS-61 mission (Hubble repair). The first step of the analysis was to become familiar with EVAs and with the previous studies and documents produced on EVAs. After reviewing these documents, an initial set of task primitives and task time modifiers was developed. Videotaped footage of STS-61 EVAs were analyzed using these primitives and task time modifiers. Data for two entire EVA missions and portions of several others, each with two EVA astronauts, was collected for analysis. Feedback from the analysis of the data will be used to further refine the primitives and task time modifiers used. Analysis of variance techniques for categorical data will be used to determine which factors may, individually or by interactions, effect the primitive times and how much of an effect they have.

  16. COSM: A Space Station EVAS test challenge

    NASA Astrophysics Data System (ADS)

    Pullo, Frank A.; Beardsley, Anthony C.

    The authors present the requirements that must be addressed to develop equipment that will perform the checkout, servicing, and maintenance (COSM) of the extravehicular activity system (EVAS) for manned space on the proposed US Space Station. An overview is presented of COSM operational requirements, and their relationship to an automatic COSM system. The Space Station environment, routine EVA sorties, and singular mission objectives and tasks are examined with respect to system design. The COSM system architecture and the technical approach taken are also examined.

  17. Space Station Human Factors Research Review. Volume 1: EVA Research and Development

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (editor); Vykukal, H. C. (editor)

    1988-01-01

    An overview is presented of extravehicular activity (EVA) research and development activities at Ames. The majority of the program was devoted to presentations by the three contractors working in parallel on the EVA System Phase A Study, focusing on Implications for Man-Systems Design. Overhead visuals are included for a mission results summary, space station EVA requirements and interface accommodations summary, human productivity study cross-task coordination, and advanced EVAS Phase A study implications for man-systems design. Articles are also included on subsea approach to work systems development and advanced EVA system design requirements.

  18. Effective Teamwork: The EVA NBL Experience

    NASA Technical Reports Server (NTRS)

    Crocker, Lori

    2007-01-01

    This viewgraph presentation reviews the experience of improving the operation of the ExtraVehiclar Activity (EVA) Neutral Buoyancy Laboratory as a team of NASA employees and contractors. It reviews specific recommendations to use in turning a struggling organization around as a NASA/contractor team

  19. Development of an EVA systems cost model. Volume 3: EVA systems cost model

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The EVA systems cost model presented is based on proposed EVA equipment for the space shuttle program. General information on EVA crewman requirements in a weightless environment and an EVA capabilities overview are provided.

  20. Creating a Lunar EVA Work Envelope

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David

    2009-01-01

    A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.

  1. Small, Lightweight, Collapsible Glove Box

    NASA Technical Reports Server (NTRS)

    James, Jerry

    2009-01-01

    A small, lightweight, collapsible glove box enables its user to perform small experiments and other tasks. Originally intended for use aboard a space shuttle or the International Space Station (ISS), this glove box could also be attractive for use on Earth in settings in which work space or storage space is severely limited and, possibly, in which it is desirable to minimize weight. The development of this glove box was prompted by the findings that in the original space-shuttle or ISS setting, (1) it was necessary to perform small experiments in a large general-purpose work station, so that, in effect, they occupied excessive space; and it took excessive amounts of time to set up small experiments. The design of the glove box reflects the need to minimize the space occupied by experiments and the time needed to set up experiments, plus the requirement to limit the launch weight of the box and the space needed to store the box during transport into orbit. To prepare the glove box for use, the astronaut or other user has merely to insert hands through the two fabric glove ports in the side walls of the box and move two hinges to a locking vertical position (see figure). The user could do this while seated with the glove box on the user fs lap. When stowed, the glove box is flat and has approximately the thickness of two pieces of 8-in. (.20 cm) polycarbonate.

  2. Extravehicular Activity Asteroid Exploration and Sample Collection Capability

    NASA Technical Reports Server (NTRS)

    Scoville, Zebulon; Sipila, Stephanie; Bowie, Jonathan

    2014-01-01

    NASA's Asteroid Redirect Crewed Mission (ARCM) is challenged with primary mission objectives of demonstrating deep space Extravehicular Activity (EVA) and tools, and obtaining asteroid samples to return to Earth for further study. Although the Modified Advanced Crew Escape Suit (MACES) is used for the EVAs, it has limited mobility which increases fatigue and decreases the crews' capability to perform EVA tasks. Furthermore, previous Shuttle and International Space Station (ISS) spacewalks have benefited from EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, some vehicle interfaces and tools can leverage heritage designs and experience. However, when the crew ventures onto an asteroid capture bag to explore the asteroid and collect rock samples, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as bunching of the fabric bag will complicate EVA translation, tool restraint and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the MACES suit. The proposed concept utilizes expandable booms and integrated features of the asteroid capture bag to position and restrain the crew at the asteroid worksite. These methods enable the capability to perform both finesse, and high load tasks necessary to collect samples for scientific characterization of the asteroid. This paper will explore the design trade space and options that were examined for EVA, the overall concept for the EVAs including translation paths and body restraint methods, potential tools used to extract the samples, design implications for the Asteroid Redirect Vehicle (ARV) for EVA, the results of early development testing of potential EVA tasks, and extensibility of the EVA architecture to NASA's exploration missions.

  3. Laboratory assessment of the effect of heavy rubber glove thickness and sizing on effort, performance and comfort

    Microsoft Academic Search

    R. Wells; S. Hunt; K. Hurley; P. Rosati

    2010-01-01

    Powerline maintainers often work hands-on with live electrical circuits wearing rubber gloves of considerable thickness. The gloves interfere with touch, object manipulation and extra effort is required during manual work. A laboratory study was performed with twenty naïve participants to document the effort required to use gloves of different sizes and thicknesses. The electrical activity (EMG) of seven forearm muscles

  4. Astronaut Richard Gordon returns to hatch of spacecraft following EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., pilot for the Gemini 11 space flight, returns to the hatch of the spacecraft following extravehicular activity (EVA). This picture was taken over the Atlantic Ocean at approximately 160 nautical miles above the earth's surface.

  5. Electrical Aspects of Testing Insulating Gloves

    Microsoft Academic Search

    Nestor Kolcio; Richard Peszlen

    1983-01-01

    Electrical aspects of testing insulating gloves (used in live line maintenance) are discussed with a major emphasis on the electrical stresses that occur at the water surface near the cuff of the glove. Methods are presented for reducing corona and ozone damage to natural rubber insulating gloves during in-service AC electrical testing. Also, improvements made in AC and DC glove

  6. Glutaraldehyde permeation: choosing the proper glove.

    PubMed

    Jordan, S L; Stowers, M F; Trawick, E G; Theis, A B

    1996-04-01

    Six different gloves were tested with five different aqueous glutaraldehyde formulations to determine each glove's resistance to permeation. When tested against 2% or 3.4% glutaraldehyde solutions, nitrile rubber, butyl rubber, a synthetic surgical glove, and polyethylene were each impermeable for at least 4 hours. The two latex gloves tested showed glutaraldehyde breakthrough at 45 minutes. When the latex gloves were doubled, the time to first breakthrough increased to 3 to 4 hours. With 50% glutaraldehyde, only butyl rubber and nitrile rubber were impermeable for extended periods. The surgical synthetic glove had breakthrough at 1 hour, whereas polyethylene and the two latex gloves had breakthrough in less than 1 hour. PMID:8731028

  7. Nitrile Glove Permeation of Benomyl

    Microsoft Academic Search

    H. Zainal; S. S. Que Hee

    2006-01-01

    The aim of this study was to investigate permeation of the fungicide benomyl at its highest field application concentration\\u000a (0.70 mg\\/mL) in Benlate 50 WP aqueous solution (1.4 mg\\/mL) through two types of unsupported and unlined nitrile gloves—a disposable\\u000a latex glove (Safeskin) and an industrial chemical-resistant glove (Solvex)—using an American Society for Testing and Materials\\u000a (ATSM)–type permeation cell with isopropanol

  8. Permeation of chemicals through glove-box glove materials

    Microsoft Academic Search

    N Vahdat; J. S. Johnson; A. Neidhardt; J. Cheng; D. Weitzman

    1994-01-01

    The resistance of two commercial gloves to 20 chemicals commonly used in glove boxes was studied. The chemicals were inorganic acids\\/bases\\/salts, organic acids, alcohols, glycols, halogen compounds, sulfur compounds, and hydrocarbons. The ASTM cell was used to study permeation of volatile organic compounds through protective clothing materials using air, flame ionization detector\\/gas chromatography; a modified version of the cell was

  9. EVA Design, Verification, and On-Orbit Operations Support Using Worksite Analysis

    NASA Technical Reports Server (NTRS)

    Hagale, Thomas J.; Price, Larry R.

    2000-01-01

    The International Space Station (ISS) design is a very large and complex orbiting structure with thousands of Extravehicular Activity (EVA) worksites. These worksites are used to assemble and maintain the ISS. The challenge facing EVA designers was how to design, verify, and operationally support such a large number of worksites within cost and schedule. This has been solved through the practical use of computer aided design (CAD) graphical techniques that have been developed and used with a high degree of success over the past decade. The EVA design process allows analysts to work concurrently with hardware designers so that EVA equipment can be incorporated and structures configured to allow for EVA access and manipulation. Compliance with EVA requirements is strictly enforced during the design process. These techniques and procedures, coupled with neutral buoyancy underwater testing, have proven most valuable in the development, verification, and on-orbit support of planned or contingency EVA worksites.

  10. Study of space shuttle EVA/IVA support requirements. Volume 2: EVA/IVA tasks, guidelines, and constraints definition

    NASA Technical Reports Server (NTRS)

    Webbon, B. W.; Copeland, R. J.; Wood, P. W., Jr.; Cox, R. L.

    1973-01-01

    The guidelines for EVA and IVA tasks to be performed on the space shuttle are defined. In deriving tasks, guidelines, and constraints, payloads were first identified from the mission model. Payload requirements, together with man and manipulator capabilities, vehicle characteristics and operation, and safety considerations led to a definition of candidate tasks. Guidelines and constraints were also established from these considerations. Scenarios were established, and screening criteria, such as commonality of EVA and IVA activities, were applied to derive representative planned and unplanned tasks. The whole spectrum of credible contingency situations with a potential requirement for EVA/IVA was analyzed.

  11. CETA truck and EVA restraint system

    NASA Technical Reports Server (NTRS)

    Beals, David C.; Merson, Wayne R.

    1991-01-01

    The Crew Equipment Translation Aid (CETA) experiment is an extravehicular activity (EVA) Space Transportation System (STS) based flight experiment which will explore various modes of transporting astronauts and light equipment for Space Station Freedom (SSF). The basic elements of CETA are: (1) two 25 foot long sections of monorail, which will be EVA assembled in the STS cargo bay to become a single 50 ft. rail called the track; (2) a wheeled baseplate called the truck which rolls along the track and can accept three cart concepts; and (3) the three carts which are designated manual, electric, and mechanical. The three carts serve as the astronaut restraint and locomotive interfaces with the track. The manual cart is powered by the astronaut grasping the track's handrail and pulling himself along. The electric cart is operated by an astronaut turning a generator which powers the electric motor and drives the cart. The mechanical cart is driven by a Bendix type transmission and is similar in concept to a man-propelled railroad cart. During launch and landing, the truck is attached to the deployable track by means of EVA removable restraint bolts and held in position by a system of retractable shims. These shims are positioned on the exterior of the rail for launch and landing and rotate out of the way for the duration of the experiment. The shims are held in position by strips of Velcro nap, which rub against the sides of the shim and exert a tailored force. The amount of force required to rotate the shims was a major EVA concern, along with operational repeatability and extreme temperature effects. The restraint system was tested in a thermal-vac and vibration environment and was shown to meet all of the initial design requirements. Using design inputs from the astronauts who will perform the EVA, CETA evolved through an iterative design process and represented a cooperative effort.

  12. Nitrile glove permeation of benomyl.

    PubMed

    Zainal, H; Hee, S S Que

    2006-04-01

    The aim of this study was to investigate permeation of the fungicide benomyl at its highest field application concentration (0.70 mg/mL) in Benlate 50 WP aqueous solution (1.4 mg/mL) through two types of unsupported and unlined nitrile gloves--a disposable latex glove (Safeskin) and an industrial chemical-resistant glove (Solvex)--using an American Society for Testing and Materials (ATSM)-type permeation cell with isopropanol collection medium. The permeation cell was contained in a moving-tray water bath at 30.0 degrees C +/- 0.5 degrees C. The collection medium was evaporated and the residue derivatized with an optimized method (2,3,4,5,6-pentafluoro)benzyl bromide to form the disubstituted derivative of carbendazim (CARB), CARB.2PFB. The latter in isooctane was then quantified by gas chromatography- 63Ni-electron capture detection (GC-ECD) by the internal standard method. GC-ECD, GC-mass spectrometry (GC-MS), and reflectance infrared investigations showed that little degradation of benomyl occurred in the challenge solution of aqueous Benlate during an 8-hour exposure period. Benomyl was collected as a mixture of CARB and benomyl as shown by the presence of a diagnostic chromatographic peak identified by GC-MS. The amounts permeated during the same time period were always higher for Safeskin than for Solvex gloves, with the latter being approximately 18 times more protective than the former after 8 hours of continuous exposure. Although the Solvex gloves were safe to wear at least for 4 hours and for almost 8 hours, the ASTM breakthrough threshold was used as reference and thus ignored carcinogenic effects. Reflectance infrared investigations detected benomyl and CARB on the glove challenge surface after drying and confirmed that the cleaned glove surfaces after permeation experiments did not differ in infrared reflectance spectra from the corresponding surfaces just before the permeation experiments. PMID:16446997

  13. September 2013 Laboratory Safety Manual Appendix G -Gloves

    E-print Network

    Wilcock, William

    September 2013 Laboratory Safety Manual Appendix G - Gloves UW Environmental Health and Safety Page G-1 Appendix G - Gloves Contents A. CHOOSING GLOVES 2. Glove Weaknesses ........................................................................G-2 a

  14. Skylab 3 crewmen practice EVA procedures

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The three prime crewmen of the Skylab 3 mission practice procedures which will be used during the extravehicular activity (EVA) portion of the scheduled Skylab rate gyro six-pac installation. They are Scientist-Astronaut Owen K. Garriott (center), Astronaut Alan L. Bean (center background) and Astronaut Jack R. Lousma (right). Garriott is working with a mock-up of a trunion plug plate which is on the space station's deployment assembly. This picture was taken during Skylab 3 prelaunch training at JSC. In the left foreground with back to camera is Astronaut Russell L. Schweickart, who is assisting with the Skylab 3 training. Another training officer is in the left background (31322); Lousma practices procedures for EVA in his extravehicular mobility unit (EMU). He is working with a mock-up of a trunion plug plate which is on the space station's deployment assembly (31323).

  15. DEVELOPMENT OF A NEW GLOVE FOR GLOVE BOXES WITH HIGH-LEVEL PERFORMANCES

    SciTech Connect

    Blancher, J.; Poirier, J.M.

    2003-02-27

    This paper describes the results of a joint technological program of COGEMA and MAPA to develop a new generation of glove for glove boxes. The mechanical strength of this glove is twice as high as the best characteristics of gloves available on the market. This new generation of product has both a higher level of performance and better ergonomics.

  16. 21 CFR 878.4460 - Surgeon's glove.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4460 Surgeon's glove. (a) Identification. A surgeon's glove is a...

  17. 21 CFR 878.4460 - Surgeon's glove.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4460 Surgeon's glove. (a) Identification. A surgeon's glove is a...

  18. 21 CFR 878.4460 - Surgeon's glove.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4460 Surgeon's glove. (a) Identification. A surgeon's glove is a...

  19. 21 CFR 878.4460 - Surgeon's glove.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4460 Surgeon's glove. (a) Identification. A surgeon's glove is a...

  20. Powered glove with electro-pneumatic actuation unit for the disabled

    Microsoft Academic Search

    Kosuke Kawakami; Shinichi Kumano; Shunji Moromugi; Takakazu Ishimatsu

    2007-01-01

    Authors have been developing a powered glove for people suffering from paralysis on their fingers to support their daily activity. Small air cylinders are used as actuators for this glove. Pneumatically-driven system has high advantages in case soft actuation is preferable. However, there are some problems to be solved in the pneumatically-driven system if the system is supposed to be

  1. Glove Perforations During Interventional Radiological Procedures

    SciTech Connect

    Leena, R. V., E-mail: leenarv_76@yahoo.co.uk; Shyamkumar, N. K. [Christian Medial College, Department of Radiodiagnosis (India)

    2010-04-15

    Intact surgical gloves are essential to avoid contact with blood and other body fluids. The objective of this study was to estimate the incidence of glove perforations during interventional radiological procedures. In this study, a total of 758 gloves used in 94 interventional radiological procedures were examined for perforations. Eleven perforations were encountered, only one of which was of occult type. No significant difference in the frequency of glove perforation was found between the categories with varying time duration.

  2. Exploring the benefits of double gloving during surgery.

    PubMed

    Korniewicz, Denise; El-Masri, Maher

    2012-03-01

    Breaches in the glove barrier pose a risk for transmission of bloodborne pathogens during surgical procedures. Double gloving or double gloving with an indicator glove system may provide added protection. For this 24-month study, we used a comparative design to examine the effect of double gloving with inner indicator gloves on the durability of inner gloves and the detection of glove tears or perforations during surgery. The frequency of seeing blood on the hand after surgery was greater with single gloving than with double gloving, and the frequency of changing gloves during surgery was significantly higher among those who double gloved with an indicator glove system versus double gloving alone. The majority of health care providers in our study expressed favorable views about double gloving. PMID:22381552

  3. Investigation of natural latex rubber gloves

    SciTech Connect

    Vessel, E.M.

    1993-03-19

    Seventy five percent of natural latex rubber gloves used in laboratories at the Savannah River Site are not reused. A cost analysis performed by the SRS Procurement Department determined that a net savings of $1,092,210 could be achieved annually by recycling latex rubber gloves. The Materials Technology Section, at the request of the Procurement Department, examined some mechanical and chemical properties of latex rubber gloves manufactured by Ansell Edmont, which had been purchased by the site specifications for protective clothing. It also examined mechanical properties of re-cycled gloves purchased by specifications and of {open_quotes}off the shelf{close_quotes} gloves manufactured by North Brothers Company. Finally, water vapor transmission studies, simulating tritium permeation, were performed on gloves from both manufacturers. These studies were performed to determine whether latex rubber gloves can be recycled or whether using only new, unwashed gloves is required in areas where tritium exposure is a possibility. The results of these studies indicate that the acceptable glove characteristics, required in the WSRC Manual 5Q1.11, Protective Clothing Specifications, are not adversely affected after washing and drying the gloves manufactured by Ansell Edmont for seven cycles. Results also indicate that natural latex rubber gloves manufactured by North Brothers comply with most of the acceptable glove characteristics specified in the WSRC Manual 5Q1.11. Statistical analysis of the water vapor permeation data show that there is no correlation between permeation rates and the manufacturer.

  4. 8 JMBA Global Marine Environment Mermaid's Glove

    E-print Network

    Watson, Andrew

    8 JMBA Global Marine Environment Mermaid's Glove Nowadays Faroe islanders live a very post the nineteenth century. The njararvøttur was then used as a kind of tinder when lighting fires. Mermaid's glove by Börge Pettersson. Also Published in JMBA Svanberg, I. Human usage of mermaid's glove sponge (Isodictya

  5. Glove box for water pit applications

    DOEpatents

    Mills, William C. (Richland, WA); Rabe, Richard A. (North Fork, ID)

    2005-01-18

    A glove box assembly that includes a glove box enclosure attached to a longitudinally extending hollow tube having an entranceway, wherein the portion of the tube is in a liquid environment. An elevator member is provided for raising an object that is introduced into the hollow tube from the liquid environment to a gas environment inside the glove box enclosure while maintaining total containment.

  6. Comparison of Nitrile Gloves and Nitrile over Nomex Gloves

    Microsoft Academic Search

    Deirdre Cronin Vorih; Lauri D Bolton; James Marcelynas; Thomas A Nowicki; Lenworth Jacobs; Kenneth J. Robinson

    2009-01-01

    ObjectivesAeromedical flight crews must perform many tasks in flight requiring manual dexterity and fine precision. A common perception is that safety-enhancing fire-retardant gloves compromise patient care if worn during such tasks by providing added bulk and barrier to the hand. This study is a quantitative and qualitative analysis of this possible compromise to patient care.

  7. Get ready for ergo-centric gloves.

    PubMed

    DeBecker, Luc G

    2002-09-01

    All occupational safety professionals are dedicated to reducing injuries. Gloves play an essential role in this pursuit. With the diverse selection of gloves on the market, there is no longer any excuse to perform a hazardous task without the correct hand protection. The keys to success are identifying a glove style that will protect and at the same time be comfortable enough to wear, ensuring an adequate supply of gloves and providing employee training so every worker will know what the correct glove is for each task. Manufacturers are doing their part to provide new and innovative solutions. By involving workers in the glove selection process, employers can take a huge step in increasing glove use and consequently, in reducing hand injuries. It's well worth the time. PMID:12369380

  8. Thermal and Mechanical Testing of Neoprene Gloves Used in a Space Shuttle Microgravity Glove Box Experiment

    NASA Technical Reports Server (NTRS)

    Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    Neoprene gloves are used in a Space Shuttle Microgravity Glove Box (MGBX) experiment. In 1999, significant corrosion was observed in the work area and on the outer surface of the left glove ring. Analysis of the corrosion products showed that they contained chlorine. The Neoprene gloves used in this glove box were obtained in 1995, with a recommended shelf life of 3 years. After storage of these gloves in a cabinet drawer until 1999, significant signs of corrosion were also observed in the drawer. Mechanical and thermal properties were determined on samples cut from the finger and sleeve areas of the "good" and "bad" gloves. This data showed significant aging of the left-hand glove, particularly in the sleeve area. Thermal analysis data by DSC and TGA was complimentary to tensile data in showing this aging. However, this test data did not pinpoint the cause of the left-hand glove aging, or of the corrosion products.

  9. Glove material, reservoir formation, and dose affect glove permeation and subsequent skin penetration.

    PubMed

    Nielsen, Jesper Bo; Sørensen, Jens Ahm

    2012-02-15

    Protective gloves are used to reduce dermal exposure when managing chemical exposures at the work place. Different glove materials may offer different degrees of protection. The present study combined the traditional ASTM (American Society for Testing and Materials) model with the Franz diffusion cell to evaluate overall penetration through glove and skin as well as the deposition in the different reservoirs. Benzoic acid was applied on latex or nitrile gloves placed on top of human skin. The amounts of chemical were quantified in the glove material, between glove and skin, within the skin, and in the receptor chamber. Both glove materials reduce total penetration of benzoic acid, but nitrile gloves offer a significantly better protection than latex gloves. This difference was less pronounced at the higher of the two concentrations of benzoic acid applied. Thus, glove types that offer relevant protection at low concentrations does not necessarily give appropriate protection at high concentrations. Significant amounts of benzoic acid could be extracted from the glove materials after exposure. If a chemical is accumulated in the glove material, reuse of single-use gloves should be cautioned. The reuse of gloves is generally not to be recommended without effective decontamination. PMID:22264917

  10. Application of Shuttle EVA Systems to Payloads. Volume 2: Payload EVA Task Completion Plans

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Candidate payload tasks for EVA application were identified and selected, based on an analysis of four representative space shuttle payloads, and typical EVA scenarios with supporting crew timelines and procedures were developed. The EVA preparations and post EVA operations, as well as the timelines emphasizing concurrent payload support functions, were also summarized.

  11. Application of shuttle EVA systems to payloads. Volume 1: EVA systems and operational modes description

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Descriptions of the EVA system baselined for the space shuttle program were provided, as well as a compendium of data on available EVA operational modes for payload and orbiter servicing. Operational concepts and techniques to accomplish representative EVA payload tasks are proposed. Some of the subjects discussed include: extravehicular mobility unit, remote manipulator system, airlock, EVA translation aids, restraints, workstations, tools and support equipment.

  12. Permeation resistance of glove materials to agricultural pesticides.

    PubMed

    Schwope, A D; Goydan, R; Ehntholt, D; Frank, U; Nielsen, A

    1992-06-01

    The toxicities of many agricultural pesticides require that hand protection be used by persons who mix, load, and apply these products, as specified on the label and material safety data sheet. Selection of gloves for formulations that contain organic solvents is particularly problematic because a solvent that permeates the glove can carry with it the active ingredient of the pesticide formulation. With a test method that measures the simultaneous permeation of the carrier solvent(s) and active ingredient(s), in particular those active ingredients that have low solubility in water and low volatility, over 100 permeation tests (in triplicate) with approximately 20 pesticide formulations were conducted with 13 different glove materials. These results are summarized and generalizations are presented within the perspective of the large base of permeation data for neat chemicals and another large permeation study with pesticides. Key among the findings is that the carrier solvent generally permeates first and at a much higher rate than the active ingredient. Furthermore, the permeation behavior of formulations containing solvents generally mirrored that of neat carrier solvents alone. Thus, insight into the selection of the most appropriate glove material for a given pesticide formulation can be gained from permeation data for neat chemicals. For the types of solvents that may be present in pesticide formulations, preferred materials include nitrile rubber, butyl rubber, and plastic film laminates. Natural rubber and polyvinyl chloride materials generally are not recommended. PMID:1605107

  13. A SENSORIZED GLOVE FOR APPLICATIONS IN BIOMECHANICS AND MOTOR CONTROL

    Microsoft Academic Search

    F. Vecchi; S. Micera; F. Zaccone; M. C. Carrozza; A. M. Sabatini; P. Dario

    In this paper a sensorized glove for applications in biomechanics and motor control is presented. This system was equipped with 20 Hall-effect sensors and 8 piezoresistive sensors to obtain information about the grasp status during activities of daily living. It was used in experiments simulating different grip types to verify the feasibility of the approach proposed and to define the

  14. Approaches to decompression safety support of EVA for orbital and interplanetary missions

    Microsoft Academic Search

    Vladimir P. Katuntsev

    2010-01-01

    The paper is devoted to the analysis of possible methods for decompression safety support of extravehicular activity (EVA) in order to ground the perspective approaches for solution of decompression sickness (DCS) problem in space missions of the near and distant future. Current DCS risk mitigation strategies reduce operational efficiency: preoxygenation extends the time required on preparation to EVA. The crewmembers

  15. EVA space suit proton and electron threshold energy measurements by XCT and range shifting

    Microsoft Academic Search

    M. F. Moyers; P. B. Saganti; G. A. Nelson

    2006-01-01

    Construction of the International Space Station (ISS) will require more than 1000h of extravehicular activity (EVA). Outside of the ISS during EVA, astronauts and cosmonauts are likely to be exposed to a large fluence of electrons and protons. Development of radiation protection guidelines and mitigation of risks requires the determination of the minimum energy of electrons and protons that penetrate

  16. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 mission specialist Lee M.E. Morin carries an affixed 35 mm camera to record work which is being performed on the International Space Station (ISS). Working with astronaut Jerry L. Ross (out of frame), the duo completed the structural attachment of the S0 (s-zero) truss, mating two large tripod legs of the 13 1/2 ton structure to the station's main laboratory during a 7-hour, 30-minute space walk. The STS-110 mission prepared the Station for future space walks by installing and outfitting the 43-foot-long S0 truss and preparing the Mobile Transporter. The S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  17. STS-100 Astronaut Parazynski During EVA

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The main objective of the STS-100 mission, the sixth International Space Station (ISS) assembly flight, was the delivery and installation of the Canadian-built Space Station Remote Manipulator System (SSRMS), or Canadarm2. In this photograph, astronaut Scott E. Parazynski, mission specialist, works with cables associated with the robotic arm during one of two days of extravehicular activity (EVA). Both space walks were shared with Chris A. Hadfield, mission specialist representing the Canadian Space Agency (CSA), who is visible in the helmet visor of Parazynski. STS-100 launched April 19, 2001 aboard the Space Shuttle Orbiter Endeavour for an 11 day mission.

  18. MCPA permeation through protective gloves.

    PubMed

    Purdham, J T; Menard, B J; Bozek, P R; Sass-Kortsak, A M

    2001-10-01

    Permeation of 4-chloro-2-methylphenoxyacetic acid (MCPA) in commercial herbicide formulations through common protective glove types was evaluated to aid in the selection of appropriate skin protection. The ASTM test method F739-91 was used to measure the permeation of two undiluted formulations, one containing a salt, and the other an ester form of MCPA. The four glove types tested were natural rubber, neoprene 73, nitrile 37-145, and Viton-coated chloroprene. Triplicate tests of each combination of formulation and glove material were conducted. Permeation cells with a 0.01 M sodium hydroxide collection medium were used for the experiments. Aliquots of the collection medium were withdrawn at regular intervals and acidified, and quantification of the free acid was achieved using HPLC-UV (230 nm). There was no appreciable permeation of the salt formulation over a 24-hour test period. For the ester formulation, the following mean steady-state permeation rate (microg x cm(-2) min(-1)) and mean lag time (hours), respectively, were measured: Viton (0.06, 17.8), natural rubber (0.08, 15.4), neoprene 73 (0.21, 15.1), and nitrile (0.04, 24.2). Permeation was associated with significant swelling, averaging a nearly 30 percent increase from the pre-immersion thickness. All four glove types provide adequate protection against permeation by the salt formulation and at least eight-hour protection against the ester formulation. Given the greater permeation of the ester formulation, the salt formulation of MCPA herbicide should be used whenever possible. PMID:11599545

  19. Folpet Permeation Through Nitrile Gloves

    Microsoft Academic Search

    H. Zainal; Shane S. Que Hee

    2003-01-01

    The aim of this study was to investigate whether two different brands of unsupported and unlined nitrile gloves protected against aqueous emulsions of a Folpet wettable powder (50% Folpet) using an ASTM type-I-PTC 600 permeation cell at 30.0 - 0.1°C held in a shaking water bath. An analytical method to determine Folpet using the internal standard method was first developed

  20. CHARACTERIZATION OF TENSILE STRENGTH OF GLOVEBOX GLOVES

    SciTech Connect

    Korinko, P.; Chapman, G.

    2012-02-29

    A task was undertaken to compare various properties of different glovebox gloves, having various compositions, for use in gloveboxes at the Savannah River Site (SRS). One aspect of this project was to determine the tensile strength (TS) of the gloves. Longitudinal tensile samples were cut from 15 different gloves and tensile tested. The stress, load, and elongation at failure were determined. All of the gloves that are approved for glovebox use and listed in the glovebox procurement specification met the tensile and elongation requirements. The Viton{reg_sign} compound gloves are not listed in the specification, but exhibited lower tensile strengths than permissible based on the Butyl rubber requirements. Piercan Polyurethane gloves were the thinnest samples and exhibited the highest tensile strength of the materials tested.

  1. Using pliers in assembly work: short and long task duration effects of gloves on hand performance capabilities and subjective assessments of discomfort and ease of tool manipulation.

    PubMed

    Dianat, Iman; Haslegrave, Christine M; Stedmon, Alex W

    2012-03-01

    The present study investigated the effects of wearing typical industrial gloves on hand performance capabilities (muscle activity, wrist posture, touch sensitivity, hand grip and forearm torque strength) and subjective assessments for an extended duration of performing a common assembly task, wire tying with pliers, which requires a combination of manipulation and force exertion. Three commercially available gloves (cotton, nylon and nitrile gloves) were tested and compared with a bare hand condition while participants performed the simulated assembly task for 2 h. The results showed that wearing gloves significantly increased the muscle activity, wrist deviation, and discomfort whilst reducing hand grip strength, forearm torque strength and touch sensitivity. The combined results showed that the length of time for which gloves are worn does affect hand performance capability and that gloves need to be evaluated in a realistic working context. The results are discussed in terms of selection of gloves for industrial assembly tasks involving pliers. PMID:21777904

  2. Shoulder Injuries in US Astronauts Related to EVA Suit Design

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; McCulloch, P.; Van Baalen, Mary; Minard, Charles; Watson, Richard; Blatt, T.

    2011-01-01

    Introduction: For every one hour spent performing extravehicular activity (EVA) in space, astronauts in the US space program spend approximately six to ten hours training in the EVA spacesuit at NASA-Johnson Space Center's Neutral Buoyancy Lab (NBL). In 1997, NASA introduced the planar hard upper torso (HUT) EVA spacesuit which subsequently replaced the existing pivoted HUT. An extra joint in the pivoted shoulder allows increased mobility but also increased complexity. Over the next decade a number of astronauts developed shoulder problems requiring surgical intervention, many of whom performed EVA training in the NBL. This study investigated whether changing HUT designs led to shoulder injuries requiring surgical repair. Methods: US astronaut EVA training data and spacesuit design employed were analyzed from the NBL data. Shoulder surgery data was acquired from the medical record database, and causal mechanisms were obtained from personal interviews Analysis of the individual HUT designs was performed as it related to normal shoulder biomechanics. Results: To date, 23 US astronauts have required 25 shoulder surgeries. Approximately 48% (11/23) directly attributed their injury to training in the planar HUT, whereas none attributed their injury to training in the pivoted HUT. The planar HUT design limits shoulder abduction to 90 degrees compared to approximately 120 degrees in the pivoted HUT. The planar HUT also forces the shoulder into a forward flexed position requiring active retraction and extension to increase abduction beyond 90 degrees. Discussion: Multiple factors are associated with mechanisms leading to shoulder injury requiring surgical repair. Limitations to normal shoulder mechanics, suit fit, donning/doffing, body position, pre-existing injury, tool weight and configuration, age, in-suit activity, and HUT design have all been identified as potential sources of injury. Conclusion: Crewmembers with pre-existing or current shoulder injuries or certain anthropometric body types should conduct NBL EVA training in the pivoted HUT.

  3. European EVA decompression sickness risks

    NASA Astrophysics Data System (ADS)

    Vogt, Lorenz; Wenzel, Jürgen; Skoog, A. I.; Luck, S.; Svensson, Bengt

    For the first manned flight of Hermes there will be a capability of performing EVA. The European EVA Space Suit will be an anthropomorphic system with an internal pressure of 500 hPa of pure oxygen. The pressure reduction from the Hermes cabin pressure of 1013 hPa will induce a risk for Decompression Sickness (DCS) for the EVA crewmember if no adequate protective procedures are implemented. Specific decompression procedures have to be developed. From a critical review of the literature and by using knowledge gained from research conducted in the past in the fields of diving and aerospace medicine safe protective procedures are proposed for the European EVA scenario. An R factor of 1.2 and a tissue half-time ( t1/2) of 360 minutes in a single-tissue model have been identified as appropriate operational values. On the basis of an acceptable risk level of approximately 1%, oxygen prebreathing times are proposed for (a) direct pressure reduction from 1013 hPa to a suit pressure of 500 hPa, and (b) staged decompression using a 700 hPa intermediate stage in the spacecraft cabin. In addition, factors which influence individual susceptibility to DCS are identified. Recommendations are also given in the areas of crew selection and medical monitoring requirements together with therapeutic measures that can be implemented in the Hermes scenario. A method for demonstration of the validity of proposed risks and procedures is proposed.

  4. Site-Specific Whole Glove Chemical Permeation

    Microsoft Academic Search

    S. P. BERARDINELLI; ROTHA HALL

    1985-01-01

    This study explored chemical permeation of latex neoprene gloves by acetone. Twenty-three specific glove sites were monitored to determine the breakthrough time and the challenge liquid concentration at steady-state. In summation, the thinnest parts of the gloves, which are the backs, the palms, and the interstices between the fingers, exhibited the shortest breakthrough times and largest steady-state concentrations. The thickest

  5. Simulated EVA operation of a remote connector assembly test report

    NASA Technical Reports Server (NTRS)

    Lefever, A.

    1979-01-01

    The features of a connector concept with respect to timelines and ease of connection by EVA (extravehicular activity), in various mating orientations were evaluated. The connector tests were conducted by thee EVA astronaut test subjects. Each of four test conditions (baseline, off angle, overhead, and with visual obstruction) were run three times by each of the test subjects. Time data were taken on each test run. Visual and voice communications with the subjects were recorded. The tests demonstrated that EVA personnel can perform connection tasks in relatively short times (generally one minute) and the connector configuration was a reasonable design base for such tasks. The in-situ communications and post-test comments indicated that the connector was generally acceptable but requires improvement to its manual interface features.

  6. THERMOGRAVIMETRIC CHARACTERIZATION OF GLOVEBOX GLOVES

    SciTech Connect

    Korinko, P.

    2012-02-29

    An experimental project was initiated to characterize mass loss when heating different polymer glovebox glove material samples to three elevated temperatures, 90, 120, and 150 C. Samples from ten different polymeric gloves that are being considered for use in the tritium gloveboxes were tested. The intent of the study was to determine the amount of material lost. These data will be used in a subsequent study to characterize the composition of the material lost. One goal of the study was to determine which glove composition would least affect the glovebox atmosphere stripper system. Samples lost most of the mass in the initial 60 minutes of thermal exposure and as expected increasing the temperature increased the mass loss and shortened the time to achieve a steady state loss. The most mass loss was experienced by Jung butyl-Hypalon{reg_sign} at 146 C with 12.9% mass loss followed by Piercan Hypalon{reg_sign} at 144 C with 11.4 % mass loss and Jung butyl-Viton{reg_sign} at 140 C with 5.2% mass loss. The least mass loss was experienced by the Jung Viton{reg_sign} and the Piercan polyurethane. Unlike the permeation testing (1) the vendor and fabrication route influences the amount of gaseous species that is evolved. Additional testing to characterize these products is recommended. Savannah River Site (SRS) has many gloveboxes deployed in the Tritium Facility. These gloveboxes are used to protect the workers and to ensure a suitable environment in which to handle tritium gas products. The gas atmosphere in the gloveboxes is purified using a stripper system. The process gas strippers collect molecules that may have hydrogen or its isotopes attached, e.g., waters of hydration, acids, etc. Recently, sulfur containing compounds were detected in the stripper system and the presence of these compounds accelerates the stripper system's aging process. This accelerated aging requires the strippers to be replaced more often which can impact the facility's schedule and operational cost. It was posited that sulfur bearing and other volatile compounds were derived from glove off-gassing. Due to the large number of gloves in the facility, small mass loss from each glove could result in a significant total mass of undesirable material entering the glovebox atmosphere and subsequently the stripper system. A thermogravimetric analysis (TGA) study was conducted to determine the amount of low temperature volatiles that may be expected to offgas from the gloves. The data were taken on relatively small samples but are normalized with respect to the sample's surface area. Additional testing is needed to determine the composition of the off-gassing species. The TGA study was conducted to ascertain the magnitude of the issue and to determine if further experimentation is warranted or necessary.

