These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

EVA Glove Research Team  

NASA Technical Reports Server (NTRS)

The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area.

Strauss, Alvin M.; Peterson, Steven W.; Main, John A.; Dickenson, Rueben D.; Shields, Bobby L.; Lorenz, Christine H.

1992-01-01

2

The Effects of Extravehicular Activity (EVA) Glove Pressure on Tactility  

NASA Technical Reports Server (NTRS)

The purpose of the current study was to quantify finger tactility, while wearing a Phase VI Extravehicular Activity (EVA) glove. Subjects were fully suited in an Extravehicular Mobility Unit (EMU) suit. Data was collected under three conditions: bare-handed, gloved at 0 psi, and gloved at 4.3 psi. In order to test tactility, a series of 30 tactile stimuli (bumps) were created that varied in both height and width. With the hand obscured, subjects applied pressure to each bump until detected tactilely. The amount of force needed to detect each bump was recorded using load cells located under a force-plate. The amount of force needed to detect a bump was positively related to width, but inversely related to height. In addition, as the psi of the glove increased, more force was needed to detect the bump. In terms of application, it was possible to determine the optimal width and height a bump needs to be for a specific amount of force applied for tactility.

Thompson, Shelby; Miranda, Mesloh; England, Scott; Benson, Elizabeth; Rajulu, Sudhakar

2010-01-01

3

Investigation of the effects of extravehicular activity (EVA) gloves on performance  

NASA Technical Reports Server (NTRS)

The objective was to assess the effects of extravehicular activity (EVA) gloves at different pressures on human hand capabilities. A factorial experiment was performed in which three types of EVA gloves were tested at five pressure differentials. The independent variables tested in this experiment were gender, glove type, pressure differential, and glove make. Six subjects participated in an experiment where a number of dexterity measures, namely time to tie a rope, and the time to assemble a nut and bolt were recorded. Tactility was measured through a two point discrimination test. The results indicate that with EVA gloves strength is reduced by nearly 50 percent, there is a considerable reduction in dexterity, performance decrements increase with increasing pressure differential, and some interesting gender glove interactions were observed, some of which may have been due to the extent (or lack of) fit of the glove to the hand. The implications for the designer are discussed.

Bishu, Ram R.; Klute, Glenn

1993-01-01

4

Extra-Vehicular Activity (EVA) glove evaluation test protocol  

NASA Technical Reports Server (NTRS)

One of the most critical components of a space suit is the gloves, yet gloves have traditionally presented significant design challenges. With continued efforts at glove development, a method for evaluating glove performance is needed. This paper presents a pressure-glove evaluation protocol. A description of this evaluation protocol, and its development is provided. The protocol allows comparison of one glove design to another, or any one design to bare-handed performance. Gloves for higher pressure suits may be evaluated at current and future design pressures to drive out differences in performance due to pressure effects. Using this protocol, gloves may be evaluated during design to drive out design problems and determine areas for improvement, or fully mature designs may be evaluated with respect to mission requirements. Several different test configurations are presented to handle these cases. This protocol was run on a prototype glove. The prototype was evaluated at two operating pressures and in the unpressurized state, with results compared to bare-handed performance. Results and analysis from this test series are provided, as is a description of the configuration used for this test.

Hinman-Sweeney, E. M.

1994-01-01

5

Force-endurance capabilities of extravehicular activity (EVA) gloves at different pressure levels  

NASA Technical Reports Server (NTRS)

The human hand is a very useful multipurpose tool in all environments. However, performance capabilities are compromised considerably when gloves are donned. This is especially true to extravehicular activity (EVA) gloves. The primary intent was to answer the question of how long a person can perform tasks requiring certain levels of exertion. The objective was to develop grip force-endurance relations. Six subjects participated in a factorial experiment involving three hand conditions, three pressure differentials, and four levels of force exertion. The results indicate that, while the force that could be exerted depended on the glove, pressure differential, and the level of exertion, the endurance time at any exertion level depended just on the level of exertion expressed as a percentage of maximum exertion possible at that condition. The impact of these findings for practitioners as well as theoreticians is discussed.

Bishu, Ram R.; Klute, Glenn K.

1993-01-01

6

Investigation of the effects of Extra Vehicular Activity (EVA) and Launch and Entry (LES) gloves on performance  

NASA Technical Reports Server (NTRS)

Human capabilities such as dexterity, manipulability, and tactile perception are unique and render the hand as a very versatile, effective and a multipurpose tool. This is especially true for unknown environments such as the EVA environment. In the microgravity environment interfaces, procedures, and activities are too complex, diverse, and defy advance definition. Under these conditions the hand becomes the primary means of locomotion, restraint, and material handling. Facilitation of these activities, with simultaneous protection from the cruel EVA environment are the two, often conflicting, objectives of glove design. The objectives of this study was (1) to assess the effects of EVA gloves at different pressures on human hand capabilities, (2) to devise a protocol for evaluating EVA gloves, (3) to develop force time relations for a number of EVA glove pressure combinations, and (4) to evaluate two types of launch and entry suit gloves. The objectives were achieved through three experiments. The experiments for achieving objectives 1, 2, and 3 were performed in the glove box in building 34. In experiment 1 three types of EVA gloves were tested at five pressure differentials. A number of performance measures were recorded. In experiment 2 the same gloves as in experiment 1 were evaluated in a reduced number of pressure conditions. The performance measure was endurance time. Six subjects participated in both the experiments. In experiment 3 two types of launch and entry suit gloves were evaluated using a paradigm similar to experiment 1. Currently the data is being analyzed. However for this report some summary analyses have been performed. The results indicate that a) With EVA gloves strength is reduced by nearly 50 percent, b) performance decrements increase with increasing pressure differential, c) TMG effects are not consistent across the three gloves tested, d) some interesting gender glove interactions were observed, some of which may have been due to the extent (or lack of) fit of the glove to the hand, and e) differences in performance exist between partial pressure suit glove and full pressure suit glove, especially in the unpressurized condition.

Bishu, Ram R.

1992-01-01

7

The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength  

NASA Technical Reports Server (NTRS)

The purpose of this study was to characterize hand strength, while wearing a Phase VI Extravehicular Activity (EVA) glove in an Extravehicular Mobility Unit (EMU) suit. Three types of data were collected: hand grip, lateral pinch, and pulp-2 pinch, wider three different conditions: bare-handed, gloved with no Thermal Micrometeoroid Garment (TMG), and glove with TMG. In addition, during the gloved conditions, subjects were tested when unpressurized and pressurized (43 psi). As a percentage of bare-hand strength, the TMG condition showed reduction in grip strength to 55% unpressurized and 46% pressurized. Without the TMG, grip strength increased to 66% unpressurized and 58% pressurized of bare-hand strength. For lateral pinch strength, the reduction in strength was the same for both pressure conditions and with and without the TMG, about 8.5% of bare-hand Pulp-2 pinch strength with no TMG showed an increase to 122% unpressurized and 115% pressurized of bare-hand strength. While wearing the TMG, pulp-2 pinch strength was 115% of bare-hand strength for both pressure conditions.

Mesloh, Miranda; England, Scott; Benson, Elizabeth; Thompson, Shelby; Rajulu, Sudhakar

2010-01-01

8

High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort  

NASA Technical Reports Server (NTRS)

Human hands play a significant role during Extravehicular Activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. Because of this high frequency usage, hand and arm related injuries are known to occur during EVA and EVA training in the NBL. The primary objectives of this investigation were to: 1) document all known EVA glove related injuries and circumstances of these incidents, 2) determine likely risk factors, and 3) recommend interventions where possible that could be implemented in the current and future glove designs. METHODS: The investigation focused on the discomforts and injuries of U.S. crewmembers who had worn the pressurized Extravehicular Mobility Unit (EMU) spacesuit and experienced 4000 Series or Phase VI glove related incidents during 1981 to 2010 for either EVA ground training or in-orbit flight. We conducted an observational retrospective case-control investigation using 1) a literature review of known injuries, 2) data mining of crew injury, glove sizing, and hand anthropometry databases, 3) descriptive statistical analyses, and finally 4) statistical risk correlation and predictor analyses to better understand injury prevalence and potential causation. Specific predictor statistical analyses included use of principal component analyses (PCA), multiple logistic regression, and survival analyses (Cox proportional hazards regression). Results of these analyses were computed risk variables in the forms of odds ratios (likelihood of an injury occurring given the magnitude of a risk variable) and hazard ratios (likelihood of time to injury occurrence). Due to the exploratory nature of this investigation, we selected predictor variables significant at p=0.15. RESULTS: Through 2010, there have been a total of 330 NASA crewmembers, from which 96 crewmembers performed 322 EVAs during 1981-2010, resulting in 50 crewmembers being injured inflight and 44 injured during 11,704 ground EVA training events. Of the 196 glove related injury incidents, 106 related to EVA and 90 to EVA training. Over these 196 incidents, 277 total injuries (126 flight; 151 training) were reported and were then grouped into 23 types of injuries. Of EVA flight injuries, 65% were commonly reported to the hand (in general), metacarpophalangeal (MCP) joint, and finger (not including thumb) with fatigue, abrasion, and paresthesia being the most common injury types (44% of total flight injuries). Training injuries totaled to more than 70% being distributed to the fingernail, MCP joint, and finger crotch with 88% of the specific injuries listed as pain, erythema, and onycholysis. Of these training injuries, when reporting pain or erythema, the most common location was the index finger, but when reporting onycholysis, it was the middle finger. Predictor variables specific to increased risk of onycholysis included: female sex (OR=2.622), older age (OR=1.065), increased duration in hours of the flight or training event (OR=1.570), middle finger length differences in inches between the finger and the EVA glove (OR=7.709), and use of the Phase VI glove (OR=8.535). Differentiation between training and flight and injury reporting during 2002-2004 were significant control variables. For likelihood of time to first onycholysis injury, there was a 24% reduction in rate of reporting for each year increase in age. Also, more experienced crewmembers, based on number of EVA flight or training events completed, were less likely to report an onycholysis injury (3% less for every event). Longer duration events also found reporting rates to occur 2.37 times faster for every hour of length. Crewmembers with larger hand size reported onycholysis 23% faster than those with smaller hand size. Finally, for every 1/10th of an inch increase in difference between the middle finger length and the glove, the rate of reporting increased by 60%. DISCUSSION: One key finding was that the Series 4000 glove had a lower injury risk than the Phase VI, which provides a platform for

Reid, C. R.; Benson, E.; England, S.; Charvat, J.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

2015-01-01

9

The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength  

NASA Technical Reports Server (NTRS)

With the new vision of space travel aimed at traveling back to the Moon and eventually to Mars, NASA is designing a new spacesuit glove. The purpose of this study was to baseline hand strength while wearing the current Extravehicular Activity (EVA) glove, the Phase VI. By varying the pressure in the glove, hand strength could be characterized as a function of spacesuit pressure. This finding is of extreme importance when evaluating missions that require varying suit pressures associated with different operations within NASA's current human spaceflight program, Constellation. This characterization fed directly into the derivation of requirements for the next EVA glove. This study captured three types of maximum hand strength: grip, lateral pinch, and pulp-2 pinch. All three strengths were measured under varying pressures and compared to a bare-hand condition. The resulting standardized data was reported as a percentage of the bare-hand strength. The first wave of tests was performed while the subjects, four female and four male, were wearing an Extravehicular Mobility Unit (EMU) suit supported by a suit stand. This portion of the test collected data from the barehand, suited unpressurized, and suited pressurized (4.3 psi) conditions. In addition, the effects of the Thermal Micrometeoroid Garment (TMG) on hand strength were examined, with the suited unpressurized and pressurized cases tested with and without a TMG. It was found that, when pressurized and with the TMG, the Phase VI glove reduced applied grip strength to a little more than half of the subject s bare-hand strength. The lateral pinch strength remained relatively constant while the pulp-2 pinch strength actually increased with pressure. The TMG was found to decrease maximum applied grip strength by an additional 10% for both pressurized and unpressurized cases, while the pinch strengths saw little to no change. In developing requirements based on human subjects, it is important to attempt to derive results that encompass the variation within the entire population. The current EMU does not accommodate humans at the extremes of the anthropometric spectrum. To account for this and to ensure that these requirements cover the population, another phase of testing will be conducted in a differential pressure glove box. This phase will focus on smaller females and very large males that do not have a properly fitted EMU suit. Instead, they would wear smaller or larger gloves and be tested in the glove box as a means to compare and contrast their strength capabilities against the EMU accommodated hand size subjects. The glove box s ability to change pressures easily will also allow for a wider range of glove pressures to be tested. Compared to the data collected on the subjects wearing the EMU suit, it is expected that there will be similar ratios to bare-hand. It is recommended that this topic be sent to the Physical Ergonomics Board for review.

Rajulu, Sudhakar; Mesloh, Miranda; Thompson, Shelby; England, Scott; Benson, Liz

2009-01-01

10

High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort  

NASA Technical Reports Server (NTRS)

Human hands play a significant role during extravehicular activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. It is because of this high frequency usage that hand- and arm-related injuries and discomfort are known to occur during training in the NBL and while conducting EVAs. Hand-related injuries and discomforts have been occurring to crewmembers since the days of Apollo. While there have been numerous engineering changes to the glove design, hand-related issues still persist. The primary objectives of this study are therefore to: 1) document all known EVA glove-related injuries and the circumstances of these incidents, 2) determine likely risk factors, and 3) recommend ergonomic mitigations or design strategies that can be implemented in the current and future glove designs. METHODS: The investigator team conducted an initial set of literature reviews, data mining of Lifetime Surveillance of Astronaut Health (LSAH) databases, and data distribution analyses to understand the ergonomic issues related to glove-related injuries and discomforts. The investigation focused on the injuries and discomforts of U.S. crewmembers who had worn pressurized suits and experienced glove-related incidents during the 1980 to 2010 time frame, either during training or on-orbit EVA. In addition to data mining of the LSAH database, the other objective of the study was to find complimentary sources of information such as training experience, EVA experience, suit-related sizing data, and hand-arm anthropometric data to be tied to the injury data from LSAH. RESULTS: Past studies indicated that the hand was the most frequently injured part of the body during both EVA and NBL training. This study effort thus focused primarily on crew training data in the NBL between 2002 and 2010. Of the 87 recorded training incidents, 19 occurred to women and 68 to men. While crew ages ranged from thirties to fifties, the age category most affected was in the forties range. Incident rate calculations (incidents per 100 training runs) revealed that the 2002, 2003, and 2004 time periods registered the highest reported incident rate levels (3.4, 6.1, and 4.1 respectively) when compared to the following years (all = 1.0). In addition to general hand-arm discomfort being the highest reported result from training, specific types of hand injuries or symptoms included erythema, fingernail delamination, abrasions, muscle soreness/fatigue, paresthesia, bruising, blanching, and edema. Specific body locations most affected by hand injuries included the metacarpophalangeal joints, fingernails, finger crotches, fingers in general, interphalangeal joints, and fingertips. Causes of injuries reported in the LSAH data were primarily attributed to the forces that the gloved hands were exposed to due to hand intensive tasks and/or poor glove sizing. DISCUSSION: Although the age data indicate that most injuries are reported by male crewmembers in their forties, that is also the dominant gender and age range of most EVA crew therefore it is not an unexpected finding. Age and gender analysis will continue as more details on the uninjured population is accrued. While there is a reasonable mechanism to link training quantity to injury, the results were inconsistent and point to the need for a consistent method of suit-related injury screening and documentation. For instance, the high-incident rate levels for the years 2002 to 2004 could be attributed to a comprehensive medical review of crewmembers post-NBL EVA training that occurred from July 19, 2002 to January 16, 2004. Furthermore, there could have been increased awareness from an investigation at the NBL. These investigations may have temporarily increased the fidelity of reported injuries and discomforts during these dates as compared to surrounding years, when injury signs and symptom were no longer actively being investigated but rather voluntarily reported. Data mining for possible mechanistic factors continues and include

Reid, C. R.; Benosn, E.; England, S.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

2014-01-01

11

Effects of EVA spacesuit glove on grasping and pinching tasks  

NASA Astrophysics Data System (ADS)

The human hand has a wide range of degrees of freedom, allowing a great variety of movements, and is also one of the most sensitive parts of the human body. Due to these characteristics, it is the most important tool for astronauts to perform extravehicular activities (EVA). However, astronauts must wear mandatory EVA equipment to be protected from the harsh conditions in space and this strongly reduces hand performance, in particular as regards dexterity, tactile perception, mobility and fatigue. Several studies have been conducted to determine the influence of the EVA glove on manual capabilities, both in the past and more recently. This study presents experimental data regarding the performance decline occurring in terms of force and fatigue in the execution of grasping and pinching tasks when wearing an EVA glove, in pressurized and unpressurized conditions, compared with barehanded potential. Results show that wearing the unpressurized EVA glove hinders grip and lateral pinch performances, dropping exerted forces to about 50-70%, while it barely affects two- and three-finger pinch performances. On the other hand, wearing the pressurized glove worsens performances in all cases, reducing forces to about 10-30% of barehanded potential. The results are presented and compared with the previous literature.

Appendino, Silvia; Battezzato, Alessandro; Chen Chen, Fai; Favetto, Alain; Mousavi, Mehdi; Pescarmona, Francesco

2014-03-01

12

A new method of measuring the stiffness of astronauts' EVA gloves  

NASA Astrophysics Data System (ADS)

Hand fatigue is one of the most important problems of astronauts during their missions to space. This fatigue is due to the stiffness of the astronauts' gloves known as Extravehicular Activity (EVA) gloves. The EVA glove has a multilayered, bulky structure and is pressurized against the vacuum of space. In order to evaluate the stiffness of EVA gloves, different methods have been proposed in the past. In particular, the effects of wearing an EVA glove on the performance of the hands have been published by many researchers to represent the stiffness of the EVA glove. In this paper, a new method for measuring the stiffness of EVA gloves is proposed. A tendon-actuated finger probe is designed and used as an alternative to the human index finger in order to be placed inside an EVA glove and measure its stiffness. The finger probe is equipped with accelerometers, which work as tilt sensors, to measure the angles of its phalanges. The phalanges are actuated by applying different amount of torque using the tendons of the finger probe. Moreover, a hypobaric glove box is designed and realized to simulate the actual operating pressure of the EVA glove and to measure its stiffness in both pressurized and non-pressurized conditions. In order to prove the right performance of the proposed finger probe, an Orlam-DM EVA glove is used to perform a number of tests. The equation of stiffness for the PIP joint of this glove is extracted from the results acquired from the tests. This equation presents the torque required to flex the middle phalanx of the glove. Then, the effect of pressurization on the stiffness is highlighted in the last section. This setup can be used to measure the stiffness of different kinds of EVA gloves and allows direct, numerical comparison of their stiffness.

Mousavi, Mehdi; Appendino, Silvia; Battezzato, Alessandro; Bonanno, Alberto; Chen Chen, Fai; Crepaldi, Marco; Demarchi, Danilo; Favetto, Alain; Pescarmona, Francesco

2014-04-01

13

FY13 High Performance EVA Glove (HPEG) Collaboration: Glove Injury Data Mining Effort - Training Data Overview  

NASA Technical Reports Server (NTRS)

From the time hand-intensive tasks were first created for EVAs, discomforts and injuries have been noted.. There have been numerous versions of EVA gloves for US crew over the past 50 years, yet pain and injuries persist. The investigation team was tasked with assisting in a glove injury assessment for the High Performance EVA Glove (HPEG) project.center dot To aid in this assessment, the team was asked to complete the following objectives: - First, to develop the best current understanding of what glove-related injuries have occurred to date, and when possible, identify the specific mechanisms that caused those injuries - Second, to create a standardized method for comparison of glove injury potential from one glove to another. center dot The overall goal of the gloved hand injury assessment is to utilize ergonomics in understanding how these glove injuries are occurring, and to propose mitigations to current designs or design changes in the next generation of EVA gloves.

Reid, Christopher; Benson, Elizabeth; England, Scott; Charvat, Jacqueline; Norcross, Jason; McFarland, Shane; Rajulu, Sudhakar

2014-01-01

14

Phase VI Advanced EVA Glove Development and Certification for the International Space Station  

Microsoft Academic Search

Since the early 1980's, the Shuttle Extra Vehicular Activity (EVA) glove design has evolved to meet the challenge of space based tasks. These tasks have typically been satellite retrieval and repair or EVA based flight experiments. With the start of the International Space Station (ISS) assembly, the number of EVA based missions is increasing far beyond what has been required

David Graziosi; James Stein; Amy Ross; Joseph Kosmo

15

The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation  

NASA Technical Reports Server (NTRS)

Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis

Reid, Christopher R.; McFarland, Shane; Norcross, Jason R.; Rajulu, Sudhakar

2014-01-01

16

The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation  

NASA Technical Reports Server (NTRS)

Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis.

Reid, Christopher R.; McFarland, Shane M.; Norcross, Jason R.; Rajulu, Sudhakar

2014-01-01

17

Extravehicular Activity (EVA) 101: Constellation EVA Systems  

NASA Technical Reports Server (NTRS)

A viewgraph presentation on Extravehicular Activity (EVA) Systems is shown. The topics include: 1) Why do we need space suits? 2) Protection From the Environment; 3) Primary Life Support System (PLSS); 4) Thermal Control; 5) Communications; 6) Helmet and Extravehicular Visor Assy; 7) Hard Upper Torso (HUT) and Arm Assy; 8) Display and Controls Module (DCM); 9) Gloves; 10) Lower Torso Assembly (LTA); 11) What Size Do You Need?; 12) Boot and Sizing Insert; 13) Boot Heel Clip and Foot Restraint; 14) Advanced and Crew Escape Suit; 15) Nominal & Off-Nominal Landing; 16) Gemini Program (mid-1960s); 17) Apollo EVA on Service Module; 18) A Bold Vision for Space Exploration, Authorized by Congress; 19) EVA System Missions; 20) Configurations; 21) Reduced Gravity Program; and 22) Other Opportunities.

Jordan, Nicole C.

2007-01-01

18

Use of Traditional and Novel Methods to Evaluate the Influence of an EVA Glove on Hand Performance  

NASA Technical Reports Server (NTRS)

The gloved hand is one of an astronaut s primary means of interacting with the environment, and any restrictions imposed by the glove can strongly affect performance during extravehicular activity (EVA). Glove restrictions have been the subject of study for decades, yet previous studies have generally been unsuccessful in quantifying glove mobility and tactility. Past studies have tended to focus on the dexterity, strength, and functional performance of the gloved hand; this provides only a circumspect analysis of the impact of each type of restriction on the glove s overall capability. The aim of this study was to develop novel capabilities to provide metrics for mobility and tactility that can be used to assess the performance of a glove in a way that could enable designers and engineers to improve their current designs. A series of evaluations were performed to compare unpressurized and pressurized (4.3 psi) gloved conditions with the ungloved condition. A second series of evaluations were performed with the Thermal Micrometeoroid Garment (TMG) removed. This series of tests provided interesting insight into how much of an effect the TMG has on gloved mobility - in some cases, the presence of the TMG restricted glove mobility as much as pressurization did. Previous hypotheses had assumed that the TMG would have a much lower impact on mobility, but these results suggest that an improvement in the design of the TMG could have a significant impact on glove performance. Tactility testing illustrated the effect of glove pressurization, provided insight into the design of hardware that interfaces with the glove, and highlighted areas of concern. The metrics developed in this study served to benchmark the Phase VI EVA glove and to develop requirements for the next-generation glove for the Constellation program.

Benson, Elizabeth A.; England, Scott A.; Mesloh, Miranda; Thompson, Shelby; ajulu, Sudhakar

2010-01-01

19

EVA space suit Evaporative Cooling/Heating Glove System (ECHGS)  

NASA Technical Reports Server (NTRS)

A new astronaut glove, the Evaporative Cooling/Heating Glove System (ECHGS), was designed and developed to allow the handling of objects between -200 F and +200 F. Active heating elements, positioned at each finger pad, provide additional heat to the finger pads from the rest of the finger. A water evaporative cooling system provides cooling by the injection of water to the finger areas and the subsequent direct evaporation to space. Thin, flexible insulation has been developed for the finger areas to limit thermal conductivity. Component and full glove tests have shown that the glove meets and exceeds the requirements to hold a 11/2 inch diameter bar at + or - 200 F for three minutes within comfort limits. The ECHGS is flexible, lightweight and comfortable. Tactility is reasonable and small objects can be identified especially by the fingertips beyond the one half width active elements.

Coss, F. A.

1976-01-01

20

Simplified Abrasion Test Methodology for Candidate EVA Glove Lay-Ups  

NASA Technical Reports Server (NTRS)

During the Apollo Program, space suit outer-layer fabrics were badly abraded after performing just a few extravehicular activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots that penetrated the outer-layer fabric into the thermal protection layers after less than 8 hrs of surface operations. Current plans for the exploration planetary space suits require the space suits to support hundreds of hours of EVA on a lunar or Martian surface, creating a challenge for space suit designers to utilize materials advances made over the last 40 years and improve on the space suit fabrics used in the Apollo Program. Over the past 25 years the NASA Johnson Space Center Crew and Thermal Systems Division has focused on tumble testing as means of simulating wear on the outer layer of the space suit fabric. Most recently, in 2009, testing was performed on 4 different candidate outer layers to gather baseline data for future use in design of planetary space suit outer layers. In support of the High Performance EVA Glove Element of the Next Generation Life Support Project, testing a new configuration was recently attempted in which require 10% of the fabric per replicate of that need in 2009. The smaller fabric samples allowed for reduced per sample cost and flexibility to test small samples from manufacturers without the overhead to have a production run completed. Data collected from this iteration was compared to that taken in 2009 to validate the new test method. In addition the method also evaluated the fabrics and fabric layups used in a prototype thermal micrometeoroid garment (TMG) developed for EVA gloves under the NASA High Performance EVA Glove Project. This paper provides a review of previous abrasion studies on space suit fabrics, details methodologies used for abrasion testing in this particular study, results of the validation study, and results of the TMG testing.

Rabel, Emily; Aitchison, Lindsay

2015-01-01

21

The development of a test methodology for the evaluation of EVA gloves  

NASA Technical Reports Server (NTRS)

This paper describes the development of a standardized set of tests designed to assess EVA-gloved hand capabilities in six measurement domains: range of motion, strength, tactile perception, dexterity, fatigue, and comfort. Based upon an assessment of general human-hand functioning and EVA task requirements, several tests within each measurement domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand as a baseline and the EVA glove at operating pressure.

O'Hara, John M.; Cleland, John; Winfield, Dan

1988-01-01

22

Evaluation of hole sizes in structures requiring EVA services as a means to prevent gloved-hand finger entrapment  

NASA Technical Reports Server (NTRS)

One of the concerns of Space Station designers was making sure that the suited crewmembers' gloved fingers are not trapped in the holes that may be present in the structures during EVA activities. A study was conducted on 11 subjects to determine the minimum and maximum possible hole sizes that would eliminate the possibility of finger entrapment. Subjects wore pressurized gloves and attempted to insert their fingers into holes of various sizes. Based on the experimental results, it is recommended that the smallest diameter should be less than 13.0 mm and the largest diameter should be greater than 35.0 mm in order to eliminate the possibility of finger entrapment while wearing gloves. It is also recommended that the current requirements specified by the MSIS-STD-3000 (Section 6.3.3.4) should be modified accordingly.

Rajulu, Sudhakar L.; Klute, Glenn K.

1993-01-01

23

Hypervelocity Impacts on ISS Handrails and Evaluation of Alternative Materials to Prevent Extravehicular Mobility Unit (EMU) Glove Damage During EVA  

NASA Technical Reports Server (NTRS)

During post-flight processing of STS-116, damage to crewmember Robert Curbeam's Phase VI Glove Thermal Micrometeoroid Garment was discovered. This damage consisted of: loss of RTV-157 palm pads on the thumb area on the right glove, a 0.75 inch cut in the Vectran adjacent to the seam and thumb pad (single event cut), constituting the worst glove damage ever recorded for the U.S. space program. The underlying bladder and restraint were found not be damaged by this event. Evaluation of glove damage found that the outer Vectran fibers were sliced as a result of contact with a sharp edge or pinch point rather than general wear or abrasion (commonly observed on the RTV pads). Damage to gloves was also noted on STS-118 and STS-120. One potential source of EMU glove damages are sharp crater lips on external handrails, generated by micrometeoroid and orbital debris (MMOD) impacts. In this paper, the results of a hypervelocity impact (HVI) test program on representative and actual ISS handrails are presented. These tests were performed in order to characterize impact damage profiles on ISS handrails and evaluate alternatives for limiting risk to future missions. It was determined that both penetrating and non-penetrating MMOD impacts on aluminum and steel ISS handrails are capable of generating protruding crater profiles which exceed the heights required for EMU glove abrasion risk by an order of magnitude. Testing demonstrated that flexible overwraps attached to the outside of existing handrails are capable of limiting contact between hazardous crater formations and crewmember gloves during extravehicular activity (EVA). Additionally, replacing metallic handrails with high strength, low ductility, fiber reinforced composite materials would limit the formation of protruding crater lips on new ISS modules.

Ryan, Shannon; Christiansen, Eruc; Davis, B. Alan; Ordonez, Erick

2009-01-01

24

A Combination of Traditional and Novel Methods Used to Evaluate the Impact of an EVA Glove on Hand Performance  

NASA Technical Reports Server (NTRS)

The gloved hand is an astronaut s primary means of interacting with the environment, so performance on an EVA is strongly impacted by any restrictions imposed by the glove. As a result, these restrictions have been the subject of study for decades. However, previous studies have generally been unsuccessful in quantifying glove mobility and tactility. Instead, studies have tended to focus on the dexterity, strength and functional performance of the gloved hand. Therefore, it has been difficult to judge the impact of each type of restriction on the glove s overall capability. The lack of basic information on glove mobility in particular, is related to the difficulty in instrumenting a gloved hand to allow an accurate evaluation. However, the current study aims at developing novel technological capabilities to provide metrics for mobility and tactility that can be used to assess the performance of a glove in a way that could enable designers and engineers to improve upon their current designs. A series of evaluations were performed in ungloved, unpressurized and pressurized (4.3 psi) conditions, to allow a comparison across pressures and to the baseline barehanded condition. In addition, a subset of the testing was also performed with the Thermal Micrometeoroid Garment (TMG) removed. This test case in particular provided some interesting insight into how much of an impact the TMG has on gloved mobility -- in some cases, as much as pressurization of the glove. Previous rule-of-thumb estimates had assumed that the TMG would have a much lower impact on mobility, while these results suggest that an improvement in the TMG could actually have a significant impact on glove performance. Similarly, tactility testing illustrated the impact of glove pressurization on tactility and provided insight on the design of interfaces to the glove. The metrics described in this paper have been used to benchmark the Phase VI EVA glove and to develop requirements for the next generation glove for the Constellation program.

Rajulu, Sudhakar; Benson, Elizabeth; England, Scott; Mesloh, Miranda; Thompson, Shelby

2009-01-01

25

Extravehicular Activity (EVA) Hardware & Operations Overview  

NASA Technical Reports Server (NTRS)

The objectives of this presentation are to: Define Extravehicular Activity (EVA), identify the reasons for conducting an EVA, and review the role that EVA has played in the space program; Identify the types of EVAs that may be performed; Describe some of the U.S. Space Station equipment and tools that are used during an EVA, such as the Extravehicular Mobility Unit (EMU), the Simplified Aid For EVA Rescue (SAFER), the International Space Station (ISS) Joint Airlock and Russian Docking Compartment 1 (DC-1), and EVA Tools & Equipment; Outline the methods and procedures of EVA Preparation, EVA, and Post-EVA operations; Describe the Russian spacesuit used to perform an EVA; Provide a comparison between U.S. and Russian spacesuit hardware and EVA support; and Define the roles that different training facilities play in EVA training.

Moore, Sandra; Marmolejo, Jose

2014-01-01

26

Climbing the Extravehicular Activity (EVA) Wall - Safely  

NASA Technical Reports Server (NTRS)

The success of the EVA team, that includes the EVA project office, Crew Office, Mission Operations, Engineering and Safety, is assured by the full integration of all necessary disciplines. Safety participation in all activities from hardware development concepts, certification and crew training, provides for a strong partnership within the team. Early involvement of Safety on the EVA team has mitigated risk and produced a high degree of mission success.

Fuentes, Jose; Greene, Stacie

2010-01-01

27

STS-110 Extravehicular Activity (EVA)  

NASA Technical Reports Server (NTRS)

STS-110 Mission astronauts Steven L. Smith (right) and Rex J. Walheim work in tandem on the third scheduled EVA session in which they released the locking bolts on the Mobile Transporter and rewired the Station's robotic arm (out of frame). Part of the Destiny laboratory and a glimpse of the Earth's horizon are seen in the lower portion of this digital image. The STS-110 mission prepared the International Space Station (ISS) for future spacewalks by installing and outfitting the S0 (S-zero) Truss and the Mobile Transporter. The 43-foot-long S0 truss weighing in at 27,000 pounds was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

2002-01-01

28

STS-110 Extravehicular Activity (EVA)  

NASA Technical Reports Server (NTRS)

STS-110 Mission Specialists Jerry L. Ross and Lee M.E. Morin work in tandem on the fourth scheduled EVA session for the STS-110 mission aboard the Space Shuttle Orbiter Atlantis. Ross is anchored on the mobile foot restraint on the International Space Station's (ISS) Canadarm2, while Morin works inside the S0 (S-zero) truss. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting a 43-foot-long S0 truss and preparing the Mobile Transporter. The 27,000 pound S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

2002-01-01

29

STS-110 Extravehicular Activity (EVA)  

NASA Technical Reports Server (NTRS)

STS-110 Mission astronaut Rex J. Walheim, accompanied by astronaut Steven L. Smith (out of frame) translates along the Destiny laboratory on the International Space Station (ISS) during the third scheduled EVA session. The duo released the locking bolts on the Mobile Transporter and rewired the Station's robotic arm. The STS-110 mission prepared the ISS for future space walks by installing and outfitting the S0 (S-Zero) Truss and the Mobile Transporter. The 43-foot-long S0 truss weighing in at 27,000 pounds was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

2002-01-01

30

Mission control activity during STS-61 EVA  

NASA Technical Reports Server (NTRS)

Astronaut Gregory J. Harbaugh, spacecraft communicator (CAPCOM), observes as two astronauts work through a lengthy period of extravehicular activity (EVA) in the cargo bay of the Earth-orbiting Space Shuttle Endeavour. Seen on the screen in the front of the flight control room, preparing to work with the Hubble Space Telescope (HST) magnetometers, are astronauts F. Story Musgrave and Jeffrey A. Hoffman. Lead flight director Milt Heflin is partially visible at left edge of frame.

1993-01-01

31

Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)  

NASA Technical Reports Server (NTRS)

A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

DeSantis, Lena; Whitmore, Mihriban

2007-01-01

32

Active Solid State Dosimetry for Lunar EVA  

NASA Technical Reports Server (NTRS)

The primary threat to astronauts from space radiation is high-energy charged particles, such as electrons, protons, alpha and heavier particles, originating from galactic cosmic radiation (GCR), solar particle events (SPEs) and trapped radiation belts in Earth orbit. There is also the added threat of secondary neutrons generated as the space radiation interacts with atmosphere, soil and structural materials.[1] For Lunar exploration missions, the habitats and transfer vehicles are expected to provide shielding from standard background radiation. Unfortunately, the Lunar Extravehicular Activity (EVA) suit is not expected to afford such shielding. Astronauts need to be aware of potentially hazardous conditions in their immediate area on EVA before a health and hardware risk arises. These conditions would include fluctuations of the local radiation field due to changes in the space radiation field and unknown variations in the local surface composition. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.[2

Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.; Chen, Liang-Yu.

2006-01-01

33

Extravehicular Activity (EVA) Technology Development Status and Forecast  

NASA Technical Reports Server (NTRS)

Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast

Chullen, Cinda; Westheimer, David T.

2010-01-01

34

Spacesuit glove manufacturing enhancements through the use of advanced technologies  

NASA Astrophysics Data System (ADS)

The sucess of astronauts performing extravehicular activity (EVA) on orbit is highly dependent upon the performance of their spacesuit gloves.A study has recently been conducted to advance the development and manufacture of spacesuit gloves. The process replaces the manual techniques of spacesuit glove manufacture by utilizing emerging technologies such as laser scanning, Computer Aided Design (CAD), computer generated two-dimensional patterns from three-dimensionl surfaces, rapid prototyping technology, and laser cutting of materials, to manufacture the new gloves. Results of the program indicate that the baseline process will not increase the cost of the gloves as compared to the existing styles, and in production, may reduce the cost of the gloves. perhaps the most important outcome of the Laserscan process is that greater accuracy and design control can be realized. Greater accuracy was achieved in the baseline anthropometric measurement and CAD data measurement which subsequently improved the design feature. This effectively enhances glove performance through better fit and comfort.

Cadogan, David; Bradley, David; Kosmo, Joseph

35

Spacesuit glove manufacturing enhancements through the use of advanced technologies  

NASA Technical Reports Server (NTRS)

The sucess of astronauts performing extravehicular activity (EVA) on orbit is highly dependent upon the performance of their spacesuit gloves.A study has recently been conducted to advance the development and manufacture of spacesuit gloves. The process replaces the manual techniques of spacesuit glove manufacture by utilizing emerging technologies such as laser scanning, Computer Aided Design (CAD), computer generated two-dimensional patterns from three-dimensionl surfaces, rapid prototyping technology, and laser cutting of materials, to manufacture the new gloves. Results of the program indicate that the baseline process will not increase the cost of the gloves as compared to the existing styles, and in production, may reduce the cost of the gloves. perhaps the most important outcome of the Laserscan process is that greater accuracy and design control can be realized. Greater accuracy was achieved in the baseline anthropometric measurement and CAD data measurement which subsequently improved the design feature. This effectively enhances glove performance through better fit and comfort.

Cadogan, David; Bradley, David; Kosmo, Joseph

1993-01-01

36

Spacesuit Glove-Induced Hand Trauma and Analysis of Potentially Related Risk Variables  

NASA Technical Reports Server (NTRS)

Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). When the gloves are pressurized, they restrict movement and create pressure points during tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally more severe injuries such as onycholysis. Glove injuries, both anecdotal and recorded, have been reported during EVA training and flight persistently through NASA's history regardless of mission or glove model. Theories as to causation such as glove-hand fit are common but often lacking in supporting evidence. Previous statistical analysis has evaluated onycholysis in the context of crew anthropometry only (Opperman et al 2010). The purpose of this study was to analyze all injuries (as documented in the medical records) and available risk factor variables with the goal to determine engineering and operational controls that may reduce hand injuries due to the EVA glove in the future. A literature review and data mining study were conducted between 2012 and 2014. This study included 179 US NASA crew who trained or completed an EVA between 1981 and 2010 (crossing both Shuttle and ISS eras) and wore either the 4000 Series or Phase VI glove during Extravehicular Mobility Unit (EMU) spacesuit EVA training and flight. All injuries recorded in medical records were analyzed in their association to candidate risk factor variables. Those risk factor variables included demographic characteristics, hand anthropometry, glove fit characteristics, and training/EVA characteristics. Utilizing literature, medical records and anecdotal causation comments recorded in crewmember injury data, investigators were able to identify several risk factors associated with increased risk of glove related injuries. Prime among them were smaller hand anthropometry, duration of individual suited exposures, and improper glove-hand fit as calculated by the difference in the anthropometry middle finger length compared to the baseline EVA glove middle finger length.

McFarland, Shane M.; Reid, Christopher R.; Norcross, Jason; Charvat, Jacqueline M.

2015-01-01

37

Application of Spacesuit Glove Requirements Tools to Athletic and Personal Protective Equipment  

NASA Technical Reports Server (NTRS)

Despite decades of ongoing improvement, astronauts must still struggle with inhibited dexterity and accelerated fatigue due to the requirement of wearing a pressurized Extra-Vehicular Activity (EVA) glove. Recent research in the Anthropometry and Biomechanics Facility at NASA's Johnson Space Center has focused on developing requirements for improvements in the design of the next generation of EVA glove. In the course of this research, it was decided to expand the scope of the testing to include a variety of commercially available athletic and consumer gloves to help provide a more recognizable comparison for investigators and designers to evaluate the current state of EVA glove mobility and strength. This comparison is being provided with the hope that innovative methods may help commercial development of gloves for various athletic and personal protective endeavors.

England, Scott; Benson, Elizabeth; Melsoh, Miranda; Thompson, Shelby; Rajulu, Sudhakar

2010-01-01

38

Mission control activity during STS-61 EVA-1  

NASA Technical Reports Server (NTRS)

Joseph Fanelli, at the Integrated Communications Officer console, monitors the televised activity of Astronauts Story Musgrave and Jeffrey A. Hoffman. The vetern astronauts were performing the first extravehicular activity (EVA-1) of the STS-61 Hubble Space Telescope (HST) servicing mission.

1993-01-01

39

Shuttle EVA description and design criteria  

NASA Technical Reports Server (NTRS)

The STS extravehicular mobility unit, orbiter EVA provisions, EVA equipment, factors affecting employment of EVA, EVA mission integration, baselined extravehicular activity are discussed. Design requirements are also discussed.

1983-01-01

40

Extravehicular Activity/Air Traffic Control (EVA/ATC) test report. [communication links to the astronaut  

NASA Technical Reports Server (NTRS)

During extravehicular activity (EVA), communications between the EVA astronaut and the space shuttle orbiter are maintained by means of transceiver installed in the environmental support system backpack. Onboard the orbiter, a transceiver line replaceable unit and its associated equipment performs the task of providing a communications link to the astronaut in the extravehicular activity/air traffic control (EVA/ATC) mode. Results of the acceptance tests that performed on the system designed and fabricated for EVA/ATC testing are discussed.

Tomaro, D. J.

1982-01-01

41

Mission control activity during STS-61 EVA-1  

NASA Technical Reports Server (NTRS)

Flight controllers Harry Black (left foreground) and Kevin McCluney (right foreground) monitor the televised activity of two space walkers during the first STS-61 extravehicular activity (EVA). Astronauts F. Story Musgrave and Jeffrey A. Hoffman were performing a variety of equipment replacements. At the Integrated Communications Officer Console (INCO) Black plays a role in controlling the TV while McLuney's duties deal with maintenance, mechanical, arm and crew systems.

1993-01-01

42

Mission control activity during STS-61 EVA-2  

NASA Technical Reports Server (NTRS)

Harry Black, at the Integrated Communications Officer's console in the Mission Control Center (MCC), monitors the second extravehicular activity (EVA-2) of the STS-61 Hubble Space Telescope (HST) servicing mission. Others pictured, left to right, are Judy Alexander, Kathy Morrison and Linda Thomas. Note monitor scene of one of HST's original solar array panels floating in space moments after being tossed away by Astronaut Kathryn C. Thornton.

1993-01-01

43

An Approach for Performance Based Glove Mobility Requirements  

NASA Technical Reports Server (NTRS)

The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for exploration missions. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Space Technology Mission Directorate's Game-Changing Development Program provided start-up funding for the High Performance EVA Glove (HPEG) Element as part of the Next Generation Life Support (NGLS) Project in the fall of 2013. The overarching goal of the HPEG Element is to develop a robust glove design that increases human performance during EVA and creates pathway for implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability in on-pristine environments, and decreasing the potential of gloves to cause injury during use. The HPEG Element focused initial efforts on developing quantifiable and repeatable methodologies for assessing glove performance with respect to mobility, injury potential, thermal conductivity, and abrasion resistance. The team used these methodologies to establish requirements against which emerging technologies and glove designs can be assessed at both the component and assembly levels. The mobility performance testing methodology was an early focus for the HPEG team as it stems from collaborations between the SSA Development team and the JSC Anthropometry and Biomechanics Facility (ABF) that began investigating new methods for suited mobility and fit early in the Constellation Program. The combined HPEG and ABF team used lessons learned from the previous efforts as well as additional reviews of methodologies in physical and occupational therapy arenas to develop a protocol that assesses gloved range of motion, strength, dexterity, tactility, and fit in comparative quantitative terms and also provides qualitative insight to direct hardware design iterations. The protocol was evaluated using five experienced test subjects wearing the EMU pressurized to 4.3psid with three different glove configurations. The results of the testing are presented to illustrate where the protocol is and is not valid for benchmark comparisons. The process for requirements development based upon the results is also presented along with suggested performance values for the High Performance EVA Gloves to be procured in fiscal year 2015.

Aitchison, Lindsay; Benson, Elizabeth; England, Scott

2015-01-01

44

Use MACES IVA Suit for EVA Mobility Evaluations  

NASA Technical Reports Server (NTRS)

The use of an Intra-Vehicular Activity (IVA) suit for a spacewalk or Extra-Vehicular Activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Lab (NBL) environment. The Space Shuttle Advanced Crew Escape Suit (ACES) has been modified (MACES) to integrate with the Orion spacecraft. The first several missions of the Orion MPCV spacecraft will not have mass available to carry an EVA specific suit so any EVA required will have to be performed by the MACES. Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or if a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, carrying tools, body stabilization, equipment handling, and use of tools. Hardware configurations included with and without TMG, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on ISS mockups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstration of the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determination of critical sizing factors, and need for adjustment of suit work envelop. The early testing has demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission specific modifications for umbilical management or PLSS integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.

Watson, Richard D.

2014-01-01

45

A new preoxygenation procedure for extravehicular activity (EVA)  

NASA Astrophysics Data System (ADS)

A 10.2 psi staged-decompression schedule or a 4-hour preoxygenation at 14.7 psi is required prior to extravehicular activity (EVA) to reduce decompression sickness (DCS) risk. Results of recent research at the Air Force Research Laboratory (AFRL) showed that a 1-hour resting preoxygenation followed by a 4-hour, 4.3 psi exposure resulted in 77% DCS risk (N = 26), while the same profile beginning with 10 min of exercise at 75% of VO 2peak during preoxygenation reduced the DCS risk to 42% (P < .03; N = 26). A 4-hour preoxygenation without exercise followed by the 4.3 psi exposure resulted in 47% DCS risk (N = 30). The 1-hour preoxygenation with exercise and the 4-hour preoxygenation without exercise results were not significantly different. Elimination of either 3 hours of preoxygenation or 12 hours of staged-decompression are compelling reasons to consider incorporation of exercise-enhanced preoxygenation.

Webb, James T.; Pilmanis, Andrew A.

