Sample records for activity eva missions

  1. Mission control activity during STS-61 EVA

    NASA Image and Video Library

    1993-12-07

    Flight controller Susan P. Rainwater observes as two astronauts work through a lengthy period of extravehicular activity (EVA) in the cargo bay of the Earth-looking Space Shuttle Endeavour. Rainwater's EVA console was one of Mission Control's busiest during this eleven-day Hubble Space Telescope (HST) servicing mission in Earth orbit.

  2. Activity during first EVA of STS-72 mission

    NASA Image and Video Library

    1996-01-15

    STS072-305-034 (15 Jan. 1996) --- Astronaut Daniel T. Barry, mission specialist, works in the cargo bay of the Space Shuttle Endeavour during the first of two extravehicular activities (EVA). Barry was joined by astronaut Leroy Chiao for the EVA. The two joined four other NASA astronauts for a week and a half aboard Endeavour.

  3. Mission control activity during STS-61 EVA-1

    NASA Image and Video Library

    1993-12-05

    Joseph Fanelli, at the Integrated Communications Officer console, monitors the televised activity of Astronauts Story Musgrave and Jeffrey A. Hoffman. The vetern astronauts were performing the first extravehicular activity (EVA-1) of the STS-61 Hubble Space Telescope (HST) servicing mission.

  4. Mission control activity during STS-61 EVA-2

    NASA Image and Video Library

    1993-12-05

    STS61-S-094 (5 Dec 1993) --- Kyle Herring, second left, illustrates a point during mission commentary for the second Extravehicular Activity (EVA-2) of the STS-61 Hubble Space Telescope (HST) servicing mission. Astronaut Jerry L. Ross (center), a space walker on two previous NASA shuttle missions, amplified Herring's explanations. At the flight surgeon's console is Dr. Klaus Lohn (third right) of the Institute for Flight Medicine in Koln, Germany.

  5. Mission control activity during STS-61 EVA-2

    NASA Image and Video Library

    1993-12-05

    Harry Black, at the Integrated Communications Officer's console in the Mission Control Center (MCC), monitors the second extravehicular activity (EVA-2) of the STS-61 Hubble Space Telescope (HST) servicing mission. Others pictured, left to right, are Judy Alexander, Kathy Morrison and Linda Thomas. Note monitor scene of one of HST's original solar array panels floating in space moments after being tossed away by Astronaut Kathryn C. Thornton.

  6. View - Mission Control Center (MCC) - Lunar Surface - Apollo XI Extravehicular Activity (EVA) - MSC

    NASA Image and Video Library

    1969-07-20

    S69-39815 (20 July 1969) --- Interior view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC) during the Apollo 11 lunar extravehicular activity (EVA). The television monitor shows astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. on the surface of the moon.

  7. APOLLO XIII CREW - MISSION OPERATIONS CONTROL ROOM (MOCR) - APOLLO XII - LUNAR EXTRAVEHICULAR ACTIVITY (EVA) - MSC

    NASA Image and Video Library

    1969-11-21

    S69-59525 (19 Nov. 1969) --- Overall view of activity in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, during the Apollo 12 lunar landing mission. When this picture was made the first Apollo 12 extravehicular activity (EVA) was being televised from the surface of the moon. Photo credit: NASA

  8. View of activity in Mission Control Center during Apollo 15 EVA

    NASA Image and Video Library

    1971-08-02

    S71-41852 (2 Aug. 1971) --- Gerald D. Griffin, foreground, stands near his console in the Mission Operations Control Room (MOCR) during Apollo 15's third extravehicular activity (EVA) on the lunar surface. Griffin is Gold Team (Shift 1) flight director for the Apollo 15 mission. Astronauts David R. Scott and James B. Irwin can be seen on the large screen at the front of the MOCR as they participate in sample-gathering on the lunar surface.

  9. View of activity in Mission Control Center during Apollo 15 EVA

    NASA Image and Video Library

    1971-07-30

    S71-41836 (2 Aug. 1971) --- Scientist-astronaut Joseph P. Allen, left, directs the attention of astronaut Richard F. Gordon Jr., to an occurrence out of view at right in the Mission Control Center's (MCC) Mission Operations Control Room (MOCR), while Dr. Donald K. (Deke) Slayton, on right with back to camera, views activity of Apollo 15 on a large screen at the front of the MOCR. Astronauts David R. Scott and James B. Irwin are seen on the screen performing tasks of the mission's third extravehicular activity (EVA), on Aug. 2, 1971. Dr. Slayton is director of Flight Crew Operations, NASA-MSC; Gordon is Apollo 15 backup commander; and Dr. Allen is an Apollo 15 spacecraft communicator.

  10. View of Mission Control Center (MCC) - Lunar Surface - Apollo XI - Extravehicular Activity (EVA) - MSC

    NASA Image and Video Library

    1969-07-20

    S69-39817 (20 July 1969) --- Interior view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, during the Apollo 11 lunar extravehicular activity (EVA). The television monitor shows astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. on the surface of the moon.

  11. Payload bay activity during second EVA of STS-72 mission

    NASA Image and Video Library

    1996-01-17

    STS072-740-044 (17 Jan. 1996) --- Backdropped against Australia's Shark Bay, this panoramic scene of the Space Shuttle Endeavour in Earth-orbit was recorded during the mission's second Extravehicular Activity (EVA-2) on January 17, 1996. Astronaut Leroy Chiao works with a Mobile Foot Restraint (MFR) at bottom left. The Japanese Space Flyer Unit (SFU) satellite and the Office of Aeronautics and Space Technology (OAST) Flyer satellite are seen in their stowed positions in the aft cargo bay.

  12. Climbing the Extravehicular Activity (EVA) Wall - Safely

    NASA Technical Reports Server (NTRS)

    Fuentes, Jose; Greene, Stacie

    2010-01-01

    The success of the EVA team, that includes the EVA project office, Crew Office, Mission Operations, Engineering and Safety, is assured by the full integration of all necessary disciplines. Safety participation in all activities from hardware development concepts, certification and crew training, provides for a strong partnership within the team. Early involvement of Safety on the EVA team has mitigated risk and produced a high degree of mission success.

  13. View of Mission Control during lunar surface Apollo 11 EVA

    NASA Image and Video Library

    1969-07-20

    Overall view of the Mission Operations Control Room in the Mission Control Center, bldg 30, during the lunar surface extravehicular activity (EVA) of Apollo 11 Astronauts Neil A. Armstrong and Edwin E. Aldrin Jr.

  14. Extravehicular Activity (EVA) Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2010-01-01

    Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for

  15. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one that builds upon previously developed technologies and lessons learned, and that accomplishes the ARCM mission while providing a stepping stone to future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts and to not perturb the baseline Orion schedule, the concept of adding "kits" to the baseline system is proposed. These kits consist of: an EVA kit (converts LEA suit to EVA suit), EVA Servicing and Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and the MPCV), and the Cabin Repress Kit (represses the MPCV between EVAs). This paper will focus on the trade space, analysis, and testing regarding the space suit (pressure garment and life support system). Historical approaches and lessons learned from all past EVA operations were researched. Previous and current, successfully operated EVA hardware and high technology readiness level (TRL) hardware were evaluated, and a trade study was conducted for all possible pressure garment and life support options. Testing and analysis was conducted and a recommended EVA system architecture was proposed. Pressure garment options that were considered for this mission include the currently in-use ISS EVA Mobility Unit (EMU), all variations of

  16. Extravehicular Activity (EVA) 101: Constellation EVA Systems

    NASA Technical Reports Server (NTRS)

    Jordan, Nicole C.

    2007-01-01

    A viewgraph presentation on Extravehicular Activity (EVA) Systems is shown. The topics include: 1) Why do we need space suits? 2) Protection From the Environment; 3) Primary Life Support System (PLSS); 4) Thermal Control; 5) Communications; 6) Helmet and Extravehicular Visor Assy; 7) Hard Upper Torso (HUT) and Arm Assy; 8) Display and Controls Module (DCM); 9) Gloves; 10) Lower Torso Assembly (LTA); 11) What Size Do You Need?; 12) Boot and Sizing Insert; 13) Boot Heel Clip and Foot Restraint; 14) Advanced and Crew Escape Suit; 15) Nominal & Off-Nominal Landing; 16) Gemini Program (mid-1960s); 17) Apollo EVA on Service Module; 18) A Bold Vision for Space Exploration, Authorized by Congress; 19) EVA System Missions; 20) Configurations; 21) Reduced Gravity Program; and 22) Other Opportunities.

  17. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan T.; Kelly, Cody; Buffington, Jesse; Watson, Richard D.

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment that was selected, for both functions, is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS). The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations have been completed in the NBL and interfacing options have been prototyped and analyzed with testing planned for late 2014. For NBL EVA simulations, in 2013, components were procured to allow in-house build up for four new suits with mobility enhancements built into the arms. Boots outfitted with clips that fit into foot restraints have also been added to the suit and analyzed for possible loads. Major suit objectives accomplished this year in testing include: evaluation of mobility enhancements, ingress/egress of foot restraint, use of foot restraint for worksite stability, ingress/egress of Orion hatch with PLSS mockup, and testing with two crew members in the water at one time to evaluate the crew's ability to help one another. Major tool objectives accomplished this year include using various other methods for worksite stability, testing new methods for asteroid geologic sampling and improving the fidelity of the mockups and crew equipment. These tests were completed on a medium fidelity capsule mockup, asteroid vehicle mockup, and asteroid mockups that were more accurate for an asteroid type EVA than previous tests. Another focus was the

  18. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  19. Payload bay activity during second EVA of STS-72 mission

    NASA Image and Video Library

    1996-01-16

    STS072-393-008 (17 Jan. 1996) --- Astronaut Leroy Chiao gives a thumbs up signal, marking the success of his second extravehicular activity (EVA) in three days. Chiao was joined by astronaut Winston E. Scott on this EVA.

  20. Overview of EVA PRA for TPS Repair for Hubble Space Telescope Servicing Mission

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Duncan, Gary; Roeschel, Eduardo; Canga, Michael

    2010-01-01

    Following the Columbia accident in 2003, NASA developed techniques to repair the Thermal Protection System (TPS) in the event of damage to the TPS as one of several actions to reduce the risk to future flights from ascent debris, micro-meteoroid and/or orbital debris (MMOD). Other actions to help reduce the risk include improved inspection techniques, reduced shedding of debris from the External Tank and ability to rescue the crew with a launch on need vehicle. For the Hubble Space Telescope (HST) Servicing Mission the crew rescue capability was limited by the inability to safe haven on the International Space Station (ISS), resulting in a greater reliance on the repair capability. Therefore it was desirable to have an idea of the risk associated with conducting a repair, where the repair would have to be conducted using an Extra-Vehicular Activity (EVA). Previously, focused analyses had been conducted to quantify the risk associated with certain aspects of an EVA, for example the EVA Mobility Unit (EMU) or Space Suit; however, the analyses were somewhat limited in scope. A complete integrated model of an EVA which could quantify the risk associated with all of the major components of an EVA had never been done before. It was desired to have a complete integrated model to be able to assess the risks associated with an EVA to support the Space Shuttle Program (SSP) in making risk informed decisions. In the case of the HST Servicing Mission, this model was developed to assess specifically the risks associated with performing a TPS repair EVA. This paper provides an overview of the model that was developed to support the HST mission in the event of TPS damage. The HST Servicing Mission was successfully completed on May 24th 2009 with no critical TPS damage; therefore the model was not required for real-time mission support. However, it laid the foundation upon which future EVA quantitative risk assessments could be based.

  1. STS-120 Mission Specialist Doug Wheelock During EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Astronaut Doug Wheelock, STS-120 mission specialist, participated in the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the International Space Station (ISS). During the 7-hour and 19-minute space walk, astronaut Scott Parazynski (out of frame), mission specialist, cut a snagged wire and installed homemade stabilizers designed to strengthen the structure and stability of the damaged P6 4B solar array wing. Wheelock assisted from the truss by keeping an eye on the distance between Parazynski and the array. Once the repair was complete, flight controllers on the ground successfully completed the deployment of the array.

  2. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard; Blanco, Raul; Sipila, Stephanie

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  3. STS-64 extravehicular activity (EVA) hardware view

    NASA Image and Video Library

    1993-01-21

    S93-26920 (8 Sept. 1994) --- Scott Bleisath, an extravehicular activity (EVA) engineer, demonstrates the hand control module for the Simplified Aid for EVA Rescue (SAFER) system making its first flight on the scheduled September STS-64 mission. Astronauts Mark C. Lee and Carl J. Meade are the spacewalkers assigned to test the system in space. Photo credit: NASA or National Aeronautics and Space Administration

  4. Design and simulation of EVA tools for first servicing mission of HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1993-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the space shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A space shuttle repair mission in late 1993 will install small corrective mirrors that will restore the full intended optical capability of the HST. The first servicing mission (FSM) will involve considerable extravehicular activity (EVA). It is proposed to design special EVA tools for the FSM. This report includes details of the data acquisition system being developed to test the performance of the various EVA tools in ambient as well as simulated space environment.

  5. CREW TRAINING (EXTRAVEHICULAR ACTIVITY [EVA]) - STS-41G - JSC

    NASA Image and Video Library

    1984-07-06

    S84-36956 (1 July 1984) --- Astronaut Robert L. Crippen, 41-G crew commander, prepares his SCUBA mask prior to submerging into the weightless environment training facility's 25 ft. deep pool to observe a simulation exercise for two fellow 41-G crewmembers assigned to an extravehicular activity (EVA) in space. Not pictured are Astronauts Kathryn D. Sullivan and David C. Leestma, mission specialists who will perform the EVA during the eight-day mission scheduled for October of this year.

  6. STS-64 extravehicular activity (EVA) hardware view

    NASA Image and Video Library

    1993-01-21

    S93-26918 (8 Sept. 1994) --- Scott Bleisath, an extravehicular activity (EVA) engineer, demonstrates the hand control module for the Simplified Aid for EVA Rescue (SAFER) system making its first flight on the scheduled September STS-64 mission. Astronauts Mark C. Lee and Carl J. Meade are the spacewalkers assigned to test the system in space. Unidentified technicians and engineers look on. Photo credit: NASA or National Aeronautics and Space Administration

  7. Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT)

    NASA Technical Reports Server (NTRS)

    Brown, Cheryl B.; Conger, Bruce C.; Miranda, Bruno M.; Bue, Grant C.; Rouen, Michael N.

    2007-01-01

    An effort was initiated by NASA/JSC in 2001 to develop an Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT) for the sizing of Extravehicular Activity System (EVAS) architecture and studies. Its intent was to support space suit development efforts and to aid in conceptual designs for future human exploration missions. Its basis was the Life Support Options Performance Program (LSOPP), a spacesuit and portable life support system (PLSS) sizing program developed for NASA/JSC circa 1990. EVAS_SAT estimates the mass, power, and volume characteristics for user-defined EVAS architectures, including Suit Systems, Airlock Systems, Tools and Translation Aids, and Vehicle Support equipment. The tool has undergone annual changes and has been updated as new data have become available. Certain sizing algorithms have been developed based on industry standards, while others are based on the LSOPP sizing routines. The sizing algorithms used by EVAS_SAT are preliminary. Because EVAS_SAT was designed for use by members of the EVA community, subsystem familiarity on the part of the intended user group and in the analysis of results is assumed. The current EVAS_SAT is operated within Microsoft Excel 2003 using a Visual Basic interface system.

  8. Real-Time EVA Troubleshooting

    NASA Technical Reports Server (NTRS)

    Leestma, David

    2013-01-01

    David Leestma was EV-1 for the STS-41G extravehicular activity (EVA) with Kathy Sullivan (first American female spacewalker). They conducted an EVA to fully demonstrate the feasibility of refueling satellites from the Space Shuttle, and performed the first contingency EVA task involving the Ku-band antenna. STS-41G was the fourth Space Shuttle mission to perform an EVA, and Leestma related his experiences with training, the spacesuit, and EVA tasks that were conducted on October 11, 1984 during this mission.

  9. Tracking Historical NASA EVA Training: Lifetime Surveillance of Astronaut Health (LSAH) Development of the EVA Suit Exposure Tracker (EVA SET)

    NASA Technical Reports Server (NTRS)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Lee, Lesley R.; Wear, Mary L.; Van Baalen, Mary

    2017-01-01

    During a spacewalk, designated as extravehicular activity (EVA), an astronaut ventures from the protective environment of the spacecraft into the vacuum of space. EVAs are among the most challenging tasks during a mission, as they are complex and place the astronaut in a highly stressful environment dependent on the spacesuit for survival. Due to the complexity of EVA, NASA has conducted various training programs on Earth to mimic the environment of space and to practice maneuvers in a more controlled and forgiving environment. However, rewards offset the risks of EVA, as some of the greatest accomplishments in the space program were accomplished during EVA, such as the Apollo moonwalks and the Hubble Space Telescope repair missions. Water has become the environment of choice for EVA training on Earth, using neutral buoyancy as a substitute for microgravity. During EVA training, an astronaut wears a modified version of the spacesuit adapted for working in water. This high fidelity suit allows the astronaut to move in the water while performing tasks on full-sized mockups of space vehicles, telescopes, and satellites. During the early Gemini missions, several EVA objectives were much more difficult than planned and required additional time. Later missions demonstrated that "complex (EVA) tasks were feasible when restraints maintained body position and underwater simulation training ensured a high success probability".1,2 EVA training has evolved from controlling body positioning to perform basic tasks to complex maintenance of the Hubble Space Telescope and construction of the International Space Station (ISS). Today, preparation is centered at special facilities built specifically for EVA training, such as the Neutral Buoyancy Laboratory (NBL) at NASA's Johnson Space Center ([JSC], Houston) and the Hydrolab at the Gagarin Cosmonaut Training Centre ([GCTC], Star City, outside Moscow). Underwater training for an EVA is also considered hazardous duty for NASA

  10. Hubble Space Telescope Servicing Mission Four(HST SM4) EVA Challenges for Safe Execution of STS-125

    NASA Astrophysics Data System (ADS)

    Dedalis, Robert P.; Hill, William H.; Rice, Karin Bergh; Cooter, Ann M.

    2010-09-01

    In May of 2009, the world-renowned Hubble Space Telescope(HST) received a suite of new instruments and a refurbished bus to enable science for many years to come. The restoration was conducted on-orbit by four spacewalkers on five carefully scripted Extra-Vehicular Activity(EVA) days. Assuring the safety of the spacewalkers and their crewmates required careful attention to tool development, detailed procedures for every activity and many rehearsals with engineers and crew to ensure that everything worked together. Additionally, evolution of EVA requirements since the last servicing mission in 2002, and the broad scope of the mission demanded a much higher degree of safety participation in hardware design and risk acceptance than for previous servicing missions.

  11. Shuttle EVA description and design criteria

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The STS extravehicular mobility unit, orbiter EVA provisions, EVA equipment, factors affecting employment of EVA, EVA mission integration, baselined extravehicular activity are discussed. Design requirements are also discussed.

  12. STS-64 Extravehicular activity (EVA) training view in WETF

    NASA Image and Video Library

    1994-08-10

    S94-39775 (August 1994) --- Astronaut Carl J. Meade, STS-64 mission specialist, listens to ground monitors during a simulation of a spacewalk scheduled for his September mission. Meade, who shared the rehearsal in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F) pool with crewmate astronaut Mark C. Lee, is equipped with a training version of new extravehicular activity (EVA) hardware called the Simplified Aid for EVA Rescue (SAFER) system. The hardware includes a mobility-aiding back harness and a chest-mounted hand control module. Photo credit: NASA or National Aeronautics and Space Administration

  13. STS-64 Extravehicular activity (EVA) training view in WETF

    NASA Image and Video Library

    1994-08-10

    S94-39762 (August 1994) --- Astronaut Carl J. Meade, STS-64 mission specialist, listens to ground monitors prior to a simulation of a spacewalk scheduled for his September mission. Meade, who shared the rehearsal in Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F) pool with crewmate astronaut Mark C. Lee (out of frame), is equipped with a training version of new extravehicular activity (EVA) hardware called the Simplified Aid for EVA Rescue (SAFER) system. The hardware includes a mobility-aiding back harness and a chest-mounted hand control module. Photo credit: NASA or National Aeronautics and Space Administration

  14. EVA design: lessons learned.

    PubMed

    Ross, J L

    1994-01-01

    Extravehicular Activities (EVAs) are very demanding and specialized space flight activities. There are many aspects to consider in the design of hardware, tools, and procedures to be used on an EVA mission. To help minimize costs and optimize the EVA productivity, experience shows that astronauts should become involved early in the design process.