  7. PUNCTURE TEST CHARACTERIZATION OF GLOVEBOX GLOVES

    SciTech Connect

    Korinko, P.; Chapman, G.

    2012-02-29

    An experiment was conducted to determine the puncture resistance of 15 gloves that are used or proposed for use in the Tritium Facility at Savannah River Site (SRS). These data will serve as a baseline for characterization and may be incorporated into the glove procurement specification. The testing was conducted in agreement with ASTM D120 and all of the gloves met or exceeded the minimum requirements. Butyl gloves exhibited puncture resistance nearly 2.5 times the minimum requirements at SRS while Polyurethane was nearly 7.5x the minimum.

  8. Electrostatic Discharge Issues in International Space Station Program EVAs

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2009-01-01

    EVA activity in the ISS program encounters several dangerous ESD conditions. The ISS program has been aggressive for many years to find ways to mitigate or to eliminate the associated risks. Investments have included: (1) Major mods to EVA tools, suit connectors & analytical tools (2) Floating Potential Measurement Unit (3) Plasma Contactor Units (4) Certification of new ISS flight attitudes (5) Teraflops of computation (6) Thousands of hours of work by scores of specialists (7) Monthly management attention at the highest program levels. The risks are now mitigated to a level that is orders of magnitude safer than prior operations

  9. 21 CFR 880.6250 - Patient examination glove.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Patient examination glove. 880.6250 Section...Use Miscellaneous Devices § 880.6250 Patient examination glove. (a) Identification. A patient examination glove is a disposable...

  10. Crosscutting Development- EVA Tools and Geology Sample Acquisition

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Exploration to all destinations has at one time or another involved the acquisition and return of samples and context data. Gathered at the summit of the highest mountain, the floor of the deepest sea, or the ice of a polar surface, samples and their value (both scientific and symbolic) have been a mainstay of Earthly exploration. In manned spaceflight exploration, the gathering of samples and their contextual information has continued. With the extension of collecting activities to spaceflight destinations comes the need for geology tools and equipment uniquely designed for use by suited crew members in radically different environments from conventional field geology. Beginning with the first Apollo Lunar Surface Extravehicular Activity (EVA), EVA Geology Tools were successfully used to enable the exploration and scientific sample gathering objectives of the lunar crew members. These early designs were a step in the evolution of Field Geology equipment, and the evolution continues today. Contemporary efforts seek to build upon and extend the knowledge gained in not only the Apollo program but a wealth of terrestrial field geology methods and hardware that have continued to evolve since the last lunar surface EVA. This paper is presented with intentional focus on documenting the continuing evolution and growing body of knowledge for both engineering and science team members seeking to further the development of EVA Geology. Recent engineering development and field testing efforts of EVA Geology equipment for surface EVA applications are presented, including the 2010 Desert Research and Technology Studies (Desert RATs) field trial. An executive summary of findings will also be presented, detailing efforts recommended for exotic sample acquisition and pre-return curation development regardless of planetary or microgravity destination.

  11. Tactile Data Entry for Extravehicular Activity Richard J. Adams1

    E-print Network

    in the Electronic Cuff Checklist and flown on several space shuttle missions [1]. Unfortunately, challenges of glare the space suit gloves themselves to be used as data entry devices. Hand motion tracking is combined, space suit gloves, data entry performance. 1 INTRODUCTION The constraints of an EVA suit make

  12. Exploiting wearable goniometer technology for motion sensing gloves.

    PubMed

    Carbonaro, Nicola; Dalle Mura, Gabriele; Lorussi, Federico; Paradiso, Rita; De Rossi, Danilo; Tognetti, Alessandro

    2014-11-01

    This paper presents an innovative wearable kinesthetic glove realized with knitted piezoresistive fabric (KPF) sensor technology. The glove is conceived to capture hand movement and gesture by using KPF in a double-layer configuration working as angular sensors (electrogoniometers). The sensing glove prototype is endowed by three KPF goniometers, used to track flexion and extension movement of metacarpophalangeal joint of thumb, index, and middle fingers. The glove is devoted to the continuous monitoring of patients during their daily-life activities, in particular for stroke survivors during their rehabilitation. The prototype performances have been evaluated in comparison with an optical tracking system considered as a gold standard both for relieving static and dynamic posture and gesture of the hand. The introduced prototype has shown very interesting figures of merit. The angular error, evaluated through the standard Bland Altman analysis, has been estimated in ±3° which is slightly less accurate than commercial electrogoniometers. Moreover, a new conceptual prototype design, preliminary evaluated within this study, is presented and discussed in order to solve actual limitations in terms of number and type of sensor connections, avoiding mechanical constraints given by metallic inextensible wires and improving user comfort. PMID:24835230

  13. Sensing and Force-Feedback Exoskeleton (SAFE) Glove.

    PubMed

    Ben-Tzvi, Pinhas; Ma, Zhou

    2014-12-01

    This paper presents the design, implementation and experimental validation of a novel robotic haptic exoskeleton device to measure the user's hand motion and assist hand motion while remaining portable and lightweight. The device consists of a five-finger mechanism actuated with miniature DC motors through antagonistically routed cables at each finger, which act as both active and passive force actuators. The SAFE Glove is a wireless and self-contained mechatronic system that mounts over the dorsum of a bare hand and provides haptic force feedback to each finger. The glove is adaptable to a wide variety of finger sizes without constraining the range of motion. This makes it possible to accurately and comfortably track the complex motion of the finger and thumb joints associated with common movements of hand functions, including grip and release patterns. The glove can be wirelessly linked to a computer for displaying and recording the hand status through 3D Graphical User Interface (GUI) in real-time. The experimental results demonstrate that the SAFE Glove is capable of reliably modeling hand kinematics, measuring finger motion and assisting hand grasping motion. Simulation and experimental results show the potential of the proposed system in rehabilitation therapy and virtual reality applications. PMID:25494512

  14. An Experimental Investigation of Dextrous Robots Using EVA Tools and Interfaces

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert; Culbert, Christopher; Rehnmark, Frederik

    2001-01-01

    This investigation of robot capabilities with extravehicular activity (EVA) equipment looks at how improvements in dexterity are enabling robots to perform tasks once thought to be beyond machines. The approach is qualitative, using the Robonaut system at the Johnson Space Center (JSC), performing task trials that offer a quick look at this system's high degree of dexterity and the demands of EVA. Specific EVA tools attempted include tether hooks, power torque tools, and rock scoops, as well as conventional tools like scissors, wire strippers, forceps, and wrenches. More complex EVA equipment was also studied, with more complete tasks that mix tools, EVA hand rails, tethers, tools boxes, PIP pins, and EVA electrical connectors. These task trials have been ongoing over an 18 month period, as the Robonaut system evolved to its current 43 degree of freedom (DOF) configuration, soon to expand to over 50. In each case, the number of teleoperators is reported, with rough numbers of attempts and their experience level, with a subjective difficulty rating assigned to each piece of EVA equipment and function. JSC' s Robonaut system was successful with all attempted EVA hardware, suggesting new options for human and robot teams working together in space.

  15. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's second session of extravehicular activity (EVA), a six hour, four minute space walk, in which an exterior station television camera was installed outside of the Destiny Laboratory. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVA sessions. Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  16. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's first session of extravehicular activity (EVA). Wolf is carrying the Starboard One (S1) outboard nadir external camera which was installed on the end of the S1 Truss on the International Space Station (ISS). Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVAs. Its primary mission was to install the S1 Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  17. Utilization of ISS to Develop and Test Operational Concepts and Hardware for Low-Gravity Terrestrial EVA

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.

    2010-01-01

    NASA has considerable experience in two areas of Extravehicular Activities (EVA). The first can be defined as microgravity, orbital EVAs. This consists of everything done in low Earth orbit (LEO), from the early, proof of concept EVAs conducted during the Gemini program of the 1960s, to the complex International Space Station (ISS) assembly tasks of the first decade of the 21st century. The second area of expertise is comprised of those EVAs conducted on the lunar surface, under a gravitational force one-sixth that of Earth. This EVA expertise encapsulates two extremes - microgravity and Earthlike gravitation - but is insufficient as humans expand their exploration purview, most notably with respect to spacewalks conducted on very low-gravity bodies, such as near- Earth objects (NEO) and the moons of Mars. The operational and technical challenges of this category of EVA have yet to be significantly examined, and as such, only a small number of operational concepts have been proposed thus far. To ensure mission success, however, EVA techniques must be developed and vetted to allow the selection of operational concepts that can be utilized across an assortment of destinations whose physical characteristics vary. This paper examines the utilization of ISS-based EVAs to test operational concepts and hardware in preparation for a low-gravity terrestrial EVA. While the ISS cannot mimic some of the fundamental challenges of a low-gravity terrestrial EVA - such as rotation rate and surface composition - it may be the most effective test bed available.

  18. Astronaut Richard Gordon practices attaching camera to film EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., prime crew pilot for the Gemini 11 space flight, practices attaching to a Gemini boilerplate a camera which will film his extravehicular activity (EVA) outside the spacecraft. The training exercise is being conducted in the Astronaut Training Building, Kennedy Space Center, Florida.

  19. Astronauts Readdy, Walz, and Newman in airlock after EVA

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In Discovery's airlock, astronaut William F. Readdy, pilot, holds up a STS-51 slogan -- 'Ace HST Tool Testers' -- for still and video cameras to record. Readdy is flanked by astronauts Carl E. Walz (left) and James H. Newman, who had just shared a lengthy period of extravehicular activity (EVA) in and around Discovery's cargo bay.

  20. EVA Task Timing and Timeline Planning

    NASA Technical Reports Server (NTRS)

    Looper, Christopher A.; Ney, Zane A.

    2007-01-01

    EVA timeline development occurs using task execution data generated through underwater training and simulation. This project collected task time data during final training events for several Space Shuttle and International Space Station missions and compared like task time data collected during on-orbit execution. Analysis was performed to compare types of activities and times required for each looking specifically for how activities can be accurately trained from a timeline planning perspective. The data revealed two significant aspects of flight timeline planning; Zero-g task times will match training times for activities that can be accurately simulated with appropriate fidelity hardware; and not all activities can be simulated sufficiently to produce training task times that will reflect required zero-g times. An approach for timeline planning utilizing this knowledge is also presented.

  1. Subjective effects of double gloves on surgical performance.

    PubMed Central

    Wilson, S. J.; Sellu, D.; Uy, A.; Jaffer, M. A.

    1996-01-01

    This randomised trial compared single gloves with combinations of double gloves to determine the subjective effects on comfort, sensitivity and dexterity in 32 surgeons. Glove perforation rates were also compared. Single gloves of the surgeon's normal size (method A) were used as control. Double gloves were worn in three different ways, selected randomly: normal gloves inside and gloves one-half size larger outside (method B); the larger gloves inside and the normal gloves outside (method C); and lastly, two pairs of gloves of normal size (method D). Double gloves by all three methods significantly protected against needle perforation of the inner gloves when compared with single gloves, but also significantly impaired comfort, sensitivity and dexterity. When the three types of double gloving were compared, there appeared to be advantages for method C for all modalities, but the differences did not reach statistical significance; also, more surgeons expressed a preference for method C. Perforation of the inner gloves was significantly less for double gloves than for single gloves. We conclude that double gloves often protect the surgeon against needle perforations, but are felt to impair comfort, sensitivity and dexterity. PMID:8659967

  2. Permeation of chemicals through glove-box glove materials

    SciTech Connect

    Vahdat, N,; Johnson, J.S.; Neidhardt, A.; Cheng, J. [Lawrence Livermore National Lab., CA (United States); Weitzman, D. [USDOE, Washington, DC (United States)

    1994-06-30

    The resistance of two commercial gloves to 20 chemicals commonly used in glove boxes was studied. The chemicals were inorganic acids/bases/salts, organic acids, alcohols, glycols, halogen compounds, sulfur compounds, and hydrocarbons. The ASTM cell was used to study permeation of volatile organic compounds through protective clothing materials using air, flame ionization detector/gas chromatography; a modified version of the cell was used with isopropanol for the nonvolatile organic compounds. Permeation of inorganic compounds through the elastomers was studied using the ASTM cell with water, conductivity meter. A Teflon cell was used with HF and ammonium hydrofluoride. Results: Hypalon protects against all chemicals except trichloroethylene (TCE) and CCl{sub 4}. Acetic acid and ethanol permeated through neoprene, which also did not protect against TCE and CCl{sub 4}. Sulfuric acid dissolved neoprene in 5 h. Kerosene permeated through neoprene in 5 h. Although neoprene showed good resistance to cutting oil, TCE in cutting oil broke through in 61 min. Neoprene showed good protection against all the other chemicals with no breakthrough before 6 h.

  3. Folpet permeation through nitrile gloves.

    PubMed

    Zainal, H; Que Hee, Shane S

    2003-09-01

    The aim of this study was to investigate whether two different brands of unsupported and unlined nitrile gloves protected against aqueous emulsions of a Folpet wettable powder (50% Folpet) using an ASTM type-I-PTC 600 permeation cell at 30.0 +/- 0.1 degrees C held in a shaking water bath. An analytical method to determine Folpet using the internal standard method was first developed based on gas chromatography-mass spectrometry (GC-MS), and gas chromatography-electron capture detection (GC-ECD). A novel pyrolysis GC-ECD technique that quantified the thermal degradation product phthalimide had pg sensitivity suitable to detect the trace amounts of Folpet that permeated. The on-column conversion was (68.0 +/- 9.5) percent at 170 degrees C over the folpet injected mass range of 3 to 148 pg. The challenge solution in the permeation cell was 1.4 mg/mL aqueous emulsion of Folpet wettable powder, and 2-propanol was the collection solvent. After evaporation of the collection solvent, the time weighted average rate of permeation of Folpet through SafeSkin nitrile (an exams type of glove) after 8 hours was (42.1 +/- 2.9) ng/cm(2)/min compared with (2.04 +/- 0.69) ng/cm(2)/min for the Sol-Vex nitrile (industrial chemical resistant), the latter being about 21 times more protective and also near the limits of detection. The respective values after 4 hours of exposure were (28.4 +/- 1.2) and (0.65 +/- 0.36) ng/cm(2)/min. Diagnostic reflectance infrared minima of both challenge and collection sides of the gloves showed small changes in wave number and intensity values after 8 hours of exposure, with Folpet being detected in dried spots on the challenge side. GC-ECD-based permeation and IR reflectance data indicated high chemical resistance of the Sol-Vex gloves to an aqueous emulsion of Folpet. PMID:12909534

  4. Modeling Organic Solvents Permeation Through Protective Gloves

    Microsoft Academic Search

    Keh-Ping Chao; Ven-Shing Wang; Pak-Hing Lee

    2004-01-01

    Several researchers have studied the diffusion of organic solvents through chemical protective gloves and have estimated the diffusion coefficients by using various models. In this study, permeation experiments of benzene, toluene, and styrene through nitrile and Neoprene gloves were conducted using the ASTM F-739 standard test method. The diffusion coefficients were estimated using several models from the literature. Using a

  5. Investigation of natural latex rubber gloves

    Microsoft Academic Search

    Vessel

    1993-01-01

    Seventy five percent of natural latex rubber gloves used in laboratories at the Savannah River Site are not reused. A cost analysis performed by the SRS Procurement Department determined that a net savings of $1,092,210 could be achieved annually by recycling latex rubber gloves. The Materials Technology Section, at the request of the Procurement Department, examined some mechanical and chemical

  6. FBG Sensing Glove for Monitoring Hand Posture

    Microsoft Academic Search

    Alexandre Ferreira da Silva; Anselmo Filipe Goncalves; Paulo Mateus Mendes; José Higino Correia

    2011-01-01

    A wearable sensing glove for monitoring hand ges- tures and posture has been developed. The glove sensing capability is based on optical fiber Bragg gratings (FBGs) sensors. These sen- sors, due to their inherent self-referencing and multiplexing capa- bility, are a value-added choice for this application. A single op- tical fiber would cross all the hand with Bragg structures in

  7. Electrical-conductivity testing of latex gloves

    Microsoft Academic Search

    J. F. Stampfer; J. A. Salazar; A. G. Trujillo; T. Harris; S. P. Berardinelli

    1994-01-01

    There is an increasing awareness in the healthcare field that gloves worn for protection from hazards associated with body fluids do not always afford the protection desired. Gloves may have defects, such as holes, as they come from the manufacturer or distributor, or they may become defective during storage or use. While the numbers vary widely, failure rates for new

  8. Rolling-Convolute Joint For Pressurized Glove

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Bassick, John W.

    1994-01-01

    Rolling-convolute metacarpal/finger joint enhances mobility and flexibility of pressurized glove. Intended for use in space suit to increase dexterity and decrease wearer's fatigue. Also useful in diving suits and other pressurized protective garments. Two ring elements plus bladder constitute rolling-convolute joint balancing torques caused by internal pressurization of glove. Provides comfortable grasp of various pieces of equipment.

  9. Modeling organic solvents permeation through protective gloves.

    PubMed

    Chao, Keh-Ping; Wang, Ven-Shing; Lee, Pak-Hing

    2004-02-01

    Several researchers have studied the diffusion of organic solvents through chemical protective gloves and have estimated the diffusion coefficients by using various models. In this study, permeation experiments of benzene, toluene, and styrene through nitrile and Neoprene gloves were conducted using the ASTM F-739 standard test method. The diffusion coefficients were estimated using several models from the literature. Using a one-dimensional diffusion equation based on Fick's second law and the estimated diffusion coefficients, the permeation concentrations were simulated and compared with the experimental results. The modeling results indicated that the solubility of the solvent in the glove materials obtained by immersion tests was not an appropriate boundary condition for organic solvent permeation through the polymer gloves. The modeling work of this study will assist industrial hygienists to assess exposure of chemicals to workers through the chemical protective gloves. PMID:15204879

  10. Efficacy of compression gloves in rheumatoid arthritis.

    PubMed

    Culic, D D; Battaglia, M C; Wichman, C; Schmid, F R

    1979-12-01

    Twenty-three patients with rheumatoid arthritis whose disease had become stabilized while receiving non-steroidal, anti-inflammatory drugs and/or gold salt injections entered an 8 week crossover study in which the effect of a compression glove worn during sleep was compared to a loosely fitting glove made of the same material. Improvement in hand symptoms was greater with the compression glove than with the control glove as regards morning stiffness, pain, night time throbbing, numbness or heaviness and a subjective assessment of swelling (p = 0.01). In addition, swelling of the proximal interphalangeal joints was slightly reduced (p = 0.05). These data suggest that the night time use of compression gloves in patients with rheumatoid arthritis can improve hand symptoms and exert a mild, transiently beneficial effect upon the degree of hand swelling. PMID:517640

  11. An investigation of space suit mobility with applications to EVA operations

    E-print Network

    Schmidt, Patricia Barrett, 1974-

    2001-01-01

    The primary aim of this thesis is to advance the current understanding of astronauts' capabilities and limitations in space-suited extravehicular activity (EVA) by compiling a detailed database of the torques needed to ...

  12. A feasibility study of hand kinematics for EVA analysis using magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Dickenson, Rueben D.; Lorenz, Christine H.; Peterson, Steven W.; Strauss, Alvin M.; Main, John A.

    1992-01-01

    A new method of analyzing the kinematics of joint motion is developed. Magnetic Resonance Imaging (MRI) offers several distinct advantages. Past methods of studying anatomic joint motion have usually centered on four approaches. These methods are x-ray projection, goniometric linkage analysis, sonic digitization, and landmark measurement of photogrammetry. Of these four, only x-ray is applicable for in vivo studies. The remaining three methods utilize other types of projections of inter-joint measurements, which can cause various types of error. MRI offers accuracy in measurement due to its tomographic nature (as opposed to projection) without the problems associated with x-ray dosage. Once the data acquisition of MR images was complete, the images were processed using a 3D volume rendering workstation. The metacarpalphalangeal (MCP) joint of the left index finger was selected and reconstructed into a three-dimensional graphic display. From the reconstructed volumetric images, measurements of the angles of movement of the applicable bones were obtained and processed by analyzing the screw motion of the MCP joint. Landmark positions were chosen at distinctive locations of the joint at fixed image threshold intensity levels to ensure repeatability. The primarily two dimensional planar motion of this joint was then studied using a method of constructing coordinate systems using three (or more) points. A transformation matrix based on a world coordinate system described the location and orientation of a local target coordinate system. Future research involving volume rendering of MRI data focusing on the internal kinematics of the hand's individual ligaments, cartilage, tendons, etc. will follow. Its findings will show the applicability of MRI to joint kinematics for gaining further knowledge of the hand-glove (power assisted) design for extravehicular activity (EVA).

  13. The main results of EVA medical support on the Mir Space Station

    NASA Astrophysics Data System (ADS)

    Katuntsev, V. P.; Osipov, Yu. Yu.; Barer, A. S.; Gnoevaya, N. K.; Tarasenkov, G. G.

    2004-04-01

    The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7 h 14 min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of EVA's execution was 10 per year. Most of the EVAs (67) have been performed at mission elapsed time ranging from 31 to 180 days. The oxygen atmosphere of the Orlan space suit with a pressure of 40 kPa in combination with the normobaric cabin environment and a short (30 min) oxygen prebreathe protocol have minimized the risk of decompression sickness (DCS). There has been no incidence of DCS during performed EVAs. At the peak activity, metabolic rates and heart rates increased up to 9.9- 13 kcal/ min and 150- 174 min-1, respectively. The medical problems have centred on feeling of moderate overcooling during a rest period in a shadow after the high physical loads, episodes with tachycardia accompanied by cardiac rhythm disorders at the moments of emotional stress, pains in the muscles and general fatigue after the end of a hard EVA. All of the EVAs have been completed safely.

  14. Permeation of Chlorpyrifos and Endosulfan Formulations Through Gloves

    Microsoft Academic Search

    Arslan A. Khan; Xiaoxing Chen; Shane S. Que Hee

    1997-01-01

    The aim of this study was to determine the safe wearing periods for lined nitrile, Silver Shield laminate, and Viton gloves for challenges by the pesticide emulsifiable concentrates Lorsban 4E (chlorpyrifos active ingredient) and Thiodan 3 E.C. (endosulfan). An American Society for Testing Material-type permeation cell was used with hexane collection solvent at 30°C. Subsequent gas chromatography\\/mass spectrometry of collection

  15. Wearable EDA Sensor Gloves using Conducting Fabric and Embedded System

    Microsoft Academic Search

    Y. B. Lee; S. W. Yoon; C. K. Lee; M. H. Lee

    2006-01-01

    We developed wearable EDA sensor gloves using conducting fabric and embedded system. EDA(Electro-dermal Activity) signal is an electric response on the skin of the human body. There are SCL(Skin Conductance Level) and SCR(Skin Conductance Response) in EDA. Mostly, SCL consists of DC elements. On the other hand, SCR consists of AC elements. We use the relationship between the drowsiness condition

  16. Commercial Spacewalking: Designing an EVA Qualification Program for Space Tourism

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.

    2010-01-01

    In the near future, accessibility to space will be opened to anyone with the means and the desire to experience the weightlessness of microgravity, and to look out upon both the curvature of the Earth and the blackness of space, from the protected, shirt-sleeved environment of a commercial spacecraft. Initial forays will be short-duration, suborbital flights, but the experience and expertise of half a century of spaceflight will soon produce commercial vehicles capable of achieving low Earth orbit. Even with the commercial space industry still in its infancy, and manned orbital flight a number of years away, there is little doubt that there will one day be a feasible and viable market for those courageous enough to venture outside the vehicle and into the void, wearing nothing but a spacesuit, armed with nothing but preflight training. What that Extravehicular Activity (EVA) preflight training entails, however, is something that has yet to be defined. A number of significant factors will influence the composition of a commercial EVA training program, but a fundamental question remains: 'what minimum training guidelines must be met to ensure a safe and successful commercial spacewalk?' Utilizing the experience gained through the development of NASA's Skills program - designed to qualify NASA and International Partner astronauts for EVA aboard the International Space Station - this paper identifies the attributes and training objectives essential to the safe conduct of an EVA, and attempts to conceptually design a comprehensive training methodology meant to represent an acceptable qualification standard.

  17. Polarization Processes of Nanocomposite Silicate-EVA and PP Materials

    NASA Astrophysics Data System (ADS)

    Montanari, Gian Carlo; Palmieri, Fabrizio; Testa, Luigi; Motori, Antonio; Saccani, Andrea; Patuelli, Francesca

    Recent works indicate that polypropylene (PP) and ethylene-vinylacetate (EVA) filled by nanosilicates may present low content of space charge and high electric strength. Investigations are being made to explain nanocomposite behaviour and characterize their electrical, thermal and mechanical properties. In this paper, the results of broad-band dielectric spectroscopy performed on EVA and PP filled by layered nanosized silicates are reported. Isochronal and isothermal curves of complex permittivity, as well as activation energies of the relaxation processes, are presented and discussed. Nanostructuration gives rise to substantial changes in the polarisation and dielectric loss behaviour. While the relaxation process of EVA, associated with glass transition of the material amorphous phase, results unchanged from base to nanostructured material, nanocomposites EVA and PP have shown the rise of a new process at higher temperatures respect to the typical host material processes, as well as a different distribution of relaxation processes. Changes in space charge accumulation in relation to the effectiveness of the purification process performed upon nanostructured materials are also reported: while the dispersion of the clean clays leads to a reduction of the space charge, especially at high fields, an unclean filler gives rise to significant homo-charge accumulation and interfacial polarisation phenomena.

  18. EVALUATION OF GLOVEBOX GLOVES FOR EFFECTIVE PERMEATION CONTROL

    SciTech Connect

    Korinko, P.

    2012-02-29

    A research and development task was undertaken to determine the permeabilities of hydrogen and dry air through different polymeric glove materials that are used to maintain the integrity of glovebox secondary containment. Fifteen different glove samples were obtained from four different manufacturers and samples cut from these gloves were tested. The gloves included baseline butyl rubber, Viton{reg_sign}, Dupont{reg_sign} Hypalon{reg_sign}, polyurethane, as well as composite gloves. The testing indicated that all of the vendor's butyl rubber gloves and the Jung Viton{reg_sign} gloves performed comparably in both gases.

  19. Dynamics, control and sensor issues pertinent to robotic hands for the EVA retriever system

    NASA Technical Reports Server (NTRS)

    Mclauchlan, Robert A.

    1987-01-01

    Basic dynamics, sensor, control, and related artificial intelligence issues pertinent to smart robotic hands for the Extra Vehicular Activity (EVA) Retriever system are summarized and discussed. These smart hands are to be used as end effectors on arms attached to manned maneuvering units (MMU). The Retriever robotic systems comprised of MMU, arm and smart hands, are being developed to aid crewmen in the performance of routine EVA tasks including tool and object retrieval. The ultimate goal is to enhance the effectiveness of EVA crewmen.

  20. 76 FR 6683 - Information Related to Risks and Benefits of Powdered Gloves; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ...Information Related to Risks and Benefits of Powdered...Surgeon's Gloves and Patient Examination Gloves...Surgeon's Gloves and Patient Examination Gloves...consumers of the risks associated with glove...Surgeon's Gloves and Patient Examination Gloves...consumers of the risks associated with...

  1. The Effect of Pressure and Fabrication of Pressure Therapy Gloves on Hand Sensitivity and Dexterity.

    PubMed

    Yu, Annie; Yick, Kit Lun; Ng, Sun Pui; Yip, Joanne

    2014-10-13

    Pressure therapy gloves always affect the function and performance of hands but the effect is often neglected. In this study, fabrication and reduction factors (RFs) of pressure therapy gloves on hand dexterity and comfort perception are assessed by goniometer, Semmes-Weinstein monofilaments and Purdue Pegboard, as well as through daily activity tasks. A subjective rating scale was also used to record comfort perception. The repeated-measures multivariate analysis of variance and Friedman tests were used to compare hand function tests and comfort sensation results when different glove prototypes were worn in terms of fabrics and RFs. The results show that even though both fabric types and RFs of pressure gloves exert no significant effect on the tactile sensitivity of fingertips, the active range of motion and dexterity of the fingers in carrying out daily tasks and comfort perception are considerably affected. The adoption of a high RF of 20% in making of glove patterns can impact negatively on both hand functions and comfort perception, thus leading to unsatisfactory treatment adherence. Strong associations were found between the comfort performance and fabric properties, including surface roughness, bending rigidity, thermal conductivity and moisture retention. It has been suggested that fabric choice, anticipated fabric tensile behaviour and surface and thermal properties should also be taken into consideration when prescribing pressure therapy glove for treatment of hypertrophic scars. PMID:25094003

  2. Advanced EVA Capabilities: A Study for NASA's Revolutionary Aerospace Systems Concept Program

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2004-01-01

    This report documents the results of a study carried out as part of NASA s Revolutionary Aerospace Systems Concepts Program examining the future technology needs of extravehicular activities (EVAs). The intent of this study is to produce a comprehensive report that identifies various design concepts for human-related advanced EVA systems necessary to achieve the goals of supporting future space exploration and development customers in free space and on planetary surfaces for space missions in the post-2020 timeframe. The design concepts studied and evaluated are not limited to anthropomorphic space suits, but include a wide range of human-enhancing EVA technologies as well as consideration of coordination and integration with advanced robotics. The goal of the study effort is to establish a baseline technology "road map" that identifies and describes an investment and technical development strategy, including recommendations that will lead to future enhanced synergistic human/robot EVA operations. The eventual use of this study effort is to focus evolving performance capabilities of various EVA system elements toward the goal of providing high performance human operational capabilities for a multitude of future space applications and destinations. The data collected for this study indicate a rich and diverse history of systems that have been developed to perform a variety of EVA tasks, indicating what is possible. However, the data gathered for this study also indicate a paucity of new concepts and technologies for advanced EVA missions - at least any that researchers are willing to discuss in this type of forum.

  3. Mission Specialist Tamara Jernigan During STRELA EVA

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-96 mission, the second International Space Station (ISS) assembly and resupply flight, launched on May 27, 1999 aboard the Orbiter Discovery for an almost 10 day mission. The Shuttle's SPACEHAB double module carried internal and resupply cargo for station outfitting and the Russian cargo crane, STRELA, was carried aboard the shuttle in the integrated Cargo Carrier (ICC). In this STS-96 onboard photo of the first Extra Vehicular Activity (EVA), Mission Specialist Tamara Jernigan totes part of the Russian built crane. Jernigans' feet are anchored on a mobile foot restraint cornected to the Shuttle's Remote Manipulator System (RMS) operated by Mission Specialist Ellen Ochoa. The STS-96 flight was the first to perform docking with the ISS.

  4. Exploration Architecture Options - ECLSS, EVA, TCS Implications

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Henninger, Don; Lawrence, Carl

    2010-01-01

    Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. Lunar architectures have been identified and addressed in the Lunar Surface Systems team to establish options for how to get to and then inhabit and explore the moon. The Augustine Commission evaluated human space flight for the Obama administration and identified many options for how to conduct human spaceflight in the future. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), ExtraVehicular Activity (EVA) and Thermal Control System (TCS) Systems. The advantages and disadvantages of each architecture and options are presented.

  5. Exploration Architecture Options - ECLSS, TCS, EVA Implications

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Henninger, Don

    2011-01-01

    Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. The Augustine Commission evaluated human space flight for the Obama administration then the Human Exploration Framework Teams (HEFT and HEFT2) evaluated potential exploration missions and the infrastructure and technology needs for those missions. Lunar architectures have been identified and addressed by the Lunar Surface Systems team to establish options for how to get to, and then inhabit and explore, the moon. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), Thermal Control (TCS), and Extravehicular Activity (EVA) Systems.

  6. 21 CFR 878.4460 - Surgeon's glove.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4460 Surgeon's glove. (a) Identification. A surgeon's...

  7. Permeation of captan through disposable nitrile glove

    Microsoft Academic Search

    R. N. Phalen; Shane S. Que Hee

    2003-01-01

    The purpose of this study was to investigate the permeation of an aqueous emulsion of the pesticide, captan, as a wettable powder (48.9% captan) through a disposable nitrile glove material using an American Society for Testing and Materials (ASTM)-type I-PTC-600 permeation cell. The goal was to investigate the protective capability of the gloves against dermatitis. The analytical method was based

  8. Glove box on vehicular instrument panel

    DOEpatents

    Atarashi, Kazuya (Saitama, JP)

    1985-01-01

    A glove box for the upper surface of an automobile dashboard whereby it may be positioned close to the driver. The glove box lid is pivotally supported by arms extending down either side to swing forwardly for opening. A hook is pivotally support adjacent an arm and weighted to swing into engagement with the arm to prevent opening of the lid during abrupt deceleration. A toggle spring assists in maintaining the lid in either the open or closed position.

  9. Gloves of Viton protect against hazardous chemicals

    SciTech Connect

    Not Available

    1984-03-01

    In a chemical plant where monomers and intermediates for neoprene synthetic rubber and Kelvar aramid fiber are made, gloves were needed to provide effective protection against permeation by chemicals encountered in certain operations in the manufacturing process. In performance tests commissioned by the National Institute of Occupational Safety and Health, gloves of Viton fluorelastomer offered six times the protection of other materials against toxic substances.

  10. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one that builds upon previously developed technologies and lessons learned, and that accomplishes the ARCM mission while providing a stepping stone to future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts and to not perturb the baseline Orion schedule, the concept of adding "kits" to the baseline system is proposed. These kits consist of: an EVA kit (converts LEA suit to EVA suit), EVA Servicing and Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and the MPCV), and the Cabin Repress Kit (represses the MPCV between EVAs). This paper will focus on the trade space, analysis, and testing regarding the space suit (pressure garment and life support system). Historical approaches and lessons learned from all past EVA operations were researched. Previous and current, successfully operated EVA hardware and high technology readiness level (TRL) hardware were evaluated, and a trade study was conducted for all possible pressure garment and life support options. Testing and analysis was conducted and a recommended EVA system architecture was proposed. Pressure garment options that were considered for this mission include the currently in-use ISS EVA Mobility Unit (EMU), all variations of the Advanced Crew Escape Suit (ACES), and the Exploration Z-suit. For this mission, the pressure garment that was selected is the Modified ACES (MACES) with EVA enhancements. Life support options that were considered included short closed-loop umbilicals, long open-loop umbilicals, the currently in-use ISS EMU Portable Life Support System (PLSS), and the currently in development Exploration PLSS. For this mission, the life support option that was selected is the Exploration PLSS. The greatest risk in the proposed architecture is viewed to be the comfort and mobility of the baseline MACES and the delicate balance between adding more mobility features while not compromising landing safety. Feasibility testing was accomplished in low fidelity analogs and in the JSC Neutral Buoyancy Laboratory (NBL) to validate the concept before a final recommendation on the architecture was made. The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work and further definition of the remaining kits will be conducted in government fiscal year 14.

  11. Manned NEO Mission EVA Challenges

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The President has proposed to land astronauts on an asteroid by 2025. However, Manned NEO (Near Earth Objects) Missions will present a host of new and exciting problems that will need to be better defined and solved before such a mission is launched. Here I will focus on the challenges for conducting asteroidal EVAs. Specfically, crew locomotion, sampling, drilling, documentation, and instrument deployment issues arising from the micro gravity environments associated with NEOs. Therefore, novel methods and techniques will need to be developed and tested in order to achieve specific mission science objectives. Walking or driving on the surface will not be a realistic option due to the small sizes (10 s to 100 s of meters in diameter) and hence extremely low gravity of the present day known candidate NEOs. EVAs will have to be carried out with crew members either using a self propelled device (akin to the MMU and SAFER units used on Shuttle/ISS) and or tethers. When using tethers a grid system could be deployed which is anchored to the asteroid. These anchor points could be inserted by firing penetrators into the surface from the spacecraft while it is still at a safe standoff distance. These penetrators would pull double duty by being laden with scientific instrumentation to probe the subsurface. Dust and debris generated by sample collection and locomotion in a microgravity environment could also pose some problems that will require forethought.

  12. The main results of EVA medical support on the Mir Space Station

    Microsoft Academic Search

    V. P. Katuntsev; Yu. Yu. Osipov; A. S. Barer; N. K. Gnoevaya; G. G. Tarasenkov

    2004-01-01

    The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7h14min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of

  13. Permeability of gloves used in nuclear medicine departments to [(99m)Tc]-pertechnetate and [(18)F]-fluorodeoxyglucose: radiation protection considerations.