46

A new preoxygenation procedure for extravehicular activity (EVA)  

NASA Technical Reports Server (NTRS)

A 10.2 psi staged-decompression schedule or a 4-hour preoxygenation at 14.7 psi is required prior to extravehicular activity (EVA) to reduce decompression sickness (DCS) risk. Results of recent research at the Air Force Research Laboratory (AFRL) showed that a 1-hour resting preoxygenation followed by a 4-hour, 4.3 psi exposure resulted in 77% DCS risk (N=26), while the same profile beginning with 10 min of exercise at 75% of VO2peak during preoxygenation reduced the DCS risk to 42% (P<.03; N=26). A 4-hour preoxygenation without exercise followed by the 4.3 psi exposure resulted in 47% DCS risk (N=30). The 1-hour preoxygenation with exercise and the 4-hour preoxygenation without exercise results were not significantly different. Elimination of either 3 hours of preoxygenation or 12 hours of staged-decompression are compelling reasons to consider incorporation of exercise-enhanced preoxygenation.

Webb, J. T.; Pilmanis, A. A.

1998-01-01

47

STS-110 Astronaut Jerry Ross Performs Extravehicular Activity (EVA)  

NASA Technical Reports Server (NTRS)

Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. In this photograph, Astronaut Jerry L. Ross, mission specialist, anchored on the end of the Canadarm2, moves near the newly installed S0 truss. Astronaut Lee M. E. Morin, mission specialist, (out of frame), worked in tandem with Ross during this fourth and final scheduled session of EVA for the STS-110 mission. The final major task of the space walk was the installation of a beam, the Airlock Spur, between the Quest Airlock and the S0. The spur will be used by space walkers in the future as a path from the airlock to the truss.

2002-01-01

48

STS-61B Astronaut Spring During EASE Extravehicular Activity (EVA)  

NASA Technical Reports Server (NTRS)

The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), the EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Spring was working on the EASE during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

1985-01-01

49

Motion-based carriage simulation of extra-vehicular activity (EVA) rescue  

NASA Technical Reports Server (NTRS)

A research program was outlined for a series of Extra-Vehicular Activity (EVA) rescue studies. The general purpose is to get a better appreciation of the characteristics describing an EVA rescue scenario. Several studies have been completed in the Virtual Interactive Environment Workstation (VIEW) at NASA Ames Research Center. Similar studies are planned for a variety of simulators both to get more reliable results for the EVA rescue problem and to baseline the simulators against one another. Work is planned for a motion-based carriage to expand the validity of the previously obtained results.

Brody, Adam R.

1992-01-01

50

Astronaut David Wolf participates in training for contingency EVA in WETF  

NASA Technical Reports Server (NTRS)

Astronaut David A. Wolf participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. The mission specialist was about to be submerged to a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF). In this view, Wolf is aided by technicians in donning the gloves for his extravehicular mobility unit (EMU).

1993-01-01

51

Studies Relating to EVA  

NASA Technical Reports Server (NTRS)

In this session, Session JA1, the discussion focuses on the following topics: The Staged Decompression to the Hypobaric Atmosphere as a Prophylactic Measure Against Decompression Sickness During Repetitive EVA; A New Preoxygenation Procedure for Extravehicular Activity (EVA); Metabolic Assessments During Extra-Vehicular Activity; Evaluation of Safety of Hypobaric Decompressions and EVA From Positions of Probabilistic Theory; Fatty Acid Composition of Plasma Lipids and Erythrocyte Membranes During Simulation of Extravehicular Activity; Biomedical Studies Relating to Decompression Stress with Simulated EVA, Overview; The Joint Angle and Muscle Signature (JAMS) System - Current Uses and Future Applications; and Experimental Investigation of Cooperative Human-Robotic Roles in an EVA Work Site.

1997-01-01

52

View of activity in Mission Control Center during Apollo 15 EVA  

NASA Technical Reports Server (NTRS)

A view of activity in the Mission Operations Control Room (MOCR) in the Mission Control Center during the Apollo 15 extravehicular activity (EVA). Astronauts David R. Scott and James B. Irwin can be seen on the large screen at the front of the MOCR as they participate in sample-gathering on the lunar surface.

1971-01-01

53

Astronaut Extravehicular Activity : safety, injury & countermeasures; &, Orbital collisions & space debris : incidence, impact & international policy  

E-print Network

Extravehicular Activity (EVA) spacesuits are a key enabling technology which allow astronauts to survive and work in the harsh environment of space. Of the entire spacesuit, the gloves may perhaps be considered the most ...

Opperman, Roedolph A. (Roedolph Adriaan)

2010-01-01

54

Mars EVA Suit Airlock (MESA)  

NASA Astrophysics Data System (ADS)

The Astrium Space Infrastructure Division has begun an in-house research activity of an Earth-based simulation facility supporting future manned missions to Mars. This research unit will help to prepare and support planned missions in the following ways: 1) to enable the investigation and analysis of contamination issues in advance of a human visit to Mars; 2) as a design tool to investigate and simulate crew operations; 3) to simulate crew operation during an actual mission; 4) to enable on-surface scientific operations without leaving the shirt-sleeve habitation environment ("glove box principle"). The MESA module is a surface EVA facility attached to the main habitation or laboratory module, or mobile pressurized rover. It will be sealed, but not pressurized, and provide protection against the harsh Martian environment. This module will include a second crew airlock for safety reasons. The compartment can also be used to provide an external working bench and experiment area for the crew. A simpler MESA concept provides only an open shelter against wind and dust. This concept does not incorporate working and experimental areas. The principle idea behind the MESA concept is to tackle the issue of contamination by minimizing the decontamination processes needed to clean surface equipment and crew suit surfaces after an EVA excursion prior to the astronaut re-entering the habitable area. The technical solution envisages the use of a dedicated crew suit airlock. This airlock uses an EVA suit which is externally attached by its back-pack to the EVA compartment area facing the Martian environment. The crew donns the suit from inside the habitable volume through the airlock on the back of the suit. The surface EVA can be accomplished after closing the back-pack and detaching the suit. A special technical design concept foresees an extendable suit back-pack, so that the astronaut can operate outside and in the vincinity of the module. The key driver in the investigation is the problem of contamination of the habitable volume by EVA and sampling activities and the transport of Earth-generated contaminants to Mars.

Ransom, Stephen; Böttcher, Jörg; Steinsiek, Frank

55

Exploration EVA System  

NASA Technical Reports Server (NTRS)

In January 2004, the President announced a new Vision for Space Exploration. NASA's Office of Exploration Systems has identified Extravehicular Activity (EVA) as a critical capability for supporting the Vision for Space Exploration. EVA is required for all phases of the Vision, both in-space and planetary. Supporting the human outside the protective environment of the vehicle or habitat and allow ing him/her to perform efficient and effective work requires an integrated EVA "System of systems." The EVA System includes EVA suits, airlocks, tools and mobility aids, and human rovers. At the core of the EVA System is the highly technical EVA suit, which is comprised mainly of a life support system and a pressure/environmental protection garment. The EVA suit, in essence, is a miniature spacecraft, which combines together many different sub-systems such as life support, power, communications, avionics, robotics, pressure systems and thermal systems, into a single autonomous unit. Development of a new EVA suit requires technology advancements similar to those required in the development of a new space vehicle. A majority of the technologies necessary to develop advanced EVA systems are currently at a low Technology Readiness Level of 1-3. This is particularly true for the long-pole technologies of the life support system.

Kearney, Lara

2004-01-01

56

EVA medical problems  

NASA Astrophysics Data System (ADS)

The experience gained in the USSR allows the following conclusions: physiological responses to EVA do not depend on flight duration in qualitative and quantative terms. Physiological responses to EVA are mainly determined by following 3 factors: physiological activities; space suit environmental parameters; physiological stress. This paper reviews problems, associated with altitude decompression sickness; thermal regulation of the body, visual function and physiological psychological stress as well as individual EVA experience in physiological responses.

Barer, A. S.

57

Mitigation of EMU Cut Glove Hazard from Micrometeoroid and Orbital Debris Impacts on ISS Handrails  

NASA Technical Reports Server (NTRS)

Recent cut damages sustained on crewmember gloves during extravehicular activity (ISS) onboard the International Space Station (ISS) have been caused by contact with sharp edges or a pinch point according to analysis of the damages. One potential source are protruding sharp edged crater lips from micrometeoroid and orbital debris (MMOD) impacts on metallic handrails along EVA translation paths. A number of hypervelocity impact tests were performed on ISS handrails, and found that mm-sized projectiles were capable of inducing crater lip heights two orders of magnitude above the minimum value for glove abrasion concerns. Two techniques were evaluated for mitigating the cut glove hazard of MMOD impacts on ISS handrails: flexible overwraps which act to limit contact between crewmember gloves and impact sites, and; alternate materials which form less hazardous impact crater profiles. In parallel with redesign efforts to increase the cut resilience of EMU gloves, the modifications to ISS handrails evaluated in this study provide the means to significantly reduce cut glove risk from MMOD impact craters

Ryan, Shannon; Christiansen, Eric L.; Davis, Bruce A.; Ordonez, Erick

2009-01-01

58

eVA Acceptable Use Acknowledgement  

E-print Network

approval for your eVA user account from your COVA Entity's eVA Security Officer, and be in good standing as a permanent, temporary, or contract employee of a COVA Entity. B. As an authorized COVA Entity eVA user, you and for all activity performed on eVA under your eVA user account. C. As an authorized COVA Entity eVA user

59

Results from an Investigation into Extra-Vehicular Activity (EVA) Training Related Shoulder Injuries  

NASA Technical Reports Server (NTRS)

The number and complexity of extravehicular activities (EVAs) required for the completion and maintenance of the International Space Station (ISS) is unprecedented. The training required to successfully complete this magnitude of space walks presents a real risk of overuse musculoskeletal injuries to the EVA crew population. There was mounting evidence raised by crewmembers, trainers, and physicians at the Johnson Space Center (JSC) between 1999 and 2002 that suggested a link between training in the Neutral - Buoyancy Lab (NBL) and the several reported cases of shoulder injuries. The short- and long-term health consequences of shoulder injury to astronauts in training as well as the potential mission impact associated with surgical intervention to assigned EVA crew point to this as a critical problem that must be mitigated. Thus, a multi-directorate tiger team was formed in December of 2002 led by the EVA Office and Astronaut Office at the JSC. The primary objectives of this Tiger Team were to evaluate the prevalence of these injuries and substantiate the relationship to training in the NBL with the crew person operating in the EVA Mobility Unit (EMU). Between December 2002 and June of 2003 the team collected data, surveyed crewmembers, consulted with a variety of physicians, and performed tests. The results of this effort were combined with the vast knowledge and experience of the Tiger Team members to formulate several findings and over fifty recommendations. This paper summarizes those findings and recommendations as well as the process by which these were determined. The Tiger Team concluded that training in the NBL was directly linked to several major and minor shoulder injuries that had occurred. With the assistance of JSC flight surgeons, outside consultants, and the lead crewmember/physician on the team, the mechanisms of injury were determined. These mechanisms were then linked to specific aspects of the hardware design, operational techniques, and the training environment. During the 1999 to 2003 time frame many variables converged to make it impossible to determine with any accuracy which one or two root causes were primarily involved. Therefore a broad range of recommendations was established to prevent future injury to crewmembers training in the NBL in the near term. Many of these recommendations are lessons learned that are essentially timeless and therefore should be passed on to future EVA endeavors to ensure that hardware designs and operational techniques utilized in the future consider the demands of training on the human body here on earth.

Johnson, Brian J.; Williams, David R.

2004-01-01

60

Augmented robotic device for EVA hand manoeuvres  

NASA Astrophysics Data System (ADS)

During extravehicular activities (EVAs), pressurised space suits can lead to difficulties in performing hand manoeuvres and fatigue. This is often the cause of EVAs being terminated early, or taking longer to complete. Assistive robotic gloves can be used to augment the natural motion of a human hand, meaning work can be carried out more efficiently with less stress to the astronaut. Lightweight and low profile solutions must be found in order for the assistive robotic glove to be easily integrated with a space suit pressure garment. Pneumatic muscle actuators combined with force sensors are one such solution. These actuators are extremely light, yet can output high forces using pressurised gases as the actuation drive. Their movement is omnidirectional, so when combined with a flexible exoskeleton that itself provides a degree of freedom of movement, individual fingers can be controlled during flexion and extension. This setup allows actuators and other hardware to be stored remotely on the user's body, resulting in the least possible mass being supported by the hand. Two prototype gloves have been developed at the University of Sydney; prototype I using a fibreglass exoskeleton to provide flexion force, and prototype II using torsion springs to achieve the same result. The gloves have been designed to increase the ease of human movements, rather than to add unnatural ability to the hand. A state space control algorithm has been developed to ensure that human initiated movements are recognised, and calibration methods have been implemented to accommodate the different characteristics of each wearer's hands. For this calibration technique, it was necessary to take into account the natural tremors of the human hand which may have otherwise initiated unexpected control signals. Prototype I was able to actuate the user's hand in 1 degree of freedom (DOF) from full flexion to partial extension, and prototype II actuated a user's finger in 2 DOF with forces achieved comparable to those of a natural, healthy hand. The minimum mass held by the user on the hand was 240 g, with remote hardware, including a compressed air bottle, having a further mass of 1.6 kg. These results indicate that the design is able to augment human motion in a low profile, low mass package, and could be a valuable addition to a space suit during an EVA.

Matheson, Eloise; Brooker, Graham

2012-12-01

61

Rubber Blubber Gloves  

NSDL National Science Digital Library

In this experiment, learners work in pairs to create two gloves -- one that contains a layer of shortening (blubber) inside, and one that doesn't. By putting both glove-covered hands in a bucket of cold water, learners will find out if the blubber-covered hand feels warmer than the hand without the fat layer. Use this activity to explain how marine mammals live in extremely cold environments. Learners will also discover what it means to have a variable and a control during an experiment.

History, American M.

2012-06-26

62

Quantum Gloves  

E-print Network

The slogan "information is physical" has been so successful that it led to some excess. Classical and quantum information can be thought of independently of any physical implementation. Pure information tasks can be realized using such abstract c- and qu-bits, but physical tasks require appropriate physical realizations of c- or qu-bits. As illustration we consider the problem of communicating chirality. We discuss in detail the physical resources this necessitates, and introduce the natural concept of "quantum gloves", i.e. rotationally invariant quantum states that encode as much as possible the concept of chirality and nothing more.

D. Collins; L. Diosi; N. Gisin; S. Massar; S. Popescu

2004-09-30

63

Dynamic analysis of astronaut motions in microgravity: Applications for Extravehicular Activity (EVA)  

NASA Technical Reports Server (NTRS)

Simulations of astronaut motions during extravehicular activity (EVA) tasks were performed using computational multibody dynamics methods. The application of computational dynamic simulation to EVA was prompted by the realization that physical microgravity simulators have inherent limitations: viscosity in neutral buoyancy tanks; friction in air bearing floors; short duration for parabolic aircraft; and inertia and friction in suspension mechanisms. These limitations can mask critical dynamic effects that later cause problems during actual EVA's performed in space. Methods of formulating dynamic equations of motion for multibody systems are discussed with emphasis on Kane's method, which forms the basis of the simulations presented herein. Formulation of the equations of motion for a two degree of freedom arm is presented as an explicit example. The four basic steps in creating the computational simulations were: system description, in which the geometry, mass properties, and interconnection of system bodies are input to the computer; equation formulation based on the system description; inverse kinematics, in which the angles, velocities, and accelerations of joints are calculated for prescribed motion of the endpoint (hand) of the arm; and inverse dynamics, in which joint torques are calculated for a prescribed motion. A graphical animation and data plotting program, EVADS (EVA Dynamics Simulation), was developed and used to analyze the results of the simulations that were performed on a Silicon Graphics Indigo2 computer. EVA tasks involving manipulation of the Spartan 204 free flying astronomy payload, as performed during Space Shuttle mission STS-63 (February 1995), served as the subject for two dynamic simulations. An EVA crewmember was modeled as a seven segment system with an eighth segment representing the massive payload attached to the hand. For both simulations, the initial configuration of the lower body (trunk, upper leg, and lower leg) was a neutral microgravity posture. In the first simulation, the payload was manipulated around a circular trajectory of 0.15 m radius in 10 seconds. It was found that the wrist joint theoretically exceeded its ulnal deviation limit by as much as 49. 8 deg and was required to exert torques as high as 26 N-m to accomplish the task, well in excess of the wrist physiological limit of 12 N-m. The largest torque in the first simulation, 52 N-m, occurred in the ankle joint. To avoid these problems, the second simulation placed the arm in a more comfortable initial position and the radius and speed of the circular trajectory were reduced by half. As a result, the joint angles and torques were reduced to values well within their physiological limits. In particular, the maximum wrist torque for the second simulation was only 3 N-m and the maximum ankle torque was only 6 N-m.

Newman, Dava J.

1995-01-01

64

Design, development and evaluation of Stanford/Ames EVA prehensors  

NASA Technical Reports Server (NTRS)

Space Station operations and maintenance are expected to make unprecedented demands on astronaut EVA. With Space Station expected to operate with an 8 to 10 psi atmosphere (4 psi for Shuttle operations), the effectivness of pressurized gloves is called into doubt at the same time that EVA activity levels are to be increased. To address the need for more frequent and complex EVA missions and also to extend the dexterity, duration, and safety of EVA astronauts, NASA Ames and Stanford University have an ongoing cooperative agreement to explore and compare alternatives. This is the final Stanford/Ames report on manually powered Prehensors, each of which consists of a shroud forming a pressure enclosure around the astronaut's hand, and a linkage system to transfer the motions and forces of the hand to mechanical digits attached to the shroud. All prehensors are intended for attachment to a standard wrist coupling, as found on the AX-5 hard suit prototype, so that realistic tests can be performed under normal and reduced gravity as simulated by water flotation.

Leifer, Larry J.; Aldrich, J.; Leblanc, M.; Sabelman, E.; Schwandt, D.

1988-01-01

65

Survey of Software Problems with Impacts to 'Campout' Protocol Extravehicular Activity (EVA) Prebreathe  

NASA Technical Reports Server (NTRS)

During International Space Station campout protocol ExtraVehicular Activity (EVA) preparations, the crew is isolated overnight in the small airlock volume in a reduced pressure, oxygen enriched atmosphere. As such, there are special considerations for the software in terms of air composition, pressure control and emergency responses. For one, the ISS software must monitor and manage two distinct atmospheres. Also, the small airlock volume is especially sensitive to small changes in the environment, and what would be a minor emergency in the larger vehicle volume can have catastrophic results in the isolated airlock. Finally, in cases of emergency, the crew needs to rapidly egress the airlock, which requires an aggressive automatic repressurization to equalize pressure on the hatch. This paper will describe the software which is modified for the airlock campout protocol. In addition, the paper will describe the software problems and hardware problems with software workarounds which have affected campout protocol.

Diderich, Greg; Matty, Christopher M.

2009-01-01

66

The use of an extended ventilation tube as a countermeasure for EVA-associated upper extremity medical issues  

NASA Astrophysics Data System (ADS)

Introduction: Onycholysis due to repetitive activity in the space suit glove during Neutral Buoyancy Laboratory (NBL) training and during spaceflight extravehicular activity (EVA) is a common observation. Moisture accumulates in gloves during EVA task performance and may contribute to the development of pain and damage to the fingernails experienced by many astronauts. The study evaluated the use of a long ventilation tube to determine if improved gas circulation into the hand area could reduce hand moisture and thereby decrease the associated symptoms. Methods: The current Extravehicular Mobility Unit (EMU) was configured with a ventilation tube that extended down a single arm of the crew member (E) and compared with the unventilated arm (C). Skin surface moisture was measured on both hands immediately after glove removal and a questionnaire administered to determine subjective measures. Astronauts ( n=6) were examined pre- and post-run. Results: There were consistent trends in the reduction of relative hydration ratios at dorsum ( C=3.34, E=2.11) and first ring finger joint ( C=2.46, E=1.96) when the ventilation tube was employed. Ventilation appeared more effective on the left versus the right hand, implying an interaction with hand anthropometry and glove fit. Symptom score was lower on the hand that had the long ventilation tube relative to the control hand in 2/6 EVA crew members. Conclusions: Increased ventilation to the hand was effective in reducing the risks of hand and nail discomfort symptoms from moderate to low in one-third of the subjects. Improved design in the ventilation capability of EVA spacesuits is expected to improve efficiency of air flow distribution.

Jones, J. A.; Hoffman, R. B.; Buckland, D. A.; Harvey, C. M.; Bowen, C. K.; Hudy, C. E.; Strauss, S.; Novak, J.; Gernhardt, M. L.

67

Thermoregulation and heat exchange in a nonuniform thermal environment during simulated extended EVA. Extravehicular activities  

NASA Technical Reports Server (NTRS)

BACKGROUND: Nonuniform heating and cooling of the body, a possibility during extended duration extravehicular activities (EVA), was studied by means of a specially designed water circulating garment that independently heated or cooled the right and left sides of the body. The purpose was to assess whether there was a generalized reaction on the finger in extreme contradictory temperatures on the body surface, as a potential heat status controller. METHOD: Eight subjects, six men and two women, were studied while wearing a sagittally divided experimental garment with hands exposed in the following conditions: Stage 1 baseline--total body garment inlet water temperature at 33 degrees C; Stage 2--left side inlet water temperature heated to 45 degrees C; right side cooled to 8 degrees C; Stage 3--left side inlet water temperature cooled to 8 degrees C, right side heated to 45 degrees C. RESULTS: Temperatures on each side of the body surface as well as ear canal temperature (Tec) showed statistically significant Stage x Side interactions, demonstrating responsiveness to the thermal manipulations. Right and left finger temperatures (Tfing) were not significantly different across stages; their dynamic across time was similar. Rectal temperature (Tre) was not reactive to prevailing cold on the body surface, and therefore not informative. Subjective perception of heat and cold on the left and right sides of the body was consistent with actual temperature manipulations. CONCLUSIONS: Tec and Tre estimates of internal temperature do not provide accurate data for evaluating overall thermal status in nonuniform thermal conditions on the body surface. The use of Tfing has significant potential in providing more accurate information on thermal status and as a feedback method for more precise thermal regulation of the astronaut within the EVA space suit.

Koscheyev, V. S.; Leon, G. R.; Hubel, A.; Nelson, E. D.; Tranchida, D.

2000-01-01

68

Overview of Umbilical Extravehicular Activity (EVA) Interfaces in Life Support Systems on Spacecraft Vehicles and Applications for the Crew Exploration Vehicle (CEV)  

NASA Technical Reports Server (NTRS)

Extravehicular Activities (EVAs) for manned spacecraft vehicles have been performed for contingencies and nominal operations numerous times throughout history. This paper will investigate how previous U.S. manned spacecraft vehicles provided life support to crewmembers performing the EVA. Specifically defined are umbilical interfaces with respect to crewmember cooling, drinking water, air (or oxygen), humidity control, and carbon dioxide removal. As historical data is available, the need for planned versus contingency EVAs in previous vehicles as well as details for a nominal EVA day versus a contingency EVA day will be discussed. The hardware used to provide the cooling, drinking water, air (or oxygen), humidity control, and carbon dioxide removal, and the general functions of that hardware, will also be detailed, as information is available. The Crew Exploration Vehicle (CEV or Orion) EVA interfaces will be generically discussed to provide a glimpse of how similar they are to the EVA interfaces in previous vehicles. Conclusions on strategies that should be used for CEV based on previous spacecraft EVA interfaces will be made in the form of questions and recommendations.

Peterson, Laurie J.; Jordan, Nicole C.; Barido, Richard A.

2007-01-01

69

Rubber Blubber Gloves  

NSDL National Science Digital Library

In this hands-on OLogy activity, kids learn how blubber acts as insulation between an animal's inner organs and the chilly ocean. The activity begins with look at blubber that explains how it works and how an animal's behavior and environment can affect the thickness of its blubber. The illustrated, step-by-step directions show how to make and test two kinds of gloves,one with a layer of blubber and one without. It includes a fun look at pilot whales and how they use their blowholes to release excess body heat.

70

Astronauts Allen and Gemar during extravehicular activity (EVA) training in CCT  

NASA Technical Reports Server (NTRS)

Astronauts Charles D. (Sam) Gemar, and Andrew M. Allen participate in a training exercise at JSC's Crew Compartment Trainer (CCT), located in the Space Vehicle Mockup Facility. Gemar sits inside the airlock as Allen reviews procedures for EVA.

1994-01-01

71

Improved chest recoil using an adhesive glove device for active compression–decompression CPR in a pediatric manikin model?  

PubMed Central

Objective We developed an adhesive glove device (AGD) to perform ACD-CPR in pediatric manikins, hypothesizing that AGD-ACD-CPR provides better chest decompression compared to standard (S)-CPR. Design Split-plot design randomizing 16 subjects to test four manikin-technique models in a crossover fashion to AGD-ACD-CPR vs. S-CPR. Healthcare providers performed 5 min of CPR with 30:2 compression:ventilation ratio in the four manikin models: (1) adolescent; (2) child two-hand; (3) child one-hand; and (4) infant two-thumb. Methods Modified manikins recorded compression pressure (CP), compression depth (CD) and decompression depth (DD). The AGD consisted of a modified oven mitt with an adjustable strap; a Velcro patch was sewn to the palmer aspect. The counter Velcro patch was bonded to the anterior chest wall. For infant CPR, the thumbs of two oven mitts were stitched together with Velcro. Subjects were asked to actively pull up during decompression. Subjects’ heart rate (HR), respiratory rate (RR) and recovery time (RT) for HR/RR to return to baseline were recorded. Subjects were blinded to data recordings. Data (mean ± SEM) were analyzed using a two-tailed paired t-test. Significance was defined qualitatively as P ? 0.05. Results Mean decompression depth difference was significantly greater with AGD-ACD-CPR compared to S-CPR; 38–75% of subjects achieved chest decompression to or beyond baseline. AGD-ACD-CPR provided 6–12% fewer chest compressions/minute than S-CPR group. There was no significant difference in CD, CP, HR, RR and RT within each group comparing both techniques. Conclusion A simple, inexpensive glove device for ACD-CPR improved chest decompression with emphasis on active pull in manikins without excessive rescuer fatigue. The clinical implication of fewer compressions/minute in the AGD group needs to be evaluated. PMID:19683849

Udassi, Jai P.; Udassi, Sharda; Lamb, Melissa A.; Lamb, Kenneth E.; Theriaque, Douglas W.; Shuster, Jonathan J.; Zaritsky, Arno L.; Haque, Ikram U.

2013-01-01

72

Study to evaluate the effect of EVA on payload systems. Volume 1: Executive summary. [project planning of space missions employing extravehicular activity as a means of cost reduction  

NASA Technical Reports Server (NTRS)

Programmatic benefits to payloads are examined which can result from the routine use of extravehicular activity (EVA) during space missions. Design and operations costs were compared for 13 representative baseline payloads to the costs of those payloads adapted for EVA operations. The EVA-oriented concepts developed in the study were derived from these baseline concepts and maintained mission and program objectives as well as basic configurations. This permitted isolation of cost saving factors associated specifically with incorporation of EVA in a variety of payload designs and operations. The study results were extrapolated to a total of 74 payload programs. Using appropriate complexity and learning factors, net EVA savings were extrapolated to over $551M for NASA and U.S. civil payloads for routine operations. Adding DOD and ESRO payloads increases the net estimated savings of $776M. Planned maintenance by EVA indicated an estimated $168M savings due to elimination of automated service equipment. Contingency problems of payloads were also analyzed to establish expected failure rates for shuttle payloads. The failure information resulted in an estimated potential for EVA savings of $1.9 B.

Patrick, J. W.; Kraly, E. F.

1975-01-01

73

Effective Presentation of Metabolic Rate Information for Lunar Extravehicular Activity (EVA)  

NASA Technical Reports Server (NTRS)

During human exploration of the lunar surface, a suited crewmember needs effective and accurate information about consumable levels remaining in their life support system. The information must be presented in a manner that supports real-time consumable monitoring and route planning. Since consumable usage is closely tied to metabolic rate, the lunar suit must estimate metabolic rate from life support sensors, such as oxygen tank pressures, carbon dioxide partial pressure, and cooling water inlet and outlet temperatures. To provide adequate warnings that account for traverse time for a crewmember to return to a safe haven, accurate forecasts of consumable depletion rates are required. The forecasts must be presented to the crewmember in a straightforward, effective manner. In order to evaluate methods for displaying consumable forecasts, a desktop-based simulation of a lunar Extravehicular Activity (EVA) has been developed for the Constellation lunar suite s life-support system. The program was used to compare the effectiveness of several different data presentation methods.

Mackin, Michael A.; Gonia, Philip; Lombay-Gonzalez, Jose

2010-01-01

74

H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware  

NASA Technical Reports Server (NTRS)

With the retirement of the Space Shuttle fleet imminent in 2011, a new concept of operations will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), the Japan Aerospace Exploration Agency's (JAXA's) H-II Transfer Vehicle (HTV) and the Boeing Delta IV Heavy (DIV-H). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

Chullen, Cinda

2010-01-01

75

Efficacy of Wrist/Palm Warming as an EVA Countermeasure to Maintain Finger Comfort in Cold Conditions During EVA  

NASA Technical Reports Server (NTRS)

This study explored the effectiveness of local wrist/palm warming as a potential countermeasure for providing finger comfort during extended duration EVA. Methods: Six subjects (5 males and 1 female) were evaluated in a sagitally divided liquid cooling/warming garment (LCWG) with modified liquid cooling/warming (LCW) gloves in three different experimental conditions. Condition 1: Stage 1- no LCWG; chamber adaptation with LCW glove inlet water temperature 33 C; Stage 2-LCW glove inlet water temperature cooled to 8 C; Stage 3-LCW glove inlet water temperature warmed to 45 C; Condition 2: Stage1-LCWG and LCW glove inlet water temperature 33 C; Stage 2-LCWG inlet temperature cooled to 31 C, LCW gloves, 8 C; Stage 3-LCWG inlet water temperature remains at 31 C, LCW glove inlet water temperature warmed to 45 C; Condition 3: Stage l -LCWG and LCW gloves 33 C; Stage 2-LCWG inlet water temperature cooled to 28 C, LCW gloves, 8 C; Stage 3-LCWG remains at 28 C, LCW glove water temperature warmed to 45 C. Results: Wrist/palm area warming significantly increased finger temperature (Tfing) and blood perfusion in Stage 3 compared to Stage 2. The LCW gloves were most effective in increasing Stage 3 Tfing in Condition 1; and in increasing blood perfusion in Conditions 1 and 2 compared to Condition 3. Ratings of subjective perception of heat in the hand and overall body heat were higher at Stage 3 than Stage 2, with no significant differences across Conditions. Conclusions: Local wrist/palm warming was effective in increasing blood circulation to the distal extremities, suggesting the potential usefulness of this technique for increasing astronaut thermal comfort during EVA while decreasing power requirements. The LCW gloves were effective in heating the highly cooled fingers when the overall body was in a mild heat deficit.

Koscheyev, Victor S.; Leon, Gloria R.; Trevino, Robert C.

2000-01-01

76

Anti-vibration gloves?  

PubMed

For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. PMID:25381184

Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

2015-03-01

77

EVA Skills Training  

NASA Technical Reports Server (NTRS)

Dr. Parazynski and a colleague from Extravehicular Activity (EVA), Robotics, & Crew Systems Operations (DX) worked closely to build the EVA Skills Training Program, and for the first time, defined the gold standards of EVA performance, allowing crewmembers to increase their performance significantly. As part of the program, individuals had the opportunity to learn at their own rate, taking additional water time as required, to achieve that level of performance. This focus on training to one's strengths and weaknesses to bolster them enabled the Crew Office and DX to field a much larger group of spacewalkers for the daunting "wall of EVA" required for the building and maintenance of the ISS. Parazynski also stressed the need for designers to understand the capabilities and the limitations of a human in a spacesuit, as well as opportunities to improve future generations of space. He shared lessons learned (how the Crew Office engaged in these endeavors) and illustrated the need to work as a team to develop these complex systems.

Parazynski, Scott

2012-01-01

78

Development of an air-bearing fan for space extravehicular activity (EVA) suit ventilation  

NASA Technical Reports Server (NTRS)

A high-speed/variable flow fan has been developed for EVA suit ventilation which combines air bearings with a two-pole, toothless permanent-magnet motor. The fan has demonstrated quiet and vibration-free operation and a 2:1 range in flow rate variation. System weight is 0.9 kg, and input powers range from 12.4 to 42 W.

Fukumoto, Paul; Allen, Norman; Stonesifer, Greg

1992-01-01

79

Interoperability Trends in Extravehicular Activity (EVA) Space Operations for the 21st Century  

NASA Technical Reports Server (NTRS)

No other space operations in the 21 st century more comprehensively embody the challenges and dependencies of interoperability than EVA. This discipline is already functioning at an W1paralleled level of interagency, inter-organizational and international cooperation. This trend will only increase as space programs endeavor to expand in the face of shrinking budgets. Among the topics examined in this paper are hardware-oriented issues. Differences in design standards among various space participants dictate differences in the EVA tools that must be manufactured, flown and maintained on-orbit. Presently only two types of functional space suits exist in the world. However, three versions of functional airlocks are in operation. Of the three airlocks, only the International Space Station (ISS) Joint Airlock can accommodate both types of suits. Due to functional differences in the suits, completely different operating protocols are required for each. Should additional space suit or airlock designs become available, the complexity will increase. The lessons learned as a result of designing and operating within such a system are explored. This paper also examines the non-hardware challenges presented by interoperability for a discipline that is as uniquely dependent upon the individual as EVA. Operation of space suits (essentially single-person spacecrafts) by persons whose native language is not that of the suits' designers is explored. The intricacies of shared mission planning, shared control and shared execution of joint EVA's are explained. For example, once ISS is fully functional, the potential exists for two crewmembers of different nationality to be wearing suits manufactured and controlled by a third nation, while operating within an airlock manufactured and controlled by a fourth nation, in an effort to perform tasks upon hardware belonging to a fifth nation. Everything from training issues, to procedures development and writing, to real-time operations is addressed. Finally, this paper looks to the management challenges presented by interoperability in general. With budgets being reduced among all space-faring nations, the need to expand cooperation in the highly expensive field of human space operations is only going to intensify. The question facing management is not if the trend toward interoperation will continue, but how to best facilitate its doing so. Real-world EVA interoperability experience throughout the ShuttlelMir and ISS Programs is discussed to illustrate the challenges and

Miller, Gerald E.

1999-01-01

80

EV space suit gloves (passive)  

NASA Technical Reports Server (NTRS)

A pair of pressure and thermal insulating overgloves to be used with an Extravehicular (EV) suit assembly was designed, developed, fabricated, and tested. The design features extensive use of Nomex felt materials in lieu of the multiple layer insulation formerly used with the Apollo thermal glove. The glove theoretically satisfies all of the thermal requirements. The presence of the thermal glove does not degrade pressure glove tactility by more than the acceptable 10% value. On the other hand, the thermal glove generally degrades pressure glove mobility by more than the acceptable 10% value, primarily in the area of the fingers. Life cycling tests were completed with minimal problems. The thermal glove/pressure glove ensemble was also tested for comfort; the test subjects found no problems with the thermal glove although they did report difficulties with pressure points on the pressure glove which were independent of the thermal glove.

Fletcher, E. G.; Dodson, J. D.; Elkins, W.; Tickner, E. G.

1975-01-01

81

Mitigation of EMU Glove Cut Hazard by MMOD Impact Craters on Exposed ISS Handrails  

NASA Technical Reports Server (NTRS)

Recent cut damages to crewmember extravehicular mobility unit (EMU) gloves during extravehicular activity (EVA) onboard the International Space Station (ISS) has been found to result from contact with sharp edges or pinch points rather than general wear or abrasion. One possible source of cut-hazards are protruding sharp edged crater lips from impact of micrometeoroid and orbital debris (MMOD) particles on external metallic handrails along EVA translation paths. During impact of MMOD particles at hypervelocity an evacuation flow develops behind the shock wave, resulting in the formation of crater lips that can protrude above the target surface. In this study, two methods were evaluated to limit EMU glove cut-hazards due to MMOD impact craters. In the first phase, four flexible overwrap configurations are evaluated: a felt-reusable surface insulation (FRSI), polyurethane polyether foam with beta-cloth cover, double-layer polyurethane polyether foam with beta-cloth cover, and multi-layer beta-cloth with intermediate Dacron netting spacers. These overwraps are suitable for retrofitting ground equipment that has yet to be flown, and are not intended to protect the handrail from impact of MMOD particles, rather to act as a spacer between hazardous impact profiles and crewmember gloves. At the impact conditions considered, all four overwrap configurations evaluated were effective in limiting contact between EMU gloves and impact crater profiles. The multi-layer beta-cloth configuration was the most effective in reducing the height of potentially hazardous profiles in handrail-representative targets. In the second phase of the study, four material alternatives to current aluminum and stainless steel alloys were evaluated: a metal matrix composite, carbon fiber reinforced plastic (CFRP), fiberglass, and a fiber metal laminate. Alternative material handrails are intended to prevent the formation of hazardous damage profiles during MMOD impact and are suitable for flight hardware yet to be constructed. Of the four materials evaluated, only the fiberglass formed a less hazardous damage profile than the baseline metallic target. Although the CFRP laminate did not form any noticeable crater lip, brittle protruding fibers are considered a puncture risk. In parallel with EMU glove redesign efforts, modifications to metallic ISS handrails such as those evaluated in this study provide the means to significantly reduce cut-hazards from MMOD impact craters.

Christiansen, Eric L.; Ryan, Shannon

2009-01-01

82

Reconfiguration of EVA Modular Truss Assemblies using an Anthropomorphic Robot  

NASA Astrophysics Data System (ADS)

NASA relies heavily on astronauts to perform Extra-Vehicular Activities (EVA) as part of space construction and maintenance operations. Astronauts provide an unmatched capability and flexibility. In the future, this capability will be in even greater demand as space platforms become more modular making on-orbit servicing, repair and reconfiguration routine. To assist crew, NASA is developing Robonaut, an anthropomorphic robot with human sized arms and hands that can work with many of the same interfaces designed for the space suited astronaut. Recently Robonaut has been used to investigate techniques for automated assembly, disassembly, and repair of space platforms. The current work focuses on techniques to reconfigure a modular truss system representative of the tasks necessary to convert a space solar power tug to a lunar orbiting solar power station in support of lunar exploration missions. An overview of these activities is given, detailing the assembly sequence and the infrastructure used by Robonaut to perform the reconfiguration operations. Advances in Robonaut's capabilities are described and include: a grip surface augmentation to Robonaut's gloves that provides a close approximation to the latest astronaut gloves, ensuring a secure grasp during truss coupler manipulation, and a shared control strategy that divides the Cartesian control of Robonaut's hands between the teleoperator and the robot's on-board controller to minimize human workload during constrained tasks. To support truss reconfiguration experiments, infrastructure is required to stabilize and register the structure during reconfiguration. Details on the design and operation of the infrastructure, a small fixture, are given.

Diftler, Myron A.; Doggett, William R.; Mehling, Joshua S.; King, Bruce D.

2006-01-01

83

Extravehicular Activity Asteroid Exploration and Sample Collection Capability  

NASA Technical Reports Server (NTRS)

One of the challenging primary objectives associated with NASA's Asteroid Redirect Crewed Mission (ARCM) is to demonstrate deep space Extravehicular Activity (EVA) and tools and to obtain asteroid samples to return to Earth for further study. Prior Shuttle and International Space Station (ISS) spacewalks have benefited from engineered EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as behavior of the asteroid capture mechanism will complicate EVA translation, tool restraint, and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the Modified Advanced Crew Escape Suit (MACES) suit. This paper will summarize the overall operational concepts for conducting EVAs for the ARCM mission including translation paths and body restraint methods, potential tools used to extract the samples, design implications for the Asteroid Redirect Vehicle (ARV) for EVA, and the results of early development testing of potential EVA tasks.

Sipila, Stephanie A.; Scoville, Zebulon C.; Bowie, Jonathan T.; Buffington, Jesse A.

2014-01-01

84

Therapy gloves for patients with rheumatoid arthritis: a review.  

PubMed

Rheumatoid arthritis is a chronic inflammatory disease that causes pain, joint stiffness and swelling leading to impaired hand function and difficulty with daily activities. Wearing therapy gloves has been recommended by occupational therapists as one of the alternative treatment methods for rheumatoid arthritis. This study aims to review the available literature on the effects of wearing therapy gloves on patients' hand function and symptoms as well as to discuss the attributes of gloves that might influence the glove performance. An electronic databases search of MEDLINE, Physiotherapy Evidence Database, Occupational Therapy Systematic Evaluation of Evidence, Wiley Online Library, ScienceDirect and Cochrane Central Register of Controlled Trial was performed. Eight articles met the inclusion criteria, and covered seven clinical trials and one case study. Seven outcome measures were identified from the included studies and were then classified into two categories: hand function and hand symptoms. The hand symptoms such as pain, stiffness and swelling improve substantially when the therapy gloves are used. However, marginal or no improvement in hand function (with the exception of grip strength) linked to the use of therapy gloves is being reported. Further research is needed to quantify the effectiveness of therapy gloves, especially in improvement of hand function and in patients' interest in wearing therapy gloves. Furthermore, future studies should include parameters which might influence therapy gloves' performance, such as duration of trials, interface pressure generated by the gloves on the underlying skin and tissue, glove fit and construction, as well as thermophysiological comfort. PMID:25435925

Nasir, Siti Hana; Troynikov, Olga; Massy-Westropp, Nicola

2014-12-01

85

Glove box shield  

DOEpatents

According to the present invention, a shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user withdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.

Brackenbush, Larry W. (Richland, WA); Hoenes, Glenn R. (Richland, WA)

1981-01-01

86

Tactile Data Entry for Extravehicular Activity  

NASA Technical Reports Server (NTRS)

In the task-saturated environment of extravehicular activity (EVA), an astronaut's ability to leverage suit-integrated information systems is limited by a lack of options for data entry. In particular, bulky gloves inhibit the ability to interact with standard computing interfaces such as a mouse or keyboard. This paper presents the results of a preliminary investigation into a system that permits the space suit gloves themselves to be used as data entry devices. Hand motion tracking is combined with simple finger gesture recognition to enable use of a virtual keyboard, while tactile feedback provides touch-based context to the graphical user interface (GUI) and positive confirmation of keystroke events. In human subject trials, conducted with twenty participants using a prototype system, participants entered text significantly faster with tactile feedback than without (p = 0.02). The results support incorporation of vibrotactile information in a future system that will enable full touch typing and general mouse interactions using instrumented EVA gloves.

Adams, Richard J.; Olowin, Aaron B.; Hannaford, Blake; Sands, O Scott

2012-01-01

87

GLOVEBOX GLOVE CHARACTERIZATION SUMMARY  

SciTech Connect

A task was undertaken to determine primarily the permeation behavior of various glove compounds from four manufacturers. As part of the basic characterization task, the opportunity to obtain additional mechanical and thermal properties presented itself. Consequently, a total of fifteen gloves were characterized for permeation, Thermogravimetric Analysis, Puncture Resistance, Tensile Properties and Dynamic Mechanical Analysis. Detailed reports were written for each characterization technique used. This report contains the summary of the results.

Korinko, P.

2012-05-14

88

Space Station EVA test bed overview  

NASA Technical Reports Server (NTRS)

Current testing activities, testbed design goals, and future plans to support extravehicular activities (EVAs) of the Space Station are discussed. Developments include: (1) regenerative systems for carbon dioxide provision and removal; (2) increased space suit pressure to minimize prebreathe time; and (3) improved operational efficiencies for the extravehicular mobility units. Much novel technology will undergo integration to constitute the Space Station EVA System.

Stinson, Richard G.; Montz, Michael E.

1988-01-01

89

A dramatic expansion in extravehicular activity (EVA)--or "spacewalking"--capability occurred during the Space Shuttle  

E-print Network

during the Space Shuttle Program; this capability will tremendously benefit future space exploration--most notably the Hubble Space Telescope. Shuttle spacewalkers manipulated elements up to 9,000 kg (20 controllers charged with making EVAs happen. The Space Shuttle Program matured the EVA capability

90

EVA 2010: Preparing for International Space Station EVA Operations Post-Space Shuttle Retirement  

NASA Technical Reports Server (NTRS)

The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the OneEVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than 8 EVAs per year for ISS EVA operations in the Post-Shuttle environment and limited availability of cargo upmass on IP launch vehicles. From 2010 forward, EVA operations on-board the ISS without the Space Shuttle will be a paradigm shift in safely operating EVA hardware on orbit and the EVA 2010 effort was initiated to accommodate this significant change in EVA evolutionary history.

Chullen, Cinda; West, William W.

2010-01-01

91

Advanced EVA system design requirements study, executive summary  

NASA Technical Reports Server (NTRS)

Design requirements and criteria for the space station advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related EVA support equipment were established. The EVA mission requirements, environments, and medical and physiological requirements, as well as operational, procedures and training issues were considered.

1986-01-01

92

One hundred US EVAs: A perspective on spacewalks  

Microsoft Academic Search

In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The

Richard C Wilde; James W. McBarron; Scott A. Manatt; Harold J. McMann; Richard K. Fullerton

2002-01-01

93

Main problems of the Russian Orlan-M space suit utilization for EVAs on the ISS  

NASA Astrophysics Data System (ADS)

In the recent years the Russian Orlan-M space suits have been improved as applied to their operational requirements for the ISS. A special attention is paid to enhancement of EVA crew efficiency and safety. The paper considers the main problems regarding specific features of the Russian space suit operation in the ISS, and analyses measures on their solution. In particular, the problems associated with the following are considered: enhancement of the anthropometric range for the EVA crewmembers; use of some US EMU elements and unified NASA equipment elements; Orlan-M operation support in the wide range of the ISS thermal conditions; use of Simplified Aid For Extravehicular activity Rescue (SAFER) designed as a self-rescue device, which will be used for an EVA crewmember return in the event that he (she) breaks away inadvertently from the ISS surface. The paper states the main space suit differences with reference to solution of the above problems. The paper presents briefly the design of space suit arms developed for crewmembers with small anthropometric parameters, as well as peculiarities and test results for the gloves with enhanced thermal protection. Measures on further space suit development with the purpose to improve its performances are considered.

Abramov, I. P.; Pozdnyakov, S. S.; Severin, G. I.; Stoklitsky, A. Yu.

2001-03-01

94

Glovebox plug for glove changing  

DOEpatents

A plug for use in plugging a glove opening of a glovebox when the glove is eplaced. An inflated inner tube which is retained between flat plates mounted on a threaded rod is compressed in order to expand its diameter to equal that of the inside of the glove opening.