  15. Hubble Space Telescope Servicing Mission Four (HST SM4) EVA Challenges for Safe Execution of STS-125

    NASA Technical Reports Server (NTRS)

    Dedalis, Robert P.; Hill, William H.; Rice, Karin Bergh; Cooter, Ann M.

    2010-01-01

    In May of 2009, the world-renowned Hubble Space Telescope (HST) received a suite of new instruments and a refurbished bus to enable science for many years to come. The restoration was conducted on-orbit by four space-walkers on five carefully scripted Extra-Vehicular Activity (EVA) days. Assuring the safety of the space-walkers and their crew-mates required careful attention to tool development, detailed procedures for every activity and many rehearsals with engineers and crew to ensure that everything worked together. Additionally, evolution of EVA requirements since the last servicing mission in 2002, and the broad scope of the mission demanded a much higher degree of safety participation in hardware design and risk acceptance than for previous servicing missions.

  16. EVA Systems Technology Gaps and Priorities 2017

    NASA Technical Reports Server (NTRS)

    Johnson, Brian J.; Buffington, Jesse A.

    2017-01-01

    Performance of Extra-Vehicular Activities (EVA) has been and will continue to be a critical capability for human space flight. Human exploration missions beyond LEO will require EVA capability for either contingency or nominal activities to support mission objectives and reduce mission risk. EVA systems encompass a wide array of products across pressure suits, life support systems, EVA tools and unique spacecraft interface hardware (i.e. EVA Translation Paths and EVA Worksites). In a fiscally limited environment with evolving transportation and habitation options, it is paramount that the EVA community's strategic planning and architecture integration products be reviewed and vetted for traceability between the mission needs far into the future to the known technology and knowledge gaps to the current investments across EVA systems. To ascertain EVA technology and knowledge gaps many things need to be brought together, assessed and analyzed. This includes an understanding of the destination environments, various mission concept of operations, current state of the art of EVA systems, EVA operational lessons learned, and reference advanced capabilities. A combined assessment of these inputs should result in well-defined list of gaps. This list can then be prioritized depending on the mission need dates and time scale of the technology or knowledge gap closure plan. This paper will summarize the current state of EVA related technology and knowledge gaps derived from NASA's Exploration EVA Reference Architecture and Operations Concept products. By linking these products and articulating NASA's approach to strategic development for EVA across all credible destinations an EVA could be done in, the identification of these gaps is then used to illustrate the tactical and strategic planning for the EVA technology development portfolio. Finally, this paper illustrates the various "touch points" with other human exploration risk identification areas including human health and

  17. Design and simulation of EVA tools for first servicing mission of HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1994-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the Space Shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A Space Shuttle repair mission in January 1994 installed small corrective mirrors that restored the full intended optical capability of the HST. The First Servicing Mission (FSM) involved considerable Extra Vehicular Activity (EVA). Special EVA tools for the FSM were designed and developed for this specific purpose. In an earlier report, the details of the Data Acquisition System developed to test the performance of the various EVA tools in ambient as well as simulated space environment were presented. The general schematic of the test setup is reproduced in this report for continuity. Although the data acquisition system was used extensively to test a number of fasteners, only the results of one test each carried on various fasteners and the Power Ratchet Tool are included in this report.

  18. EVA console personnel during STS-61 simulations

    NASA Image and Video Library

    1993-09-01

    Susan P. Rainwater monitors an extravehicular activity (EVA) simulation from the EVA console at JSC's Mission Control Center (MCC) during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a neutral buoyancy tank at the Marshall Space Flight Center (MSFC) in Alabama.

  19. EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6893 (3 August 2005) --- Astronaut Soichi Noguchi, STS-114 mission specialist representing Japan Aerospace Exploration Agency (JAXA), participates in the mission’;s third session of extravehicular activity (EVA).

  20. EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6897 (3 August 2005) --- Astronaut Soichi Noguchi, STS-114 mission specialist representing Japan Aerospace Exploration Agency (JAXA), participates in the mission’;s third session of extravehicular activity (EVA).

  1. STS-65 Mission Specialist Chiao in EMU prepares for WETF contingency EVA

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Mission Specialist Leroy Chiao, fully suited in an extravehicular mobility unit (EMU) and helmet, prepares to be lowered into a 25-feet deep pool at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Chiao will practice door and latch contingency extravehicular activity (EVA) procedures once underwater. Mission Specialist Donald A. Thomas will join Chiao in the simulation. The two crewmates will be submerged and made to be neutrally buoyant in order to rehearse the contingency tasks that would require a spacewalk. No spacewalks are scheduled for the STS-65 International Microgravity Laboratory 2 (IML-2) mission.

  2. Study to evaluate the effect of EVA on payload systems. Volume 1: Executive summary. [project planning of space missions employing extravehicular activity as a means of cost reduction

    NASA Technical Reports Server (NTRS)

    Patrick, J. W.; Kraly, E. F.

    1975-01-01

    Programmatic benefits to payloads are examined which can result from the routine use of extravehicular activity (EVA) during space missions. Design and operations costs were compared for 13 representative baseline payloads to the costs of those payloads adapted for EVA operations. The EVA-oriented concepts developed in the study were derived from these baseline concepts and maintained mission and program objectives as well as basic configurations. This permitted isolation of cost saving factors associated specifically with incorporation of EVA in a variety of payload designs and operations. The study results were extrapolated to a total of 74 payload programs. Using appropriate complexity and learning factors, net EVA savings were extrapolated to over $551M for NASA and U.S. civil payloads for routine operations. Adding DOD and ESRO payloads increases the net estimated savings of $776M. Planned maintenance by EVA indicated an estimated $168M savings due to elimination of automated service equipment. Contingency problems of payloads were also analyzed to establish expected failure rates for shuttle payloads. The failure information resulted in an estimated potential for EVA savings of $1.9 B.

  3. Mission control activity during STS-61 EVA

    NASA Image and Video Library

    1993-12-07

    STS61-S-101 (8 Dec 1993) --- Astronaut Gregory J. Harbaugh, spacecraft communicator (CAPCOM), observes as two astronauts work through a lengthy period of extravehicular activity (EVA) in the cargo bay of the Earth-orbiting Space Shuttle Endeavour. Seen on the screen in the front of the flight control room, preparing to work with the Hubble Space Telescope's (HST) magnetometers, are astronauts F. Story Musgrave and Jeffrey A. Hoffman. Harbaugh stayed busy passing up flight controllers suggestions and directions during the record-breaking battery of in-space servicing sessions. Lead flight director Milt Heflin is partially visible at left edge of frame.

  4. Forrester works at the P6 Truss during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-14

    S117-E-07313 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  5. Forrester works at the P6 Truss during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-14

    S117-E-07315 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  6. STS-65 Mission Specialist Chiao in EMU prepares for WETF contingency EVA

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Mission Specialist Leroy Chiao, fully suited in an extravehicular mobility unit (EMU) and helmet, stands on a platform and prepares to be lowered into a 25-feet deep pool at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Chiao will practice door and latch contingency extravehicular activity (EVA) procedures once underwater. Mission Specialist Donald A. Thomas will join Chiao in the simulation. The two crewmates will be submerged and made to be neutrally buoyant in order to rehearse the contingency tasks that would require a spacewalk. No spacewalks are scheduled for the STS-65 International Microgravity Laboratory 2 (IML-2) mission.

  7. STS-87 Mission Specialist Doi with EVA coordinator Laws participates in the CEIT for his mission

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi , Ph.D., of the National Space Development Agency of Japan, participates in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center (KSC). Glenda Laws, the extravehicular activity (EVA) coordinator, Johnson Space Center, stands behind Dr. Doi. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-87 will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, Dr. Doi will be the first Japanese astronaut to perform a spacewalk. STS- 87 is scheduled for a Nov. 19 liftoff from KSC.

  8. Eva Physiology, Systems, and Performance (EPSP) Project Overview

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.

    2007-01-01

    Extravehicular activity (EVA) is any activity performed by astronauts outside their space vehicle or habitat. EVA may be performed on orbit, such as outside the Space Shuttle or the International Space Station, or on a planetary surface such as Mars or on the moon. Astronauts wear a pressurized suit that provides environmental protection, mobility, life support, and communications while they work in the harsh conditions of a microgravity environment. Exploration missions to the moon and Mars may last many days and will include many types of EVAs; exploration, science, construction and maintenance. The effectiveness and success of these EVA-filled missions is dependent on the ability to perform tasks efficiently. The EVA Physiology, Systems and Performance (EPSP) project will conduct a number of studies to understand human performance during EVA, from a molecular level to full-scale equipment and suit design aspects, with the aim of developing safe and efficient systems for Exploration missions and the Constellation Program. The EPSP project will 1) develop Exploration Mission EVA suit requirements for metabolic and thermal loading, optional center of gravity location, biomedical sensors, hydration, nutrition, and human biomedical interactions; 2) develop validated EVA prebreathe protocols that meet medical, vehicle, and habitat constraints while minimizing crew time and thus increasing EVA work efficiency; and 3) define exploration decompression sickness (DCS) risks, policy, and mission success statistics and develop a DCS risk definition report.

  9. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan T.; Blanco, Raul A.; Watson, Richard D.; Kelly, Cody; Buffington, Jesse; Sipila, Stephanie A.

    2014-01-01

    This paper discusses the Asteroid Redirect Crewed Mission (ARCM) space suit and Extravehicular Activity (EVA) architecture trade study and the current state of the work to mature the requirements and products to the mission concept review level. The mission requirements and the resulting concept of operations will be discussed. A historical context will be presented as to present the similarities and differences from previous NASA missions. That will set the stage for the trade study where all options for both pressure garment and life support were considered. The rationale for the architecture decisions will then be presented. Since the trade study did identity risks, the subsequent tests and analyses that mitigated the risks will be discussed. Lastly, the current state of the effort will be provided.

  10. Intra-EVA Space-to-Ground Interactions when Conducting Scientific Fieldwork Under Simulated Mars Mission Constraints

    NASA Technical Reports Server (NTRS)

    Beaton, Kara H.; Chappell, Steven P.; Abercromby, Andrew F. J.; Lim, Darlene S. S.

    2018-01-01

    The Biologic Analog Science Associated with Lava Terrains (BASALT) project is a four-year program dedicated to iteratively designing, implementing, and evaluating concepts of operations (ConOps) and supporting capabilities to enable and enhance scientific exploration for future human Mars missions. The BASALT project has incorporated three field deployments during which real (non-simulated) biological and geochemical field science have been conducted at two high-fidelity Mars analog locations under simulated Mars mission conditions, including communication delays and data transmission limitations. BASALT's primary Science objective has been to extract basaltic samples for the purpose of investigating how microbial communities and habitability correlate with the physical and geochemical characteristics of chemically altered basalt environments. Field sites include the active East Rift Zone on the Big Island of Hawai'i, reminiscent of early Mars when basaltic volcanism and interaction with water were widespread, and the dormant eastern Snake River Plain in Idaho, similar to present-day Mars where basaltic volcanism is rare and most evidence for volcano-driven hydrothermal activity is relict. BASALT's primary Science Operations objective has been to investigate exploration ConOps and capabilities that facilitate scientific return during human-robotic exploration under Mars mission constraints. Each field deployment has consisted of ten extravehicular activities (EVAs) on the volcanic flows in which crews of two extravehicular and two intravehicular crewmembers conducted the field science while communicating across time delay and under bandwidth constraints with an Earth-based Mission Support Center (MSC) comprised of expert scientists and operators. Communication latencies of 5 and 15 min one-way light time and low (0.512 Mb/s uplink, 1.54 Mb/s downlink) and high (5.0 Mb/s uplink, 10.0 Mb/s downlink) bandwidth conditions were evaluated. EVA crewmembers communicated

  11. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  12. Design and simulation of EVA tools and robot end effectors for servicing missions of the HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1995-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the Space Shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A Space Shuttle repair mission in January 1994 installed small corrective mirrors that restored the full intended optical capability of the HST. A Second Servicing Mission (SM2) scheduled in 1997 will involve considerable Extra Vehicular Activity (EVA). To reduce EVA time, the addition of robotic capability in the remaining servicing missions has been proposed. Toward that end, two concept designs for a general purpose end effector for robots are presented in this report.

  13. Acaba during STS-119 Extravehicular Activity (EVA) 3

    NASA Image and Video Library

    2009-03-23

    ISS018-E-042502 (23 March 2009) --- Astronaut Joseph Acaba, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Acaba and Richard Arnold (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  14. Forrester works on the S1/S3 Trusses during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-14

    S117-E-07217 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  15. Forrester works at the S3/S4 Trusses during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-13

    S117-E-07190 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  16. Forrester works at the S3/S4 Trusses during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-13

    S117-E-07289 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  17. Forrester works at the S3/S4 Trusses during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-13

    S117-E-07286 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  18. EVA 3

    NASA Image and Video Library

    2004-08-03

    S114-E-6856 (3 August 2005) --- Backdropped by the blackness of space, astronaut Soichi Noguchi, STS-114 mission specialist representing the Japan Aerospace Exploration Agency (JAXA), traverses along the P6 truss near the arrays on the international space station during the mission’s third session of extravehicular activity (EVA).

  19. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  20. CREW TRAINING (EXTRAVEHICULAR ACTIVITY [EVA]) - STS-13 - JSC

    NASA Image and Video Library

    1983-11-01

    S83-42893 (19 Oct 1983) ---- Astronauts George D. Nelson and James D. van Hoften, two of three STS-41C mission specialists, share an extravehicular activity (EVA) task in this simulation of a Solar Maximum Satellite (SMS) repair visit. The two are making use of the Johnson Space Center's (JSC) weightless environment training facility (WET-F). Dr. Nelson is equipped with the manned maneuvering unit (MMU) trainer and he handles the trunion pin attachment device (TPAD), a major tool to be used on the mission. The photograph was taken by Otis Imboden.

  1. EVA - Don't Leave Earth Without It

    NASA Technical Reports Server (NTRS)

    Cupples, J. Scott; Smith, Stephen A.

    2011-01-01

    Modern manned space programs come in two categories: those that need Extravehicular Activity (EVA) and those that will need EVA. This paper discusses major milestones in the Shuttle Program where EVA was used to save payloads, enhance on-orbit capabilities, and build structures in order to ensure success of National Aeronautics and Space Administration (NASA) missions. In conjunction, the Extravehicular Mobility Unit s (EMU) design, and hence, its capabilities evolved as its mission evolved. It is the intent that lessons can be drawn from these case studies so that EVA compatibility is designed into future vehicles and payloads.

  2. Helms during EVA on the ISS

    NASA Image and Video Library

    2001-04-06

    STS102-325-023 (11 March 2001) --- Astronaut Susan J. Helms completes a scheduled space walk task on the International Space Station (ISS). This extravehicular activity (EVA), on which Helms was joined by astronaut James S. Voss (out of frame), was the first of two scheduled STS-102 EVA sessions. The pair, destined to become members of the Expedition Two crew aboard the station later in the mission, rode aboard Discovery into orbit and at the time of this EVA were still regarded as STS-102 mission specialists.

  3. EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6918 (3 August 2005) --- Astronaut Stephen K. Robinson, STS-114 mission specialist, anchored to a foot restraint on the extended International Space Station’;s Canadarm2, participates in the mission’;s third session of extravehicular activity (EVA). The blackness of space and Earth’;s horizon form the backdrop for the image.

  4. EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-06919 (3 Aug. 2005) --- Astronaut Stephen K. Robinson, STS-114 mission specialist, anchored to a foot restraint on the extended International Space Station’;s Canadarm2, participates in the mission’;s third session of extravehicular activity (EVA). The blackness of space and Earth’;s horizon form the backdrop for the image.

  5. EVA worksite analysis--use of computer analysis for EVA operations development and execution.

    PubMed

    Anderson, D

    1999-01-01

    To sustain the rate of extravehicular activity (EVA) required to assemble and maintain the International Space Station, we must enhance our ability to plan, train for, and execute EVAs. An underlying analysis capability has been developed to ensure EVA access to all external worksites as a starting point for ground training, to generate information needed for on-orbit training, and to react quickly to develop contingency EVA plans, techniques, and procedures. This paper describes the use of computer-based EVA worksite analysis techniques for EVA worksite design. EVA worksite analysis has been used to design 80% of EVA worksites on the U.S. portion of the International Space Station. With the launch of the first U.S. element of the station, EVA worksite analysis is being developed further to support real-time analysis of unplanned EVA operations. This paper describes this development and deployment of EVA worksite analysis for International Space Station (ISS) mission support.

  6. STS-119 Extravehicular Activity (EVA) 1 Translate and Ingress

    NASA Image and Video Library

    2009-03-19

    S119-E-006688 (19 March 2009) --- Astronaut Steve Swanson, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  7. STS-119 Extravehicular Activity (EVA) 1 Arnold in EMU

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041089 (19 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Arnold and astronaut Steve Swanson (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  8. STS-119 Extravehicular Activity (EVA) 3 Clean-Up OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007137 (23 March 2009) --- Astronaut Joseph Acaba, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Acaba and Richard Arnold (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  9. STS-119 Extravehicular Activity (EVA) 3 Clean-Up OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007154 (23 March 2009) --- Astronaut Joseph Acaba, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Acaba and Richard Arnold (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  10. STS-119 Extravehicular Activity (EVA) 3 Clean-Up OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007165 (23 March 2009) --- Astronaut Joseph Acaba, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Acaba and Richard Arnold (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  11. STS-119 Extravehicular Activity (EVA) 3 Clean-Up OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007123 (23 March 2009) --- Astronaut Joseph Acaba, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Acaba and Richard Arnold (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  12. STS-119 Extravehicular Activity (EVA) 3 Clean-Up OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007128 (23 March 2009) --- Astronaut Joseph Acaba, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Acaba and Richard Arnold (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  13. STS-119 Extravehicular Activity (EVA) 3 Clean-Up OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007129 (23 March 2009) --- Astronaut Joseph Acaba, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Acaba and Richard Arnold (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  14. STS-119 Extravehicular Activity (EVA) 3 Clean-Up OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007134 (23 March 2009) --- Astronaut Joseph Acaba, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Acaba and Richard Arnold (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  15. Extravehicular Activity (EVA) Hardware & Operations Overview

    NASA Technical Reports Server (NTRS)

    Moore, Sandra; Marmolejo, Jose

    2014-01-01

    The objectives of this presentation are to: Define Extravehicular Activity (EVA), identify the reasons for conducting an EVA, and review the role that EVA has played in the space program; Identify the types of EVAs that may be performed; Describe some of the U.S. Space Station equipment and tools that are used during an EVA, such as the Extravehicular Mobility Unit (EMU), the Simplified Aid For EVA Rescue (SAFER), the International Space Station (ISS) Joint Airlock and Russian Docking Compartment 1 (DC-1), and EVA Tools & Equipment; Outline the methods and procedures of EVA Preparation, EVA, and Post-EVA operations; Describe the Russian spacesuit used to perform an EVA; Provide a comparison between U.S. and Russian spacesuit hardware and EVA support; and Define the roles that different training facilities play in EVA training.

  16. Study of roles of remote manipulator systems and EVA for shuttle mission support, volume 1

    NASA Technical Reports Server (NTRS)

    Malone, T. B.; Micocci, A. J.

    1974-01-01

    Alternate extravehicular activity (EVA) and remote manipulator system (RMS) configurations were examined for their relative effectiveness in performing an array of representative shuttle and payload support tasks. Initially a comprehensive analysis was performed of payload and shuttle support missions required to be conducted exterior to a pressurized inclosure. A set of task selection criteria was established, and study tasks were identified. The EVA and RMS modes were evaluated according to their applicability for each task and task condition. The results are summarized in tabular form, showing the modes which are chosen as most effective or as feasible for each task/condition. Conclusions concerning the requirements and recommendations for each mode are presented.