    PubMed

    Ridone, S; Matheoud, R; Valzano, S; Di Martino, R; Vigna, L; Brambilla, M

    2013-09-01

    In order to evaluate the safety of the individual protection devices, the permeability of four different types of disposable gloves, commonly used in hospitals, was tested in relation to [(99m)Tc]-pertechnetate and to [(18)F]-fluorodeoxyglucose ([(18)F]-FDG). From these radiopharmaceutical solutions, a drop was deposited on the external surface of the glove which was opened and stretched with the external surface placed upward. The smear test technique permitted to evaluate the activity onto the inner surface of the glove at different times. The smear tests were measured in a well sodium iodide detector calibrated in efficiency for (99m)Tc and (18)F. The permeability was tested on ten samples of each type of gloves and was expressed as the ratio of the activity onto the inner surface at each time interval to the activity deposited on the external surface of the glove. For each type of gloves and for each sampling time, mean value, standard deviation and percentage coefficient of variation of permeability were evaluated. One type of gloves showed a low resistance to permeation of both radiopharmaceuticals, while another one only to pertechnetate. The other gloves were good performers. The results of this study suggest to test permeability for gloves used for handling radiopharmaceuticals, before their adoption in the clinical routine. This practice will provide a more careful service of radiation protection for nuclear medicine department staff. PMID:23419926

  14. A Cabin Air Separator for EVA Oxygen

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2011-01-01

    Presently, the Extra-Vehicular Activities (EVAs) conducted from the Quest Joint Airlock on the International Space Station use high pressure, high purity oxygen that is delivered to the Space Station by the Space Shuttle. When the Space Shuttle retires, a new method of delivering high pressure, high purity oxygen to the High Pressure Gas Tanks (HPGTs) is needed. One method is to use a cabin air separator to sweep oxygen from the cabin air, generate a low pressure/high purity oxygen stream, and compress the oxygen with a multistage mechanical compressor. A main advantage to this type of system is that the existing low pressure oxygen supply infrastructure can be used as the source of cabin oxygen. ISS has two water electrolysis systems that deliver low pressure oxygen to the cabin, as well as chlorate candles and compressed gas tanks on cargo vehicles. Each of these systems can feed low pressure oxygen into the cabin, and any low pressure oxygen source can be used as an on-board source of oxygen. Three different oxygen separator systems were evaluated, and a two stage Pressure Swing Adsorption system was selected for reasons of technical maturity. Two different compressor designs were subjected to long term testing, and the compressor with better life performance and more favorable oxygen safety characteristics was selected. These technologies have been used as the basis of a design for a flight system located in Equipment Lock, and taken to Preliminary Design Review level of maturity. This paper describes the Cabin Air Separator for EVA Oxygen (CASEO) concept, describes the separator and compressor technology trades, highlights key technology risks, and describes the flight hardware concept as presented at Preliminary Design Review (PDR)

  15. Conversion of IVA Human Computer Model to EVA Use and Evaluation and Comparison of the Result to Existing EVA Models

    NASA Technical Reports Server (NTRS)

    Hamilton, George S.; Williams, Jermaine C.

    1998-01-01

    This paper describes the methods, rationale, and comparative results of the conversion of an intravehicular (IVA) 3D human computer model (HCM) to extravehicular (EVA) use and compares the converted model to an existing model on another computer platform. The task of accurately modeling a spacesuited human figure in software is daunting: the suit restricts the human's joint range of motion (ROM) and does not have joints collocated with human joints. The modeling of the variety of materials needed to construct a space suit (e. g. metal bearings, rigid fiberglass torso, flexible cloth limbs and rubber coated gloves) attached to a human figure is currently out of reach of desktop computer hardware and software. Therefore a simplified approach was taken. The HCM's body parts were enlarged and the joint ROM was restricted to match the existing spacesuit model. This basic approach could be used to model other restrictive environments in industry such as chemical or fire protective clothing. In summary, the approach provides a moderate fidelity, usable tool which will run on current notebook computers.

  16. A moving robotic hand system for whole-glove permeation and penetration: captan and nitrile gloves.

    PubMed

    Phalen, Robert; Hee, Shane Que

    2008-04-01

    The aim of this study was to develop a robotic hand to test the influence of hand movement on the permeation/penetration of captan through disposable nitrile rubber gloves. An available robotic hand was modified to within one standard deviation of the anthropometric 50th percentile male hand. Permeation tests used a nylon inspection glove interposed between medium-size outer and inner nitrile gloves, the latter protected the hand. Permeation of an aqueous emulsion (217 mg/mL) of captan was conducted at 35 degrees C +/- 0.7 degrees C. A new surface wipe technique facilitated collection of captan from the inner surface of the exposed nitrile gloves, a technique favored above rinse methods that extracted captan from within the glove. With hand movement, the permeated mass of captan collected after 8 hr ranged from 1.6 to 970 microg (Brand A) and 8.6 +/- 1.2 microg (Brand B). Without hand movement, the corresponding masses ranged from 1.4 to 8.4 microg (Brand A) and 11 +/- 3 mg (Brand B). These results were not significantly different at p < or = 0.05 using parametric and nonparametric statistical tests but indicated that hand movement could influence the precision of permeation (F-test p < or = 0.05). One glove exhibited failure after 2 hr with movement, in comparison with 0.5 to 9.9 microg captan with no movement. Hand movement did not appear to significantly affect the permeation of captan through nitrile gloves. However, hand movement did influence physical and/or chemical degradation, resulting in glove failures. The robotic hand simulated normal hand motions, was reliable, and could be used to assess the influence of hand movement on the permeation of nonvolatile components through gloves. Future research should continue to investigate the influence of hand movement and additional work factors on the permeation, penetration, and physical integrity of protective gloves. PMID:18286423

  17. Wear gloves of a material known to be resistant to permeation by the substances in use.

    E-print Network

    Cohen, Robert E.

    damage such as tears or pinholes. Check reusable gloves for previous chemical damage. · Dispose of gloves gloves before leaving lab area. · When removing gloves, do so in a way that avoids skin contact

  18. Health risk assessments of DEHP released from chemical protective gloves.

    PubMed

    Chao, Keh-Ping; Huang, Chan-Sheng; Wei, Chung-Ying

    2015-02-11

    The substance di-2-ethylhexyl phthalate (DEHP) is widely used as a plasticizer in chemical protective gloves to improve their flexibility and workability. However, it is possible that workers using protective gloves to handle various solvents may be exposed to DEHP leached by the solvents. Using an ASTM F739 permeation cell, it was found that BTEX solvents permeating through the glove samples dissolved DEHP from the gloves. Even without continuously contacting the permeant, DEHP was released from the contaminated glove samples during the desorption experiments. The DEHP leaching amounts were found to be inversely correlated to the permeability coefficients of BTEX in the glove samples. This result implied that the larger the amount of DEHP released from the glove samples, the higher the permeation resistance of gloves. Although chemical protective gloves provide adequate skin exposure protection to workers, the dermal exposure model developed herein indicates that leaching of DEHP from the glove samples may pose a potential health risk to the workers who handle BTEX. This study suggests that the selection of protective gloves should not only be concerned with the chemical resistance of the gloves but also the health risk associated with leaching of chemicals, such as DEHP, used in the manufacturing of the gloves. PMID:25261760

  19. Study of EVA operations associated with satellite services

    NASA Technical Reports Server (NTRS)

    Nash, J. O.; Wilde, R. D.

    1982-01-01

    Extravehicular mobility unit (EMU) factors associated with satellite servicing activities are identified and the EMU improvements necessary to enhance satellite servicing operations are outlined. Areas of EMU capabilities, equipment and structural interfaces, time lines, EMU modifications for satellite servicing, environmental hazards, and crew training are vital to manned Eva/satellite services and as such are detailed. Evaluation of EMU capabilities indicates that the EMU can be used in performing near term, basic satellite servicing tasks; however, satellite servicing is greatly enhanced by incorporating key modifications into the EMU. The servicing missions involved in contamination sensitive payload repair are illustrated. EVA procedures and equipment can be standardized, reducing both crew training time and in orbit operations time. By standardizing and coordinating procedures, mission cumulative time lines fall well within the EMU capability.

  20. High-Pressure Oxygen Generation for Outpost EVA Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  1. DYNAMIC MECHANICAL ANALYSIS CHARACTERIZATION OF GLOVEBOX GLOVES

    SciTech Connect

    Korinko, P.

    2012-02-29

    As part of the characterization of various glovebox glove material from four vendors, the permeability of gas through each type as a function of temperature was determined and a discontinuity in the permeability with temperature was revealed. A series of tests to determine the viscoelastic properties of the glove materials as a function of temperature using Dynamic Mechanical Analysis (DMA) was initiated. The glass transition temperature and the elastic and viscoelastic properties as a function of temperature up to maximum use temperature were determined for each glove material. The glass transition temperatures of the gloves were -60 C for butyl, -30 C for polyurethane, -16 C Hypalon{reg_sign}, - 16 C for Viton{reg_sign}, and -24 C for polyurethane-Hypalon{reg_sign}. The glass transition was too complex for the butyl-Hypalon{reg_sign} and butyl-Viton{reg_sign} composite gloves to be characterized by a single glass transition temperature. All of the glass transition temperatures exceed the vendor projected use temperatures.

  2. Occult glove perforation during ophthalmic surgery.

    PubMed Central

    Apt, L; Miller, K M

    1992-01-01

    We examined the latex surgical gloves used by 56 primary surgeons in 454 ophthalmic surgical procedures performed over a 7-month period. Of five techniques used to detect pinholes, air inflation with water submersion and compression was found to be the most sensitive, yielding a 6.80% prevalence in control glove pairs and a 21.8% prevalence in postoperative study glove pairs, for a 15.0% incidence of surgically induced perforations (P = 0.000459). The lowest postoperative perforation rate was 11.4% for cataract and intraocular lens surgery, and the highest was 41.7% for oculoplastic procedures. Factors that correlated significantly with the presence of glove perforations as determined by multiple logistic regression analysis were oculoplastic and pediatric ophthalmology and strabismus surgical procedures, surgeon's status as a fellow in training, operating time, and glove size. The thumb and index finger of the nondominant hand contained the largest numbers of pinholes. These data suggest strategies for reducing the risk of cross-infection during ophthalmic surgery. PMID:1494836

  3. Maturing Pump Technology for EVA Applications in a Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Hodgson, Edward; Dionne, Steven; Gervais, Edward; Anchondo, Ian

    2012-01-01

    The transition from low earth orbit Extravehicular Activity (EVA) for construction and maintenance activities to planetary surface EVA on asteroids, moons, and, ultimately, Mars demands a new spacesuit system. NASA's development of that system has resulted in dramatically different pumping requirements from those in the current spacesuit system. Hamilton Sundstrand, Cascon, and NASA are collaborating to develop and mature a pump that will reliably meet those new requirements in space environments and within the design constraints imposed by spacesuit system integration. That collaboration, which began in the NASA purchase of a pump prototype for test evaluation, is now entering a new phase of development. A second generation pump reflecting the lessons learned in NASA's testing of the original prototype will be developed under Hamilton Sundstrand internal research funding and ultimately tested in an integrated Advanced Portable Life Support System (APLSS) in NASA laboratories at the Johnson Space Center. This partnership is providing benefit to both industry and NASA by supplying a custom component for EVA integrated testing at no cost to the government while providing test data for industry that would otherwise be difficult or impossible to duplicate in industry laboratories. This paper discusses the evolving collaborative process, component requirements and design development based on early NASA test experience, component stand alone test results, and near term plans for integrated testing at JSCs.

  4. NASA Research Announcement Phase 2 Final Report for the Development of a Power Assisted Space Suit Glove

    NASA Technical Reports Server (NTRS)

    Lingo, Robert; Cadogan, Dave; Sanner, Rob; Sorenson, Beth

    1997-01-01

    The main goal of this program was to develop an unobtrusive power-assisted EVA glove metacarpalphalangeal (MCP) joint that could provide the crew member with as close to nude body performance as possible, and to demonstrate the technology feasibility of power assisted space suit components in general. The MCP joint was selected due to its being representative of other space suit joints, such as the shoulder, hip and carpometacarpal joint, that would also greatly benefit from this technology. In order to meet this objective, a development team of highly skilled and experienced personnel was assembled. The team consisted of two main entities. The first was comprised of ILC's experienced EVA space suit glove designers, who had the responsibility of designing and fabricating a low torque MCP joint which would be compatible with power assisted technology. The second part of the team consisted of space robotics experts from the University of Maryland's Space Systems Laboratory. This team took on the responsibility of designing and building the robotics aspects of the power-assist system. Both parties addressed final system integration responsibilities.

  5. Overview of EVA PRA for TPS Repair for Hubble Space Telescope Servicing Mission

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Duncan, Gary; Roeschel, Eduardo; Canga, Michael

    2010-01-01

    Following the Columbia accident in 2003, NASA developed techniques to repair the Thermal Protection System (TPS) in the event of damage to the TPS as one of several actions to reduce the risk to future flights from ascent debris, micro-meteoroid and/or orbital debris (MMOD). Other actions to help reduce the risk include improved inspection techniques, reduced shedding of debris from the External Tank and ability to rescue the crew with a launch on need vehicle. For the Hubble Space Telescope (HST) Servicing Mission the crew rescue capability was limited by the inability to safe haven on the International Space Station (ISS), resulting in a greater reliance on the repair capability. Therefore it was desirable to have an idea of the risk associated with conducting a repair, where the repair would have to be conducted using an Extra-Vehicular Activity (EVA). Previously, focused analyses had been conducted to quantify the risk associated with certain aspects of an EVA, for example the EVA Mobility Unit (EMU) or Space Suit; however, the analyses were somewhat limited in scope. A complete integrated model of an EVA which could quantify the risk associated with all of the major components of an EVA had never been done before. It was desired to have a complete integrated model to be able to assess the risks associated with an EVA to support the Space Shuttle Program (SSP) in making risk informed decisions. In the case of the HST Servicing Mission, this model was developed to assess specifically the risks associated with performing a TPS repair EVA. This paper provides an overview of the model that was developed to support the HST mission in the event of TPS damage. The HST Servicing Mission was successfully completed on May 24th 2009 with no critical TPS damage; therefore the model was not required for real-time mission support. However, it laid the foundation upon which future EVA quantitative risk assessments could be based.

  6. 21 CFR 878.4470 - Surgeon's gloving cream.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4470 Surgeon's gloving cream. (a) Identification. Surgeon's gloving...

  7. 21 CFR 878.4470 - Surgeon's gloving cream.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4470 Surgeon's gloving cream. (a) Identification. Surgeon's gloving...

  8. 21 CFR 878.4470 - Surgeon's gloving cream.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4470 Surgeon's gloving cream. (a) Identification. Surgeon's gloving...

  9. 21 CFR 878.4470 - Surgeon's gloving cream.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4470 Surgeon's gloving cream. (a) Identification. Surgeon's gloving...

  10. Approaches to decompression safety support of EVA for orbital and interplanetary missions

    NASA Astrophysics Data System (ADS)

    Katuntsev, Vladimir P.

    2010-01-01

    The paper is devoted to the analysis of possible methods for decompression safety support of extravehicular activity (EVA) in order to ground the perspective approaches for solution of decompression sickness (DCS) problem in space missions of the near and distant future. Current DCS risk mitigation strategies reduce operational efficiency: preoxygenation extends the time required on preparation to EVA. The crewmembers often experience general and hand fatigue during long EVA due to the lack of flexibility of space suits enclosure operated at 30-40 kPa. To create the safe and comfortable working conditions for EVA crewmembers on the Lunar and Martian surfaces the main biomedical requirements to a planetary space suit have to include low mass of EVA system, high mobility and flexibility of space suit enclosure and reliable protection against DCS with a short or zero preoxygenation period. Reviewed here are the possibilities for the use of preoxygenation, hypobaric gas atmosphere in space cabin and/or planetary habitat, idea of substitution of nitrogen in normobaric gas atmosphere to another inert gas (helium and neon) as countermeasures against DCS in EVA crewmembers. Physiological aspects of the conception for space suit with high operating pressure are considered.

  11. Method for forming a glove attachment

    NASA Technical Reports Server (NTRS)

    Dawn, Frederic S. (inventor); Guy, Walter W. (inventor); Kosmo, Joseph (inventor); Drennan, Arthur P. (inventor); Tschirch, Richard P. (inventor)

    1995-01-01

    An attachment principally for the palm of an astronaut glove to enhance the gripping area of the palm without detracting from the flexibility and utility of the glove is presented. The attachment is a composite construction formed from a layer of silicone rubber having an outer surface with a friction configuration and another layer of silicone rubber in which a Nomex Aramid mesh fabric is embedded prior to curing. The method of construction involves the use of a mold with a friction configuration surface. A first layer of silicone rubber or sealant is disposed in the mold and allowed to set for an hour. A second layer of silicone rubber or sealant is layered over the first layer and leveled. A Nomex Aramid mesh fabric is embedded into the second layer and the composite is permitted to cure. When cured, a configured area of the composite construction is glued or stitched to the palm area of the glove.

  12. Ballast system for maintaining constant pressure in a glove box

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J. (inventor)

    1989-01-01

    A ballast system is disclosed for a glove box including a fixed platform on which is mounted an inflatable bag on top of which resides a cover and a weight. The variable gas volume of the inflatable bag communicates with that of the glove box via a valved tube. The weight and the gas volume are selected to maintain a relatively constant pressure in the glove box despite variations in the glove box volume while avoiding the use of complicated valving apparatus.

  13. Swelling of Four Glove Materials Challenged by Six Metalworking Fluids

    Microsoft Academic Search

    Wenhai Xu; Shane S. Que Hee

    2008-01-01

    The performance of protective gloves against metalworking fluids (MWFs) has rarely been studied because of the difficult chemical\\u000a analysis associated with complex MWFs. In the present study, glove swelling was used as a screening parameter of glove compatibility\\u000a after challenge of the outer surfaces of chloroprene, latex, nitrile, and vinyl disposable gloves by six MWF concentrates\\u000a for 2 hours in

  14. Effect of Glove Material Thickness on Permeation Characteristics

    Microsoft Academic Search

    DAVID A. JENCEN; JAMES K. HARDY

    1989-01-01

    The effect of glove material thickness for three glove\\/permeant systems has been evaluated. Four different thicknesses of neoprene glove material were evaluated against both toluene and 1,1,1-trichloroethane, and five thicknesses of natural rubber glove material were examined versus acetone. Permeant breakthrough time (BT), steady-state permeation rate (SSPR), and the time required to attain a steady-state condition (SST) were determined and

  15. Protective glove material permeation by organic solids.

    PubMed

    Fricker, C; Hardy, J K

    1992-12-01

    A method has been developed for the determination of permeation characteristics of glove materials by organic solids. The system employs a stainless steel exposure cell and allows rapid and uniform contact of either solid disks or powders with minimal membrane bowing. A gas chromatograph equipped with a flame ionization detector was used for monitoring the permeation process, which provided detection limits of 0.9-1.2 ng for the organic solids evaluated. By using an automated system for instrument control and data collection, breakthrough times, steady-state times, and steady-state permeation rates have been determined for five common glove materials when exposed to nine organic solids. PMID:1471595

  16. Durable Tactile Glove for Human or Robot Hand

    NASA Technical Reports Server (NTRS)

    Butzer, Melissa; Diftler, Myron A.; Huber, Eric

    2010-01-01

    A glove containing force sensors has been built as a prototype of tactile sensor arrays to be worn on human hands and anthropomorphic robot hands. The force sensors of this glove are mounted inside, in protective pockets; as a result of this and other design features, the present glove is more durable than earlier models.

  17. Contact Dermatitis from Penetration of Rubber Gloves by Acrylic Monomer

    Microsoft Academic Search

    J. S. Pegum; F. A. Medhurst

    1971-01-01

    An orthopaedic surgeon developed dermatitis from acrylic materials. The acrylic monomer was found to penetrate surgical rubber gloves readily. Cases of “rubber glove dermatitis” with negative patch tests may have a similar explanation. Laboratory tests suggest that monomer does not damage rubber sufficiently to allow bacteria to penetrate gloves, but it remains possible that this would happen under theatre conditions.

  18. Hydration and Conductivity in Natural Rubber Latex Gloves

    E-print Network

    Bennett, John K.

    Hydration and Conductivity in Natural Rubber Latex Gloves John K. Bennett, PhD, PE Department of natural rubber latex (NRL) gloves have been of clinical interest since the concept of using an electrical result is that most natural rubber latex gloves have dynamic electrical behavior that precludes the use

  19. Glove permeation by shale oil and coal tar extract

    Microsoft Academic Search

    G. O. Nelson; G. J. Carlson; A. L. Buerer

    1980-01-01

    The vapor penetration of shale oil and coal tar extract through protective gloves composed of either polyethylene, polyvinyl chloride, vinyl, latex, neoprene, Buna-N, acrylonitrile, natural rubber, or nitrile rubber was tested and measured. We used flame ionization techniques to determine the permeation characteristics of the gloves. Neoprene, Buna-N, acrylonitrile and nitrile gloves offered the best protection against the vapors tested.

  20. Glove permeation by shale oil and coal tar extract

    SciTech Connect

    Nelson, G.O.; Carlson, G.J.; Buerer, A.L.

    1980-02-14

    The vapor penetration of shale oil and coal tar extract through protective gloves composed of either polyethylene, polyvinyl chloride, vinyl, latex, neoprene, Buna-N, acrylonitrile, natural rubber, or nitrile rubber was tested and measured. We used flame ionization techniques to determine the permeation characteristics of the gloves. Neoprene, Buna-N, acrylonitrile and nitrile gloves offered the best protection against the vapors tested.

  1. Humidity Effects and Breakdown Characteristics of Class II Insulating Gloves

    Microsoft Academic Search

    Nestor Kolcio; Richard Peszlen

    1984-01-01

    The paper discusses how humidity and other atmospheric conditions affect the electrical testing of insulating gloves used for live line maintenance. Results of humidity effects upon the AC and DC in-service testing of new gloves and gloves used in service between 0.5 to 11 years are presented. The paper also gives, results of Class II electrical breakdown tests made on

  2. The Astronaut Glove Challenge: Big Innovation from a (Very) Small Team

    NASA Technical Reports Server (NTRS)

    Homer, Peter

    2008-01-01

    Many measurements were taken by test engineers from Hamilton Sundstrand, the prime contractor for the current EVA suit. Because the raw measurements needed to be converted to torques and combined into a final score, it was impossible to keep track of who was ahead in this phase. The final comfort and dexterity test was performed in a depressurized glove box to simulate real on-orbit conditions. Each competitor was required to exercise the glove through a defined set of finger, thumb, and wrist motions without any sign of abrasion or bruising of the competitor's hand. I learned a lot about arm fatigue! This was a pass-fail event, and both of the remaining competitors came through intact. After taking what seemed like an eternity to tally the final scores, the judges announced that I had won the competition. My glove was the only one to have achieved lower finger-bending torques than the Phase VI glove. Looking back, I see three sources of the success of this project that I believe also operate in other programs where small teams have broken new ground in aerospace technologies. These are awareness, failure, and trust. By remaining aware of the big picture, continuously asking myself, "Am I converging on a solution?" and "Am I converging fast enough?" I was able to see that my original design was not going to succeed, leading to the decision to start over. I was also aware that, had I lingered over this choice or taken time to analyze it, I would not have been ready on the first day of competition. Failure forced me to look outside conventional thinking and opened the door to innovation. Choosing to make incremental failures enabled me to rapidly climb the learning curve. Trusting my "gut" feelings-which are really an internalized accumulation of experiences-and my newly acquired skills allowed me to devise new technologies rapidly and complete both gloves just in time. Awareness, failure, and trust are intertwined: failure provides experiences that inform awareness and provide decision-making opportunities that build trust among team members and managers while opening minds to new pathways for development. All three are necessary for teams-large or small-to achieve big innovation.

  3. Astronaut Sellers Performs STS-112 EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard Side Integrated Truss Structure (S1) and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. In this photograph, Astronaut Piers J. Sellers uses both a handrail on the Destiny Laboratory and a foot restraint on the Space Station Remote Manipulator System or Canadarm2 to remain stationary while performing work at the end of the STS-112 mission's second space walk. A cloud-covered Earth provides the backdrop for the scene.

  4. A feasibility study of hand kinematics for EVA analysis using magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Dickenson, Reuben D.; Lorenz, Christine H.; Peterson, Steven W.; Strauss, Alvin M.; Main, John A.

    1992-01-01

    A new method for analyzing the kinematics of joint motion using magnetic resonance imaging (MRI) is described. The reconstruction of the metacarpalphalangeal joint of the left index finger into a 3D graphic display is shown. From the reconstructed volumetric images, measurements of the angles of movement of the applicable bones are obtained and processed by analyzing the screw motion of the joint. Landmark positions are chosen at distinctive locations of the joint at fixed image threshold intensity levels to ensure repeatability. The primarily 2D planar motion of this joint is then studied using a method of constructing coordinate systems using three or more points. A transformation matrix based on a world coordinate system describes the location and orientation of the local target coordinate system. The findings show the applicability of MRI to joint kinematics for gaining further knowledge of the hand-glove design for EVA.

  5. Applications of EVA guidelines and design criteria. Volume 3: EVA systems cost model formating

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    The development of a model for estimating the impact of manned EVA costs on future payloads is discussed. Basic information on the EV crewman requirements, equipment, physical and operational characteristics, and vehicle interfaces is provided. The cost model is being designed to allow system designers to quantify the impact of EVA on vehicle and payload systems.

  6. Low-impact plutonium glove box D&D

    SciTech Connect

    Rose, R.W. [Argonne National Lab., IL (United States)

    1997-01-01

    A dilemma often encountered in decontamination and decommissioning operations is the lack of choice of the location where the work is to be performed. High-priority research activities,which cannot be interrupted may be occurring in adjacent nonradiological facilities in the immediate vicinity. Determining project boundaries and ensuring that adjacent occupants are included in the planning/scheduling of specific operations that have an impact on the work area are important for the development of the safety envelope. This describes management of such a situation with recent D & D of 61 glove boxes contaminated with plutonium and other transuranic nuclides at the Argonne National Laboratory.

  7. Doxorubicin can penetrate nitrile gloves and induces apoptosis in keratinocytes cell lines.

    PubMed

    Boccellino, Mariarosaria; Pedata, Paola; Castiglia, Loredana; La Porta, Raffaele; Pieri, Maria; Quagliuolo, Lucio; Acampora, Antonio; Sannolo, Nicola; Miraglia, Nadia

    2010-08-16

    Doxorubicin (DOXO) is an anthracycline antibiotic which is used in the treatment of human malignancies such as leukemia, lymphoma and a number of solid tumors, particularly breast cancer. Anthracyclines have been reported to contaminate chemotherapy workstation surfaces as well as other workplaces surfaces. The occupational exposure to these drugs could occur in hospitals, for nurses involved in anthracyclines preparation and administration, in chemical industries during the commercial formulate syntheses, and in analytical laboratories. Numerous studies investigated cutaneous effects related to DOXO administration, on the contrary few literature data are available about effects on the skin due to the direct contact with the drug. The present study investigated the DOXO permeability of three commercially available gloves' types used to protect skin in occupational contexts, as well as the effects of DOXO on human keratinocyte cell line (HaCaT). The results suggest that the DOXO permeability of gloves depends not only on glove material but also on DOXO solutions' pH, in fact nitrile gloves can be penetrated by acid solutions, while neither natural rubbers nor nitrile gloves are permeable to neutral solutions. Moreover, DOXO solutions, even at low concentration, cause apoptosis in epithelial cells, through activation of intrinsic pathway p53-independent. PMID:20452410

  8. EVA Robotic Assistant Project: Platform Attitude Prediction

    NASA Technical Reports Server (NTRS)

    Nickels, Kevin M.

    2003-01-01

    The Robotic Systems Technology Branch is currently working on the development of an EVA Robotic Assistant under the sponsorship of the Surface Systems Thrust of the NASA Cross Enterprise Technology Development Program (CETDP). This will be a mobile robot that can follow a field geologist during planetary surface exploration, carry his tools and the samples that he collects, and provide video coverage of his activity. Prior experiments have shown that for such a robot to be useful it must be able to follow the geologist at walking speed over any terrain of interest. Geologically interesting terrain tends to be rough rather than smooth. The commercial mobile robot that was recently purchased as an initial testbed for the EVA Robotic Assistant Project, an ATRV Jr., is capable of faster than walking speed outside but it has no suspension. Its wheels with inflated rubber tires are attached to axles that are connected directly to the robot body. Any angular motion of the robot produced by driving over rough terrain will directly affect the pointing of the on-board stereo cameras. The resulting image motion is expected to make tracking of the geologist more difficult. This will either require the tracker to search a larger part of the image to find the target from frame to frame or to search mechanically in pan and tilt whenever the image motion is large enough to put the target outside the image in the next frame. This project consists of the design and implementation of a Kalman filter that combines the output of the angular rate sensors and linear accelerometers on the robot to estimate the motion of the robot base. The motion of the stereo camera pair mounted on the robot that results from this motion as the robot drives over rough terrain is then straightforward to compute. The estimates may then be used, for example, to command the robot s on-board pan-tilt unit to compensate for the camera motion induced by the base movement. This has been accomplished in two ways: first, a standalone head stabilizer has been implemented and second, the estimates have been used to influence the search algorithm of the stereo tracking algorithm. Studies of the image motion of a tracked object indicate that the image motion of objects is suppressed while the robot crossing rough terrain. This work expands the range of speed and surface roughness over which the robot should be able to track and follow a field geologist and accept arm gesture commands from the geologist.

  9. Bacterial migration through punctured surgical gloves under real surgical conditions

    PubMed Central

    2010-01-01

    Background The aim of this study was to confirm recent results from a previous study focussing on the development of a method to measure the bacterial translocation through puncture holes in surgical gloves under real surgical conditions. Methods An established method was applied to detect bacterial migration from the operating site through the punctured glove. Biogel™ double-gloving surgical gloves were used during visceral surgeries over a 6-month period. A modified Gaschen-bag method was used to retrieve organisms from the inner glove, and thus-obtained bacteria were compared with micro-organisms detected by an intra-operative swab. Results In 20 consecutive procedures, 194 gloves (98 outer gloves, 96 inner gloves) were examined. The rate of micro-perforations of the outer surgical glove was 10% with a median wearing time of 100 minutes (range: 20-175 minutes). Perforations occurred in 81% on the non-dominant hand, with the index finger most frequently (25%) punctured. In six cases, bacterial migration could be demonstrated microbiologically. In 5% (5/98) of outer gloves and in 1% (1/96) of the inner gloves, bacterial migration through micro-perforations was observed. For gloves with detected micro-perforations (n = 10 outer layers), the calculated migration was 50% (n = 5). The minimum wearing time was 62 minutes, with a calculated median wearing time of 71 minutes. Conclusions This study confirms previous results that bacterial migration through unnoticed micro-perforations in surgical gloves does occur under real practical surgical conditions. Undetected perforation of surgical gloves occurs frequently. Bacterial migration from the patient through micro-perforations on the hand of surgeons was confirmed, limiting the protective barrier function of gloves if worn over longer periods. PMID:20594293

  10. A Moving Robotic Hand System for Whole-Glove Permeation and Penetration: Captan and Nitrile Gloves

    Microsoft Academic Search

    Robert Phalen; Shane Que Hee

    2008-01-01

    The aim of this study was to develop a robotic hand to test the influence of hand movement on the permeation\\/penetration of captan through disposable nitrile rubber gloves. An available robotic hand was modified to within one standard deviation of the anthropometric 50th percentile male hand. Permeation tests used a nylon inspection glove interposed between medium-size outer and inner nitrile

  11. PROTECTIVE GLOVE MATERIAL PERMEATION BY ORGANIC SOLIDS

    Microsoft Academic Search

    Christopher Fricker; James K. Hardy

    1992-01-01

    A method has been developed for the determination of permeation characteristics of glove materials by organic solids. The system employs a stainless steel exposure cell and allows rapid and uniform contact of either solid disks or powders with minimal membrane bowing. A gas chromatograph equipped with a flame ionization detector was used for monitoring the permeation process, which provided detection

  12. Dimethyl sulfoxide permeation through glove materials

    Microsoft Academic Search

    ARTHUR D. SCHWOPE; MARGARET A. RANDEL; MILDRED G. BROOME

    1981-01-01

    The permeation of dimethyl sulfoxide through specimens from four commercially available gloves was measured. Breakthrough times ranged from 1–1\\/2 to 2 hours for natural rubber latex to over 8 hours for neoprene latex. The Buna-N (nitrile) material exhibited the highest permeation rate.

  13. Expedition 16 Flight Engineer Tani Performs EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Astronaut Daniel Tani (top center), Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the 6-hour and 33-minute space walk, Tani and STS-120 mission specialist Scott Parazynski (out of frame), worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of 'shavings' he found under the joint's multilayer insulation covers. The space walkers also outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later. The moon is visible at lower center. The STS-120 mission launched from Kennedy Space Center's launch pad 39A at 11:38:19 a.m. (EDT) on October 23, 2007.

  14. Exogrip: assisted hand strength glove - biomed 2011.

    PubMed

    Best, Jade E; Bostick, Nehemiah F; Connelly, John R; Dunn, Michael G; Gelles, Richard A; Norvell, Elizabeth K; Waugaman, William B; Mims, Capt Willie H

    2011-01-01

    A large number of American troops fighting in Afghanistan and Iraq have received wounds in their upper extremities leading to significant nerve damage and loss of strength. These injuries impair their ability to perform day-to-day tasks such as lifting a cup of coffee or opening a door. Although the cause of some injuries in service-people is often unique to their employment, civilian employees in other industries are also plagued with similar physical damage due to other kinds of injuries. Our goal is to develop a device to augment the strength of injured troops and civilian workers so they can perform everyday tasks despite their physical limitations. The ExoGrip is a glove designed to provide this necessary strength augmentation. The ExoGrip consists primarily of pressure sensors, linear actuators, and a microcontroller to provide a force multiplier based on a person?s strength. The goal of the first phase of the project was to conduct research and also produce a working prototype of one finger. This goal was achieved by a group of classmates who started the project a year before. Their research and feasibility analysis ended in the mechanical movement of a single finger when the sensors were activated. The next phase of this project is to design and integrate a working prototype that manipulates all four fingers, while keeping the thumb in a fixed position. This paper describes the integration of new microcontrollers, linear actuators utilizing pulse width modulation technology, and improved pressure sensors needed to manipulate the fingers, as well as laying the foundation for future testing and development of a final product. PMID:21525608

  15. The rate of glove perforations in orthopaedic procedures: single versus double gloving. A prospective study.

    PubMed

    Chan, K Y; Singh, V A; Oun, B H; To, B H Se

    2006-12-01

    Glove perforation during surgery has always been a matter of concern as it increases the infection rate and the risk of transmission of blood borne diseases. To determine the common causes, the site and the awareness of glove perforations in orthopaedic surgery, a prospective study was conducted to assess the rate of glove perforation during 130 consecutive orthopaedic operations. All gloves worn by the surgical team were assessed after the surgery using the water-loading test. A total of 1452 gloves were tested, and the rate of perforation was 3.58%. Most of these perforations (61.5%) were unnoticed. The main surgeons had the most perforations (76.9%), followed by first assistants (13.5%) and second assistants (9.6%). Most perforations occurred at the non-dominant hand. The commonest site of perforation was the index finger followed by the thumb. Shearing force with instruments accounted for 45% of the noticed perforations. Majority of these occurred during nailing procedures (33%) and internal fixation without the use of wires (19%). Our rate of glove perforation is similar to other series. Most of them went unnoticed and were mainly due to shearing injuries rather than perforation by sharps. Therefore, there is an increased risk of contamination and break in asepsis during surgery. PMID:17605178

  16. Biosensors for EVA: Muscle Oxygen and pH During Walking, Running and Simulated Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Lee, S. M. C.; Ellerby, G.; Scott, P.; Stroud, L.; Norcross, J.; Pesholov, B.; Zou, F.; Gernhardt, M.; Soller, B.

    2009-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO2 on the leg during cycling. Our NSBRI-funded project is looking to extend this methodology to examine activities which more appropriately represent EVA activities, such as walking and running and to better understand factors that determine the metabolic cost of exercise in both normal and lunar gravity. Our 4 year project specifically addresses risk: ExMC 4.18: Lack of adequate biomedical monitoring capability for Constellation EVA Suits and EPSP risk: Risk of compromised EVA performance and crew health due to inadequate EVA suit systems.

  17. Permeation of Telone EC through protective gloves.

    PubMed

    Zainal, Hanaa; Que Hee, Shane S

    2005-09-30

    Telone is a potent fumigant that is based on the chlorinated unsaturated hydrocarbon, 1,3-dichloropropene (1,3-DCP). It is often applied without dilution and so poses severe inhalation and air pollution threats. Urinary metabolites of 1,3-DCP have been detected after Telone skin exposure, so that preventing dermal exposure is also important. The objective of the study was to assess if nitrile and multi-layer ("laminated") gloves provide adequate protection against Telone EC formulation. To accomplish this, disposable (Safeskin) and chemically resistant (Sol-Vex) nitrile and laminated (Barrier mark and Silver Shield) glove materials were challenged by Telone EC with hexane liquid collection in an ASTM-type I-PTC-600 permeation cell. Analyses of cis- and trans-1,3-DCP in the collection fluid at specified times were performed on a moderately polar capillary column by gas chromatography-electron capture detection. Telone EC caused microholes in both nitrile materials, though the chemically protective material was degraded slower than the disposable nitrile. The laminated gloves offered limited protection. Silver Shield protected best because 1.5-2.3 mg 1,3-DCP permeated by 8 h relative to 2.5-7.6 mg for Barrier, implying about 2.5 times more protection for 8 h. Even for Silver Shield, the extent of protection was inadequate as illustrated by a risk assessment of the skin exposure situation. The normalized breakthrough times for both types of laminated gloves varied between 27 and 60 min. It is recommended that Viton gloves still be worn for protection. PMID:15982807

  18. Permeation of captan through disposable nitrile glove.

    PubMed

    Phalen, R N; Que Hee, Shane S

    2003-06-27

    The purpose of this study was to investigate the permeation of an aqueous emulsion of the pesticide, captan, as a wettable powder (48.9% captan) through a disposable nitrile glove material using an American Society for Testing and Materials (ASTM)-type I-PTC-600 permeation cell. The goal was to investigate the protective capability of the gloves against dermatitis. The analytical method was based on gas chromatography-mass spectrometry (GC-MS) and gas chromatography-electron capture detection (GC-ECD). The least quantifiable limit (LQL) was 6 ng for GC-ECD and 30 ng for GC-MS. Testing was conducted using the ASTM F739 closed-loop permeation method and a worst-case aqueous concentration 217 mg/ml of captan 50-WP. The average permeation rates were low, with 12+/-5 ng/(cm(2)min) after 2h, 50+/-25 ng/(cm(2)min) after 4h, and 77+/-58 ng/(cm(2)min) after 8h. The calculated diffusion coefficient was (1.28+/-0.10) x 10(-5)cm(2)/h. No significant swelling or shrinkage occurred at Pglove surfaces confirmed no outer or inner surface degradation. The disposable nitrile glove showed excellent resistance to a highly concentrated aqueous emulsion of captan. Because the ASTM normalized breakthrough detection time of 250 ng/cm(2) was <2h, these gloves should not be reused once worn, and decontamination is not advised. Protection is also advised for agricultural reentry field workers, because captan has been shown to persist on crops with a half-life greater than the current reentry intervals of 1-4 days. PMID:12835015

  19. Biomedical Support of U.S. Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Dervay, J. P.; Gillis, D.; McMann, H. J.; Thomas, K. S.