Carlson, David O. (Tesuque, NM); Shalkowski, Jr., Edward (Los Alamos, NM)

1992-01-01

95

Advanced EVA system design requirements study  

NASA Technical Reports Server (NTRS)

The results are presented of a study to identify specific criteria regarding space station extravehicular activity system (EVAS) hardware requirements. Key EVA design issues include maintainability, technology readiness, LSS volume vs. EVA time available, suit pressure/cabin pressure relationship and productivity effects, crew autonomy, integration of EVA as a program resource, and standardization of task interfaces. A variety of DOD EVA systems issues were taken into consideration. Recommendations include: (1) crew limitations, not hardware limitations; (2) capability to perform all of 15 generic missions; (3) 90 days on-orbit maintainability with 50 percent duty cycle as minimum; and (4) use by payload sponsors of JSC document 10615A plus a Generic Tool Kit and Specialized Tool Kit description. EVA baseline design requirements and criteria, including requirements of various subsystems, are outlined. Space station/EVA system interface requirements and EVA accommodations are discussed in the areas of atmosphere composition and pressure, communications, data management, logistics, safe haven, SS exterior and interior requirements, and SS airlock.

Woods, T. G.

1988-01-01

96

EVA Performance Prediction  

NASA Technical Reports Server (NTRS)

Astronaut physical performance capabilities in micro gravity EV A or on planetary surfaces when encumbered by a life support suit and debilitated by a long exposure to micro gravity will be less than unencumbered pre flight capabilities. The big question addressed by human factors engineers is: what can the astronaut be expected to do on EVA or when we arrive at a planetary surface? A second question is: what aids to performance will be needed to enhance the human physical capability? These questions are important for a number of reasons. First it is necessary to carry out accurate planning of human physical demands to ensure that time and energy critical tasks can be carried out with confidence. Second it is important that the crew members (and their ground or planetary base monitors) have a realistic picture of their own capabilities, as excessive fatigue can lead to catastrophic failure. Third it is important to design appropriate equipment to enhance human sensory capabilities, locomotion, materials handling and manipulation. The evidence from physiological research points to musculoskeletal, cardiovascular and neurovestibular degradation during long duration exposure to micro gravity . The evidence from the biomechanics laboratory (and the Neutral Buoyancy Laboratory) points to a reduction in range of motion, strength and stamina when encumbered by a pressurized suit. The evidence from a long history of EVAs is that crewmembers are indeed restricted in their physical capabilities. There is a wealth of evidence in the literature on the causes and effects of degraded human performance in the laboratory, in sports and athletics, in industry and in other physically demanding jobs. One approach to this challenge is through biomechanical and performance modeling. Such models must be based on thorough task analysis, reliable human performance data from controlled studies, and functional extrapolations validated in analog contexts. The task analyses currently carried out for EVA activities are based more on extensive domain experience than any formal analytic structure. Conversely, physical task analysis for industrial and structured evidence from training and EV A contexts. Again on earth there is considerable evidence of human performance degradation due to encumbrance and fatigue. These industrial models generally take the form of a discounting equation. The development of performance estimates for space operations, such as timeline predictions for EVA is generally based on specific input from training activity, for example in the NBL or KC135. uniformed services tasks on earth are much more formalized. Human performance data in the space context has two sources: first there is the micro analysis of performance in structured tasks by the space physiology community and second there is the less structured evidence from training and EV A contexts.

Peacock, Brian; Maida, James; Rajulu, Sudhakar

2004-01-01

97

Miniature EVA Software Defined Radio  

NASA Technical Reports Server (NTRS)

As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.

Pozhidaev, Aleksey

2012-01-01

98

Astronaut Bernard Harris on RMS during EVA  

NASA Technical Reports Server (NTRS)

Astronaut Bernard A. Harris, Jr., payload commander, watches astronaut C. Michael Foale (out of frame), mission specialist, during the late phases of their shared extravehicular activity (EVA) in the STS-63 Space Shuttle Discovery's cargo bay.

1995-01-01

99

Astronaut Bernard Harris on RMS during EVA  

NASA Technical Reports Server (NTRS)

Astronaut Bernard A. Harris, Jr., payload commander, standing on a foot restraint attached to the Remote Manipulator System (RMS) arm carries astronaut C. Michael Foale, mission specialist, during their shared extravehicular activity (EVA) in the Space Shuttle Discovery's cargo bay.

1995-01-01

100

Walking to Olympus: An EVA Chronology  

NASA Technical Reports Server (NTRS)

Spacewalkers enjoy a view of Earth once reserved for Apollo, Zeus, and other denizens of Mt. Olympus. During humanity's first extravehicular activity (EVA), Alexei Leonov floated above Gibraltar, the rock ancient seafarers saw as the gateway to the great unknown Atlantic. The symbolism was clear, Leonov stepped past a new Gibraltar when he stepped into space. More than 32 years and 154 EVAs later, Jerry Linenger conducted an EVA with Vladimir Tsibliyev as part of International Space Station Phase 1. They floated together above Gibraltar. Today the symbolism has new meaning: humanity is starting to think of stepping out of Earth orbit, space travel's new Gibraltar, and perhaps obtaining a new olympian view, a close-up look at Olympus Mons on Mars. Walking to Olympus: An EVA Chronology chronicles the 154 EVAs conducted from March 1965 to April 1997. It is intended to make clear the crucial role played by EVA in the history of spaceflight, as well as to chronicle the large body of EVA "lessons learned." Russia and the U.S. define EVA differently. Russian cosmonauts are said to perform EVA any time they are in vacuum in a space suit. A U.S. astronaut must have at least his head outside his spacecraft before he is said to perform an EVA. The difference is based in differing spacecraft design philoso- phies. Russian and Soviet spacecraft have always had a specialized airlock through which the EVA cosmonaut egressed, leaving the main habitable volume of the spacecraft pressurized. The U.S. Gemini and Apollo vehicles, on the other hand, depressurized their entire habitable volume for egress. In this document, we apply the Russian definition to Russian EVAS, and the U.S. definition to U.S. EVAS. Thus, for example, Gemini 4 Command Pilot James McDivitt does not share the honor of being first American spacewalker with Ed White, even though he was suited and in vacuum when White stepped out into space. Non-EVA spaceflights are listed in the chronology to provide context and to display the large num- ber of flights in which EVA played a role. This approach also makes apparent significant EVA gaps, for example, the U.S. gap between 1985 and 1991 following the Challenger accident. This NASA History Monograph is an edited extract from an extensive EVA Chronology and Reference Book being produced by the EVA Project Office, NASA Johnson Space Center, Houston, Texas. The larger work will be published as part of the NASA Formal Series in 1998. The authors gratefully acknowledge the assistance rendered by Max Ary, Ashot Bakunts, Gert-Jan Bartelds, Frank Cepollina, Andrew Chaikin, Phillip Clark, Richard Fullerton, Steven Glenn, Linda Godwin, Jennifer Green, Greg Harris, Clifford Hess, Jeffrey Hoffman, David Homan, Steven Hopkins, Nicholas Johnson, Eric Jones, Neville Kidger, Joseph Kosmo, Alexei Lebedev, Mark Lee, James LeBlanc, Dmitri Leshchenskii, Jerry Linenger, Igor Lissov, James McBarron, Clay McCullough, Joseph McMann, Story Musgrave, Dennis Newkirk, James Oberg, Joel Powell, Lee Saegesser, Andy Salmon, Glen Swanson, Joseph Tatarewicz, Kathy Thornton, Chris Vandenberg, Charles Vick, Bert Vis, David Woods, Mike Wright, John Young, and Keith Zimmerman. Special thanks to Laurie Buchanan, John Charles, Janet Kovacevich, Joseph Loftus, Sue McDonald, Martha Munies, Colleen Rapp, and Jerry Ross. Any errors remain the responsibility of the authors.

Portree, David S. F.; Trevino, Robert C.

1997-01-01

101

Small, Lightweight, Collapsible Glove Box  

NASA Technical Reports Server (NTRS)

A small, lightweight, collapsible glove box enables its user to perform small experiments and other tasks. Originally intended for use aboard a space shuttle or the International Space Station (ISS), this glove box could also be attractive for use on Earth in settings in which work space or storage space is severely limited and, possibly, in which it is desirable to minimize weight. The development of this glove box was prompted by the findings that in the original space-shuttle or ISS setting, (1) it was necessary to perform small experiments in a large general-purpose work station, so that, in effect, they occupied excessive space; and it took excessive amounts of time to set up small experiments. The design of the glove box reflects the need to minimize the space occupied by experiments and the time needed to set up experiments, plus the requirement to limit the launch weight of the box and the space needed to store the box during transport into orbit. To prepare the glove box for use, the astronaut or other user has merely to insert hands through the two fabric glove ports in the side walls of the box and move two hinges to a locking vertical position (see figure). The user could do this while seated with the glove box on the user fs lap. When stowed, the glove box is flat and has approximately the thickness of two pieces of 8-in. (.20 cm) polycarbonate.

James, Jerry

2009-01-01

102

EVA Radio DRATS 2011 Report  

NASA Technical Reports Server (NTRS)

In the Fall of 2011, National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) participated in the Desert Research and Technology Studies (DRATS) field experiments held near Flagstaff, Arizona. The objective of the DRATS outing is to provide analog mission testing of candidate technologies for space exploration, especially those technologies applicable to human exploration of extra- terrestrial rocky bodies. These activities are performed at locations with similarities to extra-terrestrial conditions. This report describes the Extravehicular Activity (EVA) Dual-Band Radio Communication System which was demonstrated during the 2011 outing. The EVA radio system is designed to transport both voice and telemetry data through a mobile ad hoc wireless network and employs a dual-band radio configuration. Some key characteristics of this system include: 1. Dual-band radio configuration. 2. Intelligent switching between two different capability wireless networks. 3. Self-healing network. 4. Simultaneous data and voice communication.

Swank, Aaron J.; Bakula, Casey J.

2012-01-01

103

One hundred US EVAs: A perspective on spacewalks  

NASA Astrophysics Data System (ADS)

In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program.

Wilde, Richard C.; McBarron, James W.; Manatt, Scott A.; McMann, Harold J.; Fullerton, Richard K.

2002-07-01

104

Refinement of Optimal Work Envelope for Extra-Vehicular Activity (EVA) Suit Operations  

NASA Technical Reports Server (NTRS)

The purpose of the Extravehicular Mobility Unit (EMU) Work Envelope study is to determine and revise the work envelope defined in NSTS 07700 "System Description and Design Data - Extravehicular Activities" [1], arising from an action item as a result of the Shoulder Injury Tiger Team findings. The aim of this study is to determine a common work envelope that will encompass a majority of the crew population while minimizing the possibility of shoulder and upper arm injuries. There will be approximately two phases of testing: arm sweep analysis to be performed in the Anthropometry and Biomechanics Facility (ABF), and torso lean testing to be performed on the Precision Air Bearing Facility (PABF). NSTS 07700 defines the preferred work envelope arm reach in terms of maximum reach, and defines the preferred work envelope torso flexibility of a crewmember to be a net 45 degree backwards lean [1]. This test served two functions: to investigate the validity of the standard discussed in NSTS 07700, and to provide recommendations to update this standard if necessary.

Jaramillo, Marcos A.; Angermiller, Bonnie L.; Morency, Richard M.; Rajululu, Sudhakar L.

2008-01-01

105

STS-33 EVA Prep and Post with Gregory, Blaha, Carter, Thorton, and Musgrave in FFT  

NASA Technical Reports Server (NTRS)

This video shows the crew in the airlock of the FFT, talking with technicians about the extravehicular activity (EVA) equipment. Thornton and Carter put on EVA suits and enter the airlock as the other crew members help with checklists.

1989-01-01

106

STS-33 EVA prep and post with Gregory, Blaha, Carter, Thorton, and Musgrave in FFT  

NASA Astrophysics Data System (ADS)

This video tape shows the crew in the airlock of the FFT, talking with technicians about the extravehicular activity (EVA) equipment. Thornton and Carter put on EVA suits and enter the airlock as the other crew members help with checklists.

1989-10-01

107

EVA - Don't Leave Earth Without It  

NASA Technical Reports Server (NTRS)

Modern manned space programs come in two categories: those that need Extravehicular Activity (EVA) and those that will need EVA. This paper discusses major milestones in the Shuttle Program where EVA was used to save payloads, enhance on-orbit capabilities, and build structures in order to ensure success of National Aeronautics and Space Administration (NASA) missions. In conjunction, the Extravehicular Mobility Unit s (EMU) design, and hence, its capabilities evolved as its mission evolved. It is the intent that lessons can be drawn from these case studies so that EVA compatibility is designed into future vehicles and payloads.

Cupples, J. Scott; Smith, Stephen A.

2011-01-01

108

Space Station Freedom airlock - The integration of IVA and EVA capabilities in an orbital element  

Microsoft Academic Search

In order to meet mission goals, the Space Station Freedom (SSF) airlock must maximize crew efficiency while supporting a range of extravehicular activity (EVA) and intravehicular activity (IVA) operations. EVA will be a frequently planned occurrence on SSF. In order to maximize the usefulness of the limited EVA resource, overhead times must be minimized. This paper discusses how the SSF

Thomas O. Moore Jr.; Anthony P. Matthews

1992-01-01

109

The combination effects of licl and the active leflunomide metabolite, A771726, on viral-induced interleukin 6 production and EV-A71 replication.  

PubMed

Enterovirus 71 (EV-A71) is a neurotropic virus that can cause severe complications involving the central nervous system. No effective antiviral therapeutics are available for treating EV-A71 infection and drug discovery efforts are rarely focused to target this disease. Thus, the main goal of this study was to discover existing drugs with novel indications that may effectively inhibit EV-A71 replication and the inflammatory cytokines elevation. In this study, we showed that LiCl, a GSK3? inhibitor, effectively suppressed EV-A71 replication, apoptosis and inflammatory cytokines production (Interleukin 6, Interleukin-1?) in infected cells. Furthermore, LiCl and an immunomodular agent were shown to strongly synergize with each other in suppressing EV-A71 replication. The results highlighted potential new treatment regimens in suppressing sequelae caused by EV-A71 replication. PMID:25412347

Hung, Hui-Chen; Shih, Shin-Ru; Chang, Teng-Yuan; Fang, Ming-Yu; Hsu, John T-A

2014-01-01

110

The Combination Effects of LiCl and the Active Leflunomide Metabolite, A771726, on Viral-Induced Interleukin 6 Production and EV-A71 Replication  

PubMed Central

Enterovirus 71 (EV-A71) is a neurotropic virus that can cause severe complications involving the central nervous system. No effective antiviral therapeutics are available for treating EV-A71 infection and drug discovery efforts are rarely focused to target this disease. Thus, the main goal of this study was to discover existing drugs with novel indications that may effectively inhibit EV-A71 replication and the inflammatory cytokines elevation. In this study, we showed that LiCl, a GSK3? inhibitor, effectively suppressed EV-A71 replication, apoptosis and inflammatory cytokines production (Interleukin 6, Interleukin-1?) in infected cells. Furthermore, LiCl and an immunomodular agent were shown to strongly synergize with each other in suppressing EV-A71 replication. The results highlighted potential new treatment regimens in suppressing sequelae caused by EV-A71 replication. PMID:25412347

Hung, Hui-Chen; Shih, Shin-Ru; Chang, Teng-Yuan; Fang, Ming-Yu; Hsu, John T.-A.

2014-01-01

111

Astronaut Carl Walz during EVA in Discovery's payload bay  

NASA Technical Reports Server (NTRS)

Astronaut Carl E. Walz reaches for equipment from the provisional stowage assembly (PSA) in Discvoery's cargo bay during a lengthy period of extravehicular activity (EVA). The hatch to Discovery's airlock is open nearby. Sun glare is evident above the orbiter. The picture was taken with a 35mm camera by astronaut James H. Newman, who shared EVA duties with Walz.

1993-01-01

112

Internal contamination of gloves: routes and consequences.  

PubMed

The effect of internal glove contamination was investigated using N-methyl pyrrolidone (NMP) as a biological marker to assess systemic absorption when wearing internally contaminated gloves, and when not wearing gloves but subjected to the same challenge contaminant. The routes by which the insides of gloves become contaminated were also investigated. The area of dermal contamination was quantified using a fluorescent tracer dye and a surface monitoring fluorimeter. The main routes of internal glove contamination were found to be self-contamination, cuff entry and failed gloves. Wearing internally contaminated gloves led to higher systemic absorption than was gained from the equivalent skin contamination when not wearing gloves. Repeat wetting of fingers with aqueous NMP, when gloves were not worn, gave higher systemic absorption than the equivalent continuous exposure, probably due to the low volatility of NMP leading to increased concentration and longer residence time on the skin. PMID:15899931

Rawson, B V; Cocker, J; Evans, P G; Wheeler, J P; Akrill, P M

2005-08-01

113

Exploration EVA Purge Flow Assessment  

NASA Technical Reports Server (NTRS)

An advanced future spacesuit will require properly sized suit and helmet purge flow rates in order to sustain a crew member with a failed Portable Life Support System (PLSS) during an Extravehicular Activity (EVA). A computational fluid dynamics evaluation was performed to estimate the helmet purge flow rate required to washout carbon dioxide and to prevent the condensing ("fogging") of water vapor on the helmet visor. An additional investigation predicted the suit purge flow rate required to provide sufficient convective cooling to keep the crew member comfortable. This paper summarizes the results of these evaluations.

Navarro, Moses; Conger, Bruce

2010-01-01

114

A human factors analysis of EVA time requirements  

NASA Technical Reports Server (NTRS)

Human Factors Engineering (HFE), also known as Ergonomics, is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. A human factors motion and time study was initiated with the goal of developing a database of EVA task times and a method of utilizing the database to predict how long an ExtraVehicular Activity (EVA) should take. Initial development relied on the EVA activities performed during the STS-61 mission (Hubble repair). The first step of the analysis was to become familiar with EVAs and with the previous studies and documents produced on EVAs. After reviewing these documents, an initial set of task primitives and task time modifiers was developed. Videotaped footage of STS-61 EVAs were analyzed using these primitives and task time modifiers. Data for two entire EVA missions and portions of several others, each with two EVA astronauts, was collected for analysis. Feedback from the analysis of the data will be used to further refine the primitives and task time modifiers used. Analysis of variance techniques for categorical data will be used to determine which factors may, individually or by interactions, effect the primitive times and how much of an effect they have.

Pate, D. W.

1996-01-01

115

Extravehicular Activity Asteroid Exploration and Sample Collection Capability  

NASA Technical Reports Server (NTRS)

NASA's Asteroid Redirect Crewed Mission (ARCM) is challenged with primary mission objectives of demonstrating deep space Extravehicular Activity (EVA) and tools, and obtaining asteroid samples to return to Earth for further study. Although the Modified Advanced Crew Escape Suit (MACES) is used for the EVAs, it has limited mobility which increases fatigue and decreases the crews' capability to perform EVA tasks. Furthermore, previous Shuttle and International Space Station (ISS) spacewalks have benefited from EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, some vehicle interfaces and tools can leverage heritage designs and experience. However, when the crew ventures onto an asteroid capture bag to explore the asteroid and collect rock samples, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as bunching of the fabric bag will complicate EVA translation, tool restraint and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the MACES suit. The proposed concept utilizes expandable booms and integrated features of the asteroid capture bag to position and restrain the crew at the asteroid worksite. These methods enable the capability to perform both finesse, and high load tasks necessary to collect samples for scientific characterization of the asteroid. This paper will explore the design trade space and options that were examined for EVA, the overall concept for the EVAs including translation paths and body restraint methods, potential tools used to extract the samples, design implications for the Asteroid Redirect Vehicle (ARV) for EVA, the results of early development testing of potential EVA tasks, and extensibility of the EVA architecture to NASA's exploration missions.

Scoville, Zebulon; Sipila, Stephanie; Bowie, Jonathan

2014-01-01

116

Emergency vehicle alert system (EVAS)  

NASA Technical Reports Server (NTRS)

The Emergency Vehicle Alert System (EVAS) program is sponsored by the NASA/MSFC Technology Utilization (TU) office. The program was conceived to support the needs of hearing impaired drivers. The objective of the program is to develop a low-cost, small device which can be located in a personal vehicle and warn the driver, via a visual means, of the approach of an emergency vehicle. Many different technologies might be developed for this purpose and each has its own advantages and drawbacks. The requirements for an acoustic detection system, appear to be pretty stringent and may not allow the development of a reliable, low-cost device in the near future. The problems include variations in the sirens between various types of emergency vehicles, distortions due to wind and surrounding objects, competing background noise, sophisticated signal processing requirements, and omni-directional coverage requirements. Another approach is to use a Radio Frequency (RF) signal between the Emergency Vehicle (EV) and the Personal Vehicle (PV). This approach requires a transmitter on each EV and a receiver in each PV, however it is virtually assured that a system can be developed which works. With this approach, the real technology issue is how to make a system work as inexpensively as possible. This report gives a brief summary of the EVAS program from its inception and concentrates on describing the activities that occurred during Phase 4. References 1-3 describe activities under Phases 1-3. In the fourth phase of the program, the major effort to be expended was in development of the microcontroller system for the PV, refinement of some system elements and packaging for demonstration purposes. An EVAS system was developed and demonstrated which used standard spread spectrum modems with minor modifications.

Reed, Bill; Crump, Roger; Harper, Warren; Myneni, Krishna

1995-01-01

117

Astronaut Musgrave performing EVA during STS-6  

NASA Technical Reports Server (NTRS)

Views of Mission Specialist F. Story Musgrave performing an extravehicular activity (EVA) during the STS-6 mission. In this view, Musgrave uses hand holds in the payload bay door hinge line to move towards the aft payload bay (30215); Musgrave conducts a simulation of a contingency EVA in the aft payload bay. This was designed to return the inertial upper stage (IUS) support equipment's tilt table device to its normal stowed configuration in the event of failure of an automatic system. A cloud-covered earth can be seen in the background (30216).

1983-01-01

118

21 CFR 878.4460 - Surgeon's glove.  

Code of Federal Regulations, 2013 CFR

... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4460 Surgeon's glove. (a) Identification. A surgeon's glove is a...

2013-04-01

119

21 CFR 878.4460 - Surgeon's glove.  

Code of Federal Regulations, 2012 CFR

... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4460 Surgeon's glove. (a) Identification. A surgeon's glove is a...

2012-04-01

120

21 CFR 878.4460 - Surgeon's glove.  

Code of Federal Regulations, 2011 CFR

... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4460 Surgeon's glove. (a) Identification. A surgeon's glove is a...

2011-04-01

121

21 CFR 878.4460 - Surgeon's glove.  

Code of Federal Regulations, 2010 CFR

... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4460 Surgeon's glove. (a) Identification. A surgeon's glove is a...

2010-04-01

122

21 CFR 878.4460 - Surgeon's glove.  

Code of Federal Regulations, 2014 CFR

... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4460 Surgeon's glove. (a) Identification. A surgeon's glove is a...

2014-04-01

123

DEVELOPMENT OF A NEW GLOVE FOR GLOVE BOXES WITH HIGH-LEVEL PERFORMANCES  

SciTech Connect

This paper describes the results of a joint technological program of COGEMA and MAPA to develop a new generation of glove for glove boxes. The mechanical strength of this glove is twice as high as the best characteristics of gloves available on the market. This new generation of product has both a higher level of performance and better ergonomics.

Blancher, J.; Poirier, J.M.

2003-02-27

124

Fabrication of Essex EVA ratchet wrenches  

NASA Technical Reports Server (NTRS)

The extravehicular activity (EVA) ratchet wrench was developed. Shortly after Space Telescope (ST) maintenance simulations began, the need for a specialized maintenance tool arose. With inputs of tool requirements and design recommendations, several development model wrenches were tested in conjunction with ST neutral buoyancy simulations. The wrench design was modified and refined.

Vanvalkenburgh, C. N.; Loughead, T. E.

1982-01-01

125

Effective Teamwork: The EVA NBL Experience  

NASA Technical Reports Server (NTRS)

This viewgraph presentation reviews the experience of improving the operation of the ExtraVehiclar Activity (EVA) Neutral Buoyancy Laboratory as a team of NASA employees and contractors. It reviews specific recommendations to use in turning a struggling organization around as a NASA/contractor team

Crocker, Lori

2007-01-01

126

Glove box for water pit applications  

DOEpatents

A glove box assembly that includes a glove box enclosure attached to a longitudinally extending hollow tube having an entranceway, wherein the portion of the tube is in a liquid environment. An elevator member is provided for raising an object that is introduced into the hollow tube from the liquid environment to a gas environment inside the glove box enclosure while maintaining total containment.

Mills, William C. (Richland, WA); Rabe, Richard A. (North Fork, ID)

2005-01-18

127

8 JMBA Global Marine Environment Mermaid's Glove  

E-print Network

8 JMBA Global Marine Environment Mermaid's Glove Nowadays Faroe islanders live a very post the nineteenth century. The njararvøttur was then used as a kind of tinder when lighting fires. Mermaid's glove by Börge Pettersson. Also Published in JMBA Svanberg, I. Human usage of mermaid's glove sponge (Isodictya

Watson, Andrew

128

Development of an EVA systems cost model. Volume 3: EVA systems cost model  

NASA Technical Reports Server (NTRS)

The EVA systems cost model presented is based on proposed EVA equipment for the space shuttle program. General information on EVA crewman requirements in a weightless environment and an EVA capabilities overview are provided.

1975-01-01

129

Creating a Lunar EVA Work Envelope  

NASA Technical Reports Server (NTRS)

A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.

Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David

2009-01-01

130

EVA robotics for Space Station Freedom: Dextrous Manipulator Development (DEMAND)  

NASA Technical Reports Server (NTRS)

The topics are presented in viewgraph form and include: dextrous manipulator development (DMD), projected extravehicular activity (EVA) backlog, potential Special Purpose Dextrous Manipulator (SPDM) tasks, DMD Laboratory FY 1992-94, and program goals.

Williams, Robert L., II

1992-01-01

131

Astronauts Harris and Foale ready to egress airlock for EVA  

NASA Technical Reports Server (NTRS)

Astronauts Bernard A. Harris, Jr., payload commander, (top) and C. Michael Foale, mission specialist, are ready to egress airlock for an extravehicular activity (EVA) during the STS-63 mission on the Space Shuttle Discovery.

1995-01-01

132

Astronaut Michael Foale on RMS arm during EVA  

NASA Technical Reports Server (NTRS)

Astronaut C. Michael Foale (red stripe), mission specialist, on the Remote Manipulator System (RMS) arm prepares to grab SPARTAN 204 as astronaut Bernard A. Harris Jr., payload commander, looks on during the STS-63 extravehicular activity (EVA).

1995-01-01

133

Astronaut Ronald Evans photographed during transearth coast EVA  

NASA Technical Reports Server (NTRS)

Astronaut Ronald E. Evans is photographed performing extravehicular activity (EVA) during the Apollo 17 spacecraft's transearth coast. During his EVA Command Module pilot Evans retrieved film cassettes from the Lunar Sounder, Mapping Camera, and Panoramic Camera. The cylindrical object at Evans left side is the mapping camera cassette. The total time for the transearth EVA was one hour seven minutes 19 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) amd ending at ground elapsed time of 258:42 (3:35 p.m.) on Sunday, December 17, 1972.

1972-01-01

134

Astronaut Ronald Evans photographed during transearth coast EVA  

NASA Technical Reports Server (NTRS)

Astronaut Ronald E. Evans is photographed performing extravehicular activity (EVA) during the Apollo 17 spacecraft's transearth coast. During his EVA Command Module pilot Evans retrieved film cassettes from the Lunar Sounder, Mapping Camera, and Panoramic Camera. The total time for the transearth EVA was one hour seven minutes 19 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) amd ending at ground elapsed time of 258:42 (3:35 p.m.) on Sunday, December 17, 1972.

1972-01-01

135

EVA manipulation and assembly of space structure columns  

NASA Technical Reports Server (NTRS)

Assembly techniques and hardware configurations used in assembly of the basic tetrahedral cell by A7LB pressure-suited subjects in a neutral bouyancy simulator were studied. Eleven subjects participated in assembly procedures which investigated two types of structural members and two configurations of attachment hardware. The assembly was accomplished through extra-vehicular activity (EVA) only, EVA with simulated manned maneuvering unit (MMU), and EVA with simulated MMU and simulated remote manipulator system (RMS). Assembly times as low as 10.20 minutes per tetrahedron were achieved. Task element data, as well as assembly procedures, are included.

Loughead, T. E.; Pruett, E. C.

1980-01-01

136

Study of space shuttle EVA/IVA support requirements. Volume 2: EVA/IVA tasks, guidelines, and constraints definition  

NASA Technical Reports Server (NTRS)

The guidelines for EVA and IVA tasks to be performed on the space shuttle are defined. In deriving tasks, guidelines, and constraints, payloads were first identified from the mission model. Payload requirements, together with man and manipulator capabilities, vehicle characteristics and operation, and safety considerations led to a definition of candidate tasks. Guidelines and constraints were also established from these considerations. Scenarios were established, and screening criteria, such as commonality of EVA and IVA activities, were applied to derive representative planned and unplanned tasks. The whole spectrum of credible contingency situations with a potential requirement for EVA/IVA was analyzed.

Webbon, B. W.; Copeland, R. J.; Wood, P. W., Jr.; Cox, R. L.

1973-01-01

137

Permeation resistance of glove materials to agricultural pesticides.  

PubMed

The toxicities of many agricultural pesticides require that hand protection be used by persons who mix, load, and apply these products, as specified on the label and material safety data sheet. Selection of gloves for formulations that contain organic solvents is particularly problematic because a solvent that permeates the glove can carry with it the active ingredient of the pesticide formulation. With a test method that measures the simultaneous permeation of the carrier solvent(s) and active ingredient(s), in particular those active ingredients that have low solubility in water and low volatility, over 100 permeation tests (in triplicate) with approximately 20 pesticide formulations were conducted with 13 different glove materials. These results are summarized and generalizations are presented within the perspective of the large base of permeation data for neat chemicals and another large permeation study with pesticides. Key among the findings is that the carrier solvent generally permeates first and at a much higher rate than the active ingredient. Furthermore, the permeation behavior of formulations containing solvents generally mirrored that of neat carrier solvents alone. Thus, insight into the selection of the most appropriate glove material for a given pesticide formulation can be gained from permeation data for neat chemicals. For the types of solvents that may be present in pesticide formulations, preferred materials include nitrile rubber, butyl rubber, and plastic film laminates. Natural rubber and polyvinyl chloride materials generally are not recommended. PMID:1605107

Schwope, A D; Goydan, R; Ehntholt, D; Frank, U; Nielsen, A

1992-06-01

138

Space Shuttle/Orbiter EVA and EVA provisions  

NASA Technical Reports Server (NTRS)

EVA objectives, procedures, and equipment for the Shuttle are reviewed. The EVA will occur as a planned excursion, to complete a mission objective, or on a contingency basis as support for the mission or to effect repairs to the Orbiter or its payload. Configurations for the placement of the airlock for EVA with and without Spacelab payloads are discussed, along with the various EVA tasks which could be expected as necessary for mission completion. Handholds have been placed in strategic positions on the RMS and along the payload doors, and a safety tether has been incorporated with line extension out to 25 ft. Off-the-shelf tools such as needlenose pliers, forceps, diagonal cutters, etc. are carried as standard equipment for the repair of malfunctioning equipment and doorlatches. Finally, attention is given to EVA lighting, communication, life-support, and work station restraint systems.

Goodman, J. R.

1980-01-01

139

THERMOGRAVIMETRIC CHARACTERIZATION OF GLOVEBOX GLOVES  

SciTech Connect

An experimental project was initiated to characterize mass loss when heating different polymer glovebox glove material samples to three elevated temperatures, 90, 120, and 150 C. Samples from ten different polymeric gloves that are being considered for use in the tritium gloveboxes were tested. The intent of the study was to determine the amount of material lost. These data will be used in a subsequent study to characterize the composition of the material lost. One goal of the study was to determine which glove composition would least affect the glovebox atmosphere stripper system. Samples lost most of the mass in the initial 60 minutes of thermal exposure and as expected increasing the temperature increased the mass loss and shortened the time to achieve a steady state loss. The most mass loss was experienced by Jung butyl-Hypalon{reg_sign} at 146 C with 12.9% mass loss followed by Piercan Hypalon{reg_sign} at 144 C with 11.4 % mass loss and Jung butyl-Viton{reg_sign} at 140 C with 5.2% mass loss. The least mass loss was experienced by the Jung Viton{reg_sign} and the Piercan polyurethane. Unlike the permeation testing (1) the vendor and fabrication route influences the amount of gaseous species that is evolved. Additional testing to characterize these products is recommended. Savannah River Site (SRS) has many gloveboxes deployed in the Tritium Facility. These gloveboxes are used to protect the workers and to ensure a suitable environment in which to handle tritium gas products. The gas atmosphere in the gloveboxes is purified using a stripper system. The process gas strippers collect molecules that may have hydrogen or its isotopes attached, e.g., waters of hydration, acids, etc. Recently, sulfur containing compounds were detected in the stripper system and the presence of these compounds accelerates the stripper system's aging process. This accelerated aging requires the strippers to be replaced more often which can impact the facility's schedule and operational cost. It was posited that sulfur bearing and other volatile compounds were derived from glove off-gassing. Due to the large number of gloves in the facility, small mass loss from each glove could result in a significant total mass of undesirable material entering the glovebox atmosphere and subsequently the stripper system. A thermogravimetric analysis (TGA) study was conducted to determine the amount of low temperature volatiles that may be expected to offgas from the gloves. The data were taken on relatively small samples but are normalized with respect to the sample's surface area. Additional testing is needed to determine the composition of the off-gassing species. The TGA study was conducted to ascertain the magnitude of the issue and to determine if further experimentation is warranted or necessary.

Korinko, P.

2012-02-29

140

CETA truck and EVA restraint system  

NASA Technical Reports Server (NTRS)

The Crew Equipment Translation Aid (CETA) experiment is an extravehicular activity (EVA) Space Transportation System (STS) based flight experiment which will explore various modes of transporting astronauts and light equipment for Space Station Freedom (SSF). The basic elements of CETA are: (1) two 25 foot long sections of monorail, which will be EVA assembled in the STS cargo bay to become a single 50 ft. rail called the track; (2) a wheeled baseplate called the truck which rolls along the track and can accept three cart concepts; and (3) the three carts which are designated manual, electric, and mechanical. The three carts serve as the astronaut restraint and locomotive interfaces with the track. The manual cart is powered by the astronaut grasping the track's handrail and pulling himself along. The electric cart is operated by an astronaut turning a generator which powers the electric motor and drives the cart. The mechanical cart is driven by a Bendix type transmission and is similar in concept to a man-propelled railroad cart. During launch and landing, the truck is attached to the deployable track by means of EVA removable restraint bolts and held in position by a system of retractable shims. These shims are positioned on the exterior of the rail for launch and landing and rotate out of the way for the duration of the experiment. The shims are held in position by strips of Velcro nap, which rub against the sides of the shim and exert a tailored force. The amount of force required to rotate the shims was a major EVA concern, along with operational repeatability and extreme temperature effects. The restraint system was tested in a thermal-vac and vibration environment and was shown to meet all of the initial design requirements. Using design inputs from the astronauts who will perform the EVA, CETA evolved through an iterative design process and represented a cooperative effort.

Beals, David C.; Merson, Wayne R.

1991-01-01

141

CHARACTERIZATION OF TENSILE STRENGTH OF GLOVEBOX GLOVES  

SciTech Connect

A task was undertaken to compare various properties of different glovebox gloves, having various compositions, for use in gloveboxes at the Savannah River Site (SRS). One aspect of this project was to determine the tensile strength (TS) of the gloves. Longitudinal tensile samples were cut from 15 different gloves and tensile tested. The stress, load, and elongation at failure were determined. All of the gloves that are approved for glovebox use and listed in the glovebox procurement specification met the tensile and elongation requirements. The Viton{reg_sign} compound gloves are not listed in the specification, but exhibited lower tensile strengths than permissible based on the Butyl rubber requirements. Piercan Polyurethane gloves were the thinnest samples and exhibited the highest tensile strength of the materials tested.

Korinko, P.; Chapman, G.

2012-02-29

142

Astronaut Ronald Evans is suited up for EVA training  

NASA Technical Reports Server (NTRS)

Astronaut Ronald E. Evans, command module pilot of the Apollo 17 lunar landing mission, is assisted by technicians in suiting up for extravehicular activity (EVA) training in a water tank in bldg 5 at the Manned Spacecraft Center (49970); Evans participates in EVA training in a water tank in bldg 5 at the Manned Spacecraft Center. The structure in the picture simulates the Scientific Instrument Module (SIM) bay of the Apollo 17 Service Module (49971).

1972-01-01

143

PUNCTURE TEST CHARACTERIZATION OF GLOVEBOX GLOVES  

SciTech Connect

An experiment was conducted to determine the puncture resistance of 15 gloves that are used or proposed for use in the Tritium Facility at Savannah River Site (SRS). These data will serve as a baseline for characterization and may be incorporated into the glove procurement specification. The testing was conducted in agreement with ASTM D120 and all of the gloves met or exceeded the minimum requirements. Butyl gloves exhibited puncture resistance nearly 2.5 times the minimum requirements at SRS while Polyurethane was nearly 7.5x the minimum.

Korinko, P.; Chapman, G.

2012-02-29

144

Permeation of chemicals through glove-box glove materials  

SciTech Connect

The resistance of two commercial gloves to 20 chemicals commonly used in glove boxes was studied. The chemicals were inorganic acids/bases/salts, organic acids, alcohols, glycols, halogen compounds, sulfur compounds, and hydrocarbons. The ASTM cell was used to study permeation of volatile organic compounds through protective clothing materials using air, flame ionization detector/gas chromatography; a modified version of the cell was used with isopropanol for the nonvolatile organic compounds. Permeation of inorganic compounds through the elastomers was studied using the ASTM cell with water, conductivity meter. A Teflon cell was used with HF and ammonium hydrofluoride. Results: Hypalon protects against all chemicals except trichloroethylene (TCE) and CCl{sub 4}. Acetic acid and ethanol permeated through neoprene, which also did not protect against TCE and CCl{sub 4}. Sulfuric acid dissolved neoprene in 5 h. Kerosene permeated through neoprene in 5 h. Although neoprene showed good resistance to cutting oil, TCE in cutting oil broke through in 61 min. Neoprene showed good protection against all the other chemicals with no breakthrough before 6 h.

Vahdat, N,; Johnson, J.S.; Neidhardt, A.; Cheng, J. [Lawrence Livermore National Lab., CA (United States); Weitzman, D. [USDOE, Washington, DC (United States)

1994-06-30

145

Evolution of EVA capabilities for space station construction and maintenance: Soviet and American experience  

NASA Technical Reports Server (NTRS)

The evolution of both Soviet and American Extravehicular Activity (EVA) is discussed. A qualitative review evaluates each EVA with respect to risk, criticality, complexity, and duration. Graphics summarizing increase and rate of increase in productivity emphasize related advancements in the space suits, EVA tools, and equipment technology. Specifics that demonstrated ingenuity in accomplishing unplanned activities which required man's direct manipulation of large payloads and structures are presented. Accumulated EVA successes allow an effective, flexible, recommended approach for construction and maintenance of Space Station to be given in conclusion.

Kramer, Cathy D.

1989-01-01

146

Sensing and Force-Feedback Exoskeleton (SAFE) Glove.  

PubMed

This paper presents the design, implementation and experimental validation of a novel robotic haptic exoskeleton device to measure the user's hand motion and assist hand motion while remaining portable and lightweight. The device consists of a five-finger mechanism actuated with miniature DC motors through antagonistically routed cables at each finger, which act as both active and passive force actuators. The SAFE Glove is a wireless and self-contained mechatronic system that mounts over the dorsum of a bare hand and provides haptic force feedback to each finger. The glove is adaptable to a wide variety of finger sizes without constraining the range of motion. This makes it possible to accurately and comfortably track the complex motion of the finger and thumb joints associated with common movements of hand functions, including grip and release patterns. The glove can be wirelessly linked to a computer for displaying and recording the hand status through 3D Graphical User Interface (GUI) in real-time. The experimental results demonstrate that the SAFE Glove is capable of reliably modeling hand kinematics, measuring finger motion and assisting hand grasping motion. Simulation and experimental results show the potential of the proposed system in rehabilitation therapy and virtual reality applications. PMID:25494512

Ben-Tzvi, Pinhas; Ma, Zhou

2014-12-01

147

Exploiting wearable goniometer technology for motion sensing gloves.  

PubMed

This paper presents an innovative wearable kinesthetic glove realized with knitted piezoresistive fabric (KPF) sensor technology. The glove is conceived to capture hand movement and gesture by using KPF in a double-layer configuration working as angular sensors (electrogoniometers). The sensing glove prototype is endowed by three KPF goniometers, used to track flexion and extension movement of metacarpophalangeal joint of thumb, index, and middle fingers. The glove is devoted to the continuous monitoring of patients during their daily-life activities, in particular for stroke survivors during their rehabilitation. The prototype performances have been evaluated in comparison with an optical tracking system considered as a gold standard both for relieving static and dynamic posture and gesture of the hand. The introduced prototype has shown very interesting figures of merit. The angular error, evaluated through the standard Bland Altman analysis, has been estimated in ±3(°) which is slightly less accurate than commercial electrogoniometers. Moreover, a new conceptual prototype design, preliminary evaluated within this study, is presented and discussed in order to solve actual limitations in terms of number and type of sensor connections, avoiding mechanical constraints given by metallic inextensible wires and improving user comfort. PMID:24835230

Carbonaro, Nicola; Mura, Gabriele Dalle; Lorussi, Federico; Paradiso, Rita; De Rossi, Danilo; Tognetti, Alessandro

2014-11-01

148

Rolling-Convolute Joint For Pressurized Glove  

NASA Technical Reports Server (NTRS)

Rolling-convolute metacarpal/finger joint enhances mobility and flexibility of pressurized glove. Intended for use in space suit to increase dexterity and decrease wearer's fatigue. Also useful in diving suits and other pressurized protective garments. Two ring elements plus bladder constitute rolling-convolute joint balancing torques caused by internal pressurization of glove. Provides comfortable grasp of various pieces of equipment.

Kosmo, Joseph J.; Bassick, John W.

1994-01-01

149

EVA assembly of large space structure element  

NASA Technical Reports Server (NTRS)

The results of a test program to assess the potential of manned extravehicular activity (EVA) assembly of erectable space trusses are described. Seventeen tests were conducted in which six "space-weight" columns were assembled into a regular tetrahedral cell by a team of two "space"-suited test subjects. This cell represents the fundamental "element" of a tetrahedral truss structure. The tests were conducted under simulated zero-gravity conditions. Both manual and simulated remote manipulator system modes were evaluated. Articulation limits of the pressure suit and zero gravity could be accommodated by work stations with foot restraints. The results of this study have confirmed that astronaut EVA assembly of large, erectable space structures is well within man's capabilities.

Bement, L. J.; Bush, H. G.; Heard, W. L., Jr.; Stokes, J. W., Jr.

1981-01-01

150

Enlarged Vestibular Aqueduct Syndrome (EVAS)  

MedlinePLUS

... fluctuation in cerebrospinal fluid (CSF) pressure on impact forces highly concentrated (hyperosmolar) proteins into the cochlear duct ... variable signs of EVAS indicate that diagnosis requires special care and attention to a person’s symptoms and ...

151

Polyblends of LDPE with EVA  

SciTech Connect

Melt processability of LDPE was improved by blending with EVA copolymers containing 10-28% VA. Softening of modules was controlled primarily by overall VA content of the blends. Tensile necking was converted to smooth rubbery elongation by adding larger amounts of VA. Transparency was produced by adding EVA containing 10% VA and then stretching the polyblend film. These parameters give the film manufacturer wide control over processability and properties.

Deanin, R.D.; Hou, T.J.A. [Univ. of Massachusetts, Lowell, MA (United States)

1993-12-31

152

The feasibility of Doppler monitoring during EVA  

NASA Astrophysics Data System (ADS)

During extravehicular activities (EVA) outside the spacecraft, astronauts have to work under reduced pressure in a space suit. This pressure reduction induces the risk of decompression sickness (DCS) by the formation of gas bubbles from excess nitrogen dissolved in the organism by breathing air at normal pressure. Under laboratory conditions the gas bubbles moving in the blood stream can be detected by the non-invasive ultrasonic Doppler method. By early detection of excessive bubble formation the development of DCS symptoms may be prevented by early application of preventative measures. The method could also be useful when applied in the space suit in order to compare the results of laboratory tests with operational results, because there is a discrepancy according to the DCS risk of laboratory experiments and actual EVA missions, where no symptoms have been reported yet. A prototype Doppler sensor has been developed and implemented in the Russian Orlan suit. To investigate the feasibility of this method under simulated space conditions, the equipment has been used in a series of 12 thermovacuum chamber tests with suited subjects, where intravenous bubble formation was compared to unsuited control experiments. In more than 50% of the suited tests good Doppler recordings could be achieved. In some cases with unsatisfying results the signal could be improved by breathholding. Although the results do not yet allow any conclusion about a possible difference between suited and unsuited subjects due to the small number of tests performed, the method proved its feasibility for use in EVA suits and should be further developed to enhance the safety of EVA procedures.

Barer, A.; Filipenkov, S.; Katuntsev, V.; Vogt, L.; Wenzel, J.

1995-07-01

153

STS-104 Astronaut Gernhardt Performs EVA  

NASA Technical Reports Server (NTRS)

Astronaut Michael L. Gernhardt, STS-104 mission specialist, participates in one of three STS-104 space walks while holding on to the end effector of the Canadarm on the Space Shuttle Atlantis. Gernhardt was joined on the extravehicular activity (EVA) by astronaut James F. Reilly (out of frame). The major objective of the mission was to install and activate the Joint Airlock, which completed the second phase of construction on the International Space Station (ISS). The airlock accommodates both United States and Russian space suits and was designed and built at the Marshall Space Flight Center by the Boeing Company.

2001-01-01

154

A Human Factors Analysis of EVA Time Requirements  

NASA Technical Reports Server (NTRS)

Human Factors Engineering (HFE) is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. During the summer of 1995, a human factors motion and time study was initiated with the goals of developing a database of EVA task times and developing a method of utilizing the database to predict how long an EVA should take. Initial development relied on the EVA activities performed during the STS-61 (Hubble) mission. The first step of the study was to become familiar with EVA's, the previous task-time studies, and documents produced on EVA's. After reviewing these documents, an initial set of task primitives and task-time modifiers was developed. Data was collected from videotaped footage of two entire STS-61 EVA missions and portions of several others, each with two EVA astronauts. Feedback from the analysis of the data was used to further refine the primitives and modifiers used. The project was continued during the summer of 1996, during which data on human errors was also collected and analyzed. Additional data from the STS-71 mission was also collected. Analysis of variance techniques for categorical data was used to determine which factors may affect the primitive times and how much of an effect they have. Probability distributions for the various task were also generated. Further analysis of the modifiers and interactions is planned.