  17. One hundred US EVAs: a perspective on spacewalks.

    PubMed

    Wilde, Richard C; McBarron, James W; Manatt, Scott A; McMann, Harold J; Fullerton, Richard K

    2002-01-01

    In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program. c2002 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  18. Extra-Vehicular Activity (EVA) and Mission Support Center (MSC) Design Elements for Future Human Scientific Exploration of Our Solar System

    NASA Astrophysics Data System (ADS)

    Miller, M. J.; Abercromby, A. F. J.; Chappell, S.; Beaton, K.; Kobs Nawotniak, S.; Brady, A. L.; Garry, W. B.; Lim, D. S. S.

    2017-02-01

    For future missions, there is a need to better understand how we can merge EVA operations concepts with the established purpose of performing scientific exploration and examine how human spaceflight could be successful under communication latency.

  19. Curbeen during first EVA

    NASA Image and Video Library

    2006-12-13

    ISS014-E-09523 (12 Dec. 2006) --- Astronaut Robert L. Curbeam, Jr., STS-116 mission specialist, participates in the mission's first of three planned sessions of extravehicular activity (EVA) as construction resumes on the International Space Station. A power tool, attached to Curbeam's spacesuit, floats at left.

  20. Advanced EVA system design requirements study, executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the space station advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related EVA support equipment were established. The EVA mission requirements, environments, and medical and physiological requirements, as well as operational, procedures and training issues were considered.

  1. STS-119 Extravehicular Activity (EVA) 1 Swanson waves to camera

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041084 (19 March 2009) --- Astronaut Steve Swanson, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  2. STS-87 Mission Specialists Scott and Doi with EVA coordinator Laws participate in the CEIT for their

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Participating in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center are STS-87 crew members, assisted by Glenda Laws, extravehicular activity (EVA) coordinator, Johnson Space Center, at left. Next to Laws is Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, who is looking on as Mission Specialist Winston Scott gets a hands-on look at some of the equipment. The STS-87 mission will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, scheduled for a Nov. 19 liftoff from KSC, Dr. Doi and Scott will both perform spacewalks.

  3. STS-65 Mission Specialist Chiao in EMU prepares for WETF contingency EVA

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Mission Specialist Leroy Chiao, fully suited in an extravehicular mobility unit (EMU) and helmet, stands on a platform suspended via an overhead crane as he is lowered into a 25-feet deep pool at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Chiao prepares to be immersed in the pool to practice door and latch contingency extravehicular activity (EVA) procedures. Although no spacewalk is planned for the STS-65 International Microgravity Laboratory 2 (IML-2) mission, NASA always trains some of each mission's crewmembers to perform in-space tasks that would be required in the event of remote system failure. For 14 years, the WETF pool has been used to train astronauts for spacewalks and to evaluate certain hardware and procedures. Chiao's EMU is weighted to enable the astronaut to achieve neutral buoyancy once in the tank. SCUBA-equipped divers already in the pool guide the platform into the water.

  4. The Effects of Lunar Dust on EVA Systems During the Apollo Missions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2005-01-01

    Mission documents from the six Apollo missions that landed on the lunar surface have been studied in order to catalog the effects of lunar dust on Extra-Vehicular Activity (EVA) systems, primarily the Apollo surface space suit. It was found that the effects could be sorted into nine categories: vision obscuration, false instrument readings, dust coating and contamination, loss of traction, clogging of mechanisms, abrasion, thermal control problems, seal failures, and inhalation and irritation. Although simple dust mitigation measures were sufficient to mitigate some of the problems (i.e., loss of traction) it was found that these measures were ineffective to mitigate many of the more serious problems (i.e., clogging, abrasion, diminished heat rejection). The severity of the dust problems were consistently underestimated by ground tests, indicating a need to develop better simulation facilities and procedures.

  5. The Effects of Lunar Dust on EVA Systems During the Apollo Missions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2007-01-01

    Mission documents from the six Apollo missions that landed on the lunar surface have been studied in order to catalog the effects of lunar dust on Extra-Vehicular Activity (EVA) systems, primarily the Apollo surface space suit. It was found that the effects could be sorted into nine categories: vision obscuration, false instrument readings, dust coating and contamination, loss of traction, clogging of mechanisms, abrasion, thermal control problems, seal failures, and inhalation and irritation. Although simple dust mitigation measures were sufficient to mitigate some of the problems (i.e., loss of traction) it was found that these measures were ineffective to mitigate many of the more serious problems (i.e., clogging, abrasion, diminished heat rejection). The severity of the dust problems were consistently underestimated by ground tests, indicating a need to develop better simulation facilities and procedures.

  6. Go for EVA!

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In this educational video series, 'Liftoff to Learning', astronauts from the STS-37 Space Shuttle Mission (Jay Apt, Jerry Ross, Ken Cameron, Steve Nagel, and Linda Godwin) show what EVA (extravehicular activity) means, talk about the history and design of the space suits and why they are designed the way they are, describe different ways they are used (payload work, testing and maintenance of equipment, space environment experiments) in EVA work, and briefly discuss the future applications of the space suits. Computer graphics and animation is included.

  7. Apollo 14 Mission image - Astronaut Edgar D. Mitchell, lunar module pilot for the Apollo 14 lunar landing mission, stands by the deployed U.S. flag on the lunar surface during the early moments of the first extravehicular activity (EVA-1) of the mission.

    NASA Image and Video Library

    1971-02-05

    AS14-66-9233 (5 Feb. 1971) --- Astronaut Edgar D. Mitchell, lunar module pilot for the Apollo 14 lunar landing mission, stands by the deployed U.S. flag on the lunar surface during the early moments of the first extravehicular activity (EVA) of the mission. He was photographed by astronaut Alan B. Shepard Jr., mission commander, using a 70mm modified lunar surface Hasselblad camera. While astronauts Shepard and Mitchell descended in the Lunar Module (LM) "Antares" to explore the Fra Mauro region of the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) "Kitty Hawk" in lunar orbit.

  8. EVA view taken during STS-102

    NASA Image and Video Library

    2001-03-11

    STS102-312-004 (11 March 2001) --- Astronaut James S. Voss works while anchored to the remote manipulator system (RMS) robot arm on the Space Shuttle Discovery. This extravehicular activity (EVA), on which Voss was joined by astronaut Susan J. Helms (out of frame), was the first of two scheduled STS-102 space walks. The pair, destined to become members of the Expedition Two crew aboard the station later in the mission, rode aboard Discovery into orbit and at the time of this EVA were still regarded as STS-102 mission specialists.

  9. Tile survey seen during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6412 (3 August 2005) --- Space Shuttle Discovery’s underside thermal protection tiles are featured in this image photographed by astronaut Stephen K. Robinson, STS-114 mission specialist, during the mission’s third session of extravehicular activities (EVA).

  10. Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008315 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  11. Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008195 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  12. Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008325 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  13. Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008219 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  14. EVA-SCRAM operations

    NASA Technical Reports Server (NTRS)

    Flanigan, Lee A.; Tamir, David; Weeks, Jack L.; Mcclure, Sidney R.; Kimbrough, Andrew G.

    1994-01-01

    This paper wrestles with the on-orbit operational challenges introduced by the proposed Space Construction, Repair, and Maintenance (SCRAM) tool kit for Extra-Vehicular Activity (EVA). SCRAM undertakes a new challenging series of on-orbit tasks in support of the near-term Hubble Space Telescope, Extended Duration Orbiter, Long Duration Orbiter, Space Station Freedom, other orbital platforms, and even the future manned Lunar/Mars missions. These new EVA tasks involve welding, brazing, cutting, coating, heat-treating, and cleaning operations. Anticipated near-term EVA-SCRAM applications include construction of fluid lines and structural members, repair of punctures by orbital debris, refurbishment of surfaces eroded by atomic oxygen, and cleaning of optical, solar panel, and high emissivity radiator surfaces which have been degraded by contaminants. Future EVA-SCRAM applications are also examined, involving mass production tasks automated with robotics and artificial intelligence, for construction of large truss, aerobrake, and reactor shadow shield structures. Realistically achieving EVA-SCRAM is examined by addressing manual, teleoperated, semi-automated, and fully-automated operation modes. The operational challenges posed by EVA-SCRAM tasks are reviewed with respect to capabilities of existing and upcoming EVA systems, such as the Extravehicular Mobility Unit, the Shuttle Remote Manipulating System, the Dexterous End Effector, and the Servicing Aid Tool.

  15. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1988-01-01

    The results are presented of a study to identify specific criteria regarding space station extravehicular activity system (EVAS) hardware requirements. Key EVA design issues include maintainability, technology readiness, LSS volume vs. EVA time available, suit pressure/cabin pressure relationship and productivity effects, crew autonomy, integration of EVA as a program resource, and standardization of task interfaces. A variety of DOD EVA systems issues were taken into consideration. Recommendations include: (1) crew limitations, not hardware limitations; (2) capability to perform all of 15 generic missions; (3) 90 days on-orbit maintainability with 50 percent duty cycle as minimum; and (4) use by payload sponsors of JSC document 10615A plus a Generic Tool Kit and Specialized Tool Kit description. EVA baseline design requirements and criteria, including requirements of various subsystems, are outlined. Space station/EVA system interface requirements and EVA accommodations are discussed in the areas of atmosphere composition and pressure, communications, data management, logistics, safe haven, SS exterior and interior requirements, and SS airlock.

  16. Active Solid State Dosimetry for Lunar EVA

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.; Chen, Liang-Yu.

    2006-01-01

    The primary threat to astronauts from space radiation is high-energy charged particles, such as electrons, protons, alpha and heavier particles, originating from galactic cosmic radiation (GCR), solar particle events (SPEs) and trapped radiation belts in Earth orbit. There is also the added threat of secondary neutrons generated as the space radiation interacts with atmosphere, soil and structural materials.[1] For Lunar exploration missions, the habitats and transfer vehicles are expected to provide shielding from standard background radiation. Unfortunately, the Lunar Extravehicular Activity (EVA) suit is not expected to afford such shielding. Astronauts need to be aware of potentially hazardous conditions in their immediate area on EVA before a health and hardware risk arises. These conditions would include fluctuations of the local radiation field due to changes in the space radiation field and unknown variations in the local surface composition. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.[2

  17. STS-119 Extravehicular Activity (EVA) 1 S6 Truss Umbilical Mate OPS

    NASA Image and Video Library

    2009-03-19

    S119-E-006674 (19 March 2009) --- Astronaut Steve Swanson (center), STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  18. STS-119 Extravehicular Activity (EVA) 1 Swanson in Extravehicular Mobility Unit (EMU)

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041093 (19 March 2009) --- Astronaut Steve Swanson, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  19. STS-119 Extravehicular Activity (EVA) 1 Swanson in Extravehicular Mobility Unit (EMU)

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041098 (19 March 2009) --- Astronaut Steve Swanson, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  20. Acaba on S1 Truss during STS-119 Extravehicular Activity (EVA) 3

    NASA Image and Video Library

    2009-03-23

    ISS018-E-042538 (23 March 2009) --- Astronaut Joseph Acaba, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Acaba and Richard Arnold (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  1. Arnold on S1 Truss during STS-119 Extravehicular Activity (EVA) 3

    NASA Image and Video Library

    2009-03-23

    ISS018-E-042546 (23 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Joseph Acaba (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  2. A human factors analysis of EVA time requirements

    NASA Technical Reports Server (NTRS)

    Pate, D. W.

    1996-01-01

    Human Factors Engineering (HFE), also known as Ergonomics, is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. A human factors motion and time study was initiated with the goal of developing a database of EVA task times and a method of utilizing the database to predict how long an ExtraVehicular Activity (EVA) should take. Initial development relied on the EVA activities performed during the STS-61 mission (Hubble repair). The first step of the analysis was to become familiar with EVAs and with the previous studies and documents produced on EVAs. After reviewing these documents, an initial set of task primitives and task time modifiers was developed. Videotaped footage of STS-61 EVAs were analyzed using these primitives and task time modifiers. Data for two entire EVA missions and portions of several others, each with two EVA astronauts, was collected for analysis. Feedback from the analysis of the data will be used to further refine the primitives and task time modifiers used. Analysis of variance techniques for categorical data will be used to determine which factors may, individually or by interactions, effect the primitive times and how much of an effect they have.

  3. Astronaut Musgrave performing EVA during STS-6

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Views of Mission Specialist F. Story Musgrave performing an extravehicular activity (EVA) during the STS-6 mission. In this view, Musgrave uses hand holds in the payload bay door hinge line to move towards the aft payload bay (30215); Musgrave conducts a simulation of a contingency EVA in the aft payload bay. This was designed to return the inertial upper stage (IUS) support equipment's tilt table device to its normal stowed configuration in the event of failure of an automatic system. A cloud-covered earth can be seen in the background (30216).

  4. Robinson during EVA 3

    NASA Image and Video Library

    2005-06-29

    S114-E-6221 (3 August 2005) --- Astronaut Stephen K. Robinson, STS-114 mission specialist, on the end of the station’s Canadarm2 (out of frame), slowly and cautiously makes his way to the underside of Space Shuttle Discovery to remove gap fillers from between the orbiter’s heat-shielding tiles during the mission’s third session of extravehicular activity (EVA).

  5. Robinson during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6215 (3 August 2005) --- Astronaut Stephen K. Robinson, STS-114 mission specialist, on the end of the station’s Canadarm2 (out of frame), slowly and cautiously makes his way to the underside of Space Shuttle Discovery to remove gap fillers from between the orbiter’s heat-shielding tiles during the mission’s third of three sessions of extravehicular activity (EVA).

  6. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065720 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  7. Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065733 (14 Feb. 2010) --- NASA astronaut Nicholas Patrick, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Patrick and Robert Behnken (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  8. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065722 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  9. Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065734 (14 Feb. 2010) --- NASA astronaut Nicholas Patrick, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Patrick and Robert Behnken (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  10. Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065736 (14 Feb. 2010) --- NASA astronaut Nicholas Patrick, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Patrick and Robert Behnken (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  11. Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065735 (14 Feb. 2010) --- NASA astronaut Nicholas Patrick, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Patrick and Robert Behnken (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  12. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065731 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  13. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065750 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  14. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065758 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  15. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065751 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  16. EVA 4

    NASA Image and Video Library

    2006-12-18

    ISS014-E-10089 (18 Dec. 2006) --- European Space Agency (ESA) astronaut Christer Fuglesang, STS-116 mission specialist, uses a digital still camera to expose a photo of his helmet visor during the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the International Space Station. Also visible in the reflections in the visor is astronaut Robert L. Curbeam Jr., mission specialist, as he works with the port overhead solar array wing on the station's P6 truss. The spacewalkers worked in tandem, using specially prepared, tape-insulated tools, to guide the array wing neatly inside its blanket box during the 6-hour, 38-minute spacewalk.

  17. Space Station Human Factors Research Review. Volume 1: EVA Research and Development

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Editor); Vykukal, H. C. (Editor)

    1988-01-01

    An overview is presented of extravehicular activity (EVA) research and development activities at Ames. The majority of the program was devoted to presentations by the three contractors working in parallel on the EVA System Phase A Study, focusing on Implications for Man-Systems Design. Overhead visuals are included for a mission results summary, space station EVA requirements and interface accommodations summary, human productivity study cross-task coordination, and advanced EVAS Phase A study implications for man-systems design. Articles are also included on subsea approach to work systems development and advanced EVA system design requirements.

  18. Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008221 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, works on the new Columbus laboratory as he participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  19. STS-119 Extravehicular Activity (EVA) 1 S6 Truss Umbilical Mate OPS

    NASA Image and Video Library

    2009-03-19

    S119-E-006675 (19 March 2009) --- Astronaut Steve Swanson (center right), STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  20. Tile survey seen during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6387 (3 August 2005) --- A close-up view of a portion of the thermal protection tiles on Space Shuttle Discovery’s underside is featured in this image photographed by astronaut Stephen K. Robinson, STS-114 mission specialist, during the mission’s third session of extravehicular activities (EVA).

  1. STS-119 Extravehicular Activity (EVA) 3 GAT SSRMS LEE B Snare Lubrication OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007469 (23 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Joseph Acaba (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  2. STS-119 Extravehicular Activity (EVA) 3 GAT SSRMS LEE B Snare Lubrication OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007398 (23 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Joseph Acaba (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  3. Study of space shuttle EVA/IVA support requirements. Volume 2: EVA/IVA tasks, guidelines, and constraints definition

    NASA Technical Reports Server (NTRS)

    Webbon, B. W.; Copeland, R. J.; Wood, P. W., Jr.; Cox, R. L.

    1973-01-01

    The guidelines for EVA and IVA tasks to be performed on the space shuttle are defined. In deriving tasks, guidelines, and constraints, payloads were first identified from the mission model. Payload requirements, together with man and manipulator capabilities, vehicle characteristics and operation, and safety considerations led to a definition of candidate tasks. Guidelines and constraints were also established from these considerations. Scenarios were established, and screening criteria, such as commonality of EVA and IVA activities, were applied to derive representative planned and unplanned tasks. The whole spectrum of credible contingency situations with a potential requirement for EVA/IVA was analyzed.

  4. EVA Suits Arrival

    NASA Image and Video Library

    2002-01-01

    Extravehicular Activity (EVA) suits packed inside containers arrive at the Space Station Processing Facility from Johnson Space Center in Texas. The suits will be used by STS-117 crew members to perform several spacewalks during the mission. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station.

  5. Testing and evaluation for astronaut extravehicular activity (EVA) operability.

    PubMed

    Shields, N; King, L C

    1998-09-01

    Because it is the human component that defines space mission success, careful planning is required to ensure that hardware can be operated and maintained by crews on-orbit. Several methods exist to allow researchers and designers to better predict how hardware designs will behave under the harsh environment of low Earth orbit, and whether designs incorporate the necessary features for Extra Vehicular Activity (EVA) operability. Testing under conditions of simulated microgravity can occur during the design concept phase when verifying design operability, during mission training, or concurrently with on-orbit mission operations. The bulk of testing is focused on normal operations, but also includes evaluation of credible mission contingencies or "what would happen if" planning. The astronauts and cosmonauts who fly these space missions are well prepared and trained to survive and be productive in Earth's orbit. The engineers, designers, and training crews involved in space missions subject themselves to Earth based simulation techniques that also expose them to extreme environments. Aircraft falling ten thousand feet, alternating g-loads, underwater testing at 45 foot depth, enclosure in a vacuum chamber and subject to thermal extremes, each carries with it inherent risks to the humans preparing for space missions.

  6. Use MACES IVA Suit for EVA Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an Intra-Vehicular Activity (IVA) suit for a spacewalk or Extra-Vehicular Activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Lab (NBL) environment. The Space Shuttle Advanced Crew Escape Suit (ACES) has been modified (MACES) to integrate with the Orion spacecraft. The first several missions of the Orion MPCV spacecraft will not have mass available to carry an EVA specific suit so any EVA required will have to be performed by the MACES. Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or if a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, carrying tools, body stabilization, equipment handling, and use of tools. Hardware configurations included with and without TMG, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on ISS mockups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstration of the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determination of critical sizing factors, and need for adjustment of suit work envelop. The early testing has demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission specific modifications for umbilical management or PLSS integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.

  7. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021529 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  8. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021561 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  9. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021537 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  10. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021569 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  11. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021562 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  12. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021515 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  13. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021506 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  14. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021503 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  15. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021535 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  16. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021525 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  17. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021510 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  18. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021558 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  19. STS-103 crewmembers during NBL EVA training

    NASA Image and Video Library

    1999-06-21

    S99-06194 (21 June 1999) --- Astronaut C. Michael Foale, mission specialist, rehearses Extravehicular Activity (EVA) with the Hubble Space Telescope (HST) mockup in the Neutral Buoyancy Laboratory (NBL).

  20. Tile survey seen during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6396 (3 August 2005) --- Space Shuttle Discovery’s underside thermal protection tiles are featured in this image photographed by astronaut Stephen K. Robinson, STS-114 mission specialist, during the mission’s third session of extravehicular activities (EVA). Lake Nasser along the Nile River, Egypt is visible near Discovery’s starboard wing.