    2007-01-01

    The world's first extravehicular activity (EVA) was performed by A. A. Leonov on March 18, 1965 during the Russian Voskhod-2 mission. The first US EVA was executed by Gemini IV astronaut Ed White on June 3, 1965, with an umbilical tether that included communications and an oxygen supply. A hand-held maneuvering unit (HHMU) also was used to test maneuverability during the brief EVA; however the somewhat stiff umbilical limited controlled movement. That constraint, plus difficulty returning through the vehicle hatch, highlighted the need for increased thermal control and improved EVA ergonomics. Clearly, requirements for a useful EVA were interrelated with the vehicle design. The early Gemini EVAs generated requirements for suits providing micro-meteor protection, adequate visual field and eye protection from solar visual and infrared radiation, gloves optimized for dexterity while pressurized, and thermal systems capable of protecting the astronaut while rejecting metabolic heat during high workloads. Subsequent Gemini EVAs built upon this early experience and included development of a portable environmental control and life support systems (ECLSS) and an astronaut maneuvering unit. The ECLSS provided a pressure vessel and controller with functional control over suit pressure, oxygen flow, carbon dioxide removal, humidity, and temperature control. Gemini EVA experience also identified the usefulness of underwater neutral buoyancy and altitude chamber task training, and the importance of developing reliable task timelines. Improved thermal management and carbon dioxide control also were required for high workload tasks. With the Apollo project, EVA activity was primarily on the lunar surface; and suit durability, integrated liquid cooling garments, and low suit operating pressures (3.75 pounds per square inch absolute [psia] or 25.8 kilopascal [kPa],) were required to facilitate longer EVAs with ambulation and significant physical workloads with average metabolic rates of 1000 BTU/hr and peaks of up to 2200 BTU/hr. Mobility was further augmented with the Lunar Roving Vehicle. The Apollo extravehicular mobility unit (EMU) was made up of over 15 components, ranging from a biomedical belt for capturing and transmitting biomedical data, urine and fecal containment systems, a liquid cooling garment, communications cap, a modular portable life support system (PLSS), a boot system, thermal overgloves, and a bubble helmet with eye protection. Apollo lunar astronauts performed successful EVAs on the lunar surface from a 5 psia (34.4 kPa) 100% oxygen environment in the Lunar Lander. A maximum of three EVAs were performed on any mission. For Skylab a modified A7LB suit, used for Apollo 15, was selected. The Skylab astronaut life support assembly (ALSA) provided umbilical support through the life support umbilical (LSU) and used open loop oxygen flow, rather than closed-loop as in Apollo missions. Thermal control was provided by liquid water circulated by spacecraft pumps and electrical power also was provided from the spacecraft via the umbilical. The cabin atmosphere of 5 psia (34.4 kPa), 70% oxygen, provided a normoxic atmosphere and because of the very low nitrogen partial pressures, no special protocols were required to protect against decompression sickness (DCS) as was the case with the Apollo spacecraft with a 5 psi, 100% oxygen environment.

  20. Advanced extravehicular activity systems requirements definition study. Phase 2: Extravehicular activity at a lunar base

    NASA Technical Reports Server (NTRS)

    Neal, Valerie; Shields, Nicholas, Jr.; Carr, Gerald P.; Pogue, William; Schmitt, Harrison H.; Schulze, Arthur E.

    1988-01-01

    The focus is on Extravehicular Activity (EVA) systems requirements definition for an advanced space mission: remote-from-main base EVA on the Moon. The lunar environment, biomedical considerations, appropriate hardware design criteria, hardware and interface requirements, and key technical issues for advanced lunar EVA were examined. Six remote EVA scenarios (three nominal operations and three contingency situations) were developed in considerable detail.

  1. Comparison Of Human Modelling Tools For Efficiency Of Prediction Of EVA Tasks

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Loughead, Tomas E.

    1998-01-01

    Construction of the International Space Station (ISS) will require extensive extravehicular activity (EVA, spacewalks), and estimates of the actual time needed continue to rise. As recently as September, 1996, the amount of time to be spent in EVA was believed to be about 400 hours, excluding spacewalks on the Russian segment. This estimate has recently risen to over 1100 hours, and it could go higher before assembly begins in the summer of 1998. These activities are extremely expensive and hazardous, so any design tools which help assure mission success and improve the efficiency of the astronaut in task completion can pay off in reduced design and EVA costs and increased astronaut safety. The tasks which astronauts can accomplish in EVA are limited by spacesuit mobility. They are therefore relatively simple, from an ergonomic standpoint, requiring gross movements rather than time motor skills. The actual tasks include driving bolts, mating and demating electric and fluid connectors, and actuating levers; the important characteristics to be considered in design improvement include the ability of the astronaut to see and reach the item to be manipulated and the clearance required to accomplish the manipulation. This makes the tasks amenable to simulation in a Computer-Assisted Design (CAD) environment. For EVA, the spacesuited astronaut must have his or her feet attached on a work platform called a foot restraint to obtain a purchase against which work forces may be actuated. An important component of the design is therefore the proper placement of foot restraints.

  2. EVA/ORU model architecture using RAMCOST

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.; Wang, Y. M.; Bretoi, R.

    1990-01-01

    A parametrically driven simulation model is presented in order to provide a detailed insight into the effects of various input parameters in the life testing of a modular space suit. The RAMCOST model employed is a user-oriented simulation model for studying the life-cycle costs of designs under conditions of uncertainty. The results obtained from the EVA simulated model are used to assess various mission life testing parameters such as the number of joint motions per EVA cycle time, part availability, and number of inspection requirements. RAMCOST first simulates EVA completion for NASA application using a probabilistic like PERT network. With the mission time heuristically determined, RAMCOST then models different orbital replacement unit policies with special application to the astronaut's space suit functional designs.

  3. EVA tools and equipment reference book

    NASA Technical Reports Server (NTRS)

    Fullerton, R. K.

    1993-01-01

    This document contains a mixture of tools and equipment used throughout the space shuttle-based extravehicular activity (EVA) program. Promising items which have reached the prototype stage of development are also included, but should not be considered certified ready for flight. Each item is described with a photo, a written discussion, technical specifications, dimensional drawings, and points of contact for additional information. Numbers on the upper left-hand corner of each photo may be used to order specific pictures from NASA and contractor photo libraries. Points of contact were classified as either operational or technical. An operational contact is an engineer from JSC Mission Operations Directorate who is familiar with the basic function and on-orbit use of the tool. A technical contact would be the best source of detailed technical specifications and is typically the NASA subsystem manager. The technical information table for each item uses the following terms to describe the availability or status of each hardware item: Standard - Flown on every mission as standard manifest; Flight specific - Potentially available for flight, not flown every mission (flight certification cannot be guaranteed and recertification may be required); Reference only - Item no longer in active inventory or not recommended for future use, some items may be too application-specific for general use; and Developmental - In the prototype stage only and not yet available for flight. The current availability and certification of any flight-specific tool should be verified with the technical point of contact. Those tools built and fit checked for Hubble Space Telescope maintenance are program dedicated and are not available to other customers. Other customers may have identical tools built from the existing, already certified designs as an optional service.

  4. The thermal insulating effects of five dental gloves.

    PubMed

    Chadwick, R G

    2000-04-01

    On occasions within the case reports of the various medico-legal defence organizations mention is made of burns to the oral soft tissues arising from contact with a heated instrument. Good cross infection control dictates that the dentist should be gloved whilst treating patients. No study has to date examined the thermal insulating effect of wearing dental procedure gloves although double gloving is known to blunt temperature perception. It was the purpose of this work to compare the degree of thermal insulation afforded by five makes of gloves (Biogel-D, Featherlite, Healthline, Microtouch and Tru-Touch). Measurement of temperature rises at 15, 30 and 60 s were made when a copper cylinder, at ambient room temperature, containing an iron/constantan thermocouple was placed upon a 2.35 kg aluminium block maintained at 50 degrees C by a thermostatically controlled electrical heating element. This measurement was initially performed, on 10 separate occasions, with the aluminium block and copper cylinder in direct contact (Control). This arrangement was then modified to investigate the effects of the various gloves by placing a circular mat of each glove material, harvested from the palm of each glove, between the block and cylinder. For each glove, 10 sets of observations were made using a different circular mat of glove material whose thickness had been previously determined. An analysis of variance identified highly significant (P<0.001) differences between the temperature rise of the control and experimental groups. The degree of thermal insulation afforded by each glove type appeared related to the glove thickness. This was confirmed by regression analysis but, although correlation coefficients of at least 0.91 were recorded, no single relationship best related these two quantities. Glove thermal insulating properties should be considered when selecting gloves for use in the surgery. PMID:10792595

  5. STS-118 Astronauts Rick Mastracchio and Clay Anderson Perform EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    As the construction continued on the International Space Station (ISS), STS-118 astronaut and mission specialist Rick Mastracchio was anchored on the foot restraint of the Canadarm2 as he participated in the third session of Extra Vehicular Activity (EVA) for the mission. Assisting Mastracchio was Expedition 15 flight engineer Clay Anderson (out of frame). During the 5 hour, 28 minute space walk, the two relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) truss to the Port 1 (P1) truss, installed a new transponder on P1 and retrieved the P6 transponder.

  6. Extravehicular activity at geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Shields, Nicholas, Jr.; Schulze, Arthur E.; Carr, Gerald P.; Pogue, William

    1988-01-01

    The basic contract to define the system requirements to support the Advanced Extravehicular Activity (EVA) has three phases: EVA in geosynchronous Earth orbit; EVA in lunar base operations; and EVA in manned Mars surface exploration. The three key areas to be addressed in each phase are: environmental/biomedical requirements; crew and mission requirements; and hardware requirements. The structure of the technical tasks closely follows the structure of the Advanced EVA studies for the Space Station completed in 1986.

  7. A Dexterity and Tactility Evaluation of the Australian Nuclear Biological Chemical (NBC) Glove

    Microsoft Academic Search

    S. Scanlan; W. Roberts; R. McCallum; D. Robinson

    This report details the tactility and dexterity of four different glove types, including the Australian in- service NBC butyl rubber glove and Nomex® flying glove for standardised (Purdue pegboard) and operational (weapon asembly\\/disassembly) tasks. The Nomex® flying glove was included for comparative purposes despite offering no NBC protection . Two commercially available chemically protective gloves (the Canadian NBC butyl rubber

  8. Permeation of Malathion Through Glove Materials

    Microsoft Academic Search

    Yu-Wen Lin; Shane S. Que Hee

    1998-01-01

    The aims of this study were to recommend gloves (lined, unsupported Solvex nitrile, Viton, or Silver Shield laminate) to protect against malathion skin exposure, and to investigate how the carrier (water, hexane, or m-xylene) modified the permeation of the malathion of two commercial emulsion concentrate formulations. An I-PTC 600 American Society for Testing and Materials-type permeation cell at 30°C allowed

  9. Mechanical assembly with data glove devices

    Microsoft Academic Search

    Xiaobu Yuan; Hanqiu Sun

    1997-01-01

    Virtual manufacturing is a new multi-discipline research area. It immerses operators in virtual workcells and develops virtual reality and augmented design tools for the purpose of improving the efficiency and quality of manufacturing systems. This paper presents an approach of using data glove devices to create three-dimensional interfaces for object-manipulation and task-specification in virtual manufacturing applications such as mechanical assembly

  10. Clinical evaluation of the bionic glove

    Microsoft Academic Search

    Dejan Popovi?; Aleksandar Stojanovi?; Andjelka Pjanovi?; Slobodanka Radosavljevi?; Mirjana Popovi?; Stevan Jovi?; Dragan Vulovi?

    1999-01-01

    Objective: Clinical evaluation of the Bionic Glove, a prototype of a new functional electrical stimulation device designed to improve the function of the paralyzed hand after spinal cord injury.Patients: Twelve people with spinal cord injury at C5-C7 who had used the device 6 months or more.Setting: Measurements were made at the Institute “Dr Miroslav Zotovi?” in Belgrade as a part

  11. Astronaut EVA exposure estimates from CAD model spacesuit geometry.

    PubMed

    De Angelis, Giovanni; Anderson, Brooke M; Atwell, William; Nealy, John E; Qualls, Garry D; Wilson, John W

    2004-03-01

    Ongoing assembly and maintenance activities at the International Space Station (ISS) require much more extravehicular activity (EVA) than did the earlier U.S. Space Shuttle missions. It is thus desirable to determine and analyze, and possibly foresee, as accurately as possible what radiation exposures crew members involved in EVAs will experience in order to minimize risks and to establish exposure limits that must not to be exceeded. A detailed CAD model of the U.S. Space Shuttle EVA Spacesuit, developed at NASA Langley Research Center (LaRC), is used to represent the directional shielding of an astronaut; it has detailed helmet and backpack structures, hard upper torso, and multilayer space suit fabric material. The NASA Computerized Anatomical Male and Female (CAM and CAF) models are used in conjunction with the space suit CAD model for dose evaluation within the human body. The particle environments are taken from the orbit-averaged NASA AP8 and AE8 models at solar cycle maxima and minima. The transport of energetic particles through space suit materials and body tissue is calculated by using the NASA LaRC HZETRN code for hadrons and a recently developed deterministic transport code, ELTRN, for electrons. The doses within the CAM and CAF models are determined from energy deposition at given target points along 968 directional rays convergent on the points and are evaluated for several points on the skin and within the body. Dosimetric quantities include contributions from primary protons, light ions, and electrons, as well as from secondary brehmsstrahlung and target fragments. Directional dose patterns are displayed as rays and on spherical surfaces by the use of a color relative intensity representation. PMID:15133283

  12. Water Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently scheduled for March, 2009, after which the pump will be delivered to NASA for further testing.

  13. Dexterity testing of chemical-defense gloves. Technical report

    SciTech Connect

    Robinette, K.M.; Ervin; Zehner, G.F.

    1986-05-01

    Chemical-defense gloves (12.5-mil Epichlorohydron/Butyl, 14-mil Epichlorohydron/Butyl, and 7-mil Butyl with Nomex overgloves) were subjected to four dexterity tests (O'Connor Finger Dexterity Test, Pennsylvania Bi-Manual Worksample-Assembly, Minnesota Rate of Manipulation Turning, and the Crawford Small Test). Results indicated that subjects performances were most impaired by the 7-mil Butyl with Nomex overglove. Though differences between the other three gloved conditions were not always statistically significant, subjects performed silghtly better while wearing the Epichlorohydron/Butyl gloves, no matter which thickness, than they did while wearing the 15-mil butyl gloves. High negative correlation between anthropometry and gloved tests scores of subjects suggested that poor glove fit may also have affected subjects performances.

  14. STS-55 MS3 Bernard A. Harris, Jr in EMU at JSC's WETF for EVA simulation

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist 3 (MS3) Bernard A. Harris, Jr, fully suited in an extravehicular mobility unit (EMU), stands on platform awaiting an underwater extravehicular activity (EVA) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Harris will be lowered into the WETF's 25 foot deep pool and once underwater will perform contingency EVA tasks. With the aid of weights (attached at his ankles and upper torso) he will achieve neutral buoyancy. There is no scheduled EVA for the 1993 flight but each space flight crew includes astronauts trained for a variety of contingency tasks that could require exiting the shirt-sleeve environment of a Shuttle's cabin.

  15. Design and simulation of EVA tools for first servicing mission of HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1993-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the space shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A space shuttle repair mission in late 1993 will install small corrective mirrors that will restore the full intended optical capability of the HST. The first servicing mission (FSM) will involve considerable extravehicular activity (EVA). It is proposed to design special EVA tools for the FSM. This report includes details of the data acquisition system being developed to test the performance of the various EVA tools in ambient as well as simulated space environment.

  16. A test method for the evaluation of protective glove materials used in agricultural pesticide operations.

    PubMed

    Ehntholt, D J; Cerundolo, D L; Bodek, I; Schwope, A D; Royer, M D; Nielsen, A P

    1990-09-01

    The ASTM Standard Test Method for Resistance of Protective Clothing Materials to Permeation by Liquids and Gases (F 739-85) and the recommended permeation cell have been modified to permit the testing of protective clothing materials for permeation by the low volatility, low water solubility active ingredients present in many pesticide formulations. The modification makes use of solid collection medium, a thin (0.02-in. thick) sheet of silicone rubber, to collect permeants. Those compounds permeating the protective material can then be desorbed into an appropriate solvent and analyzed using conventional methods and instruments. A series of permeation tests have been conducted using samples of 10 common, commercially available protective glove materials and the modified cell. Permeation of the active ingredient as well as carrier solvent components of several concentrated pesticide formulations containing low volatility, low water solubility active ingredients and aromatic hydrocarbon carrier solvents has been monitored. The relative breakthrough and the total mass of material permeating the glove materials appears to be strongly related to the concentration of the aromatic carrier solvent present in the formulations studied to date. The collection method was found to be less useful for monitoring the permeation of active ingredients, which have reasonably high water solubilities. The results obtained by using this method with samples of protective glove materials challenged by several concentrated pesticide formulations are described. For these formulations containing xylene boiling range aromatic solvents, gloves made of nitrile rubber, butyl rubber, and Silver Shield were most resistant to permeation; natural rubber and polyethylene glove materials were least resistant. PMID:1699398

  17. Study of roles of remote manipulator systems and EVA for shuttle mission support, volume 1

    NASA Technical Reports Server (NTRS)

    Malone, T. B.; Micocci, A. J.

    1974-01-01

    Alternate extravehicular activity (EVA) and remote manipulator system (RMS) configurations were examined for their relative effectiveness in performing an array of representative shuttle and payload support tasks. Initially a comprehensive analysis was performed of payload and shuttle support missions required to be conducted exterior to a pressurized inclosure. A set of task selection criteria was established, and study tasks were identified. The EVA and RMS modes were evaluated according to their applicability for each task and task condition. The results are summarized in tabular form, showing the modes which are chosen as most effective or as feasible for each task/condition. Conclusions concerning the requirements and recommendations for each mode are presented.

  18. Permeation of glove materials by physiologically harmful chemicals

    Microsoft Academic Search

    JOHN R. WILLIAMS

    1979-01-01

    The breakthrough times and permeation rates of 1,4-dichloro-2-butene, benzene, carbon tetrachloride, and 2-chloro-1,3-butadiene for eleven commercially available gloves were determined. Four methods of determining the breakthrough time and permeation rate were evaluated. A wide variation in the glove material thickness and protection time was found showing that the adequate protection time can only be determined by testing the proposed glove

  19. Permeability of latex and polyvinyl chloride gloves to 20 antineoplastic drugs.

    PubMed

    Laidlaw, J L; Connor, T H; Theiss, J C; Anderson, R W; Matney, T S

    1984-12-01

    Permeability of latex and polyvinyl chloride (PVC) gloves to 20 injectable antineoplastic drugs was studied. Four types of gloves were evaluated: latex surgical gloves, latex examination gloves, and PVC gloves in two thicknesses. Each glove material was exposed to each drug for 90 minutes, and permeation was tested using a mutagenicity assay. Individual fingertips of thin PVC gloves and latex surgical gloves were tested for permeability at five time points (2-30 minutes) using a doxorubicin coloration assay. All drugs permeated the thin PVC gloves. Latex surgical gloves were definitely permeable to two drugs (carmustine and thiotepa) and exhibited borderline permeability to mechlorethamine hydrochloride. The thick PVC gloves were definitely permeable to four drugs (carmustine, thiotepa, mechlorethamine hydrochloride, and daunorubicin hydrochloride) and exhibited borderline permeability to two drugs (doxorubicin and mercaptopurine). The latex examination gloves were permeable to carmustine, thiotepa, mechlorethamine hydrochloride, and cyclophosphamide. Doxorubicin permeation of individual fingertips of thin PVC gloves varied in time and amount. Doxorubicin did not permeate the latex surgical glove material, but testing with thiotepa showed that individual fingertips of this material also varied in permeability. Glove thickness was a major determinant of permeability; latex surgical gloves were the least permeable and thin PVC gloves the most permeable to the antineoplastic drugs tested. Within individual gloves and glove types, time and amount of permeation were not uniform. PMID:6440436

  20. Development of Damp-Heat Resistant Self-Primed EVA and Non-EVA Encapsulant Formulations at NREL

    SciTech Connect

    Pern, F. J.; Jorgensen, G. J.

    2005-11-01

    Self-primed ethylene-vinyl acetate (EVA) and non-EVA (PMG) encapsulant formulations were developed that have greater resistance to damp heat exposure at 85 deg C and 85% relative humidity (RH) (in terms of adhesion strength to glass substrates) than a commonly used commercial EVA product. The self-primed EVA formulations were developed on the basis of high-performing glass priming formulations that have previously proven to significantly enhance the adhesion strength of unprimed and primed EVA films on glass substrates during damp heat exposure. The PMG encapsulant formulations were based on an ethylene-methylacrylate copolymer containing glycidyl methacrylate.

  1. Handling chemotherapy drugs-Do medical gloves really protect?

    PubMed

    Landeck, Lilla; Gonzalez, Ernesto; Koch, Olaf Manfred

    2014-06-30

    Due to their potential mutagenic, carcinogenic and teratogenic effects occupational exposure to chemotherapy drugs should be kept to a minimum. Utilization of personnel protective devices, especially the use of protective medical gloves, is a mainstay to avoid skin contact. The choice of appropriate gloves is of outstanding importance. For optimal protection in the oncology setting it is essential to establish general guidelines evaluating appropriate materials and defining quality standards. Establishing these guidelines can facilitate better handling and avoid potential hazards and late sequelae. In Europe there are no specific requirements or test methodologies for medical gloves used in the oncology environment. The implementation of uniform standards for gloves used while handling chemotherapy drugs would be desirable. In contrast, in the US medical gloves used to handle chemotherapy drugs have to fulfill requirements according to the ASTM International (American Society of Testing and Materials) standard D 6978-05. Nitrile or natural rubber latex is a preferred basic glove material, while vinyl is considered inappropriate because of its generally increased permeability. For extended exposure to chemotherapy drugs, double gloving, the use of thicker gloves and the frequent change of gloves increases their protective power. PMID:24978061

  2. Guidelines for the selection of gloves for the workplace. NIOSH.

    PubMed

    Mansdorf, S Z

    1994-07-01

    The selection of gloves for the workplace can be accomplished using a seven step process including consideration of alternatives to protective clothing, evaluating the nature and extent of the hazard, determining material and human performance requirements for the gloves, and cost. The primary determinant is protection of the worker. Gloves selected for protection against chemical hazards should be chosen based on permeation resistance. No single glove is available that can provide all desirable chemical and physical properties, hence, compromise is usually necessary. PMID:7923958

  3. Computational Optimization of a Natural Laminar Flow Experimental Wing Glove

    NASA Technical Reports Server (NTRS)

    Hartshom, Fletcher

    2012-01-01

    Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

  4. 21 CFR 878.4470 - Surgeon's gloving cream.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4470 Surgeon's gloving cream. (a) Identification....

  5. Hubble Space Telescope EVA Power Ratchet Tool redesign

    NASA Astrophysics Data System (ADS)

    Richards, Paul W.; Park, Chan; Brown, Lee

    The Power Ratchet Tool (PRT) is a self contained, power-driven, 3/8 inch drive ratchet wrench which will be used by astronauts during Extravehicular Activities (EVA). This battery-powered tool is controlled by a dedicated electonic controller. The PRT was flown during the Hubble Space Telescope (HST) Deployment Mission STS-31 to deploy the solar arrays if the automatic mechanisms failed. The PRT is currently intended for use during the first HST Servicing Mission STS-61 as a general purpose power tool. The PRT consists of three major components; the wrench, the controller, and the battery module. Fourteen discrete combinations of torque, turns, and speed may be programmed into the controller before the EVA. The crewmember selects the desired parameter profile by a switch mounted on the controller. The tool may also be used in the manual mode as a non-powered ratchet wrench. The power is provided by a silver-zinc battery module, which fits into the controller and is replaceable during an EVA. The original PRT did not meet the design specification of torque output and hours of operation. To increase efficiency and reliability the PRT underwent a redesign effort. The majority of this effort focused on the wrench. The original PRT drive train consisted of a low torque, high speed brushless DC motor, a face gear set, and a planocentric gear assembly. The total gear reduction was 300:1. The new PRT wrench consists of a low speed, high torque brushless DC motor, two planetary gear sets and a bevel gear set. The total gear reduction is now 75:1. A spline clutch has also been added to disengage the drive train in the manual mode. The design changes to the controller will consist of only those modifications necessary to accomodate the redesigned wrench.

  6. TEJAS - TELEROBOTICS/EVA JOINT ANALYSIS SYSTEM VERSION 1.0

    NASA Technical Reports Server (NTRS)

    Drews, M. L.

    1994-01-01

    The primary objective of space telerobotics as a research discipline is the augmentation and/or support of extravehicular activity (EVA) with telerobotic activity; this allows increased emplacement of on-orbit assets while providing for their "in situ" management. Development of the requisite telerobot work system requires a well-understood correspondence between EVA and telerobotics that to date has been only partially established. The Telerobotics/EVA Joint Analysis Systems (TEJAS) hypermedia information system uses object-oriented programming to bridge the gap between crew-EVA and telerobotics activities. TEJAS Version 1.0 contains twenty HyperCard stacks that use a visual, customizable interface of icon buttons, pop-up menus, and relational commands to store, link, and standardize related information about the primitives, technologies, tasks, assumptions, and open issues involved in space telerobot or crew EVA tasks. These stacks are meant to be interactive and can be used with any database system running on a Macintosh, including spreadsheets, relational databases, word-processed documents, and hypermedia utilities. The software provides a means for managing volumes of data and for communicating complex ideas, relationships, and processes inherent to task planning. The stack system contains 3MB of data and utilities to aid referencing, discussion, communication, and analysis within the EVA and telerobotics communities. The six baseline analysis stacks (EVATasks, EVAAssume, EVAIssues, TeleTasks, TeleAssume, and TeleIssues) work interactively to manage and relate basic information which you enter about the crew-EVA and telerobot tasks you wish to analyze in depth. Analysis stacks draw on information in the Reference stacks as part of a rapid point-and-click utility for building scripts of specific task primitives or for any EVA or telerobotics task. Any or all of these stacks can be completely incorporated within other hypermedia applications, or they can be referenced as is, without requiring data to be transferred into any other database. TEJAS is simple to use and requires no formal training. Some knowledge of HyperCard is helpful, but not essential. All Help cards printed in the TEJAS User's Guide are part of the TEJAS Help Stack and are available from a pop-up menu any time you are using TEJAS. Specific stacks created in TEJAS can be exchanged between groups, divisions, companies, or centers for complete communication of fundamental information that forms the basis for further analyses. TEJAS runs on any Apple Macintosh personal computer with at least one megabyte of RAM, a hard disk, and HyperCard 1.21, or later version. TEJAS is a copyrighted work with all copyright vested in NASA. HyperCard and Macintosh are registered trademarks of Apple Computer, Inc.

  7. Using the Space Glove to Teach Spatial Thinking

    NASA Technical Reports Server (NTRS)

    Lord, Peter

    2008-01-01

    The challenge of extending students' skills in spatial thinking to astronomical scales was the central focus of our K-8 curriculum development. When the project's lead teacher requested a curriculum that cumulatively built on each prior year's learning in a spiral fashion, I knew exactly what the school was asking for. Second and third graders began by noticing the cyclical patters that the sun, moon, and stars make in the sky. Fourth graders explored the phases of the moon by taking turns modeling and sketching them in their classroom and then comparing them to the real sky. Sixth !graders used real telescopes to observe a moving model of our solar system and walked a scale model of the planets' orbits. The curriculum is designed to expand students' capacity to visualize space in a hierarchical fashion that asks them to imagine themselves from a broader number of spatial perspectives through hands-on activities. The "situational awareness" Peter's story describes is a hallmark of high-performance engineering and innovation. Keeping in mind the potential outcomes of multiple paths of pursuit from multiple perspectives while keeping track of their relative merits and performance requirements is a demanding spatial task. What made it possible for Peter to transform the failure of his first glove into triumph was the mental space in which that failure provided exactly the information needed for a new breakthrough. In at least two cases, Peter could immediately "see" the full implications of what his hands were telling him. He tells the story of how putting his hands in a Phase VI astronaut glove instantly transformed his understanding of the glove challenge. Six months into his development, the failure of circumferentially wrapped cords to produce a sufficiently flexible glove again forced him to abandon his assumptions. His situational awareness was so clear and compelling it became a gut-level response. Peter's finely developed spatial skills enabled him to almost instinctively focus his full energy on a carefully constructed set of experiments. The finger's ability to sense pressure, force, and work gave him the immediate feedback required to solve this one central problem. Once properly understood, his failure quickly led to the magical "Aha!" moment of discovery; the rest is history. Just as children need opportunities to develop hands-on understanding, engineers need to explore new possibilities through incremental hands-on failure. High-performance innovation is all about learning to make maximum use of thinking spatially to direct this process. Peter Homer's glove also reminds us that efficient engineering decisions need to be made as close to the hardware as possible. Whether we're doing hands-on education or hands-on engineering, it is when we trust in our ability to "feel our way" through failure that we reach our highest potential.

  8. Ensuring of long operation life of the orbiting station EVA space suit

    Microsoft Academic Search

    I. P. Abramov; G. M. Glazov; V. I. Svertshek; A. Yu. Stoklitsky

    1997-01-01

    Russia has gained a lot of experience in operating the space suits (SS) during the extravehicular activities (EVA) by the crews of SALYUT-6, SALYUT-7 and MIR orbiting stations. A total of 21 Orlan-type space suits of various models were operated onboard the orbiting stations (OS) during almost 20 years period. Some of these space suits served up to 3 years

  9. Economic estimation of forest fire damage in N-E Italy1 Eva Valese2

    E-print Network

    Tempesta, Tiziano

    Economic estimation of forest fire damage in N-E Italy1 Eva Valese2 , Daniele Lubello2 ,Tommaso2 , Emanuela Ramon4 , Alice Lemessi4 . Abstract In Italy, about 45,000 ha of forest areas are burned the method to a specific area (Veneto region) of the north-eastern Italy. The costs of active fire

  10. STS-31 Crew Training: Firefighting, Food Tasting, EVA Prep and Post

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Space Shuttle crew is shown lighting a pond of gasoline and then performing firefighting tasks. The crew is also shown tasting food including lemonade, chicken casserole, and tortillas, and performing extravehicular activity (EVA) equipment checkouts in the CCT middeck and airlock.

  11. Astronaut Shannon Lucid in training for contingency EVA for STS-58 in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Shannon W. Lucid participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. For simulation purposes, the mission specialist is about to be submerged to a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF).

  12. Space shuttle EVA/IVA support equipment requirements study. Volume 1: Final summary report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the support equipment requirements for space shuttle intravehicular and extravehicular activities. The subjects investigated are; (1) EVA/IVA task identification and analysis,. (2) primary life support system, (3) emergency life support system, (4) pressure suit assembly, (5) restraints, (6) work site provision, (7) emergency internal vehicular emergencies, and (8) vehicular interfaces.

  13. Integrity of Disposable Nitrile Exam Gloves Exposed to Simulated Movement

    PubMed Central

    Phalen, Robert N.; Wong, Weng Kee

    2011-01-01

    Every year, millions of health care, first responder, and industry workers are exposed to chemical and biological hazards. Disposable nitrile gloves are a common choice as both a chemical and physical barrier to these hazards, especially as an alternative to natural latex gloves. However, glove selection is complicated by the availability of several types or formulations of nitrile gloves, such as low-modulus, medical-grade, low-filler, and cleanroom products. This study evaluated the influence of simulated movement on the physical integrity (i.e., holes) of different nitrile exam glove brands and types. Thirty glove products were evaluated out-of-box and after exposure to simulated whole-glove movement for 2 hr. In lieu of the traditional 1-L water-leak test, a modified water-leak test, standardized to detect a 0.15 ± 0.05 mm hole in different regions of the glove, was developed. A specialized air inflation method simulated bidirectional stretching and whole-glove movement. A worst-case scenario with maximum stretching was evaluated. On average, movement did not have a significant effect on glove integrity (chi-square; p=0.068). The average effect was less than 1% between no movement (1.5%) and movement (2.1%) exposures. However, there was significant variability in glove integrity between different glove types (p ? 0.05). Cleanroom gloves, on average, had the highest percentage of leaks, and 50% failed the water-leak test. Low-modulus and medical-grade gloves had the lowest percentages of leaks, and no products failed the water-leak test. Variability in polymer formulation was suspected to account for the observed discrepancies, as well as the inability of the traditional 1-L water-leak test to detect holes in finger/thumb regions. Unexpectedly, greater than 80% of the glove defects were observed in the finger and thumb regions. It is recommended that existing water-leak tests be re-evaluated and standardized to account for product variability. PMID:21476169

  14. Integrity of disposable nitrile exam gloves exposed to simulated movement.

    PubMed

    Phalen, Robert N; Wong, Weng Kee

    2011-05-01

    Every year, millions of health care, first responder, and industry workers are exposed to chemical and biological hazards. Disposable nitrile gloves are a common choice as both a chemical and physical barrier to these hazards, especially as an alternative to natural latex gloves. However, glove selection is complicated by the availability of several types or formulations of nitrile gloves, such as low-modulus, medical grade, low filler, and cleanroom products. This study evaluated the influence of simulated movement on the physical integrity (i.e., holes) of different nitrile exam glove brands and types. Thirty glove products were evaluated out-of-box and after exposure to simulated whole-glove movement for 2 hr. In lieu of the traditional 1 L water-leak test, a modified water-leak test, standardized to detect a 0.15 ± 0.05 mm hole in different regions of the glove, was developed. A specialized air inflation method simulated bidirectional stretching and whole-glove movement. A worst-case scenario with maximum stretching was evaluated. On average, movement did not have a significant effect on glove integrity (chi-square; p=0.068). The average effect was less than 1% between no movement (1.5%) and movement (2.1%) exposures. However, there was significant variability in glove integrity between different glove types (p?0.05). Cleanroom gloves, on average, had the highest percentage of leaks, and 50% failed the water-leak test. Low-modulus and medical grade gloves had the lowest percentages of leaks, and no products failed the water-leak test. Variability in polymer formulation was suspected to account for the observed discrepancies, as well as the inability of the traditional 1 L water-leak test to detect holes in finger/thumb regions. Unexpectedly, greater than 80% of the glove defects were observed in the finger and thumb regions. It is recommended that existing water-leak tests be re-evaluated and standardized to account for product variability. PMID:21476169

  15. Permeation and destructive effects of disinfectants on protective gloves.

    PubMed

    Mellström, G A; Lindberg, M; Boman, A

    1992-03-01

    In working situations where there is a possibility of acquiring blood-borne infections, the use of disinfectants is important. It is also important to use protective gloves, both to protect the skin against disinfectants and to protect against infections. Changes in the structure of the glove material may, however, interfere with the protective capability of the gloves. The influence of 4 disinfectants on the material structure and protective effect of 6 different brands of protective gloves was studied. The proposed International Organization for Standardization (ISO) standard method for determining the liquid chemical resistance of air-impermeable materials was used for permeation testing. Pieces of latex and vinyl glove were also exposed to isopropanol and ethanol for 10, 30 and 60 min and then viewed in a scanning electron microscope. Isopropanol permeated through latex and vinyl gloves in less than 10 min. The polyethylene (PE) gloves were of quite variable quality, and the breakthrough time ranged from 4 to greater than 240 min. The latex and vinyl gloves were also permeated by ethanol, but at a much lower rate. The disinfectants Blifacid, based on p-chloro-m-cresol, and Cidex, based on glutaraldehyde, did not permeate any of the gloves tested within 60 min. Isopropanol had a destructive effect on the material, which became opaque, stiff and brittle. This change in structure was verified with the scanning electron microscope. The tested gloves of latex, vinyl and PE, gave acceptable protection from contact with Blifacid and Cidex for at least 60 min. The same gloves do not give any total protection from contact with isopropanol and ethanol. PMID:1505181

  16. Organic solvents permeation through protective nitrile gloves

    Microsoft Academic Search

    Keh-Ping Chao; Pak-Hing Lee; Min-Jet Wu

    2003-01-01

    Effective diffusion coefficients for the permeation of several organic solvents through nitrile gloves were experimentally investigated using the American Society for Testing and Materials (ASTM) F-739 test cell method. Fick’s effective diffusion coefficients for benzene, toluene, ethyl benzene, xylene, and styrene were estimated to be 0.61±0.02, 0.50±0.06, 0.27±0.02, 0.31±0.03, and 0.21±0.03 (×10?6cm2\\/s), respectively. These results were comparable to results found

  17. Anthropomorphic Robot Hand And Teaching Glove

    NASA Technical Reports Server (NTRS)

    Engler, Charles D., Jr.