Pate, Dennis W.

1997-01-01

155

Application of Shuttle EVA Systems to Payloads. Volume 2: Payload EVA Task Completion Plans  

NASA Technical Reports Server (NTRS)

Candidate payload tasks for EVA application were identified and selected, based on an analysis of four representative space shuttle payloads, and typical EVA scenarios with supporting crew timelines and procedures were developed. The EVA preparations and post EVA operations, as well as the timelines emphasizing concurrent payload support functions, were also summarized.

1976-01-01

156

Glove box on vehicular instrument panel  

DOEpatents

A glove box for the upper surface of an automobile dashboard whereby it may be positioned close to the driver. The glove box lid is pivotally supported by arms extending down either side to swing forwardly for opening. A hook is pivotally support adjacent an arm and weighted to swing into engagement with the arm to prevent opening of the lid during abrupt deceleration. A toggle spring assists in maintaining the lid in either the open or closed position.

Atarashi, Kazuya (Saitama, JP)

1985-01-01

157

Tactile Data Entry for Extravehicular Activity Richard J. Adams1  

E-print Network

in the Electronic Cuff Checklist and flown on several space shuttle missions [1]. Unfortunately, challenges of glare the space suit gloves themselves to be used as data entry devices. Hand motion tracking is combined, space suit gloves, data entry performance. 1 INTRODUCTION The constraints of an EVA suit make

158

The Effect of Pressure and Fabrication of Pressure Therapy Gloves on Hand Sensitivity and Dexterity.  

PubMed

Pressure therapy gloves always affect the function and performance of hands but the effect is often neglected. In this study, fabrication and reduction factors (RFs) of pressure therapy gloves on hand dexterity and comfort perception are assessed by goniometer, Semmes-Weinstein monofilaments and Purdue Pegboard, as well as through daily activity tasks. A subjective rating scale was also used to record comfort perception. The repeated-measures multivariate analysis of variance and Friedman tests were used to compare hand function tests and comfort sensation results when different glove prototypes were worn in terms of fabrics and RFs. The results show that even though both fabric types and RFs of pressure gloves exert no significant effect on the tactile sensitivity of fingertips, the active range of motion and dexterity of the fingers in carrying out daily tasks and comfort perception are considerably affected. The adoption of a high RF of 20% in making of glove patterns can impact negatively on both hand functions and comfort perception, thus leading to unsatisfactory treatment adherence. Strong associations were found between the comfort performance and fabric properties, including surface roughness, bending rigidity, thermal conductivity and moisture retention. It has been suggested that fabric choice, anticipated fabric tensile behaviour and surface and thermal properties should also be taken into consideration when prescribing pressure therapy glove for treatment of hypertrophic scars. PMID:25094003

Yu, Annie; Yick, Kit Lun; Ng, Sun Pui; Yip, Joanne

2014-10-13

159

STS-110 Extravehicular Activity (EVA)  

NASA Technical Reports Server (NTRS)

STS-110 mission specialist Lee M.E. Morin carries an affixed 35 mm camera to record work which is being performed on the International Space Station (ISS). Working with astronaut Jerry L. Ross (out of frame), the duo completed the structural attachment of the S0 (s-zero) truss, mating two large tripod legs of the 13 1/2 ton structure to the station's main laboratory during a 7-hour, 30-minute space walk. The STS-110 mission prepared the Station for future space walks by installing and outfitting the 43-foot-long S0 truss and preparing the Mobile Transporter. The S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

2002-01-01

160

ECONOMIC VALUE ADDED (EVA®) AND SECTOR RETURNS  

Microsoft Academic Search

Prior studies show that Economic Value Added (EVA®) contributes little information content beyond earnings in explaining individual stock returns. Such findings might be attributed to the idiosyncratic measurement error of EVA in an individual company. We revisit the benefits of EVA by comparing its information content in explaining 90 sector returns with the information content of three traditional accounting-based performance

Nuttawat Visaltanachoti; Robin Luo; Yi Yi

161

Space Station Freedom airlock - The integration of IVA and EVA capabilities in an orbital element  

NASA Astrophysics Data System (ADS)

In order to meet mission goals, the Space Station Freedom (SSF) airlock must maximize crew efficiency while supporting a range of extravehicular activity (EVA) and intravehicular activity (IVA) operations. EVA will be a frequently planned occurrence on SSF. In order to maximize the usefulness of the limited EVA resource, overhead times must be minimized. This paper discusses how the SSF airlock outfitting design responds to both IVA and EVA requirements. An overview of the SSF airlock and the missions it must accomplish are also provided. The focus of this paper is on how the outfitting and man systems designs provide solutions to multiple requirements, explicitly stated as well as derived requirements. The Space Station airlock is evaluated as an integrated system in the functional assessments of the EVA task, and this paper explains how station common hardware and systems are adapted to the unique airlock environment.

Moore, Thomas O., Jr.; Matthews, Anthony P.

1992-07-01

162

Shoulder Injuries in US Astronauts Related to EVA Suit Design  

NASA Technical Reports Server (NTRS)

Introduction: For every one hour spent performing extravehicular activity (EVA) in space, astronauts in the US space program spend approximately six to ten hours training in the EVA spacesuit at NASA-Johnson Space Center's Neutral Buoyancy Lab (NBL). In 1997, NASA introduced the planar hard upper torso (HUT) EVA spacesuit which subsequently replaced the existing pivoted HUT. An extra joint in the pivoted shoulder allows increased mobility but also increased complexity. Over the next decade a number of astronauts developed shoulder problems requiring surgical intervention, many of whom performed EVA training in the NBL. This study investigated whether changing HUT designs led to shoulder injuries requiring surgical repair. Methods: US astronaut EVA training data and spacesuit design employed were analyzed from the NBL data. Shoulder surgery data was acquired from the medical record database, and causal mechanisms were obtained from personal interviews Analysis of the individual HUT designs was performed as it related to normal shoulder biomechanics. Results: To date, 23 US astronauts have required 25 shoulder surgeries. Approximately 48% (11/23) directly attributed their injury to training in the planar HUT, whereas none attributed their injury to training in the pivoted HUT. The planar HUT design limits shoulder abduction to 90 degrees compared to approximately 120 degrees in the pivoted HUT. The planar HUT also forces the shoulder into a forward flexed position requiring active retraction and extension to increase abduction beyond 90 degrees. Discussion: Multiple factors are associated with mechanisms leading to shoulder injury requiring surgical repair. Limitations to normal shoulder mechanics, suit fit, donning/doffing, body position, pre-existing injury, tool weight and configuration, age, in-suit activity, and HUT design have all been identified as potential sources of injury. Conclusion: Crewmembers with pre-existing or current shoulder injuries or certain anthropometric body types should conduct NBL EVA training in the pivoted HUT.

Scheuring, R. A.; McCulloch, P.; Van Baalen, Mary; Minard, Charles; Watson, Richard; Blatt, T.

2011-01-01

163

Allergic reactions to glove materials Gloves are common in research laboratories. The selection  

E-print Network

-immune reaction affecting the skin, and should not be confused with an allergy. Exposure to glove materials can to natural rubber latex proteins and/or synthetic chemicals in the glove material. Latex allergy is an Ig a protein. Latex products can cause Type I allergy as well as Type IV allergy. Type I allergy to latex

Shull, Kenneth R.

164

Astronaut Jack Lousma seen outside Skylab space station during EVA  

NASA Technical Reports Server (NTRS)

Astronaut Jack R. Lousma, Skylab 3 pilot, is seen outside the Skylab space station in Earth orbit during the August 5, 1973 Skylab 3 extravehicular activity (EVA) in this photographic reproduction taken from a television transmission made by a color TV camera aboard the space station. Lousma is at the Apollo Telescope Mount EVA work station assembling one of the two 55-foot long sectionalized poles for the twin pole solar shield which was deployed to help cool the Orbital Workshop. Part of the Airlock Module's thermal/meteoroid curtain is in the left foreground.

1973-01-01

165

Electrostatic Discharge Issues in International Space Station Program EVAs  

NASA Technical Reports Server (NTRS)

EVA activity in the ISS program encounters several dangerous ESD conditions. The ISS program has been aggressive for many years to find ways to mitigate or to eliminate the associated risks. Investments have included: (1) Major mods to EVA tools, suit connectors & analytical tools (2) Floating Potential Measurement Unit (3) Plasma Contactor Units (4) Certification of new ISS flight attitudes (5) Teraflops of computation (6) Thousands of hours of work by scores of specialists (7) Monthly management attention at the highest program levels. The risks are now mitigated to a level that is orders of magnitude safer than prior operations

Bacon, John B.

2009-01-01

166

Medical, Psychophysiological, and Human Performance Problems During Extended EVA  

NASA Technical Reports Server (NTRS)

In this session, Session JP1, the discussion focuses on the following topics: New Developments in the Assessment of the Risk of Decompression Sickness in Null Gravity During Extravehicular Activity; The Dynamic of Physiological Reactions of Cosmonauts Under the Influence of Repeated EVA Workouts, The Russian Experience; Medical Emergencies in Space; The Evolution from 'Physiological Adequacy' to 'Physiological Tuning'; Five Zones of Symmetrical and Asymmetrical Conflicting Temperatures on the Human Body, Physiological Consequences; Human Performance and Subjective Perception in Nonuniform Thermal Conditions; The Hand as a Control System, Implications for Hand-Finger Dexterity During Extended EVA; and Understanding the Skill of Extravehicular Mass Handling.

1997-01-01

167

The Education of Eva Hoffman.  

ERIC Educational Resources Information Center

Reviews the autobiography of Eva Hoffman, "Lost in Translation: A Life in a New Language" (Dutton, 1989). Hoffman, whose family left Poland in the 1950s, offers a consciously bicultural view of the immigrant experience, in contrast to many autobiographies of those who forsake the old world for the new. (DM)

Proefriedt, William

1991-01-01

168

Space Station EVA System Evolution Study  

NASA Technical Reports Server (NTRS)

Evaluation of Space Station Freedom support of manned exploration is in progress to identify SSF EVA system evolution requirements and capabilities. The output from these studies will provide data to support the preliminary design process to ensure that Space Station EVA system requirements for future missions (including the Transportation Node) are adequately considered and reflected. The study considers SSF support of future missions and the EVA system baseline to determine adequacy of EVA requirements and capabilities, and to identify additional requirements, capabilities, and necessary technology upgrades. EVA demands levied by formal requirements and indicated by evolution mission scenarios are high for the out-years of Space Station Freedom. An EVA system designed to meet the baseline requirements can easily evolve to meet evolution demands with few exceptions. Results to date indicate that upgrades or modifications to the EVA system may be necessary to meet all forseeable hangar induced EVA environments. Work continues to quantity the EVA capability in this regard. Evolution mission scenarios with EVA in and around unshielded nuclear propulsion engines are inconsistent with anthropomorphic EVA capabilities.

Rouen, Michael N. (Technical Monitor); Slade, H. G.; Panzarella, L. N.; Anderson, D. E.; Simonds, C.

1990-01-01

169

An Experimental Investigation of Dextrous Robots Using EVA Tools and Interfaces  

NASA Technical Reports Server (NTRS)

This investigation of robot capabilities with extravehicular activity (EVA) equipment looks at how improvements in dexterity are enabling robots to perform tasks once thought to be beyond machines. The approach is qualitative, using the Robonaut system at the Johnson Space Center (JSC), performing task trials that offer a quick look at this system's high degree of dexterity and the demands of EVA. Specific EVA tools attempted include tether hooks, power torque tools, and rock scoops, as well as conventional tools like scissors, wire strippers, forceps, and wrenches. More complex EVA equipment was also studied, with more complete tasks that mix tools, EVA hand rails, tethers, tools boxes, PIP pins, and EVA electrical connectors. These task trials have been ongoing over an 18 month period, as the Robonaut system evolved to its current 43 degree of freedom (DOF) configuration, soon to expand to over 50. In each case, the number of teleoperators is reported, with rough numbers of attempts and their experience level, with a subjective difficulty rating assigned to each piece of EVA equipment and function. JSC' s Robonaut system was successful with all attempted EVA hardware, suggesting new options for human and robot teams working together in space.

Ambrose, Robert; Culbert, Christopher; Rehnmark, Frederik

2001-01-01

170

DYNAMIC MECHANICAL ANALYSIS CHARACTERIZATION OF GLOVEBOX GLOVES  

SciTech Connect

As part of the characterization of various glovebox glove material from four vendors, the permeability of gas through each type as a function of temperature was determined and a discontinuity in the permeability with temperature was revealed. A series of tests to determine the viscoelastic properties of the glove materials as a function of temperature using Dynamic Mechanical Analysis (DMA) was initiated. The glass transition temperature and the elastic and viscoelastic properties as a function of temperature up to maximum use temperature were determined for each glove material. The glass transition temperatures of the gloves were -60 C for butyl, -30 C for polyurethane, -16 C Hypalon{reg_sign}, - 16 C for Viton{reg_sign}, and -24 C for polyurethane-Hypalon{reg_sign}. The glass transition was too complex for the butyl-Hypalon{reg_sign} and butyl-Viton{reg_sign} composite gloves to be characterized by a single glass transition temperature. All of the glass transition temperatures exceed the vendor projected use temperatures.

Korinko, P.

2012-02-29

171

Astronaut Edwin Aldrin in open hatch of spacecraft during EVA  

NASA Technical Reports Server (NTRS)

Astronaut Edwin Aldrin, pilot for the Gemini 12 flight, stands up in the open hatch of the spacecraft during his extravehicular activity (EVA) on the first day of the four day mission in space. He prepares camera for installation on outside of the spacecraft (63537); Aldrin removes micrometeoroid package for return to the spacecraft (63538).

1966-01-01

172

Astronauts Readdy, Walz, and Newman in airlock after EVA  

NASA Technical Reports Server (NTRS)

In Discovery's airlock, astronaut William F. Readdy, pilot, holds up a STS-51 slogan -- 'Ace HST Tool Testers' -- for still and video cameras to record. Readdy is flanked by astronauts Carl E. Walz (left) and James H. Newman, who had just shared a lengthy period of extravehicular activity (EVA) in and around Discovery's cargo bay.

1993-01-01

173

Health risk assessments of DEHP released from chemical protective gloves.  

PubMed

The substance di-2-ethylhexyl phthalate (DEHP) is widely used as a plasticizer in chemical protective gloves to improve their flexibility and workability. However, it is possible that workers using protective gloves to handle various solvents may be exposed to DEHP leached by the solvents. Using an ASTM F739 permeation cell, it was found that BTEX solvents permeating through the glove samples dissolved DEHP from the gloves. Even without continuously contacting the permeant, DEHP was released from the contaminated glove samples during the desorption experiments. The DEHP leaching amounts were found to be inversely correlated to the permeability coefficients of BTEX in the glove samples. This result implied that the larger the amount of DEHP released from the glove samples, the higher the permeation resistance of gloves. Although chemical protective gloves provide adequate skin exposure protection to workers, the dermal exposure model developed herein indicates that leaching of DEHP from the glove samples may pose a potential health risk to the workers who handle BTEX. This study suggests that the selection of protective gloves should not only be concerned with the chemical resistance of the gloves but also the health risk associated with leaching of chemicals, such as DEHP, used in the manufacturing of the gloves. PMID:25261760

Chao, Keh-Ping; Huang, Chan-Sheng; Wei, Chung-Ying

2015-02-11

174

STS-112 Astronaut Wolf Participates in EVA  

NASA Technical Reports Server (NTRS)

Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's first session of extravehicular activity (EVA). Wolf is carrying the Starboard One (S1) outboard nadir external camera which was installed on the end of the S1 Truss on the International Space Station (ISS). Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVAs. Its primary mission was to install the S1 Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

2002-01-01

175

STS-112 Astronaut Wolf Participates in EVA  

NASA Technical Reports Server (NTRS)

Astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's second session of extravehicular activity (EVA), a six hour, four minute space walk, in which an exterior station television camera was installed outside of the Destiny Laboratory. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVA sessions. Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

2002-01-01

176

Method for forming a glove attachment  

NASA Technical Reports Server (NTRS)

An attachment principally for the palm of an astronaut glove to enhance the gripping area of the palm without detracting from the flexibility and utility of the glove is presented. The attachment is a composite construction formed from a layer of silicone rubber having an outer surface with a friction configuration and another layer of silicone rubber in which a Nomex Aramid mesh fabric is embedded prior to curing. The method of construction involves the use of a mold with a friction configuration surface. A first layer of silicone rubber or sealant is disposed in the mold and allowed to set for an hour. A second layer of silicone rubber or sealant is layered over the first layer and leveled. A Nomex Aramid mesh fabric is embedded into the second layer and the composite is permitted to cure. When cured, a configured area of the composite construction is glued or stitched to the palm area of the glove.

Dawn, Frederic S. (inventor); Guy, Walter W. (inventor); Kosmo, Joseph (inventor); Drennan, Arthur P. (inventor); Tschirch, Richard P. (inventor)

1995-01-01

177

The Space Station Freedom evolution-phase - Crew-EVA demand for robotic substitution by task primitive  

NASA Technical Reports Server (NTRS)

Space Station Freedom represents a significant demand for automation and robotics services as substitutes for crew EVAs. Results are reported from a study aimed at identifying the demand for crew EVA and the crew-task primitive distributions derived for input to future robotic substitution studies. Generic EVA tasks are developed from historical EVA mission timelines, and a set of 70 task primitives defined. The generic task activities are partitioned into task setup, kernel, and tear-down, with standardized task times and frequencies. These standardized times are coupled with inputs from numerous mission data bases in a probabilistic simulation to obtain estimates of total crew-EVA task time demand by crew task primitive. The use of probabilistic model is found to be crucial for understanding, isolating, and addressing the large uncertainties in the EVA task kernels.

Smith, Jeffrey H.; Estus, Jay; Heneghan, Cate; Nainan, Charles

1989-01-01

178

Testing the design and placement of ORUs for robotic\\/EVA maintenance with computer-aided simulation  

Microsoft Academic Search

NASA's Space Station Freedom will have a service life sufficiently long to entail extensive robotic and EVA maintenance activities associated with orbital replaceable units (ORUs). Attention is presently given to the results of computer-aided simulations of such activities which were conducted in order to ascertain preferable locations for suitably robotically- and EVA-accessible ORUs. Extensive attention has been given to operations

J. W. Leonard

1991-01-01

179

21 CFR 878.4470 - Surgeon's gloving cream.  

Code of Federal Regulations, 2013 CFR

... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4470 Surgeon's gloving cream. (a) Identification. Surgeon's gloving...

2013-04-01

180

21 CFR 878.4470 - Surgeon's gloving cream.  

Code of Federal Regulations, 2011 CFR

... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4470 Surgeon's gloving cream. (a) Identification. Surgeon's gloving...

2011-04-01

181

21 CFR 878.4470 - Surgeon's gloving cream.  

Code of Federal Regulations, 2012 CFR

... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4470 Surgeon's gloving cream. (a) Identification. Surgeon's gloving...

2012-04-01

182

21 CFR 878.4470 - Surgeon's gloving cream.  

Code of Federal Regulations, 2014 CFR

... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4470 Surgeon's gloving cream. (a) Identification. Surgeon's gloving...

2014-04-01

183

21 CFR 878.4470 - Surgeon's gloving cream.  

Code of Federal Regulations, 2010 CFR

... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4470 Surgeon's gloving cream. (a) Identification. Surgeon's gloving...

2010-04-01

184

Ballast system for maintaining constant pressure in a glove box  

NASA Technical Reports Server (NTRS)

A ballast system for a glove box including a fixed platform on which is mounted an inflatable bag on top of which resides a cover and a weight. The variable gas volume of the inflatable bag communicates with that of the glove box via a valved tube. The weight and gas volume are selected to maintain a relatively constant pressure in the glove box despite variations in the glove box volume while avoiding the use of complicated valving apparatus.

Shlichta, Paul J. (Inventor)

1990-01-01

185

Ballast system for maintaining constant pressure in a glove box  

NASA Technical Reports Server (NTRS)

A ballast system is disclosed for a glove box including a fixed platform on which is mounted an inflatable bag on top of which resides a cover and a weight. The variable gas volume of the inflatable bag communicates with that of the glove box via a valved tube. The weight and the gas volume are selected to maintain a relatively constant pressure in the glove box despite variations in the glove box volume while avoiding the use of complicated valving apparatus.

Shlichta, Paul J. (inventor)

1989-01-01

186

A feasibility study of hand kinematics for EVA analysis using magnetic resonance imaging  

NASA Technical Reports Server (NTRS)

A new method of analyzing the kinematics of joint motion is developed. Magnetic Resonance Imaging (MRI) offers several distinct advantages. Past methods of studying anatomic joint motion have usually centered on four approaches. These methods are x-ray projection, goniometric linkage analysis, sonic digitization, and landmark measurement of photogrammetry. Of these four, only x-ray is applicable for in vivo studies. The remaining three methods utilize other types of projections of inter-joint measurements, which can cause various types of error. MRI offers accuracy in measurement due to its tomographic nature (as opposed to projection) without the problems associated with x-ray dosage. Once the data acquisition of MR images was complete, the images were processed using a 3D volume rendering workstation. The metacarpalphalangeal (MCP) joint of the left index finger was selected and reconstructed into a three-dimensional graphic display. From the reconstructed volumetric images, measurements of the angles of movement of the applicable bones were obtained and processed by analyzing the screw motion of the MCP joint. Landmark positions were chosen at distinctive locations of the joint at fixed image threshold intensity levels to ensure repeatability. The primarily two dimensional planar motion of this joint was then studied using a method of constructing coordinate systems using three (or more) points. A transformation matrix based on a world coordinate system described the location and orientation of a local target coordinate system. Future research involving volume rendering of MRI data focusing on the internal kinematics of the hand's individual ligaments, cartilage, tendons, etc. will follow. Its findings will show the applicability of MRI to joint kinematics for gaining further knowledge of the hand-glove (power assisted) design for extravehicular activity (EVA).

Dickenson, Rueben D.; Lorenz, Christine H.; Peterson, Steven W.; Strauss, Alvin M.; Main, John A.

1992-01-01

187

Contact Dermatitis from Penetration of Rubber Gloves by Acrylic Monomer  

PubMed Central

An orthopaedic surgeon developed dermatitis from acrylic materials. The acrylic monomer was found to penetrate surgical rubber gloves readily. Cases of “rubber glove dermatitis” with negative patch tests may have a similar explanation. Laboratory tests suggest that monomer does not damage rubber sufficiently to allow bacteria to penetrate gloves, but it remains possible that this would happen under theatre conditions. PMID:5581492

Pegum, J. S.; Medhurst, F. A.

1971-01-01

188

Durable Tactile Glove for Human or Robot Hand  

NASA Technical Reports Server (NTRS)

A glove containing force sensors has been built as a prototype of tactile sensor arrays to be worn on human hands and anthropomorphic robot hands. The force sensors of this glove are mounted inside, in protective pockets; as a result of this and other design features, the present glove is more durable than earlier models.

Butzer, Melissa; Diftler, Myron A.; Huber, Eric

2010-01-01

189

STS-31 MS Sullivan wearing EMU prepares for contingency EVA in OV-103 airlock  

NASA Technical Reports Server (NTRS)

STS-31 Mission Specialist (MS) Kathryn D. Sullivan, wearing extravehicular mobility unit (EMU) and communications carrier assembly (CCA), prepares for contingency extravehicular activity (EVA) in the event of problems with the Hubble Space Telescope (HST) deployment.

1990-01-01

190

An investigation of space suit mobility with applications to EVA operations  

E-print Network

The primary aim of this thesis is to advance the current understanding of astronauts' capabilities and limitations in space-suited extravehicular activity (EVA) by compiling a detailed database of the torques needed to ...

Schmidt, Patricia Barrett, 1974-

2001-01-01

191

The main results of EVA medical support on the Mir Space Station  

NASA Astrophysics Data System (ADS)

The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7 h 14 min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of EVA's execution was 10 per year. Most of the EVAs (67) have been performed at mission elapsed time ranging from 31 to 180 days. The oxygen atmosphere of the Orlan space suit with a pressure of 40 kPa in combination with the normobaric cabin environment and a short (30 min) oxygen prebreathe protocol have minimized the risk of decompression sickness (DCS). There has been no incidence of DCS during performed EVAs. At the peak activity, metabolic rates and heart rates increased up to 9.9- 13 kcal/ min and 150- 174 min-1, respectively. The medical problems have centred on feeling of moderate overcooling during a rest period in a shadow after the high physical loads, episodes with tachycardia accompanied by cardiac rhythm disorders at the moments of emotional stress, pains in the muscles and general fatigue after the end of a hard EVA. All of the EVAs have been completed safely.

Katuntsev, V. P.; Osipov, Yu. Yu.; Barer, A. S.; Gnoevaya, N. K.; Tarasenkov, G. G.

2004-04-01

192

EVA: evaluation of protein structure prediction servers  

Microsoft Academic Search

EVA (http:\\/\\/cubic.bioc.columbia.edu\\/eva\\/) is a web server for evaluation of the accuracy of automated protein structure prediction methods. The evaluation is updated automatically each week, to cope with the large number of existing prediction servers and the constant changes in the prediction methods. EVA currently assesses servers for secondary structure prediction, contact prediction, comparative protein structure modelling and threading\\/fold recognition. Every

Ingrid Y. Y. Koh; Volker A. Eyrich; Marc A. Martí-renom; Dariusz Przybylski; Mallur S. Madhusudhan; Narayanan Eswar; Osvaldo Grańa; Florencio Pazos; Alfonso Valencia; Andrej Sali; Burkhard Rost

2003-01-01

193

Wearing ambidextrous vinyl gloves does not impair manual dexterity.  

PubMed

Universal precautions mandate that health care workers wear gloves to prevent the unintended spread of bloodborne pathogens. Gloves may affect manual dexterity, generally delaying task completion. Our previous study showed that wearing the wrong size latex surgical glove degraded manual dexterity. The use of non-sterile and non-latex gloves may limit certain risks and be more cost-effective. However, such gloves may produce different results. We hypothesized that ambidextrous vinyl examination gloves would degrade manual dexterity compared with bare hands. We studied 20 random subjects from a medical environment. Subjects performed a standard battery of Grooved Pegboard tasks while bare-handed, wearing ambidextrous non-sterile vinyl gloves that were their preferred size, a size too small, and a size too large. The order was randomized with a Latin Square design to minimize the effects of time, boredom, and fatigue on the subjects. Subjects were also invited to comment on the fit of different size gloves. Wearing vinyl gloves of both the preferred size and a size up or down failed to affect manual dexterity vs. bare hands on time to insert pegs, and pegs dropped during insertion or removal. In contrast, the time to remove pegs was reduced by wearing preferred size vinyl gloves compared with performing the task with bare hands (P<0.05). Subjects reported a generally poor fit in all sizes. Vinyl gloves that were too small caused significant hand discomfort. Vinyl gloves surprisingly do not degrade manual dexterity even when worn in ill-fitting sizes. Wearing a preferred size vinyl glove vs. bare hands may improve dexterity in selected tasks. Choosing a comfortable, large size seems the best strategy when the preferred size is unavailable. Thinner vinyl gloves may improve grip and may not degrade touch as much as latex surgical gloves and may thus represent a reasonable choice for selected tasks. PMID:23548060

Drabek, Tomas; Boucek, Charles D; Buffington, Charles W

2013-01-01

194

EVA - Evaluation of Energy Concepts: Case Study of Siedlungswerk, Stuttgart  

E-print Network

This paper presents the evaluation and optimization results of the office building Siedlungswerk as part of the EVA project. Within EVA, 19 German office buildings are being “eva”-luated in terms of energy efficiency and user comfort. Built...

Stefan, P.; Mahler, B.; Fisch, M. N.

2006-01-01

195

Permeation of Telone EC through protective gloves.  

PubMed

Telone is a potent fumigant that is based on the chlorinated unsaturated hydrocarbon, 1,3-dichloropropene (1,3-DCP). It is often applied without dilution and so poses severe inhalation and air pollution threats. Urinary metabolites of 1,3-DCP have been detected after Telone skin exposure, so that preventing dermal exposure is also important. The objective of the study was to assess if nitrile and multi-layer ("laminated") gloves provide adequate protection against Telone EC formulation. To accomplish this, disposable (Safeskin) and chemically resistant (Sol-Vex) nitrile and laminated (Barrier mark and Silver Shield) glove materials were challenged by Telone EC with hexane liquid collection in an ASTM-type I-PTC-600 permeation cell. Analyses of cis- and trans-1,3-DCP in the collection fluid at specified times were performed on a moderately polar capillary column by gas chromatography-electron capture detection. Telone EC caused microholes in both nitrile materials, though the chemically protective material was degraded slower than the disposable nitrile. The laminated gloves offered limited protection. Silver Shield protected best because 1.5-2.3 mg 1,3-DCP permeated by 8 h relative to 2.5-7.6 mg for Barrier, implying about 2.5 times more protection for 8 h. Even for Silver Shield, the extent of protection was inadequate as illustrated by a risk assessment of the skin exposure situation. The normalized breakthrough times for both types of laminated gloves varied between 27 and 60 min. It is recommended that Viton gloves still be worn for protection. PMID:15982807

Zainal, Hanaa; Que Hee, Shane S

2005-09-30

196

The Astronaut Glove Challenge: Big Innovation from a (Very) Small Team  

NASA Technical Reports Server (NTRS)

Many measurements were taken by test engineers from Hamilton Sundstrand, the prime contractor for the current EVA suit. Because the raw measurements needed to be converted to torques and combined into a final score, it was impossible to keep track of who was ahead in this phase. The final comfort and dexterity test was performed in a depressurized glove box to simulate real on-orbit conditions. Each competitor was required to exercise the glove through a defined set of finger, thumb, and wrist motions without any sign of abrasion or bruising of the competitor's hand. I learned a lot about arm fatigue! This was a pass-fail event, and both of the remaining competitors came through intact. After taking what seemed like an eternity to tally the final scores, the judges announced that I had won the competition. My glove was the only one to have achieved lower finger-bending torques than the Phase VI glove. Looking back, I see three sources of the success of this project that I believe also operate in other programs where small teams have broken new ground in aerospace technologies. These are awareness, failure, and trust. By remaining aware of the big picture, continuously asking myself, "Am I converging on a solution?" and "Am I converging fast enough?" I was able to see that my original design was not going to succeed, leading to the decision to start over. I was also aware that, had I lingered over this choice or taken time to analyze it, I would not have been ready on the first day of competition. Failure forced me to look outside conventional thinking and opened the door to innovation. Choosing to make incremental failures enabled me to rapidly climb the learning curve. Trusting my "gut" feelings-which are really an internalized accumulation of experiences-and my newly acquired skills allowed me to devise new technologies rapidly and complete both gloves just in time. Awareness, failure, and trust are intertwined: failure provides experiences that inform awareness and provide decision-making opportunities that build trust among team members and managers while opening minds to new pathways for development. All three are necessary for teams-large or small-to achieve big innovation.

Homer, Peter

2008-01-01

197

Dynamics, control and sensor issues pertinent to robotic hands for the EVA retriever system  

NASA Technical Reports Server (NTRS)

Basic dynamics, sensor, control, and related artificial intelligence issues pertinent to smart robotic hands for the Extra Vehicular Activity (EVA) Retriever system are summarized and discussed. These smart hands are to be used as end effectors on arms attached to manned maneuvering units (MMU). The Retriever robotic systems comprised of MMU, arm and smart hands, are being developed to aid crewmen in the performance of routine EVA tasks including tool and object retrieval. The ultimate goal is to enhance the effectiveness of EVA crewmen.

Mclauchlan, Robert A.

1987-01-01

198

Commercial Spacewalking: Designing an EVA Qualification Program for Space Tourism  

NASA Technical Reports Server (NTRS)

In the near future, accessibility to space will be opened to anyone with the means and the desire to experience the weightlessness of microgravity, and to look out upon both the curvature of the Earth and the blackness of space, from the protected, shirt-sleeved environment of a commercial spacecraft. Initial forays will be short-duration, suborbital flights, but the experience and expertise of half a century of spaceflight will soon produce commercial vehicles capable of achieving low Earth orbit. Even with the commercial space industry still in its infancy, and manned orbital flight a number of years away, there is little doubt that there will one day be a feasible and viable market for those courageous enough to venture outside the vehicle and into the void, wearing nothing but a spacesuit, armed with nothing but preflight training. What that Extravehicular Activity (EVA) preflight training entails, however, is something that has yet to be defined. A number of significant factors will influence the composition of a commercial EVA training program, but a fundamental question remains: 'what minimum training guidelines must be met to ensure a safe and successful commercial spacewalk?' Utilizing the experience gained through the development of NASA's Skills program - designed to qualify NASA and International Partner astronauts for EVA aboard the International Space Station - this paper identifies the attributes and training objectives essential to the safe conduct of an EVA, and attempts to conceptually design a comprehensive training methodology meant to represent an acceptable qualification standard.

Gast, Matthew A.

2010-01-01

199

Doxorubicin can penetrate nitrile gloves and induces apoptosis in keratinocytes cell lines.  

PubMed

Doxorubicin (DOXO) is an anthracycline antibiotic which is used in the treatment of human malignancies such as leukemia, lymphoma and a number of solid tumors, particularly breast cancer. Anthracyclines have been reported to contaminate chemotherapy workstation surfaces as well as other workplaces surfaces. The occupational exposure to these drugs could occur in hospitals, for nurses involved in anthracyclines preparation and administration, in chemical industries during the commercial formulate syntheses, and in analytical laboratories. Numerous studies investigated cutaneous effects related to DOXO administration, on the contrary few literature data are available about effects on the skin due to the direct contact with the drug. The present study investigated the DOXO permeability of three commercially available gloves' types used to protect skin in occupational contexts, as well as the effects of DOXO on human keratinocyte cell line (HaCaT). The results suggest that the DOXO permeability of gloves depends not only on glove material but also on DOXO solutions' pH, in fact nitrile gloves can be penetrated by acid solutions, while neither natural rubbers nor nitrile gloves are permeable to neutral solutions. Moreover, DOXO solutions, even at low concentration, cause apoptosis in epithelial cells, through activation of intrinsic pathway p53-independent. PMID:20452410

Boccellino, Mariarosaria; Pedata, Paola; Castiglia, Loredana; La Porta, Raffaele; Pieri, Maria; Quagliuolo, Lucio; Acampora, Antonio; Sannolo, Nicola; Miraglia, Nadia

2010-08-16

200

Advanced EVA Capabilities: A Study for NASA's Revolutionary Aerospace Systems Concept Program  

NASA Technical Reports Server (NTRS)

This report documents the results of a study carried out as part of NASA s Revolutionary Aerospace Systems Concepts Program examining the future technology needs of extravehicular activities (EVAs). The intent of this study is to produce a comprehensive report that identifies various design concepts for human-related advanced EVA systems necessary to achieve the goals of supporting future space exploration and development customers in free space and on planetary surfaces for space missions in the post-2020 timeframe. The design concepts studied and evaluated are not limited to anthropomorphic space suits, but include a wide range of human-enhancing EVA technologies as well as consideration of coordination and integration with advanced robotics. The goal of the study effort is to establish a baseline technology "road map" that identifies and describes an investment and technical development strategy, including recommendations that will lead to future enhanced synergistic human/robot EVA operations. The eventual use of this study effort is to focus evolving performance capabilities of various EVA system elements toward the goal of providing high performance human operational capabilities for a multitude of future space applications and destinations. The data collected for this study indicate a rich and diverse history of systems that have been developed to perform a variety of EVA tasks, indicating what is possible. However, the data gathered for this study also indicate a paucity of new concepts and technologies for advanced EVA missions - at least any that researchers are willing to discuss in this type of forum.

Hoffman, Stephen J.

2004-01-01

201

The First Results of the Russian EVA Space Suits Operation in the International Space Station  

NASA Astrophysics Data System (ADS)

The year of 2001 saw the first EVAs of the International Space Station (ISS) crews using the Russian "Orlan-M" space suits. This marked the beginning of a new stage of activities on putting into operation of the next ISS modules. The paper reviews the results of the Russian space suits' operation in the course of extravehicular activity (EVA) by the crews of the first ISS expeditions. The paper also reviews differences in operation of the "Orlan-M" in the ISS and "Mir" orbiting station resulting from space suit (SS) systems design, peculiarities of the station airlocks and EVA performance methods. The paper presents data on EVA results and comments on space suit systems' operation. The paper gives diagrams for main parameters of the space suits' life support systems (LSS) and comments about them. In conclusion the paper reviews the "Orlan-M" improvements being performed and prospects of "Orlan-M" usage in the ISS.

Abramov, I. P.; Albats, E. A.; Glazov, G. M.

202

Exploration Architecture Options - ECLSS, EVA, TCS Implications  

NASA Technical Reports Server (NTRS)

Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. Lunar architectures have been identified and addressed in the Lunar Surface Systems team to establish options for how to get to and then inhabit and explore the moon. The Augustine Commission evaluated human space flight for the Obama administration and identified many options for how to conduct human spaceflight in the future. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), ExtraVehicular Activity (EVA) and Thermal Control System (TCS) Systems. The advantages and disadvantages of each architecture and options are presented.

Chambliss, Joe; Henninger, Don; Lawrence, Carl

2010-01-01

203

Dust Tolerant EVA-Compatible Connectors  

NASA Technical Reports Server (NTRS)

The objectives of this project are to develop connectors (quick disconnects and umbilical systems) that can be repetitively and reliably mated and de-mated during Lunar surface extra-vehicular activities. These standardized interfaces will be required for structural integrity and commodities transfer between linked surface elements. QD's fittings are needed for EVA spacesuit Primary Life Support Systems as well as liquid cooled garment circulation and suit heat rejection. Umbilical electro-mechanical systems (connectors) are needed between discrete surface systems for transfer of air, power, fluid (water), and data must be capable of being operated by extra vehicular astronaut crew members and/or robotic assistants. There exists an urgent need to prevent electro-statically charged dust and debris from clogging and degrading the interface seals and causing leakage and spills of hazardous commodities, contaminating the flowstream, and degrading the mechanisms needed for umbilical connection. Other challenges include modularity, standardization, autonomous operation, and lifetime sealing issues.

Mueller, Robert P.; Townsend, Ivan I., III

2010-01-01

204

Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study  

NASA Technical Reports Server (NTRS)

The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one that builds upon previously developed technologies and lessons learned, and that accomplishes the ARCM mission while providing a stepping stone to future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts and to not perturb the baseline Orion schedule, the concept of adding "kits" to the baseline system is proposed. These kits consist of: an EVA kit (converts LEA suit to EVA suit), EVA Servicing and Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and the MPCV), and the Cabin Repress Kit (represses the MPCV between EVAs). This paper will focus on the trade space, analysis, and testing regarding the space suit (pressure garment and life support system). Historical approaches and lessons learned from all past EVA operations were researched. Previous and current, successfully operated EVA hardware and high technology readiness level (TRL) hardware were evaluated, and a trade study was conducted for all possible pressure garment and life support options. Testing and analysis was conducted and a recommended EVA system architecture was proposed. Pressure garment options that were considered for this mission include the currently in-use ISS EVA Mobility Unit (EMU), all variations of the Advanced Crew Escape Suit (ACES), and the Exploration Z-suit. For this mission, the pressure garment that was selected is the Modified ACES (MACES) with EVA enhancements. Life support options that were considered included short closed-loop umbilicals, long open-loop umbilicals, the currently in-use ISS EMU Portable Life Support System (PLSS), and the currently in development Exploration PLSS. For this mission, the life support option that was selected is the Exploration PLSS. The greatest risk in the proposed architecture is viewed to be the comfort and mobility of the baseline MACES and the delicate balance between adding more mobility features while not compromising landing safety. Feasibility testing was accomplished in low fidelity analogs and in the JSC Neutral Buoyancy Laboratory (NBL) to validate the concept before a final recommendation on the architecture was made. The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work and further definition of the remaining kits will be conducted in government fiscal year 14.

Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.

2014-01-01

205

Taking Literacy Beyond The Classroom Eva Hornecker  

E-print Network

Taking Literacy Beyond The Classroom Eva Hornecker The Open University, UK eva@ehornecker.de John ­ in this case to literacy. After describing a fieldtrip to support creative writing, which employed Ubi ­ in this case to literacy and creative writing. A major skill to be taught in primary school is literacy

Hornecker, Eva

206

Astronaut Joseph Kerwin during EVA at Skylab 1 and 2 space station cluster  

NASA Technical Reports Server (NTRS)

Scientist-Astronaut Joseph P. Kerwin, Skylab 2 science pilot, performs extravehicular activity (EVA) at the Skylab 1 and 2 space station cluster in Earth orbit, as seen in this reproduction taken from a color television transmission made by a TV camera aboard the station. Kerwin is just outside the Airlock Module. Kerwin assisted Astronaut Charles Conrad Jr., Skylab 2 commander, during the successful EVA attempt to free the stuck solar array system wing on the Orbital Workshop.

1973-01-01

207

The thermal insulating effects of five dental gloves.  

PubMed

On occasions within the case reports of the various medico-legal defence organizations mention is made of burns to the oral soft tissues arising from contact with a heated instrument. Good cross infection control dictates that the dentist should be gloved whilst treating patients. No study has to date examined the thermal insulating effect of wearing dental procedure gloves although double gloving is known to blunt temperature perception. It was the purpose of this work to compare the degree of thermal insulation afforded by five makes of gloves (Biogel-D, Featherlite, Healthline, Microtouch and Tru-Touch). Measurement of temperature rises at 15, 30 and 60 s were made when a copper cylinder, at ambient room temperature, containing an iron/constantan thermocouple was placed upon a 2.35 kg aluminium block maintained at 50 degrees C by a thermostatically controlled electrical heating element. This measurement was initially performed, on 10 separate occasions, with the aluminium block and copper cylinder in direct contact (Control). This arrangement was then modified to investigate the effects of the various gloves by placing a circular mat of each glove material, harvested from the palm of each glove, between the block and cylinder. For each glove, 10 sets of observations were made using a different circular mat of glove material whose thickness had been previously determined. An analysis of variance identified highly significant (P<0.001) differences between the temperature rise of the control and experimental groups. The degree of thermal insulation afforded by each glove type appeared related to the glove thickness. This was confirmed by regression analysis but, although correlation coefficients of at least 0.91 were recorded, no single relationship best related these two quantities. Glove thermal insulating properties should be considered when selecting gloves for use in the surgery. PMID:10792595

Chadwick, R G

2000-04-01

208

Manned NEO Mission EVA Challenges  

NASA Technical Reports Server (NTRS)

The President has proposed to land astronauts on an asteroid by 2025. However, Manned NEO (Near Earth Objects) Missions will present a host of new and exciting problems that will need to be better defined and solved before such a mission is launched. Here I will focus on the challenges for conducting asteroidal EVAs. Specfically, crew locomotion, sampling, drilling, documentation, and instrument deployment issues arising from the micro gravity environments associated with NEOs. Therefore, novel methods and techniques will need to be developed and tested in order to achieve specific mission science objectives. Walking or driving on the surface will not be a realistic option due to the small sizes (10 s to 100 s of meters in diameter) and hence extremely low gravity of the present day known candidate NEOs. EVAs will have to be carried out with crew members either using a self propelled device (akin to the MMU and SAFER units used on Shuttle/ISS) and or tethers. When using tethers a grid system could be deployed which is anchored to the asteroid. These anchor points could be inserted by firing penetrators into the surface from the spacecraft while it is still at a safe standoff distance. These penetrators would pull double duty by being laden with scientific instrumentation to probe the subsurface. Dust and debris generated by sample collection and locomotion in a microgravity environment could also pose some problems that will require forethought.

2011-01-01

209

A Cabin Air Separator for EVA Oxygen  

NASA Technical Reports Server (NTRS)

Presently, the Extra-Vehicular Activities (EVAs) conducted from the Quest Joint Airlock on the International Space Station use high pressure, high purity oxygen that is delivered to the Space Station by the Space Shuttle. When the Space Shuttle retires, a new method of delivering high pressure, high purity oxygen to the High Pressure Gas Tanks (HPGTs) is needed. One method is to use a cabin air separator to sweep oxygen from the cabin air, generate a low pressure/high purity oxygen stream, and compress the oxygen with a multistage mechanical compressor. A main advantage to this type of system is that the existing low pressure oxygen supply infrastructure can be used as the source of cabin oxygen. ISS has two water electrolysis systems that deliver low pressure oxygen to the cabin, as well as chlorate candles and compressed gas tanks on cargo vehicles. Each of these systems can feed low pressure oxygen into the cabin, and any low pressure oxygen source can be used as an on-board source of oxygen. Three different oxygen separator systems were evaluated, and a two stage Pressure Swing Adsorption system was selected for reasons of technical maturity. Two different compressor designs were subjected to long term testing, and the compressor with better life performance and more favorable oxygen safety characteristics was selected. These technologies have been used as the basis of a design for a flight system located in Equipment Lock, and taken to Preliminary Design Review level of maturity. This paper describes the Cabin Air Separator for EVA Oxygen (CASEO) concept, describes the separator and compressor technology trades, highlights key technology risks, and describes the flight hardware concept as presented at Preliminary Design Review (PDR)

Graf, John C.

2011-01-01

210

Human Space Exploration and Radiation Exposure from EVA: 1981-2011  

NASA Astrophysics Data System (ADS)

There are several risks for any human space exploration endeavor. One such inevitable risk is exposure to the space radiation environment of which extra vehicular activity (EVA) demands more challenges due to limited amount of protection from space suit shielding. We recently compiled all EVA data comprising low-earth orbit (LEO) from Space Shuttle (STS) flights, International Space Station (ISS) expeditions, and Shuttle-Mir missions. Assessment of such radiation risk is very important, particularly for the anticipated long-term, deep-space human explorations in the near future. We present our assessment of anticipated radiation exposure and space radiation dose contribution to each crew member from a listing of 350 different EVA events resulting in more than 1000+ hrs of total EVA time. As of July 12, 2011, 197 astronauts have made spacewalks (out of 520 people who have gone into Earth orbit). Only 11 women have been on spacewalks.

Way, A. R.; Saganti, S. P.; Erickson, G. M.; Saganti, P. B.