  1. Mars EVA Suit Airlock (MESA)

    NASA Astrophysics Data System (ADS)

    Ransom, Stephen; Böttcher, Jörg; Steinsiek, Frank

    The Astrium Space Infrastructure Division has begun an in-house research activity of an Earth-based simulation facility supporting future manned missions to Mars. This research unit will help to prepare and support planned missions in the following ways: 1) to enable the investigation and analysis of contamination issues in advance of a human visit to Mars; 2) as a design tool to investigate and simulate crew operations; 3) to simulate crew operation during an actual mission; 4) to enable on-surface scientific operations without leaving the shirt-sleeve habitation environment ("glove box principle"). The MESA module is a surface EVA facility attached to the main habitation or laboratory module, or mobile pressurized rover. It will be sealed, but not pressurized, and provide protection against the harsh Martian environment. This module will include a second crew airlock for safety reasons. The compartment can also be used to provide an external working bench and experiment area for the crew. A simpler MESA concept provides only an open shelter against wind and dust. This concept does not incorporate working and experimental areas. The principle idea behind the MESA concept is to tackle the issue of contamination by minimizing the decontamination processes needed to clean surface equipment and crew suit surfaces after an EVA excursion prior to the astronaut re-entering the habitable area. The technical solution envisages the use of a dedicated crew suit airlock. This airlock uses an EVA suit which is externally attached by its back-pack to the EVA compartment area facing the Martian environment. The crew donns the suit from inside the habitable volume through the airlock on the back of the suit. The surface EVA can be accomplished after closing the back-pack and detaching the suit. A special technical design concept foresees an extendable suit back-pack, so that the astronaut can operate outside and in the vincinity of the module. The key driver in the investigation

  2. STS-119 Extravehicular Activity (EVA) 1 Arnold in Extravehicular Mobility Unit (EMU)

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041104 (19 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Arnold and astronaut Steve Swanson (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays. The blackness of space and Earth?s horizon provide the backdrop for the scene.

  3. STS-110 Astronaut Jerry Ross Performs Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. In this photograph, Astronaut Jerry L. Ross, mission specialist, anchored on the end of the Canadarm2, moves near the newly installed S0 truss. Astronaut Lee M. E. Morin, mission specialist, (out of frame), worked in tandem with Ross during this fourth and final scheduled session of EVA for the STS-110 mission. The final major task of the space walk was the installation of a beam, the Airlock Spur, between the Quest Airlock and the S0. The spur will be used by space walkers in the future as a path from the airlock to the truss.

  4. Preparations for Underwater EVA training for the STS 41-G crew

    NASA Image and Video Library

    1984-07-05

    S84-36900 (29 June 1984) ---Astronauts Robert L. Crippen (right) and Jon A. McBride, crew commander and pilot, respectively, for NASA's 41-G Space Shuttle mission, don self contained underwater breathing apparatus (SCUBA) gear prior to their underwater to observe a simulation of an extravehicular activity (EVA) to be performed on their mission. Astronauts Kathryn D. Sullivan and David C. Leestma, two of three mission specialists on the seven-member crew, are scheduled for the EVA. The underwater training took place in the Johnson Space Center's weightless environment training facility (WET-F).

  5. STS-61 mission director's post-mission report

    NASA Technical Reports Server (NTRS)

    Newman, Ronald L.

    1995-01-01

    To ensure the success of the complex Hubble Space Telescope servicing mission, STS-61, NASA established a number of independent review groups to assess management, design, planning, and preparation for the mission. One of the resulting recommendations for mission success was that an overall Mission Director be appointed to coordinate management activities of the Space Shuttle and Hubble programs and to consolidate results of the team reviews and expedite responses to recommendations. This report presents pre-mission events important to the experience base of mission management, with related Mission Director's recommendations following the event(s) to which they apply. All Mission Director's recommendations are presented collectively in an appendix. Other appendixes contain recommendations from the various review groups, including Payload Officers, the JSC Extravehicular Activity (EVA) Section, JSC EVA Management Office, JSC Crew and Thermal Systems Division, and the STS-61 crew itself. This report also lists mission events in chronological order and includes as an appendix a post-mission summary by the lead Payload Deployment and Retrieval System Officer. Recommendations range from those pertaining to specific component use or operating techniques to those for improved management, review, planning, and safety procedures.

  6. EVA Suit Microbial Leakage

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle

    2016-01-01

    NASA has a strategic knowledge gap (B5-3) about what life signatures leak/vent from our Extravehicular Activity (EVA) systems. This will impact how we search for evidence of life on Mars. Characterizing contamination leaks from our suits will help us comply with planetary protection guidelines, and better plan human exploration missions.

  7. A Human Factors Analysis of EVA Time Requirements

    NASA Technical Reports Server (NTRS)

    Pate, Dennis W.

    1997-01-01

    Human Factors Engineering (HFE) is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. During the summer of 1995, a human factors motion and time study was initiated with the goals of developing a database of EVA task times and developing a method of utilizing the database to predict how long an EVA should take. Initial development relied on the EVA activities performed during the STS-61 (Hubble) mission. The first step of the study was to become familiar with EVA's, the previous task-time studies, and documents produced on EVA's. After reviewing these documents, an initial set of task primitives and task-time modifiers was developed. Data was collected from videotaped footage of two entire STS-61 EVA missions and portions of several others, each with two EVA astronauts. Feedback from the analysis of the data was used to further refine the primitives and modifiers used. The project was continued during the summer of 1996, during which data on human errors was also collected and analyzed. Additional data from the STS-71 mission was also collected. Analysis of variance techniques for categorical data was used to determine which factors may affect the primitive times and how much of an effect they have. Probability distributions for the various task were also generated. Further analysis of the modifiers and interactions is planned.

  8. Walheim and Love during EVA 3

    NASA Image and Video Library

    2008-02-15

    S122-E-008750 (15 Feb. 2008) --- Astronaut Rex Walheim (foreground), mission specialist, shares a spacewalk task with astronaut Stanley Love (partially obscured at top of frame), mission specialist. The two astronauts had paired up for the first of three scheduled STS-122 sessions of extravehicular activity earlier in the week and came back out for this final EVA on Feb. 15.

  9. Helms holds onto the Rigid Umbilical during EVA

    NASA Image and Video Library

    2001-03-11

    STS102-314-003 (11 March 2001) --- Astronaut Susan J. Helms works while holding onto a rigid umbilical and with her feet anchored to the remote manipulator system (RMS) robot arm on the Space Shuttle Discovery. This extravehicular activity (EVA), on which Helms was joined by astronaut James S. Voss (out of frame), was the first of two scheduled STS-102 space walks. The pair, destined to become members of the Expedition Two crew aboard the station later in the mission, rode aboard Discovery into orbit and at the time of this EVA were still regarded as STS-102 mission specialists.

  10. EVA dosimetry in manned spacecraft.

    PubMed

    Thomson, I

    1999-12-06

    Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space.

  11. Astronaut Kathryn Sullivan checks SIR-B antenna during EVA

    NASA Image and Video Library

    1984-10-11

    41G-13-032 (11 Oct. 1984) --- Astronaut Kathryn D. Sullivan checks the latch of the SIR-B antenna in the space shuttle Challenger's open cargo bay during her historic extravehicular activity (EVA) on Oct. 11, 1984. Earlier, America's first woman to perform an EVA and astronaut David C. Leestma, participated in an in-space simulation of refueling a spacecraft in orbit. The Orbital Refueling System (ORS) is just beyond the astronaut mission specialist's helmet. To the left is the Large Format Camera (LFC). The LFC and ORS are stationed on a device called the Mission Peculiar Support Structure (MPESS). Crew members consisted of astronauts Robert L. Crippen, commander; Jon A. McBride, pilot; along with Kathryn D. Sullivan, Sally K. Ride, and David D. Leestma, all mission specialists; and Canadian astronaut Marc Garneau and Paul D. Scully-Power, both payload specialist. EDITOR'S NOTE: The STS-41G mission had the first American female EVA (Sullivan); first seven-person crew; first orbital fuel transfer; and the first Canadian (Garneau).

  12. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's second session of extravehicular activity (EVA), a six hour, four minute space walk, in which an exterior station television camera was installed outside of the Destiny Laboratory. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVA sessions. Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  13. Astronaut William S. McArthur in training for contingency EVA in WETF

    NASA Image and Video Library

    1993-09-10

    S93-43840 (6 Sept 1993) --- Astronaut William S. McArthur, mission specialist, participates in training for contingency Extravehicular Activity (EVA) for the STS-58 mission. For simulation purposes, McArthur was about to be submerged to a point of neutral buoyancy in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Though the Spacelab Life Sciences (SLS-2) mission does not include a planned EVA, all crews designate members to learn proper procedures to perform outside the spacecraft in the event of failure of remote means to accomplish those tasks.

  14. STS-119 Extravehicular Activity (EVA) 1 S6 Truss Umbilical Mate OPS

    NASA Image and Video Library

    2009-03-19

    S119-E-006673 (19 March 2009) --- Astronauts Steve Swanson (center) and Richard Arnold (partially obscured above Swanson), both STS-119 mission specialists, participate in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and Arnold connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  15. Good during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047827 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  16. Drew during EVA-1

    NASA Image and Video Library

    2011-02-28

    ISS026-E-030930 (28 Feb. 2011) --- NASA astronaut Alvin Drew, STS-133 mission specialist, participates in the mission?s first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 34-minute spacewalk, Drew and NASA astronaut Steve Bowen (out of frame), mission specialist, installed the J612 power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese ?Message in a Bottle? experiment to space.

  17. Reisman during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047841 (21 May 2010) --- NASA astronaut Garrett Reisman, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Reisman and NASA astronaut Michael Good (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  18. Drew during EVA-1

    NASA Image and Video Library

    2011-02-28

    ISS026-E-030929 (28 Feb. 2011) --- NASA astronaut Alvin Drew, STS-133 mission specialist, participates in the mission?s first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 34-minute spacewalk, Drew and NASA astronaut Steve Bowen (out of frame), mission specialist, installed the J612 power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese ?Message in a Bottle? experiment to space.

  19. Reisman during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047842 (21 May 2010) --- NASA astronaut Garrett Reisman, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Reisman and NASA astronaut Michael Good (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  20. Reisman during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047855 (21 May 2010) --- NASA astronaut Garrett Reisman, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Reisman and NASA astronaut Michael Good (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  1. Good during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047864 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  2. Good during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047845 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  3. Good during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047833 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  4. Good during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047828 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  5. Real-Time EVA Troubleshooting

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    Dr. Parazynski focused on the Shuttle Transportation System (STS)-120 Solar Array Repair Extravehicular Activity (EVA) with personal anecdotes and then spoke about what it takes to have a successful EVA during the event, what types of problems can occur during an EVA, particularly with the spacesuit and the safety of the crew, and how to resolve these quickly, safely, and efficiently. He also described the participants and the types of decisions and actions each had to take to ensure success. He described "Team 4," in Houston and on-orbit, as well as anecdotes from his STS-86 and STS-100 missions. Parazynski provided a retrospective on the EVA tools and procedures NASA used in the aftermath of Columbia for shuttle Thermal Protection System (TPS) inspection and repair. He described his role as the lead astronaut during this effort, and covered all the Neutral Buoyancy Laboratory (NBL), KC-135, precision air-bearing floor (PABF), vacuum chamber, and 1-G testing performed to develop the tools and techniques that were flown. Parazynski discussed how the EVA community worked together to resolve a huge safety issue, and how his work in the spacesuit was critical to overcoming a design limitation of the Space Shuttle.

  6. Tile survey taken during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6366 (3 August 2005) --- Space Shuttle Discovery’s underside is featured in this image photographed by astronaut Stephen K. Robinson, STS-114 mission specialist, during today’s extravehicular activities (EVA). Robinson’s shadow is visible on the thermal protection tiles.

  7. Behnken during EVA 2

    NASA Image and Video Library

    2010-02-14

    S130-E-007858 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission’s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  8. Behnken during EVA 2

    NASA Image and Video Library

    2010-02-14

    S130-E-007862 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission’s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  9. Love during EVA 1

    NASA Image and Video Library

    2008-02-11

    S122-E-007850 (11 Feb. 2008) --- Astronaut Stanley Love, STS-122 mission specialist, participates in the first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the almost eight-hour spacewalk, Love and astronaut Rex Walheim (out of frame), mission specialist, installed a grapple fixture on the Columbus laboratory and prepared electrical and data connections on the module while it rested inside Space Shuttle Atlantis' payload bay. The crewmembers also began work to replace a large nitrogen tank used for pressurizing the station's ammonia cooling system.

  10. Love during EVA 1

    NASA Image and Video Library

    2008-02-11

    S122-E-007853 (11 Feb. 2008) --- Astronaut Stanley Love, STS-122 mission specialist, participates in the first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the almost eight-hour spacewalk, Love and astronaut Rex Walheim (out of frame), mission specialist, installed a grapple fixture on the Columbus laboratory and prepared electrical and data connections on the module while it rested inside Space Shuttle Atlantis' payload bay. The crewmembers also began work to replace a large nitrogen tank used for pressurizing the station's ammonia cooling system.

  11. Love during EVA 1

    NASA Image and Video Library

    2008-02-11

    S122-E-007771 (11 Feb. 2008) --- Astronaut Stanley Love, STS-122 mission specialist, participates in the first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the almost eight-hour spacewalk, Love and astronaut Rex Walheim (out of frame), mission specialist, installed a grapple fixture on the Columbus laboratory and prepared electrical and data connections on the module while it rested inside Space Shuttle Atlantis' payload bay. The crewmembers also began work to replace a large nitrogen tank used for pressurizing the station's ammonia cooling system.

  12. Love during EVA 1

    NASA Image and Video Library

    2008-02-11

    S122-E-007794 (11 Feb. 2008) --- Astronaut Stanley Love, STS-122 mission specialist, participates in the first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the almost eight-hour spacewalk, Love and astronaut Rex Walheim (out of frame), mission specialist, installed a grapple fixture on the Columbus laboratory and prepared electrical and data connections on the module while it rested inside Space Shuttle Atlantis' payload bay. The crewmembers also began work to replace a large nitrogen tank used for pressurizing the station's ammonia cooling system.

  13. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009690 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  14. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009683 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  15. STS-125 MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-010122 (18 May 2009) --- Astronaut Andrew Feustel, STS-125 mission specialist, participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Feustel and astronaut John Grunsfeld (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  16. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009712 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  17. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009713 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  18. STS-125 MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-010103 (18 May 2009) --- Astronaut Andrew Feustel, STS-125 mission specialist, participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Feustel and astronaut John Grunsfeld (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  19. STS-125 MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-010047 (18 May 2009) --- Astronaut Andrew Feustel, STS-125 mission specialist, participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Feustel and astronaut John Grunsfeld (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  20. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009599 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  1. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009688 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  2. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009595 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  3. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009591 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  4. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009717 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  5. STS-125 MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009877 (18 May 2009) --- Astronaut Andrew Feustel, STS-125 mission specialist, participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Feustel and astronaut John Grunsfeld (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  6. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009696 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  7. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009593 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  8. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's first session of extravehicular activity (EVA). Wolf is carrying the Starboard One (S1) outboard nadir external camera which was installed on the end of the S1 Truss on the International Space Station (ISS). Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVAs. Its primary mission was to install the S1 Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  9. STS-119 Extravehicular Activity (EVA) 3 Crew and Equipment Translation Aid (CETA) Cart 2 Relocate OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007257 (23 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Joseph Acaba (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  10. STS-119 Extravehicular Activity (EVA) 3 Crew and Equipment Translation Aid (CETA) Cart 2 Relocate OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007237 (23 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Joseph Acaba (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  11. STS-119 Extravehicular Activity (EVA) 3 Crew and Equipment Translation Aid (CETA) Cart 2 Relocate OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007243 (23 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Joseph Acaba (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  12. STS-109 MS Massimino during second EVA

    NASA Image and Video Library

    2002-03-05

    STS109-E-5386 (5 March 2002) --- Astronaut Michael J. Massimino, mission specialist, checks a tool in the cargo bay of the Space Shuttle Columbia during the STS-109 mission's second day of extravehicular activity (EVA). Astronauts Massimino and James H. Newman worked to replace the second set of solar arrays on the Hubble Space Telescope (HST). The image was recorded with a digital still camera.

  13. STS-109 MS Massimino during second EVA

    NASA Image and Video Library

    2002-03-05

    STS109-E-5388 (5 March 2002) --- Astronaut Michael J. Massimino, mission specialist, checks a tool in the cargo bay of the Space Shuttle Columbia during the STS-109 mission's second day of extravehicular activity (EVA). Astronauts Massimino and James H. Newman worked to replace the second set of solar arrays on the Hubble Space Telescope (HST). The image was recorded with a digital still camera.

  14. Walheim and Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008200 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel (top) and NASA astronaut Rex Walheim, both STS-122 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Walheim and Schlegel worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  15. Walheim and Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008199 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel (right) and NASA astronaut Rex Walheim, both STS-122 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Walheim and Schlegel worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  16. Tile survey seen during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6405 (3 August 2005) --- Space Shuttle Discovery’s underside nosecone thermal protection tiles are featured in this image photographed by astronaut Stephen K. Robinson, STS-114 mission specialist, during the mission’s third session of extravehicular activities (EVA). Part of the P1 truss and a solar array are visible in the background. The blackness of space and a blue and white Earth form the backdrop for the image.

  17. STS-61B Astronaut Spring During EASE Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), the EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Spring was working on the EASE during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  18. Behnken and Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065714 (14 Feb. 2010) --- NASA astronauts Robert Behnken (right) and Nicholas Patrick, both STS-130 mission specialists, participate in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and Patrick connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  19. Behnken and Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065710 (14 Feb. 2010) --- NASA astronauts Robert Behnken (right) and Nicholas Patrick, both STS-130 mission specialists, participate in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and Patrick connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  20. Behnken and Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065725 (14 Feb. 2010) --- NASA astronauts Robert Behnken (right) and Nicholas Patrick, both STS-130 mission specialists, participate in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and Patrick connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  1. Tile survey taken during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6376 (3 August 2005) --- A close-up view of a portion of the thermal protection tiles on Space Shuttle Discovery’s underside is featured in this image photographed by astronaut Stephen K. Robinson (out of frame), STS-114 mission specialist, during the mission’s third session of extravehicular activities (EVA). While perched on a Space Station truss, astronaut Soichi Noguchi (background), mission specialist representing Japan Aerospace Exploration Agency (JAXA), acts as observer and communication relay station between fellow spacewalker Robinson and astronaut Andrew S. W. Thomas aboard Discovery.

  2. Astronaut Ronald Evans is suited up for EVA training

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Ronald E. Evans, command module pilot of the Apollo 17 lunar landing mission, is assisted by technicians in suiting up for extravehicular activity (EVA) training in a water tank in bldg 5 at the Manned Spacecraft Center (49970); Evans participates in EVA training in a water tank in bldg 5 at the Manned Spacecraft Center. The structure in the picture simulates the Scientific Instrument Module (SIM) bay of the Apollo 17 Service Module (49971).

  3. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    NASA Technical Reports Server (NTRS)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  4. EVA 4 - Massimino during EVA

    NASA Image and Video Library

    2002-03-07

    STS109-323-013 (7 March 2002) --- Astronaut Michael J. Massimino moves about in the cargo bay of the Space Shuttle Columbia while performing work on the Hubble Space Telescope (HST), partially visible behind him. Astronauts Massimino and James H. Newman (out of frame), mission specialists, were participating in the fourth STS-109 space walk (EVA-4).