    1991-01-01

    Robotic forearm-and-hand assembly manipulates objects by performing wrist and hand motions with nearly human grasping ability and dexterity. Imitates hand motions of human operator who controls robot in real time by programming via exoskeletal "teaching glove". Telemanipulator systems based on this robotic-hand concept useful where humanlike dexterity required. Underwater, high-radiation, vacuum, hot, cold, toxic, or inhospitable environments potential application sites. Particularly suited to assisting astronauts on space station in safely executing unexpected tasks requiring greater dexterity than standard gripper.

  18. Extravehicular activity space suit interoperability

    Microsoft Academic Search

    G. I. Severin; J. W. McBarron II

    1995-01-01

    The European Agency (ESA) and the Russian Space Agency (RKA) are jointly developing a new space suit system for improved extravehicular activity (EVA) capabilities in support of the MIR Space Station Programme, the EVA Suit 2000. Recent national policy agreements between the U.S. and Russia on planned cooperations in manned space also include joint extravehicular activity (EVA).With an increased number

  19. The Clinical Significance of Hydration in Natural Rubber Latex Gloves

    E-print Network

    Bennett, John K.

    The Clinical Significance of Hydration in Natural Rubber Latex Gloves J. K. Bennett Department performance of natural rubber latex gloves. ffl These effects potentially include increased conductivity [6], have resulted in a dramatic increase in the use of natural rubber latex (NRL) surgical

  20. The Use of Latex Gloves in the School Setting

    ERIC Educational Resources Information Center

    Purcell, Cathy Koeppen

    2006-01-01

    In 1987, when the U.S. Centers for Disease Control and Prevention recommended the use of universal precautions in response to the HIV/AIDS epidemic, the demand for medical gloves dramatically increased. Unfortunately, the manufacturing techniques for the most widely-used gloves--natural rubber latex--also changed, in order to expedite production.…

  1. Permeation of cytotoxic formulations through swatches from selected medical gloves.

    PubMed

    Klein, Michael; Lambov, Nikolai; Samev, Nikola; Carstens, Gerhard

    2003-05-15

    The permeability of selected medical glove materials to various cytotoxic agents is described. Fifteen cytotoxic agents were prepared at the highest concentrations normally encountered by hospital personnel. Four single-layer and two double-layer glove systems made of two materials--latex and neoprene--were exposed to the drugs for 30, 60, 90, 120, 150, and 180 minutes. Circular sections of the glove material were cut from the cuff and evaluated without any pretreatment. Permeability tests were conducted in an apparatus consisting of a donor chamber containing the cytotoxic solution and a collection chamber filled with water (the acceptor medium). The two sections were separated by the glove material. Permeating portions, collected in water as the acceptor medium, were analyzed by either ultraviolet-visible light spectrophotometry or high-performance liquid chromatography (HPLC). Permeation rates were calculated on the basis of the concentration of the cytotoxic agent in the acceptor medium. Spectrophotometric measurements were taken every 30 minutes, and HPLC analysis was performed at the end of the three-hour period. Average permeation rates for 14 drugs were low (< 0.2 nmol/[min.cm2]) or no permeation was detected in all glove materials. All glove materials tested were impermeable to most of the cytotoxic agents over a period of three hours. Carmustine was the only agent that substantially permeated single-layer latex glove materials. Permeation of most tested cytotoxic formulations was low through swatches of material from various medical gloves. PMID:12789871

  2. Permeation of aromatic solvent mixtures through nitrile protective gloves

    Microsoft Academic Search

    Keh-Ping Chao; Ya-Ping Hsu; Su-Yi Chen

    2008-01-01

    The permeation of binary and ternary mixtures of benzene, toluene, ethyl benzene and p-xylene through nitrile gloves were investigated using the ASTM F739 test cell. The more slowly permeating component of a mixture was accelerated to have a shorter breakthrough time than its pure form. The larger differences in solubility parameter between a solvent mixture and glove resulted in a

  3. Design options for improving protective gloves for industrial assembly work.

    PubMed

    Dianat, Iman; Haslegrave, Christine M; Stedmon, Alex W

    2014-07-01

    The study investigated the effects of wearing two new designs of cotton glove on several hand performance capabilities and compared them against the effects of barehanded, single-layered and double cotton glove conditions when working with hand tools (screwdriver and pliers). The new glove designs were based on the findings of subjective hand discomfort assessments for this type of work and aimed to match the glove thickness to the localised pressure and sensitivity in different areas of the hand as well as to provide adequate dexterity for fine manipulative tasks. The results showed that the first prototype glove and the barehanded condition were comparable and provided better dexterity and higher handgrip strength than double thickness gloves. The results support the hypothesis that selective thickness in different areas of the hand could be applied by glove manufacturers to improve the glove design, so that it can protect the hands from the environment and at the same time allow optimal hand performance capabilities. PMID:24636726

  4. A Glove Based Adaptive Sensor Interface for Live Musical Performances

    Microsoft Academic Search

    Giovanni Costantini; Giovanni Saggio; Massimiliano Todisco

    2010-01-01

    In this paper we propose a glove based adaptive sensor interface; it is able to control a real time granular sound synthesis process. The glove was adopted to measure static and dynamic postures of the hand, by means of piezoelectric sensors, which are capable to change their electrical resistivity when deformed. The piezoresistive coefficient is defined by the ratio of

  5. Design of an Assistive Communication Glove Using Combined Sensory Channels

    Microsoft Academic Search

    Netchanok Tanyawiwat; Surapa Thiemjarus

    2012-01-01

    This paper presents a new design of a wireless sensor glove developed for American Sign Language finger spelling gesture recognition. Five contact sensors are installed on the glove, in addition to five flex sensors on the fingers and a 3D accelerometer on the back of the hand. Each pair of flex and contact sensors are combined into the same input

  6. GRASP: Recognition of Australian Sign Language Using Instrumented Gloves

    Microsoft Academic Search

    Waleed Kadous

    1995-01-01

    Instrumented gloves -- gloves equipped with sensors for detecting finger bend, handposition and orientation -- were conceived to allow a more natural interface to computers.However, the extension of their use for recognising sign language, and in thiscase Auslan (Australian Sign Language), is possible. Several researchers have alreadyexplored these possibilities and have successfully achieved finger-spelling recognitionwith high levels of accuracy, but

  7. Sign Language Recognition using Sensor Gloves Yasir Niaz Khan

    E-print Network

    Berns, Karsten

    Sign Language Recognition using Sensor Gloves Yasir Niaz Khan Syed Atif Mehdi FAST This paper examines the possibility of recognizing sign language gestures using sensor gloves. Previously in Sign Language recognition. This is done by implementing a project called "Talking Hands", and studying

  8. A System for Cooling inside a Glove Box

    ERIC Educational Resources Information Center

    Sanz, Martial

    2010-01-01

    An easy, efficient, reliable, and low-cost method of constructing a cooling system using a simple circulating pump is described. The system is employed in conjunction with an inert atmosphere glove box to achieve the synthesis of air- and moisture-sensitive compounds inside the glove box at controlled, low temperatures without contaminating the…

  9. Haptic Glove Technology: Skill Development through Video Game Play

    ERIC Educational Resources Information Center

    Bargerhuff, Mary Ellen; Cowan, Heidi; Oliveira, Francisco; Quek, Francis; Fang, Bing

    2010-01-01

    This article introduces a recently developed haptic glove system and describes how the participants used a video game that was purposely designed to train them in skills that are needed for the efficient use of the haptic glove. Assessed skills included speed, efficiency, embodied skill, and engagement. The findings and implications for future…

  10. 5. VIEW OF A GLOVE BOX FIREWALL DETAIL. THE FIREWALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF A GLOVE BOX FIREWALL DETAIL. THE FIREWALL WAS A SAFETY FEATURE TO PREVENT THE SPREAD OF FIRE BETWEEN INTERCONNECTED GLOVE BOXES. PLUTONIUM IS PYROPHORIC, AND MAY IGNITE IN THE PRESENCE OF OXYGEN. (5/8/70) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  11. 12. VIEW OF THE INSPECTION MODULE (MODULE D). THE GLOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF THE INSPECTION MODULE (MODULE D). THE GLOVE BOX IN THE FOREFRONT OF THE PHOTOGRAPH CONTAINS A DRILL PRESS; OTHER GLOVE BOXES ARE USED FOR PARTS INSPECTION. (5/70) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  12. 3. VIEW OF CHAINVEYOR. AN ENCLOSED CHAIN CONVEYOR CONNECTED GLOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF CHAINVEYOR. AN ENCLOSED CHAIN CONVEYOR CONNECTED GLOVE BOXES WITHIN AND BETWEEN MODULAR WORK AREAS. LEADED GLOVES WERE AFFIXED TO PORTS ALONG THE CHAINVEYOR PATHWAY TO ALLOW OPERATOR ACCESS. (1/25/93) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  13. 9. VIEW, LOOKING WEST, OF GLOVE BOXES ASSOCIATED WITH THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW, LOOKING WEST, OF GLOVE BOXES ASSOCIATED WITH THE ANION EXCHANGE PROCESS IN ROOM 149. THE GLOVE BOXES ON THE LEFT CONTAIN MIXER STIRRERS THAT AID IN THE DISSOLUTION PROCESS THAT OCCURRED PRIOR TO ANION EXCHANGE. (6/20/60) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  14. RoboGlove - A Robonaut Derived Multipurpose Assistive Device

    NASA Technical Reports Server (NTRS)

    Diftler, Myron; Ihrke, C. A.; Bridgwater, L. B.; Davis, D. R.; Linn, D. M.; Laske, E. A.; Ensley, K. G.; Lee, J. H.

    2014-01-01

    The RoboGlove is an assistive device that can augment human strength, endurance or provide directed motion for use in rehabilitation. RoboGlove is a spinoff of the highly successful Robonaut 2 (R2) system developed as part of a partnership between General Motors and NASA. This extremely lightweight device employs an actuator system based on the R2 finger drive system to transfer part or the entire grasp load from human tendons to artificial ones contained in the glove. Steady state loads ranging from 15 to 20 lbs. and peaks approaching 50 lbs. are achievable. The technology holds great promise for use with space suit gloves to reduce fatigue during space walks. Tactile sensing, miniaturized electronics, and on-board processing provide sufficient flexibility for applications in many industries. The following describes the design, mechanical/electrical integration, and control features of the glove.

  15. The 757 NLF glove flight test results

    NASA Technical Reports Server (NTRS)

    Runyan, L. Jim; Bielak, G. W.; Behbehani, R. A.; Chen, A. W.; Rozendaal, Roger A.

    1987-01-01

    A major concern in the application of a laminar flow wing design to commercial transports is whether laminar flow can be sustained in the presence of the noise environment due to wing mounted turbofan engines. To investigate this issue, a flight test program was conducted using the Boeing 757 flight research airplane with a portion of the wing modified to obtain natural laminar flow. The flight test had two primary objectives. The first was to measure the noise levels on the upper and lower surface of the wing for a range of flight conditions. The second was to investigate the effect of engine noise on laminar boundary layer transition. The noise field on the wing and transition location on the glove were then measured as a function of the engine power setting at a given flight condition. The transition and noise measurement on the glove show that there is no apparent effect of engine noise on the upper surface transition location. On the lower surface, the transition location moved forward 2 to 3 percent chord. A boundary layer stability analysis to the flight data showed that cross flow disturbances were the dominant cause of transition at most flight conditions.

  16. Nanorobots for Mars EVA Repair

    Microsoft Academic Search

    Benjamin Chui; Lea Kissner

    Current t rends in technology indicate that nanometer- scale de vices will be feasible within two de cades. It is likely that NASA will attempt a manned Mars mission within the next few decades. Manned Mars activities will be relatively labor-intensive, presenting significant risk of damage to the Marssuit. We ha ve investigated two possible architectures for nanotechnology applied to

  17. EVA Communications Avionics and Informatics

    NASA Technical Reports Server (NTRS)

    Carek, David Andrew

    2005-01-01

    The Glenn Research Center is investigating and developing technologies for communications, avionics, and information systems that will significantly enhance extra vehicular activity capabilities to support the Vision for Space Exploration. Several of the ongoing research and development efforts are described within this presentation including system requirements formulation, technology development efforts, trade studies, and operational concept demonstrations.

  18. Comparison of Human Modeling Tools for Efficiency of Prediction of EVA Tasks

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Loughead, Tomas E.

    1998-01-01

    Design of ExtraVehicular Activity (EVA) interfaces for International Space Station is important to successful assembly. This is highlighted by the recent rise in the estimate of time required for EVA during the assembly to 900 hours. The traditional method of evaluating EVA design is examination of mockups in neutral buoyancy testing. While effective, this is costly. Any tools for streamlining this process have positive cost and schedule implications for Station design. The human modelling software package Jack has been shown to be a useful tool in computer-aided design of space hardware requiring actuation in EVA. The package has been used to aid in the design of flight hardware for a Station Assembly Mission; evaluation was based on comparison of the computer simulations with neutral buoyancy simulations. When used to predict the feasibility of tasks, the software was found to be effective for reach and visibility evaluation. Some limitations have been encountered in prediction of work clearances. Another human simulator is currently being evaluated using the same hardware and comparisons to the same Neutral Buoyancy simulations. Preliminary results for ERGO, which is derived from robotics software, indicate similar strengths and weaknesses.

  19. Prevention of occupational skin disease through use of chemical protective gloves.

    PubMed

    Berardinelli, S P

    1988-01-01

    Selection of chemical protective gloves for use against industrial liquids in the controlled workplace is accomplished by risk analysis, in which the appropriate physical and chemical glove properties needed by the worker to perform the job are determined. Candidate protective gloves are then subjected to chemical permeation testing. Three representative case studies illustrate risk analysis and glove selection. PMID:2968209

  20. Investigation of various clean room gloves for cleanliness

    NASA Astrophysics Data System (ADS)

    Lobmeyer, Lynette; Pirkey, Mike

    2012-10-01

    The donning of gloves is an essential handling requirement for minimizing aerospace hardware contamination. . Glove manufacturers frequently tout particle cleanliness, aqueous extractables, and pin holes in their literature. However, t comfort, dexterity, the level of non-volatile residue, and other characteristics are also important characteristics to consider when dealing with contamination sensitive, high-value hardware. In this paper, Ball Aerospace and Technologies (BATC) reports on its s investigation of several readily available gloves for use in the aerospace manufacturing environment and has developed a method of selection, testing, and analysis to ensure that gloves donned are ready for service. The testing method used do not necessarily comply any with any industry standards. The original tests fell into several categories. One of these was a non-volatile residue (NVR) test which examined contamination on the surface of the glove. A number of lots from several manufacturers were evaluated which provided insights into the cleanliness levels of gloves from potential. This has allowed us to track the lot to lot variability of the cleanliness level of gloves we receive from approved vendors.

  1. A prospective analysis of glove perforation in primary and revision total hip and total knee arthroplasty.

    PubMed

    Carter, Aaron H; Casper, David S; Parvizi, Javad; Austin, Matthew S

    2012-08-01

    Literature in regard to glove perforation rates in revision total joint arthroplasty (TJA) is scarce. Our purpose was to determine the incidence of perforation in revision TJA. Gloves from all scrubbed personnel were tested based on the American Society for Testing and Materials. A total of 3863 gloves were collected from 58 primary and 36 revision arthroplasty cases. Surgeons had a 3.7% outer-glove perforation rate in primary TJA compared with 8.9% in revision TJA. When both gloves were perforated, the outer-glove perforation was recognized intraoperatively 100% of the time, and the inner-glove perforation was noted only 19% of the time. The surgeon has the highest rate of glove perforation. Outer-glove perforations should prompt careful inspection of the inner glove. PMID:22425303

  2. An air bearing fan for EVA suit ventilation

    NASA Technical Reports Server (NTRS)

    Murry, Roger P.

    1990-01-01

    The portable life-support system (PLSS) ventilation requirements are outlined, along with the application of a high-speed axial fan technology for extravehicular-activity (EVA) space-suit ventilation. Focus is placed on a mechanical design employing high-speed gas bearings, permanent magnet rotor, and current-fed chopper/inverter electronics. The operational characteristics of the fan unit and its applicability for use in a pure-oxygen environment are discussed. It delivers a nominal 0.17 cu m/min at 1.24 kPa pressure rise using 13.8 w of input power. It is shown that the overall selection of materials for all major component meets the NASA requirements.

  3. MODELING THE TEMPERATURE DEPENDENCE OF N-METHYLPYRROLIDONE PERMEATION THROUGH BUTYL AND NATURAL-RUBBER GLOVES

    Microsoft Academic Search

    Edward T. Zellers; Robert Sulewski

    1993-01-01

    This paper describes the temperature dependence of N-methylpyrrolidone (NMP) permeation through gloves used in microelectronics fabrication facilities. One type of butyl-rubber glove (North B161), two types of natural-rubber gloves (Edmont Puretek® and Ansell Pacific White®), and a natural rubber\\/nitrile\\/neoprene-blend glove (Pioneer Trionic®) were tested at four temperatures from 25–50 °C using the ASTM F739-85 permeation test method. The butyl-rubber glove

  4. EVA Hazards due to TPS Inspection and Repair

    NASA Technical Reports Server (NTRS)

    Stewart, Christine E.

    2007-01-01

    Tile inspection and repair activities have implicit hazards associated with them. When an Extra Vehicular Activities (EVA) crewmember and associated hardware are added into the equation, additional hazards are introduced. Potential hazards to the Extravehicular Mobility Unit (EMU), the Orbiter or the crew member themselves are created. In order to accurately assess the risk of performing a TPS inspection or repair, an accurate evaluation of potential hazards and how adequately these hazards are controlled is essential. The EMU could become damaged due to sharp edges, protrusions, thermal extremes, molten metal or impact with the Orbiter. Tools, tethers and the presence of a crew member in the vicinity of the Orbiter Thermal Protection System (TPS) pose hazards to the Orbiter. Hazards such as additional tile or Reinforced Carbon-Carbon (RCC) damage from a loose tool, safety tethers, crewmember or arm impact are introduced. Additionally, there are hazards to the crew which should be addressed. Crew hazards include laser injury, electrical shock, inability to return to the airlock for EMU failures or Orbiter rapid safing scenarios, as well as the potential inadvertent release of a crew member from the arm/boom. The aforementioned hazards are controlled in various ways. Generally, these controls are addressed operationally versus by design, as the majority of the interfaces are to the Orbiter and the Orbiter design did not originally account for tile repair. The Shuttle Remote Manipulator System (SRMS), for instance, was originally designed to deploy experiments, and therefore has insufficient design controls for retention of the Orbiter Boom Sensor System (OBSS). Although multiple methods to repair the Orbiter TPS exist, the majority of the hazards are applicable no matter which specific repair method is being performed. TPS Inspection performed via EVA also presents some of the same hazards. Therefore, the hazards common to all TPS inspection or repair methods will be addressed.

  5. First flight test results of the Simplified Aid For EVA Rescue (SAFER) propulsion unit

    NASA Technical Reports Server (NTRS)

    Meade, Carl J.

    1995-01-01

    The Simplified Aid for EVA Rescue (SAFER) is a small, self-contained, propulsive-backpack system that provides free-flying mobility for an astronaut engaged in a space walk, also known as extravehicular activity (EVA.) SAFER contains no redundant systems and is intended for contingency use only. In essence, it is a small, simplified version of the Manned Maneuvering Unit (MMU) last flown aboard the Space Shuttle in 1985. The operational SAFER unit will only be used to return an adrift EVA astronaut to the spacecraft. Currently, if an EVA crew member inadvertently becomes separated from the Space Shuttle, the Orbiter will maneuver to within the crew member's reach envelope, allowing the astronaut to regain contact with the Orbiter. However, with the advent of operations aboard the Russian MIR Space Station and the International Space Station, the Space Shuttle will not be available to effect a timely rescue. Under these conditions, a SAFER unit would be worn by each EVA crew member. Flight test of the pre-production model of SAFER occurred in September 1994. The crew of Space Shuttle Mission STS-64 flew a 6.9 hour test flight which included performance, flying qualities, systems, and operational utility evaluations. We found that the unit offers adequate propellant and control authority to stabilize and enable the return of a tumbling/separating crew member. With certain modifications, production model of SAFER can provide self-rescue capability to a separated crew member. This paper will present the program background, explain the flight test results and provide some insight into the complex operations of flight test in space.

  6. Photo-oxidation Behaviour of EVA Antimicrobial Films

    NASA Astrophysics Data System (ADS)

    Botta, L.; Scaffaro, R.; La Mantia, F. P.

    2010-06-01

    In this work the photo-oxidation of neat EVA and antimicrobial EVA/Nisin films was studied. Two EVA samples—containing two different vinyl acetate levels—were added with different amounts of nisin. The influence of the matrix type and of the nisin content on the photo-oxidation behaviour was evaluated. The photo-oxidation has been followed by monitoring the change of the mechanical and spectroscopic properties upon artificial exposure to UV-B light. The results revealed that the films incorporating nisin show a better photo resistance with respect to the neat polymer. This improvement becomes weaker with decreasing the amount of nisin incorporated. Moreover the EVA 28 based films showed a much slower photo-oxidation rate in comparison with the EVA 14 based ones.

  7. Adhesion Strength Study of EVA Encapsulants on Glass Substrates

    SciTech Connect

    Pern, F. J.; Glick, S. H.

    2003-05-01

    An extensive peel-test study was conducted to investigate the various factors that may affect the adhesion strength of photovoltaic module encapsulants, primarily ethylene-vinyl acetate (EVA), on glass substrates of various laminates based on a common configuration of glass/encapsulant/backfoil. The results show that"pure" or"absolute" adhesion strength of EVA-to-glass was very difficult to obtain because of tensile deformation of the soft, semi-elastic EVA layer upon pulling. A mechanically"strong enough" backing foil on the EVA was critical to achieving the"apparent" adhesion strength. Peel test method with a 90-degree-pull yielded similar results to a 180-degree-pull. The 90-degree-pull method better revealed the four stages of delamination failure of the EVA/backfoil layers. The adhesion strength is affected by a number of factors, which include EVA type, formulation, backfoil type and manufacturing source, glass type, and surface priming treatment on the glass surface or on the backfoil. Effects of the glass-cleaning method and surface texture are not obvious. Direct priming treatments used in the work did not improve, or even worsened, the adhesion. Aging of EVA by storage over~5 years reduced notably the adhesion strength. Lower adhesion strengths were observed for the blank (unformulated) EVA and non-EVA copolymers, such as poly(ethylene-co-methacrylate) (PEMA) or poly(ethylene-co-butylacrylate) (PEBA). Their adhesion strengths increased if the copolymers were cross-linked. Transparent fluoropolymer superstrates such as TefzelTM and DureflexTM films used for thin-film PV modules showed low adhesion strengths to the EVA at a level of~2 N/mm.

  8. Glove-based approach to online signature verification.

    PubMed

    Kamel, Nidal S; Sayeed, Shohel; Ellis, Grant A

    2008-06-01

    Utilizing the multiple degrees of freedom offered by the data glove for each finger and the hand, a novel on-line signature verification system using the Singular Value Decomposition (SVD) numerical tool for signature classification and verification is presented. The proposed technique is based on the Singular Value Decomposition in finding r singular vectors sensing the maximal energy of glove data matrix A, called principal subspace, so the effective dimensionality of A can be reduced. Having modeled the data glove signature through its r-principal subspace, signature authentication is performed by finding the angles between the different subspaces. A demonstration of the data glove is presented as an effective high-bandwidth data entry device for signature verification. This SVD-based signature verification technique is tested and its performance is shown to be able to recognize forgery signatures with a false acceptance rate of less than 1.2%. PMID:18421114

  9. Permeation of aromatic solvent mixtures through nitrile protective gloves.

    PubMed

    Chao, Keh-Ping; Hsu, Ya-Ping; Chen, Su-Yi

    2008-05-30

    The permeation of binary and ternary mixtures of benzene, toluene, ethyl benzene and p-xylene through nitrile gloves were investigated using the ASTM F739 test cell. The more slowly permeating component of a mixture was accelerated to have a shorter breakthrough time than its pure form. The larger differences in solubility parameter between a solvent mixture and glove resulted in a lower permeation rate. Solubility parameter theory provides a potential approach to interpret the changes of permeation properties for BTEX mixtures through nitrile gloves. Using a one-dimensional diffusion model based on Fick's law, the permeation concentrations of ASTM F739 experiments were appropriately simulated by the estimated diffusion coefficient and solubility. This study will be a fundamental work for the risk assessment of the potential dermal exposure of workers wearing protective gloves. PMID:17977655

  10. PERMEATION OF MULTIFUNCTIONAL ACRYLATES THROUGH SELECTED PROTECTIVE GLOVE MATERIALS

    EPA Science Inventory

    In support of the Premanufacture Notification (PMN) program of the Environmental Protection Agency's Office of Toxic Substances, the resistance of three glove materials to permeation by multifunctional acrylate compounds was evaluated through a program for the Office of Research ...

  11. 16. Rear (west) side of incinerator. Glove boxes to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Rear (west) side of incinerator. Glove boxes to the left. Metal catwalk in the middle. Incinerator control panel to the right. Looking south towards scrubber cell. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  12. 16. VIEW OF GLOVE BOX WORKSTATIONS WITHIN THE PLUTONIUM BUTTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF GLOVE BOX WORKSTATIONS WITHIN THE PLUTONIUM BUTTON BREAKOUT ROOM. (9/82) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  13. 8. Front (east) side of incinerator and glove boxes. Ash ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Front (east) side of incinerator and glove boxes. Ash canning hood to the left, combustion chamber in the middle, incinerator hood to the right. Looking west. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  14. 21. NBS SUIT LAB. THREE GLOVES, HELMET, AND SCREW DRIVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. NBS SUIT LAB. THREE GLOVES, HELMET, AND SCREW DRIVER TORQUE WRENCH FOR ASSEMBLY AND REPAIR OF BOTH. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  15. Experiments with an EVA Assistant Robot

    NASA Technical Reports Server (NTRS)

    Burridge, Robert R.; Graham, Jeffrey; Shillcutt, Kim; Hirsh, Robert; Kortenkamp, David

    2003-01-01

    Human missions to the Moon or Mars will likely be accompanied by many useful robots that will assist in all aspects of the mission, from construction to maintenance to surface exploration. Such robots might scout terrain, carry tools, take pictures, curate samples, or provide status information during a traverse. At NASA/JSC, the EVA Robotic Assistant (ERA) project has developed a robot testbed for exploring the issues of astronaut-robot interaction. Together with JSC's Advanced Spacesuit Lab, the ERA team has been developing robot capabilities and testing them with space-suited test subjects at planetary surface analog sites. In this paper, we describe the current state of the ERA testbed and two weeks of remote field tests in Arizona in September 2002. A number of teams with a broad range of interests participated in these experiments to explore different aspects of what must be done to develop a program for robotic assistance to surface EVA. Technologies explored in the field experiments included a fuel cell, new mobility platform and manipulator, novel software and communications infrastructure for multi-agent modeling and planning, a mobile science lab, an "InfoPak" for monitoring the spacesuit, and delayed satellite communication to a remote operations team. In this paper, we will describe this latest round of field tests in detail.

  16. Mapping From an Instrumented Glove to a Robot Hand

    NASA Technical Reports Server (NTRS)

    Goza, Michael

    2005-01-01

    An algorithm has been developed to solve the problem of mapping from (1) a glove instrumented with joint-angle sensors to (2) an anthropomorphic robot hand. Such a mapping is needed to generate control signals to make the robot hand mimic the configuration of the hand of a human attempting to control the robot. The mapping problem is complicated by uncertainties in sensor locations caused by variations in sizes and shapes of hands and variations in the fit of the glove. The present mapping algorithm is robust in the face of these uncertainties, largely because it includes a calibration sub-algorithm that inherently adapts the mapping to the specific hand and glove, without need for measuring the hand and without regard for goodness of fit. The algorithm utilizes a forward-kinematics model of the glove derived from documentation provided by the manufacturer of the glove. In this case, forward-kinematics model signifies a mathematical model of the glove fingertip positions as functions of the sensor readings. More specifically, given the sensor readings, the forward-kinematics model calculates the glove fingertip positions in a Cartesian reference frame nominally attached to the palm. The algorithm also utilizes an inverse-kinematics model of the robot hand. In this case, inverse-kinematics model signifies a mathematical model of the robot finger-joint angles as functions of the robot fingertip positions. Again, more specifically, the inverse-kinematics model calculates the finger-joint commands needed to place the fingertips at specified positions in a Cartesian reference frame that is attached to the palm of the robot hand and that nominally corresponds to the Cartesian reference frame attached to the palm of the glove. Initially, because of the aforementioned uncertainties, the glove fingertip positions calculated by the forwardkinematics model in the glove Cartesian reference frame cannot be expected to match the robot fingertip positions in the robot-hand Cartesian reference frame. A calibration must be performed to make the glove and robot-hand fingertip positions correspond more precisely. The calibration procedure involves a few simple hand poses designed to provide well-defined fingertip positions. One of the poses is a fist. In each of the other poses, a finger touches the thumb. The calibration subalgorithm uses the sensor readings from these poses to modify the kinematical models to make the two sets of fingertip positions agree more closely.

  17. Understanding Skill in EVA Mass Handling. Volume 4; An Integrated Methodology for Evaluating Space Suit Mobility and Stability

    NASA Technical Reports Server (NTRS)

    McDonald, P. Vernon; Newman, Dava

    1999-01-01

    The empirical investigation of extravehicular activity (EVA) mass handling conducted on NASA's Precision Air-Bearing Floor led to a Phase I SBIR from JSC. The purpose of the SBIR was to design an innovative system for evaluating space suit mobility and stability in conditions that simulate EVA on the surface of the Moon or Mars. The approach we used to satisfy the Phase I objectives was based on a structured methodology for the development of human-systems technology. Accordingly the project was broken down into a number of tasks and subtasks. In sequence, the major tasks were: 1) Identify missions and tasks that will involve EVA and resulting mobility requirements in the near and long term; 2) Assess possible methods for evaluating mobility of space suits during field-based EVA tests; 3) Identify requirements for behavioral evaluation by interacting with NASA stakeholders;.4) Identify necessary and sufficient technology for implementation of a mobility evaluation system; and 5) Prioritize and select technology solutions. The work conducted in these tasks is described in this final volume of the series on EVA mass handling. While prior volumes in the series focus on novel data-analytic techniques, this volume addresses technology that is necessary for minimally intrusive data collection and near-real-time data analysis and display.

  18. Swelling of four glove materials challenged by six metalworking fluids.

    PubMed

    Xu, Wenhai; Que Hee, Shane S

    2008-01-01

    The performance of protective gloves against metalworking fluids (MWFs) has rarely been studied because of the difficult chemical analysis associated with complex MWFs. In the present study, glove swelling was used as a screening parameter of glove compatibility after challenge of the outer surfaces of chloroprene, latex, nitrile, and vinyl disposable gloves by six MWF concentrates for 2 hours in an ASTM F-739-type permeation cell without collection medium. Swelling relative to original thickness was up to 39% for latex, 7.6% for chloroprene, and 3.5% for nitrile. Shrinking up to 9.3% occurred for vinyl. Chloroprene and latex did not swell significantly for the semisynthetic and synthetic MWFs. Vinyl, previously not tested, was a good candidate for MWFs other than the soluble oil type. Although nitrile was recommended by the National Institute for the Occupational Safety and Health (NIOSH) for all types of MWFs, its swelling after 2-hour challenge was significant with Student t-tests for the soluble oil, synthetic, and semisynthetic MWFs. Glove swelling can be used as a screening chemical degradation method for mixtures such as MWFs with difficult chemical analysis. Further studies need to be conducted on the relationship between permeation and glove swelling. PMID:17680173

  19. Glove use in laboratories 1. Chemical to be used: Consult the compatibility charts to ensure that the

    E-print Network

    Cohen, Robert E.

    through the glove material. Permeation Rate: Time it takes for the chemical to pass through the glove onceGlove use in laboratories 1. Chemical to be used: Consult the compatibility charts to ensure that the gloves will protect you. 2. Dexterity needed: The thicker the glove, typically the better the chemical

  20. Assessment of skin exposure to N,N-dimethylformamide and methyl ethylketone through chemical protective gloves and decontamination of gloves for reuse purposes.

    PubMed

    Chao, Keh-Ping; Wang, Ping; Chen, Chen-Peng; Tang, Ping-Yu

    2011-02-15

    N,N-dimethylformamide (DMF) and methyl ethylketone (MEK) are the hazardous chemicals commonly used in the synthetic leather industries. Although chemical protective gloves provide adequate skin exposure protection to workers in these industries, there is currently no clear guideline or understanding with regard to the use duration of these gloves. In this study, the permeation of DMF/MEK mixture through neoprene gloves and the desorption of chemicals from contaminated gloves were conducted using the ASTM F739 cell. The acceptable use duration time of the gloves against DMF/MEK permeation was estimated by assuming a critical body burden of chemical exposure as a result of dermal absorption. In a re-exposure cycle of 5 days, decontamination of the gloves by aeration at 25°C was found to be inadequate in a reduction of breakthrough time as compared to a new unexposed glove. However, decontamination of the gloves by heating at 70 or 100°C showed that the protective coefficient of the exposed gloves had similar levels of resistance to DMF/MEK as that of new gloves. Implications of this study include an understanding of the use duration of neoprene gloves and proper decontamination of chemical protective gloves for reuse. PMID:21194731

  1. A critique of assumptions about selecting chemical-resistant gloves: a case for workplace evaluation of glove efficacy.

    PubMed

    Klingner, Thomas D; Boeniger, Mark F

    2002-05-01

    Wearing chemical-resistant gloves and clothing is the primary method used to prevent skin exposure to toxic chemicals in the workplace. The process for selecting gloves is usually based on manufacturers' laboratory-generated chemical permeation data. However, such data may not reflect conditions in the workplace where many variables are encountered (e.g., elevated temperature, flexing, pressure, and product variation between suppliers). Thus, the reliance on this selection process is questionable. Variables that may influence the performance of chemical-resistant gloves are identified and discussed. Passive dermal monitoring is recommended to evaluate glove performance under actual-use conditions and can bridge the gap between laboratory data and real-world performance. PMID:12018400

  2. A Critique of Assumptions About Selecting Chemical-Resistant Gloves: A Case for Workplace Evaluation of Glove Efficacy

    Microsoft Academic Search

    Thomas D. Klingner; Mark F. Boeniger

    2002-01-01

    Wearing chemical-resistant gloves and clothing is the primary method used to prevent skin exposure to toxic chemicals in the workplace. The process for selecting gloves is usually based on manufacturers' laboratory-generated chemical permeation data. However, such data may not reflect conditions in the workplace where many variables are encountered (e.g., elevated temperature, flexing, pressure, and product variation between suppliers). Thus,

  3. Contamination of Critical Surfaces from NVR Glove Residues Via Dry Handling and Solvent Cleaning

    NASA Technical Reports Server (NTRS)

    Sovinski, Marjorie F.

    2004-01-01

    Gloves are often used to prevent the contamination of critical surfaces during handling. The type of glove chosen for use should be the glove that produces the least amount of non-volatile residue (NVR). This paper covers the analysis of polyethylene, nitrile, latex, vinyl, and polyurethane gloves using the contact transfer and gravimetric determination methods covered in the NASA GSFC work instruction Gravimetric Determination and Contact Transfer of Non-volatile Residue (NVR) in Cleanroom Glove Samples, 541-WI-5330.1.21 and in the ASTM Standard E-1731M-95, Standard Test Method for Gravimetric Determination of Non-Volatile Residue from Cleanroom Gloves. The tests performed focus on contamination of critical surfaces at the molecular level. The study found that for the most part, all of the gloves performed equally well in the contact transfer testing. However, the polyethylene gloves performed the best in the gravimetric determination testing, and therefore should be used whenever solvent contact is a possibility. The nitrile gloves may be used as a substitute for latex gloves when latex sensitivity is an issue. The use of vinyl gloves should be avoided, especially if solvent contact is a possibility. A glove database will be established by Goddard Space Flight Center (GSFC) Code 541 to compile the results from future testing of new gloves and different glove lots.

  4. Student perceptions and effectiveness of an innovative learning tool: Anatomy Glove Learning System.

    PubMed

    Lisk, Kristina; McKee, Pat; Baskwill, Amanda; Agur, Anne M R

    2015-03-01

    A trend in anatomical education is the development of alternative pedagogical approaches to replace or complement experiences in a cadaver laboratory; however, empirical evidence on their effectiveness is often not reported. This study aimed to evaluate the effectiveness of Anatomy Glove Learning System (AGLS), which enables students to learn the relationship between hand structure and function by drawing the structures onto a worn glove with imprinted bones. Massage therapy students (n = 73) were allocated into two groups and drew muscles onto either: (1) the glove using AGLS instructional videos (3D group); or (2) paper with palmar/dorsal views of hand bones during an instructor-guided activity (2D group). A self-confidence measure and knowledge test were completed before, immediately after, and one-week following the learning conditions. Self-confidence of hand anatomy in the 3D group gradually increased (3.2/10, 4.7/10, and 4.8/10), whereas self-confidence in the 2D group began to decline one-week later (3.2/10, 4.4/10, and 3.9/10). Knowledge of hand anatomy improved in both groups immediately after learning, (P < 0.001). Students' perceptions of AGLS were also assessed using a 10-pt Likert scale evaluation questionnaire (10 = high). Students perceived the AGLS videos (mean = 8.3 ± 2.0) and glove (mean = 8.1 ± 1.8) to be helpful in improving their understanding of hand anatomy and the majority of students preferred AGLS as a learning tool (mean = 8.6 ± 2.2). This study provides evidence demonstrating that AGLS and the traditional 2D learning approach are equally effective in promoting students' self-confidence and knowledge of hand anatomy. Anat Sci Educ 8: 140-148. © 2014 American Association of Anatomists. PMID:24757171

  5. Astronaut Jack Lousma hooks up cable for rate gyro six pack during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, hooks up a 23 ft. 2 in. connecting cable for the rate gyro six pack during extravehicular activity (EVA) on August 24, 1973, as senn in this photographic reproduction taken from a color television tranmsission made by a TV camera aboard the Skylab space station in Earth orbit. The rate gyros were mounted inside the Multiple Docking Adapter opposite the Apollo Telescope Mount control and display console.