2011-12-01

211

The micro conical system: Lessons learned from a successful EVA/robot-compatible mechanism  

NASA Technical Reports Server (NTRS)

The Micro Conical System (MCS) is a three-part, multi-purpose mechanical interface system used for acquiring and manipulating masses on-orbit by either extravehicular activity (EVA) or telerobotic means. The three components of the system are the micro conical fitting (MCF), the EVA micro tool (EMCT), and the Robot Micro Conical Tool (RMCT). The MCS was developed and refined over a four-year period. This period culminated with the delivery of 358 Class 1 and Class 2 micro conical fittings for the International Space Station and with its first use in space to handle a 1272 kg (2800 lbm) Spartan satellite (11000 times greater than the MCF mass) during an EVA aboard STS-63 in February, 1995. The micro conical system is the first successful EVA/robot-compatible mechanism to be demonstrated in the external environment aboard the U.S. Space Shuttle.

Gittleman, Mark; Johnston, Alistair

1996-01-01

212

STS-117 Astronauts Patrick Forrester and Steven Swanson During EVA  

NASA Technical Reports Server (NTRS)

STS-117 astronauts and mission specialists Patrick Forrester and Steven Swanson (out of frame), participated in the second Extra Vehicular Activity (EVA) as construction resumed on the International Space Station (ISS). Among other tasks, the two removed all of the launch locks holding the 10 foot wide solar alpha rotary joint in place and began the solar array retraction. The primary mission objective was the installment of the second and third starboard truss segments (S3 and S4).

2007-01-01

213

THE ECONOMIC VALUE ADDED (EVA): AN ANALYSIS OF MARKET REACTION  

Microsoft Academic Search

The Economic Value Added (EVA®1The abbreviation EVA is a trademark of Stern Stewart & Company.1) is a widely adopted technique for the measurement of value creation. Using different event study methodologies we test the market reaction to the introduction of EVA. Additionally, we analyze the long-run evolution before and after EVA adoption of profitability, investment and cash flow variables. We

Bartolomé Deyá Tortella; Sandro Brusco

2003-01-01

214

Dexterity testing of chemical-defense gloves. Technical report  

SciTech Connect

Chemical-defense gloves (12.5-mil Epichlorohydron/Butyl, 14-mil Epichlorohydron/Butyl, and 7-mil Butyl with Nomex overgloves) were subjected to four dexterity tests (O'Connor Finger Dexterity Test, Pennsylvania Bi-Manual Worksample-Assembly, Minnesota Rate of Manipulation Turning, and the Crawford Small Test). Results indicated that subjects performances were most impaired by the 7-mil Butyl with Nomex overglove. Though differences between the other three gloved conditions were not always statistically significant, subjects performed silghtly better while wearing the Epichlorohydron/Butyl gloves, no matter which thickness, than they did while wearing the 15-mil butyl gloves. High negative correlation between anthropometry and gloved tests scores of subjects suggested that poor glove fit may also have affected subjects performances.

Robinette, K.M.; Ervin; Zehner, G.F.

1986-05-01

215

Use of a pneumatic glove for hand rehabilitation following stroke  

Microsoft Academic Search

Hand impairment is common following stroke and is often resistant to traditional therapy methods. Successful interventions have stressed the importance of repeated practice to facilitate rehabilitation. Thus, we have developed a servo-controlled glove to assist extension of individual digits to promote practice of grasp-and-release movements with the hand. This glove, the PneuGlove, permits free movement of the arm throughout its

Lauri Connelly; Mary Ellen Stoykov; Yicheng Jia; Maria L. Toro; Robert V. Kenyon; D. G. Kamper

2009-01-01

216

Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation  

NASA Technical Reports Server (NTRS)

The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment that was selected, for both functions, is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS). The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations have been completed in the NBL and interfacing options have been prototyped and analyzed with testing planned for late 2014. For NBL EVA simulations, in 2013, components were procured to allow in-house build up for four new suits with mobility enhancements built into the arms. Boots outfitted with clips that fit into foot restraints have also been added to the suit and analyzed for possible loads. Major suit objectives accomplished this year in testing include: evaluation of mobility enhancements, ingress/egress of foot restraint, use of foot restraint for worksite stability, ingress/egress of Orion hatch with PLSS mockup, and testing with two crew members in the water at one time to evaluate the crew's ability to help one another. Major tool objectives accomplished this year include using various other methods for worksite stability, testing new methods for asteroid geologic sampling and improving the fidelity of the mockups and crew equipment. These tests were completed on a medium fidelity capsule mockup, asteroid vehicle mockup, and asteroid mockups that were more accurate for an asteroid type EVA than previous tests. Another focus was the design and fabrication of the interface between the MACES and the PLSS. The MACES was not designed to interface with a PLSS, hence an interface kit must accommodate the unique design qualities of the MACES and provide the necessary life support function connections to the PLSS. A prototype interface kit for MACES to PLSS has been designed and fabricated. Unmanned and manned testing of the interface will show the usability of the kit while wearing a MACES. The testing shows viability of the kit approach as well as the operations concept. The design will be vetted through suit and PLSS experts and, with the findings from the testing, the best path forward will be determined. As the Asteroid Redirect Mission matures, the suit/life support portion of the mission will mature along with it and EVA Tools & Equipment can be iterated to accommodate the overall mission objectives and compromises inherent in EVA Suit optimization. The goal of the EVA architecture for ARCM is to continue to build on the previously developed technologies and lessons learned, and accomplish the ARCM EVAs while providing a stepping stone to future missions and destinations.

Bowie, Jonathan T.; Kelly, Cody; Buffington, Jesse; Watson, Richard D.

2015-01-01

217

Computational Optimization of a Natural Laminar Flow Experimental Wing Glove  

NASA Technical Reports Server (NTRS)

Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

Hartshom, Fletcher

2012-01-01

218

Using the Space Glove to Teach Spatial Thinking  

NASA Technical Reports Server (NTRS)

The challenge of extending students' skills in spatial thinking to astronomical scales was the central focus of our K-8 curriculum development. When the project's lead teacher requested a curriculum that cumulatively built on each prior year's learning in a spiral fashion, I knew exactly what the school was asking for. Second and third graders began by noticing the cyclical patters that the sun, moon, and stars make in the sky. Fourth graders explored the phases of the moon by taking turns modeling and sketching them in their classroom and then comparing them to the real sky. Sixth !graders used real telescopes to observe a moving model of our solar system and walked a scale model of the planets' orbits. The curriculum is designed to expand students' capacity to visualize space in a hierarchical fashion that asks them to imagine themselves from a broader number of spatial perspectives through hands-on activities. The "situational awareness" Peter's story describes is a hallmark of high-performance engineering and innovation. Keeping in mind the potential outcomes of multiple paths of pursuit from multiple perspectives while keeping track of their relative merits and performance requirements is a demanding spatial task. What made it possible for Peter to transform the failure of his first glove into triumph was the mental space in which that failure provided exactly the information needed for a new breakthrough. In at least two cases, Peter could immediately "see" the full implications of what his hands were telling him. He tells the story of how putting his hands in a Phase VI astronaut glove instantly transformed his understanding of the glove challenge. Six months into his development, the failure of circumferentially wrapped cords to produce a sufficiently flexible glove again forced him to abandon his assumptions. His situational awareness was so clear and compelling it became a gut-level response. Peter's finely developed spatial skills enabled him to almost instinctively focus his full energy on a carefully constructed set of experiments. The finger's ability to sense pressure, force, and work gave him the immediate feedback required to solve this one central problem. Once properly understood, his failure quickly led to the magical "Aha!" moment of discovery; the rest is history. Just as children need opportunities to develop hands-on understanding, engineers need to explore new possibilities through incremental hands-on failure. High-performance innovation is all about learning to make maximum use of thinking spatially to direct this process. Peter Homer's glove also reminds us that efficient engineering decisions need to be made as close to the hardware as possible. Whether we're doing hands-on education or hands-on engineering, it is when we trust in our ability to "feel our way" through failure that we reach our highest potential.

Lord, Peter

2008-01-01

219

High-Pressure Oxygen Generation for Outpost EVA Study  

NASA Technical Reports Server (NTRS)

The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

2009-01-01

220

Maturing Pump Technology for EVA Applications in a Collaborative Environment  

NASA Technical Reports Server (NTRS)

The transition from low earth orbit Extravehicular Activity (EVA) for construction and maintenance activities to planetary surface EVA on asteroids, moons, and, ultimately, Mars demands a new spacesuit system. NASA's development of that system has resulted in dramatically different pumping requirements from those in the current spacesuit system. Hamilton Sundstrand, Cascon, and NASA are collaborating to develop and mature a pump that will reliably meet those new requirements in space environments and within the design constraints imposed by spacesuit system integration. That collaboration, which began in the NASA purchase of a pump prototype for test evaluation, is now entering a new phase of development. A second generation pump reflecting the lessons learned in NASA's testing of the original prototype will be developed under Hamilton Sundstrand internal research funding and ultimately tested in an integrated Advanced Portable Life Support System (APLSS) in NASA laboratories at the Johnson Space Center. This partnership is providing benefit to both industry and NASA by supplying a custom component for EVA integrated testing at no cost to the government while providing test data for industry that would otherwise be difficult or impossible to duplicate in industry laboratories. This paper discusses the evolving collaborative process, component requirements and design development based on early NASA test experience, component stand alone test results, and near term plans for integrated testing at JSCs.

Hodgson, Edward; Dionne, Steven; Gervais, Edward; Anchondo, Ian

2012-01-01

221

Approaches to decompression safety support of EVA for orbital and interplanetary missions  

NASA Astrophysics Data System (ADS)

The paper is devoted to the analysis of possible methods for decompression safety support of extravehicular activity (EVA) in order to ground the perspective approaches for solution of decompression sickness (DCS) problem in space missions of the near and distant future. Current DCS risk mitigation strategies reduce operational efficiency: preoxygenation extends the time required on preparation to EVA. The crewmembers often experience general and hand fatigue during long EVA due to the lack of flexibility of space suits enclosure operated at 30-40 kPa. To create the safe and comfortable working conditions for EVA crewmembers on the Lunar and Martian surfaces the main biomedical requirements to a planetary space suit have to include low mass of EVA system, high mobility and flexibility of space suit enclosure and reliable protection against DCS with a short or zero preoxygenation period. Reviewed here are the possibilities for the use of preoxygenation, hypobaric gas atmosphere in space cabin and/or planetary habitat, idea of substitution of nitrogen in normobaric gas atmosphere to another inert gas (helium and neon) as countermeasures against DCS in EVA crewmembers. Physiological aspects of the conception for space suit with high operating pressure are considered.

Katuntsev, Vladimir P.

2010-01-01

222

Anthropomorphic Robot Hand And Teaching Glove  

NASA Technical Reports Server (NTRS)

Robotic forearm-and-hand assembly manipulates objects by performing wrist and hand motions with nearly human grasping ability and dexterity. Imitates hand motions of human operator who controls robot in real time by programming via exoskeletal "teaching glove". Telemanipulator systems based on this robotic-hand concept useful where humanlike dexterity required. Underwater, high-radiation, vacuum, hot, cold, toxic, or inhospitable environments potential application sites. Particularly suited to assisting astronauts on space station in safely executing unexpected tasks requiring greater dexterity than standard gripper.

Engler, Charles D., Jr.

1991-01-01

223

Combustion toxicity of fire retarded EVA  

Microsoft Academic Search

A Purser furnace has been used to investigate the combustion toxicity of ethylene-vinyl acetate copolymer (EVA) with and without fire retardants, under different fire conditions. Steady state flaming combustion has been studied at equivalence ratios ? varying from 0.5 to 1.5 by driving the materials through the furnace at 750 °C. Yields of CO and CO2 for EVA containing 27% vinyl

T. Richard Hull; Rita E Quinn; Irene G Areri; David A Purser

2002-01-01

224

A feasibility study of hand kinematics for EVA analysis using magnetic resonance imaging  

NASA Technical Reports Server (NTRS)

A new method for analyzing the kinematics of joint motion using magnetic resonance imaging (MRI) is described. The reconstruction of the metacarpalphalangeal joint of the left index finger into a 3D graphic display is shown. From the reconstructed volumetric images, measurements of the angles of movement of the applicable bones are obtained and processed by analyzing the screw motion of the joint. Landmark positions are chosen at distinctive locations of the joint at fixed image threshold intensity levels to ensure repeatability. The primarily 2D planar motion of this joint is then studied using a method of constructing coordinate systems using three or more points. A transformation matrix based on a world coordinate system describes the location and orientation of the local target coordinate system. The findings show the applicability of MRI to joint kinematics for gaining further knowledge of the hand-glove design for EVA.

Dickenson, Reuben D.; Lorenz, Christine H.; Peterson, Steven W.; Strauss, Alvin M.; Main, John A.

1992-01-01

225

The 757 NLF glove flight test results  

NASA Technical Reports Server (NTRS)

A major concern in the application of a laminar flow wing design to commercial transports is whether laminar flow can be sustained in the presence of the noise environment due to wing mounted turbofan engines. To investigate this issue, a flight test program was conducted using the Boeing 757 flight research airplane with a portion of the wing modified to obtain natural laminar flow. The flight test had two primary objectives. The first was to measure the noise levels on the upper and lower surface of the wing for a range of flight conditions. The second was to investigate the effect of engine noise on laminar boundary layer transition. The noise field on the wing and transition location on the glove were then measured as a function of the engine power setting at a given flight condition. The transition and noise measurement on the glove show that there is no apparent effect of engine noise on the upper surface transition location. On the lower surface, the transition location moved forward 2 to 3 percent chord. A boundary layer stability analysis to the flight data showed that cross flow disturbances were the dominant cause of transition at most flight conditions.

Runyan, L. Jim; Bielak, G. W.; Behbehani, R. A.; Chen, A. W.; Rozendaal, Roger A.

1987-01-01

226

Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation  

NASA Technical Reports Server (NTRS)

The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard

2015-01-01

227

The Use of Latex Gloves in the School Setting  

ERIC Educational Resources Information Center

In 1987, when the U.S. Centers for Disease Control and Prevention recommended the use of universal precautions in response to the HIV/AIDS epidemic, the demand for medical gloves dramatically increased. Unfortunately, the manufacturing techniques for the most widely-used gloves--natural rubber latex--also changed, in order to expedite production.…

Purcell, Cathy Koeppen

2006-01-01

228

9. VIEW, LOOKING WEST, OF GLOVE BOXES ASSOCIATED WITH THE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

9. VIEW, LOOKING WEST, OF GLOVE BOXES ASSOCIATED WITH THE ANION EXCHANGE PROCESS IN ROOM 149. THE GLOVE BOXES ON THE LEFT CONTAIN MIXER STIRRERS THAT AID IN THE DISSOLUTION PROCESS THAT OCCURRED PRIOR TO ANION EXCHANGE. (6/20/60) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

229

Haptic Glove Technology: Skill Development through Video Game Play  

ERIC Educational Resources Information Center

This article introduces a recently developed haptic glove system and describes how the participants used a video game that was purposely designed to train them in skills that are needed for the efficient use of the haptic glove. Assessed skills included speed, efficiency, embodied skill, and engagement. The findings and implications for future…

Bargerhuff, Mary Ellen; Cowan, Heidi; Oliveira, Francisco; Quek, Francis; Fang, Bing

2010-01-01

230

A System for Cooling inside a Glove Box  

ERIC Educational Resources Information Center

An easy, efficient, reliable, and low-cost method of constructing a cooling system using a simple circulating pump is described. The system is employed in conjunction with an inert atmosphere glove box to achieve the synthesis of air- and moisture-sensitive compounds inside the glove box at controlled, low temperatures without contaminating the…

Sanz, Martial

2010-01-01

231

Exam glove shortage leaves MMs searching for supplies.  

PubMed

In this issue HMM examines the impact of AIDS on the price and availability of disposable gloves. Materials managers are facing higher prices and uncertain supplies as more and more health care workers use gloves and other protective apparel. PMID:10284978

Brightbill, T C

1987-10-01

232

Are aloe-coated gloves effective in healthcare?  

PubMed

The moisturising properties of aloe vera have long been known. Examination gloves with aloe coatings are now available on the UK market for use in healthcare settings. This article examines the evidence surrounding the use of these gloves in the workplace to prevent dry, sore hands. PMID:17388149

Ford, Joanna L; Phillips, Pete

233

Anthropomorphic interface for robot arm programming through a data glove  

Microsoft Academic Search

The objective of this paper is to present an implementation of a system in which a data glove worn on a human hand is interfaced with a robot. A controlling program translates the movements done by the glove into robotic motion. This implementation may have future prospects in remote handling in a protected or hazardous factory environment. The equipment used

D. G. M. Mostafa

1994-01-01

234

Glove thermal insulation: local heat transfer measures and relevance  

Microsoft Academic Search

When exposed to cold, the hands need to be protected against heat loss not only in order to reduce thermal discomfort, but also to keep their efficiency. Although gloves are usually the most common protection, their thermal insulation is generally unknown. The aim of this study was to measure the heat losses from a gloved hand with a special interest

Hayet Sari; Maurice Gartner; Alain Hoeft; Victor Candas

2004-01-01

235

RoboGlove - A Robonaut Derived Multipurpose Assistive Device  

NASA Technical Reports Server (NTRS)

The RoboGlove is an assistive device that can augment human strength, endurance or provide directed motion for use in rehabilitation. RoboGlove is a spinoff of the highly successful Robonaut 2 (R2) system developed as part of a partnership between General Motors and NASA. This extremely lightweight device employs an actuator system based on the R2 finger drive system to transfer part or the entire grasp load from human tendons to artificial ones contained in the glove. Steady state loads ranging from 15 to 20 lbs. and peaks approaching 50 lbs. are achievable. The technology holds great promise for use with space suit gloves to reduce fatigue during space walks. Tactile sensing, miniaturized electronics, and on-board processing provide sufficient flexibility for applications in many industries. The following describes the design, mechanical/electrical integration, and control features of the glove.

Diftler, Myron; Ihrke, C. A.; Bridgwater, L. B.; Davis, D. R.; Linn, D. M.; Laske, E. A.; Ensley, K. G.; Lee, J. H.

2014-01-01

236

Eva AndreiEva Andrei Graphene viewed throughGraphene viewed through  

E-print Network

STM and transport STMSTM graphene on graphitegraphene on graphite Structure Density of States Landau levels · Fermi Velocity · e-ph interactions · Quasiparticle lifetime · Gap TransportTransport Suspended graphene BallisticRutgers Graphene Group #12;Eva AndreiEva Andrei Graphene on graphite: STMGraphene on graphite: STM Temperature T=4

Andrei, Eva Y.

237

Applications of EVA guidelines and design criteria. Volume 3: EVA systems cost model formating  

NASA Technical Reports Server (NTRS)

The development of a model for estimating the impact of manned EVA costs on future payloads is discussed. Basic information on the EV crewman requirements, equipment, physical and operational characteristics, and vehicle interfaces is provided. The cost model is being designed to allow system designers to quantify the impact of EVA on vehicle and payload systems.

Brown, N. E.

1973-01-01

238

Testing the design and placement of ORUs for robotic/EVA maintenance with computer-aided simulation  

NASA Astrophysics Data System (ADS)

NASA's Space Station Freedom will have a service life sufficiently long to entail extensive robotic and EVA maintenance activities associated with orbital replaceable units (ORUs). Attention is presently given to the results of computer-aided simulations of such activities which were conducted in order to ascertain preferable locations for suitably robotically- and EVA-accessible ORUs. Extensive attention has been given to operations involving the various possible positions of Freedom's airlock doors.

Leonard, J. W.

239

EVA Robotic Assistant Project: Platform Attitude Prediction  

NASA Technical Reports Server (NTRS)

The Robotic Systems Technology Branch is currently working on the development of an EVA Robotic Assistant under the sponsorship of the Surface Systems Thrust of the NASA Cross Enterprise Technology Development Program (CETDP). This will be a mobile robot that can follow a field geologist during planetary surface exploration, carry his tools and the samples that he collects, and provide video coverage of his activity. Prior experiments have shown that for such a robot to be useful it must be able to follow the geologist at walking speed over any terrain of interest. Geologically interesting terrain tends to be rough rather than smooth. The commercial mobile robot that was recently purchased as an initial testbed for the EVA Robotic Assistant Project, an ATRV Jr., is capable of faster than walking speed outside but it has no suspension. Its wheels with inflated rubber tires are attached to axles that are connected directly to the robot body. Any angular motion of the robot produced by driving over rough terrain will directly affect the pointing of the on-board stereo cameras. The resulting image motion is expected to make tracking of the geologist more difficult. This will either require the tracker to search a larger part of the image to find the target from frame to frame or to search mechanically in pan and tilt whenever the image motion is large enough to put the target outside the image in the next frame. This project consists of the design and implementation of a Kalman filter that combines the output of the angular rate sensors and linear accelerometers on the robot to estimate the motion of the robot base. The motion of the stereo camera pair mounted on the robot that results from this motion as the robot drives over rough terrain is then straightforward to compute. The estimates may then be used, for example, to command the robot s on-board pan-tilt unit to compensate for the camera motion induced by the base movement. This has been accomplished in two ways: first, a standalone head stabilizer has been implemented and second, the estimates have been used to influence the search algorithm of the stereo tracking algorithm. Studies of the image motion of a tracked object indicate that the image motion of objects is suppressed while the robot crossing rough terrain. This work expands the range of speed and surface roughness over which the robot should be able to track and follow a field geologist and accept arm gesture commands from the geologist.

Nickels, Kevin M.

2003-01-01

240

Expedition 16 Flight Engineer Tani Performs EVA  

NASA Technical Reports Server (NTRS)

Astronaut Daniel Tani (top center), Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the 6-hour and 33-minute space walk, Tani and STS-120 mission specialist Scott Parazynski (out of frame), worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of 'shavings' he found under the joint's multilayer insulation covers. The space walkers also outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later. The moon is visible at lower center. The STS-120 mission launched from Kennedy Space Center's launch pad 39A at 11:38:19 a.m. (EDT) on October 23, 2007.

2007-01-01

241

Comparison Of Human Modelling Tools For Efficiency Of Prediction Of EVA Tasks  

NASA Technical Reports Server (NTRS)

Construction of the International Space Station (ISS) will require extensive extravehicular activity (EVA, spacewalks), and estimates of the actual time needed continue to rise. As recently as September, 1996, the amount of time to be spent in EVA was believed to be about 400 hours, excluding spacewalks on the Russian segment. This estimate has recently risen to over 1100 hours, and it could go higher before assembly begins in the summer of 1998. These activities are extremely expensive and hazardous, so any design tools which help assure mission success and improve the efficiency of the astronaut in task completion can pay off in reduced design and EVA costs and increased astronaut safety. The tasks which astronauts can accomplish in EVA are limited by spacesuit mobility. They are therefore relatively simple, from an ergonomic standpoint, requiring gross movements rather than time motor skills. The actual tasks include driving bolts, mating and demating electric and fluid connectors, and actuating levers; the important characteristics to be considered in design improvement include the ability of the astronaut to see and reach the item to be manipulated and the clearance required to accomplish the manipulation. This makes the tasks amenable to simulation in a Computer-Assisted Design (CAD) environment. For EVA, the spacesuited astronaut must have his or her feet attached on a work platform called a foot restraint to obtain a purchase against which work forces may be actuated. An important component of the design is therefore the proper placement of foot restraints.

Dischinger, H. Charles, Jr.; Loughead, Tomas E.

1998-01-01

242

View of mission control during the EVA by McCandless  

NASA Technical Reports Server (NTRS)

This wide angle, overall view of activity in the mission operations control room (MOCR) in JSC's mission control center, was photographed during the extravehicular activity (EVA) in space of Astronauts Bruce McCandless and Robert L. Stewart. The MOCR monitor and those at individual consoles feed to ground controllers the scene of the astronauts 'suspended' in space above the shuttle's payload bay.

1984-01-01

243

The distortions in economic value added (EVA) caused by inflation  

Microsoft Academic Search

Economic Value Added (EVA) is calculated by subtracting the opportunity cost of the capital from profits generated. This paper studies the extent to which EVA is distorted by inflation, and finds that it cannot be used under inflation to estimate actual profitability. The paper develops an adjusted EVA (AEVA) calculation procedure which provides a better estimate of actual profitability under

Johann de Villiers

1997-01-01

244

STS-120 Mission Specialist Doug Wheelock During EVA  

NASA Technical Reports Server (NTRS)

Astronaut Doug Wheelock, STS-120 mission specialist, participated in the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the International Space Station (ISS). During the 7-hour and 19-minute space walk, astronaut Scott Parazynski (out of frame), mission specialist, cut a snagged wire and installed homemade stabilizers designed to strengthen the structure and stability of the damaged P6 4B solar array wing. Wheelock assisted from the truss by keeping an eye on the distance between Parazynski and the array. Once the repair was complete, flight controllers on the ground successfully completed the deployment of the array.

2007-01-01

245

STS-117 Astronauts John Olivas and Jim Reilly During EVA  

NASA Technical Reports Server (NTRS)

STS-117 astronauts and mission specialists Jim Reilly (center frame), and John 'Danny' Olivas (bottom center), participated in the first Extra Vehicular Activity (EVA) as construction resumed on the International Space Station (ISS). Among other tasks, the two connected power, data, and cooling cables between trusses 1 (S1) and 3 (S3), released the launch restraints from and deployed the four solar array blanket boxes on S4, and released the cinches and winches holding the photovoltaic radiator on S4. The primary mission objective was the installment of the second and third starboard truss segments (S3 and S4).

2007-01-01

246

EVA tools and equipment reference book  

NASA Technical Reports Server (NTRS)

This document contains a mixture of tools and equipment used throughout the space shuttle-based extravehicular activity (EVA) program. Promising items which have reached the prototype stage of development are also included, but should not be considered certified ready for flight. Each item is described with a photo, a written discussion, technical specifications, dimensional drawings, and points of contact for additional information. Numbers on the upper left-hand corner of each photo may be used to order specific pictures from NASA and contractor photo libraries. Points of contact were classified as either operational or technical. An operational contact is an engineer from JSC Mission Operations Directorate who is familiar with the basic function and on-orbit use of the tool. A technical contact would be the best source of detailed technical specifications and is typically the NASA subsystem manager. The technical information table for each item uses the following terms to describe the availability or status of each hardware item: Standard - Flown on every mission as standard manifest; Flight specific - Potentially available for flight, not flown every mission (flight certification cannot be guaranteed and recertification may be required); Reference only - Item no longer in active inventory or not recommended for future use, some items may be too application-specific for general use; and Developmental - In the prototype stage only and not yet available for flight. The current availability and certification of any flight-specific tool should be verified with the technical point of contact. Those tools built and fit checked for Hubble Space Telescope maintenance are program dedicated and are not available to other customers. Other customers may have identical tools built from the existing, already certified designs as an optional service.

Fullerton, R. K.

1993-01-01

247

PERMEATION OF MULTIFUNCTIONAL ACRYLATES THROUGH SELECTED PROTECTIVE GLOVE MATERIALS  

EPA Science Inventory

In support of the Premanufacture Notification (PMN) program of the Environmental Protection Agency's Office of Toxic Substances, the resistance of three glove materials to permeation by multifunctional acrylate compounds was evaluated through a program for the Office of Research ...

248

Mapping From an Instrumented Glove to a Robot Hand  

NASA Technical Reports Server (NTRS)

An algorithm has been developed to solve the problem of mapping from (1) a glove instrumented with joint-angle sensors to (2) an anthropomorphic robot hand. Such a mapping is needed to generate control signals to make the robot hand mimic the configuration of the hand of a human attempting to control the robot. The mapping problem is complicated by uncertainties in sensor locations caused by variations in sizes and shapes of hands and variations in the fit of the glove. The present mapping algorithm is robust in the face of these uncertainties, largely because it includes a calibration sub-algorithm that inherently adapts the mapping to the specific hand and glove, without need for measuring the hand and without regard for goodness of fit. The algorithm utilizes a forward-kinematics model of the glove derived from documentation provided by the manufacturer of the glove. In this case, forward-kinematics model signifies a mathematical model of the glove fingertip positions as functions of the sensor readings. More specifically, given the sensor readings, the forward-kinematics model calculates the glove fingertip positions in a Cartesian reference frame nominally attached to the palm. The algorithm also utilizes an inverse-kinematics model of the robot hand. In this case, inverse-kinematics model signifies a mathematical model of the robot finger-joint angles as functions of the robot fingertip positions. Again, more specifically, the inverse-kinematics model calculates the finger-joint commands needed to place the fingertips at specified positions in a Cartesian reference frame that is attached to the palm of the robot hand and that nominally corresponds to the Cartesian reference frame attached to the palm of the glove. Initially, because of the aforementioned uncertainties, the glove fingertip positions calculated by the forwardkinematics model in the glove Cartesian reference frame cannot be expected to match the robot fingertip positions in the robot-hand Cartesian reference frame. A calibration must be performed to make the glove and robot-hand fingertip positions correspond more precisely. The calibration procedure involves a few simple hand poses designed to provide well-defined fingertip positions. One of the poses is a fist. In each of the other poses, a finger touches the thumb. The calibration subalgorithm uses the sensor readings from these poses to modify the kinematical models to make the two sets of fingertip positions agree more closely.

Goza, Michael

2005-01-01

249

Design and simulation of EVA tools for first servicing mission of HST  

NASA Technical Reports Server (NTRS)

The Hubble Space Telescope (HST) was launched into near-earth orbit by the space shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A space shuttle repair mission in late 1993 will install small corrective mirrors that will restore the full intended optical capability of the HST. The first servicing mission (FSM) will involve considerable extravehicular activity (EVA). It is proposed to design special EVA tools for the FSM. This report includes details of the data acquisition system being developed to test the performance of the various EVA tools in ambient as well as simulated space environment.

Naik, Dipak; Dehoff, P. H.

1993-01-01

250

Human-Centric Teaming in a Multi-Agent EVA Assembly Task  

NASA Technical Reports Server (NTRS)

NASA's Human Space Flight program depends heavily on spacewalks performed by pairs of suited human astronauts. These Extra-Vehicular Activities (EVAs) are severely restricted in both duration and scope by consumables and available manpower.An expanded multi-agent EVA team combining the information-gathering and problem-solving skills of human astronauts with the survivability and physical capabilities of highly dexterous space robots is proposed. A 1-g test featuring two NASA/DARPA Robonaut systems working side-by-side with a suited human subject is conducted to evaluate human-robot teaming strategies in the context of a simulated EVA assembly task based on the STS-61B ACCESS flight experiment.

Rehnmark, Fredrik; Currie, Nancy; Ambrose, Robert O.; Culbert, Christopher

2004-01-01

251

STS-55 MS3 Bernard A. Harris, Jr in EMU at JSC's WETF for EVA simulation  

NASA Technical Reports Server (NTRS)

STS-55 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist 3 (MS3) Bernard A. Harris, Jr, fully suited in an extravehicular mobility unit (EMU), stands on platform awaiting an underwater extravehicular activity (EVA) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Harris will be lowered into the WETF's 25 foot deep pool and once underwater will perform contingency EVA tasks. With the aid of weights (attached at his ankles and upper torso) he will achieve neutral buoyancy. There is no scheduled EVA for the 1993 flight but each space flight crew includes astronauts trained for a variety of contingency tasks that could require exiting the shirt-sleeve environment of a Shuttle's cabin.

1991-01-01

252

Neutral buoyancy evaluation of technologies for space station external operations. [EVA weightlessness simulation  

NASA Technical Reports Server (NTRS)

In order to perform a complete systems analysis for almost any large space program, it is vital to have a thorough understanding of human capabilities in extravehicular activity (EVA). The present investigation is concerned with the most significant results from the MIT Space Systems Lab's neutral buoyancy tests. An evaluation of neutral buoyancy is considered along with the tested structures, aspects of learning, productivity, time and motion analysis, and assembly loads. Attention is given to EVA assembly with a manned maneuvering unit, teleoperated structural assembly, an integrated control station, a beam assembly teleoperator, and space station proximity operations.

Akin, D. L.; Bowden, M. L.; Spofford, J. R.

1984-01-01

253

STS-57 astronauts Low and Wisoff perform DTO 1210 EVA in OV-105's payload bay  

NASA Technical Reports Server (NTRS)

During STS-57 extravehicular activity (EVA), Mission Specialist (MS) and Payload Commander (PLC) G. David Low (foreground) secures portable foot restraint (PFR) (manipulator foot restraint (MFR)) to the remote manipulator system (RMS) end effector using a PFR attachment device (PAD). MS3 Peter J.K. Wisoff performs operations next to Low at the stowed European Retrievable Carrier (EURECA). This EVA, designated Detailed Test Objective (DTO) 1210, included evaluation of procedures being developed to service the Hubble Space Telescope (HST) on mission STS-61 in December 1993. The scene is backdropped against the blackness of space with Endeavour's, Orbiter Vehicle (OV) 105's, payload bay (PLB) and payloads appearing in the foreground.

1993-01-01

254

STS-26 crewmembers participate in contingency EVA exercises in JSC WETF  

NASA Technical Reports Server (NTRS)

STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialists John M. Lounge and George D. Nelson participate in contingency extravehicular activity (EVA) exercises in JSC Weightless Environment Training Facility (WETF) Bldg 29. Lounge (left) and Nelson, wearing extravehicular mobility units (EMUs), work at airborne support equipment (ASE) tilt table actuator mockup during underwater latch contingency exercises. This exercise is conducted to simulate the task of closing the payload bay doors (PLBDs) manually should they not close automatically. An EVA is not planned for STS-26 but might become necessary should the PLBDs not operate correctly.

1988-01-01

255

Study of roles of remote manipulator systems and EVA for shuttle mission support, volume 1  

NASA Technical Reports Server (NTRS)

Alternate extravehicular activity (EVA) and remote manipulator system (RMS) configurations were examined for their relative effectiveness in performing an array of representative shuttle and payload support tasks. Initially a comprehensive analysis was performed of payload and shuttle support missions required to be conducted exterior to a pressurized inclosure. A set of task selection criteria was established, and study tasks were identified. The EVA and RMS modes were evaluated according to their applicability for each task and task condition. The results are summarized in tabular form, showing the modes which are chosen as most effective or as feasible for each task/condition. Conclusions concerning the requirements and recommendations for each mode are presented.

Malone, T. B.; Micocci, A. J.

1974-01-01

256

Biomechanical performance of powder-free examination gloves 1 1 Selected Topics: Wound Care is coordinated by Richard F. Edlich, MD, PhD, of the University of Virginia Medical Center, Charlottesville, Virginia  

Microsoft Academic Search

Biomechanical performance studies were undertaken for powder-free, latex and nitrile examination gloves. Using standardized tests, examination glove performance was judged by measuring glove thickness, glove puncture force, glove tape adhesion force, glove donning force, glove stiffness, and immediate unrecovered stretch. Even though the nitrile examination gloves were thinner than the latex examination gloves, they exhibited a greater puncture resistance. In

Mark D Fisher; Vikram R Reddy; Freddie M Williams; Kant Y Lin; John G Thacker; Richard F Edlich

1999-01-01

257

Water Pump Development for the EVA PLSS  

NASA Technical Reports Server (NTRS)

This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently scheduled for March, 2009, after which the pump will be delivered to NASA for further testing.

Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

2009-01-01

258

Dipterous remains and archaeological interpretation Eva Panagiotakopulu)  

E-print Network

-114-2722-563. E-mail address: eva@sheffield.ac.uk. Journal of Archaeological Science 31 (2004) 1675e1684 http of flies is better known for its use in forensics. By examining the insect faunas found on and around are part of the forensic evidence [64], and Dipterous larvae in particular are very useful, because

Panagiotakopulu, Eva

259

EVA - A Textual Data Processing Tool.  

ERIC Educational Resources Information Center

EVA, a text processing tool designed to be self-contained and useful for a variety of languages, is described briefly, and its extensive coded character set is illustrated. Features, specifications, and database functions are noted. Its application in development of a Slovenian literary dictionary is also described. (MSE)

Jakopin, Primoz

260

Development of Damp-Heat Resistant Self-Primed EVA and Non-EVA Encapsulant Formulations at NREL  

SciTech Connect

Self-primed ethylene-vinyl acetate (EVA) and non-EVA (PMG) encapsulant formulations were developed that have greater resistance to damp heat exposure at 85 deg C and 85% relative humidity (RH) (in terms of adhesion strength to glass substrates) than a commonly used commercial EVA product. The self-primed EVA formulations were developed on the basis of high-performing glass priming formulations that have previously proven to significantly enhance the adhesion strength of unprimed and primed EVA films on glass substrates during damp heat exposure. The PMG encapsulant formulations were based on an ethylene-methylacrylate copolymer containing glycidyl methacrylate.

Pern, F. J.; Jorgensen, G. J.

2005-11-01

261

Hubble Space Telescope EVA Power Ratchet Tool redesign. [Abstract only  

NASA Technical Reports Server (NTRS)

The Power Ratchet Tool (PRT) is a self contained, power-driven, 3/8 inch drive ratchet wrench which will be used by astronauts during Extravehicular Activities (EVA). This battery-powered tool is controlled by a dedicated electonic controller. The PRT was flown during the Hubble Space Telescope (HST) Deployment Mission STS-31 to deploy the solar arrays if the automatic mechanisms failed. The PRT is currently intended for use during the first HST Servicing Mission STS-61 as a general purpose power tool. The PRT consists of three major components; the wrench, the controller, and the battery module. Fourteen discrete combinations of torque, turns, and speed may be programmed into the controller before the EVA. The crewmember selects the desired parameter profile by a switch mounted on the controller. The tool may also be used in the manual mode as a non-powered ratchet wrench. The power is provided by a silver-zinc battery module, which fits into the controller and is replaceable during an EVA. The original PRT did not meet the design specification of torque output and hours of operation. To increase efficiency and reliability the PRT underwent a redesign effort. The majority of this effort focused on the wrench. The original PRT drive train consisted of a low torque, high speed brushless DC motor, a face gear set, and a planocentric gear assembly. The total gear reduction was 300:1. The new PRT wrench consists of a low speed, high torque brushless DC motor, two planetary gear sets and a bevel gear set. The total gear reduction is now 75:1. A spline clutch has also been added to disengage the drive train in the manual mode. The design changes to the controller will consist of only those modifications necessary to accomodate the redesigned wrench. The battery design will be unaffected.

Richards, Paul W.; Park, Chan; Brown, Lee

1993-01-01

262

STS-31 crew training: firefighting, food tasting, EVA prep and post  

NASA Astrophysics Data System (ADS)

The Space Shuttle crew is shown lighting a pond of gasoline and then performing firefighting tasks. The crew is also shown tasting food including lemonade, chicken casserole, and tortillas, and performing extravehicular activity (EVA) equipment checkouts in the CCT middeck and airlock.

1990-03-01

263

Skylab 2 Astronaut during EVA at Skylab 1 and 2 space station cluster  

NASA Technical Reports Server (NTRS)

Slylab 2 Astronaut performs extravehicular activity (EVA) at the Skylab 1 and 2 space station cluster in Earth orbit, as seen in this reproduction taken from a color television transmission made by a TV camera aboard the station. Kerwin is just outside the Airlock Module.

1973-01-01

264

STS-31 Crew Training: Firefighting, Food Tasting, EVA Prep and Post  

NASA Technical Reports Server (NTRS)

The Space Shuttle crew is shown lighting a pond of gasoline and then performing firefighting tasks. The crew is also shown tasting food including lemonade, chicken casserole, and tortillas, and performing extravehicular activity (EVA) equipment checkouts in the CCT middeck and airlock.

1990-01-01

265

Influence of environment on measurements made on EVA or 'Space Station Freedom'  

Microsoft Academic Search

A Portable Contamination\\/Leak Detector (PC\\/LD) is being developed for use by crew on Extravehicular Activity (EVA) to locate trace leaks from Space Station Freedom (SSF) systems and to monitor the surfaces of the Extravehicular Mobility Unit (EMU) for toxic contaminants being removed prior to ingress to the airlock. As with any trace level detector the background in which it operates

Eugenie Hainsworth; Gary Koger; Dale Larson; James Valentine; Joseph Brooks; Albert Copeland; Philip Landis

1992-01-01

266

Space shuttle EVA/IVA support equipment requirements study. Volume 1: Final summary report  

NASA Technical Reports Server (NTRS)

A study was conducted to determine the support equipment requirements for space shuttle intravehicular and extravehicular activities. The subjects investigated are; (1) EVA/IVA task identification and analysis,. (2) primary life support system, (3) emergency life support system, (4) pressure suit assembly, (5) restraints, (6) work site provision, (7) emergency internal vehicular emergencies, and (8) vehicular interfaces.

1973-01-01

267

CHARACTERIZATION OF GLOVEBOX GLOVES FOR THE SAVANNAH RIVER SITE  

SciTech Connect

A task was undertaken to characterize glovebox gloves that are currently used in the facilities at Savannah River Site (SRS) as well as some experimental and advanced compound gloves that have been proposed for use. Gloves from four manufacturers were tested for permeation in hydrogen and air, thermal stability, tensile properties, puncture resistance and dynamic mechanical response. The gloves were compared to each other within the type and also to the butyl rubber glove that is widely used at the SRS. The permeation testing demonstrated that the butyl compounds from three of the vendors behaved similarly and exhibited hydrogen permeabilities of .52‐.84 x10{sup ‐7} cc H{sub 2}*cm / (cm{sup 2}*atm). The Viton? glove performed at the lower edge of this bound, while the more advanced composite gloves exhibited permeabilities greater than a factor of two compared to butyl. Thermogravimetric analysis was used to determine the amount of material lost under slightly aggressive conditions. Glove losses are important since they can affect the life of glovebox stripper systems. During testing at 90, 120, and 150?C, the samples lost most of the mass in the initial 60 minutes of thermal exposure and as expected increasing the temperature increased the mass loss and shortened the time to achieve a steady state loss. The ranking from worst to best was Jung butyl‐Hypalon? with 12.9 %, Piercan Hypalon? with 11.4 %, and Jung butyl‐Viton? with 5.2% mass loss all at approximately 140?C. The smallest mass losses were experienced by the Jung Viton? and the Piercan polyurethane. Tensile properties were measured using a standard dog bone style test. The butyl rubber exhibited tensile strengths of 11‐15 MPa and elongations or 660‐843%. Gloves made from other compounds exhibited lower tensile strengths (5 MPa Viton) to much higher tensile strengths (49 MPa Urethane) with a comparable range of elongation. The puncture resistance of the gloves was measured in agreement with an ASTM standard. The Butyl gloves exhibited puncture resistance from 183 ? 296 lbs/in for samples of 0.020 ? 0.038? thick. Finally, the glass transition temperature and the elastic and viscoelastic properties as a function of temperature up to maximum use temperature were determined for each glove material using Dynamic Mechanical Analysis. The glass transition temperatures of the gloves were ‐60?C for butyl, ‐30?C for polyurethane, ‐ 16?C Hypalon?, ‐16?C for Viton?, and ‐24?C for polyurethane‐Hypalon?. The glass transition was too complex for the butyl‐Hypalon? and butyl‐Viton? composite gloves to be characterized by a single glass transition temperature. All of the glass transition temperatures exceed the vendor projected use temperatures.

Korinko, P.

2013-01-24

268

Contamination of Critical Surfaces from NVR Glove Residues Via Dry Handling and Solvent Cleaning  

NASA Technical Reports Server (NTRS)

Gloves are often used to prevent the contamination of critical surfaces during handling. The type of glove chosen for use should be the glove that produces the least amount of non-volatile residue (NVR). This paper covers the analysis of polyethylene, nitrile, latex, vinyl, and polyurethane gloves using the contact transfer and gravimetric determination methods covered in the NASA GSFC work instruction Gravimetric Determination and Contact Transfer of Non-volatile Residue (NVR) in Cleanroom Glove Samples, 541-WI-5330.1.21 and in the ASTM Standard E-1731M-95, Standard Test Method for Gravimetric Determination of Non-Volatile Residue from Cleanroom Gloves. The tests performed focus on contamination of critical surfaces at the molecular level. The study found that for the most part, all of the gloves performed equally well in the contact transfer testing. However, the polyethylene gloves performed the best in the gravimetric determination testing, and therefore should be used whenever solvent contact is a possibility. The nitrile gloves may be used as a substitute for latex gloves when latex sensitivity is an issue. The use of vinyl gloves should be avoided, especially if solvent contact is a possibility. A glove database will be established by Goddard Space Flight Center (GSFC) Code 541 to compile the results from future testing of new gloves and different glove lots.

Sovinski, Marjorie F.

2004-01-01

269

Student perceptions and effectiveness of an innovative learning tool: Anatomy Glove Learning System.  

PubMed

A trend in anatomical education is the development of alternative pedagogical approaches to replace or complement experiences in a cadaver laboratory; however, empirical evidence on their effectiveness is often not reported. This study aimed to evaluate the effectiveness of Anatomy Glove Learning System (AGLS), which enables students to learn the relationship between hand structure and function by drawing the structures onto a worn glove with imprinted bones. Massage therapy students (n = 73) were allocated into two groups and drew muscles onto either: (1) the glove using AGLS instructional videos (3D group); or (2) paper with palmar/dorsal views of hand bones during an instructor-guided activity (2D group). A self-confidence measure and knowledge test were completed before, immediately after, and one-week following the learning conditions. Self-confidence of hand anatomy in the 3D group gradually increased (3.2/10, 4.7/10, and 4.8/10), whereas self-confidence in the 2D group began to decline one-week later (3.2/10, 4.4/10, and 3.9/10). Knowledge of hand anatomy improved in both groups immediately after learning, (P < 0.001). Students' perceptions of AGLS were also assessed using a 10-pt Likert scale evaluation questionnaire (10 = high). Students perceived the AGLS videos (mean = 8.3 ± 2.0) and glove (mean = 8.1 ± 1.8) to be helpful in improving their understanding of hand anatomy and the majority of students preferred AGLS as a learning tool (mean = 8.6 ± 2.2). This study provides evidence demonstrating that AGLS and the traditional 2D learning approach are equally effective in promoting students' self-confidence and knowledge of hand anatomy. Anat Sci Educ. © 2014 American Association of Anatomists. PMID:24757171

Lisk, Kristina; McKee, Pat; Baskwill, Amanda; Agur, Anne M R

2014-04-22

270

Mission control activity during STS-61 EVA  

NASA Technical Reports Server (NTRS)

Flight Director Milton Heflin monitors two space walkers as they change out the Wide Field/Planetary Camera (WF/PC) on the Hubble Space Telescope (HST), temporarily berthed in Endeavour's cargo bay. Astronaut Gregory J. Harbaugh, spacecraft communicator (CAPCOM), is at right edge. Astronauts F. Story Musgrave and Jeffrey A. Hoffman can be seen with the large camera on the screen in the front of the flight control room.