  5. Cassidy during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009315 (27 July 2009) --- Astronaut Christopher Cassidy, STS-127 mission specialist, participates in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Cassidy and astronaut Tom Marshburn (out of frame), mission specialist, secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  6. Marshburn during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009303 (27 July 2009) --- Astronaut Tom Marshburn, STS-127 mission specialist, participates in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Marshburn and astronaut Christopher Cassidy (out of frame), mission specialist, secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  7. Cassidy during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009248 (27 July 2009) --- Astronaut Christopher Cassidy, STS-127 mission specialist, participates in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Cassidy and astronaut Tom Marshburn (out of frame), mission specialist, secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  8. Cassidy during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009347 (27 July 2009) --- Astronaut Christopher Cassidy, STS-127 mission specialist, participates in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Cassidy and astronaut Tom Marshburn (out of frame), mission specialist, secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  9. Bowen durring EVA 1

    NASA Image and Video Library

    2011-02-28

    ISS026-E-030715 (28 Feb. 2011) --- NASA astronauts Steve Bowen and Alvin Drew (mostly obscured at center right), both STS-133 mission specialists, participate in the mission?s first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 34-minute spacewalk, Bowen and Drew installed the J612 power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese ?Message in a Bottle? experiment to space.

  10. Bowen durring EVA 1

    NASA Image and Video Library

    2011-02-28

    ISS026-E-030865 (28 Feb. 2011) --- NASA astronauts Steve Bowen and Alvin Drew (mostly obscured at center right), both STS-133 mission specialists, participate in the mission?s first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 34-minute spacewalk, Bowen and Drew installed the J612 power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese ?Message in a Bottle? experiment to space.

  11. EVA 2 - MS Newman with camera

    NASA Image and Video Library

    2002-03-05

    STS109-E-5642 (5 March 2002) --- Astronaut James H. Newman, mission specialist, peers into Columbia's crew cabin during a brief break in work on the Hubble Space Telescope (HST), latched down just a few feet behind him in Columbia's cargo bay. Astronauts Newman and Michael J. Massimino are making their first extravehicular activity (EVA) of the mission, following the act of two other crewmembers on the previous day. The image was recorded with a digital still camera.

  12. EVA Crewmembers emerging from the air lock into the middeck.

    NASA Image and Video Library

    1993-01-19

    STS054-06-019 (17 Jan. 1993) --- Astronaut Susan J. Helms almost squeezes into the tight quarters of Endeavour's airlock to share space with her fellow mission specialists -- both attired in extravehicular mobility units (EMU) spacesuits. Astronauts Mario Runco Jr. (hands on outer edge of hatch) and Gregory J. Harbaugh spent four-plus hours on the extravehicular activity (EVA) on January 17, 1993. Helms trained with the pair for several months in preparation for the EVA. From the shirt-sleeved environment of Endeavour, she maintained communications with the two throughout the spacewalk. Also onboard NASA's newest Shuttle for the six-day mission were astronauts John H. Casper, mission commander; and Donald R. McMonagle, pilot. The photograph was taken with a 35mm camera.

  13. Astronaut David Wolf participates in training for contingency EVA in WETF

    NASA Image and Video Library

    1993-04-03

    S93-31706 (3 April 1993) --- With the aid of technicians and training staffers astronaut David A. Wolf prepares to participate in training for contingency Extravehicular Activity (EVA) for the STS-58 mission. Sharing a moveable platform with Wolf was astronaut Shannon W. Lucid (out of frame). For simulation purposes, the two mission specialists were about to be submerged to a point of neutral buoyancy in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Though the Spacelab Life Sciences (SLS-2) mission does not include a planned EVA, all crews designate members to learn proper procedures to perform outside the spacecraft in the event of failure of remote means to accomplish those tasks.

  14. Parazynski during EVA 3

    NASA Image and Video Library

    2007-10-30

    ISS016-E-007423 (30 Oct. 2007) --- Astronaut Scott Parazynski, STS-120 mission specialist, participates in the third scheduled session of extravehicular activity (EVA) as construction continues on the International Space Station. During the 7-hour, 8-minute spacewalk Parazynski and astronaut Doug Wheelock (out of frame), mission specialist, installed the P6 truss segment with its set of solar arrays to its permanent home, installed a spare main bus switching unit on a stowage platform, and performed a few get-ahead tasks. Also, Parazynski inspected the port Solar Alpha Rotary Joint (SARJ) to gather comparison data for the starboard rotary joint.

  15. Bowen works electric batteries during EVA 1

    NASA Image and Video Library

    2010-05-17

    S132-E-008102 (17 May 2010) --- NASA astronaut Steve Bowen, STS-132 mission specialist, participates in the mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 25-minute spacewalk, Bowen and NASA astronaut Garrett Reisman (out of frame), mission specialist, loosened bolts holding six replacement batteries, installed a second antenna for high-speed Ku-band transmissions and adding a spare parts platform to Dextre, a two-armed extension for the station’s robotic arm.

  16. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009664 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  17. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009606 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  18. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009859 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), and astronaut Andrew Feustel (bottom center), mission specialist, participate in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and Feustel installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  19. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009654 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  20. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009656 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  1. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009646 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  2. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009612 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  3. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009648 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  4. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009609 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  5. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009605 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  6. STS-125 MS3 Grunsfeld during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009607 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  7. STS-82 Mission Highlight Presentation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-82 is the second in a series of planned service missions to the Hubble Space Telescope (HST). The flight crew of STS-82, Cmdr. Kenneth D. Bowersox, Pilot Scott J. Horowitz, Mission specialists, Mark C. Lee, Steven A. Hawley, Gregory J. Harbaugh, Steven L. Smith, and Joseph R. Tanner can be seen performing pre-launch activities preparing for the night launch. The crew meets the press for pre-launch photos before being transported to the launch pad. Several views can be seen of the final inspection team on the O level and the crew being readied in the 'white room'. Launch activities such as the oxygen vent hood retraction, liftoff, SRB separation, and personnel activities in the Houston Integrated Mission Control room are viewed. Subsequent footage is provided of the crew's activities during the HST rendezvous and docking, Extravehicular Activities (EVA's) preparation and EVA numbers 1, 3 and 5. During the first EVA the earth can be seen clearly in a reflection off of HST's offshroud during its 60th orbit crossing the equator. The HST deployment and views of the Hale-Bopp comet are clearly seen before Discovery's reentry and landing. After reentry a beautiful view of Discovery moving at 10,400 mph can be seen looking east from Mission Control. The ususal twin sonic boom precedes Discovery's touchdown on runway 15 at Kennedy Space Center. This second HST service mission orbited Earth 150 times and traveled 1.4 million miles.

  8. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission Specialists Jerry L. Ross and Lee M.E. Morin work in tandem on the fourth scheduled EVA session for the STS-110 mission aboard the Space Shuttle Orbiter Atlantis. Ross is anchored on the mobile foot restraint on the International Space Station's (ISS) Canadarm2, while Morin works inside the S0 (S-zero) truss. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting a 43-foot-long S0 truss and preparing the Mobile Transporter. The 27,000 pound S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  9. Astronaut Shannon Lucid in training for contingency EVA for STS-58 in WETF

    NASA Image and Video Library

    1993-04-03

    S93-31697 (3 April 1993) --- Astronaut Shannon W. Lucid participates in training for contingency Extravehicular Activity (EVA) for the STS-58 mission. Behind Lucid, sharing a moveable platform with her, is astronaut David A. Wolf (out of frame). For simulation purposes, the two mission specialists were about to be submerged to a point of neutral buoyancy in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Though the Spacelab Life Sciences (SLS-2) mission does not include a planned EVA, all crews designate members to learn proper procedures to perform outside the spacecraft in the event of failure of remote means to accomplish those tasks.

  10. Astronaut Dale Gardner rehearses control of MMU during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC.

  11. Astronaut Russell Schweickart inside simulator for EVA training

    NASA Image and Video Library

    1968-12-11

    S68-55391 (11 Dec. 1968) --- Astronaut Russell L. Schweickart, lunar module pilot of the Apollo 9 (Spacecraft 104/Lunar Module 3/Saturn 504) space mission, is seen inside Chamber "A," Space Environment Simulation Laboratory, Building 32, participating in dry run activity in preparation for extravehicular activity which is scheduled in Chamber "A." The purpose of the scheduled training is to familiarize the crewmen with the operation of EVA equipment in a simulated space environment. In addition, metabolic and workload profiles will be simulated on each crewman. Astronauts Schweickart and Alan L. Bean, backup lunar module pilot, are scheduled to receive thermal-vacuum training simulating Earth-orbital EVA.

  12. Astronaut David Wolf participates in training for contingency EVA in WETF

    NASA Image and Video Library

    1993-04-03

    S93-31701 (3 April 1993) --- Displaying the flexibility of his training version of the Shuttle Extravehicular Mobility Unit (EMU) space suit, astronaut David A. Wolf participates in training for contingency Extravehicular Activity (EVA) for the STS-58 mission. Behind Wolf, sharing the platform with him was astronaut Shannon W. Lucid. For simulation purposes, the two mission specialists were about to be submerged to a point of neutral buoyancy in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Though the Spacelab Life Sciences (SLS-2) mission does not include a planned EVA, all crews designate members to learn proper procedures to perform outside the spacecraft in the event of failure of remote means to accomplish those tasks.

  13. STS-125 MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-010049 (18 May 2009) --- Astronaut Andrew Feustel, STS-125 mission specialist, participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Feustel and astronaut John Grunsfeld (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics. Astronaut Megan McArthur, STS-125 mission specialist, at the controls of the remote manipulator system (RMS), can be seen through an aft flight deck window.

  14. EVA/ORU model architecture using RAMCOST

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.; Wang, Y. M.; Bretoi, R.

    1990-01-01

    A parametrically driven simulation model is presented in order to provide a detailed insight into the effects of various input parameters in the life testing of a modular space suit. The RAMCOST model employed is a user-oriented simulation model for studying the life-cycle costs of designs under conditions of uncertainty. The results obtained from the EVA simulated model are used to assess various mission life testing parameters such as the number of joint motions per EVA cycle time, part availability, and number of inspection requirements. RAMCOST first simulates EVA completion for NASA application using a probabilistic like PERT network. With the mission time heuristically determined, RAMCOST then models different orbital replacement unit policies with special application to the astronaut's space suit functional designs.

  15. EVA 5 activity on Flight Day 8 to service the Hubble Space Telescope

    NASA Image and Video Library

    1997-02-18

    S82-E-5718 (18 Feb. 1997) --- Making use of the Remote Manipulator System (RMS) astronauts Mark C. Lee (left), STS-82 payload commander, and Steven L. Smith, mission specialist, perform the final phases of Extravehicular Activity (EVA) duty. Lee holds a patch piece for Bay #10, out of view, toward which the two were headed. A sample of the patch work can be seen on Bay #9 in the upper left quadrant of the picture. This view was taken with an Electronic Still Camera (ESC).

  16. Arnold on P3 Truss for P3 Nadir UCCAS Deployment during STS-119 Extravehicular Activity (EVA) 3

    NASA Image and Video Library

    2009-03-23

    ISS018-E-042523 (23 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Joseph Acaba (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  17. Tile survey seen during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6388 (3 August 2005) --- A close-up view of a portion of the thermal protection tiles on Space Shuttle Discovery’s underside is featured in this image photographed by astronaut Stephen K. Robinson, STS-114 mission specialist, during the mission’s third session of extravehicular activities (EVA). Robinson’s shadow is visible on the thermal protection tiles and a portion of the Canadian-built remote manipulator system (RMS) robotic arm and the Nile River is visible at bottom.

  18. Study of EVA operations associated with satellite services

    NASA Technical Reports Server (NTRS)

    Nash, J. O.; Wilde, R. D.

    1982-01-01

    Extravehicular mobility unit (EMU) factors associated with satellite servicing activities are identified and the EMU improvements necessary to enhance satellite servicing operations are outlined. Areas of EMU capabilities, equipment and structural interfaces, time lines, EMU modifications for satellite servicing, environmental hazards, and crew training are vital to manned Eva/satellite services and as such are detailed. Evaluation of EMU capabilities indicates that the EMU can be used in performing near term, basic satellite servicing tasks; however, satellite servicing is greatly enhanced by incorporating key modifications into the EMU. The servicing missions involved in contamination sensitive payload repair are illustrated. EVA procedures and equipment can be standardized, reducing both crew training time and in orbit operations time. By standardizing and coordinating procedures, mission cumulative time lines fall well within the EMU capability.

  19. Perrin smiles through the visor of his EVA helmet while working beside the MBS during STS-111 EVA 2

    NASA Image and Video Library

    2002-06-11

    STS111-307-017 (11 June 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist representing CNES, the French Space Agency, participates in the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. During the spacewalk, Perrin and Chang-Diaz attached power, data and video cables from the International Space Station (ISS) to the Mobile Base System (MBS) and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT).

  20. MS Grunsfeld and Linnehan on middeck after EVA 1

    NASA Image and Video Library

    2002-03-04

    STS109-349-027 (4 March 2002) --- Astronauts John M. Grunsfeld and Richard M. Linnehan, STS-109 payload commander and mission specialist, respectively, wearing the liquid cooling and ventilation garment that complements the Extravehicular Mobility Unit (EMU) space suit, are photographed on the mid deck of the Space Shuttle Columbia after the mission’s first session of extravehicular activity (EVA). The EVA-1 team replaced one of the telescope’s two second-generation solar arrays, which is also known as SA2, and a Diode Box Assembly. The solar array was replaced with a new, third-generation solar array, which is called SA3. The space walkers also did some prep work for STS-109’s other space walks.

  1. Bowen and Drew durring EVA 1

    NASA Image and Video Library

    2011-02-28

    ISS026-E-030869 (28 Feb. 2011) --- NASA astronaut Steve Bowen, STS-133 mission specialist, participates in the mission?s first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 34-minute spacewalk, Bowen and NASA astronaut Alvin Drew (out of frame), mission specialist, installed the J612 power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese ?Message in a Bottle? experiment to space.

  2. STS-119 Extravehicular Activity (EVA) 3 Crew and Equipment Translation Aid (CETA) Cart 2 Relocate OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007323 (23 March 2009) --- Astronauts Richard Arnold (right) and Joseph Acaba, both STS-119 mission specialists, participate in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Acaba helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  3. STS-119 Extravehicular Activity (EVA) 3 Crew and Equipment Translation Aid (CETA) Cart 2 Relocate OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007259 (23 March 2009) --- Astronauts Richard Arnold (left) and Joseph Acaba, both STS-119 mission specialists, participate in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Acaba helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  4. STS-119 Extravehicular Activity (EVA) 3 Crew and Equipment Translation Aid (CETA) Cart 2 Relocate OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007302 (23 March 2009) --- Astronauts Richard Arnold (left) and Joseph Acaba, both STS-119 mission specialists, participate in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Acaba helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  5. STS-119 Extravehicular Activity (EVA) 3 Crew and Equipment Translation Aid (CETA) Cart 2 Relocate OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007312 (23 March 2009) --- Astronauts Richard Arnold (bottom) and Joseph Acaba, both STS-119 mission specialists, participate in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Acaba helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  6. STS-119 Extravehicular Activity (EVA) 3 Crew and Equipment Translation Aid (CETA) Cart 2 Relocate OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007270 (23 March 2009) --- Astronauts Richard Arnold (bottom) and Joseph Acaba, both STS-119 mission specialists, participate in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Acaba helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  7. STS-119 Extravehicular Activity (EVA) 3 Crew and Equipment Translation Aid (CETA) Cart 2 Relocate OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007274 (23 March 2009) --- Astronauts Richard Arnold (bottom) and Joseph Acaba, both STS-119 mission specialists, participate in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Acaba helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  8. STS-119 Extravehicular Activity (EVA) 3 Crew and Equipment Translation Aid (CETA) Cart 2 Relocate OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007332 (23 March 2009) --- Astronauts Richard Arnold (right) and Joseph Acaba, both STS-119 mission specialists, participate in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Acaba helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  9. STS-119 Extravehicular Activity (EVA) 3 Crew and Equipment Translation Aid (CETA) Cart 2 Relocate OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007266 (23 March 2009) --- Astronauts Richard Arnold (bottom) and Joseph Acaba, both STS-119 mission specialists, participate in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Acaba helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  10. STS-119 Extravehicular Activity (EVA) 3 Crew and Equipment Translation Aid (CETA) Cart 2 Relocate OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007311 (23 March 2009) --- Astronauts Richard Arnold (bottom) and Joseph Acaba, both STS-119 mission specialists, participate in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Acaba helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  11. STS-119 Extravehicular Activity (EVA) 3 Crew and Equipment Translation Aid (CETA) Cart 2 Relocate OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007298 (23 March 2009) --- Astronauts Richard Arnold (left) and Joseph Acaba, both STS-119 mission specialists, participate in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Acaba helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  12. STS-119 Extravehicular Activity (EVA) 3 Crew and Equipment Translation Aid (CETA) Cart 2 Relocate OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007278 (23 March 2009) --- Astronauts Richard Arnold (right) and Joseph Acaba, both STS-119 mission specialists, participate in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Acaba helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  13. Bowen and Drew durring EVA 1

    NASA Image and Video Library

    2011-02-28

    ISS026-E-030864 (28 Feb. 2011) --- NASA astronauts Steve Bowen (foreground) and Alvin Drew, both STS-133 mission specialists, participate in the mission?s first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 34-minute spacewalk, Bowen and Drew installed the J612 power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese ?Message in a Bottle? experiment to space.

  14. Bowen and Drew durring EVA 1

    NASA Image and Video Library

    2011-02-28

    ISS026-E-030716 (28 Feb. 2011) --- NASA astronauts Steve Bowen (foreground) and Alvin Drew, both STS-133 mission specialists, participate in the mission?s first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 34-minute spacewalk, Bowen and Drew installed the J612 power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese ?Message in a Bottle? experiment to space.

  15. Astronaut Dale Gardner rehearses during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC. Gardner handles a stinger device to make initial contact with one of the two satellites they will be working with.

  16. Astronaut Dale Gardner rehearses during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC. Gardner works to deploy a large stinger device designed for locking onto the orbiting satellites via entering a spent engine's nozzle.

  17. Risk Management in EVA

    NASA Technical Reports Server (NTRS)

    Hall, Jonathan; Lutomski, M.

    2006-01-01

    This viewgraph presentation reviews the use of risk management in Extravehicular Activities (EVA). The contents include: 1) EVA Office at NASA - JSC; 2) EVA Project Risk Management: Why and When; 3) EVA Office Risk Management: How; 4) Criteria for Closing a Risk; 5) Criteria for Accepting a Risk; 6) ISS IRMA Reference Card Data Entry Requirement s; 7) XA/ EVA Office Risk Activity Summary; 8) EVA Significant Change Summary; 9) Integrated Risk Management Application (XA) Matrix, March 31, 2004; 10) ISS Watch Item: 50XX Summary Report; and 11) EVA Project RM Usefulness

  18. EVA Radio DRATS 2011 Report

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Bakula, Casey J.

    2012-01-01

    In the Fall of 2011, National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) participated in the Desert Research and Technology Studies (DRATS) field experiments held near Flagstaff, Arizona. The objective of the DRATS outing is to provide analog mission testing of candidate technologies for space exploration, especially those technologies applicable to human exploration of extra- terrestrial rocky bodies. These activities are performed at locations with similarities to extra-terrestrial conditions. This report describes the Extravehicular Activity (EVA) Dual-Band Radio Communication System which was demonstrated during the 2011 outing. The EVA radio system is designed to transport both voice and telemetry data through a mobile ad hoc wireless network and employs a dual-band radio configuration. Some key characteristics of this system include: 1. Dual-band radio configuration. 2. Intelligent switching between two different capability wireless networks. 3. Self-healing network. 4. Simultaneous data and voice communication.

  19. EVA 3 - Wheelock on Destiny laboratory module

    NASA Image and Video Library

    2007-10-30

    S120-E-007581 (30 Oct. 2007) --- Astronaut Doug Wheelock, STS-120 mission specialist, participates in the third scheduled session of extravehicular activity (EVA) as construction continues on the International Space Station. During the 7-hour, 8-minute spacewalk Wheelock and astronaut Scott Parazynski (out of frame), mission specialist, installed the P6 truss segment with its set of solar arrays to its permanent home, installed a spare main bus switching unit on a stowage platform, and performed a few get-ahead tasks.