  6. Application of EVA guidelines and design criteria. Volume 1: EVA selection/systems design considerations

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    Parameters that require consideration by the planners and designers when planning for man to perform functions outside the vehicle are presented in terms of the impact the extravehicular crewmen and major EV equipment items have on the mission, vehicle, and payload. Summary data on man's performance capabilities in the weightless space environment are also provided. The performance data are based on orbital and transearth EVA from previous space flight programs and earthbound simulations, such as water immersion and zero-g aircraft.

  7. Changes in chemical permeation of disposable latex, nitrile, and vinyl gloves exposed to simulated movement.

    PubMed

    Phalen, Robert N; Le, Thi; Wong, Weng Kee

    2014-01-01

    Glove movement can affect chemical permeation of organic compounds through polymer glove products. However, conflicting reports make it difficult to compare the effects of movement on chemical permeation through commonly available glove types. The aim of this study was to evaluate the effect of movement on chemical permeation of an organic solvent through disposable latex, nitrile, and vinyl gloves. Simulated whole-glove permeation testing was conducted using ethyl alcohol and a previously designed permeation test system. With exposure to movement, a significant decrease (p ? 0.001) in breakthrough time (BT) was observed for the latex (-23%) and nitrile gloves (-31%). With exposure to movement, only the nitrile glove exhibited a significant increase (p ? 0.001) in steady-state permeation rate (+47%) and cumulative permeation at 30 min (+111%). Even though the nitrile glove provided optimum chemical resistance against ethyl alcohol, it was most affected by movement. With exposure to movement, the latex glove was an equivalent option for overall worker protection, because it was less affected by movement and the permeation rate was lower than that of the nitrile glove. In contrast, the vinyl glove was the least affected by movement, but did not provide adequate chemical resistance to ethyl alcohol in comparison with the nitrile and latex gloves. Glove selection should take movement and polymer type into account. Some glove polymer types are less affected by movement, most notably the latex glove in this test. With nitrile gloves, at least a factor of three should be used when attempting to assign a protection factor when repetitive hand motions are anticipated. Ultimately, the latex gloves outperformed nitrile and vinyl in these tests, which evaluated the effect of movement on chemical permeation. Future research should aim to resolve some of the observed discrepancies in test results with latex and vinyl gloves. PMID:24689368

  8. CHARACTERIZATION OF GLOVEBOX GLOVES FOR THE SAVANNAH RIVER SITE

    SciTech Connect

    Korinko, P.

    2013-01-24

    A task was undertaken to characterize glovebox gloves that are currently used in the facilities at Savannah River Site (SRS) as well as some experimental and advanced compound gloves that have been proposed for use. Gloves from four manufacturers were tested for permeation in hydrogen and air, thermal stability, tensile properties, puncture resistance and dynamic mechanical response. The gloves were compared to each other within the type and also to the butyl rubber glove that is widely used at the SRS. The permeation testing demonstrated that the butyl compounds from three of the vendors behaved similarly and exhibited hydrogen permeabilities of .52‐.84 x10{sup ‐7} cc H{sub 2}*cm / (cm{sup 2}*atm). The Viton? glove performed at the lower edge of this bound, while the more advanced composite gloves exhibited permeabilities greater than a factor of two compared to butyl. Thermogravimetric analysis was used to determine the amount of material lost under slightly aggressive conditions. Glove losses are important since they can affect the life of glovebox stripper systems. During testing at 90, 120, and 150?C, the samples lost most of the mass in the initial 60 minutes of thermal exposure and as expected increasing the temperature increased the mass loss and shortened the time to achieve a steady state loss. The ranking from worst to best was Jung butyl‐Hypalon? with 12.9 %, Piercan Hypalon? with 11.4 %, and Jung butyl‐Viton? with 5.2% mass loss all at approximately 140?C. The smallest mass losses were experienced by the Jung Viton? and the Piercan polyurethane. Tensile properties were measured using a standard dog bone style test. The butyl rubber exhibited tensile strengths of 11‐15 MPa and elongations or 660‐843%. Gloves made from other compounds exhibited lower tensile strengths (5 MPa Viton) to much higher tensile strengths (49 MPa Urethane) with a comparable range of elongation. The puncture resistance of the gloves was measured in agreement with an ASTM standard. The Butyl gloves exhibited puncture resistance from 183 ? 296 lbs/in for samples of 0.020 ? 0.038? thick. Finally, the glass transition temperature and the elastic and viscoelastic properties as a function of temperature up to maximum use temperature were determined for each glove material using Dynamic Mechanical Analysis. The glass transition temperatures of the gloves were ‐60?C for butyl, ‐30?C for polyurethane, ‐ 16?C Hypalon?, ‐16?C for Viton?, and ‐24?C for polyurethane‐Hypalon?. The glass transition was too complex for the butyl‐Hypalon? and butyl‐Viton? composite gloves to be characterized by a single glass transition temperature. All of the glass transition temperatures exceed the vendor projected use temperatures.

  9. Aircraft energy efficiency laminar flow control glove flight conceptual design study

    NASA Technical Reports Server (NTRS)

    Wright, A. S.

    1979-01-01

    A laminar flow control glove applied to the wing of a short to medium range jet transport with aft mounted engines was designed. A slotted aluminum glove concept and a woven stainless steel mesh porous glove concept suction surfaces were studied. The laminar flow control glove and a dummy glove with a modified supercritical airfoil, ducting, modified wing leading and trailing edges, modified flaps, and an LFC trim tab were applied to the wing after slot spacing suction parameters, and compression power were determined. The results show that a laminar flow control glove can be applied to the wing of a jet transport with an appropriate suction system installed.

  10. Structure of EvaA: a paradigm for sugar 2,3-dehydratases.

    PubMed

    Kubiak, Rachel L; Thoden, James B; Holden, Hazel M

    2013-03-26

    Unusual deoxysugars found appended to natural products often provide or enhance the pharmacokinetic activities of the parent compound. The preferred carbohydrate donors for the biosynthesis of such glycosylated natural products are the dTDP-linked sugars. Many of the biologically relevant dTDP-deoxysugars are constructed around the 2,6-dideoxyhexoses or the 2,3(4),6-trideoxyhexoses. A key step in the biosynthesis of these sugars is the removal of the hexose C-2' hydroxyl group and the oxidation of the C-3' hydroxyl group to a carbonyl moiety. Enzymes that catalyze these reactions are referred to as 2,3-dehydratases and have been, for the most part, largely uncharacterized. Here we report the first structural analysis of a sugar 2,3-dehydratase. For this investigation, the enzyme, EvaA, was cloned from Amycolatopsis orientalis, and the structure was solved and refined to a nominal resolution of 1.7 Å. On the basis of the resulting model, it is clear that EvaA belongs to the large Nudix hydrolase superfamily and is most similar to GDP-mannose hydrolase. Each subunit of the EvaA dimer folds into two domains that clearly arose via gene duplication. Two dTDP-sugar binding pockets, A and B, are present in each EvaA subunit. On the basis of site-directed mutagenesis experiments and activity assays, it appears that pocket A functions as the active site and pocket B is simply a remnant left behind from the gene duplication event. As 2,3-dehydration is crucial for the biosynthesis of many unusual deoxysugars, this investigation provides key structural insight into this widely conserved reaction. PMID:23473392

  11. A glimpse from the inside of a space suit: What is it really like to train for an EVA?

    Microsoft Academic Search

    Matthew A. Gast; Sandra K. Moore

    2011-01-01

    The beauty of the view from the office of a spacewalking astronaut gives the impression of simplicity, but few beyond the astronauts, and those who train them, know what it really takes to get there. Extravehicular Activity (EVA) training is an intense process that utilizes NASA’s Neutral Buoyancy Laboratory (NBL) to develop a very specific skill set needed to safely

  12. Design and simulation of EVA tools and robot end effectors for servicing missions of the HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1995-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the Space Shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A Space Shuttle repair mission in January 1994 installed small corrective mirrors that restored the full intended optical capability of the HST. A Second Servicing Mission (SM2) scheduled in 1997 will involve considerable Extra Vehicular Activity (EVA). To reduce EVA time, the addition of robotic capability in the remaining servicing missions has been proposed. Toward that end, two concept designs for a general purpose end effector for robots are presented in this report.

  13. Hazard Analysis for Building 34 Vacuum Glove Box Assembly

    NASA Technical Reports Server (NTRS)

    Meginnis, Ian

    2014-01-01

    One of the characteristics of an effective safety program is the recognition and control of hazards before mishaps or failures occur. Conducting potentially hazardous tests necessitates a thorough hazard analysis in order to prevent injury to personnel, and to prevent damage to facilities and equipment. The primary purpose of this hazard analysis is to define and address the potential hazards and controls associated with the Building 34 Vacuum Glove Box Assembly, and to provide the applicable team of personnel with the documented results. It is imperative that each member of the team be familiar with the hazards and controls associated with his/her particular tasks, assignments and activities while interfacing with facility test systems, equipment and hardware. In fulfillment of the stated purposes, the goal of this hazard analysis is to identify all hazards that have the potential to harm personnel, damage the facility or its test systems or equipment, test articles, Government or personal property, or the environment. This analysis may also assess the significance and risk, when applicable, of lost test objectives when substantial monetary value is involved. The hazards, causes, controls, verifications, and risk assessment codes have been documented on the hazard analysis work sheets in Appendix A of this document. The preparation and development of this report is in accordance with JPR 1700.1, "JSC Safety and Health Handbook" and JSC 17773 Rev D "Instructions for Preparation of Hazard Analysis for JSC Ground Operations".

  14. On permeability of methyl methacrylate, 2-hydroxyethyl methacrylate and triethyleneglycol dimethacrylate through protective gloves in dentistry.

    PubMed

    Andreasson, Harriet; Boman, Anders; Johnsson, Stina; Karlsson, Stig; Barregård, Lars

    2003-12-01

    Continuous glove use is more common in dentistry than in most other occupations, and the glove should offer protection against blood-borne infections, skin irritants and contact allergens. Methacrylate monomers are potent contact allergens, and it is known that these substances may penetrate the glove materials commonly used. The aim of this study was to assess the permeability of various types of gloves to methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA) and triethyleneglycol dimethacrylate (TEGDMA) with special reference to combinations with ethanol or acetone. The permeation rate and time lag breakthrough (lag-BT) for MMA (neat, or diluted to 30% in ethanol or acetone), HEMA (30% in water, ethanol, or acetone) and TEGDMA (30% in ethanol or acetone) were investigated for different protective gloves. Nine different types of gloves were tested for one or several of these methacrylates. The lag-BT for neat MMA was gloves. For 30% MMA in ethanol or acetone, the latex gloves and the polyethene-copolymer glove showed the best protection, but the lag-BTs were short for all gloves. For HEMA and TEGDMA, the lag-BTs were generally longer than for MMA. A neoprene glove seemed to be the best choice for protection against penetration of HEMA and TEGDMA. The decision on which types of gloves to use should also take into account the risks of latex allergy and contact allergy to rubber chemicals and the convenience of the gloves for fine manual work. PMID:14632691

  15. New monitoring by thermogravimetry for radiation degradation of EVA

    NASA Astrophysics Data System (ADS)

    Boguski, J.; Przybytniak, G.; ?yczko, K.

    2014-07-01

    The radiation ageing of ethylene vinyl-acetate copolymer (EVA) as the jacket of cable applied in nuclear power plant was carried out by gamma rays irradiation, and the degradation was monitored by a thermo-gravimetric analysis (TGA). The EVA decomposition rate in air by the isothermal at 400 °C decreased with increase of dose and also with decrease of the dose rate. The behavior of EVA jacket of cable indicated that the decomposition rate at 400 °C was reduced with increase of oxidation. The elongation at break by tensile test for the radiation aged EVA was closely related to the decomposition rate at 400 °C; therefore, the TGA might be applied for a diagnostic technique of the cable degradation.

  16. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  17. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  18. Wearable joystick for gloves-on human/computer interaction

    NASA Astrophysics Data System (ADS)

    Bae, Jaewook; Voyles, Richard M.

    2006-05-01

    In this paper, we present preliminary work on a novel wearable joystick for gloves-on human/computer interaction in hazardous environments. Interacting with traditional input devices can be clumsy and inconvenient for the operator in hazardous environments due to the bulkiness of multiple system components and troublesome wires. During a collapsed structure search, for example, protective clothing, uneven footing, and "snag" points in the environment can render traditional input devices impractical. Wearable computing has been studied by various researchers to increase the portability of devices and to improve the proprioceptive sense of the wearer's intentions. Specifically, glove-like input devices to recognize hand gestures have been developed for general-purpose applications. But, regardless of their performance, prior gloves have been fragile and cumbersome to use in rough environments. In this paper, we present a new wearable joystick to remove the wires from a simple, two-degree of freedom glove interface. Thus, we develop a wearable joystick that is low cost, durable and robust, and wire-free at the glove. In order to evaluate the wearable joystick, we take into consideration two metrics during operator tests of a commercial robot: task completion time and path tortuosity. We employ fractal analysis to measure path tortuosity. Preliminary user test results are presented that compare the performance of both a wearable joystick and a traditional joystick.

  19. Design and evaluation of a low-cost instrumented glove for hand function assessment

    PubMed Central

    2012-01-01

    Background The evaluation of hand function impairment following a neurological disorder (stroke and cervical spinal cord injury) requires sensitive, reliable and clinically meaningful assessment tools. Clinical performance measures of hand function mainly focus on the accomplishment of activities of daily living (ADL), typically rather complex tasks assessed by a gross ordinal rating; while the motor performance (i.e. kinematics) is less detailed. The goal of this study was to develop a low-cost instrumented glove to capture details in grasping, feasible for the assessment of hand function in clinical practice and rehabilitation settings. Methods Different sensor types were tested for output signal stability over time by measuring the signal drift of their step responses. A system that converted sensor output voltages into angles based on pre-measured curves was implemented. Furthermore, the voltage supply of each sensor signal conditioning circuit was increased to enhance the sensor resolution. The repeatability of finger bending trajectories, recorded during the performance of three ADL-based tasks, was established using the intraclass correlation coefficient (ICC). Moreover, the accuracy of the glove was evaluated by determining the agreement between angles measured with the embedded sensors and angles measured by traditional goniometry. In addition, the feasibility of the glove was tested in four patients with a pathological hand function caused by a cervical spinal cord injury (cSCI). Results A sensor type that displayed a stable output signal over time was identified, and a high sensor resolution of 0.5° was obtained. The evaluation of the glove's reliability yielded high ICC values (0.84 to 0.92) with an accuracy error of about ± 5°. Feasibility testing revealed that the glove was sensitive to distinguish different levels of hand function impairment in cSCI patients. Conclusions The device satisfied the desired system requirements in terms of low cost, stable sensor signal over time, full finger-flexion range of motion tracking and capability to monitor all three joints of one finger. The developed rapid calibration system for easy use (high feasibility) and excellent psychometric properties (i.e. reliability and validity) qualify the device for the assessment of hand function in clinical practice and rehabilitation settings. PMID:22248160

  20. Role of protective gloves in the causation and treatment of occupational irritant contact dermatitis.

    PubMed

    Kwon, Soonyou; Campbell, Lauren S; Zirwas, Matthew J

    2006-11-01

    Irritant contact dermatitis of the hands is a significant occupational problem. Management primarily involves cessation of exposure to hazardous substances. Protective gloves can reduce or eliminate exposure of the hands to hazardous substances if used correctly, but if not selected and used correctly, protective gloves can actually cause or worsen irritant contact dermatitis of the hands by increasing exposure of the hands to hazardous chemicals. We present two cases of occupational irritant contact dermatitis of the hands caused by incorrect use of protective gloves. Glove failure can occur by penetration, permeation, or contamination, and all 3 mechanisms were operative in these cases. These cases demonstrate that correct use of gloves is at least as important as selection of gloves made of the appropriate material. By understanding mechanisms of glove failure, clinicians can make more appropriate recommendations for the selection and use of protective gloves in the workplace. PMID:17052501

  1. ISS Update: Robonaut Glove Test (Part 2) - Duration: 2:45.

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean interviews Chris Ihrke, General Motors Lead Engineer for the Robo-Glove Project, about the Robonaut glove test. Questions? Ask us on Twitter @NASA_Johnson an...

  2. The manufacture of gloves from natural rubber latex.

    PubMed

    Yip, Esah; Cacioli, Paul

    2002-08-01

    Gloves that will provide a barrier of protection from infectious organisms are an essential feature of medical practice for the protection of both patients and medical personnel. Natural rubber latex has consistently been the most satisfactory raw material for the manufacture of gloves. Certain latex proteins, carried over into the finished product by inadequate manufacturing processes, may pose a risk of provoking allergic reactions in some patients and medical workers. As with any allergy, the risk depends on the route of exposure and dose. Hence, the method of manufacture, including the means used to coat gloves to make donning easy, can influence the eventual exposure of sensitive people to latex allergens. In this article, we describe the several processes in use and their effects on latex protein content. PMID:12170237

  3. Planetary Protection Considerations in EVA System Design

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.; Kosmo, Joseph J.

    2011-01-01

    To better constrain their origin, we have performed systematic studies of the siderophile element distribution in metal from Enstatite achondrites and iron-rich meteorites linked to Enstatite achondrites. Humayun (2010) reported 20 siderophile elements in the metal of Horse Creek, Mt. Egerton and Tucson, three iron meteorites known for their high Si content in their metal. The Horse Creek and Mt. Egerton irons have elemental patterns identical to metallic solids derived from partially molten enstatite chondrites. Tucson has an unusual siderophile element pattern that is reminiscent of IVA irons, except for the most volatile siderophiles with condensation temperatures below that of Cu (Sb, Ge, Sn) which are more depleted. The origin of Tucson metal is likely linked to an impact involving a reduced chondritic body that provided the silicates, and IVA iron. In a related study, van Acken et al. (2010) reported siderophile element abundances in metal and sulfides from aubrites, chondritic inclusions in aubrites, and other enstatite achondrites (including a separate section of Mt. Egerton). They found that aubrite metal was linked to metal in enstatite chondrites by low degree partial melting forming sulfur-rich metallic liquids. A restite origin of aubrites is not consistent with these metal compositions. The link between the metal compositions and cumulate silicates is not simple. The metal must have been incorporated from enstatite chondritic material that was assimilated by the aubrite magma. A manuscript is in preparation (van Acken et al., 2010). In a related study, van Acken et al. (2010, submitted) reported new precise Os isotope ratios and highly siderophile element abundances in Enstatite chondrites, Enstatite achondrites, Rumurutite chondrites to explore the range of nucleosynthetic variation in s-process Os. They observed nucleosynthetic anomalies, deficiencies of s-process Os, in most primitive enstatite chondrites, but showed the Rumurutite chondrites have very little expression of these anomalies. hardware from the human-occupied area may limit (although not likely eliminate) external materials in the human habitat. Definition of design-to requirements is critical to understanding technical feasibility and costs. The definition of Planetary Protection needs in relation to EVA mission and system element development cost impacts should be considered and interpreted in terms of Plausible Protection criteria. Since EVA operations will have the most direct physical interaction with the Martian surface, PP needs should be considered in the terms of mitigating hardware and operations impacts and costs.

  4. Anthropomorphic teleoperation: Controlling remote manipulators with the DataGlove

    NASA Technical Reports Server (NTRS)

    Hale, J. P., II

    1992-01-01

    A two phase effort was conducted to assess the capabilities and limitations of the DataGlove, a lightweight glove input device that can output signals in real-time based on hand shape, orientation, and movement. The first phase was a period for system integration, checkout, and familiarization in a virtual environment. The second phase was a formal experiment using the DataGlove as input device to control the protoflight manipulator arm (PFMA) - a large telerobotic arm with an 8-ft reach. The first phase was used to explore and understand how the DataGlove functions in a virtual environment, build a virtual PFMA, and consider and select a reasonable teleoperation control methodology. Twelve volunteers (six males and six females) participated in a 2 x 3 (x 2) full-factorial formal experiment using the DataGlove to control the PFMA in a simple retraction, slewing, and insertion task. Two within-subjects variables, time delay (0, 1, and 2 seconds) and PFMA wrist flexibility (rigid/flexible), were manipulated. Gender served as a blocking variable. A main effect of time delay was found for slewing and total task times. Correlations among questionnaire responses, and between questionnaire responses and session mean scores and gender were computed. The experimental data were also compared with data collected in another study that used a six degree-of-freedom handcontroller to control the PFMA in the same task. It was concluded that the DataGlove is a legitimate teleoperations input device that provides a natural, intuitive user interface. From an operational point of view, it compares favorably with other 'standard' telerobotic input devices and should be considered in future trades in teleoperation systems' designs.

  5. Mechanisms to improve the mechanical performance of surgical gloves

    NASA Astrophysics Data System (ADS)

    Watkins, Michelle Hoyt

    1997-11-01

    The use of gloves as a barrier to cross infection in the medical industry has increased substantially due to the heightened awareness of viral transmission, especially the human immunodeficiency virus and the hepatitis B virus. The glove must allow for tactile sensation, comfort and long use times, while providing equally critical mechanical performance. The majority of surgical gloves are made of natural rubber latex which do not give a critical level of cut-resistance or puncture-resistance. Natural rubber latex gloves are also known to cause latex allergy with hypersensitivity reactions ranging from mild skin rashes to more severe bronchial asthma, anaphylactic reactions, and even death. It has been postulated natural rubber latex (NRL) proteins cause these allergic reactions. The research that has been conducted comprises two approaches that have been explored for improving the cut-resistance of surgical gloves. The first method involves an integral fiber-latex structure that possesses the combination of high reversible extensibility, barrier performance and retention of tactile sense. Improvement in mechanical properties in excess of 85% has been achieved as well as an improvement in cut-resistance. The second method involves the incorporation of a low concentration of ultra high molecular weight (UHMW) polyacrylamide. Although the initial premise for using a UHMW polymer was that it would bridge the latex compound particulates to improve strength, an entirely different mechanism for the enhancement of strength was explored through a parallel investigation of the release of proteins from cured natural rubber. However, no mechanism was conclusively identified. To address the allergy aspects of NRL, a thorough examination of the release of naturally-occurring latex proteins from cured natural rubber latex glove material was conducted in order to identify mechanisms for eliminating and/or reducing the potential allergens. The initial study examined the release of loaded proteins from cured NR and NR that contained PA in the initial latex compound and the results showed the likelihood of binding between proteins and PA.

  6. EVA Assembly of Large Space Structure Neutral Buoyancy, Zero-Gravity Simulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    EVA Assembly of Large Space Structure Neutral Buoyancy, Zero-Gravity Simulation: NASA-LaRC Nestable Columns and Joints. The film depicts an extravehicular activity (EVA) that involved the assembly of six 'space-weight' columns into a regular tetrahedral cell by a team of two 'space'-suited test subjects. This cell represents the fundamental 'element' of a tetrahedral truss structure. The tests were conducted under simulated zero-gravity conditions, achieved by neutral buoyancy in water. The cell was assembled on an 'outrigger' assembly aid off the side of a mockup of the Shuttle Orbiter cargo bay. Both manual and simulated remote manipulator system (RMS) modes were evaluated. The simulated RMS was used only to transfer stowed hardware from the cargo bay to the work sites. Articulation limits of the pressure suit and zero gravity could be accommodated by work stations with foot restraints. The results of this study have confirmed that astronaut EVA assembly of large, erectable space structur is well within man's capabilities. [Entire movie available on DVD from CASI as Doc ID 20070031008. Contact help@sti.nasa.gov

  7. Design and simulation of EVA tools for first servicing mission of HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1994-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the Space Shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A Space Shuttle repair mission in January 1994 installed small corrective mirrors that restored the full intended optical capability of the HST. The First Servicing Mission (FSM) involved considerable Extra Vehicular Activity (EVA). Special EVA tools for the FSM were designed and developed for this specific purpose. In an earlier report, the details of the Data Acquisition System developed to test the performance of the various EVA tools in ambient as well as simulated space environment were presented. The general schematic of the test setup is reproduced in this report for continuity. Although the data acquisition system was used extensively to test a number of fasteners, only the results of one test each carried on various fasteners and the Power Ratchet Tool are included in this report.

  8. Nine-size system for chemical defense gloves. Technical report

    SciTech Connect

    Robinette, K.M.; Annis, J.F.

    1986-07-01

    The purpose of this effort was to meet the need for improved sizing of chemical defense gloves for Air Force men and women. A nine-size system was developed from available hand data. The development process and size values are presented in this report. Some summary statistics and regression equations are provided to aid investigators who may wish to make modifications. Although the anthropometric sizing system outlined in this report is statistically sound, it is experimental. The authors recommend that anthropometric fit-testing be conducted prior to full-scale glove production.

  9. Tactile Gloves for Autonomous Grasping with the NASA\\/DARPA Robonaut

    Microsoft Academic Search

    Toby B. Martin; Robert O. Ambrose; Myron A. Diftler; Robert Platt Jr.; Melissa Butzer

    2004-01-01

    Tactile data from rugged gloves are providing the foundation for developing autonomous grasping skills for the NASA\\/DARPA Robonaut, a dexterous humanoid robot. These custom gloves compliment the human like dexterity available in the Robonaut hands. Multiple versions of the gloves are discussed, showing a progression in using advanced materials and construction techniques to enhance sensitivity and overall sensor coverage. The

  10. A Comparative Analysis of Glove Permeation Resistance to Paint Stripping Formulations

    Microsoft Academic Search

    Jeffrey O. Stull; Richard W. Thomas; Lawrence E. James

    2002-01-01

    Although there is a wide variety of work gloves available to users of commercial paint stripping products, there are no published studies examining which type of gloves provide the best protection. To address this need, a multiphase study was undertaken to evaluate how several types of gloves resist multichemical-based paint stripping formulations. Due to the wide range of commercial paint

  11. Permeation of Cancer Chemotherapeutic Drugs Through Glove Materials under Static and Flexed Conditions

    Microsoft Academic Search

    Susan A. Colligan; Sanford W. Horstman

    1990-01-01

    Gloves are the most common protective measure against contamination with antineoplastics. However, there is no consensus about which glove material offers the best protection. There are few data on the permeability of gloves to this group of potential carcinogens. All studies have been conducted under static conditions, with no attempt at simulating the flexing and stretching that may be present

  12. Gloves and Dermal Exposure to Chemicals: Proposals for Evaluating Workplace Effectiveness

    Microsoft Academic Search

    JOHN W. CHERRIE; SEAN SEMPLE; DERK BROUWER

    2004-01-01

    There are standardized laboratory tests for chemical protective gloves that provide estimates of breakthrough time and steady-state permeation flux. However, there is evidence to suggest that these tests may not be completely relevant to glove usage in the workplace. There is no consensus about how glove workplace effectiveness should be assessed, although a few studies have attempted to measure the

  13. A tendon-driven glove to restore finger function for disabled

    Microsoft Academic Search

    Shunji Moromugi; Kousuke Kawakami; Katsutoshi Nakamura; Taichi Sakamoto; Takakazu Ishimatsu

    2009-01-01

    An innovative glove system actuated by electric motors has been developed to restore finger functions for disabled people. This glove system is composed of a leather glove having external tendons built-in, an actuation unit and a sensor to detect user's intentions for finger operations. Fingers are operated by actuation of the thin tendons made of polyethylene. The driving force of

  14. The combined use of moisturizers and occlusive gloves: An experimental study

    Microsoft Academic Search

    Elisabeth Held; Lisbeth Lund Jørgensen

    1999-01-01

    Background: Protective gloves are used in the workplace to protect the hands from occupational hazards, but side effects from glove use are frequently reported. Among these side effects, irritant skin reactions are common.Objective: The present study was undertaken to investigate whether applying a moisturizer to compromised skin before wearing an occlusive glove could reduce skin irritation.Methods: Healthy volunteers had both

  15. Characterization of a Novel Data Glove Based on Textile Integrated Sensors

    Microsoft Academic Search

    Alessandro Tognetti; Nicola Carbonaro; Giuseppe Zupone; Danilo De Rossi

    2006-01-01

    The present work is about the realization and the characterization of a novel data glove able to detect hand kinematic configurations. The sensing glove has been realized by directly integrate sensors in the fabric used to manufacture the glove. Main specifications for the realized device are lightness, wearability and user comfort. As a fundamental requirement to address this purpose we

  16. Dexterity test data contribute to proper glovebox over-glove use

    SciTech Connect

    Cournoyer, Michael E [Los Alamos National Laboratory; Lawton, Cindy M [Los Alamos National Laboratory; Castro, Amanda M [Los Alamos National Laboratory; Costigan, Stephen A [Los Alamos National Laboratory; Apel, D M [Los Alamos National Laboratory; Neal, G E [Los Alamos National Laboratory; Castro, J M [Los Alamos National Laboratory; Michelotti, R A [Los Alamos National Laboratory

    2010-01-21

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). The glovebox gloves are the weakest part of this engineering control. The Glovebox Glove Integrity Program, which controls glovebox gloves from procurement to disposal at TA-55, manages this vulnerability. A key element of this program is to consider measures that lower the overall risk of glovebox operations. Proper selection of over-gloves is one of these measures. Line management owning glovebox processes have the responsibility to approve the appropriate personal protective equipment/glovebox glove/over-glove combination. As low as reasonably achievable (ALARA) considerations to prevent unplanned glovebox glove openings must be balanced with glove durability and worker dexterity, both of which affect the final overall risk to the worker. In this study, the causes of unplanned glovebox glove openings, the benefits of over-glove features, the effect of over-gloves on task performance using standard dexterity tests, the pollution prevention benefits, and the recommended over-gloves for a task are presented.

  17. A Glove for Tapping and Discrete 1D/2D Input

    NASA Technical Reports Server (NTRS)

    Miller, Sam A.; Smith, Andy; Bahram, Sina; SaintAmant, Robert

    2012-01-01

    This paper describes a glove with which users enter input by tapping fingertips with the thumb or by rubbing the thumb over the palmar surfaces of the middle and index fingers. The glove has been informally tested as the controller for two semi-autonomous robots in a a 3D simulation environment. A preliminary evaluation of the glove s performance is presented.

  18. Risk of Glove Perforation in Minor and Major Plastic Surgery Procedures

    Microsoft Academic Search

    Marcus Vinícius Jardini Barbosa; Fábio Xerfan Nahas; Lydia Masako Ferreira; Andréia Bufoni Farah; Natália Alinda Montecinos Ayaviri; Roberta Lopes Bariani

    2003-01-01

    Background Incidental needlestick injury with exposure of blood pathogens has a high incidence among health care workers. Because plastic surgeons make up an important risk group for this type of accident, this study sought to evaluate the incidence of glove perforation during minor and major plastic surgery procedures. Methods Evidence of glove perforation was evaluated for 390 gloves after 100

  19. Cooperative EVA/Telerobotic Surface Operations in Support of Exploration Science

    NASA Astrophysics Data System (ADS)

    Akin, David L.

    2001-01-01

    The contents include: 1) Planetary Surface Robotics; 2) EVA Difficulties from Apollo; 3) Robotic Capabilities for EVA Support; 4) Astronaut Support Vehicle; 5) Three ASV Preliminary Designs; 6) Small Single-arm Assistant; 7) Dual-arm Assistant; 8) Large EVA Assistant; 9) Lessons Learned-Preliminary Designs; 10) Rover Design Assumptions; 11) Design Requirements-Terrain; 12) Design Requirements; 13) Science Payload; 14) Manipulator Arm; 15) EVA Multiple Robot Cooperation; 16) SSL Rover Body Concept; 17) Advanced EVA Support Rover Concept; 18) Robotic Access to Restricted Sites; 19) Robotic Rescue of EVA crew; and 19) Why Do We Need Humans? This paper is presented in viewgraph form.

  20. Published as: Daniela Petrelli, Luigina Ciolfi, Dick van Dijk, Eva Hornecker, Elena Not, Albrecht Schmidt. Integrating material

    E-print Network

    Hornecker, Eva

    Published as: Daniela Petrelli, Luigina Ciolfi, Dick van Dijk, Eva Hornecker, Elena Not, Albrecht.ciolfi@shu.ac.uk Dick van Dijk | Waag Society | dick@waag.org Eva Hornecker | University of Strathclyde | eva

  1. Efficiency of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing gloves.

    PubMed

    Liu, Chengchu; Su, Yi-Cheng

    2006-07-15

    Food processing gloves are typically used to prevent cross-contamination during food preparation. However, gloves can be contaminated with microorganisms and become a source of contamination. This study investigated the survival of Listeria monocytogenes on gloves and determined the efficacy of electrolyzed oxidizing (EO) water for reducing L. monocytogenes contamination on seafood processing gloves. Three types of reusable gloves (natural rubber latex, natural latex, and nitrile) and two types of disposable gloves (latex and nitrile) were cut into small pieces (4 x 4 cm(2)) and inoculated with 5-strain L. monocytogenes cocktail (5.1 x 10(7) CFU/cm(2)) with and without shrimp meat residue attached to surfaces. L. monocytogenes did not survive well on clean reusable gloves and its populations decreased rapidly to non-detectable levels within 30 min at room temperature. However, high levels of Listeria cells were recovered from clean disposable gloves after 30 min of inoculation. Presence of shrimp meat residue on gloves enhanced the survival of L. monocytogenes. Cells of L. monocytogenes were detected on both reusable and disposal gloves even after 2 h at room temperature. Soaking inoculated gloves in EO water at room temperature for 5 min completely eliminated L. monocytogenes on clean gloves (>4.46 log CFU/cm(2) reductions) and significantly (p<0.05) reduced the contamination on soil-containing gloves when compared with tap water treatment. EO water could be used as a sanitizer to reduce L. monocytogenes contamination on gloves and reduce the possibility of transferring L. monocytogenes from gloves to RTE seafoods. PMID:16690154

  2. Assessment of skin exposure to N,N-dimethylformamide and methyl ethylketone through chemical protective gloves and decontamination of gloves for reuse purposes

    Microsoft Academic Search

    Keh-Ping Chao; Ping Wang; Chen-Peng Chen; Ping-Yu Tang

    2011-01-01

    N,N-dimethylformamide (DMF) and methyl ethylketone (MEK) are the hazardous chemicals commonly used in the synthetic leather industries. Although chemical protective gloves provide adequate skin exposure protection to workers in these industries, there is currently no clear guideline or understanding with regard to the use duration of these gloves. In this study, the permeation of DMF\\/MEK mixture through neoprene gloves and

  3. Latex protein allergy and your choice of gloves: a balanced consideration.

    PubMed

    Yip, Esah; Roman, Marlene

    2003-02-01

    Natural rubber gloves have been acknowledged as the best protective devices available for protecting health care personnel and their patients against viral transmission and infectious fluids. Yet, with the adoption of standard safety precautions and the increase in the use of gloves, an increasing number of people are being affected with latex allergy. Negative publicity related to latex allergy has resulted in health care personnel deciding against using the highly protective natural rubber gloves. The relationship between natural rubber gloves and latex protein allergy needs to be better understood in order for health care professionals to make an informed choice in their selection of gloves. PMID:12619596

  4. Tactile Gloves for Autonomous Grasping With the NASA/DARPA Robonaut

    NASA Technical Reports Server (NTRS)

    Martin, T. B.; Ambrose, R. O.; Diftler, M. A.; Platt, R., Jr.; Butzer, M. J.

    2004-01-01

    Tactile data from rugged gloves are providing the foundation for developing autonomous grasping skills for the NASA/DARPA Robonaut, a dexterous humanoid robot. These custom gloves compliment the human like dexterity available in the Robonaut hands. Multiple versions of the gloves are discussed, showing a progression in using advanced materials and construction techniques to enhance sensitivity and overall sensor coverage. The force data provided by the gloves can be used to improve dexterous, tool and power grasping primitives. Experiments with the latest gloves focus on the use of tools, specifically a power drill used to approximate an astronaut's torque tool.

  5. The measurement of water vapor permeability of glove materials using dilute tritiated water

    NASA Astrophysics Data System (ADS)

    Doughty, D. H.

    As fusion technology progresses, there will be an increasing need to handle tritium and tritiated compounds. Protective clothing, especially drybox gloves, must be an effective barrier to minimize worker exposure. The water vapor permeability of glove materials and finished glove constructions is a crucial property of drybox gloves and is not sufficiently well characterized. We have built an apparatus that measures water vapor permeability of elastomers using dilute tritiated water. The technique is more sensitive than other methods currently available and allows us to make measurements on materials and under conditions previously inaccessible. In particular, we present results on laminated drybox gloves for which data is not currently available.