1993-01-01

271

Aircraft energy efficiency laminar flow control glove flight conceptual design study  

NASA Technical Reports Server (NTRS)

A laminar flow control glove applied to the wing of a short to medium range jet transport with aft mounted engines was designed. A slotted aluminum glove concept and a woven stainless steel mesh porous glove concept suction surfaces were studied. The laminar flow control glove and a dummy glove with a modified supercritical airfoil, ducting, modified wing leading and trailing edges, modified flaps, and an LFC trim tab were applied to the wing after slot spacing suction parameters, and compression power were determined. The results show that a laminar flow control glove can be applied to the wing of a jet transport with an appropriate suction system installed.

Wright, A. S.

1979-01-01

272

Multi-EVA communications system analysis  

NASA Technical Reports Server (NTRS)

A communications concept is analyzed to establish requirements of a confident candidate system for space shuttle. Conceptual baseline configurations, EVA's-to-spacecraft via PCM/FDM and spacecraft-to-EVA via PAM/FM, and respective functional performance requirements are discussed. The baseline system is analyzed to determine link characteristics, EMI levels at various frequency bands, and determination of desirable spectrum. Selected L- and S-Band links are analyzed to ascertain signal design parameters. A trade-off is performed, which establishes L-Band frequency as the best compromise. The results of the analysis along with the reliability/safety aspects and physical characteristics of the candidate system, indicate that the initial baseline concept meets functional requirements, but is poor from standpoint of overall space shuttle program cost.

1972-01-01

273

Eva®: An integrated financial management system  

Microsoft Academic Search

Both the rise of hostile takeovers and the phenomenal success of LBOs in the 1980s can be explained in part as capital market responses to the shortcomings of the top-down, EPS-based model of financial management that has long dominated corporate America. the EVA financial management system, which presents the 1990s most serious challenge to the dominance of the EPS model,

Joel M. Stern; G. Bennett Stewart; Donald H. Chew

1996-01-01

274

Mechanisms to improve the mechanical performance of surgical gloves  

NASA Astrophysics Data System (ADS)

The use of gloves as a barrier to cross infection in the medical industry has increased substantially due to the heightened awareness of viral transmission, especially the human immunodeficiency virus and the hepatitis B virus. The glove must allow for tactile sensation, comfort and long use times, while providing equally critical mechanical performance. The majority of surgical gloves are made of natural rubber latex which do not give a critical level of cut-resistance or puncture-resistance. Natural rubber latex gloves are also known to cause latex allergy with hypersensitivity reactions ranging from mild skin rashes to more severe bronchial asthma, anaphylactic reactions, and even death. It has been postulated natural rubber latex (NRL) proteins cause these allergic reactions. The research that has been conducted comprises two approaches that have been explored for improving the cut-resistance of surgical gloves. The first method involves an integral fiber-latex structure that possesses the combination of high reversible extensibility, barrier performance and retention of tactile sense. Improvement in mechanical properties in excess of 85% has been achieved as well as an improvement in cut-resistance. The second method involves the incorporation of a low concentration of ultra high molecular weight (UHMW) polyacrylamide. Although the initial premise for using a UHMW polymer was that it would bridge the latex compound particulates to improve strength, an entirely different mechanism for the enhancement of strength was explored through a parallel investigation of the release of proteins from cured natural rubber. However, no mechanism was conclusively identified. To address the allergy aspects of NRL, a thorough examination of the release of naturally-occurring latex proteins from cured natural rubber latex glove material was conducted in order to identify mechanisms for eliminating and/or reducing the potential allergens. The initial study examined the release of loaded proteins from cured NR and NR that contained PA in the initial latex compound and the results showed the likelihood of binding between proteins and PA.

Watkins, Michelle Hoyt

1997-11-01

275

Anthropomorphic teleoperation: Controlling remote manipulators with the DataGlove  

NASA Technical Reports Server (NTRS)

A two phase effort was conducted to assess the capabilities and limitations of the DataGlove, a lightweight glove input device that can output signals in real-time based on hand shape, orientation, and movement. The first phase was a period for system integration, checkout, and familiarization in a virtual environment. The second phase was a formal experiment using the DataGlove as input device to control the protoflight manipulator arm (PFMA) - a large telerobotic arm with an 8-ft reach. The first phase was used to explore and understand how the DataGlove functions in a virtual environment, build a virtual PFMA, and consider and select a reasonable teleoperation control methodology. Twelve volunteers (six males and six females) participated in a 2 x 3 (x 2) full-factorial formal experiment using the DataGlove to control the PFMA in a simple retraction, slewing, and insertion task. Two within-subjects variables, time delay (0, 1, and 2 seconds) and PFMA wrist flexibility (rigid/flexible), were manipulated. Gender served as a blocking variable. A main effect of time delay was found for slewing and total task times. Correlations among questionnaire responses, and between questionnaire responses and session mean scores and gender were computed. The experimental data were also compared with data collected in another study that used a six degree-of-freedom handcontroller to control the PFMA in the same task. It was concluded that the DataGlove is a legitimate teleoperations input device that provides a natural, intuitive user interface. From an operational point of view, it compares favorably with other 'standard' telerobotic input devices and should be considered in future trades in teleoperation systems' designs.

Hale, J. P., II

1992-01-01

276

Nine-size system for chemical defense gloves. Technical report  

SciTech Connect

The purpose of this effort was to meet the need for improved sizing of chemical defense gloves for Air Force men and women. A nine-size system was developed from available hand data. The development process and size values are presented in this report. Some summary statistics and regression equations are provided to aid investigators who may wish to make modifications. Although the anthropometric sizing system outlined in this report is statistically sound, it is experimental. The authors recommend that anthropometric fit-testing be conducted prior to full-scale glove production.

Robinette, K.M.; Annis, J.F.

1986-07-01

277

ISS Update: Robonaut Glove Test (Part 2) - Duration: 2:45.  

NASA Video Gallery

NASA Public Affairs Officer Brandi Dean interviews Chris Ihrke, General Motors Lead Engineer for the Robo-Glove Project, about the Robonaut glove test. Questions? Ask us on Twitter @NASA_Johnson an...

278

A Glove for Tapping and Discrete 1D/2D Input  

NASA Technical Reports Server (NTRS)

This paper describes a glove with which users enter input by tapping fingertips with the thumb or by rubbing the thumb over the palmar surfaces of the middle and index fingers. The glove has been informally tested as the controller for two semi-autonomous robots in a a 3D simulation environment. A preliminary evaluation of the glove s performance is presented.

Miller, Sam A.; Smith, Andy; Bahram, Sina; SaintAmant, Robert

2012-01-01

279

Detection of Methicillin-resistant Staphylococcus aureus and Vancomycin-resistant Enterococci by Healthcare Workers on Infection Control Gown and Gloves  

PubMed Central

Objective To assess the frequency of detection and risk factors for detection of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) by healthcare workers on infection control protective gown and gloves. Design We observed interactions between healthcare workers and patients during routine clinical activities. Cultures were taken of healthcare workers’ hands prior to entering the room, disposable infection control gown and gloves after completing patient care activities, and of hands immediately following removal of infection control protective gown and gloves. Setting A 29-bed medical intensive care unit at an urban tertiary-care academic hospital, the University of Maryland Medical Center. Results Seventeen percent (24/137, 95%CI ± 6.4%) of healthcare workers caring for a patient with MRSA and/or VRE acquired that organism on their gloves, gown or both. Contacting an endotracheal tube or tracheostomy (P < 0.05), contacting the head and/or neck of a patient (P < 0.05), and the presence of a percutaneous endoscopic gastrostomy/jejunostomy tube (P < 0.05) were associated with increased risk of detection of antibiotic-resistant organisms. Conclusions Gloves and gowns are frequently contaminated with MRSA and VRE during routine care duties. Contact with the head or neck, care for an endotracheal tube or tracheostomy, and the presence of an endotracheal tube or tracheostomy may increase the risk of detection of antibiotic-resistant organisms. PMID:18549314

Snyder, Graham M.; Thom, Kerri A.; Furuno, Jon P.; Perencevich, Eli N.; Roghmann, Mary-Claire; Strauss, Sandra M.; Netzer, Giora; Harris, Anthony D.

2008-01-01

280

Research of Mechanical Arm Control Based on Data Glove  

Microsoft Academic Search

Most traditional robot control software is: the operator sends commands to control the robot's movement by computer, which is complex and not very direct. The operator needs to be trained in advance and usually are technicians. While the means we discussed in this paper is: the operator controls the robot directly by computer, wearing data glove and computer generates virtual

JunJie Zhang; Jiangcheng Fang

2008-01-01

281

[Identification of migrants from nitrile-butadiene rubber gloves].  

PubMed

Polyvinyl chloride gloves containing di(2-ethylhexyl) phthalate are restricted for food contact use. In their place, disposable gloves made from nitrile-butadiene rubber (NBR) are used in contact with foodstuffs. Some unknown substances were found to migrate into n-heptane from NBR gloves. By GC/MS, HR-MS and NMR, their chemical structures were confirmed to be 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (used as a plasticizer), 4,4'-butylidenedi(6-tert-butyl-m-cresol), a mixture of styrenated phenols consisting of 2-(alpha-methylbenzyl)phenol, 4-(alpha-methylbenzyl)phenol, 2,6-di(alpha-methylbenzyl)phenol, 2,4-di(alpha-methylbenzyl)phenol and 2,4,6-tri(alpha-methylbenzyl)phenol (used as antioxidants), and 2,4-di-tert-butylphenol, which seems to a degradation product of antioxidant. Migration levels of these compounds were 1.68 micrograms/cm2 of 2,4-di-tert-butylphenol, 2.80 micrograms/cm2 of 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, 46.08 micrograms/cm2 of styrenated phenols and 4.22 micrograms/cm2 of 4,4'-butylidenedi(6-tert-butyl-m-cresol) into n-heptane, respectively. The content of total styrenated phenols was 6,900 micrograms/g in NBR gloves. PMID:12846157

Mutsuga, Motoh; Kawamura, Yoko; Wakui, Chiseko; Maitani, Tamio

2003-04-01

282

Use of a pneumatic glove for hand rehabilitation following stroke.  

PubMed

Hand impairment is common following stroke and is often resistant to traditional therapy methods. Successful interventions have stressed the importance of repeated practice to facilitate rehabilitation. Thus, we have developed a servo-controlled glove to assist extension of individual digits to promote practice of grasp-and-release movements with the hand. This glove, the PneuGlove, permits free movement of the arm throughout its workspace. A novel immersive virtual reality environment was created for training movement in conjunction with the device. Seven stroke survivors with chronic hand impairment participated in 18 training sessions with the PneuGlove over 6 weeks. Overall, subjects displayed a significant 6-point improvement in the upper extremity score on the Fugl-Meyer assessment and this increase was maintained at the evaluation held one month after conclusion of all training (p < 0.01). The majority of this gain came from an increase in the hand/wrist score (3.8-point increase, p < 0.01). Thus, the system shows promise for rehabilitative training of hand movements after stroke. PMID:19965204

Connelly, Lauri; Stoykov, Mary Ellen; Jia, Yicheng; Toro, Maria L; Kenyon, Robert V; Kamper, Derek G

2009-01-01

283

8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE PROCESS. THE ANION EXCHANGE PROCESS PURIFIED AND CONCENTRATED PLUTONIUM-BEARING NITRIC ACID SOLUTIONS TO MAKE THEM ACCEPTABLE AS FEED FOR CONVERSION TO METAL. (6/20/60) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

284

Semiautomatic machine for turning inside out industrial leather gloves  

NASA Astrophysics Data System (ADS)

The last step in the industrial leather gloves manufacturing is to turn the inside out so that the sewing be in the inside of the glove. This work presents the design and testing of a machine for that purpose. In order to quantify the relevant variables, testing was performed with a prototype glove. The employed devices and the testing proceeding were developed experimentally. The obtained information was used to build the turning inside out machine. This machine works with pneumatic power to carry the inside out turning by means of double effect lineal actuators. It has two independent work stations that could be operated simultaneously by two persons, one in each station or in single mode operating one station by one person. The turning inside out cycle is started by means of directional control valves operated with pedals. The velocity and developed force by the actuators is controlled with typical pneumatic resources. The geometrical dimensions of the machine are: 1.15 m length; 0.71 m width and 2.15 m high. Its approximated weight is 120 kg. The air consumption is 5.4 fps by each working station with 60 psig work pressure. The turning inside out operation is 40 s for each industrial leather glove.

Aragón-Gonzalez, G.; Cano-Blanco, M.; León-Galicia, A.; Medrano-Sierra, L. F.; Morales-Gómez, J. R.

2015-01-01

285

Testing pressurized spacesuit glove torque with an anthropomorphic robotic hand  

Microsoft Academic Search

While robotic hands have been developed for manipulation and grasping, their potential as tools for performance evaluation of engineered products - particularly compliant garments that are not easily modeled - has not been broadly studied. In this research, the development of a low-cost anthropomorphic robotic hand is introduced that is designed to characterize glove stiffness in a pressurized environment. The

Dustyn P. Roberts; Jack Poon; Daniella Patrick; Joo H. Kim

2012-01-01

286

STS-117 Astronauts John Olivas and Jim Reilly During EVA  

NASA Technical Reports Server (NTRS)

STS-117 astronauts and mission specialists Jim Reilly (out of frame), and John 'Danny' Olivas (partially obscured, center), participated in the first Extra Vehicular Activity (EVA) as construction resumed on the International Space Station (ISS). Among other tasks, the two connected power, data, and cooling cables between trusses 1 (S1) and 3 (S3), released the launch restraints from and deployed the four solar array blanket boxes on S4, and released the cinches and winches holding the photovoltaic radiator on S4. The primary mission objective was the installment of the second and third starboard truss segments (S3 and S4). The horizon of Earth and a crescent moon are visible on the right.

2007-01-01

287

An air bearing fan for EVA suit ventilation  

NASA Technical Reports Server (NTRS)

The portable life-support system (PLSS) ventilation requirements are outlined, along with the application of a high-speed axial fan technology for extravehicular-activity (EVA) space-suit ventilation. Focus is placed on a mechanical design employing high-speed gas bearings, permanent magnet rotor, and current-fed chopper/inverter electronics. The operational characteristics of the fan unit and its applicability for use in a pure-oxygen environment are discussed. It delivers a nominal 0.17 cu m/min at 1.24 kPa pressure rise using 13.8 w of input power. It is shown that the overall selection of materials for all major component meets the NASA requirements.

Murry, Roger P.

1990-01-01

288

Efficiency of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing gloves.  

PubMed

Food processing gloves are typically used to prevent cross-contamination during food preparation. However, gloves can be contaminated with microorganisms and become a source of contamination. This study investigated the survival of Listeria monocytogenes on gloves and determined the efficacy of electrolyzed oxidizing (EO) water for reducing L. monocytogenes contamination on seafood processing gloves. Three types of reusable gloves (natural rubber latex, natural latex, and nitrile) and two types of disposable gloves (latex and nitrile) were cut into small pieces (4 x 4 cm(2)) and inoculated with 5-strain L. monocytogenes cocktail (5.1 x 10(7) CFU/cm(2)) with and without shrimp meat residue attached to surfaces. L. monocytogenes did not survive well on clean reusable gloves and its populations decreased rapidly to non-detectable levels within 30 min at room temperature. However, high levels of Listeria cells were recovered from clean disposable gloves after 30 min of inoculation. Presence of shrimp meat residue on gloves enhanced the survival of L. monocytogenes. Cells of L. monocytogenes were detected on both reusable and disposal gloves even after 2 h at room temperature. Soaking inoculated gloves in EO water at room temperature for 5 min completely eliminated L. monocytogenes on clean gloves (>4.46 log CFU/cm(2) reductions) and significantly (p<0.05) reduced the contamination on soil-containing gloves when compared with tap water treatment. EO water could be used as a sanitizer to reduce L. monocytogenes contamination on gloves and reduce the possibility of transferring L. monocytogenes from gloves to RTE seafoods. PMID:16690154

Liu, Chengchu; Su, Yi-Cheng

2006-07-15

289

First flight test results of the Simplified Aid For EVA Rescue (SAFER) propulsion unit  

NASA Technical Reports Server (NTRS)

The Simplified Aid for EVA Rescue (SAFER) is a small, self-contained, propulsive-backpack system that provides free-flying mobility for an astronaut engaged in a space walk, also known as extravehicular activity (EVA.) SAFER contains no redundant systems and is intended for contingency use only. In essence, it is a small, simplified version of the Manned Maneuvering Unit (MMU) last flown aboard the Space Shuttle in 1985. The operational SAFER unit will only be used to return an adrift EVA astronaut to the spacecraft. Currently, if an EVA crew member inadvertently becomes separated from the Space Shuttle, the Orbiter will maneuver to within the crew member's reach envelope, allowing the astronaut to regain contact with the Orbiter. However, with the advent of operations aboard the Russian MIR Space Station and the International Space Station, the Space Shuttle will not be available to effect a timely rescue. Under these conditions, a SAFER unit would be worn by each EVA crew member. Flight test of the pre-production model of SAFER occurred in September 1994. The crew of Space Shuttle Mission STS-64 flew a 6.9 hour test flight which included performance, flying qualities, systems, and operational utility evaluations. We found that the unit offers adequate propellant and control authority to stabilize and enable the return of a tumbling/separating crew member. With certain modifications, production model of SAFER can provide self-rescue capability to a separated crew member. This paper will present the program background, explain the flight test results and provide some insight into the complex operations of flight test in space.

Meade, Carl J.

1995-01-01

290

USING ECONOMIC VALUE ADDED (EVA) TO EXAMINE FARM BUSINESSES  

Microsoft Academic Search

The four profitability measures recommended by the Farm Financial Standards Task Force have limitations for examining wealth creation. Non-farm corporations, by contrast, have started to use Economic Value Added (EVA) to measure wealth creation. EVA has some advantages over other financial ratios because it fully accounts for the resources used on the farm and it includes both realized and unrealized

Gregory A. Ibendahl; Ronald A. Fleming

2003-01-01

291

Study of factors influencing telecom operator's economic value added (EVA)  

Microsoft Academic Search

Based on data from 14 famous telecom operators, this study investigates factors influencing telecom operator's economic value added (EVA), thus reveal the mechanism and relationships between telecom operators' various capabilities and EVA. Factor analysis and Structural equation modeling (SEM) are used as the main analysis tools. Results show that Profitability capacity, Management capacity, and Risk Resist capacity are the three

Zheng Li; Shoulian Tang

2011-01-01

292

EVA: continuous automatic evaluation of protein structure prediction servers  

Microsoft Academic Search

words; Text 1129 words; 5 References Abstract Summary: Evaluation of protein structure prediction methods is difficult and time- consuming. Here, we describe EVA, a web server for assessing protein structure prediction methods, in an automated, continuous and large-scale fashion. Currently, EVA evaluates the performance of a variety of prediction methods available through the internet. Every week, the sequences of the

Volker A. Eyrich; Marc A. Martí-renom; Dariusz Przybylski; Mallur S. Madhusudhan; András Fiser; Florencio Pazos; Alfonso Valencia; Andrej Sali; Burkhard Rost

2001-01-01

293

EVA regulates thymic stromal organisation and early thymocyte development.  

PubMed

Epithelial V-like antigen (EVA) is an immunoglobulin-like adhesion molecule identified in a screen for molecules developmentally regulated at the DN to DP progression in thymocyte development. We show that EVA is expressed during the early stages of thymus organogenesis in both fetal thymic epithelia and T cell precursors, and is progressively downregulated from day 16.5 of embryonic development. In the postnatal thymus, EVA expression is restricted to epithelial cells and is distributed throughout both cortical and medullary thymic regions. Transgenic overexpression of EVA in the thymus cortex resulted in a modified stromal environment, which elicited an increase in organ size and absolute cell number. Although peripheral T lymphocyte numbers are augmented throughout life, no imbalance either in the repertoire, or in the different T cell subsets was detected. Collectively, these data suggest a role for EVA in structural organisation of the thymus and early lymphocyte development. PMID:17362876

DeMonte, Lucia; Porcellini, Simona; Tafi, Elisiana; Sheridan, Julie; Gordon, Julie; Depreter, Marianne; Blair, Natalie; Panigada, Maddalena; Sanvito, Francesca; Merati, Barbara; Albientz, Anita; Barthlott, Thomas; Ozmen, Laurence; Blackburn, C Clare; Guttinger, Maria

2007-05-01

294

Understanding Skill in EVA Mass Handling. Volume 4; An Integrated Methodology for Evaluating Space Suit Mobility and Stability  

NASA Technical Reports Server (NTRS)

The empirical investigation of extravehicular activity (EVA) mass handling conducted on NASA's Precision Air-Bearing Floor led to a Phase I SBIR from JSC. The purpose of the SBIR was to design an innovative system for evaluating space suit mobility and stability in conditions that simulate EVA on the surface of the Moon or Mars. The approach we used to satisfy the Phase I objectives was based on a structured methodology for the development of human-systems technology. Accordingly the project was broken down into a number of tasks and subtasks. In sequence, the major tasks were: 1) Identify missions and tasks that will involve EVA and resulting mobility requirements in the near and long term; 2) Assess possible methods for evaluating mobility of space suits during field-based EVA tests; 3) Identify requirements for behavioral evaluation by interacting with NASA stakeholders;.4) Identify necessary and sufficient technology for implementation of a mobility evaluation system; and 5) Prioritize and select technology solutions. The work conducted in these tasks is described in this final volume of the series on EVA mass handling. While prior volumes in the series focus on novel data-analytic techniques, this volume addresses technology that is necessary for minimally intrusive data collection and near-real-time data analysis and display.

McDonald, P. Vernon; Newman, Dava

1999-01-01

295

Creating another barrier to the transmission of bloodborne operative infections with a new glove gauntlet.  

PubMed

While disposable surgical gowns are designed to be either liquid-resistant or liquid-proof apparel, the woven cuffs of surgical gowns are easily permeable to water, an invitation to the transmission of bloodborne infections. Regent Medical has redesigned the diameter of some of its surgical glove gauntlets to enhance the security of the glove/surgical cuff interface. The purpose of this biomechanical performance study was to evaluate the benefit of a narrow glove gauntlet in enhancing the security of the gown and cuff interface. Using three types of disposable gown, the narrow glove gauntlet significantly increased the security of the gown-glove interface. On the basis of this biomechanical performance study, Regent Medical has announced that it will be using this narrow glove gauntlet design on more of their glove products to further reduce the transmission of bloodborne operative infections. PMID:14510283

Edlich, Richard F; Wind, Tyler C; Hill, Lisa G; Thacker, John G

2003-01-01

296

PCR-based method for detecting viral penetration of medical exam gloves.  

PubMed

The test approved by the U.S. Food and Drug Administration for assessment of the barrier quality of medical exam gloves includes visual inspection and a water leak test. Neither method tests directly the ability of gloves to prevent penetration by microorganisms. Methods that use microorganisms (viruses and bacteria) to test gloves have been developed but require classical culturing of the organism to detect it. We have developed a PCR assay for bacteriophage phiX174 that allows the rapid detection of penetration of gloves by this virus. The method is suitable for use with both latex and synthetic gloves. The presence of glove powder on either latex or synthetic gloves had no effect on the ability of the PCR assay to detect bacteriophage DNA. The assay is rapid, sensitive, and inexpensive; requires only small sample volumes; and can be automated. PMID:12149320

Broyles, John M; O'Connell, Kevin P; Korniewicz, Denise M

2002-08-01

297

MIL-C-38999 electrical connector applicability tests for on-orbit EVA satellite servicing  

NASA Technical Reports Server (NTRS)

MIL-C-38999 electrical connectors were tested for their applicability to the on-orbit EVA satellite servicing environment. The investigation provided a methodical approach to the evaluation of the human-machine interface of these connectors. The physical characteristics of thirty-five MIL-C-38999 connectors were tested in two simulated space environments, the NASA Johnson Space Center Weightless Environment Training Facility and an evacuated glovebox which incorporated the Extravehicular Maneuvering Unit series 3000 gloves. Physical characteristics of the connectors were documented, including operating torque and work profiles. STS crewmembers tested a select group of connectors in two WETF test and subjectively ranked the G&H PMM Wing-Tab connectors as most applicable to the on-orbit servicing environment. WETF performance times indicated that the G&H PMM Wing-Tab connector had the fastest operating time. The evacuated glovebox participants ranked the G&H 64600 Wing-Tab and the G&H PMM Wing-Tab connectors as those most applicable to the on-orbit servicing environment. During the evacuated glovebox tests, the G&H 64600 Wing-Tab connector had the fastest operating time.

Griffin, Thomas J.; Lewis, Ruthan

1989-01-01

298

Skin protection in nursing work: promoting the use of gloves and hand alcohol.  

PubMed

Nursing has been identified as a wet-work occupation, with a high prevalence of occupational irritant contact dermatitis. Reduction of exposure to skin irritants contributes to the prevention of occupational skin disease in nurses. The role of the use of soap and water, hand alcohol and gloves in prevention programmes is discussed. 2 additional measures for reducing exposure to skin irritants are postulated: use of hand alcohol instead of soap and water in disinfection procedures when the hands are not visibly dirty; use of gloves in wet activities such as patient washing to prevent the hands from becoming wet and visibly dirty. We investigated the effectiveness of these recommendations in a model. Mean daily wet-work exposure during nursing work was modelled: regular model. We also modelled exposure to skin irritants in combination with the implementation of these recommendations: prevention model. The hands of healthy volunteers were exposed to the regular or the prevention model over 3 weeks for 5 days a week. The change in transepidermal water loss (TEWL) on the back of the hands was measured after 3 weeks of exposure to these wet-work simulations. An increase in TEWL occurred with the regular model, while mean TEWL decreased in the prevention model. Skin irritation from occlusion by gloves appeared to be more pronounced in the regular model compared to the prevention model. The results of this study justify the conclusion that in nursing work, hand alcohol is the preferred disinfectant. Although the prevention model implies increased occlusive exposure, this has no additional irritant effect, probably because of the absence of soap exposure. PMID:15479202

Jungbauer, F H W; van der Harst, J J; Groothoff, J W; Coenraads, P J

2004-09-01

299

Experiments with an EVA Assistant Robot  

NASA Technical Reports Server (NTRS)

Human missions to the Moon or Mars will likely be accompanied by many useful robots that will assist in all aspects of the mission, from construction to maintenance to surface exploration. Such robots might scout terrain, carry tools, take pictures, curate samples, or provide status information during a traverse. At NASA/JSC, the EVA Robotic Assistant (ERA) project has developed a robot testbed for exploring the issues of astronaut-robot interaction. Together with JSC's Advanced Spacesuit Lab, the ERA team has been developing robot capabilities and testing them with space-suited test subjects at planetary surface analog sites. In this paper, we describe the current state of the ERA testbed and two weeks of remote field tests in Arizona in September 2002. A number of teams with a broad range of interests participated in these experiments to explore different aspects of what must be done to develop a program for robotic assistance to surface EVA. Technologies explored in the field experiments included a fuel cell, new mobility platform and manipulator, novel software and communications infrastructure for multi-agent modeling and planning, a mobile science lab, an "InfoPak" for monitoring the spacesuit, and delayed satellite communication to a remote operations team. In this paper, we will describe this latest round of field tests in detail.

Burridge, Robert R.; Graham, Jeffrey; Shillcutt, Kim; Hirsh, Robert; Kortenkamp, David

2003-01-01

300

STS-26 mission specialists participate in EVA simulation in JSC's WETF  

NASA Technical Reports Server (NTRS)

STS-26 Discovery, Orbiter Vehicle (OV) 103, mission specialists George D. Nelson (left) and John M. Lounge, wearing extravehicular mobility units (EMUs), participate in a contingency extravehicular activity (EVA) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Nelson, neutrally buoyant (floating), watches as Lounge, assisted by SCUBA divers, enters payload bay (PLB) mockup through airlock hatch. Photograph was taken by Keith Meyers of the NEW YORK TIMES.

1988-01-01

301

Astronaut David Wolf participates in training for contingency EVA in WETF  

NASA Technical Reports Server (NTRS)

Astronaut David A. Wolf participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. The mission specialist was about to be submerged ito a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF). In this view, Wolf is displaying the flexibility of his training version of the Shuttle extravehicular mobility unit (EMU) by lifting his arms above his head (31701); Wolf waves to the camera before he is submerged in the WETF (31702).

1993-01-01

302

Application of glove box robotics to hazardous waste management  

SciTech Connect

Lawrence Livermore Laboratory (LLNL) is developing a semi-automated system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM developed gantry robot with a special glove box enclosure designed to protect the operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely using the robot in a telerobotic mode for one-of-a-kind functions and in an autonomous mode for repetitive type operations. The system will initially be used in conjunction with a portable gas system designed to capture any gaseous phase tritium released into the glove box. This paper presents the objectives of this program, provides background related to LLNL`s robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans.

Dennison, D.K.; Hurd, R.L.; Merrill, R.D.; Reitz, T.C.

1995-02-01

303

Sensory substitution for space gloves and for space robots  

NASA Technical Reports Server (NTRS)

Sensory substitution systems for space applications are described. Physical sensors replace missing human receptors and feed information to the interpretive centers of a different sense. The brain is plastic enough so that, with training, the subject localizes the input as if it were received through the missing receptors. Astronauts have difficulty feeling objects through space suit gloves because of their thickness and because of the 4.3 psi pressure difference. Miniature force sensors on the glove palm drive an electrotactile belt around the waist, thus augmenting the missing tactile sensation. A proposed teleoperator system with telepresence for a space robot would incorporate teleproprioception and a force sensor/electrotactile belt sensory substitution system for teletouch.

Bach-Y-rita, P.; Webster, J. G.; Tompkins, W. J.; Crabb, T.

1987-01-01

304

Nursing wound care survey: Sterile and nonsterile glove choice  

Microsoft Academic Search

Purpose: The application of sterile and clean procedure to the practice of wound care nursing was examined.Design: This prospective, descriptive study surveyed staff nurses regarding glove use.Subjects and Setting: Seven hundred forty-three staff nurses from five health care agencies in the San Francisco Bay Area responded to the survey.Instruments: A self-report wound care survey instrument was developed by Nursing Consortium

Lowell C. Wise; Jane Hoffman; Lynne Grant; Janet Bostrom

1997-01-01

305

Chemical Resistance of Disposable Nitrile Gloves Exposed to Simulated Movement  

PubMed Central

Large discrepancies between laboratory permeation testing and field exposures have been reported, with indications that hand movement could account for a portion of these differences. This study evaluated the influence of simulated movement on chemical permeation of 30 different disposable nitrile glove products. Products were investigated out-of-box and with exposure to simulated whole-glove movement. Permeation testing was conducted using ethanol as a surrogate test chemical. A previously designed pneumatic system was used to simulate hand movement. No movement and movement tests were matched-paired to control for environmental conditions, as were statistical analyses. Permeation data were collected for a 30-min exposure period or until a breakthrough time (BT) and steady-state permeation rate (SSPR) could be determined. A third parameter, area under the curve at 30 min (AUC-30), was used to estimate potential worker exposure. With movement, a significant decrease in BT (p ? 0.05), ranging from 6–33%, was observed for 28 products. The average decrease in BT was 18% (p ? 0.001). With movement, a significant increase in SSPR (p ? 0.05), ranging from 1–78%, was observed with 25 products. The average increase in SSPR was 18% (p ? 0.001). Significant increases in AUC-30 (p ? 0.05), ranging from 23–277%, were also observed for all products where it could be calculated. On average, there was a 58% increase (p ? 0.001). The overall effect of movement on permeation through disposable nitrile gloves was significant. Simulated movement significantly shortened the BT, increased the SSPR, and increased the cumulative 30-min exposure up to three times. Product variability also accounted for large differences, up to 40 times, in permeation and cumulative exposure. Glove selection must take these factors into account. It cannot be assumed that all products will perform in a similar manner. PMID:23009187

Phalen, Robert N.; Wong, Weng Kee

2012-01-01

306

Application of EVA guidelines and design criteria. Volume 1: EVA selection/systems design considerations  

NASA Technical Reports Server (NTRS)

Parameters that require consideration by the planners and designers when planning for man to perform functions outside the vehicle are presented in terms of the impact the extravehicular crewmen and major EV equipment items have on the mission, vehicle, and payload. Summary data on man's performance capabilities in the weightless space environment are also provided. The performance data are based on orbital and transearth EVA from previous space flight programs and earthbound simulations, such as water immersion and zero-g aircraft.

Brown, N. E.

1973-01-01

307

A modular dexterous robot for glove box applications  

SciTech Connect

Many industrial processes today require the use of {open_quotes}glove boxes{close_quotes} {emdash} environmentally sealed chambers designed to allow access by human workers through ports fitted with protective gloves. A new technology for the automation of complex material-handling functions is described in this paper. The advantages of an agile robotic manipulator system being used in this application are discussed, including reduced life-cycle cost of automation, enhanced ability to respond to changes in process requirements, and improved reliability and maintainability. This paper also reviews lessons learned in applying an highly dexterous modular robot to a glove box environment, such as the evaluation of arm kinematics to achieve the required work envelope, system payload capacity, methods for automated tooling changes, tolerance of the arm mechanism and electronics to exposure to industrial chemicals and an argon atmosphere, the benefits of arm modularity for system maintenance, safety concerns, the integration of high-level control technology and off-line development of process motion sequences.

Walker, E.W. Jr.; Igou, R.E. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Karlen, J.P.; Kowalski, K.A.; Eismann, P.H. [Robotics Research Corp., Amelia, OH (United States)

1994-11-01

308

Photovoltaic devices with low band gap polymers Eva Bundgaarda, Sean Shaheenb, David S. Ginleyb, Frederik C. Krebsa  

E-print Network

Photovoltaic devices with low band gap polymers Eva Bundgaarda, Sean Shaheenb, David S. Ginleyb, Colorado, USA Abstract Progress in organic photovoltaic devices has recently resulted in reported temperature, active area of the device and molecular weight of the polymer, on the photovoltaic response

309

Underwater views of STS-5 crewmen Lenoir and Allen during EVA training  

NASA Technical Reports Server (NTRS)

Underwater views of STS-5 crewmen Lenoir and Allen during EVA training. Mission Specialist/Astronaut Joseph P. Allen, wearing an extravehicular mobility unit (EMU) and weighted down to achieve neutral buoyancy, uses a communication system to talk with fellow Mission Specialist/Astronaut William B. Lenoir (out of frame) during underwater simulation of STS-5 extravehicular activity (EVA) (35899); Both mission specialists coordinate their efforts on a chore near the airlock hatch during training. Lenoir is facing the camera. Their background is a full-scale mock-up of the shuttle payload bay (35900); Lenoir works underwater with a portable foot restraint during training underwater. Allen's backpack or mockup for a portable life support system (PLSS) is seen in one corner of the frame (35901).

1982-01-01

310

STS-57 astronauts Low and Wisoff perform DTO 1210 EVA in OV-105's payload bay  

NASA Technical Reports Server (NTRS)

During STS-57 extravehicular activity (EVA), Mission Specialist (MS) and Payload Commander (PLC) G. David Low (foreground) and MS3 Peter J.K. Wisoff work along the port side sill longeron in the payload bay (PLB) of the Earth-orbiting Endeavour, Orbiter Vehicle (OV) 105. Low will secure a portable foot restraint (PFR) (manipulator foot restraint (MFR)) to the remote manipulator system (RMS) end effector (deployed behind the two astronauts) using a PFR attachment device (PAD). This EVA, designated Detailed Test Objective (DTO) 1210, included evaluation of procedures being developed to service the Hubble Space Telescope (HST) on mission STS-61 in December 1993. Visible in OV-105's PLB are (front to back) the SPACEHAB-01 module (Commercial Middeck Augmentation Module (CMAM)), the Superhelium Onorbit Transfer (SHOOT) liquid helium dewar assembly, and the European Retrievable Carrier (EURECA) spacecraft. The scene is backdropped against the Earth's surface.

1993-01-01

311

Moments applied in the manual assembly of space structures - Ease biomechanics results from STS-61B. [Experimental Assembly of Structures in EVA  

NASA Technical Reports Server (NTRS)

Measurements of the level and pattern of moments applied in the manual assembly of a space structure were made in extravehicular activity (EVA) and neutral buoyancy simulation (NBS). The Experimental Assembly of Structures in EVA program included the repeated assembly of a 3.6 m tetrahedral truss structure in EVA on STS-61B after extensive neutral buoyancy crew training. The flight and training structures were of equivalent mass and geometry to allow a direct correlation between EVA and NBS performance. A stereo photographic motion camera system was used to reconstruct in three dimensions rotational movements of structural beams during assembly. Moments applied in these manual handling tasks were calculated on the basis of the reconstructed movements taking into account effects of inertia, drag and virtual mass. Applied moments of 2.0 Nm were typical for beam rotations in EVA. Corresponding applied moments in NBS were typically up to five times greater. Moments were applied as impulses separated by several seconds of coasting in both EVA and NBS. Decelerating impulses were only infrequently observed in NBS.

Cousins, D.; Akin, D. L.

1989-01-01

312

Development of an EVA systems cost model. Volume 2: Shuttle orbiter crew and equipment translation concepts and EVA workstation concept development and integration  

NASA Technical Reports Server (NTRS)

EVA crewman/equipment translational concepts are developed for a shuttle orbiter payload application. Also considered are EVA workstation systems to meet orbiter and payload requirements for integration of workstations into candidate orbiter payload worksites.

1975-01-01

313

Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits  

NASA Technical Reports Server (NTRS)

During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

Mitchell, Kathryn

2009-01-01

314

New monitoring by thermogravimetry for radiation degradation of EVA  

NASA Astrophysics Data System (ADS)

The radiation ageing of ethylene vinyl-acetate copolymer (EVA) as the jacket of cable applied in nuclear power plant was carried out by gamma rays irradiation, and the degradation was monitored by a thermo-gravimetric analysis (TGA). The EVA decomposition rate in air by the isothermal at 400 °C decreased with increase of dose and also with decrease of the dose rate. The behavior of EVA jacket of cable indicated that the decomposition rate at 400 °C was reduced with increase of oxidation. The elongation at break by tensile test for the radiation aged EVA was closely related to the decomposition rate at 400 °C; therefore, the TGA might be applied for a diagnostic technique of the cable degradation.

Boguski, J.; Przybytniak, G.; ?yczko, K.

2014-07-01

315

EVA Tutorial #3 ISSUES ARISING IN EXTREME VALUE ANALYSIS  

E-print Network

1 EVA Tutorial #3 ISSUES ARISING IN EXTREME VALUE ANALYSIS Rick Katz Institute for Mathematics as limiting distribution of maxima X1, X2, . . ., Xn independent with common cdf F Mn = max{ X1, X2, . . ., Xn

Katz, Richard

316

Dexterity test data contribute to reduction in leaded glovebox gloves use  

SciTech Connect

Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (T A-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes. Using an integrated approach, controls have been developed and implemented through an efficient Glovebox Glove Integrity Program. A key element of this program is to consider measures that lower the overall risk of glovebox operations. Line management who own glovebox processes through this program make decisions on which type of glovebox gloves (hereafter referred to as gloves), the weakest component of this safety-significant system, would perform best in these aggressive environments. As Low as Reasonably Achievable considerations must be balanced with glove durability and worker dexterity, both of which affect the final overall risk of the operation. In the past, lead-loaded (leaded) gloves made from Hypalon(reg.) were the primary glove for programmatic operations at TA55. Replacing leaded gloves with unleaded gloves for certain operations would lower the overall risk as well as reduce the amount of mixed transuranic waste. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the pros and cons of wearing leaded gloves, the effect of leaded gloves versus unleaded gloves on task performance using standard dexterity tests, the justification for switching from leaded to unleaded gloves, and the pollution prevention benefits of this dramatic change in the glovebox system are presented.

Cournoyer, Michael E [Los Alamos National Laboratory; Lawton, Cindy M [Los Alamos National Laboratory; Castro, Amanda M [Los Alamos National Laboratory; Costigan, Stephen A [Los Alamos National Laboratory; Schreiber, Stephen [Los Alamos National Laboratory

2009-01-01

317

A Pneumatic Glove and Immersive Virtual Reality Environment for Hand Rehabilitative Training After Stroke  

Microsoft Academic Search

While a number of devices have recently been developed to facilitate hand rehabilitation after stroke, most place some restrictions on movement of the digits or arm. Thus, a novel glove was developed which can provide independent extension assistance to each digit while still allowing full arm movement. This pneumatic glove, the PneuGlove, can be used for training grasp-and-release movements either

Lauri Connelly; Yicheng Jia; Maria L. Toro; Mary Ellen Stoykov; Robert V. Kenyon; Derek G. Kamper

2010-01-01

318

Permeation of hair dye ingredients, p-phenylenediamine and aminophenol isomers, through protective gloves.  

PubMed

Skin irritation and contact allergies are skin disorders common to hairdressers. The predominant oxidative hair dye components, such as p-phenylenediamine (PPD) and aminophenol isomers, can cause contact dermatitis. Use of protective gloves can prevent dermal contact with skin irritants. This study investigates the permeation behaviors of p-aminophenol (PAP), m-aminophenol (MAP), o-aminophenol (OAP) and PPD in single and mixed challenge solutions with disposable natural rubber latex (NRL) gloves, disposable polyvinylchloride (PVC) gloves and neoprene (NP) gloves. The challenge solutions were 4% PPD (w/v), 3% OAP (w/v), 2% PAP (w/v) and 2% MAP (w/v) in ethanol or 12% hydrogen peroxide solutions. The cocktail solutions of the four chemicals were also tested. An American Society for Testing and Materials type permeation cell, ethanol liquid collection and gas chromatography-flame ionization detection of samples taken from the collection medium every 10 min facilitated determination of breakthrough times (BTs), cumulative permeated masses and steady-state permeation rates (SSPRs). Experiments were 4 h long for the NRL and PVC gloves and 8 h for NP gloves. No chemicals tested broke through the NP gloves when exposed for 8 h. In the ethanol solution, PPD and OAP started breaking through the PVC gloves at 40 min. The SSPRs of PVC gloves were higher than those for NRL gloves in all challenge conditions for both single chemicals and mixtures. No tested chemicals in hydrogen peroxide solutions permeated the gloves during the 4-h tests. The chemical composition of the challenge solution was a main effecter of BTs and SSPRs for the NRL glove. For disposable PVC gloves, the main factors of BTs were molecular size [molar volume (MV)] and polarity (logK(ow)), and the primary factors of SSPRs were concentration, MV and logK(ow). In conclusion, disposable NRL gloves and disposable PVC gloves should not be used repeatedly for handling the hair dye products. Hydrogen peroxide did not accelerate chemical breakthrough. The compositions of the challenge solutions and physical and chemical properties (MV and logK(ow)) affected permeation behaviors for different gloves. PMID:19279162

Lee, Hsiao-Shu; Lin, Yu-Wen

2009-04-01

319

US space flight experience. Physical exertion and metabolic demand of extravehicular activity: Past, present, and future  

NASA Technical Reports Server (NTRS)

A review of physical exertion and metabolic demands of extravehicular activity (EVA) on U.S. astronauts is given. Information is given on EVA during Gemini, Apollo and Skylab missions. It is noted that nominal EVA's should not be overstressful from a cardiovascular standpoint; that manual-intensive EVA's such as are planned for the construction phase of the Space Station can and will be demanding from a muscular standpoint, primarily for the upper extremities; that off-nominal unplanned EVA's can be physically demanding both from an endurance and from a muscular standpoint; and that crewmembers should be physically prepared and capable of performing these EVA's at any time during the mission.

Moore, Thomas P.

1989-01-01

320

Design and simulation of EVA tools for first servicing mission of HST  

NASA Technical Reports Server (NTRS)

The Hubble Space Telescope (HST) was launched into near-earth orbit by the Space Shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A Space Shuttle repair mission in January 1994 installed small corrective mirrors that restored the full intended optical capability of the HST. The First Servicing Mission (FSM) involved considerable Extra Vehicular Activity (EVA). Special EVA tools for the FSM were designed and developed for this specific purpose. In an earlier report, the details of the Data Acquisition System developed to test the performance of the various EVA tools in ambient as well as simulated space environment were presented. The general schematic of the test setup is reproduced in this report for continuity. Although the data acquisition system was used extensively to test a number of fasteners, only the results of one test each carried on various fasteners and the Power Ratchet Tool are included in this report.

Naik, Dipak; Dehoff, P. H.

1994-01-01

321

Energy Expenditure During Extravehicular Activity Through Apollo  

NASA Technical Reports Server (NTRS)

Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and crewmembers (CMs) ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVA, and provides a historical look at energy expenditure during EVA through the Apollo program.

Paul, Heather L.

2011-01-01

322

Energy Expenditure During Extravehicular Activity Through Apollo  

NASA Technical Reports Server (NTRS)

Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and, as a result, crew members ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVAs, and provides a historical look at energy expenditure during EVAs through the Apollo Program.

Paul, Heather L.