  20. GEMINI-TITAN (GT)-12 - EXTRAVEHICULAR (EVA) - MICROMETEOROID PACKAGE - OUTER SPACE

    NASA Image and Video Library

    1966-11-11

    S66-63538 (11 Nov. 1966) --- Astronaut Edwin E. Aldrin Jr., pilot for the Gemini-12 spaceflight, removes micrometeoroid package for return to the spacecraft during extravehicular activity (EVA) on the first day of the four-day mission. Command pilot for the Gemini-12 mission, the last in the Gemini series, was astronaut James A. Lovell Jr. Photo credit: NASA

  1. View of MS Noriega waves to the camera during the third EVA of STS-97

    NASA Image and Video Library

    2000-12-07

    STS097-703-014 (7 December 2000) --- Astronaut Carlos I. Noriega, one of two space walking STS-97 mission specialists, waves at a crew member inside Endeavour's cabin during the mission's final session of extravehicular activity (EVA).

  2. Astronaut David Wolf participates in training for contingency EVA in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut David A. Wolf participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. The mission specialist was about to be submerged to a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF). In this view, Wolf is aided by technicians in donning the gloves for his extravehicular mobility unit (EMU).

  3. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission astronaut Rex J. Walheim, accompanied by astronaut Steven L. Smith (out of frame) translates along the Destiny laboratory on the International Space Station (ISS) during the third scheduled EVA session. The duo released the locking bolts on the Mobile Transporter and rewired the Station's robotic arm. The STS-110 mission prepared the ISS for future space walks by installing and outfitting the S0 (S-Zero) Truss and the Mobile Transporter. The 43-foot-long S0 truss weighing in at 27,000 pounds was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  4. Cassidy during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009322 (27 July 2009) --- Astronauts Tom Marshburn (left) and Christopher Cassidy, both STS-127 mission specialists, participate in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Marshburn and Cassidy secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  5. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-008906 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  6. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009312 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  7. NEEMO 21: Tools, Techniques, Technologies & Training for Science Exploration EVA

    NASA Technical Reports Server (NTRS)

    Graff, Trevor

    2016-01-01

    The 21st mission of the NASA Extreme Environment Mission Operations (NEEMO) was a highly integrated operational test and evaluation of tools, techniques, technologies, and training for science driven exploration during Extravehicular Activity (EVA).The 16-day mission was conducted from the Aquarius habitat, an underwater laboratory, off the coast of Key Largo, FL. The unique facility, authentic science objectives, and diverse skill-sets of the crew/team facilitate the planning and design for future space exploration.

  8. Astronaut Story Musgrave during STS-6 EVA

    NASA Image and Video Library

    1983-04-07

    STS006-45-124 (7 April 1983) --- Astronaut F. Story Musgrave, STS-6 mission specialist, translates down the Earth-orbiting space shuttle Challenger’s payload bay door hinge line with a bag of latch tools. This photograph is among the first five still frames that recorded the April 7 extravehicular activity (EVA) of Dr. Musgrave and Donald H. Peterson, the flight’s other mission specialist. It was photographed with a handheld 70mm camera from inside the cabin by one of two crew members who remained on the flight deck during the EVA. Dr. Musgrave’s task here was to evaluate the techniques required to move along the payload bay’s edge with tools. In the lower left foreground are three canisters containing three getaway special (GAS) experiments. Part of the starboard wind and orbital maneuvering system (OMS) pod are seen back dropped against the blackness of space. The gold-foil protected object partially out of frame on the right is the airborne support equipment for the now vacated inertial upper stage (IUS) which aided the deployment of the tracking and data relay satellite on the flight’s first day. Astronauts Paul J. Weitz, command and Karol J. Bobko, pilot, remained inside the Challenger during the EVA. Photo credit: NASA

  9. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008704 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  10. Bowen works with the Battery ORUs during EVA 1

    NASA Image and Video Library

    2010-05-17

    S132-E-008106 (17 May 2010) --- NASA astronaut Steve Bowen, STS-132 mission specialist, participates in the mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 25-minute spacewalk, Bowen and NASA astronaut Garrett Reisman (out of frame), mission specialist, loosened bolts holding six replacement batteries, installed a second antenna for high-speed Ku-band transmissions and adding a spare parts platform to Dextre, a two-armed extension for the station’s robotic arm.

  11. Bowen works with the Battery ORUs during EVA 1

    NASA Image and Video Library

    2010-05-17

    S132-E-008100 (17 May 2010) --- NASA astronaut Steve Bowen, STS-132 mission specialist, participates in the mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 25-minute spacewalk, Bowen and NASA astronaut Garrett Reisman (out of frame), mission specialist, loosened bolts holding six replacement batteries, installed a second antenna for high-speed Ku-band transmissions and adding a spare parts platform to Dextre, a two-armed extension for the station’s robotic arm.

  12. Astronaut William S. McArthur in training for contingency EVA in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut William S. McArthur, mission specialist, participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. He is wearing the extravehicular mobility unit (EMU) minus his helmet. For simulation purposes, McArthur was about to be submerged to a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF).

  13. Good and Reisman during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-049791 (21 May 2010) --- NASA astronauts Garrett Reisman (bottom) and Michael Good, both STS-132 mission specialists, participate in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Reisman and Good completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  14. Bowen and Drew durring EVA 1

    NASA Image and Video Library

    2011-02-28

    ISS026-E-030710 (28 Feb. 2011) --- NASA astronauts Steve Bowen and Alvin Drew (mostly obscured at center), both STS-133 mission specialists, participate in the mission?s first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 34-minute spacewalk, Bowen and Drew installed the J612 power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese ?Message in a Bottle? experiment to space.

  15. Bowen and Drew durring EVA 1

    NASA Image and Video Library

    2011-02-28

    ISS026-E-030711 (28 Feb. 2011) --- NASA astronauts Steve Bowen and Alvin Drew (partially obscured at center), both STS-133 mission specialists, participate in the mission?s first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 34-minute spacewalk, Bowen and Drew installed the J612 power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese ?Message in a Bottle? experiment to space.

  16. "Astronaut STS-123 EVA 1, NBL Training"

    NASA Image and Video Library

    2007-04-18

    • Event (Mission for flight / Class for training): STS-118 (13A.1) • Title: STS-118 EVA 1 NBL • Date: 4-18-07 • Location: NBL • Key words: 118, 13A.1, S5, NBL • Description: NBL underwater photos of STS-118 EVA 1 S5 install.

  17. Apollo 16 astronauts in Apollo Command Module Mission Simulator

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in bldg 5 at the Manned Spacecraft Center (MSC). In the right background is Astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator (31046); Mattingly (right foreground) and Duke (right backgroung) in the Apollo Command Module Mission Simulator for EVA simulation and training. Astronaut John W. Young, commander, can be seen in the left background (31047).

  18. Application of EVA guidelines and design criteria. Volume 2: EVA workstation conceptual designs

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    Several EV workstation concepts were developed and are documented. The workstation concepts were developed following a comprehensive analysis of potential EV missions, functions, and tasks as interpreted from NASA and contractor space shuttle and space station studies, mission models, and related reports. The design of a versatile, portable EVA workstation is aimed at reducing the design and development costs for each mission and aiding in the development of on-orbit serviceable payloads.

  19. MS Hadfield works on the SLP during an EVA for STS-100

    NASA Image and Video Library

    2001-04-20

    STS100-342-010 (19 April-1 May 2001) --- Astronaut Chris A. Hadfield, mission specialist representing the Canadian Space Agency (CSA), is seen near the Canadarm2 as the new robotics tool for the International Space Station (ISS) grasps the Spacelab pallet. Hadfield participated in two days of extravehicular activity (EVA) on the STS-100 mission.

  20. Reilly on EVA 1 during STS-117

    NASA Image and Video Library

    2007-06-12

    S117-E-06910 (11 June 2007) --- Astronauts Jim Reilly (center frame) and John "Danny" Olivas (out of frame), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4.

  1. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission astronauts Steven L. Smith (right) and Rex J. Walheim work in tandem on the third scheduled EVA session in which they released the locking bolts on the Mobile Transporter and rewired the Station's robotic arm (out of frame). Part of the Destiny laboratory and a glimpse of the Earth's horizon are seen in the lower portion of this digital image. The STS-110 mission prepared the International Space Station (ISS) for future spacewalks by installing and outfitting the S0 (S-zero) Truss and the Mobile Transporter. The 43-foot-long S0 truss weighing in at 27,000 pounds was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  2. EVA Roadmap: New Space Suit for the 21st Century

    NASA Technical Reports Server (NTRS)

    Yowell, Robert

    1998-01-01

    New spacesuit design considerations for the extra vehicular activity (EVA) of a manned Martian exploration mission are discussed. Considerations of the design includes:(1) regenerable CO2 removal, (2) a portable life support system (PLSS) which would include cryogenic oxygen produced from in-situ manufacture, (3) a power supply for the EVA, (4) the thermal control systems, (5) systems engineering, (5) space suit systems (materials, and mobility), (6) human considerations, such as improved biomedical sensors and astronaut comfort, (7) displays and controls, and robotic interfaces, such as rovers, and telerobotic commands.

  3. The role of EVA on Space Shuttle. [experimental support and maintenance activities

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1974-01-01

    The purpose of this paper is to present the history of Extravehicular Activity (EVA) through the Skylab Program and to outline the expected tasks and equipment capabilities projected for the Space Shuttle Program. Advantages offered by EVA as a tool to extend payload capabilities and effectiveness and economic advantages of using EVA will be explored. The presentation will conclude with some guidelines and recommendations for consideration by payload investigators in establishing concepts and designs utilizing EVA support.

  4. Swanson works on the P6 Truss during EVA 2

    NASA Image and Video Library

    2007-06-14

    S117-E-07332 (13 June 2007) --- Astronauts Steven Swanson and Patrick Forrester (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  5. Human Space Exploration and Radiation Exposure from EVA: 1981-2011

    NASA Astrophysics Data System (ADS)

    Way, A. R.; Saganti, S. P.; Erickson, G. M.; Saganti, P. B.

    2011-12-01

    There are several risks for any human space exploration endeavor. One such inevitable risk is exposure to the space radiation environment of which extra vehicular activity (EVA) demands more challenges due to limited amount of protection from space suit shielding. We recently compiled all EVA data comprising low-earth orbit (LEO) from Space Shuttle (STS) flights, International Space Station (ISS) expeditions, and Shuttle-Mir missions. Assessment of such radiation risk is very important, particularly for the anticipated long-term, deep-space human explorations in the near future. We present our assessment of anticipated radiation exposure and space radiation dose contribution to each crew member from a listing of 350 different EVA events resulting in more than 1000+ hrs of total EVA time. As of July 12, 2011, 197 astronauts have made spacewalks (out of 520 people who have gone into Earth orbit). Only 11 women have been on spacewalks.

  6. Advanced EVA Capabilities: A Study for NASA's Revolutionary Aerospace Systems Concept Program

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2004-01-01

    This report documents the results of a study carried out as part of NASA s Revolutionary Aerospace Systems Concepts Program examining the future technology needs of extravehicular activities (EVAs). The intent of this study is to produce a comprehensive report that identifies various design concepts for human-related advanced EVA systems necessary to achieve the goals of supporting future space exploration and development customers in free space and on planetary surfaces for space missions in the post-2020 timeframe. The design concepts studied and evaluated are not limited to anthropomorphic space suits, but include a wide range of human-enhancing EVA technologies as well as consideration of coordination and integration with advanced robotics. The goal of the study effort is to establish a baseline technology "road map" that identifies and describes an investment and technical development strategy, including recommendations that will lead to future enhanced synergistic human/robot EVA operations. The eventual use of this study effort is to focus evolving performance capabilities of various EVA system elements toward the goal of providing high performance human operational capabilities for a multitude of future space applications and destinations. The data collected for this study indicate a rich and diverse history of systems that have been developed to perform a variety of EVA tasks, indicating what is possible. However, the data gathered for this study also indicate a paucity of new concepts and technologies for advanced EVA missions - at least any that researchers are willing to discuss in this type of forum.

  7. STS-109 MS Massimino and Newman replace Reaction Wheel assembly during EVA 2

    NASA Image and Video Library

    2002-03-05

    With his feet secured on a platform connected to the remote manipulator system (RMS) robotic arm of the Space Shuttle Columbia, astronaut Michael J. Massimino, mission specialist, hovers over the shuttle's cargo bay while working in tandem with astronaut James H. Newman, mission specialist, to replace the Reaction Wheel Assembly in the Hubble Space Telescope (HST) during the STS-109 mission's second day of extravehicular activity (EVA).

  8. Studies Relating to EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JA1, the discussion focuses on the following topics: The Staged Decompression to the Hypobaric Atmosphere as a Prophylactic Measure Against Decompression Sickness During Repetitive EVA; A New Preoxygenation Procedure for Extravehicular Activity (EVA); Metabolic Assessments During Extra-Vehicular Activity; Evaluation of Safety of Hypobaric Decompressions and EVA From Positions of Probabilistic Theory; Fatty Acid Composition of Plasma Lipids and Erythrocyte Membranes During Simulation of Extravehicular Activity; Biomedical Studies Relating to Decompression Stress with Simulated EVA, Overview; The Joint Angle and Muscle Signature (JAMS) System - Current Uses and Future Applications; and Experimental Investigation of Cooperative Human-Robotic Roles in an EVA Work Site.

  9. Extravehicular Activity/Air Traffic Control (EVA/ATC) test report. [communication links to the astronaut

    NASA Technical Reports Server (NTRS)

    Tomaro, D. J.

    1982-01-01

    During extravehicular activity (EVA), communications between the EVA astronaut and the space shuttle orbiter are maintained by means of transceiver installed in the environmental support system backpack. Onboard the orbiter, a transceiver line replaceable unit and its associated equipment performs the task of providing a communications link to the astronaut in the extravehicular activity/air traffic control (EVA/ATC) mode. Results of the acceptance tests that performed on the system designed and fabricated for EVA/ATC testing are discussed.

  10. European Space Agency (ESA) Mission Specialist Nicollier trains in JSC's WETF

    NASA Technical Reports Server (NTRS)

    1987-01-01

    European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier (left) is briefed by Randall S. McDaniel on Space Shuttle extravehicular activity (EVA) tools and equipment prior to donning an extravehicular mobility unit and participating in an underwater EVA simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Nicollier is holding the EMU mini workstation. Other equipment on the table includes EVA tool caddies and EVA crewmember safety tethers.

  11. STS-109 Mission Highlights Resource Tape

    NASA Astrophysics Data System (ADS)

    2002-05-01

    This video, Part 2 of 4, shows the activities of the STS-109 crew (Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, James Newman, Richard Linnehan, Michael Massimino, Mission Specialists) during flight days 4 and 5. The activities from other flights days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139476), and 'STS-109 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002137577). The primary activities during these days were EVAs (extravehicular activities) to replace two solar arrays on the HST (Hubble Space Telescope). Footage from flight day 4 records an EVA by Grunsfeld and Linnehan, including their exit from Columbia's payload bay airlock, their stowing of the old HST starboard rigid array on the rigid array carrier in Columbia's payload bay, their attachment of the new array on HST, the installation of a new starboard diode box, and the unfolding of the new array. The pistol grip space tool used to fasten the old array in its new location is shown in use. The video also includes several shots of the HST with Earth in the background. On flight day 5 Newman and Massimino conduct an EVA to change the port side array and diode box on HST. This EVA is very similar to the one on flight day 4, and is covered similarly in the video. A hand operated ratchet is shown in use. In addition to a repeat of the previous tasks, the astronauts change HST's reaction wheel assembly, and because they are ahead of schedule, install installation and lubricate an instrument door on the telescope. The Earth views include a view of Egypt and Israel, with the Nile River, Red Sea, and Mediterranean Sea.

  12. EVA 1 - Grunsfeld and Smith during RSU changeout

    NASA Image and Video Library

    1999-12-22

    STS-103 mission specialist John M. Grunsfeld (attached to a workstation on the RMS arm) and payload commander Steven L. Smith (free-floating) perform a changeout of the Rate Sensor Units (RSU) in one of the bays of -V3 plane of the Hubble Space Telescope (HST). This repair was performed during the first of three extravehicular activities (EVAs) of the mission. Grunsfeld is distinguished by having no marks on his EMU and Smith is distinguished by the red strip on the pants of his EMU.

  13. STS-125 MS3 Grunsfeld and MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009721 (18 May 2009) --- Astronauts John Grunsfeld (left) and Andrew Feustel, both STS-125 mission specialists, participate in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and Feustel installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  14. STS-125 MS3 Grunsfeld and MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009718 (18 May 2009) --- Astronauts John Grunsfeld (bottom) and Andrew Feustel, both STS-125 mission specialists, participate in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and Feustel installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  15. STS-125 MS3 Grunsfeld and MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009706 (18 May 2009) --- Astronauts John Grunsfeld (left) and Andrew Feustel, both STS-125 mission specialists, participate in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and Feustel installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  16. STS-125 MS3 Grunsfeld and MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009667 (18 May 2009) --- Astronauts John Grunsfeld (left) and Andrew Feustel, both STS-125 mission specialists, participate in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and Feustel installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  17. STS-125 MS3 Grunsfeld and MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009603 (18 May 2009) --- Astronauts John Grunsfeld (left) and Andrew Feustel, both STS-125 mission specialists, participate in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and Feustel installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  18. STS-116 crew at orbiter aft flight deck window during EVA 2

    NASA Image and Video Library

    2007-12-14

    ISS014-E-09804 (14 Dec. 2006) --- From the aft flight deck on Space Shuttle Discovery, astronauts William A. (Bill) Oefelein (left), STS-116 pilot; Nicholas J. M. Patrick, mission specialist; and Mark L. Polansky, commander, look through an overhead window toward their spacewalking crewmembers, who captured the image during the mission's second of three planned sessions of extravehicular activity (EVA).

  19. Physiological and technological considerations for Mars mission extravehicular activity

    NASA Technical Reports Server (NTRS)

    Waligora, James M.; Sedej, Melaine M.

    1986-01-01

    The nature of the suit is a function of the needs of human physiology, the ambient environment outside the suit, and the type of activity to be accomplished while in the suit. The physiological requirements that must be provided for in the Martian Extravehicular Activity (EVA) suit will be reviewed. The influence of the Martian environment on the EVA suit and EVA capabilities is elaborated, and the Martian environment is compared with the lunar environment. The differences that may influence the EVA design are noted. The type, nature, and duration of activities to be done in transit to Mars and on the Martian surface will be evaluated and the impact of these activities on the requirements for EVA systems will be discussed. Furthermore, the interaction between Martian surface transportation systems and EVA systems will be covered. Finally, options other than EVA will be considered such as robotics, nonanthropometric suits, and vehicles with anthropometric extremities or robotic end effectors.

  20. Wisconsin's study of manned Mars missions

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design group focused on three topics: (1) Extravehicular Activities, (2) Sample Return Missions, and (3) Structural and Construction Considerations of a Manned Mars Habitat. Extravehicular Activities permit a Mars based astronaut to exit the habitat and perform mission activities in the harsh Mars environment. Today's spacesuit gloves are bulky, hard to manipulate and fatiguing. A mechanical assistance mechanism has been developed for the glove that will reduce user fatigue and increase the duration of EVA's. Oxygen supply systems are also being developed for the EVA astronaut. A scuba type system of tanked breathing air proves to be the most efficient system for short duration EVA's. A system that extracts the oxygen from atmospheric carbon dioxide can provide oxygen for long duration FVA's. Sample Return Missions require that samples be taken from several sites. Transportation considerations are addressed and two transportation schemes are proposed. The first scheme involves a lighter than air balloon. This system provides excellent range. The second design is a rover that uses tracks rather than wheels. Track rovers perform well in soft, sandy conditions. Engineering aspects of a habitat and domed greenhouse were investigated and plans for the habitat have been made. A configuration has been established and construction details have been made.

  1. The main results of EVA medical support on the Mir Space Station

    NASA Astrophysics Data System (ADS)

    Katuntsev, V. P.; Osipov, Yu. Yu.; Barer, A. S.; Gnoevaya, N. K.; Tarasenkov, G. G.