  6. Permeation of a Malathion Formulation Through Nitrile Gloves

    Microsoft Academic Search

    Yu-Wen Lin; Shane S. Que Hee

    1998-01-01

    Factors determining the permeation of a malathion formulation (Prent) and a reconstituted mixture of 12 components (Recon), 11 being alkybenzenes, were investigated for a lined, unsupported nitrile glove in an American Society for Testing and Materials-type permeation cell with liquid collection and gas chromatography\\/mass spectrometry analysis. Only the factors for both Prent and Recon that did not differ significantly at

  7. PERMEATION OF MULTIFUNCTIONAL ACRYLATES THROUGH SELECTED PROTECTIVE GLOVE MATERIALS

    Microsoft Academic Search

    Esperanza Piano Renard; Rosemary Goydan; Thomas Stolki

    1992-01-01

    In support of the Premanufacture Notification (PMN) program of the Environmental Protection Agency's Office of Toxic Substances, the resistance of three glove materials to permeation by multifunctional acrylate compounds was evaluated through a program for the Office of Research and Development. Several recent PMN submissions relate to multifunctional acrylates and essentially no permeation data are available for this class of

  8. The Effect of Glove Flexure on Permeation Parameters

    Microsoft Academic Search

    Jimmy L. Perkins; Kim C. Rainey

    1997-01-01

    Selection of gloves and other articles of chemical protective clothing (CPC) based on their performance against chemical permeation is the most common approach to the control of skin permeation of toxicants. However, there are several factors that can affect the efficacy of CPC which are not considered in the typical permeation test. These include temperature variations, intermittent use and reuse,

  9. Physiochemical degradation of thermally aged hypalon glove samples

    Microsoft Academic Search

    Kennard V. Wilson; Bettina L. Smith; John M. Macdonald; Jon R. Schoonover; Julio M. Castro; Mark E. Smith; Michael E. Cournoyer; Rob Marx; Warren P. Steckle

    2004-01-01

    Attenuated total reflection (ATR) infrared spectra have been analyzed using multivariate curve resolution (MCR) to capture the chemistry of the thermal degradation in the aging of chlorosulfonated polyethylene (Hypalon®) glove samples. The analysis demonstrates the primary degradation pathways to be oxidation (formation of ketones and carboxylic acids), dehydrochlorination with formation of –C?C– groups, and polymer crosslinking with changes in the

  10. Wireless data gloves Malay sign language recognition system

    Microsoft Academic Search

    Tan Tian Swee; A. K. Ariff; S.-H. Salleh; Siew Kean Seng; Leong Seng Huat

    2007-01-01

    This paper describes the structure and algorithm of the whole Wireless Bluetooth Data Gloves Sign Language Recognition System, which is defined as a Human-Computer Interaction (HCI) system. This project is based on the need of developing an electronic device that can translate sign language into speech (sound) in order to make the communication take place between the mute & deaf

  11. 17. VIEW OF STEAM CONDENSATE COLLECTION TANKS. THE GLOVE BOX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF STEAM CONDENSATE COLLECTION TANKS. THE GLOVE BOX IN THE BACKGROUND IS AT THE END OF THE AMERICIUM RECOVERY LINE. (5/27/71) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  12. 14. VIEW OF THE OUTSIDE OF A GLOVE BOX THAT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF THE OUTSIDE OF A GLOVE BOX THAT CONTAINS ELECTROREFINING EQUIPMENT. ELECTROREFINING WAS ONE OF THE PROCESSES USED TO PURIFY PLUTONIUM THAT DID NOT MEET PURITY SPECIFICATIONS. (10/25/66) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  13. 8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE PROCESS. THE ANION EXCHANGE PROCESS PURIFIED AND CONCENTRATED PLUTONIUM-BEARING NITRIC ACID SOLUTIONS TO MAKE THEM ACCEPTABLE AS FEED FOR CONVERSION TO METAL. (6/20/60) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  14. 9. DETAILED VIEW OF BRIQUETTING PRESS HOUSED IN A GLOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAILED VIEW OF BRIQUETTING PRESS HOUSED IN A GLOVE BOX. THE PRESS FORMED SCRAP PLUTONIUM METAL FROM FOUNDRY AND FABRICATION PROCESSES INTO SMALL BRIQUETTES. THESE BRIQUETTES BECAME PART OF THE FEED MATERIALS FOR THE FOUNDRY. (5/6/59) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  15. 6. VIEW OF BUILDING 707 INTERIOR. GLOVE BOX WORKSTATIONS ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF BUILDING 707 INTERIOR. GLOVE BOX WORKSTATIONS ARE BEING CONSTRUCTED FOR FOUNDRY PROCESSES IN MODULE A. (10/6/69) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  16. 2. VIEW OF THE GLOVE BOX WHERE, ON SEPTEMBER 11, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF THE GLOVE BOX WHERE, ON SEPTEMBER 11, 1957, A FIRE STARTED. THE FIRE SPREAD TO THE REST OF THE BUILDING, RESULTING IN THE TRANSFER OF PLUTONIUM FOUNDRY, FABRICATION, AND ASSEMBLY OPERATIONS TO BUILDING 776/777. (9/16/57) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  17. 18. DETAILED VIEW OF A GLOVE BOX DAMAGED IN A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. DETAILED VIEW OF A GLOVE BOX DAMAGED IN A FIRE THAT OCCURRED ON MAY 11, 1969. THE FIRE OCCURRED FROM THE SPONTANEOUS IGNITION OF A BRIQUETTE OF SCRAP PLUTONIUM ALLOY METAL. (5/18/69) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  18. Research of Mechanical Arm Control Based on Data Glove

    Microsoft Academic Search

    JunJie Zhang; Jiangcheng Fang

    2008-01-01

    Most traditional robot control software is: the operator sends commands to control the robot's movement by computer, which is complex and not very direct. The operator needs to be trained in advance and usually are technicians. While the means we discussed in this paper is: the operator controls the robot directly by computer, wearing data glove and computer generates virtual

  19. Semiautomatic machine for turning inside out industrial leather gloves

    NASA Astrophysics Data System (ADS)

    Aragón-Gonzalez, G.; Cano-Blanco, M.; León-Galicia, A.; Medrano-Sierra, L. F.; Morales-Gómez, J. R.

    2015-01-01

    The last step in the industrial leather gloves manufacturing is to turn the inside out so that the sewing be in the inside of the glove. This work presents the design and testing of a machine for that purpose. In order to quantify the relevant variables, testing was performed with a prototype glove. The employed devices and the testing proceeding were developed experimentally. The obtained information was used to build the turning inside out machine. This machine works with pneumatic power to carry the inside out turning by means of double effect lineal actuators. It has two independent work stations that could be operated simultaneously by two persons, one in each station or in single mode operating one station by one person. The turning inside out cycle is started by means of directional control valves operated with pedals. The velocity and developed force by the actuators is controlled with typical pneumatic resources. The geometrical dimensions of the machine are: 1.15 m length; 0.71 m width and 2.15 m high. Its approximated weight is 120 kg. The air consumption is 5.4 fps by each working station with 60 psig work pressure. The turning inside out operation is 40 s for each industrial leather glove.

  20. US space flight experience. Physical exertion and metabolic demand of extravehicular activity: Past, present, and future

    NASA Technical Reports Server (NTRS)

    Moore, Thomas P.

    1989-01-01

    A review of physical exertion and metabolic demands of extravehicular activity (EVA) on U.S. astronauts is given. Information is given on EVA during Gemini, Apollo and Skylab missions. It is noted that nominal EVA's should not be overstressful from a cardiovascular standpoint; that manual-intensive EVA's such as are planned for the construction phase of the Space Station can and will be demanding from a muscular standpoint, primarily for the upper extremities; that off-nominal unplanned EVA's can be physically demanding both from an endurance and from a muscular standpoint; and that crewmembers should be physically prepared and capable of performing these EVA's at any time during the mission.

  1. The Thermo-Hand Method: Evaluation of a New Indicator Pad for Acid Permeation of Chemical Protective Gloves

    Microsoft Academic Search

    Evanly Vo; Jonathan Nicholson; Pengfei Gao; Zhenzhen Zhuang; Stephen P. Berardinelli

    2003-01-01

    The thermo-hand method was developed to evaluate a new indicator pad for acid permeation through chemical protective gloves under in-use conditions (controlled conditions for the hand's skin temperature, hand movements, and relative humidity inside gloves). An indicator pad was used to detect both organic and inorganic acid permeation through glove materials. Breakthrough times for five types of gloves were determined

  2. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2012-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and, as a result, crew members ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVAs, and provides a historical look at energy expenditure during EVAs through the Apollo Program.

  3. Gloves and dermal exposure to chemicals: proposals for evaluating workplace effectiveness.

    PubMed

    Cherrie, John W; Semple, Sean; Brouwer, Derk

    2004-10-01

    There are standardized laboratory tests for chemical protective gloves that provide estimates of breakthrough time and steady-state permeation flux. However, there is evidence to suggest that these tests may not be completely relevant to glove usage in the workplace. There is no consensus about how glove workplace effectiveness should be assessed, although a few studies have attempted to measure the effectiveness of chemical protective gloves. We have used a conceptual model of dermal exposure to help analyse how workers' skin may become exposed while wearing gloves, and propose a new glove workplace protection factor (PFgloves), which is based on the ratio of the estimated uptake of chemicals through the hands without gloves to the uptake through the hands while wearing protective gloves. Mathematical simulations demonstrate that glove protection factor is unlikely to be constant for a glove type, but will be strongly influenced by the work situation and the duration of the exposure. This has important consequences for the selection of protective gloves. PMID:15388512

  4. Permeability of protective gloves by HEMA and TEGDMA in the presence of solvents.

    PubMed

    Munksgaard, E C

    2000-04-01

    The breakthrough times and permeation rates of two commonly used allergenic components in dentin bonding agents or resins, HEMA and TEGDMA, were measured for 5 types of latex gloves and 5 types of nitrile gloves. In addition, the breakthrough times and permeation rates for the gloves were measured for HEMA and TEGDMA when diluted with either ethanol or acetone-solvents often appearing in dentin bonding agents. The mean breakthrough times for the 5 latex gloves for HEMA and TEGDMA, concentrated, diluted in ethanol, or diluted in acetone, were 4.9, 4.8, and 2.8 min, respectively. For the 5 nitrile gloves the equivalent breakthrough times were 15.7, 9.9, and 2.8 min, respectively. There were great variations between the various gloves, and 1 nitrile glove showed a breakthrough time of 28-30 min when tested with concentrated HEMA and TEGDMA. Compared to latex gloves, nitrile gloves have a longer-lasting protection against skin contamination with methacrylates in the absence of solvents. The longer protection was reduced or not present for methacrylates diluted in organic solvents, especially acetone. In addition, the nitrile gloves showed fairly high permeation rates in the presence of this solvent. The results indicate that latex and nitrile gloves only give a limited protection against allergenic methacrylates in dentin bonding agents when they contain acetone. PMID:10894426

  5. The warning glove - development and evaluation of a multimodal action-specific warning prototype.

    PubMed

    Schmuntzsch, Ulrike; Sturm, Christine; Roetting, Matthias

    2014-09-01

    This paper has two objectives: first, to introduce the concept of multimodal action-specific warnings and its prototypic realization in the form of a warning glove and second, to present the main findings of a user study that was conducted to test the warning glove against a conventional warning system. Regarding the first goal, the combination of multimodality and action-specificity was implemented by attaching electronic actuators on a right-handed glove for transmitting visual, auditory and tactile feedback. For the second objective, a user study was conducted to test the hypothesis that the warning glove is capable of obtaining faster responses and to determine the perceptions of the users regarding the appropriateness of the warning glove. The results confirmed the assumption of faster response times and participants perceived the warning glove to be 'fairly appropriate'. These results warrant further development of this multimodal action-specific warning glove. PMID:24119868

  6. Current Transients Associated with Glove and Accidental Bare-Skin Contact when Gloving a 25KV Distribution Line

    Microsoft Academic Search

    Marcel Fortin

    1981-01-01

    This paper describes a study of the current transients associated with glove or bare-skin contact experienced by linemen working from an insulated aerial device. The duration of the electrical shock, the peak current and the current time integral are calculated in order to evaluate the shock severity.

  7. 21 CFR 800.20 - Patient examination gloves and surgeons' gloves; sample plans and test method for leakage defects...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...prevalence of human immunodeficiency virus (HIV), which causes acquired immune deficiency...to reduce the risk of transmission of HIV and other blood-borne infectious diseases...gloves to reduce the risk of transmission of HIV and other blood-borne...

  8. 21 CFR 800.20 - Patient examination gloves and surgeons' gloves; sample plans and test method for leakage defects...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...prevalence of human immunodeficiency virus (HIV), which causes acquired immune deficiency...to reduce the risk of transmission of HIV and other blood-borne infectious diseases...gloves to reduce the risk of transmission of HIV and other blood-borne...

  9. 21 CFR 800.20 - Patient examination gloves and surgeons' gloves; sample plans and test method for leakage defects...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...prevalence of human immunodeficiency virus (HIV), which causes acquired immune deficiency...to reduce the risk of transmission of HIV and other blood-borne infectious diseases...gloves to reduce the risk of transmission of HIV and other blood-borne...

  10. 21 CFR 800.20 - Patient examination gloves and surgeons' gloves; sample plans and test method for leakage defects...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...prevalence of human immunodeficiency virus (HIV), which causes acquired immune deficiency...to reduce the risk of transmission of HIV and other blood-borne infectious diseases...gloves to reduce the risk of transmission of HIV and other blood-borne...

  11. Recent advances in the use of zinc borates in flame retardancy of EVA

    Microsoft Academic Search

    Serge Bourbigot; Michel Le Bras; Robert Leeuwendal; Kelvin K. Shen; David Schubert

    1999-01-01

    In this work, zinc borates are used as synergistic agents in EVA–ATH and EVA–Mg(OH)2 flame-retardant (FR) formulations and as smoke suppressants. Moreover, the study by solid state NMR of the residues sampled at different times during cone calorimeter experiments of the formulations EVA–ATH and EVA–ATH\\/Zinc borate allows to propose a mechanism of action of the FR systems. It is demonstrated

  12. Pegasus Rocket Wing and PHYSX Glove Undergoes Stress Loads Testing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Pegasus Hypersonic Experiment (PHYSX) Project's Pegasus rocket wing with attached PHYSX glove rests after load-tests at Scaled Composites, Inc., in Mojave, California, in January 1997. Technicians slowly filled water bags beneath the wing, to create the pressure, or 'wing-loading,' required to determine whether the wing could withstand its design limit for stress. The wing sits in a wooden triangular frame which serves as the test-rig, mounted to the floor atop the waterbags. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)

  13. Astronauts Carl Meade and Mark Lee test SAFER during EVA

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Backdropped against the darkness of space some 130 nautical miles above Earth, astronaut Mark C. Lee (red stripe on EVA suit) tests the new Simplified Aid for EVA Rescue (SAFER) system. Astronaut Carl J. Meade, tethered to Discovery, at bottom center, got his turn later using the new SAFER hardware. The scen was captured with a 70mm handheld Hasselblad camera operated by a fellow crew member in the shirt-sleeve environment of the Space Shuttle Discovery's cabin. Part of the hardware for the Lidar-In-space Technology Experiment (LITE) is in left foreground.

  14. EVA suit 2000: A joint European\\/Russian space suit design

    Microsoft Academic Search

    I. P. Abramov; E. A. Albats

    1995-01-01

    A feasibility study in 1992 showed the benefits of a common European\\/Russian space suit development, EVA Suit 2000, replacing the Russian space suit Orlan-DMA and the planned European Hermes EVA space suit at the turn of the century. This EVA Suit 2000 is a joint development initiated by the European Space Agency (ESA) and the Russian Space Agency (RKA). The

  15. STS-118 Astronaut Williams and Expedition 15 Engineer Anderson Perform EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    As the construction continued on the International Space Station (ISS), STS-118 Astronaut Dave Williams, representing the Canadian Space Agency, participated in the fourth and final session of Extra Vehicular Activity (EVA). During the 5 hour space walk, Williams and Expedition 15 engineer Clay Anderson (out of frame) installed the External Wireless Instrumentation System Antenna, attached a stand for the shuttle robotic arm extension boom, and retrieved the two Materials International Space Station Experiments (MISSE) for return to Earth. MISSE collects information on how different materials weather in the environment of space.

  16. Transport of a solvent mixture across two glove materials when applied in a paint matrix.

    PubMed

    Tran, Jackelin Q; Ceballos, Diana M; Dills, Russell L; Yost, Michael G; Morgan, Michael S

    2012-07-01

    The transport of mixed paint solvents through natural rubber latex (4 mil) and nitrile rubber (5 mil) gloves was evaluated after spray application of the paint formulation directly on the glove surface. Glove materials and thicknesses were those selected by the majority of spray painters in the local automobile repair industry. A flat panel containing glove specimens mounted in multiple permeation cells permitted evaporation of solvents from the applied paint and incorporated a solid sorbent receiving medium for measuring glove membrane transport. The panel was sprayed in a paint booth to simulate use conditions. Charcoal cloth under the glove adsorbed transported solvents, which were quantified by gas chromatography. For each solvent component, results were expressed as mass transported through the glove relative to the mass applied, per unit area, during 30 min after spray application. The paint formulation contained ketones, acetates, and aromatics. Natural rubber latex allowed 6-10 times the transport of solvents relative to nitrile rubber for all eight solvent components: methyl ethyl ketone, toluene, styrene, ethyl benzene, xylene isomers, and 2-heptanone. m-Xylene showed the largest difference in transport between the two glove materials. This solvent also had the highest transport for each material. The results indicate that nitrile rubber gloves offer somewhat greater chemical resistance to all eight solvents studied compared with natural rubber latex gloves, regardless of the chemical properties of the individual solvent components. However, it must be emphasized that neither of the glove materials, in the thicknesses used in this study, provide adequate protection when exposed by direct spray painting. Simulation of realistic spray conditions may offer a source of useful information on the performance of chemical protective gloves because it accounts for solvent evaporation and the effect of paint polymerization after application on glove transport. PMID:22434453

  17. Vibration-isolating performance of cotton work gloves based on newly issued JIS T8114.

    PubMed

    Shibata, Nobuyuki; Maeda, Setsuo

    2008-10-01

    The mean vibration transmissibility values were measured for cotton work gloves commonly used in vibration-generating workplaces to evaluate the vibration isolating performance of cotton work gloves. The mean vibration transmissibility values of work cotton gloves were compared with those of four types of anti-vibration gloves measured in the same way. All the measurements were performed based on the newly issued JIS T8114 that is identical to ISO10819. Also, linear transmissibility values were calculated from the measured data. Cotton work glove samples did not satisfy the requirements specified in JIS T8114. All the test samples showed mean vibration transmissibility values of more than 1.0 for spectra M and H. In contrast, all the anti-vibration gloves tested in this study satisfied the JIS T8114 requirements. The linear transmissibility values of cotton work gloves were consistently higher than those of anti-vibration gloves for spectrum H. The linear transmissibility values of cotton work gloves were steady at about 0.9 up to 200 Hz, then increased with vibration frequency to about 1.0 at 400 Hz. In contrast, the linear transmissibility values of anti-vibration gloves increased with frequency to 1.0 at 30 Hz and then decreased with small peaks at 100 Hz and 300 Hz. Our results suggest that cotton work gloves do not show enough vibration-isolating performance. Therefore, attention should be paid to encouraging the widespread use of anti-vibration gloves in place of cotton work gloves to reduce exposure to hand-arm vibration. PMID:18840938

  18. Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Bluethmann, W. J.; Delgado, F. J.; Herrera, E.; Kosmo, J. J.; Janoiko, B. A.; Wilcox, B. H.; Townsend, J. A.; Matthews, J. B.; Fong, T. W.; Bualat, M. G.; Lee, S. Y.; Dorsey, J. T.; Doggett, W. R.

    2007-01-01

    Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting.

  19. Application of glove box robotics to hazardous waste management

    SciTech Connect

    Dennison, D.K.; Hurd, R.L.; Merrill, R.D.; Reitz, T.C.

    1995-02-01

    Lawrence Livermore Laboratory (LLNL) is developing a semi-automated system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM developed gantry robot with a special glove box enclosure designed to protect the operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely using the robot in a telerobotic mode for one-of-a-kind functions and in an autonomous mode for repetitive type operations. The system will initially be used in conjunction with a portable gas system designed to capture any gaseous phase tritium released into the glove box. This paper presents the objectives of this program, provides background related to LLNL`s robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans.

  20. Sensory substitution for space gloves and for space robots

    NASA Technical Reports Server (NTRS)

    Bach-Y-rita, P.; Webster, J. G.; Tompkins, W. J.; Crabb, T.

    1987-01-01

    Sensory substitution systems for space applications are described. Physical sensors replace missing human receptors and feed information to the interpretive centers of a different sense. The brain is plastic enough so that, with training, the subject localizes the input as if it were received through the missing receptors. Astronauts have difficulty feeling objects through space suit gloves because of their thickness and because of the 4.3 psi pressure difference. Miniature force sensors on the glove palm drive an electrotactile belt around the waist, thus augmenting the missing tactile sensation. A proposed teleoperator system with telepresence for a space robot would incorporate teleproprioception and a force sensor/electrotactile belt sensory substitution system for teletouch.

  1. Hubble Space Telescope Servicing Mission Four (HST SM4) EVA Challenges for Safe Execution of STS-125

    NASA Technical Reports Server (NTRS)

    Dedalis, Robert P.; Hill, William H.; Rice, Karin Bergh; Cooter, Ann M.

    2010-01-01

    In May of 2009, the world-renowned Hubble Space Telescope (HST) received a suite of new instruments and a refurbished bus to enable science for many years to come. The restoration was conducted on-orbit by four space-walkers on five carefully scripted Extra-Vehicular Activity (EVA) days. Assuring the safety of the space-walkers and their crew-mates required careful attention to tool development, detailed procedures for every activity and many rehearsals with engineers and crew to ensure that everything worked together. Additionally, evolution of EVA requirements since the last servicing mission in 2002, and the broad scope of the mission demanded a much higher degree of safety participation in hardware design and risk acceptance than for previous servicing missions.

  2. Ordering Chaos: Eva Miller--Multnomah County Library, Portland, OR

    ERIC Educational Resources Information Center

    Library Journal, 2004

    2004-01-01

    Eva Miller has a knack for creating order out of disorder. She single-handedly brought Oregon's virtual reference service, Answerland, live in just under 90 days, says Rivkah Sass, now director of the Omaha Public Library. Miller created its web site, designed the graphics, developed marketing materials, and recruited and trained librarians--all…

  3. Study on EVA-based Enterprise Performance Evaluation Method

    Microsoft Academic Search

    Jin Yushi

    2011-01-01

    To create value for shareholders as much as possible is the mission of enterprise. Only the interests of shareholders has been protected, the rights of other stakeholders shall be guaranteed, building an effective performance evaluation index system of enterprise is particularly important. Traditional profit-centered performance evaluations have many defects, as a new performance evaluation method of business, EVA makes up

  4. Pharaonic Egypt and the origins of plague Eva Panagiotakopulu

    E-print Network

    Panagiotakopulu, Eva

    ORIGINAL ARTICLE Pharaonic Egypt and the origins of plague Eva Panagiotakopulu The origins as sufficiently detailed to enable the identification of bubonic plague, at least in Constantinople (for popular@sheffield.ac.uk ABSTRACT Aim This paper examines the possibility that bubonic plague was a disease endemic in the wild

  5. 2004-01-2295 SCOUT: EVA Capabilities of the

    E-print Network

    Akin, David

    ), or from micrometeoroids and orbital debris. These systems also require time consuming prebreathing prior2004-01-2295 SCOUT: EVA Capabilities of the Space Construction and Orbital Utility Transport David equivalent of an atmospheric diving suit. The Space Construction and Orbital Utility Transport (SCOUT

  6. EVA: Collaborative Distributed Learning Environment Based in Agents.

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Tellez, Rolando Quintero

    In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is presented. The environment is composed of knowledge, collaboration, consulting, experimentation, and personal spaces as a collection of agents and conventional software components working over the knowledge domains. All…

  7. Custom Unit Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Little, Frank; Oinuma, Ryoji; Larsen, Ben; Goldman, Jeff; Reinis, Filip; Trevino, Luis

    2010-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, seal-less, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion, and restart capability under both ambient and vacuum conditions. The pump operated at 40 to 240 lbm/hr flow rate, 35 to 100 oF pump temperature, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test.

  8. Design of a Power-Assisted Spacesuit Glove Actuator

    NASA Technical Reports Server (NTRS)

    Howard, Russell D.

    2000-01-01

    This paper presents the details of the design and implementation of an electromechanical power-assisted spacesuit glove actuator. The project was a joint effort by the University of Maryland's Space Systems Laboratory and ILC Dover, Inc., and involved innovative approaches to power augmentation and compact actuator packaging. The first actuator built validated several basic design concepts, and the second demonstrated improved performance and met many of the goals for flight qualification of the technology.

  9. Chemical resistance of disposable nitrile gloves exposed to simulated movement.

    PubMed

    Phalen, Robert N; Wong, Weng Kee

    2012-01-01

    Large discrepancies between laboratory permeation testing and field exposures have been reported, with indications that hand movement could account for a portion of these differences. This study evaluated the influence of simulated movement on chemical permeation of 30 different disposable nitrile glove products. Products were investigated out-of-box and with exposure to simulated whole-glove movement. Permeation testing was conducted using ethanol as a surrogate test chemical. A previously designed pneumatic system was used to simulate hand movement. No movement and movement tests were matched-paired to control for environmental conditions, as were statistical analyses. Permeation data were collected for a 30-min exposure period or until a breakthrough time (BT) and steady-state permeation rate (SSPR) could be determined. A third parameter, area under the curve at 30 min (AUC-30), was used to estimate potential worker exposure. With movement, a significant decrease in BT (p ? 0.05), ranging from 6-33%, was observed for 28 products. The average decrease in BT was 18% (p ? 0.001). With movement, a significant increase in SSPR (p ? 0.05), ranging from 1-78%, was observed with 25 products. The average increase in SSPR was 18% (p ? 0.001). Significant increases in AUC-30 (p ? 0.05), ranging from 23-277%, were also observed for all products where it could be calculated. On average, there was a 58% increase (p ? 0.001). The overall effect of movement on permeation through disposable nitrile gloves was significant. Simulated movement significantly shortened the BT, increased the SSPR, and increased the cumulative 30-min exposure up to three times. Product variability also accounted for large differences, up to 40 times, in permeation and cumulative exposure. Glove selection must take these factors into account. It cannot be assumed that all products will perform in a similar manner. PMID:23009187

  10. Permeation of a malathion formulation through butyl gloves

    Microsoft Academic Search

    Yu-Wen Lin; Shane S Que Hee

    1998-01-01

    The factors that determined the permeation kinetics of a commercial malathion formulation (Prent) and its reconstituted cocktail of malathion and its xylene-range fraction inert ingredients at Prent concentrations (Recon) were investigated for an unlined unsupported butyl industrial type glove in an ASTM-type permeation cell with liquid 2-propanol collection and subsequent analysis by gas chromatography\\/mass spectrometry. For both Prent and Recon,

  11. Chemical Resistance of Disposable Nitrile Gloves Exposed to Simulated Movement

    PubMed Central

    Phalen, Robert N.; Wong, Weng Kee

    2012-01-01

    Large discrepancies between laboratory permeation testing and field exposures have been reported, with indications that hand movement could account for a portion of these differences. This study evaluated the influence of simulated movement on chemical permeation of 30 different disposable nitrile glove products. Products were investigated out-of-box and with exposure to simulated whole-glove movement. Permeation testing was conducted using ethanol as a surrogate test chemical. A previously designed pneumatic system was used to simulate hand movement. No movement and movement tests were matched-paired to control for environmental conditions, as were statistical analyses. Permeation data were collected for a 30-min exposure period or until a breakthrough time (BT) and steady-state permeation rate (SSPR) could be determined. A third parameter, area under the curve at 30 min (AUC-30), was used to estimate potential worker exposure. With movement, a significant decrease in BT (p ? 0.05), ranging from 6–33%, was observed for 28 products. The average decrease in BT was 18% (p ? 0.001). With movement, a significant increase in SSPR (p ? 0.05), ranging from 1–78%, was observed with 25 products. The average increase in SSPR was 18% (p ? 0.001). Significant increases in AUC-30 (p ? 0.05), ranging from 23–277%, were also observed for all products where it could be calculated. On average, there was a 58% increase (p ? 0.001). The overall effect of movement on permeation through disposable nitrile gloves was significant. Simulated movement significantly shortened the BT, increased the SSPR, and increased the cumulative 30-min exposure up to three times. Product variability also accounted for large differences, up to 40 times, in permeation and cumulative exposure. Glove selection must take these factors into account. It cannot be assumed that all products will perform in a similar manner. PMID:23009187

  12. Minimizing glovebox glove breaches, Part 4: control charts

    SciTech Connect

    Cournoyer, M.E.; Lee, M.B.; Schreiber, S. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2007-07-01

    At the Los Alamos National Laboratory (LANL) Plutonium Facility, plutonium isotopes and other actinides are handled in a glovebox environment. The spread of radiological contamination, and excursions of contaminants into the worker's breathing zone, are minimized and/or prevented through the use of glovebox technology. Evaluating the glovebox configuration, the glovebox gloves are the most vulnerable part of this engineering control. Recognizing this vulnerability, the Glovebox Glove Integrity Program was developed to minimize and/or prevent unplanned openings in the glovebox environment, e.g., glove failures and breaches. In addition, LANL implement the 'Lean Six Sigma (LSS)' program that incorporates the practices of Lean Manufacturing and Six Sigma technologies and tools to effectively improve administrative and engineering controls and work processes. One tool used in LSS is the use of control charts, which is an effective way to characterize data collected from unplanned openings in the glovebox environment. The benefit management receives from using this tool is two-fold. First, control charts signal the absence or presence of systematic variations that result in process instability, in relation to glovebox glove breaches and failures. Second, these graphical representations of process variation determine whether an improved process is under control. Further, control charts are used to identify statistically significant variations (trends) that can be used in decision making to improve processes. This paper discusses performance indicators assessed by the use control charts, provides examples of control charts, and shows how managers use the results to make decisions. This effort contributes to LANL Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations. (authors)

  13. MINIMIZING GLOVEBOX GLOVE BREACHES, PART IV: CONTROL CHARTS

    SciTech Connect

    COURNOYER, MICHAEL E. [Los Alamos National Laboratory; LEE, MICHELLE B. [Los Alamos National Laboratory; SCHREIBER, STEPHEN B. [Los Alamos National Laboratory

    2007-02-05

    At the Los Alamos National Laboratory (LANL) Plutonium Facility, plutonium. isotopes and other actinides are handled in a glovebox environment. The spread of radiological contamination, and excursions of contaminants into the worker's breathing zone, are minimized and/or prevented through the use of glovebox technology. Evaluating the glovebox configuration, the glovebo gloves are the most vulnerable part of this engineering control. Recognizing this vulnerability, the Glovebox Glove Integrity Program (GGIP) was developed to minimize and/or prevent unplanned openings in the glovebox environment, i.e., glove failures and breaches. In addition, LANL implement the 'Lean Six Sigma (LSS)' program that incorporates the practices of Lean Manufacturing and Six Sigma technologies and tools to effectively improve administrative and engineering controls and work processes. One tool used in LSS is the use of control charts, which is an effective way to characterize data collected from unplanned openings in the glovebox environment. The benefit management receives from using this tool is two-fold. First, control charts signal the absence or presence of systematic variations that result in process instability, in relation to glovebox glove breaches and failures. Second, these graphical representations of process variation detennine whether an improved process is under control. Further, control charts are used to identify statistically significant variations (trends) that can be used in decision making to improve processes. This paper discusses performance indicators assessed by the use control charts, provides examples of control charts, and shows how managers use the results to make decisions. This effort contributes to LANL Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations.

  14. Nursing wound care survey: Sterile and nonsterile glove choice

    Microsoft Academic Search

    Lowell C. Wise; Jane Hoffman; Lynne Grant; Janet Bostrom

    1997-01-01

    Purpose: The application of sterile and clean procedure to the practice of wound care nursing was examined.Design: This prospective, descriptive study surveyed staff nurses regarding glove use.Subjects and Setting: Seven hundred forty-three staff nurses from five health care agencies in the San Francisco Bay Area responded to the survey.Instruments: A self-report wound care survey instrument was developed by Nursing Consortium

  15. Permeation of acrylate compounds through four commercially available gloves

    E-print Network

    Horn, David Samuel

    1986-01-01

    . Richard B. Konzen In this research breakthrough times and permeation rates were experimentally determined for one neoprene and three polyvinyl chloride gloves verses four acrylate chemicals. This research was conducted to determine if one... STATISTICAL ANALYSIS OF THE DATA. . . . . . . . . . . . RESULTS AND DISCUSSION. 34 38 Permeation Rate 40 Breakthrough Time. 44 CONCLUSIONS 49 Viii TABLE OF CONTENTS (continued) RECOMMENDATIONS 50 REFERENCES. APPENDIX A 51 FIVE TYPES OF PERMEATION...

  16. Cotton liners to mediate glove comfort for greenhouse applicators.

    PubMed

    Stone, J; Coffman, C; Imerman, P M; Song, K; Shelley, M

    2005-10-01

    Greenhouse applicators' acceptance of cotton knit gloves worn as liners under nitrile chemical-resistant gloves (CRG) for pesticide application was investigated through a wear study in Iowa and New York. Comfort was assessed by questionnaires and interviews with 10 applicators. Contamination levels of four pesticides on CRG and liners at thumb, forefinger, palm, and cuff locations were determined by chemical analysis using high-performance liquid chromatography or gas chromatography. Applicators reported feeling more comfortable with cotton liners under their CRG than without and that cotton liners were easy to manage. Contamination was significantly greater on nitrile CRG than on cotton liners underneath, but a few liner specimens had measurable contamination. No significant contamination differences were found between right- and left-hand gloves. Contamination varied significantly by hand location, with cuffs least, and by pesticide, with chlorpyrifos most. These results support the Environmental Protection Agency's recommendation that liners should be disposable, but further work on liners and their laundering feasibility seems indicated. PMID:16132418

  17. Development of a Fingertip Glove Equipped with Magnetic Tracking Sensors

    PubMed Central

    Fahn, Chin-Shyurng; Sun, Herman

    2010-01-01

    In this paper, we present the development of a data glove system based on fingertip tracking techniques. To track the fingertip position and orientation, a sensor module and two generator coils are attached on the fingertip and metacarpal of the corresponding finger. By tracking the fingertip, object manipulation tasks in a virtual environment or teleoperation system can be carried out more precisely, because fingertips are the foremost areas that reach the surface of an object in most of grasping processes. To calculate the bending angles of a finger, we also propose a method of constructing the shape of the finger. Since the coils are installed on the fingertips and metacarpals, there is no contact point between the sensors and finger joints. Hence, the shape of the sensors does not change as the fingers are bending, and both the quality of measurement and the lifetime of the sensors will not decrease in time. For the convenience of using this glove, a simple and efficient calibration process consisting of only one calibration gesture is also provided, so that all required parameters can be determined automatically. So far, the experimental results of the sensors performing linear movement and bending angle measurements are very satisfactory. It reveals that our data glove is available for a man-machine interface. PMID:22205860

  18. Permeability testing of glove materials for use with cancer chemotherapy drugs.

    PubMed

    Connor, T H

    1995-01-01

    The present study evaluated the effectiveness of several types of hospital gloves that are recommended by the manufacturers for handling chemotherapy drugs. Gloves were examined for permeability against five cancer chemotherapy drugs (doxorubicin, cyclophosphamide, 5-fluorouracil, carmustine, and cisplatin) at several time points up to 2 h using a bacterial mutation assay as the measure of permeation. Of the 5 types of gloves tested at a single thickness, 4 were completely impermeable to all drugs and the remaining 1 demonstrated only limited permeability. A latex examination glove used for comparison was permeable to carmustine. One glove material that was tested as a double thickness was impermeable to the 5 drugs. Results indicate that various types of gloves may offer protection against exposure to chemotherapy drugs for healthcare workers. PMID:7715911

  19. A comparative analysis of glove permeation resistance to paint stripping formulations.

    PubMed

    Stull, Jeffrey O; Thomas, Richard W; James, Lawrence E

    2002-01-01

    Although there is a wide variety of work gloves available to users of commercial paint stripping products, there are no published studies examining which type of gloves provide the best protection. To address this need, a multiphase study was undertaken to evaluate how several types of gloves resist multichemical-based paint stripping formulations. Due to the wide range of commercial paint stripping formulations available, seven categories of surrogate paint stripper formulations were created to evaluate glove performance initially. Twenty different glove types were identified for initial evaluation. Degradation resistance screening was carried out for each glove style and paint stripping formulation. Screening results were used to identify those glove styles least affected by the surrogate paint strippers. Those gloves were then evaluated for their resistance to permeation using continuous contact testing based on ASTM Test Method F 739. Glove styles showing extensive permeation with early breakthrough were then evaluated to see how they performed with only intermittent contact with the surrogate paint strippers using a modified form of ASTM Test Method F 1383. These results were used to select glove styles to be tested using commercially available paint stripping products. Gloves made of plastic laminate and butyl rubber were the most effective against the majority of paint strippers. More glove styles resisted permeation by N-methylpyrrolidone and dibasic ester-based paint strippers than conventional solvent products such as methylene chloride, methanol, isopropanol, acetone, and toluene. The study also found that decreased contact time caused relatively little change in permeation resistance and that the surrogate paint stripper data did not always accurately predict resistance to the commercial paint stripper formulations. PMID:11843429

  20. An Investigation of the Hypoalgesic Effects of TENS Delivered by a Glove Electrode

    Microsoft Academic Search

    Stephen Cowan; Joanne McKenna; Evie McCrum-Gardner; Mark I. Johnson; Kathleen A. Sluka; Deirdre M. Walsh

    2009-01-01

    This randomized, placebo-controlled, blinded study investigated the hypoalgesic effects of high-frequency transcutaneous electrical nerve stimulation (TENS) delivered via a glove electrode compared with standard self-adhesive electrodes. Fifty-six TENS-naïve, healthy individuals (18 to 50 years old; 28 men, 28 women) were randomly allocated to 1 of 4 groups (n = 14 per group): glove electrode; placebo TENS using a glove electrode;

  1. Dexterity test data contribute to reduction in leaded glovebox gloves use

    SciTech Connect

    Cournoyer, Michael E [Los Alamos National Laboratory; Lawton, Cindy M [Los Alamos National Laboratory; Castro, Amanda M [Los Alamos National Laboratory; Costigan, Stephen A [Los Alamos National Laboratory; Schreiber, Stephen [Los Alamos National Laboratory

    2009-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (T A-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes. Using an integrated approach, controls have been developed and implemented through an efficient Glovebox Glove Integrity Program. A key element of this program is to consider measures that lower the overall risk of glovebox operations. Line management who own glovebox processes through this program make decisions on which type of glovebox gloves (hereafter referred to as gloves), the weakest component of this safety-significant system, would perform best in these aggressive environments. As Low as Reasonably Achievable considerations must be balanced with glove durability and worker dexterity, both of which affect the final overall risk of the operation. In the past, lead-loaded (leaded) gloves made from Hypalon(reg.) were the primary glove for programmatic operations at TA55. Replacing leaded gloves with unleaded gloves for certain operations would lower the overall risk as well as reduce the amount of mixed transuranic waste. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the pros and cons of wearing leaded gloves, the effect of leaded gloves versus unleaded gloves on task performance using standard dexterity tests, the justification for switching from leaded to unleaded gloves, and the pollution prevention benefits of this dramatic change in the glovebox system are presented.