2012-01-01

323

Tensile Properties and Integrity of Clean Room and Low-Modulus Disposable Nitrile Gloves: A Comparison of Two Dissimilar Glove Types  

PubMed Central

Background: The selection of disposable nitrile exam gloves is complicated by (i) the availability of several types or formulations, (ii) product variability, and (iii) an inability of common quality control tests to detect small holes in the fingers. Differences in polymer formulation (e.g. filler and plasticizer/oil content) and tensile properties are expected to account for much of the observed variability in performance. Objectives: This study evaluated the tensile properties and integrity (leak failure rates) of two glove choices assumed to contain different amounts of plasticizers/oils. The primary aims were to determine if the tensile properties and integrity differed and if associations existed among these factors. Additional physical and chemical properties were evaluated. Methods: Six clean room and five low-modulus products were evaluated using the American Society for Testing and Materials Method D412 and a modified water-leak test to detect holes capable of passing a virus or chemical agent. Results: Significant differences in the leak failure rates and tensile properties existed between the two glove types (P ? 0.05). The clean room gloves were about three times more likely to have leak failures (chi-square; P = 0.001). No correlation was observed between leak failures and tensile properties. Solvent extract, an indication of added plasticizer/oil, was not associated with leak failures. However, gloves with a maximum modulus <4 MPa or area density (AD) <11 g cm?2 were about four times less likely to leak. Conclusions: On average, the low-modulus gloves were a better choice for protection against aqueous chemical or biological penetration. The observed variability between glove products indicated that glove selection cannot rely solely on glove type or manufacturer labeling. Measures of modulus and AD may aid in the selection process, in contrast with common measures of tensile strength and elongation at break. PMID:22201179

Phalen, Robert N.; Wong, Weng kee

2012-01-01

324

Planetary Protection Considerations in EVA System Design  

NASA Technical Reports Server (NTRS)

To better constrain their origin, we have performed systematic studies of the siderophile element distribution in metal from Enstatite achondrites and iron-rich meteorites linked to Enstatite achondrites. Humayun (2010) reported 20 siderophile elements in the metal of Horse Creek, Mt. Egerton and Tucson, three iron meteorites known for their high Si content in their metal. The Horse Creek and Mt. Egerton irons have elemental patterns identical to metallic solids derived from partially molten enstatite chondrites. Tucson has an unusual siderophile element pattern that is reminiscent of IVA irons, except for the most volatile siderophiles with condensation temperatures below that of Cu (Sb, Ge, Sn) which are more depleted. The origin of Tucson metal is likely linked to an impact involving a reduced chondritic body that provided the silicates, and IVA iron. In a related study, van Acken et al. (2010) reported siderophile element abundances in metal and sulfides from aubrites, chondritic inclusions in aubrites, and other enstatite achondrites (including a separate section of Mt. Egerton). They found that aubrite metal was linked to metal in enstatite chondrites by low degree partial melting forming sulfur-rich metallic liquids. A restite origin of aubrites is not consistent with these metal compositions. The link between the metal compositions and cumulate silicates is not simple. The metal must have been incorporated from enstatite chondritic material that was assimilated by the aubrite magma. A manuscript is in preparation (van Acken et al., 2010). In a related study, van Acken et al. (2010, submitted) reported new precise Os isotope ratios and highly siderophile element abundances in Enstatite chondrites, Enstatite achondrites, Rumurutite chondrites to explore the range of nucleosynthetic variation in s-process Os. They observed nucleosynthetic anomalies, deficiencies of s-process Os, in most primitive enstatite chondrites, but showed the Rumurutite chondrites have very little expression of these anomalies. hardware from the human-occupied area may limit (although not likely eliminate) external materials in the human habitat. Definition of design-to requirements is critical to understanding technical feasibility and costs. The definition of Planetary Protection needs in relation to EVA mission and system element development cost impacts should be considered and interpreted in terms of Plausible Protection criteria. Since EVA operations will have the most direct physical interaction with the Martian surface, PP needs should be considered in the terms of mitigating hardware and operations impacts and costs.

Eppler, Dean B.; Kosmo, Joseph J.

2011-01-01

325

Use of Magnetorheological fluid in a force feedback glove.  

PubMed

Magnetorheological fluid (MRF) is a smart material that has the property of changing its viscosity when exposed to a magnetic field. By placing this fluid into a sealed cylinder with an electromagnet piston as a core, a controllable resistance motion dampener can be created. A novel exoskeleton mechanical power transmission system was designed, utilizing rapid prototype parts, to transmit these resistive forces to the user's fingertips. A first iteration force feedback glove was developed and tested on human subjects for overall usability. The eventual goal of the system is to provide an alternative force producing system for exercises and rehabilitation. The entire system is lightweight, low power, and easily portable. PMID:17436869

Winter, Scott H; Bouzit, Mourad

2007-03-01

326

Evaluation of an Anthropometric Human Body Model for Simulated EVA Task Assessment  

NASA Technical Reports Server (NTRS)

One of the more mission-critical tasks performed in space is extravehicular activity (EVA) which requires the astronaut to be external to the station or spacecraft, and subsequently at risk from the many threats posed by space. These threats include, but are not limited to: no significant atmosphere, harmful electromagnetic radiation, micrometeoroids, and space debris. To protect the astronaut from this environment, a special EVA suit is worn which is designed to maintain a sustainable atmosphere (at 1/3 atmosphere) and provide protection against the hazards of space. While the EVA suit serves these functions well, it does impose limitations on the astronaut as a consequence of the safety it provides. Since the astronaut is in a virtual vacuum, any atmospheric pressure inside the suit serves to pressurize the suit and restricts mobility of flexible joints (such as fabric). Although some of the EVA suit joints are fixed, rotary-style joints, most of the mobility is achieved by the simple flexibility of the fabric. There are multiple layers of fabric, each of which serves a special purpose in the safety of the astronaut. These multiple layers add to the restriction of motion the astronaut experiences in the space environment. Ground-based testing is implemented to evaluate the capability of EVA-suited astronauts to perform the various tasks in space. In addition to the restriction of motion imposed by the EVA suit, most EVA activity is performed in a micro-gravity (weight less) environment. To simulate weightlessness EVA-suited testing is performed in a neutral buoyancy simulator (NBS). The NBS is composed of a large container of water (pool) in which a weightless environment can be simulated. A subject is normally buoyant in the pressurized suit; however he/she can be made neutrally buoyant with the addition of weights. In addition, most objects the astronaut must interface with in the NBS sink in water and flotation must be added to render them "weightless". The implementation of NBS testing has proven to invaluable in the assessment of EVA activities performed with the Orbiter and is considered to be a key step in the construction of the International Space Station (ISS). While the NBS testing is extremely valuable, it does require considerable overhead to maintain and operate. It has been estimated that the cost of utilizing the facility is approximately $10,000 per day. Therefore it is important to maximize the utility of NBS testing for optimal results. One important aspect to consider in any human/worksite interface is the considerable wealth of anthropometric and ergonomic data available. A subset of this information specific to EVA activity is available in NASA standard 3000. The difficulty in implementing this data is that most of the anthropometric information is represented in a two-dimensional format. This poses some limitations in complete evaluation of the astronaut's capabilities in a three-dimensional environment. Advances in computer hardware and software have provided for three-dimensional design and implementation of hardware with the advance of computer aided design (CAD) software. There are a number of CAD products available and most companies and agencies have adopted CAD as a fundamental aspect of the design process. Another factor which supports the use of CAD is the implementation of computer aided manufacturing (CAM) software and hardware which provides for rapid prototyping and decreases the time to product in the design process. It is probable that most hardware to be accessed by astronauts in EVA or IVA (intravehicular activity) has been designed by a CAD system, and is therefore represented in three-dimensional space for evaluation. Because of the implementation of CAD systems and the movement towards early prototyping, a need has arisen in industry and government for tools which facilitate the evaluation of ergonomic consideration in a three-dimensional environment where the hardware has been designed by the CAD tools. One such product is Jack which was developed by the University

Etter, Brad

1996-01-01

327

Eva Nogales: Introduction to Electron Microscopy  

NSDL National Science Digital Library

This lecture from the iBioSeminars project is presented by Eva Nogales Molecular Cell Biology Professor at the University of California, Berkeley, and it covers Visualizing Biological Structure Using Electron Microscopy: From Molecules to Cells. Transmission electron microscopy (TEM) offers the possibility of visualizing biological structures at resolution well beyond that of light microscopy. Whether you are interested in the ultrastructure of cells and organelles, or in the detailed molecular structure of biological macromolecules, different modalities of TEM can generally be applied to your system of interest. The lecture reviews the physical principles underlying image formation by the interaction of electrons with matter, introduces you to basic and advanced instruments and to sample preparation techniques. Using a number of biological examples from work in the Nogales lab, the lecture then describes the capabilities of the TEM methodology. Special emphasis is placed on the image processing methods used to obtain three-dimensional information from TEM data. The video runs 46:55 and can be downloaded in a number of formats: QuickTime, MP4, M4V, and PPT. The video can also be streamed through YouTube or iTunes U.

Nogales, Eva

2013-07-10

328

Minimizing EVA Airlock Time and Depress Gas Losses  

NASA Technical Reports Server (NTRS)

This paper describes the need and solution for minimizing EVA airlock time and depress gas losses using a new method that minimizes EVA out-the-door time for a suited astronaut and reclaims most of the airlock depress gas. This method consists of one or more related concepts that use an evacuated reservoir tank to store and reclaim the airlock depress gas. The evacuated tank can be an inflatable tank, a spent fuel tank from a lunar lander descent stage, or a backup airlock. During EVA airlock operations, the airlock and reservoir would be equalized at some low pressure, and through proper selection of reservoir size, most of the depress gas would be stored in the reservoir for later reclamation. The benefit of this method is directly applicable to long duration lunar and Mars missions that require multiple EVA missions (up to 100, two-person lunar EVAs) and conservation of consumables, including depress pump power and depress gas. The current ISS airlock gas reclamation method requires approximately 45 minutes of the astronaut s time in the airlock and 1 KW in electrical power. The proposed method would decrease the astronaut s time in the airlock because the depress gas is being temporarily stored in a reservoir tank for later recovery. Once the EVA crew is conducting the EVA, the volume in the reservoir would be pumped back to the cabin at a slow rate. Various trades were conducted to optimize this method, which include time to equalize the airlock with the evacuated reservoir versus reservoir size, pump power to reclaim depress gas versus time allotted, inflatable reservoir pros and cons (weight, volume, complexity), and feasibility of spent lunar nitrogen and oxygen tanks as reservoirs.

Trevino, Luis A.; Lafuse, Sharon A.

2008-01-01

329

Physiological and technological considerations for Mars mission extravehicular activity  

NASA Technical Reports Server (NTRS)

The nature of the suit is a function of the needs of human physiology, the ambient environment outside the suit, and the type of activity to be accomplished while in the suit. The physiological requirements that must be provided for in the Martian Extravehicular Activity (EVA) suit will be reviewed. The influence of the Martian environment on the EVA suit and EVA capabilities is elaborated, and the Martian environment is compared with the lunar environment. The differences that may influence the EVA design are noted. The type, nature, and duration of activities to be done in transit to Mars and on the Martian surface will be evaluated and the impact of these activities on the requirements for EVA systems will be discussed. Furthermore, the interaction between Martian surface transportation systems and EVA systems will be covered. Finally, options other than EVA will be considered such as robotics, nonanthropometric suits, and vehicles with anthropometric extremities or robotic end effectors.

Waligora, James M.; Sedej, Melaine M.

1986-01-01

330

Flight controller Kevin McCluney monitors STS-61 astronauts during EVA  

NASA Technical Reports Server (NTRS)

Flight controller Kevin McCluney monitors the televised activity of astronauts F. Story Musgrave and Jeffrey A. Hoffman. The veteran astronauts were performing the first extravehicular activity (EVA-1) of the STS-61 Hubble Space Telescope (HST) servicing mission. McCluney's duties deal with maintenance, mechanical, arm and crew systems, meaning that he and his colleagues will be exceptionally busy for the next five days. Four astronauts in alternating pairs will perform a variety of tasks on the giant telescope during that period.

1993-01-01

331

The Acticoat glove-an effective dressing for the completely burnt hand: how we do it.  

PubMed

The choice of the silver impregnated Acticoat dressing (Smith & Nephew, UK) for burns is well documented due to its recognised sustained bactericidal activity, reduction of inflammation and ability to promote healing. Its use in the burnt hand, however, is a compromise between adequate dressing cover of this injury and the ability to splint and perform hand therapy on the injured limb. Trying to wrap individual fingers, maintaining web spaces and keep a relatively light dressing for the hand therapists is often difficult and time consuming. We introduce a simple, effective method of creating a custom made Acticoat glove which provides a thin, light dressing covering the hands allowing full mobilisation of the wrist and finger joints. PMID:16621300

Kok, K; Georgeu, G A; Wilson, V Y

2006-06-01

332

Computational Analysis of the G-III Laminar Flow Glove  

NASA Technical Reports Server (NTRS)

Under NASA's Environmentally Responsible Aviation Project, flight experiments are planned with the primary objective of demonstrating the Discrete Roughness Elements (DRE) technology for passive laminar flow control at chord Reynolds numbers relevant to transport aircraft. In this paper, we present a preliminary computational assessment of the Gulfstream-III (G-III) aircraft wing-glove designed to attain natural laminar flow for the leading-edge sweep angle of 34.6deg. Analysis for a flight Mach number of 0.75 shows that it should be possible to achieve natural laminar flow for twice the transition Reynolds number ever achieved at this sweep angle. However, the wing-glove needs to be redesigned to effectively demonstrate passive laminar flow control using DREs. As a by-product of the computational assessment, effect of surface curvature on stationary crossflow disturbances is found to be strongly stabilizing for the current design, and it is suggested that convex surface curvature could be used as a control parameter for natural laminar flow design, provided transition occurs via stationary crossflow disturbances.

Malik, Mujeeb R.; Liao, Wei; Lee-Rausch, Elizabeth M.; Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan

2011-01-01

333

Thermal Analysis of a Metallic Wing Glove for a Mach-8 Boundary-Layer Experiment  

NASA Technical Reports Server (NTRS)

A metallic 'glove' structure has been built and attached to the wing of the Pegasus(trademark) space booster. An experiment on the upper surface of the glove has been designed to help validate boundary-layer stability codes in a free-flight environment. Three-dimensional thermal analyses have been performed to ensure that the glove structure design would be within allowable temperature limits in the experiment test section of the upper skin of the glove. Temperature results obtained from the design-case analysis show a peak temperature at the leading edge of 490 F. For the upper surface of the glove, approximately 3 in. back from the leading edge, temperature calculations indicate transition occurs at approximately 45 sec into the flight profile. A worst-case heating analysis has also been performed to ensure that the glove structure would not have any detrimental effects on the primary objective of the Pegasus a launch. A peak temperature of 805 F has been calculated on the leading edge of the glove structure. The temperatures predicted from the design case are well within the temperature limits of the glove structure, and the worst-case heating analysis temperature results are acceptable for the mission objectives.

Gong, Leslie; Richards, W. Lance

1998-01-01

334

Environmental Performance Evaluation of a Rubber Glove Manufacturing Company: A Case Study1  

Microsoft Academic Search

An environmental performance evaluation (EPE) of a rubber glove manufacturing company was carried out. The company chosen for this case study is a small sized company that does not have an environmental management system (EMS) - a typical example for the rubber glove manufacturing industry in Malaysia. ISO 14031:1999 was used to guide on conducting the EPE that follows a

Nordin Abd; Kadir Bakti; Lim Kwee Shyan

335

76 FR 6683 - Information Related to Risks and Benefits of Powdered Gloves; Request for Comments  

Federal Register 2010, 2011, 2012, 2013, 2014

...that will inform health care providers and consumers of the risks associated with glove...statement advising health care providers and consumers of the risks presented by glove...that will inform health care providers and consumers of the risks associated with...

2011-02-07

336

Evaluation of aloe vera gel gloves in the treatment of dry skin associated with occupational exposure  

Microsoft Academic Search

Objective: An examination glove that delivers aloe vera (AV) gel to the gloved hand was studied in 30 adult females with bilateral occupational dry skin with or without irritant contact dermatitis (with or without erythema, fissures, and excoriations). Methods: All participants were factory assembly-line workers with repeated superficial skin trauma who attributed their dry, irritated, emollient-dependent skin to a common

Dennis P. West; Ya Fen Zhu

2003-01-01

337

Safety in the Chemical Laboratory: Selecting Chemical Protective Gloves Properly in the Lab.  

ERIC Educational Resources Information Center

Discusses the selection of gloves for the chemistry laboratory. Provides checklists for the purposes of the gloves, and the factors including permeation rate, breakthrough time, friction, and cost. Lists eight rules for preventing skin exposure and minimizing area contamination. Lists six references. (YP)

Hart, Charles

1989-01-01

338

Assessment of the efficacy of Proguard RR-2 radio-protective gloves during forearm manipulation.  

PubMed

The hazards of ionising radiation are well known and precautions, such as lead aprons and thyroid shields are routinely used. Orthopaedic surgeon's hands are at particular risk from direct and scatter radiation, when manipulating forearm fractures, due to the proximity of the image intensifier. The use of lead gloves has been recommended in the literature but are seldom employed. Proguard RR-2 gloves provide similar tactile sensitivity to double gloves and are claimed by the manufacturer to provide up to 55% protection in vitro at a direct beam energy level of 60 kV. This claim was tested in a clinical setting. The gloves were worn during forearm manipulations and the radiation dose measured using thermoluminescent dosimeters (TLDs). The results demonstrated a radiation attenuation of 60-64%. These gloves appear to achieve a good compromise between protection and sensitivity and should be included in routine protection against ionising radiation during MUA. PMID:12565026

Calder, P R; Tennent, T D; Allen, P W

2003-02-01

339

Mission Specialists Mario Runco and Greg Harbaugh suiting up for EVA.  

NASA Technical Reports Server (NTRS)

Candid view of EVA Mission Specialists Mario Runco and Greg Harbaugh suiting up for EVA in the middeck with the assistance of Mission Specialist Susan Helms (reviewing the operation with a procedural checklist).

1993-01-01

340

Dexterity tests data contribute to reduction in leaded glovebox gloves use  

SciTech Connect

Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alphaemitting materials. The spread of radiological contamination on surfaces and airborne contamination and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes. Through an integrated approach, controls have been developed and implemented through an efficient Glovebox Glove Integrity Program (GGJP). A key element of this program is to consider measures that lower the overall risk of glovebox operations. Line management owning glovebox processes through this program make decisions on which type of glovebox gloves (the weakest component of this safety significant system) would perform in these aggressive environments. As Low As Reasonably Achievable (ALARA) considerations must be balanced with glove durability and worker dexterity, both of which affect the final overall risk of the operation. In the past, lead-loaded (leaded) glovebox gloves made from Hypalon(reg.) had been the workhorse of programmatic operations at TA-55. Replacing leaded gloves with unleaded gloves for certain operations would lower the overall risk as well as reduced the amount of mixed TRU waste. This effort contributes to Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations. In the following report, the pros and cons of wearing leaded glovebox gloves, the effect of leaded gloves versus unleaded gloves on task performance using standard dexterity tests, the justification for switching from leaded to unleaded gloves, and pollution prevention benefits of this dramatic change in the glovebox system are presented.

Cournoyer, Michael E [Los Alamos National Laboratory; Lawton, Cindy M [Los Alamos National Laboratory; Castro, Amanda M [Los Alamos National Laboratory

2008-01-01

341

Protective glove use and hygiene habits modify the associations of specific pesticides with Parkinson's disease.  

PubMed

Pesticides have been associated with Parkinson's disease (PD), and protective gloves and workplace hygiene can reduce pesticide exposure. We assessed whether use of gloves and workplace hygiene modified associations between pesticides and PD. The Farming and Movement Evaluation (FAME) study is a nested case-control study within the Agricultural Health Study. Use of protective gloves, other PPE, and hygiene practices were determined by questionnaire (69 cases and 237 controls were included). We considered interactions of gloves and hygiene with ever-use of pesticides for all pesticides with ?5 exposed and unexposed cases and controls in each glove-use stratum (paraquat, permethrin, rotenone, and trifluralin). 61% of respondents consistently used protective gloves and 87% consistently used ?2 hygiene practices. Protective glove use modified the associations of paraquat and permethrin with PD: neither pesticide was associated with PD among protective glove users, while both pesticides were associated with PD among non-users (paraquat OR 3.9 [95% CI 1.3, 11.7], interaction p=0.15; permethrin OR 4.3 [95% CI 1.2, 15.6] interaction p=0.05). Rotenone was associated with PD regardless of glove use. Trifluralin was associated with PD among participants who used <2 hygiene practices (OR 5.5 [95% CI 1.1, 27.1]) but was not associated with PD among participants who used 2 or more practices (interaction p=0.02). Although sample size was limited in the FAME study, protective glove use and hygiene practices appeared to be important modifiers of the association between pesticides and PD and may reduce risk of PD associated with certain pesticides. PMID:25461423

Furlong, Melissa; Tanner, Caroline M; Goldman, Samuel M; Bhudhikanok, Grace S; Blair, Aaron; Chade, Anabel; Comyns, Kathleen; Hoppin, Jane A; Kasten, Meike; Korell, Monica; Langston, J William; Marras, Connie; Meng, Cheryl; Richards, Marie; Ross, G Webster; Umbach, David M; Sandler, Dale P; Kamel, Freya

2015-02-01

342

Recent advances in the use of zinc borates in flame retardancy of EVA  

Microsoft Academic Search

In this work, zinc borates are used as synergistic agents in EVA–ATH and EVA–Mg(OH)2 flame-retardant (FR) formulations and as smoke suppressants. Moreover, the study by solid state NMR of the residues sampled at different times during cone calorimeter experiments of the formulations EVA–ATH and EVA–ATH\\/Zinc borate allows to propose a mechanism of action of the FR systems. It is demonstrated

Serge Bourbigot; Michel Le Bras; Robert Leeuwendal; Kelvin K. Shen; David Schubert

1999-01-01

343

Investigation into the causes of browning in EVA encapsulated flat plate PV modules  

Microsoft Academic Search

The problem of browning in a number of EVA (ethylene vinyl acetate) encapsulated flat plate photovoltaic modules has led to the questioning of EVA as a suitable material for such applications. By isolating the variables that could possibly lead to EVA browning, such as module construction, types of glass superstrate, additives, and processing conditions, we have been able to determine

S. C. Agro; J. P. Galica; L. A. Thoma; R. S. Yorgensen; M. Ezrin; P. Klemchuk; G. Lavigne

1994-01-01

344

Weathering degradation of EVA encapsulant and the effect of its yellowing on solar cell efficiency  

Microsoft Academic Search

After five or more years of weathering, the degradation of ethylene-vinyl acetate (EVA) encapsulant in photovoltaic (PV) modules resulted in a yellow to dark brown color. Degraded EVA shows a substantial increase in the gel content and a large to complete loss of the ultraviolet (UV) absorber, Cyasorb UV 531. The EVA discoloration is caused by the formation of polyconjugated

F. J. Pern; A. W. Czanderna; K. A. Emery; R. G. Dhere

1991-01-01

345

Adopting Economic Value Added (EVA) on Real Estate Corporations in Malaysia  

Microsoft Academic Search

This paper measures property companies' performance under new economic performance metric known as Economic Value Added (EVA) and identifies which companies perform better. The EVA of 27 Malaysia property companies are computed and analysed during the periods of 1997 through 2006. The EVA is an economic performance metric proposed by Stern Stewart Management Services. It claims to have successfully eliminated

Norfarah Hani Yahaya; Suhaila Mat Kila; Wan Mansor; W. Mahmood

346

A primer on EVA for health care providers.  

PubMed

Unlike accounting earnings, economic profit (EVA) is a measure of a company's true earnings because it fully "accounts" for the costs of all forms of financing, including debt and equity. In the EVA view, a company is not truly profitable unless it earns a return on capital that bests the opportunity cost of capital. That being said, the question addressed here is how to measure the economic profit of providers in the health care sector, which is largely comprised of not-for-profit organizations such as clinics, laboratories, and hospitals. PMID:19175230

Grant, James L

2007-01-01

347

Astronauts Carl Meade and Mark Lee test SAFER during EVA  

NASA Technical Reports Server (NTRS)

Backdropped against the darkness of space some 130 nautical miles above Earth, astronaut Mark C. Lee (red stripe on EVA suit) tests the new Simplified Aid for EVA Rescue (SAFER) system. Astronaut Carl J. Meade, tethered to Discovery, at bottom center, got his turn later using the new SAFER hardware. The scen was captured with a 70mm handheld Hasselblad camera operated by a fellow crew member in the shirt-sleeve environment of the Space Shuttle Discovery's cabin. Part of the hardware for the Lidar-In-space Technology Experiment (LITE) is in left foreground.

1994-01-01

348

Astronauts practice contingency EVA on GRO during simulation in JSC WETF  

NASA Technical Reports Server (NTRS)

Astronauts George D. Nelson (nearest camera) and Thomas D. Akers, suited in extravehicular mobility units (EMUs), work with the Gamma Ray Observatory (GRO) mockup in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Having achieved neutral buoyancy in the 25-ft deep pool, Nelson and Akers were verifying changes in handrail and portable foot restraint (PRF) locations made during 1985 training. They also practiced contingency extravehicular activity (EVA) or unplanned GRO solar array (SA) and high gain antenna (HGA) deployment, refueling and module changeouts.

1989-01-01

349

Using double gloves in surgical procedures: a literature review.  

PubMed

This article will present a critical review of the literature relating to the use of double gloves during surgery in order to identify best practice by using available resources and to improve health care. During surgery there is an increased risk of exposure to blood and, as a result, pathogens can be transferred through contact between the patient and surgical team. Health professionals working in the operating room are prone to frequent exposure to patients' blood and body fluids ( Davanzo et al, 2008 ; Au et al, 2008 ; Myers et al, 2008 ). Several researchers have also demonstrated that the highest incidence of blood and body fluid exposure is in the operating room during surgical procedures ( Ganczak et al, 2006 ; Myers et al, 2008 ; Naghavi and Sanati, 2009 ). PMID:25426524

Al Maqbali, Mohammed Abdullah

2014-11-27

350

Hospital-acquired malaria transmitted by contaminated gloves.  

PubMed

We describe two cases of malaria occurring in a malaria-free zone in two in-patients, two weeks after a case of Plasmodium falciparum malaria, acquired in Burkina Faso, had been admitted to the same ward. After reviewing the techniques used by nursing staff, we conclude that transmission probably occurred via gloves contaminated following manipulation of venous cannulae and drip lines of the patient with Burkina Faso-acquired malaria and which had not been discarded before manipulating the intravenous lines of the other two patients. Nosocomial transmission of unusual and potentially life-threatening infections should be taken into consideration in those settings where compliance with universal precautions is not rigorous. PMID:11170781

Piro, S; Sammud, M; Badi, S; Al Ssabi, L

2001-02-01

351

Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site  

NASA Technical Reports Server (NTRS)

Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting.

Diftler, M. A.; Ambrose, R. O.; Bluethmann, W. J.; Delgado, F. J.; Herrera, E.; Kosmo, J. J.; Janoiko, B. A.; Wilcox, B. H.; Townsend, J. A.; Matthews, J. B.; Fong, T. W.; Bualat, M. G.; Lee, S. Y.; Dorsey, J. T.; Doggett, W. R.

2007-01-01

352

Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove  

NASA Technical Reports Server (NTRS)

Aerodynamic computational fluid dynamics analysis of a wing glove attached to one wing of a business jet is presented and discussed. A wing glove placed on only one wing will produce asymmetric aerodynamic effects that will result in overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to ensure that the wing glove does not have a significant effect on the aircraft flight characteristics. TRANAIR (Calmar Research Corporation, Cato, New York), a nonlinear full potential solver, and Star-CCM+ (CD-adapco, Melville, New York), a finite volume full Reynolds-averaged Navier-Stokes computational fluid dynamics solver, are used to analyze a full aircraft with and without the glove at a variety of flight conditions, aircraft configurations, and angles of attack and sideslip. Changes in the aircraft lift, drag, and side force along with roll, pitch, and yaw are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove are discussed. Results show that the glove produces only small changes in the aerodynamic forces and moments acting on the aircraft, most of which are insignificant.

Hartshorn, Fletcher

2011-01-01

353

Hubble Space Telescope Servicing Mission Four (HST SM4) EVA Challenges for Safe Execution of STS-125  

NASA Technical Reports Server (NTRS)

In May of 2009, the world-renowned Hubble Space Telescope (HST) received a suite of new instruments and a refurbished bus to enable science for many years to come. The restoration was conducted on-orbit by four space-walkers on five carefully scripted Extra-Vehicular Activity (EVA) days. Assuring the safety of the space-walkers and their crew-mates required careful attention to tool development, detailed procedures for every activity and many rehearsals with engineers and crew to ensure that everything worked together. Additionally, evolution of EVA requirements since the last servicing mission in 2002, and the broad scope of the mission demanded a much higher degree of safety participation in hardware design and risk acceptance than for previous servicing missions.

Dedalis, Robert P.; Hill, William H.; Rice, Karin Bergh; Cooter, Ann M.

2010-01-01

354

Development of a test method for protective gloves against nanoparticles in conditions simulating occupational use  

NASA Astrophysics Data System (ADS)

Nanoparticle manufacture and use are in full expansion. The associated risks of occupational exposure raise large concerns due to their potential toxicity. Even if they stand as a last resort in the traditional occupational Health & Safety (H&S) risk management strategy, personal protective equipment (PPE) against nanoparticles are an absolute need in the context of precautionary principle advocated by H&S organizations worldwide. However no standard test method is currently available for evaluating the efficiency of PPE against nanoparticles, in particular in the case of gloves. A project is thus underway to develop a test method for measuring nanoparticle penetration through protective gloves in conditions simulating glove-nanoparticle occupational interaction. The test setup includes an exposure and a sampling chamber separated by a circular glove sample. A system of cylinders is used to deform the sample while it is exposed to nanoparticles. The whole system is enclosed in a glove box to ensure the operator safety during assembly, dismounting and clean-up operations as well as during the tests. Appropriate nanoparticle detection techniques were also identified. Results are reported here for commercial 15nm TiO2 nanoparticles - powder and colloidal solutions in 1,2-propanediol, ethylene glycol and water - and four types of protective gloves: disposable nitrile and latex as well as unsupported neoprene and butyl rubber gloves. They show that mechanical deformations and contact with colloidal solution liquid carriers may affect glove materials. Preliminary results obtained with TiO2 powder indicate a possible penetration of nanoparticles through gloves following mechanical deformations.

Dolez, Patricia; Vinches, Ludwig; Wilkinson, Kevin; Plamondon, Philippe; Vu-Khanh, Toan

2011-07-01

355

Custom Unit Pump Development for the EVA PLSS  

NASA Technical Reports Server (NTRS)

This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, seal-less, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion, and restart capability under both ambient and vacuum conditions. The pump operated at 40 to 240 lbm/hr flow rate, 35 to 100 oF pump temperature, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test.

Schuller, Michael; Kurwitz, Cable; Little, Frank; Oinuma, Ryoji; Larsen, Ben; Goldman, Jeff; Reinis, Filip; Trevino, Luis

2010-01-01

356

Study on EVA-based Enterprise Performance Evaluation Method  

Microsoft Academic Search

To create value for shareholders as much as possible is the mission of enterprise. Only the interests of shareholders has been protected, the rights of other stakeholders shall be guaranteed, building an effective performance evaluation index system of enterprise is particularly important. Traditional profit-centered performance evaluations have many defects, as a new performance evaluation method of business, EVA makes up

Jin Yushi

2011-01-01

357

EVA: An Interactive Web-Based Collaborative Learning Environment  

ERIC Educational Resources Information Center

In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is described. The environment is composed of knowledge, collaboration, consulting and experimentation spaces as a collection of agents and conventional software components working over the knowledge domains. All user…

Sheremetov, Leonid; Arenas, Adolfo Guzman

2002-01-01

358

EVA: Collaborative Distributed Learning Environment Based in Agents.  

ERIC Educational Resources Information Center

In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is presented. The environment is composed of knowledge, collaboration, consulting, experimentation, and personal spaces as a collection of agents and conventional software components working over the knowledge domains. All…

Sheremetov, Leonid; Tellez, Rolando Quintero

359

Ordering Chaos: Eva Miller--Multnomah County Library, Portland, OR  

ERIC Educational Resources Information Center

Eva Miller has a knack for creating order out of disorder. She single-handedly brought Oregon's virtual reference service, Answerland, live in just under 90 days, says Rivkah Sass, now director of the Omaha Public Library. Miller created its web site, designed the graphics, developed marketing materials, and recruited and trained librarians--all…

Library Journal, 2004

2004-01-01

360

Astronaut Mark Lee floats free of tether during EVA  

NASA Technical Reports Server (NTRS)

Astronaut Mark C. Lee tests the new Simplified Aid for EVA Rescue (SAFER) system 130 nautical miles above Earth. The forward cargo bay is reflected in Lee's helmet visor in the 35mm frame, exposed through the Space Shuttle Discovery's aft flight deck windows. Part of the hardware for the LIDAR-in-Space Technology Experiment (LITE) is in center foreground.

1994-01-01

361

Astronaut Mark Lee test SAFER system during EVA  

NASA Technical Reports Server (NTRS)

Backdropped against the blue and white Earth, 130 nautical miles below, astronaut Mark C. Lee test the new Simplified Aid for EVA Rescue (SAFER) system. The scen was captured with a 70mm handheld Hasselblad camera with a 30mm lens attached.

1994-01-01

362

Astronaut Mark Lee floats free of tether during EVA  

NASA Technical Reports Server (NTRS)

Backdropped against a massive wall of white clouds 130 nautical miles below, astronaut Mark C. Lee floats freely as he tests the new Simplified Aid for EVA Rescue (SAFER) system. The image was exposed with a 35mm camera from the shirt-sleeve environment of the Space Shuttle Discovery.

1994-01-01

363

Algorithms for Optimizing Production DNA Sequencing Eva Czabarka  

E-print Network

of duplex DNA strands, this process, in fact, allows us to sequence one read length from one strand at oneAlgorithms for Optimizing Production DNA Sequencing Eva Czabarka Goran Konjevod Madhav V. Marathe sequenced, reconstructed DNA segment. At first sight, this appears to be computationally hard. We construct

Percus, Allon

364

Economic Value Added (EVA): Performance Metric to Sustain Competitiveness  

Microsoft Academic Search

The concept of Economic Value Added (EVA) has got wide acceptance as the key indicator of performance ever since industry started shifting from the product-centric world of the past to the value-centric world of the future. Economic Value Added estimates a particular type of economic profit, which states that in order to earn genuine profits, it is not only necessary

Ahindra Chakrabarti

2000-01-01

365

FUEL OXIDIZER REACTION PRODUCTS (FORP) CONTAMINATION OF SERVICE MODULE AND RELEASE OF NNITROSODIMETHYLAMINE IN A HUMID ENVIRONMENT FROM CREW EVA SUITS CONTAMINATED WITH FORP  

Microsoft Academic Search

The U.S. Control Moment Gyros (CMGs) maintain the International Space Station (ISS) vehicle attitude by compensating for disturbances. It is preferred to use CMGs, instead of attitude control thruster firings. However, prior to an extravehicular activity (EVA) on the Russian Segment (RS), the Docking Compartment (DC1) must be depressurized, as it is used as an airlock. When the DC1 is

WILLIAM SCHMIDL; RON MIKATARIAN; CHIU-WING LAM; BILL WEST; VANESSA BUCHANAN; LOUIS DEE; DAVID BAKER; STEVE KOONTZ

2006-01-01

366

Select Publications of Eva J. Pell: Pell, Eva J., Brennan, Eileen 1973. "Changes in respiration, photosynthesis, Adenosine 5'  

E-print Network

, 91: 427432. Landry, L. G., Pell, Eva J., 1993. "Modification of Rubisco and altered proteolytic (Solanum tuberosum L.) plants." Plant Molecular Biology, 28: 93103. Pell, E. J., Schlagnhaufer, C. D Plantarum 100: 264273. Wiese, C. B. and Pell, E. J. 1997. "Influence of ozone on transgenic tobacco plants

Mathis, Wayne N.

367

Chemical-defense flight-glove ensemble evaluation. Final report, June 1986-February 1987  

SciTech Connect

Four chemical-defense flight-glove ensembles were evaluated for their effect on manual dexterity. Two- and three-layer combinations included in the study were: cotton liner/7-mil butyl/Nomex; cotton liner/12.5-mil epichlorohydron butyl/Nomex; Nomex/7-mil butyl (no liner); and, Nomex/12.5-mil epichlorohydron butyl (no liner). Fifteen male and 15 female subjects performed five dexterity tests bare-handed and while wearing each of the glove ensembles. Results indicated that, as expected, all gloved conditions produced significantly poorer performances that did the bare-handed condition, and two-layer combinations resulted in consistently better performances that did the three-layer combinations. Although subjects' performance were least impaired by the Nomex/butyl 7 combination, the butyl 7 gloves tended to tear. For this reason, the two-layer combinations of Nomex/epichlorohydron butyl 12.5 appears to be the most practical ensemble.

Ross, J.; Ervin, C.

1987-06-01

368

A Soft Robotic Exomusculature Glove with Integrated sEMG Sensing for Hand Rehabilitation  

E-print Network

A Soft Robotic Exomusculature Glove with Integrated sEMG Sensing for Hand Rehabilitation Michael to open and close a patients hand. The cables are actuated by servomotors, with the entire system portable

Camesano, Terri

369

21 CFR 878.4480 - Absorbable powder for lubricating a surgeon's glove.  

Code of Federal Regulations, 2014 CFR

... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4480 Absorbable powder for lubricating a surgeon's glove. (a)...

2014-04-01

370

21 CFR 878.4480 - Absorbable powder for lubricating a surgeon's glove.  

Code of Federal Regulations, 2011 CFR

... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4480 Absorbable powder for lubricating a surgeon's glove. (a)...

2011-04-01

371

21 CFR 878.4480 - Absorbable powder for lubricating a surgeon's glove.  

Code of Federal Regulations, 2013 CFR

... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4480 Absorbable powder for lubricating a surgeon's glove. (a)...

2013-04-01

372

21 CFR 878.4480 - Absorbable powder for lubricating a surgeon's glove.  

Code of Federal Regulations, 2010 CFR

... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4480 Absorbable powder for lubricating a surgeon's glove. (a)...

2010-04-01

373

21 CFR 878.4480 - Absorbable powder for lubricating a surgeon's glove.  

Code of Federal Regulations, 2012 CFR

... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4480 Absorbable powder for lubricating a surgeon's glove. (a)...

2012-04-01

374

Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove  

NASA Technical Reports Server (NTRS)

This is the presentation related to the paper of the same name describing Reynolds Averaged Navier Stokes (RANS) computational Fluid Dynamics (CFD) analysis of low speed stall aerodynamics of a swept wing with a laminar flow wing glove.

Bui, Trong

2013-01-01

375

Testing of an Ammonia EVA Vent Tool for the International Space Station  

NASA Technical Reports Server (NTRS)

When components of the International Space Station ammonia External Active Thermal Control System are replaced on-orbit, they must be vented immediately after removal from the system. Venting ensures that the component is not hard packed with liquid and thus does not pose a hazard. An extravehicular activity (EVA) vent tool has been developed to perform this function. However, there were concerns that the tool could whip, posing a hazard to the EVA astronaut, or would freeze. The ammonia vent tool was recently tested in a thermal/vacuum chamber to demonstrate that it would operate safely and would not freeze during venting. During the test, ammonia mimicking the venting conditions for six different heat exchanger initial conditions was passed through representative test articles. In the present work, the model that was used to develop the ammonia state and flow for the test points is discussed and the test setup and operation is described. The qualitative whipping and freezing results of the test are discussed and vent plume pressure measurements are described and interpreted.

Ungar, Eugene K.; Stanewich, Brett J.; Wilhelm, Sheri Munekata

2000-01-01

376

The breakthrough time and permeation rate of three organic chemicals for selected glove combinations  

E-print Network

: Dr. Richard Konzen Research was performed to determine the effects of nitrile liners on permeation rate and breakthrough times when used in combination with outer gloves made of polyvinyl chloride and natural rubber. In this research permeation... rates and breakthrough times were determined for the five different glove combinations versus three test chemicals using the Miran-lA infrared analyzer in a closed loop system. The polymers tested were natural rubber (NR), polyvinyl chloride (PVC...

Binion, Pete Edwin

1992-01-01

377

Tactility as a function of grasp force: Effects of glove, orientation, pressure, load, and handle  

NASA Technical Reports Server (NTRS)

One of the reasons for reduction in performance when gloves are donned is the lack of tactile sensitivity. It was argued that grasping force for a weight to be grasped will be a function of the weight to be lifted and the hand conditions. It was further reasoned that the differences in grasping force for various hand conditions will be a correlate of the tactile sensitivity of the corresponding hand conditions. The objective of this experiment, therefore, was to determine the effects of glove type, pressure, and weight of load on the initial grasping force and stable grasping force. It was hypothesized that when a person grasps an object, he/she grasps very firmly initially and then releases the grasp slightly after realizing what force is needed to maintain a steady grasp. This would seem to be particularly true when a person is wearing a glove and has lost some tactile sensitivity and force feedback during the grasp. Therefore, the ratio of initial force and stable force and the stable force itself would represent the amount of tactile adjustment that is made when picking up an object, and this adjustment should vary with the use of gloves. A dynamometer was fabricated to measure the grasping force; the tests were performed inside a glove box. Four female and four male subjects participated in the study, which measured the effects of four variables: load effect, gender effect, glove type, and pressure variance. The only significant effects on the peak and stable force were caused by gender and the weight of the load lifted. Neither gloves nor pressure altered these forces when compared to a bare-handed condition, as was suspected before the test. It is possible that gloves facilitate in holding due to coefficient of friction while they deter in peak grasp strength.

Bishu, Ram R.; Bronkema, Lisa A.; Garcia, Dishayne; Klute, Glenn; Rajulu, Sudhakar

1994-01-01

378

Implementation of Wearable Sensor Glove using Pulse-wave Sensor, Conducting Fabric and Embedded System  

Microsoft Academic Search

Today, there are research trends about the wearable sensor device that measures various bio-signals and provides healthcare services to user using e-health technology. This study describes the wearable sensor glove using pulse-wave sensor, conducting fabric and embedded system. This wearable sensor glove is based on the pulse-wave measurement system which is able to measure the pulse wave signal in much

Youngbum Lee; Byungwoo Lee; Chungkeun Lee; Myoungho Lee

2006-01-01

379

Norovirus transmission between hands, gloves, utensils, and fresh produce during simulated food handling.  

PubMed

Human noroviruses (HuNoVs), a leading cause of food-borne gastroenteritis worldwide, are easily transferred via ready-to-eat (RTE) foods, often prepared by infected food handlers. In this study, the transmission of HuNoV and murine norovirus (MuNoV) from virus-contaminated hands to latex gloves during gloving, as well as from virus-contaminated donor surfaces to recipient surfaces after simulated preparation of cucumber sandwiches, was inspected. Virus transfer was investigated by swabbing with polyester swabs, followed by nucleic acid extraction from the swabs with a commercial kit and quantitative reverse transcription-PCR. During gloving, transfer of MuNoV dried on the hand was observed 10/12 times. HuNoV, dried on latex gloves, was disseminated to clean pairs of gloves 10/12 times, whereas HuNoV without drying was disseminated 11/12 times. In the sandwich-preparing simulation, both viruses were transferred repeatedly to the first recipient surface (left hand, cucumber, and knife) during the preparation. Both MuNoV and HuNoV were transferred more efficiently from latex gloves to cucumbers (1.2% ± 0.6% and 1.5% ± 1.9%) than vice versa (0.7% ± 0.5% and 0.5% ± 0.4%). We estimated that transfer of at least one infective HuNoV from contaminated hands to the sandwich prepared was likely to occur if the hands of the food handler contained 3 log10 or more HuNoVs before gloving. Virus-contaminated gloves were estimated to transfer HuNoV to the food servings more efficiently than a single contaminated cucumber during handling. Our results indicate that virus-free food ingredients and good hand hygiene are needed to prevent HuNoV contamination of RTE foods. PMID:24951789

Rönnqvist, M; Aho, E; Mikkelä, A; Ranta, J; Tuominen, P; Rättö, M; Maunula, L

2014-09-01

380

Space Station Freedom extravehicular activity systems evolution study  

NASA Technical Reports Server (NTRS)

Evaluation of Space Station Freedom (SSF) support of manned exploration is in progress to identify SSF extravehicular activity (EVA) system evolution requirements and capabilities. The output from these studies will provide data to support the preliminary design process to ensure that Space Station EVA system requirements for future missions (including the transportation node) are adequately considered and reflected in the baseline design. The study considers SSF support of future missions and the EVA system baseline to determine adequacy of EVA requirements and capabilities and to identify additional requirements, capabilities, and necessary technology upgrades. The EVA demands levied by formal requirements and indicated by evolutionary mission scenarios are high for the out-years of Space Station Freedom. An EVA system designed to meet the baseline requirements can easily evolve to meet evolution demands with few exceptions. Results to date indicate that upgrades or modifications to the EVA system may be necessary to meet the full range of EVA thermal environments associated with the transportation node. Work continues to quantify the EVA capability in this regard. Evolution mission scenarios with EVA and ground unshielded nuclear propulsion engines are inconsistent with anthropomorphic EVA capabilities.

Rouen, Michael

1990-01-01

381

The permeation by liquefied coal of gloves used in coal liquefaction pilot plants.  

PubMed

The protective capabilities of PVC, natural rubber and milled nitrile rubber gloves currently used in coal liquefaction pilot plants were assessed and the effectiveness of a laundering method was evaluated. The breakthrough times and cumulative permeation for exposure to toluene and to liquefied coal were determined by measurement of radiolabeled phenol tracer in the aqueous receiving medium. Breakthrough times, normalized by division by the square of the material thickness, agreed with the findings of other studies. On exposure to liquefied coal, the nitrile laboratory glove resisted breakthrough the longest (between 12 and 24 hours), although it was the thinnest material tested. Breakthrough times for the other gloves ranged from 2.75 to 6.5 hours with the times for the natural rubber glove materials intermediate to the two PVC glove materials tested. However, when normalized for thickness, both PVC materials were more resistant to breakthrough than rubber. It was found that the laundering method did not completely decontaminate samples of PVC glove material pre-exposed to liquefied coal for 24 hours under laboratory conditions. PMID:6881067

Bennett, R D; Feigley, C E; Oswald, E O; Hill, R H

1983-06-01

382

F-111 TACT natural laminar flow glove flight results  

NASA Technical Reports Server (NTRS)

Improvements in cruise efficiency on the order of 15 to 40% are obtained by increasing the extent of laminar flow over lifting surfaces. Two methods of achieving laminar flow are being considered, natural laminar flow and laminar flow control. Natural laminar flow (NLF) relies primarily on airfoil shape while laminar flow control involves boundary layer suction or blowing with mechanical devices. The extent of natural laminar flow that could be achieved with consistency in a real flight environment at chord Reynolds numbers in the range of 30 x 10(6) power was evaluated. Nineteen flights were conducted on the F-111 TACT airplane having a NLF airfoil glove section. The section consists of a supercritical airfoil providing favorable pressure gradients over extensive portions of the upper and lower surfaces of the wing. Boundary layer measurements were obtained over a range of wing leading edge sweep angles at Mach numbers from 0.80 to 0.85. Data were obtained for natural transition and for a range of forced transition locations over the test airfoil.

Montoya, L. C.; Steers, L. L.; Trujillo, B.