    2004-04-01

    The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7 h 14 min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of EVA's execution was 10 per year. Most of the EVAs (67) have been performed at mission elapsed time ranging from 31 to 180 days. The oxygen atmosphere of the Orlan space suit with a pressure of 40 kPa in combination with the normobaric cabin environment and a short (30 min) oxygen prebreathe protocol have minimized the risk of decompression sickness (DCS). There has been no incidence of DCS during performed EVAs. At the peak activity, metabolic rates and heart rates increased up to 9.9- 13 kcal/ min and 150- 174 min-1, respectively. The medical problems have centred on feeling of moderate overcooling during a rest period in a shadow after the high physical loads, episodes with tachycardia accompanied by cardiac rhythm disorders at the moments of emotional stress, pains in the muscles and general fatigue after the end of a hard EVA. All of the EVAs have been completed safely.

  2. The main results of EVA medical support on the Mir Space Station.

    PubMed

    Katuntsev, V P; Osipov, Yu Yu; Barer, A S; Gnoevaya, N K; Tarasenkov, G G

    2004-04-01

    The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7 h 14 min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of EVA's execution was 10 per year. Most of the EVAs (67) have been performed at mission elapsed time ranging from 31 to 180 days. The oxygen atmosphere of the Orlan space suit with a pressure of 40 kPa in combination with the normobaric cabin environment and a short (30 min) oxygen prebreathe protocol have minimized the risk of decompression sickness (DCS). There has been no incidence of DCS during performed EVAs. At the peak activity, metabolic rates and heart rates increased up to 9.9-13 kcal/min and 150-174 min-1, respectively. The medical problems have centred on feeling of moderate overcooling during a rest period in a shadow after the high physical loads, episodes with tachycardia accompanied by cardiac rhythm disorders at the moments of emotional stress, pains in the muscles and general fatigue after the end of a hard EVA. All of the EVAs have been completed safely. c2003 Elsevier Ltd. All rights reserved.

  3. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008964 (11 April 2010) --- NASA astronauts Rick Mastracchio (left) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  4. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008710 (11 April 2010) --- NASA astronauts Rick Mastracchio (left) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  5. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008953 (11 April 2010) --- NASA astronauts Rick Mastracchio (left) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  6. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008708 (11 April 2010) --- NASA astronaut Rick Mastracchio (left) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  7. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008700 (11 April 2010) --- NASA astronaut Rick Mastracchio (bottom) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  8. STS-128 EVA 1 MISSE 6 Relocation OPS

    NASA Image and Video Library

    2009-09-02

    S128-E-007225 (1 Sept. 2009) --- Astronaut John “Danny” Olivas, STS-128 mission specialist, participates in the mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 35-minute spacewalk, Olivas and astronaut Nicole Stott (out of frame), mission specialist, removed an empty ammonia tank from the station’s truss and temporarily stowed it on the station’s robotic arm. Olivas and Stott also retrieved the European Technology Exposure Facility (EuTEF) and Materials International Space Station Experiment (MISSE) from the Columbus laboratory module and installed them on Discovery’s payload bay for return.

  9. Wheelock during Expedition 16/STS-120 EVA 4

    NASA Image and Video Library

    2007-11-03

    ISS016-E-009179 (3 Nov. 2007) --- Astronaut Doug Wheelock, STS-120 mission specialist, participates in the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery is docked with the International Space Station. During the 7-hour, 19-minute spacewalk, astronaut Scott Parazynski (out of frame), mission specialist, cut a snagged wire and installed homemade stabilizers designed to strengthen the damaged solar array's structure and stability in the vicinity of the damage. Wheelock assisted from the truss by keeping an eye on the distance between Parazynski and the array. Once the repair was complete, flight controllers on the ground successfully completed the deployment of the array.

  10. Wheelock during Expedition 16/STS-120 EVA 4

    NASA Image and Video Library

    2007-11-03

    ISS016-E-009192 (3 Nov. 2007) --- Astronaut Doug Wheelock, STS-120 mission specialist, participates in the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery is docked with the International Space Station. During the 7-hour, 19-minute spacewalk, astronaut Scott Parazynski (out of frame), mission specialist, cut a snagged wire and installed homemade stabilizers designed to strengthen the damaged solar array's structure and stability in the vicinity of the damage. Wheelock assisted from the truss by keeping an eye on the distance between Parazynski and the array. Once the repair was complete, flight controllers on the ground successfully completed the deployment of the array.

  11. Reilly on EVA 1 during STS-117

    NASA Image and Video Library

    2007-06-12

    S117-E-06914 (11 June 2007) --- Astronauts Jim Reilly (center frame) and John "Danny" Olivas (out of frame), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4. Earth's horizon and the blackness of space provided the backdrop for the scene.

  12. Olivas on EVA 1 during STS-117

    NASA Image and Video Library

    2007-06-11

    S117-E-06901 (11 June 2007) --- Astronauts Jim Reilly (out of frame) and John "Danny" Olivas (partially obscured, center), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4. Earth's horizon and a crescent moon are visible at right.

  13. Reilly on EVA 1 during STS-117

    NASA Image and Video Library

    2007-06-12

    S117-E-06912 (11 June 2007) --- Astronaut Jim Reilly, STS-117 mission specialist, participates in the mission's first planned session of extravehicular activity (EVA) as construction continues on the International Space Station. Among other tasks, Reilly and astronaut John "Danny" Olivas (out of frame), connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4. Earth's horizon and the blackness of space provide the backdrop for the scene.

  14. EVA 3 - P6 truss and arrays

    NASA Image and Video Library

    2007-10-30

    S120-E-007426 (30 Oct. 2007) --- Astronaut Scott Parazynski, STS-120 mission specialist, participates in the third scheduled session of extravehicular activity (EVA) as construction continues on the International Space Station. During the 7-hour, 8-minute spacewalk Parazynski and astronaut Doug Wheelock (out of frame), mission specialist, installed the P6 truss segment with its set of solar arrays to its permanent home, installed a spare main bus switching unit on a stowage platform, and performed a few get-ahead tasks. Also, Parazynski inspected the port Solar Alpha Rotary Joint (SARJ) to gather comparison data for the starboard rotary joint.

  15. EVA 3 - P6 truss and arrays

    NASA Image and Video Library

    2007-10-30

    S120-E-007424 (30 Oct. 2007) --- Astronaut Scott Parazynski, STS-120 mission specialist, participates in the third scheduled session of extravehicular activity (EVA) as construction continues on the International Space Station. During the 7-hour, 8-minute spacewalk Parazynski and astronaut Doug Wheelock (out of frame), mission specialist, installed the P6 truss segment with its set of solar arrays to its permanent home, installed a spare main bus switching unit on a stowage platform, and performed a few get-ahead tasks. Also, Parazynski inspected the port Solar Alpha Rotary Joint (SARJ) to gather comparison data for the starboard rotary joint.

  16. STS-96 EVA view of Tamara Jernigan

    NASA Image and Video Library

    1999-05-30

    STS096-330-004 (30 May 1999) --- Astronaut Tamara E. Jernigan, mission specialist, is backdropped over the Aegean Sea as she handles the American-built crane which she helped to install on the International Space Station (ISS) during the May 30th space walk. Jernigan's feet are anchored to a mobile foot restraint connected to the Space Shuttle Discovery's Canadian-built Remote Manipulator System (RMS). Jernigan was joined by astronaut Daniel T. Barry, mission specialist, for the lengthy extravehicular activity (EVA). Parts of Greece, Turkey and the Dardenelles are visible some 171 nautical miles below the docked tandem of Discovery and the ISS.

  17. Extra dose due to extravehicular activity during the NASA4 mission measured by an on-board TLD system.

    PubMed

    Deme, S; Apathy, I; Hejja, I; Lang, E; Feher, I

    1999-01-01

    A microprocessor-controlled on-board TLD system, 'Pille'96', was used during the NASA4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the extra dose to two astronauts in the course of their extravehicular activity (EVA). For the EVA dose measurements, CaSO4:Dy bulb dosemeters were located in specially designed pockets of the ORLAN spacesuits. During an EVA lasting 6 h, the dose ratio inside and outside Mir was measured. During the EVA, Mir crossed the South Atlantic Anomaly (SAA) three times. Taking into account the influence of these three crossings the mean EVA/internal dose rate ratio was 3.2. Internal dose mapping using CaSO4:Dy dosemeters gave mean dose rates ranging from 9.3 to 18.3 microGy h-1 at locations where the shielding effect was not the same. Evaluation results of the high temperature region of LiF dosemeters are given to estimate the mean LET.

  18. Mid-shot of Seller on EVA3 during STS-121 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-07-12

    S121-E-06583 (12 July 2006) --- Astronaut Piers J. Sellers, STS-121 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA). The demonstration of orbiter heat shield repair techniques was the objective of the 7-hour, 11-minute excursion outside Space Shuttle Discovery and the International Space Station.

  19. Hawley controls the RMS arm from the flight deck during EVA on Flight Day 6

    NASA Image and Video Library

    1997-02-16

    S82-E-5568 (16 Feb. 1997) --- Astronaut Steven A. Hawley, at controls for Remote Manipulator System (RMS), during third Extravehicular Activity (EVA). Hawley had been a mission specialist for the NASA mission which deployed the giant HST in 1990. This view was taken with an Electronic Still Camera (ESC).

  20. Extravehicular Activity (EVA) Power, Avionics, and Software (PAS) 101

    NASA Technical Reports Server (NTRS)

    Irimies, David

    2011-01-01

    EVA systems consist of a spacesuit or garment, a PLSS, a PAS system, and spacesuit interface hardware. The PAS system is responsible for providing power for the suit, communication of several types of data between the suit and other mission assets, avionics hardware to perform numerous data display and processing functions, and information systems that provide crewmembers data to perform their tasks with more autonomy and efficiency. Irimies discussed how technology development efforts have advanced the state-of-the-art in these areas and shared technology development challenges.

  1. Design, development and evaluation of Stanford/Ames EVA prehensors

    NASA Technical Reports Server (NTRS)

    Leifer, Larry J.; Aldrich, J.; Leblanc, M.; Sabelman, E.; Schwandt, D.

    1988-01-01

    Space Station operations and maintenance are expected to make unprecedented demands on astronaut EVA. With Space Station expected to operate with an 8 to 10 psi atmosphere (4 psi for Shuttle operations), the effectivness of pressurized gloves is called into doubt at the same time that EVA activity levels are to be increased. To address the need for more frequent and complex EVA missions and also to extend the dexterity, duration, and safety of EVA astronauts, NASA Ames and Stanford University have an ongoing cooperative agreement to explore and compare alternatives. This is the final Stanford/Ames report on manually powered Prehensors, each of which consists of a shroud forming a pressure enclosure around the astronaut's hand, and a linkage system to transfer the motions and forces of the hand to mechanical digits attached to the shroud. All prehensors are intended for attachment to a standard wrist coupling, as found on the AX-5 hard suit prototype, so that realistic tests can be performed under normal and reduced gravity as simulated by water flotation.

  2. Next Generation Life Support (NGLS): High Performance EVA Glove (HPEG) Technology Development Element

    NASA Technical Reports Server (NTRS)

    Walsh, Sarah; Barta, Daniel; Stephan, Ryan; Gaddis, Stephen

    2015-01-01

    The overall objective is to develop advanced gloves for extra vehicular activity (EVA) for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. The glove prototypes that result from the successful completion of this technology development activity will be delivered to NASA's Human Exploration Operations Mission Directorate (HEOMD) and ultimately to be included in an integrated test with the next generation spacesuit currently under development.

  3. STS-117 Astronauts Patrick Forrester and Steven Swanson During EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    STS-117 astronauts and mission specialists Patrick Forrester and Steven Swanson (out of frame), participated in the second Extra Vehicular Activity (EVA) as construction resumed on the International Space Station (ISS). Among other tasks, the two removed all of the launch locks holding the 10 foot wide solar alpha rotary joint in place and began the solar array retraction. The primary mission objective was the installment of the second and third starboard truss segments (S3 and S4).

  4. STS-109 MS Massimino and Newman replace Reaction Wheel assembly during EVA 2

    NASA Image and Video Library

    2002-03-05

    STS109-E-5401 (5 March 2002) --- With his feet secured on a platform connected to the remote manipulator system (RMS) robotic arm of the Space Shuttle Columbia, astronaut Michael J. Massimino, mission specialist, hovers over the shuttle's cargo bay while working in tandem with astronaut James H. Newman, mission specialist, during the STS-109 mission's second day of extravehicular activity (EVA). Inside Columbia's cabin, astronaut Nancy J. Currie, mission specialist, controlled the RMS. The image was recorded with a digital still camera.

  5. STS-109 MS Massimino and Newman replace Reaction Wheel assembly during EVA 2

    NASA Image and Video Library

    2002-03-05

    STS109-E-5402 (5 March 2002) --- With his feet secured on a platform connected to the remote manipulator system (RMS) robotic arm of the Space Shuttle Columbia, astronaut Michael J. Massimino, mission specialist, hovers over the shuttle's cargo bay while working in tandem with astronaut James H. Newman, mission specialist, during the STS-109 mission's second day of extravehicular activity (EVA). Inside Columbia's cabin, astronaut Nancy J. Currie, mission specialist, controlled the RMS. The image was recorded with a digital still camera.

  6. Advanced EVA system design requirements study: EVAS/space station system interface requirements

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1985-01-01

    The definition of the Extravehicular Activity (EVA) systems interface requirements and accomodations for effective integration of a production EVA capability into the space station are contained. A description of the EVA systems for which the space station must provide the various interfaces and accomodations are provided. The discussion and analyses of the various space station areas in which the EVA interfaces are required and/or from which implications for EVA system design requirements are derived, are included. The rationale is provided for all EVAS mechanical, fluid, electrical, communications, and data system interfaces as well as exterior and interior requirements necessary to facilitate EVA operations. Results of the studies supporting these discussions are presented in the appendix.

  7. STS-116 Crewmembers Curbeam and Williams work near P6 SAW during EVA 3

    NASA Image and Video Library

    2006-12-17

    S116-E-06603 (16 Dec. 2006) --- Astronauts Robert L. Curbeam, Jr., (red stripes), STS-116 mission specialist, and Sunita L. Williams, Expedition 14 flight engineer, work near the International Space Station's left P6 solar array wing during the mission's third planned session of extravehicular activity (EVA) as construction resumes on the International Space Station.

  8. STS-116 Crewmembers Curbeam and Williams work near P6 SAW during EVA 3

    NASA Image and Video Library

    2006-12-17

    S116-E-06606 (16 Dec. 2006) --- Astronauts Robert L. Curbeam, Jr., (red stripes), STS-116 mission specialist, and Sunita L. Williams, Expedition 14 flight engineer, work near the International Space Station's left P6 solar array wing during the mission's third planned session of extravehicular activity (EVA) as construction resumes on the International Space Station.

  9. STS-125 MS3 Grunsfeld and MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009997 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  10. STS-125 MS3 Grunsfeld and MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009864 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), and astronaut Andrew Feustel (bottom center), mission specialist, participate in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and Feustel installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  11. STS-125 MS3 Grunsfeld and MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009918 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), and astronaut Andrew Feustel, mission specialist, participate in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and Feustel installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  12. STS-125 MS3 Grunsfeld and MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009994 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  13. STS-125 MS3 Grunsfeld and MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009944 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), and astronaut Andrew Feustel (top center), mission specialist, participate in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and Feustel installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  14. STS-125 MS3 Grunsfeld and MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009911 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), and astronaut Andrew Feustel, mission specialist, participate in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and Feustel installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  15. STS-125 MS3 Grunsfeld and MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009908 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), and astronaut Andrew Feustel (foreground), mission specialist, participate in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and Feustel installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  16. STS-125 MS3 Grunsfeld and MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009890 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), and astronaut Andrew Feustel (foreground), mission specialist, participate in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and Feustel installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  17. STS-125 MS3 Grunsfeld and MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-010000 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics.

  18. STS-109 MS Newman replace Reaction Wheel assembly during EVA 2

    NASA Image and Video Library

    2002-03-05

    STS109-E-5399 (5 March 2002) --- Astronaut James H. Newman, mission specialist, moves about in the Space Shuttle Columbia's cargo bay while working in tandem with astronaut Michael J. Massimino (out of frame), mission specialist, during the STS-109 mission's second day of extravehicular activity (EVA). Inside Columbia's cabin, astronaut Nancy J. Currie, mission specialist, controlled the Remote Manipulator System (RMS) to assist the two in their work on the Hubble Space Telescope (HST). Part of the giant telescope's base, latched down in the payload bay, can be seen just above Newman. The image was recorded with a digital still camera.

  19. Astronaut Edwin Aldrin in open hatch of spacecraft during EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Edwin Aldrin, pilot for the Gemini 12 flight, stands up in the open hatch of the spacecraft during his extravehicular activity (EVA) on the first day of the four day mission in space. He prepares camera for installation on outside of the spacecraft (63537); Aldrin removes micrometeoroid package for return to the spacecraft (63538).

  20. Cassidy and Marshburn during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009342 (27 July 2009) --- Astronauts Tom Marshburn (foreground) and Christopher Cassidy, both STS-127 mission specialists, participate in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Marshburn and Cassidy secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  1. Cassidy and Marshburn during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009312 (27 July 2009) --- Astronauts Tom Marshburn (left) and Christopher Cassidy, both STS-127 mission specialists, participate in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Marshburn and Cassidy secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  2. Cassidy and Marshburn during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009317 (27 July 2009) --- Astronauts Tom Marshburn (left) and Christopher Cassidy, both STS-127 mission specialists, participate in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Marshburn and Cassidy secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  3. Cassidy and Marshburn during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009323 (27 July 2009) --- Astronauts Tom Marshburn (foreground) and Christopher Cassidy, both STS-127 mission specialists, participate in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Marshburn and Cassidy secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  4. Cassidy and Marshburn during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009363 (27 July 2009) --- Astronauts Tom Marshburn (foreground) and Christopher Cassidy, both STS-127 mission specialists, participate in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Marshburn and Cassidy secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  5. Cassidy and Marshburn during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009372 (27 July 2009) --- Astronauts Tom Marshburn (left) and Christopher Cassidy, both STS-127 mission specialists, participate in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Marshburn and Cassidy secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  6. Cassidy and Marshburn during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009371 (27 July 2009) --- Astronauts Tom Marshburn (left) and Christopher Cassidy, both STS-127 mission specialists, participate in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Marshburn and Cassidy secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  7. Results from an Investigation into Extra-Vehicular Activity (EVA) Training Related Shoulder Injuries

    NASA Technical Reports Server (NTRS)

    Johnson, Brian J.; Williams, David R.

    2004-01-01

    The number and complexity of extravehicular activities (EVAs) required for the completion and maintenance of the International Space Station (ISS) is unprecedented. The training required to successfully complete this magnitude of space walks presents a real risk of overuse musculoskeletal injuries to the EVA crew population. There was mounting evidence raised by crewmembers, trainers, and physicians at the Johnson Space Center (JSC) between 1999 and 2002 that suggested a link between training in the Neutral - Buoyancy Lab (NBL) and the several reported cases of shoulder injuries. The short- and long-term health consequences of shoulder injury to astronauts in training as well as the potential mission impact associated with surgical intervention to assigned EVA crew point to this as a critical problem that must be mitigated. Thus, a multi-directorate tiger team was formed in December of 2002 led by the EVA Office and Astronaut Office at the JSC. The primary objectives of this Tiger Team were to evaluate the prevalence of these injuries and substantiate the relationship to training in the NBL with the crew person operating in the EVA Mobility Unit (EMU). Between December 2002 and June of 2003 the team collected data, surveyed crewmembers, consulted with a variety of physicians, and performed tests. The results of this effort were combined with the vast knowledge and experience of the Tiger Team members to formulate several findings and over fifty recommendations. This paper summarizes those findings and recommendations as well as the process by which these were determined. The Tiger Team concluded that training in the NBL was directly linked to several major and minor shoulder injuries that had occurred. With the assistance of JSC flight surgeons, outside consultants, and the lead crewmember/physician on the team, the mechanisms of injury were determined. These mechanisms were then linked to specific aspects of the hardware design, operational techniques, and the

  8. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008878 (11 April 2010) --- NASA astronauts Rick Mastracchio (left) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process. The thin line of Earth's atmosphere appears in frame center.