  2. Permeation through five commercially available glove materials by two pentachlorophenol formulations.

    PubMed

    Silkowski, J B; Horstman, S W; Morgan, M S

    1984-08-01

    Five glove materials were tested for permeation by two commonly used formulations of pentachlorophenol (PCP). Permeation was conducted using the method used in two prior studies by NIOSH. The lower limit of PCP quantitation in the receiving side of the permeation cell was 70 parts per billion (ppb). When challenged with a 4.3% PCP in diesel oil solution, both the Dayton Flexible Products Triflex (PVC) and the Best 64 NFW (natural rubber) gloves exhibited breakthrough times thirty seconds after exposure. The Playtex #835 (latex/neoprene) glove exhibited breakthrough after sixty minutes, but showed a five fold greater rate of permeation than the Dayton and the Best glove. Neither the Edmont Sol-Vex (nitrile rubber) nor the Granet Glo-Gluv (PVC) gloves had been permeated after testing for 8 and 16 hours respectively. Following challenge with a 4.2% sodium pentachlorophenate solution, only the Best (natural rubber) glove allowed breakthrough; this only thirty seconds after exposure. Neither the Dayton (5 hours), Playtex (7.5 hours), Edmont (15.5 hours), nor Granet (15.5 hours) gloves had been permeated following completion of testing after the listed duration. This study has shown that different gloves offer differing resistance to permeation by PCP based upon the composition of the glove and the PCP formulation tested. PMID:6475756

  3. Permeation of hair dye ingredients, p-phenylenediamine and aminophenol isomers, through protective gloves.

    PubMed

    Lee, Hsiao-Shu; Lin, Yu-Wen

    2009-04-01

    Skin irritation and contact allergies are skin disorders common to hairdressers. The predominant oxidative hair dye components, such as p-phenylenediamine (PPD) and aminophenol isomers, can cause contact dermatitis. Use of protective gloves can prevent dermal contact with skin irritants. This study investigates the permeation behaviors of p-aminophenol (PAP), m-aminophenol (MAP), o-aminophenol (OAP) and PPD in single and mixed challenge solutions with disposable natural rubber latex (NRL) gloves, disposable polyvinylchloride (PVC) gloves and neoprene (NP) gloves. The challenge solutions were 4% PPD (w/v), 3% OAP (w/v), 2% PAP (w/v) and 2% MAP (w/v) in ethanol or 12% hydrogen peroxide solutions. The cocktail solutions of the four chemicals were also tested. An American Society for Testing and Materials type permeation cell, ethanol liquid collection and gas chromatography-flame ionization detection of samples taken from the collection medium every 10 min facilitated determination of breakthrough times (BTs), cumulative permeated masses and steady-state permeation rates (SSPRs). Experiments were 4 h long for the NRL and PVC gloves and 8 h for NP gloves. No chemicals tested broke through the NP gloves when exposed for 8 h. In the ethanol solution, PPD and OAP started breaking through the PVC gloves at 40 min. The SSPRs of PVC gloves were higher than those for NRL gloves in all challenge conditions for both single chemicals and mixtures. No tested chemicals in hydrogen peroxide solutions permeated the gloves during the 4-h tests. The chemical composition of the challenge solution was a main effecter of BTs and SSPRs for the NRL glove. For disposable PVC gloves, the main factors of BTs were molecular size [molar volume (MV)] and polarity (logK(ow)), and the primary factors of SSPRs were concentration, MV and logK(ow). In conclusion, disposable NRL gloves and disposable PVC gloves should not be used repeatedly for handling the hair dye products. Hydrogen peroxide did not accelerate chemical breakthrough. The compositions of the challenge solutions and physical and chemical properties (MV and logK(ow)) affected permeation behaviors for different gloves. PMID:19279162

  4. EVA Assembly of Large Space Structure Neutral Buoyancy, Zero-Gravity Simulation: NASA-LaRC Nestable Columns and Joints

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The film depicts an extravehicular activity (EVA) that involved the assembly of six "space-weight" columns into a regular tetrahedral cell by a team of two "space"-suited test subjects. This cell represents the fundamental "element" of a tetrahedral truss structure. The tests were conducted under simulated zero-gravity conditions, achieved by neutral buoyancy in water. The cell was assembled on an "outrigger" assembly aid off the side of a mockup of the Shuttle Orbiter cargo bay. Both manual and simulated remote manipulator system (RMS) modes were evaluated. The simulated RMS was used only to transfer stowed hardware from the cargo bay to the work sites. Articulation limits of the pressure suit and zero gravity could be accommodated by work stations with foot restraints. The results of this study have confirmed that astronaut EVA assembly of large, erectable space structur is well within man's capabilities.

  5. Advanced development of non-discoloring EVA-based PV encapsulants

    SciTech Connect

    Holley, W.H.; Galica, J.P.; Argo, S.C.; Yorgensen, R.S. [Springborn Laboratories, Inc., One Springborn Center, Enfield, Connecticut 06082 (United States); Ezrin, M.; Klemchuk, P.; Lavigne, G. [University of Connecticut, Institute of Materials Science, Storrs, Connecticut 06269-3136 (United States)

    1996-01-01

    The purpose of this investigation was to better define the problem of field yellowing of EVA-based PV encapsulant, through laboratory study of probable chemical mechanisms and the development of stabilization strategies for protecting EVA from discoloration. EVA from fielded modules was analyzed for vinyl acetate content, unsaturation, and additive levels. These test results were then compared to results from Xenon Arc Weather-Ometer aged glass/EVA/glass laminates made in the laboratory. Variables evaluated in Weather-Ometer aged laminates included ``standard-cure`` A9918P EVA, ``fast-cure`` 15295P EVA, low iron glass superstrate containing cerium oxide, and systematic elimination or addition of specific additives. Six significant findings were revealed: 1) Improved ``standard-cure`` and ``fast-cure`` type EVA encapsulants, formulations X9903P and X15303P, respectively, showed little or no yellowing after extended Weather-Ometer exposure; 2) The use of {open_quote}{open_quote}fast-cure{close_quote}{close_quote} EVA reduced discoloration when compared with {open_quote}{open_quote}standard-cure{close_quote}{close_quote} A9918P EVA; 3) Glass superstrate containing cerium oxide resulted in a reduced rate of EVA discoloration; 4) {open_quote}{open_quote}Fast-cure{close_quote}{close_quote} EVA used with glass superstrate containing cerium oxide showed no visible yellowing after 32 weeks in the Weather-Ometer{emdash}a period estimated to be roughly equivalent to 20{endash}30 years of exposure in the Southwest; 5) Severely discolored EVA samples from the field showed no measurable loss of acetate group and little detectable unsaturation; and 6) EVA encapsulant with a Tefzel cover exhibited no yellowing after extended Weather-Ometer exposure. {copyright} {ital 1996 American Institute of Physics.}

  6. Permeability of different types of medical protective gloves to acrylic monomers.

    PubMed

    Lönnroth, Emma-Christin; Wellendorf, Hanne; Ruyter, Eystein

    2003-10-01

    Dental personnel and orthopedic surgeons are at risk when manually handling products containing methyl methacrylate (MMA). Dental products may also contain cross-linking agents such as ethylene glycol dimethacrylate (EGDMA) or 1,4-butanediol dimethacrylate (1,4-BDMA). Skin contact with monomers can cause hand eczema, and the protection given by gloves manufactured from different types of material is not well known. The aim of this study was to determine the breakthrough time (BTT, min) as a measure of protection (according to the EU standard EN-374-3) for a mixture consisting of MMA, EGDMA and 1,4-BDMA. Fifteen different gloves representing natural rubber latex material, synthetic rubber material (e.g. nitrile rubbers), and synthetic polymer material were tested. The smallest monomer MMA permeated within 3 min through all glove materials. A polyethylene examination glove provided the longest protection period to EGDMA and 1, 4-BDMA (> 120 min and 25.0 min), followed by the surgical glove Tactylon (6.0 min and 8.7 min) and the nitrile glove Nitra Touch (5.0 min and 8.7 min). This study showed that the breakthrough time (based on permeation rate) cannot be regarded as a 'safe limit'. When the permeation rate is low, monomers may have permeated before BTT can be determined. Using double gloves with a synthetic rubber inner glove and a natural rubber outer glove provided longer protection when the inner glove was rinsed in water before placing the outer glove on top. PMID:12974690

  7. Evaluation of the impact of non-uniform neutron radiation fields on the dose received by glove box radiation workers

    NASA Astrophysics Data System (ADS)

    Crawford, Arthur Bryan

    The effort to estimate the radiation dose received by an occupationally exposed worker is a complex task. Regulatory guidance assumes that the stochastic risks from uniform and non-uniform whole-body irradiations are equal. An ideal uniform irradiation of the whole body would require a broad parallel radiation field of relatively high-energy radiation, which many occupationally exposed workers do not experience. In reality, workers are exposed to a non-uniform irradiation of the whole body such as a radiation field with one or more types of radiation, each with varying energies and/or fluence rates, incident on the worker. Most occupational radiation exposure at LANL is due to neutron radiation. Many of these exposures originate from activities performed in glove boxes with nuclear materials. A standard Los Alamos 2 x 2 x 2 glove box is modeled with the source material being clean weapons grade plutonium. Dosimeter tally planes were modeled to stimulate the various positions that a dosimeter can be worn. An anthropomorphic phantom was used to determine whole body dose. Various geometries of source position and phantom location were used to determine the effects of streaming on the radiation dose a worker may receive. Based on computational and experimental results, the effects of a non-uniform radiation field have on radiation dose received by a worker in a glove box environment are: (1) Dosimeter worn at chest level can overestimate the whole body dose between a factor of two to six depending on location of the phantom with the source material close to the front of the glove box, (2) Dosimeter should be worn at waist level instead of chest level to more accurately reflect the whole body dose received, (3) Dose can be significantly higher for specific locations of the worker relative to the position of the source, (4) On the average the testes contribute almost 44% of the whole body dose for a male, and (5) Appropriate design considerations such as more shielding on the bottom of the glove box and controls such as the use of internal or external shielding can reduce the effects on dose from these non-uniform fields.

  8. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper; Durkin, Robert

    2012-01-01

    As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC's Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.

  9. Non-Venting Thermal and Humidity Control for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Mike; Chen, Weibo; Bue, Grant

    2011-01-01

    Future EVA suits need processes and systems to control internal temperature and humidity without venting water to the environment. This paper describes an absorption-based cooling and dehumidification system as well as laboratory demonstrations of the key processes. There are two main components in the system: an evaporation cooling and dehumidification garment (ECDG) that removes both sensible heat and latent heat from the pressure garment, and an absorber radiator that absorbs moisture and rejects heat to space by thermal radiation. This paper discusses the overall design of both components, and presents recent data demonstrating their operation. We developed a design and fabrication approach to produce prototypical heat/water absorbing elements for the ECDG, and demonstrated by test that these elements could absorb heat and moisture at a high flux. Proof-of-concept tests showed that an ECDG prototype absorbs heat and moisture at a rate of 85 W/ft under conditions that simulate operation in an EVA suit. The heat absorption was primarily due to direct absorption of water vapor. It is possible to construct large, flexible, durable cooling patches that can be incorporated into a cooling garment with this system. The proof-of-concept test data was scaled to calculate area needed for full metabolic loads, thus showing that it is feasible to use this technology in an EVA suit. Full-scale, lightweight absorber/radiator modules have also been built and tested. They can reject heat at a flux of 33 W/ft while maintaining ECDG operation at conditions that will provide a cool and dry environment inside the EVA suit.

  10. Astronaut Carl Meade tests SAFER system during EVA

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Carl J. Meade tests the new Simplified Aid for Eva Rescue (SAFER) system 130 nautical miles above Earth. The scene was captured with a 70mm handheld Hasselblad camera with a 30mm lens attached. The hardware supporting the LIDAR-in-Space Technology Experiment (LITE) is in the lower right. A TV camera on the Remote Manipulator System (RMS) arm records the space walk.

  11. Selection and testing of a glove combination for use with the U. S. Coast Guard's chemical response suit

    SciTech Connect

    Stull, J.O.; Herring, B. (Texas Research Institute Austin, Inc. (USA))

    1990-07-01

    A study was sponsored by the U.S. Coast Guard to select a glove system for its chemical response suit that could meet or exceed the chemical resistance performance of the suit's base material. Three different protective glove combinations were evaluated for their permeation resistance to 28 chemicals. The glove combinations were based on three materials--Viton, butyl rubber, and Silvershield. The test chemicals were selected for one of two reasons. First, no single glove material could be identified to be resistant against the chemical of interest, or second, no permeation test data were available for judging glove material performance for the specific chemical. As can be expected, the permeation resistance of the glove combinations greatly exceeded that of the single glove material components. The butyl rubber/Silvershield glove combination was found to provide permeation resistance greater than 1 hr for all but one of the chemicals tested.

  12. Selection and testing of a glove combination for use with the U.S. Coast Guard's chemical response suit.

    PubMed

    Stull, J O; Herring, B

    1990-07-01

    A study was sponsored by the U.S. Coast Guard to select a glove system for its chemical response suit that could meet or exceed the chemical resistance performance of the suit's base material. Three different protective glove combinations were evaluated for their permeation resistance to 28 chemicals. The glove combinations were based on three materials--Viton, butyl rubber, and Silvershield. The test chemicals were selected for one of two reasons. First, no single glove material could be identified to be resistant against the chemical of interest, or second, no permeation test data were available for judging glove material performance for the specific chemical. As can be expected, the permeation resistance of the glove combinations greatly exceeded that of the single glove material components. The butyl rubber/Silvershield glove combination was found to provide permeation resistance greater than 1 hr for all but one of the chemicals tested. PMID:2382640

  13. Use of Magnetorheological fluid in a force feedback glove.

    PubMed

    Winter, Scott H; Bouzit, Mourad

    2007-03-01

    Magnetorheological fluid (MRF) is a smart material that has the property of changing its viscosity when exposed to a magnetic field. By placing this fluid into a sealed cylinder with an electromagnet piston as a core, a controllable resistance motion dampener can be created. A novel exoskeleton mechanical power transmission system was designed, utilizing rapid prototype parts, to transmit these resistive forces to the user's fingertips. A first iteration force feedback glove was developed and tested on human subjects for overall usability. The eventual goal of the system is to provide an alternative force producing system for exercises and rehabilitation. The entire system is lightweight, low power, and easily portable. PMID:17436869

  14. UV aging and outdoor exposure correlation for EVA PV encapsulants

    NASA Astrophysics Data System (ADS)

    Reid, Charles G.; Bokria, Jayesh G.; Woods, Joseph T.

    2013-09-01

    A widely cited approximation in the solar industry is that "one week of xenon arc weather-o-meter exposure is equivalent to one year of field exposure." This statement is a generalization of test data generated in the mid-1990s as part of the NREL managed PVMaT-3 project. This approximation was based entirely upon yellowing of first generation EVA-based encapsulants in two different accelerated test conditions, xenon arc and mirror accelerated outdoor aging. First generation EVA encapsulants were developed by STR under the JPL solar project (1975-1986) and exhibit yellowing (or browning) with exposure to UV and heat. This yellowing mechanism was understood and resolved with newer generation EVA encapsulation products introduced in late 1990s. Modules were manufactured at the end of the PVMaT-3 project that included both older and newer generation encapsulants. Those modules were on a two-axis tracker in Arizona from 1996 to 2012 and are now undergoing diagnostic tests. Older generation standard-cure encapsulant used in these modules exhibited severe browning over cells and the modules exhibit approximate power loss of about two percent per year. This same standard cure encapsulant material has been tested with updated xenon arc exposure methods and optical transmission tests to estimate the loss in power due only to browning and reduction in light transmission.

  15. Case histories of EVA encapsulant discoloration in fielded modules

    SciTech Connect

    Agro, S.; Galica, J.; Holley, W.H.; Yorgensen, R.S. (Springborn Laboratories Inc., Enfield, Connecticut 06082 (United States))

    1994-06-30

    A survey of case histories of EVA-based encapsulant discoloration in fielded modules in the U. S. reveals that the problem is limited to areas of the West and Southwest that have comparatively high solar insolation and ambient temperature. There have been no reported cases of discolored EVA encapsulant from modules fielded in the Northeast, Central U. S., or Western Europe. The absence of hard data regarding module operating temperatures, solar insolation, onset of discoloration, and quantitative information regarding the degree of discoloration has made correlation between various fabrication, placement, and operating conditions and incidence of discoloration difficult it not impossible. However, the degree of discoloration does appear to correlate with increasing average daily direct normal solar radiation and approximate maximum module operating temperature, as estimated from maximum ambient temperatures. It is clear that the discoloration problem is not limited to the modules of any one manufacturer, however, the rate and degree of discoloration do appear to vary from company to company. Also, discoloration is not limited to EVA encapsulant sheet from any one supplier.

  16. A Glimpse from the Inside of a Space Suit: What Is It Really Like to Train for an EVA?

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.; Moore, Sandra K.

    2009-01-01

    The beauty of the view from the office of a spacewalking astronaut gives the impression of simplicity, but few beyond the astronauts, and those who train them, know what it really takes to get there. Extravehicular Activity (EVA) training is an intense process that utilizes NASA's Neutral Buoyancy Laboratory (NBL) to develop a very specific skill set needed to safely construct and maintain the orbiting International Space Station. To qualify for flight assignments, astronauts must demonstrate the ability to work safely and efficiently in the physically demanding environment of the spacesuit, possess an acute ability to resolve unforeseen problems, and implement proper tool protocols to ensure no tools will be lost in space. Through the insights and the lessons learned by actual EVA astronauts and EVA instructors, this paper twill take you on a journey through an astronaut's earliest experiences working in the spacesuit. termed the Extravehicular Mobility Unit (EMU), in the underwater training environment of the NBL. This work details an actual Suit Qualification NBL training event, outlines the numerous challenges the astronauts face throughout their initial training, and the various ways they adapt their own abilities to overcome them. The goal of this paper is to give everyone a small glimpse into what it is really like to work in a spacesuit.

  17. The Feasibility of Using Electrical Means for Monitoring Barrier Integrity in Natural Rubber Latex Gloves

    E-print Network

    Bennett, John K.

    The Feasibility of Using Electrical Means for Monitoring Barrier Integrity in Natural Rubber Latex Gloves: Hydration, Conductivity, and Protein Content in Natural Rubber Latex Gloves John K. Bennett, Ph by the U.S. Center for Disease Control, have resulted in a dramatic increase in the use of natural rubber

  18. Investigations on Permeation of Mitomycin C Through Double Layers of Natural Rubber Gloves

    Microsoft Academic Search

    GINTAUTAS KORINTH; KLAUS SCHMID; OLIVER MIDASCH; MELANIE I. BOETTCHER; JURGEN ANGERER; HANS DREXLER

    2007-01-01

    Treating peritoneal carcinomatosis by the aggressive cytoreductive surgery with the hyperther- mic intraoperative intraperitoneal chemotherapy (HIPEC) surgeons expose their gloved hands for up to 90 min to a peritoneal dialysis solution (PDS) containing mitomycin C (MMC). We investigated the permeation of MMC through the material of three different natural rubber gloves under conditions similar to the in-use during HIPEC as

  19. Permeation of herbicidal dichlobenil from a Casoron formulation through nitrile gloves.

    PubMed

    Que Hee, Shane S; Zainal, Hanaa

    2010-02-01

    The aim of this study was to measure permeation of the herbicide dichlobenil in Casoron 4G through disposable and chemically protective nitrile gloves using an American Society for Testing and Materials-type permeation cell and a closed-loop system employing two different solvents (hexane and water) and two different challenge situations (aqueous emulsion and solid formulation). Capillary gas chromatography-mass spectrometry was used for quantification purposes. The chemically protective glove did not allow any permeation up to 8 h for the solid-formulation and water-collection challenges, but permeation was detected in all other challenges. The disposable glove allowed the most permeation, and the solid-formulation challenge with water collection necessitated that a dichlobenil equivalent be calculated because of the presence of its hydrolysis degradation product 2,6-dichlorobenzamide. Permeation from the solid formulation was detectable by hexane collection for both the disposable and chemically protective gloves and by water collection for the disposable glove. It was concluded that hexane-solvent collection was not valid for the disposable glove at 4 and 8 h of permeation in the solid Casoron challenge or for the aqueous emulsion challenge at 8 h relative to the water-collection solvent data. The hexane-solvent collection for the chemically protective glove was valid for the 8-h solid-formulation challenge but not for the 8-h aqueous-solution challenge. All water-solvent collections were valid; however, dichlobenil usually permeated the gloves. PMID:19855916

  20. Safety in the Chemical Laboratory: Selecting Chemical Protective Gloves Properly in the Lab.

    ERIC Educational Resources Information Center

    Hart, Charles

    1989-01-01

    Discusses the selection of gloves for the chemistry laboratory. Provides checklists for the purposes of the gloves, and the factors including permeation rate, breakthrough time, friction, and cost. Lists eight rules for preventing skin exposure and minimizing area contamination. Lists six references. (YP)

  1. Development of grip amplified glove using bi-articular mechanism with pneumatic artificial rubber muscle

    Microsoft Academic Search

    Kotaro Tadano; Masao Akai; Kazuo Kadota; Kenji Kawashima

    2010-01-01

    In this paper, a grip amplified glove using pneumatic artificial rubber muscles (PARMs) which are covered with a exoskeleton structure is developed. A bi-articular mechanism with a PARM that is suitable for bending finger is realized. The glove has totally 10 DOFs consist of four units. To achieve power-assist motion properly, the PI control, which is based on the pressure

  2. Electrical conductivity as a test for the integrity of latex gloves

    Microsoft Academic Search

    J. F. Stampfer; R. J. Kissane; S. M. Schauer

    1993-01-01

    Surgical latex gloves have been used to protect patients against bacterial infections introduced by health-care workers. As a result of the Acquired Immune Deficiency Syndrome (AIDS) epidemic, the concern has shifted, with more emphasis on the protection of the health-care worker from the patient. These gloves often have defects, holes, which allow bacteria to penetrate. There are a number of

  3. Micro hydraulic system using slim artificial muscles for a wearable haptic glove

    Microsoft Academic Search

    Dongseok Ryu; Kyung-won Moon; Hyungdo Nam; Yongkwun Lee; Changmook Chun; Sungchul Kang; Jae-bok Song

    2008-01-01

    Over the past few decades, various haptic gloves have been developed for use in virtual environments. The actuating systems for most existing haptic gloves require lots of external auxiliary equipment. Because of this, the motion of the user is restricted by the length of the electric wires or pneumatic tubes attached to this equipment. A compact actuation system, including related

  4. The design, development and assessment of electrically heated gloves used for protecting cold extremities

    Microsoft Academic Search

    G. E. KEMPSON; R. P. CLARK; M. R. GOFF

    1988-01-01

    The design and development of electrically heated gloves for alleviating pain in vaso-spastic disorders, such as Raynaud's disease, is described. Clinical assessment of these conditions from the temperature patterns produced by infrared thermography is discussed. The effect of electrically heated gloves on tissue perfusion in individual patients can be assessed by thermography. A ‘hot’ stress test to determine the degree

  5. A study of the electrical properties of polymeric materials used for gloves and finger cots

    Microsoft Academic Search

    Carl Newberg; Ben Baumgartner; Gene Chase; William Casselman; Arleigh Hartkopf; T. Jarrett; W. J. Metz; R. D. Rodrigo; J. Turangan; J. Vaughn; S. Weitz

    2001-01-01

    The electrical properties of three different styles of polymeric gloves were evaluated using ANSI ESD S11.11-1993 and ESD STM11.12-2000. Additional variables were applied to the test methods to help understand the applicability of these tests for measurement of the materials used in the glove & finger cot industry.

  6. A force feedback glove based on Magnetorheological Fluid: Preliminary design issues

    Microsoft Academic Search

    David J. Cassar; Michael A. Saliba

    2010-01-01

    This work first provides an overview of haptic gloves found in the literature, with a focus on their applications and their requirements. This information is then used to justify the use of Magnetorheological Fluid (MRF), a smart fluid which reversibly changes viscosity proportionally to an applied magnetic field, to effect the force feedback in a haptic glove. This is followed

  7. Evaluation of aloe vera gel gloves in the treatment of dry skin associated with occupational exposure

    Microsoft Academic Search

    Dennis P. West; Ya Fen Zhu

    2003-01-01

    Objective: An examination glove that delivers aloe vera (AV) gel to the gloved hand was studied in 30 adult females with bilateral occupational dry skin with or without irritant contact dermatitis (with or without erythema, fissures, and excoriations). Methods: All participants were factory assembly-line workers with repeated superficial skin trauma who attributed their dry, irritated, emollient-dependent skin to a common

  8. Dismantling of alpha contaminated obsolete installations and glove boxes on the IRMM site in Geel (Belgium)

    SciTech Connect

    Cretskens, Pieter; Lenie, Koen [Tecnubel NV, Gravenstraat 77, B-2480 Dessel (Belgium); Melis, Gustaaf [IRMM JRC, Retieseweg 111, B-2440 Geel (Belgium)

    2007-07-01

    At the Institute for Reference Materials and Measurements (European commission, Joint Research Centre, IRMM) a dismantling campaign of obsolete installations and glove boxes has been carried out in 2005. There were various reasons for their removal. Some large installations did not meet modern safety standards, other installations were worn out and expected to cause a radioactive contamination risk in the future. The main goal was to create as less waste as possible by extensive contamination checks and by decontamination if necessary. For the glove boxes, decontamination was not possible. A controlled area was set up around the installation to be dismantled in order to prevent spreading of contamination from dust and dirt. This was only possible for the 'minor' contaminated installations. The dismantling campaign of the glove boxes was carried out by using tents of two types depending the contamination inside the glove boxes. The most common glove boxes were dismantled in a tent constructed with hard surfaced polycarbonate plates (ventilated cell). For glove boxes with higher contamination, the same principle was used but with a second 'glove box tent' inside (ventilated glove tent). The purpose of this project was to learn from the experience of this campaign which gave the ability to make estimates of future radioactive waste or classic waste that could be expected from dismantled installations. (authors)

  9. The bionic glove: An electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia

    Microsoft Academic Search

    Arthur Prochazka; Michel Gauthier; Marguerite Wieler; Zoltan Kenwell

    1997-01-01

    Objective: This report describes the operation of the Bionic Glove, a new functional electrical stimulation (FES) device designed to improve the function of the paralyzed hand after spinal cord injury (SCI) or stroke.Design: Signals from a sensor in the glove detecting voluntary wrist movement are used to control FES of muscles either to produce hand-grasp or to open the hand.

  10. Thermal Analysis of a Metallic Wing Glove for a Mach-8 Boundary-Layer Experiment

    NASA Technical Reports Server (NTRS)

    Gong, Leslie; Richards, W. Lance

    1998-01-01

    A metallic 'glove' structure has been built and attached to the wing of the Pegasus(trademark) space booster. An experiment on the upper surface of the glove has been designed to help validate boundary-layer stability codes in a free-flight environment. Three-dimensional thermal analyses have been performed to ensure that the glove structure design would be within allowable temperature limits in the experiment test section of the upper skin of the glove. Temperature results obtained from the design-case analysis show a peak temperature at the leading edge of 490 F. For the upper surface of the glove, approximately 3 in. back from the leading edge, temperature calculations indicate transition occurs at approximately 45 sec into the flight profile. A worst-case heating analysis has also been performed to ensure that the glove structure would not have any detrimental effects on the primary objective of the Pegasus a launch. A peak temperature of 805 F has been calculated on the leading edge of the glove structure. The temperatures predicted from the design case are well within the temperature limits of the glove structure, and the worst-case heating analysis temperature results are acceptable for the mission objectives.

  11. Sensitivity tests on leaded glove material, EMRTC Report FR95-15: Final test report

    Microsoft Academic Search

    D. Olson; L. Davis; A. Block-Bolten

    1995-01-01

    Small-scale safety and characterization tests were performed on stored radioactive wastes. The materials tested were formed when leaded dry box gloves were exposed to nitric acid. The nitration products exhibited thermal and impact sensitivity which could lead to ignition of explosion. Water was used to separate the nitrated glove material into several fractions; only the insoluble fraction exhibited significant sensitivity

  12. Permeation of chlorinated aromatic compounds through Viton and nitrile glove materials.

    PubMed

    Mikatavage, M; Que Hee, S S; Ayer, H E

    1984-09-01

    The ASTM cell was utilized to study permeation of chloro-, o-dichloro-, and m-dichloro-benzenes and o- and p-chlorotoluenes through Viton (unsupported) and nitrile (supported and unsupported) glove materials using isopropanol as collecting solvent, and FID/gas chromatography for quantitation. Adequate mixing in the collection chamber was accomplished by externally agitating the ASTM cell at the required speed in a moving-tray water bath at 25 degrees C. The Viton glove did not show permeation even after 4 hours. The nitrile gloves showed breakthrough times of less than 1 hour. The steady state molar flux rates for unsupported or supported nitrile gloves, or for the different challenge solvents were not statistically different. Thus, breakthrough times were better indicators of permeation than steady state molar flux rates. A "mixed" permeation mechanism was proposed, depending on swelling of the glove material. PMID:6507285

  13. Selection and Testing of a Glove Combination for Use with the U.S. Coast Guard's Chemical Response Suit

    Microsoft Academic Search

    JEFFREY O. STULL; BRUCE HERRING

    1990-01-01

    A study was sponsored by the U.S. Coast Guard to select a glove system for its chemical response suit that could meet or exceed the chemical resistance performance of the suit's base material. Three different protective glove combinations were evaluated for their permeation resistance to 28 chemicals. The glove combinations were based on three materials–Vilon®, butyl rubber, and Silvershield®. The

  14. In vivo testing of the protective efficacy of gloves against allergen-containing products using an open chamber system.

    PubMed

    Andersson, T; Bruze, M

    1999-11-01

    In vitro degradation and permeation testing of glove materials is important in the assessment of the protective efficacy against chemicals. In vivo factors, such as skin-glove contact, skin temperature and humidity may, however, influence the protective effect of the glove. These factors must thus be considered in the overall assessment of a protective glove. An in vivo glove test should as far as possible imitate the practical use of the glove, as well as the exposure to the product/chemical against which the glove should protect. An open chamber system for human in vivo glove testing is presented. This system enables simultaneous testing of 6-8 gloves with 3 provocation times for each glove. Positive controls (no glove) can be included. As a control of the subject's present reactivity to the chemical of interest, conventional patch testing with a dilution series can be performed in parallel. The method is easy to use and convenient for the patient. It promises to be a useful clinical tool in individual preventive measures against contact allergy. The method can be used in glove testing against many hazardous chemicals, both contact allergens and toxic/irritant compounds in workplaces such as the plastics industry and the chemical industry. PMID:10554059

  15. Non-touch suturing technique fails to reduce glove puncture rates in an accident and emergency department

    Microsoft Academic Search

    T K McAdam; R E McLaughlin; B McNicholl

    2004-01-01

    Objective: To assess the impact of introducing a safer non-touch suturing technique into an inner city emergency department.Methods: The rate of glove perforation, measured by electrical conductance, was used as a marker. Gloves (Bodyguards) used in suturing were collected over a two month period. Two half day suture workshops were then conducted in the emergency department and gloves were collected

  16. The protective efficacy of surgical latex gloves against the risk of skin contamination: how well are the operators protected?

    Microsoft Academic Search

    R. V. Hentz; G. C. Traina; R. Cadossi; P. Zucchini; M. A. Muglia; M. Giordani

    2000-01-01

    Latex gloves are used by surgical staff to avoid exposure to patient body fluids, thus reducing the risk of contracting bloodborne viral diseases, such as hepatitis C and HIV. We studied the efficacy of the surgical barrier provided by latex gloves, before and after use in the operating theater. The electrical conductivity, insulation and mechanical resistance of glove latex were

  17. Dexterity tests data contribute to reduction in leaded glovebox gloves use

    SciTech Connect

    Cournoyer, Michael E [Los Alamos National Laboratory; Lawton, Cindy M [Los Alamos National Laboratory; Castro, Amanda M [Los Alamos National Laboratory

    2008-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alphaemitting materials. The spread of radiological contamination on surfaces and airborne contamination and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes. Through an integrated approach, controls have been developed and implemented through an efficient Glovebox Glove Integrity Program (GGJP). A key element of this program is to consider measures that lower the overall risk of glovebox operations. Line management owning glovebox processes through this program make decisions on which type of glovebox gloves (the weakest component of this safety significant system) would perform in these aggressive environments. As Low As Reasonably Achievable (ALARA) considerations must be balanced with glove durability and worker dexterity, both of which affect the final overall risk of the operation. In the past, lead-loaded (leaded) glovebox gloves made from Hypalon(reg.) had been the workhorse of programmatic operations at TA-55. Replacing leaded gloves with unleaded gloves for certain operations would lower the overall risk as well as reduced the amount of mixed TRU waste. This effort contributes to Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations. In the following report, the pros and cons of wearing leaded glovebox gloves, the effect of leaded gloves versus unleaded gloves on task performance using standard dexterity tests, the justification for switching from leaded to unleaded gloves, and pollution prevention benefits of this dramatic change in the glovebox system are presented.

  18. Understanding factors that influence protective glove use among automotive spray painters.

    PubMed

    Ceballos, Diana; Reeb-Whitaker, Carolyn; Glazer, Patricia; Murphy-Robinson, Helen; Yost, Michael

    2014-01-01

    Dermal contact with isocyanate-based coatings may lead to systemic respiratory sensitization. The most common isocyanates found in sprayed automotive coatings are monomeric and oligomeric 1,6-hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI). Most spray painters use thin (4-5 mil) latex gloves that are not effective at preventing dermal exposures when spraying isocyanate paints. Personal interviews with collision repair industry personnel and focus groups with spray painters were held to characterize risk awareness, to examine perceptions and challenges concerning protective glove use and selection, and to generate ideas for protective glove use interventions. The most popular gloves among spray painters were thin (4-5 mil) and thick (14 mil) latex. We found that medium to thick (6-8 mil) nitrile were not always perceived as comfortable and were expected to be more expensive than thin (4-5 mil) latex gloves. Of concern is the user's difficulty in distinguishing between nitrile and latex gloves; latex gloves are now sold in different colors including blue, which has traditionally been associated with nitrile gloves. Even though spray painters were familiar with the health hazards related to working with isocyanate paints, most were not always aware that dermal exposure to isocyanates could contribute to the development of occupational asthma. There is a need for more research to identify dermal materials that are protective against sprayed automotive coatings. Automotive spray painters and their employers need to be educated in the selection and use of protective gloves, specifically on attributes such as glove material, color, and thickness. PMID:24215135

  19. Computational Analysis of the G-III Laminar Flow Glove

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.; Liao, Wei; Lee-Rausch, Elizabeth M.; Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan

    2011-01-01

    Under NASA's Environmentally Responsible Aviation Project, flight experiments are planned with the primary objective of demonstrating the Discrete Roughness Elements (DRE) technology for passive laminar flow control at chord Reynolds numbers relevant to transport aircraft. In this paper, we present a preliminary computational assessment of the Gulfstream-III (G-III) aircraft wing-glove designed to attain natural laminar flow for the leading-edge sweep angle of 34.6deg. Analysis for a flight Mach number of 0.75 shows that it should be possible to achieve natural laminar flow for twice the transition Reynolds number ever achieved at this sweep angle. However, the wing-glove needs to be redesigned to effectively demonstrate passive laminar flow control using DREs. As a by-product of the computational assessment, effect of surface curvature on stationary crossflow disturbances is found to be strongly stabilizing for the current design, and it is suggested that convex surface curvature could be used as a control parameter for natural laminar flow design, provided transition occurs via stationary crossflow disturbances.

  20. Health and Safety Benefits of Small Pressurized Suitport Rovers as EVA Surface Support Vehicles

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Abercromby, Andrew F. J.

    2008-01-01

    Pressurized safe-haven providing SPE protection and decompression sickness (DCS) treatment capabilities within 20 mins at all times. Up to 50% reduction in time spent in EVA suits (vs. Unpressurized Rovers) for equal or greater Boots-on-Surface EVA exploration time. Reduces suit-induced trauma and provides improved options for nutrition, hydration, and waste-management. Time spent inside SPR during long translations may be spent performing resistive and cardiovascular exercise. Multiple shorter EVAs versus single 8 hr EVAs increases DCS safety and decreases prebreathe requirements. SPRs also offer many potential operational, engineering and exploration benefits not addressed here.