1981-01-01

383

MAMMALIAN SPECIES No. 738, pp. 13, 3 figs. Peromyscus eva. By Sergio Ticul A lvarez-Castan~eda and Patricia Cortes-Calva  

E-print Network

MAMMALIAN SPECIES No. 738, pp. 1­3, 3 figs. Peromyscus eva. By Sergio Ticul A´ lvarez male Peromyscus eva eva from north of La Paz, Baja California Sur, Mexico. Photograph by Patricia Corte´s- Calva. Peromyscus eva Thomas, 1898 Baja California Sur Deer Mouse Peromyscus eva Thomas, 1898:44. Type

Hayssen, Virginia

384

A Glimpse from the Inside of a Space Suit: What Is It Really Like to Train for an EVA?  

NASA Technical Reports Server (NTRS)

The beauty of the view from the office of a spacewalking astronaut gives the impression of simplicity, but few beyond the astronauts, and those who train them, know what it really takes to get there. Extravehicular Activity (EVA) training is an intense process that utilizes NASA's Neutral Buoyancy Laboratory (NBL) to develop a very specific skill set needed to safely construct and maintain the orbiting International Space Station. To qualify for flight assignments, astronauts must demonstrate the ability to work safely and efficiently in the physically demanding environment of the spacesuit, possess an acute ability to resolve unforeseen problems, and implement proper tool protocols to ensure no tools will be lost in space. Through the insights and the lessons learned by actual EVA astronauts and EVA instructors, this paper twill take you on a journey through an astronaut's earliest experiences working in the spacesuit. termed the Extravehicular Mobility Unit (EMU), in the underwater training environment of the NBL. This work details an actual Suit Qualification NBL training event, outlines the numerous challenges the astronauts face throughout their initial training, and the various ways they adapt their own abilities to overcome them. The goal of this paper is to give everyone a small glimpse into what it is really like to work in a spacesuit.

Gast, Matthew A.; Moore, Sandra K.

2009-01-01

385

CdTe quantum dots enhance feasibility of EvaGreen-based real-time PCR with decent amplification fidelity.  

PubMed

Quantitative real-time PCR (qPCR), as an important quantitative technique for nucleic acids, has been widely used in many fields including clinical diagnosis, molecular biology, and cancer research. However, non-specific amplification products are still a frequent problem in qPCR. In this study, we investigated the effects of QDs on real-time amplification based on either SYBR Green I or EvaGreen. It was found that QDs could raise the amplification sensitivity and thus enhance the efficiency using SYBR Green I detection system. In the case of EvaGreen detection systems, addition of QDs also led to a better correlation coefficient than without QDs. EvaGreen-based system gave sharper peaks for melting curves than SYBR Green I. The experiments indicated that the polymerase activity could be partially blocked by QDs at the pre-PCR temperatures, resulting in the improvement of PCR specificity. These results indicated that CdTe QDs could be used as a descent qPCR enhancer. Good amplification fidelity in QDs-facilitated qPCR was also a plus that has not been reported elsewhere. PMID:23397119

Sang, Fuming; Zhang, Zhizhou; Xu, Zhong; Ju, Xiaolei; Wang, Hongyuan; Zhang, Shuanghua; Guo, Changlu

2013-07-01

386

EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory  

NASA Technical Reports Server (NTRS)

As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC’s Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.

Jairala, Juniper; Durkin, Robert; Marak, Ralph; Prince, Angela; Sipila, Stephanie; Ney, Zane; Parazynski, Scott; Thomason, Arthur

2012-01-01

387

EVA Development and Verification Testing at NASAs Neutral Buoyancy Laboratory  

NASA Technical Reports Server (NTRS)

As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC’s Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.

Jairala, Juniper; Durkin, Robert

2012-01-01

388

EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory  

NASA Technical Reports Server (NTRS)

As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC's Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.

Jairala, Juniper; Durkin, Robert

2012-01-01

389

Assessment and Management of the Risks of Debris Hits During Space Station EVAs  

NASA Technical Reports Server (NTRS)

The risk of EVAs is critical to the decision of whether or not to automate a large part of the construction of the International Space Station (ISS). Furthermore, the choice of the technologies of the space suit and the life support system will determine (1) the immediate safety of these operations, and (2) the long-run costs and risks of human presence in space, not only in lower orbit (as is the case of the ISS) but also perhaps, outside these orbits, or on the surface of other planets. The problem is therefore both an immediate one and a long-term one. The fundamental question is how and when to shift from the existing EMU system (suit, helmet, gloves and life support system) to another type (e.g. a hard suit), given the potential trade-offs among life-cycle costs, risks to the astronauts, performance of tasks, and uncertainties about new systems' safety inherent to such a shift in technology. A more immediate issue is how to manage the risks of EVAs during the construction and operation of the ISS in order to make the astronauts (in the words of the NASA Administrator) "as safe outside as inside". For the moment (June 1997), the plan is to construct the Space Station using the low-pressure space suits that have been developed for the space shuttle. In the following, we will refer to this suit assembly as EMU (External Maneuvering Unit). It is the product of a long evolution, starting from the U.S. Air Force pilot suits through the various versions and changes that occurred for the purpose of NASA space exploration, in particular during the Gemini and the Apollo programs. The Shuttle EMU is composed of both soft fabrics and hard plates. As an alternative to the shuttle suit, at least two hard suits were developed by NASA: the AX5 and the MRKIII. The problem of producing hard suits for space exploration is very similar to that of producing deep-sea diving suits. There was thus an opportunity to develop a suit that could be manufactured for both purposes with the economies of scale that could be gained from a two-branch manufacturing line (space and deep sea). Of course, the space suit would need to be space qualified. Some of the problems in adopting one of the hard suits were first that the testing had to be completed, and second that it required additional storage space. The decision was made not to develop a hard suit in time for the construction and operation of the ISS. Instead, to improve the safety of the current suit, it was decided to reinforce the soft parts of the shuttle EMU with KEVLAR linings to strengthen it against debris impacts. Test results, however, show that this advanced suit design has little effect on the penetration characteristics.

Pate-Cornell, Elisabeth; Sachon, Marc

1997-01-01

390

Non-Venting Thermal and Humidity Control for EVA Suits  

NASA Technical Reports Server (NTRS)

Future EVA suits need processes and systems to control internal temperature and humidity without venting water to the environment. This paper describes an absorption-based cooling and dehumidification system as well as laboratory demonstrations of the key processes. There are two main components in the system: an evaporation cooling and dehumidification garment (ECDG) that removes both sensible heat and latent heat from the pressure garment, and an absorber radiator that absorbs moisture and rejects heat to space by thermal radiation. This paper discusses the overall design of both components, and presents recent data demonstrating their operation. We developed a design and fabrication approach to produce prototypical heat/water absorbing elements for the ECDG, and demonstrated by test that these elements could absorb heat and moisture at a high flux. Proof-of-concept tests showed that an ECDG prototype absorbs heat and moisture at a rate of 85 W/ft under conditions that simulate operation in an EVA suit. The heat absorption was primarily due to direct absorption of water vapor. It is possible to construct large, flexible, durable cooling patches that can be incorporated into a cooling garment with this system. The proof-of-concept test data was scaled to calculate area needed for full metabolic loads, thus showing that it is feasible to use this technology in an EVA suit. Full-scale, lightweight absorber/radiator modules have also been built and tested. They can reject heat at a flux of 33 W/ft while maintaining ECDG operation at conditions that will provide a cool and dry environment inside the EVA suit.

Izenson, Mike; Chen, Weibo; Bue, Grant

2011-01-01

391

Web Mining in the EVA Intelligent Agent Architecture  

Microsoft Academic Search

This paper describes the architecture of the fourth version of the evolutionary virtual agent (EVA). This new light-weight java-based implementation is based on a dynamical rule-based subsumption architecture, an XML knowledge base and a scheme kernel for scripting behavior rules. Using this architecture, the agent is able to answer questions in natural language while learning a user's profile. It also

Philippe Millet; Jean-Claude Heudin

2007-01-01

392

Effectiveness of gloves and infection control in dentistry: student and provider perspectives.  

PubMed

The objectives of this study were to explore dental and dental hygiene students', graduate students', and dental professionals' preferences for certain types of gloves and the reasons for these preferences (Aim 1), as well as determining their knowledge, attitudes, and behavior concerning the use of dental gloves as a means of barrier protection (Aim 2). Data were collected from 198 dental and forty-six dental hygiene students, thirty-five graduate students, and seventy-nine dental professionals (twenty-eight dentists and fifty-one dental hygienists in private practice). The subjects responded to a self-administered anonymous survey. Professionals (dentists: 96.4 percent and dental hygienists: 92.2 percent) were found to be more likely to have a preference for certain types of gloves than students (dental students: 79.2 percent and dental hygiene students: 76 percent) and graduate students (77.1 percent; p=.033). "Comfort" was most frequently reported as a reason for glove preference. Large percentages of respondents wrongly believed that gloves provide full protection (students: 50.8 percent; graduate students: 25.7 percent; professionals: 30.4 percent), thought that gloves provide protection as long as there is no visible tear (students: 39.7 percent; graduate students: 28.6 percent; professionals: 18.2 percent), and reported that they would not change gloves during an uninterrupted three-hour long procedure (students: 32.2 percent; graduate students: 23.5 percent; professionals: 22.7 percent). These findings should alert dental educators about the importance of educating their students as well as practicing professionals clearly and comprehensively about infection control and the science and rationale supporting recommended guidelines. PMID:19433532

Kanjirath, Preetha P; Coplen, Amy E; Chapman, Jody C; Peters, Mathilde C; Inglehart, Marita Rohr

2009-05-01

393

The EvA study: aims and strategy.  

PubMed

The EvA study is a European Union-funded project under the Seventh Framework Programme (FP7), which aims at defining new markers for chronic obstructive pulmonary disease (COPD) and its subtypes. The acronym is derived from emphysema versus airway disease, indicating that the project targets these two main phenotypes of the disease. The EvA study is based on the concept that emphysema and airway disease are governed by different pathophysiological processes, are driven by different genes and have differential gene expression in the lung. To define these genes, patients and non-COPD controls are recruited for clinical examination, lung function analysis and computed tomography (CT) of the lung. CT scans are used to define the phenotypes based on lung density and airway wall thickness. This is followed by bronchoscopy in order to obtain samples from the airways and the alveoli. These tissue samples, along with blood samples, are then subjected to genome-wide expression and association analysis and markers linked to the phenotypes are identified. The population of the EvA study is different from other COPD study populations, since patients with current oral glucocorticoids, antibiotics and exacerbations or current smokers are excluded, such that the signals detected in the molecular analysis are due to the distinct inflammatory process of emphysema and airway disease in COPD. PMID:22441733

Ziegler-Heitbrock, Loems; Frankenberger, Marion; Heimbeck, Irene; Burggraf, Dorothe; Wjst, Matthias; Häussinger, Karl; Brightling, Chris; Gupta, Sumit; Parr, David; Subramanian, Deepak; Singh, Dave; Kolsum, Umme; Boschetto, Piera; Potena, Alfredo; Gorecka, Dorota; Nowinski, Adam; Barta, Imre; Döme, Balazs; Strausz, Janos; Greulich, Timm; Vogelmeier, Claus; Bals, Robert; Hohlfeld, Jens M; Welte, Tobias; Venge, Per; Gut, Ivo; Boland, Anne; Olaso, Robert; Hager, Jörg; Hiemstra, Pieter; Rabe, Klaus F; Unmüssig, Martina; Müller-Quernheim, Joachim; Prasse, Antje

2012-10-01

394

UV aging and outdoor exposure correlation for EVA PV encapsulants  

NASA Astrophysics Data System (ADS)

A widely cited approximation in the solar industry is that "one week of xenon arc weather-o-meter exposure is equivalent to one year of field exposure." This statement is a generalization of test data generated in the mid-1990s as part of the NREL managed PVMaT-3 project. This approximation was based entirely upon yellowing of first generation EVA-based encapsulants in two different accelerated test conditions, xenon arc and mirror accelerated outdoor aging. First generation EVA encapsulants were developed by STR under the JPL solar project (1975-1986) and exhibit yellowing (or browning) with exposure to UV and heat. This yellowing mechanism was understood and resolved with newer generation EVA encapsulation products introduced in late 1990s. Modules were manufactured at the end of the PVMaT-3 project that included both older and newer generation encapsulants. Those modules were on a two-axis tracker in Arizona from 1996 to 2012 and are now undergoing diagnostic tests. Older generation standard-cure encapsulant used in these modules exhibited severe browning over cells and the modules exhibit approximate power loss of about two percent per year. This same standard cure encapsulant material has been tested with updated xenon arc exposure methods and optical transmission tests to estimate the loss in power due only to browning and reduction in light transmission.

Reid, Charles G.; Bokria, Jayesh G.; Woods, Joseph T.

2013-09-01

395

EVA Systems Flight Controller Talks With Students - Duration: 10:56.  

NASA Video Gallery

From NASA's International Space Station Mission Control Center, EVA Systems Flight Controller Sandy Fletcher participates in a Digital Learning Network (DLN) event with students from Northtowne Ele...

396

Design and test of an NLF wing glove for the variable-sweep transition flight experiment  

NASA Technical Reports Server (NTRS)

Gloves for M = 0.7 and 0.8 design points were computationally designed and analyzed at conditions over the proposed flight test envelope. The resulting computational pressure distributions were analyzed in a boundary layer stability code. These results indicate that the available pressure distributions offer a wide range of combinations of cross flow and Tollmien-Schlichting N-factors. The glove designs along with the baseline configuration were tested in an entry into the National Transonic Facility. Analysis of the force and moment data showed no significant differences in the performance and stability and control characteristics between the baseline and gloved configurations. The rolling moment constraint was met over the entire flight test envelope for the gloved configuration. Pressure distributions for the NTF test confirmed the design pressure distributions were achieved. However, it was decided that with minor modifications to the inboard region of the glove, useful available data could be significantly increased by adding another row of pressure orifices at span station 167.

Waggoner, Ed G.; Campbell, Richard L.; Phillips, Pam S.; Hallissy, James B.

1987-01-01

397

A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke.  

PubMed

While a number of devices have recently been developed to facilitate hand rehabilitation after stroke, most place some restrictions on movement of the digits or arm. Thus, a novel glove was developed which can provide independent extension assistance to each digit while still allowing full arm movement. This pneumatic glove, the PneuGlove, can be used for training grasp-and-release movements either with real objects or with virtual objects in a virtual reality environment. Two groups of stroke survivors, with seven subjects in each group, completed a six-week rehabilitation training protocol, consisting of three 1-h sessions held each week. One group wore the PneuGlove during training, performed both within a novel virtual reality environment and outside of it with physical objects, while the other group completed the same training without the device. Across subjects, significant improvements were observed in the Fugl-Meyer Assessment for the upper extremity (p < 0.001), the hand/wrist portion of the Fugl-Meyer Assessment (p < 0.001), the Box and Blocks test (p < 0.005), and palmar pinch strength (p < 0.005). While changes in the two groups were not statistically different, the group using the PneuGlove did show greater mean improvement on each of these measures, such as gains of 3.7 versus 2.4 points on the hand/wrist portion of the Fugl-Meyer Assessment and 14 N versus 5 N in palmar pinch. PMID:20378482

Connelly, Lauri; Jia, Yicheng; Toro, Maria L; Stoykov, Mary Ellen; Kenyon, Robert V; Kamper, Derek G

2010-10-01

398

Human factors in space station architecture 2. EVA access facility: A comparative analysis of 4 concepts for on-orbit space suit servicing  

NASA Technical Reports Server (NTRS)

Four concepts for on-orbit spacesuit donning, doffing, servicing, check-out, egress and ingress are presented. These are: the Space Transportation System (STS) Type (shuttle system enlarged), the Transit Airlock (Shuttle Airlock with suit servicing removed from the pump-down chamber), the Suitport (a rear-entry suit mates to a port in the airlock wall), and the Crewlock (a small, individual, conformal airlock). Each of these four concepts is compared through a series of seven steps representing a typical Extra Vehicular Activity (EVA) mission: (1) Predonning suit preparation; (2) Portable Life Support System (PLSS) preparation; (3) Suit Donning and Final Check; (4) Egress/Ingress; (5) Mid-EVA rest period; (6) Post-EVA Securing; (7) Non-Routine Maintenance. The different characteristics of each concept are articulated through this step-by-step approach. Recommendations concerning an approach for further evaluations of airlock geometry, anthropometrics, ergonomics, and functional efficiency are made. The key recommendation is that before any particular airlock can be designed, the full range of spacesuit servicing functions must be considered, including timelines that are most supportive of EVA human productivity.

Cohen, Marc M.; Bussolari, Steven

1987-01-01

399

Mass spectrometric analysis of EPO IEF-PAGE interfering substances in nitrile examination gloves.  

PubMed

Direct detection of doping with recombinant erythropoietins (rhEPO) is accomplished by isoelectric focusing (IEF) or sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis (PAGE). In a recent publication, Lasne et al. (Electrophoresis 2011, 32, 1444) showed that improper use of nitrile examination gloves during sample collection, sample preparation, and IEF-PAGE may lead to distorted or absent EPO IEF-profiles. In order to clarify which substances are responsible for this observation, a mass spectrometric study on water extractable compounds found in nitrile gloves was performed. Several substance classes were shown to be present, among them polyethylene glycols (PEG), anionic and nonionic surfactants, as well as alcohol ethoxylates and plasticizers. It could be demonstrated that alkylbenzenesulfonates, the main category of detectable anionic detergents, and among them sodium dodecylbenzenesulfonate (SDBS) and its homologs, are the prime reason for the interference of nitrile gloves with EPO IEF-PAGE. PMID:23081906

Reichel, Christian

2012-10-01

400

Smart hands for the EVA retriever  

NASA Technical Reports Server (NTRS)

Dexterous, robotic hands are required for the extravehicular activity retriever (EVAR) system being developed by the NASA Johnson Space Center (JSC). These hands, as part of the EVAR system, must be able to grasp objects autonomously and securely which inadvertently separate from the Space Station. Development of the required hands was initiated in 1987. Outlined here are the hand development activities, including design considerations, progress to date, and future plans. Several types of dexterous hands that were evaluated, along with a proximity-sensing capability that was developed to initiate a reflexive, adaptive grasp, are described. The evaluations resulted in the design and fabrication of a 6-degree-of-freedom (DOF) hand that has two fingers and a thumb arranged in an anthropomorphic configuration. Finger joint force and position sensors are included in the design, as well as infrared proximity sensors which allow initiation of the grasp sequence when an object is detected within the grasp envelope.

Hess, Clifford W.; Li, Larry C.

1990-01-01

401

Kondrat'eva ligation: Diels-Alder-based irreversible reaction for bioconjugation.  

PubMed

Diversification of existing chemoselective ligations is required to efficiently access complex and well-defined biomolecular assemblies with unique and valuable properties. The development and bioconjugation applications of a novel Diels-Alder-based irreversible site-specific ligation are reported. The strategy is based on a Kondrat'eva cycloaddition between bioinert and readily functionalizable 5-alkoxyoxazoles and maleimides that readily react together under mild and easily tunable reaction conditions to afford a fully stable pyridine scaffold. The potential of this novel bioconjugation is demonstrated through the preparation of fluorescent conjugates of biomolecules and a novel Förster resonance energy transfer (FRET)-based probe suitable for the in vivo detection and imaging of urokinase-like plasminogen activator (uPA), which is a key protease involved in cancer invasion and metastasis. PMID:25346140

Jouanno, Laurie-Anne; Chevalier, Arnaud; Sekkat, Nawal; Perzo, Nicolas; Castel, Hélčne; Romieu, Anthony; Lange, Norbert; Sabot, Cyrille; Renard, Pierre-Yves

2014-11-01

402

Influence of environment on measurements made on EVA or 'Space Station Freedom'  

NASA Astrophysics Data System (ADS)

A Portable Contamination/Leak Detector (PC/LD) is being developed for use by crew on Extravehicular Activity (EVA) to locate trace leaks from Space Station Freedom (SSF) systems and to monitor the surfaces of the Extravehicular Mobility Unit (EMU) for toxic contaminants being removed prior to ingress to the airlock. As with any trace level detector the background in which it operates has a significant impact on the operation and design of the instrument. The PC/LD operates in space vacuum and is sensitive to the composition and pressure which exists near the station. This paper describes the PC/LD mission, some data on the composition of ambient space environment and implications of that data on the PC/LD's design and usage.

Hainsworth, Eugenie; Koger, Gary; Larson, Dale; Valentine, James; Brooks, Joseph; Copeland, Albert; Landis, Philip

1992-07-01

403

Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study  

NASA Technical Reports Server (NTRS)

This paper discusses the Asteroid Redirect Crewed Mission (ARCM) space suit and Extravehicular Activity (EVA) architecture trade study and the current state of the work to mature the requirements and products to the mission concept review level. The mission requirements and the resulting concept of operations will be discussed. A historical context will be presented as to present the similarities and differences from previous NASA missions. That will set the stage for the trade study where all options for both pressure garment and life support were considered. The rationale for the architecture decisions will then be presented. Since the trade study did identity risks, the subsequent tests and analyses that mitigated the risks will be discussed. Lastly, the current state of the effort will be provided.

Bowie, Jonathan T.; Blanco, Raul A.; Watson, Richard D.; Kelly, Cody; Buffington, Jesse; Sipila, Stephanie A.

2014-01-01

404

A New Penetration Test Method: Protection Efficiency of Glove and Clothing Materials Against Diphenylmethane Diisocyanate (MDI).  

PubMed

Reported cases of allergic contact dermatitis caused by methylenediphenyl diisocyanate (MDI) have increased and thereby increased the need for adequate skin protection. Current standardized permeation and penetration test methods give information about efficacy of protective materials against individual components of the polyurethane systems. They do not give information of what kind of clothing materials workers should wear against splashes when handling mixed MDI-polyurethane formulations, which contain MDI, its oligomers, and polyols. The aim of this study was to develop and validate a sensitive penetration test method that can be used to select clothing that is protective enough against uncured splashes of MDI-polyurethane, still easy to use, and also, to find affordable glove materials that provide adequate protection during a short contact. The penetration of MDI through eight representative glove or clothing materials was studied with the developed test procedure. One MDI hardener and two polymeric MDI (PMDI)-polyol formulations representing different curing times were used as test substances. The materials tested included work clothing (woven) fabric, arm shields (nonwoven fabric), old T-shirt, winter gloves, and gloves of nitrile rubber, leather, vinyl (PVC), and natural rubber. A drop (50 µl) of test substance was added to the outer surface of the glove/clothing material, which had Tape Fixomull attached to the inner surface as a collection medium. After penetration times of 5 or 20min, the collecting material was removed and immediately immersed into acetonitrile containing 1-(2-methoxyphenyl)-piperazine for derivatization. The formed urea derivatives of 2,4'-MDI and 4,4'-MDI were analysed using liquid chromatography with mass spectrometric and UV detection. The precision of the test method was good for the material with high penetration (work clothing fabric) of MDI, as the relative standard deviation (RSD) was 14 and 20%. For the arm shield with a low penetration (the nonwoven fabric), the precision was lower with RSDs of 35 and 50%. For two clothing materials, the penetration was high (134-577 µg cm(-2)). Low penetration (<0.5 µg cm(-2)) was shown by the arm shield and the natural rubber glove. Three glove materials showed no detectable MDI penetration (<0.002 µg cm(-2)). Two affordable glove materials (natural rubber and nitrile rubber) and one clothing material (dust proof arm shield) that can provide adequate protection during short contact with solvent free PMDI formulations were found. The new test procedure should be standardized in order to get a new international penetration standard. PMID:25324563

Henriks-Eckerman, Maj-Len; Mäkelä, Erja

2014-10-16

405

The breakthrough time and permeation rate of multi-component solvents for selected glove materials  

E-print Network

THE BREAKTHROUGH TIME AND PERMEATION RATE OF I'1ULTI-COMPONENT SOLVENTS FOR SELECTED GLOVE MATERIALS A Thesis by BRUCE GUSTAV BROWN Submitted to the Graduate College of Texas ASM University 1n partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE May 1987 Major Subject: Industr1al Hygiene THE BREAKTHROUGH TIME AND PERMEATION RATE OF MULTI-COMPONENT SOLVENTS FOR GLOVE MATERIALS A Thesis by BRUCE GUSTAV BROWN Approved as to style and content by: Harry 'J. . L...

Brown, Bruce Gustav

1987-01-01

406

How Effective Are Radiation Reducing Gloves in C-arm Fluoroscopy-guided Pain Interventions?  

PubMed Central

Background The physician's hands are close to the X-ray field in C-arm fluoroscopy-guided pain interventions. We prospectively investigated the radiation attenuation of Proguard RR-2 gloves. Methods In 100 cases, the effective doses (EDs) of two dosimeters without a radiation-reducing glove were collected. EDs from the two dosimeters-one dosimeter wrapped with a glove and the other dosimeter without a glove- were also measured at the side of the table (Group 1, 140 cases) and at a location 20 cm away from the side of the table (Group 2, 120 cases). Mean differences such as age, height, weight, radiation absorbed dose (RAD), exposure time, ED, and ratio of EDs were analyzed. Results In the EDs of two dosimeters without gloves, there were no significant differences (39.0 ± 36.3 µSv vs. 38.8 ± 36.4 µSv) (P = 0.578). The RAD (192.0 ± 182.0 radcm2) in Group 2 was higher than that (132.3 ± 103.5 radcm2) in Group 1 (P = 0.002). The ED (33.3 ± 30.9 µSv) of the dosimeter without a glove in Group 1 was higher than that (12.3 ± 8.8 µSv) in Group 2 (P < 0.001). The ED (24.4 ± 22.4 µSv) of the dosimeter wrapped with a glove in Group 1 was higher than that (9.2 ± 6.8 µSv) in Group 2 (P < 0.001). No significant differences were noted in the ratio of EDs (73.5 ± 6.7% vs. 74.2 ± 9.3%, P = 0.469) between Group 1 and Group 2. Conclusions Proguard RR-2 gloves have a radiation attenuation effect of 25.8-26.5%. The radiation attenuation is not significantly different by intensity of scatter radiation or the different RADs of C-arm fluoroscopy. PMID:24748943

Kim, Ah Na; Chang, Young Jae; Cheon, Bo Kyung

2014-01-01

407

STS-104 Astronaut Reilly Performs EVA  

NASA Technical Reports Server (NTRS)

Astronaut James F. Reilly, STS-104 mission specialist, participates in space history as he joins fellow astronaut and mission specialist Michael L. Gernhardt (out of frame) in utilizing the new Quest Airlock for the first ever space walk to egress from the International Space Station (ISS). The major objective of the mission was to install and activate the airlock, which completed the second phase of construction on the ISS. The airlock accommodates both United States and Russian space suits and was designed and built at the Marshall Space Flight Center by the Boeing Company.

2001-01-01

408

Change in Tensile Properties of Neoprene and Nitrile Gloves After Repeated Exposures to Acetone and Thermal Decontamination  

Microsoft Academic Search

This study investigated the change in tensile properties of neoprene and nitrile gloves after repeated cycles of exposure to acetone, followed by thermal decontamination. The glove was exposed to acetone (outer surface in contact with chemical), subjected to thermal decontamination, and tested for the tensile strength and the ultimate elongation. Thermal decontamination was carried out inside an oven for 16

Pengfei Gao; Beth Tomasovic

2005-01-01

409

Two crewmember EVA working on the ASEM structure in the payload bay.  

NASA Technical Reports Server (NTRS)

EVA Mission Specialists Kathy Thornton (dashed red stripe) and Tom Akers (diagonal red stripes) working on the ASEM (Assembly of Station by EVA Methods) in the payload bay. Scene was photographed from the mid deck airlock window. Loose ends of freely floating straps inside the airlock obscure portions of the scene.

1992-01-01

410

The Construction of Evaluation Index System of EVA-Based Companies Performance  

Microsoft Academic Search

Basing on the analysis of the current performance evaluation index system , this paper put forward that performance evaluation index system should be made to EVA as the center rather than to net income for the center because only the EVA is the measure of corporate value and wealth creation metrics . performance evaluation index system of the company of

Liu Gujin

2010-01-01

411

The Study on Application Value of EVA in Enterprise Performance Evaluation  

Microsoft Academic Search

In order to verify the application value of EVA in enterprise performance evaluation, in this paper, two sets of evaluation systems in which Traditional Accounting Earning and EVA were regarded as main performance indicators, were constructed on the basis of the enterprise performance comprehensive evaluation system. We arrived at the conclusion that _by using the data of Chinese listed companies_

Tao Li; Chao Wang

2010-01-01

412

Algebraic Theory of Linear Systems: A Survey Werner M. Seiler and Eva Zerz  

E-print Network

Algebraic Theory of Linear Systems: A Survey Werner M. Seiler and Eva Zerz Abstract An introduction with differential Werner M. Seiler Institut für Mathematik, Universität Kassel, 34109 Kassel, Germany e-mail: seiler.zerz@math.rwth-aachen.de 1 #12;2 Werner M. Seiler and Eva Zerz algebraic equations, as it leads to existence and uniqueness

Seiler, Werner M.

413

Generic extravehicular (EVA) and telerobot task primitives for analysis, design, and integration. Version 1.0: Reference compilation for the EVA and telerobotics communities  

NASA Technical Reports Server (NTRS)

The results are described of an effort to establish commonality and standardization of generic crew extravehicular (crew-EVA) and telerobotic task analysis primitives used for the study of spaceborne operations. Although direct crew-EVA plans are the most visible output of spaceborne operations, significant ongoing efforts by a wide variety of projects and organizations also require tools for estimation of crew-EVA and telerobotic times. Task analysis tools provide estimates for input to technical and cost tradeoff studies. A workshop was convened to identify the issues and needs to establish a common language and syntax for task analysis primitives. In addition, the importance of such a syntax was shown to have precedence over the level to which such a syntax is applied. The syntax, lists of crew-EVA and telerobotic primitives, and the data base in diskette form are presented.

Smith, Jeffrey H.; Drews, Michael

1990-01-01

414

Techniques for Improving the Performance of Future EVA Maneuvering Systems  

NASA Technical Reports Server (NTRS)

The Simplified Aid for EVA Rescue (SAFER) is a small propulsive backpack that was developed as an in-house effort at Johnson Space Center; it is a lightweight system which attaches to the underside of the Primary Life Support Subsystem (PLSS) backpack of the Extravehicular Mobility Unit (EMU). SAFER provides full six-axis control, as well as Automatic Attitude Hold (AAH), by means of a set of cold-gas nitrogen thrusters and a rate sensor-based control system. For compactness, a single hand controller is used, together with mode switching, to command all six axes. SAFER was successfully test-flown on the STS-64 mission in September 1994 as a Development Test Objective (DTO); development of an operational version is now proceeding. This version will be available for EVA self-rescue on the International Space Station and Mir, starting with the STS-86/Mir-7 mission in September 1997. The DTO SAFER was heavily instrumented, and produced in-flight data that was stored in a 12 MB computer memory on-board. This has allowed post-flight analysis to yield good estimates for the actual mass properties (moments and products of inertia and center of mass location) encountered on-orbit. By contrast, Manned Maneuvering Unit (MMU) post-flight results were generated mainly from analysis of video images, and so were not very accurate. The main goal of the research reported here was to use the detailed SAFER on-orbit mass properties data to optimize the design of future EVA maneuvering systems, with the aim being to improve flying qualities and/or reduce propellant consumption. The Automation, Robotics and Simulation Division Virtual Reality (VR) Laboratory proved to be a valuable research tool for such studies. A second objective of the grant was to generate an accurate dynamics model in support of the reflight of the DTO SAFER on STS-76/Mir-3. One complicating factor was the fact that a hand controller stowage box was added to the underside of SAFER on this flight; the position of this box was such that two of the SAFER jets plume it. A second complication was that the EVA astronaut will sometimes be transporting a massive experiment package. This will not only alter the overall mass properties significantly, but can itself also be plumed.

Williams, Trevor W.

1995-01-01

415

Astronauts Meade and Lee test SAFER system during EVA  

NASA Technical Reports Server (NTRS)

Astronauts Carl J. Meade and Mark C. Lee (red strip on suit) test the new Simplified Aid for EVA Rescue (SAFER) system some 130 nautical miles above Earth. The pair was actually performing an in-space rehearsal or demonstration of a contingency rescue using the never-before flown hardware. Meade, who here wears the small back-pack unit with its complementary chest-mounted control unit, and Lee (anchored to the Space Shuttle Discovery's Remote Manipulator System (RMS) robot arm) took turns using the SAFER hardware during their shared space walk.

1994-01-01

416

Astronauts Carl Meade and Mark Lee test SAFER during EVA  

NASA Technical Reports Server (NTRS)

Astronauts Carl J. Meade and Mark C. Lee (red stripe on suit) test the Simplified Aid for EVA Rescue (SAFER) system some 130 nautical miles from Earth. The pair was actually performing an in-space rehearsal or demonstration of a contingency rescue using the never-before flown hardware. Meade, who here wears the small back-pack unit with its complementary chest-mounted control unit, and Lee, anchored to Discovery's Remote Manipulator System (RMS) robot arm, took turns using the SAFER hardware during their shared space walk of September 16, 1994.

1994-01-01

417

Baseline tests of the EVA contractor electric passenger vehicle  

NASA Technical Reports Server (NTRS)

The EVA Contactor four door sedan, an electric passenger vehicle, was tested to characterize the state-of-the-art of electric vehicles. It is a four passenger sedan that was converted to an electric vehicle. It is powered by 16 series connected 6 volt electric vehicle batteries through a four step contactor controller actuated by a foot accelerator pedal. The controller changes the voltage applied to the separately excited DC motor. The braking system is a vacuum assisted hydraulic braking system. Regenerative braking was also provided.

Bozek, J. M.; Tryon, H. B.; Slavick, R. J.

1977-01-01

418

Exploration Architecture Options - ECLSS, EVA, TCS Implications  

NASA Technical Reports Server (NTRS)

Many options for exploration of the Moon and Mars have been identified and evaluated since the Vision for Space Exploration VSE was announced in 2004. Lunar architectures have been identified and addressed in the Lunar Surface Systems team to establish options for how to get to and then inhabit and explore the moon. The Augustine Commission evaluated human space flight for the Obama administration and identified many options for how to conduct human spaceflight in the future. This paper will evaluate the options for exploration of the moon and Mars and those of the Augustine human spaceflight commission for the implications of each architecture on the Environmental Control and Life Support, ExtraVehicular Activity and Thermal Control systems. The advantages and disadvantages of each architecture and options are presented.

Chambliss, Joe; Henninger, Don; Lawrence, Carl

2009-01-01

419

Simulation and preparation of surface EVA in reduced gravity at the Marseilles Bay subsea analogue sites  

NASA Astrophysics Data System (ADS)

Extravehicular activity (EVA) of astronauts during space missions is simulated nowadays underwater in neutral buoyancy facilities. Certain aspects of weightlessness can be reproduced underwater by adding buoyancy to a diver-astronaut, therefore exposing the subject to the difficulties of working without gravity. Such tests were done at the COMEX' test pool in Marseilles in the 1980s to train for a French-Russian mission to the MIR station, for the development of the European HERMES shuttle and the COLUMBUS laboratory. However, space agencies are currently studying missions to other destinations than the International Space Station in orbit, such as the return to the Moon, NEO (near-Earth objects) or Mars. All these objects expose different gravities: Moon has one sixth of Earth's gravity, Mars has a third of Earth's gravity and asteroids have virtually no surface gravity; the astronaut "floats" above the ground. The preparation of such missions calls for a new concept in neutral buoyancy training, not on man-made structures, but on natural terrain, underwater, to simulate EVA operations such as sampling, locomotion or even anchoring in low gravity. Underwater sites can be used not only to simulate the reduced gravity that astronauts will experience during their field trips, also human factors like stress are more realistically reproduced in such environment. The Bay of Marseille hosts several underwater sites that can be used to simulate various geologic morphologies, such as sink-holes which can be used to simulate astronaut descends into craters, caves where explorations of lava tubes can be trained or monolithic rock structures that can be used to test anchoring devices (e.g., near Earth objects). Marseilles with its aerospace and maritime/offshore heritage hosts the necessary logistics and expertise that is needed to perform such simulations underwater in a safe manner (training of astronaut-divers in local test pools, research vessels, subsea robots and submarines). COMEX is currently preparing a space mission simulation in the Marseilles Bay (foreseen in June 2012), and the paper will give an overview of the different underwater analogue sites that are available to the scientific community for the simulation of surface EVA or the test of scientific instruments and devices.

Weiss, P.; Gardette, B.; Chirié, B.; Collina-Girard, J.; Delauze, H. G.

2012-12-01

420

Eva and Traditional Accounting Measures: Which Metric is a Better Predictor of Market Value of Hospitality Companies?  

Microsoft Academic Search

This study tests the hypothesis that Economic Value Added (EVA) is more highly associated with hospitality firm values than with traditional performance measures. The purpose of this study is to provide empirical evidence on the relative and incremental information content of EVA and traditional performance measures, earnings, and cash flow. Regression analysis tests the information content of EVA and indicates

Woo Gon Kim

2006-01-01

421

Linking accelerated laboratory and outdoor exposure results for PV polymeric materials: a mechanistic study of EVA  

NASA Astrophysics Data System (ADS)

Linking accelerated laboratory test to field performance for predicting the service life of polymeric materials are being investigated at NIST using the reliability-based methodology. Based on this methodology, a successful linkage between the laboratory and field exposure data for a model polymeric material has been made. Recently, this methodology, for the first time, was introduced to the lifetime assessment of PV polymeric materials. In this paper, a mechanistic study of the degradation of three unstabilized model ethylene vinyl acetate (EVA) systems---uncured EVA, cured EVA and laminated EVA---was carried out under accelerated laboratory exposure and outdoor exposure. The NIST SPHERE (Simulated Photodegradation via High Energy Radiant Exposure) was used for the accelerated laboratory tests, and the outdoor exposure was conducted in Gaithersburg, Maryland. Simultaneous multiple stresses, including temperature, relative humidity and UV radiation, were applied individually or in combination during SPHERE exposure. The effects of the environmental factors on the main degradation mechanisms of different EVA systems were investigated. The results showed that the UV radiation was the most important factor for the degradation of EVA and a synergistic effect occurred between UV radiation and relative humidity. A slower degradation rate was observed for the laminated system as a result of limited diffusion of O2 and H2O into EVA. It was also found that the substantial chemical changes of the uncured EVA system did not yield yellowing, which was dramatically different from the peroxide cured EVA system. Additionally, the chemical degradation modes of the three EVA systems exposed outdoors appeared to be similar to those exposed to the SPHERE. The implication of this work to the current test standards was discussed.

Gu, Xiaohong; Pang, Yongyan; Lin, Chiao-Chi; Liu, Kaipeng; Nguyen, Tinh; Chin, Jaonnie W.

2013-09-01

422

Custom Unit Pump Design and Testing for the EVA PLSS  

NASA Technical Reports Server (NTRS)

This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the pre-flight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion , and restart capability under both ambient and vacuum conditions. The pump operated between 40 and 240 lbm/hr flowrate, 35 to 100 F pump temperature range, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test. The test results contained a number of anomalies, specifically power increases and a few flow stoppages, that prompted TEES and Honeywell to disassemble and inspect the pump. Inspection indicated contamination in the pump and fit issues may have played roles in the observed anomalies. Testing following reassembly indicated that the performance of the pump 1) matched both the predicted performance values, 2) the performance values measured prior to disassembly, and 3) was free of the anomalies noted in the pre-disassembly testing.

Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

2009-01-01

423

Biosensors for EVA: Improved Instrumentation for Ground-based Studies  

NASA Technical Reports Server (NTRS)

During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared LED light source. The compact grating spectrometer was replaced with a chip-scale spectrometer. With this new design, the sensor is 4 in 2 in 0.5 in, weighs 60 g, and no fiber optic cables are needed. The sensor, which contains the light source and the spectrometer, is adhered directly to the skin with medical grade adhesive. The sensor can be powered via the USB port of the laptop computer that controls the sensor operation. Alternatively, for studies in the spacesuit, the sensor can be powered by a small battery pack and operated by an ultra-portable hand-held computer. Both the handheld computer and battery pack will easily fit within the PLSS of the test spacesuit. System automation was significantly improved, to add features suggested by our colleagues in the Cardiovascular Laboratory and the NASA JSC Exercise Physiology and Countermeasures Project. The functionality and portability of this system were demonstrated in our UMass laboratory.

Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

2010-01-01

424

Wrist ambulatory monitoring system and smart glove for real time emotional, sensorial and physiological analysis  

Microsoft Academic Search

Improvement of the quality and efficiency of the quality of health in medicine, at home and in hospital becomes more and more important Designed to be user-friendly, smart clothes and gloves fit well for such a citizen use and health monitoring. Analysis of the autonomic nervous system using non-invasive sensors provides information for the emotional, sensorial, cognitive and physiological analysis.

F. Axisa; C. Gehin; G. Delhomme; C. Collet; O. Robin; A. Dittmar

2004-01-01

425

A Haptic Glove as a Tactile-Vision Sensory Substitution for Wayfinding.  

ERIC Educational Resources Information Center

A device that relays navigational information using a portable tactile glove and a wearable computer and camera system was tested with nine adults with visual impairments. Paths traversed by subjects negotiating an obstacle course were not qualitatively different from paths produced with existing wayfinding devices and hitting probabilities were…

Zelek, John S.; Bromley, Sam; Asmar, Daniel; Thompson, David

2003-01-01

426

Development of a Cable Driven Flexible Robotic Rehabilitation Glove M. A. Delph II1  

E-print Network

. This work focused on development of a soft, lightweight and low-cost robotic glove that patients can wear and use to recover hand functionality, utilizing a portable and intuitive interface. Materials and Methods the objectives of the design. It provided a portable and effective means of repetitively opening and closing

Clancy, Ted

427

Effect of aloe-vera impregnated gloves on hand hygiene attitudes of health care workers.  

PubMed

Following standard precautions and hand hygiene guidelines is important to health care workers and the patients they serve. The purpose of this study was to determine the effect of aloe-vera impregnated gloves on attitudes about hand hygiene among many health care workers and perceived sense of skin condition. PMID:17907697

Korniewicz, Denise M; El Masri, Maher

2007-08-01

428

A preliminary comparison of three dermal exposure sampling methods: rinses, wipes and cotton gloves.  

PubMed

Several methods exist to estimate dermal exposure and it is unclear how comparable they are. These methods fall into three main categories: (i) removal techniques (such as wiping or rinsing); (ii) interception techniques (such as gloves, patches, or coveralls); and (iii) fluorescent tracer techniques. Controlled experiments were conducted to compare two removal methods for exposure to particulate, and a removal method with an interception method for exposure to liquids. Volunteers' hands were exposed to three liquid solutions (glycerol-water solutions of different concentrations) and three particulates (Epsom salts, calcium acetate and zinc oxide) in simulated exposure scenarios. Both hands were exposed and a different sampling method was used on each to allow comparison of methods. Cotton glove samplers and a cotton wipe sampling method were compared for exposure to liquids. For exposure to powders a cotton wipe sampling method was compared to rinsing the hands in deionised water. Wipe and rinse methods generally yielded similar results for Epsom salts and zinc oxide (geometric mean [GM] ratios of wipe-to-rinse measurements of 0.6 and 1.4, respectively) but they did not for calcium acetate (GM wipe-to-rinse ratio of 4.6). For glycerol solutions measurements from the glove samplers were consistently higher than wipe samples. At lower levels of exposure the relative difference between the two methods was greater than at higher levels. At a hand loading level of 24,000 ?g cm(-2) (as measured by wiping) the glove-to-wipe ratio was 1.4 and at a hand loading of 0.09 ?g cm(-2) the ratio was 42.0. Wipe and rinse methods may be directly comparable but the relationship between glove and wipe sampling methods appears to be complex. Further research is necessary to enable conversion of exposure measurements from one metric to another, so as to facilitate more reliable risk assessment. PMID:24281007

Ng, Melanie Gorman; de Poot, Stan; Schmid, Kaspar; Cowie, Hilary; Semple, Sean; van Tongeren, Martie

2014-01-01

429

Field protection effectiveness of chemical protective suits and gloves evaluated by biomonitoring  

PubMed Central

Objectives To determine the effectiveness of protective suits and gloves by biomonitoring. Methods Fifteen male spray painters at a ship coating factory were studied for two weeks. Workers wore no protective clothing during the first week and wore protective suits and gloves during the second week. Sampling was conducted on four consecutive working days each week. Ethyl benzene and xylene in the air were collected by using 3M 3500 organic vapour monitors. Urine was collected before and after each work shift. Results Urinary mandelic acid (MA) and methyl hippuric acid (MHA) levels were divided by the personal exposure concentrations of ethyl benzene and xylene, respectively. Mean (SE) corrected MA and MHA concentrations in the first week were 1.07 (0.18) and 2.66 (0.68) (mg/g creatinine)/(mg/m3), and concentrations in the second week were 0.50 (0.12) and 1.76 (0.35) (mg/g creatinine)/(mg/m3) in the second week, respectively. Both MA and MHA concentrations in the second week (when spray painters wore protective suits and gloves) were lower than in the first week, respectively (p<0.001, p?=?0.011). Mean decrease in MA and MHA biomarkers were 69% and 49%, respectively. Conclusion This study successfully evaluated the effectiveness of chemical protective suits and gloves by using biomarkers as urinary MA and MHA. This method is feasible for determining the performance of workers wearing personal protective equipment. Moreover, the experimental results suggest that dermal exposure may be the major contributor to total body burden of solvents in spray painters without protective suits and gloves. PMID:17522137

Chang, F K; Chen, M L; Cheng, S F; Shih, T S; Mao, I F

2007-01-01

430

Variable Sweep Transition Flight Experiment (VSTFE)-Parametric Pressure Distribution Boundary Layer Stability Study and Wing Glove Design Task  

NASA Technical Reports Server (NTRS)

The Variable Sweep Transition Flight Experiment (VSTFE) was initiated to establish a boundary-layer transition data base for laminar flow wing design. For this experiment, full-span upper-surface gloves will be fitted to a variable sweep F-14 aircraft. The results of two initial tasks are documented: a parametric pressure distribution/boundary-layer stability study and the design of an upper-surface glove for Mach 0.8. The first task was conducted to provide a data base from which wing-glove pressure distributions could be selected for glove designs. Boundary-layer stability analyses were conducted on a set of pressure distributions for various wing sweep angles, Mach numbers, and Reynolds number in the range of those anticipated for the flight-test program. The design procedure for the Mach 0.8 glove is described, and boundary-layer stability calculations and pressure distributions are presented both at design and off-design conditions. Also included is the analysis of the clean-up glove (smoothed basic wing) that will be flight-tested initially and the analysis of a Mach 0.7 glove designed at the NASA Langley Research Center.

Rozendaal, Rodger A.

1986-01-01