  9. Reilly and Olivas on EVA 1 during STS-117

    NASA Image and Video Library

    2007-06-11

    S117-E-06886 (11 June 2007) --- Astronauts Jim Reilly (center frame) and John "Danny" Olivas (bottom right), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4.

  10. Reilly and Olivas on EVA 1 during STS-117

    NASA Image and Video Library

    2007-06-11

    S117-E-06878 (11 June 2007) --- Astronauts Jim Reilly (center frame) and John "Danny" Olivas (bottom center), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4.

  11. Reilly and Olivas on EVA 1 during STS-117

    NASA Image and Video Library

    2007-06-11

    S117-E-06899 (11 June 2007) --- Astronauts Jim Reilly (left) and John "Danny" Olivas (bottom right), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4.

  12. Reilly and Olivas on EVA 1 during STS-117

    NASA Image and Video Library

    2007-06-11

    S117-E-06896 (11 June 2007) --- Astronauts Jim Reilly (bottom) and John "Danny" Olivas (top right), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4.

  13. Exploration EVA System

    NASA Technical Reports Server (NTRS)

    Kearney, Lara

    2004-01-01

    In January 2004, the President announced a new Vision for Space Exploration. NASA's Office of Exploration Systems has identified Extravehicular Activity (EVA) as a critical capability for supporting the Vision for Space Exploration. EVA is required for all phases of the Vision, both in-space and planetary. Supporting the human outside the protective environment of the vehicle or habitat and allow ing him/her to perform efficient and effective work requires an integrated EVA "System of systems." The EVA System includes EVA suits, airlocks, tools and mobility aids, and human rovers. At the core of the EVA System is the highly technical EVA suit, which is comprised mainly of a life support system and a pressure/environmental protection garment. The EVA suit, in essence, is a miniature spacecraft, which combines together many different sub-systems such as life support, power, communications, avionics, robotics, pressure systems and thermal systems, into a single autonomous unit. Development of a new EVA suit requires technology advancements similar to those required in the development of a new space vehicle. A majority of the technologies necessary to develop advanced EVA systems are currently at a low Technology Readiness Level of 1-3. This is particularly true for the long-pole technologies of the life support system.

  14. Fossum smiles at the camera during EVA3 on STS-121 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-07-12

    S121-E-06685 (12 July 2006) --- Astronaut Michael E. Fossum, STS-121 mission specialist, works in Space Shuttle Discovery's cargo bay during the mission's third and final session of extravehicular activity (EVA). The demonstration of orbiter heat shield repair techniques was the objective of the 7-hour, 11-minute excursion outside the shuttle and the International Space Station.

  15. Fossum smiles at the camera during EVA3 on STS-121 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-07-12

    S121-E-06679 (12 July 2006) --- Astronaut Michael E. Fossum, STS-121 mission specialist, works in Space Shuttle Discovery's cargo bay during the mission's third and final session of extravehicular activity (EVA). The demonstration of orbiter heat shield repair techniques was the objective of the 7-hour, 11-minute excursion outside the shuttle and the International Space Station.

  16. View of Forrester working on ISS construction during STS-117 EVA2

    NASA Image and Video Library

    2007-06-13

    ISS015-E-12018 (13 June 2007) --- Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut Patrick Forrester, STS-117 mission specialist, participates in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and astronaut Steven Swanson (out of frame), mission specialist, removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  17. Astronaut David Wolf participates in training for contingency EVA in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut David A. Wolf participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. The mission specialist was about to be submerged ito a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF). In this view, Wolf is displaying the flexibility of his training version of the Shuttle extravehicular mobility unit (EMU) by lifting his arms above his head (31701); Wolf waves to the camera before he is submerged in the WETF (31702).

  18. MS Jones and MS Curbeam suited in EMU in the A/L for EVA 3

    NASA Image and Video Library

    2001-02-07

    STS098-349-004 (7-20 February 2001) --- Astronauts Thomas D. Jones (second left) and Robert L. Curbeam, both mission specialists, prepare for one of the three STS-98 sessions of extravehicular activity (EVA). Astronauts Kenneth D. Cockrell (lower left), mission commander, and Mark L. Polansky, mission specialist, assist Jones and Curbeam as they don their Extravehicular Mobility Unit (EMU) space suits in the airlock of the Space Shuttle Atlantis.

  19. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and crewmembers (CMs) ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVA, and provides a historical look at energy expenditure during EVA through the Apollo program.

  20. Extravehicular Activity Probabilistic Risk Assessment Overview for Thermal Protection System Repair on the Hubble Space Telescope Servicing Mission

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Canga, Michael A.; Duncan, Gary

    2010-01-01

    The Shuttle Program initiated an Extravehicular Activity (EVA) Probabilistic Risk Assessment (PRA) to assess the risks associated with performing a Shuttle Thermal Protection System (TPS) repair during the Space Transportation System (STS)-125 Hubble repair mission as part of risk trades between TPS repair and crew rescue.

  1. Zamka with EV Crewmembers in A/L prior to EVA 3

    NASA Image and Video Library

    2010-02-17

    S130-E-009394 (16 Feb. 2010) --- NASA astronaut George Zamka, STS-130 commander, is pictured in the Quest airlock of the International Space Station as astronauts Robert Behnken and Nicholas Patrick, both mission specialists, prepare to exit the airlock to begin the mission’s third and final session of extravehicular activity (EVA).

  2. Extravehicular Activity (EVA) Microbial Swab Tool

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle

    2015-01-01

    When we send humans to search for life on Mars, we'll need to know what we brought with us versus what may already be there. To ensure our crewed spacecraft meet planetary protection requirements--and to protect our science from human contamination--we'll need to know whether micro-organisms are leaking/venting from our ships and spacesuits. This is easily done by swabbing external vents and surfaces for analysis, but there was no US EVA tool for that job. NASA engineers developed an EVA-compatible swab tool that can be used to collect data on current hardware, which will influence eventual Mars life support and EVA hardware designs.

  3. STS-26 crewmembers participate in contingency EVA exercise in JSC's WETF

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, mission specialists George D. Nelson and John M. Lounge, wearing extravehicular mobility units (EMUs), participate in contingency extravehicular activity (EVA) exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Overall view of WETF underwater activity shows Nelson (foreground) working with EVA wrench as Lounge looks on and SCUBA-equipped divers monitor procedures. A mockup of the tracking and data relay satellite C (TDRS-C) appears behind astronauts in payload bay (PLB). In the event of in-cabin remote control failure, the procedure Nelson is conducting would upright the tracking and data relay satellite C (TDRS-C) from its stowed position to its deployment position. Photograph was taken by Keith Meyers of the NEW YORK TIMES.

  4. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009246 (21 May 2010) --- NASA astronauts Michael Good and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  5. EVA 3 - Linnehan portrait

    NASA Image and Video Library

    2002-03-06

    STS109-322-028 (6 March 2002) --- Astronaut Richard M. Linnehan, STS-109 mission specialist, participates in the third of five space walks to perform work on the Hubble Space Telescope (HST). Linnehan's sun shield reflects astronaut John M. Grunsfeld and the blue and white Earth's hemisphere as well as one of the telescope's new solar arrays. The third overall STS-109 extravehicular activity (EVA) marked the second of three for Linnehan and Grunsfeld, payload commander. On this particular walk, the two turned off the telescope in order to replace the power control unit or PCU--the heart of its power system. Grunsfeld took this photo with a 35mm camera.

  6. Perrin installs the MBS to the Mobile Transporter railcar during STS-111 UF-2 EVA 2

    NASA Image and Video Library

    2002-06-12

    STS111-E-5238 (11 June 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist, works on the installation of the Mobile Remote Servicer Base System (MBS) on the International Space Station’s (ISS) railcar, the Mobile Transporter, during the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. Perrin represents CNES, the French Space Agency.

  7. Perrin installs the MBS to the Mobile Transporter railcar during STS-111 UF-2 EVA 2

    NASA Image and Video Library

    2002-06-12

    STS111-E-5240 (11 June 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist, works on the installation of the Mobile Remote Servicer Base System (MBS) on the International Space Station’s (ISS) railcar, the Mobile Transporter, during the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. Perrin represents CNES, the French Space Agency.

  8. High-Pressure Oxygen Generation for Outpost EVA Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  9. Cassidy and Marshburn during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009329 (27 July 2009) --- Astronauts Christopher Cassidy and Tom Marshburn (partially out of frame at left), both STS-127 mission specialists, participate in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Marshburn and Cassidy secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  10. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2012-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and, as a result, crew members ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVAs, and provides a historical look at energy expenditure during EVAs through the Apollo Program.

  11. STS-119 EVA 3 GAT SSRMS LEE B Snare Lubrication OPS

    NASA Image and Video Library

    2009-03-23

    S119-E-007105 (23 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Joseph Acaba (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  12. MS Hadfield and MS Parazynski raise the SSRMS from the SLP during an EVA for STS-100

    NASA Image and Video Library

    2001-04-22

    STS100-714-027 (19 April-1 May 2001) --- Astronaut Chris A. Hadfield, mission specialist representing the Canadian Space Agency (CSA), stands on the portable foot restraint (PFR) connected to the Endeavour's remote manipulator system (RMS) robotic arm, during one of the two days of extravehicular activity (EVA) on the STS-100 mission. Astronaut Scott E. Parazynski, mission specialist, is seen at left near the Spacelab pallet.

  13. Minimizing EVA Airlock Time and Depress Gas Losses

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Lafuse, Sharon A.

    2008-01-01

    This paper describes the need and solution for minimizing EVA airlock time and depress gas losses using a new method that minimizes EVA out-the-door time for a suited astronaut and reclaims most of the airlock depress gas. This method consists of one or more related concepts that use an evacuated reservoir tank to store and reclaim the airlock depress gas. The evacuated tank can be an inflatable tank, a spent fuel tank from a lunar lander descent stage, or a backup airlock. During EVA airlock operations, the airlock and reservoir would be equalized at some low pressure, and through proper selection of reservoir size, most of the depress gas would be stored in the reservoir for later reclamation. The benefit of this method is directly applicable to long duration lunar and Mars missions that require multiple EVA missions (up to 100, two-person lunar EVAs) and conservation of consumables, including depress pump power and depress gas. The current ISS airlock gas reclamation method requires approximately 45 minutes of the astronaut s time in the airlock and 1 KW in electrical power. The proposed method would decrease the astronaut s time in the airlock because the depress gas is being temporarily stored in a reservoir tank for later recovery. Once the EVA crew is conducting the EVA, the volume in the reservoir would be pumped back to the cabin at a slow rate. Various trades were conducted to optimize this method, which include time to equalize the airlock with the evacuated reservoir versus reservoir size, pump power to reclaim depress gas versus time allotted, inflatable reservoir pros and cons (weight, volume, complexity), and feasibility of spent lunar nitrogen and oxygen tanks as reservoirs.

  14. STS-124 EVA 3 Nitrogen Tank Assembly (NTA) OPS

    NASA Image and Video Library

    2008-06-08

    ISS017-E-009220 (8 June 2008) --- Anchored to a Canadarm2 mobile foot restraint, astronaut Ron Garan, STS-124 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 33-minute spacewalk, Garan and astronaut Mike Fossum (out of frame), mission specialist, exchanged a depleted Nitrogen Tank Assembly for a new one, removed thermal covers and launch locks from the Kibo laboratory, reinstalled a repaired television camera onto the space station's left P1 truss, and retrieved samples of a dust-like substance from the left Solar Alpha Rotary Joint for analysis by experts on the ground.

  15. View taken during EVA 1

    NASA Image and Video Library

    1998-12-07

    S88-E-5060 (12-08-98) --- Astronaut James H. Newman is seen near the Unity module during late phases of the first of three scheduled spacewalks on STS-88. At the end of the extravehicular activity (EVA), astronauts Newman and Jerry L. Ross, both mission specialists, were successful in mating 40 cables and connectors running 76 feet from the Zarya control module to Unity, with the 35-ton complex towering over Endeavour's cargo bay. The spacewalk last 7 hours and 21 minutes. This photo was taken with an electronic still camera (ESC) at 03:50:28 GMT, Dec. 8.

  16. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    ISS021-E-032068 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  17. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    ISS021-E-031706 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  18. View of STS-129 MS2 Bresnik during EVA3

    NASA Image and Video Library

    2009-11-23

    ISS021-E-031628 (23 Nov. 2009) --- Astronaut Randy Bresnik, STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Bresnik and Robert L. Satcher Jr. (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  19. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    ISS021-E-032066 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  20. View of STS-129 MS2 Bresnik during EVA3

    NASA Image and Video Library

    2009-11-23

    S129-E-008006 (23 Nov. 2009) --- Astronaut Randy Bresnik, STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Bresnik and astronaut Robert L. Satcher Jr. (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  1. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    S129-E-008120 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  2. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    ISS021-E-031703 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  3. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    ISS021-E-031717 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  4. View of STS-129 MS2 Bresnik during EVA3

    NASA Image and Video Library

    2009-11-23

    S129-E-008010 (23 Nov. 2009) --- Astronaut Randy Bresnik, STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Bresnik and astronaut Robert L. Satcher Jr. (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  5. View of STS-129 MS2 Bresnik during EVA3

    NASA Image and Video Library

    2009-11-23

    ISS021-E-031645 (23 Nov. 2009) --- Astronaut Randy Bresnik, STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Bresnik and Robert L. Satcher Jr. (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  6. View of STS-129 MS2 Bresnik during EVA3

    NASA Image and Video Library

    2009-11-23

    ISS021-E-031673 (23 Nov. 2009) --- Astronaut Randy Bresnik, STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Bresnik and Robert L. Satcher Jr. (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  7. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    S129-E-008103 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  8. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    ISS021-E-031705 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  9. View of STS-129 MS4 Satcher during EVA3

    NASA Image and Video Library

    2009-11-23

    S129-E-008115 (23 Nov. 2009) --- Astronaut Robert L. Satcher Jr., STS-129 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 42-minute spacewalk, Satcher and astronaut Randy Bresnik (out of frame), mission specialist, removed a pair of micrometeoroid and orbital debris shields from the Quest airlock and strapped them to the External Stowage Platform #2, then moved an articulating foot restraint to the airlock, and released a bolt on a starboard truss ammonia tank assembly (ATA) in preparation for an STS-131 spacewalk that will replace the ATA.

  10. Reilly working on ISS construction during STS-117 EVA1

    NASA Image and Video Library

    2007-06-12

    ISS015-E-11858 (11 June 2007) --- Astronauts Jim Reilly and John "Danny" Olivas (visible among Reilly's helmet reflections), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4.

  11. Exploration Architecture Options - ECLSS, TCS, EVA Implications

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Henninger, Don

    2011-01-01

    Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. The Augustine Commission evaluated human space flight for the Obama administration then the Human Exploration Framework Teams (HEFT and HEFT2) evaluated potential exploration missions and the infrastructure and technology needs for those missions. Lunar architectures have been identified and addressed by the Lunar Surface Systems team to establish options for how to get to, and then inhabit and explore, the moon. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), Thermal Control (TCS), and Extravehicular Activity (EVA) Systems.

  12. STS-113 Crew Interviews: Michael Lopez-Alegria, Mission Specialist 1

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-113 Mission Specialist 1 Michael Lopez-Alegria is seen during this preflight interview where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Lopez-Alegria outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (P1 truss) and the crew transfer activities (the crew of Expedition Six is replacing the crew of Expedition Five on the International Space Station (ISS)). Lopez-Alegria discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew. He ends with his thoughts on the importance of the ISS as the second anniversary of human occupation of the Space Station approaches.

  13. STS-128 EVA 1 MISSE 6 Relocation OPS

    NASA Image and Video Library

    2009-09-02

    S128-E-007230 (1 Sept. 2009) --- Astronaut Nicole Stott, Expedition 20 flight engineer, participates in the STS-128 mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 35-minute spacewalk, Stott and astronaut John “Danny” Olivas (out of frame), mission specialist, removed an empty ammonia tank from the station’s truss and temporarily stowed it on the station’s robotic arm. Olivas and Stott also retrieved the European Technology Exposure Facility (EuTEF) and Materials International Space Station Experiment (MISSE) from the Columbus laboratory module and installed them on Discovery’s payload bay for return.

  14. STS-128 EVA 1 MISSE 6 Relocation OPS

    NASA Image and Video Library

    2009-09-02

    S128-E-007229 (1 Sept. 2009) --- Astronaut Nicole Stott, Expedition 20 flight engineer, participates in the STS-128 mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 35-minute spacewalk, Stott and astronaut John “Danny” Olivas (out of frame), mission specialist, removed an empty ammonia tank from the station’s truss and temporarily stowed it on the station’s robotic arm. Olivas and Stott also retrieved the European Technology Exposure Facility (EuTEF) and Materials International Space Station Experiment (MISSE) from the Columbus laboratory module and installed them on Discovery’s payload bay for return.

  15. STS-128 EVA 1 MISSE 6 Relocation OPS

    NASA Image and Video Library

    2009-09-02

    S128-E-007242 (1 Sept. 2009) --- Astronaut Nicole Stott, Expedition 20 flight engineer, participates in the STS-128 mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 35-minute spacewalk, Stott and astronaut John “Danny” Olivas (out of frame), mission specialist, removed an empty ammonia tank from the station’s truss and temporarily stowed it on the station’s robotic arm. Olivas and Stott also retrieved the European Technology Exposure Facility (EuTEF) and Materials International Space Station Experiment (MISSE) from the Columbus laboratory module and installed them on Discovery’s payload bay for return.

  16. STS-128 EVA 1 MISSE 6 Relocation OPS

    NASA Image and Video Library

    2009-09-02

    S128-E-007239 (1 Sept. 2009) --- Astronaut Nicole Stott, Expedition 20 flight engineer, participates in the STS-128 mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 35-minute spacewalk, Stott and astronaut John “Danny” Olivas (out of frame), mission specialist, removed an empty ammonia tank from the station’s truss and temporarily stowed it on the station’s robotic arm. Olivas and Stott also retrieved the European Technology Exposure Facility (EuTEF) and Materials International Space Station Experiment (MISSE) from the Columbus laboratory module and installed them on Discovery’s payload bay for return.

  17. EVA Training and Development Facilities

    NASA Technical Reports Server (NTRS)

    Cupples, Scott

    2016-01-01

    Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.

  18. STS-111 Crew Interviews: Phillippe Perrin, Mission Specialist 1

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-111 Mission Specialist 1 Phillippe Perrin is seen during this preflight interview, where he gives a quick overview of his mission before answering questions about his inspiration to become an astronaut and his career path. Perrin outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes what the crew exchange will be like (transferring the Expedition 5 crew in place of the Expedition 4 crew on the International Space Station (ISS)) and the payloads (Mobile Base System (MBS) and the Leonardo Multi-Purpose Logistics Module). Perrin discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the ISS. He also provides his thoughts about the significance of the mission to France and the value of the ISS.

  19. Space Station Freedom extravehicular activity systems evolution study

    NASA Technical Reports Server (NTRS)

    Rouen, Michael

    1990-01-01

    Evaluation of Space Station Freedom (SSF) support of manned exploration is in progress to identify SSF extravehicular activity (EVA) system evolution requirements and capabilities. The output from these studies will provide data to support the preliminary design process to ensure that Space Station EVA system requirements for future missions (including the transportation node) are adequately considered and reflected in the baseline design. The study considers SSF support of future missions and the EVA system baseline to determine adequacy of EVA requirements and capabilities and to identify additional requirements, capabilities, and necessary technology upgrades. The EVA demands levied by formal requirements and indicated by evolutionary mission scenarios are high for the out-years of Space Station Freedom. An EVA system designed to meet the baseline requirements can easily evolve to meet evolution demands with few exceptions. Results to date indicate that upgrades or modifications to the EVA system may be necessary to meet the full range of EVA thermal environments associated with the transportation node. Work continues to quantify the EVA capability in this regard. Evolution mission scenarios with EVA and ground unshielded nuclear propulsion engines are inconsistent with anthropomorphic EVA capabilities.

  20. Dynamic analysis of astronaut motions in microgravity: Applications for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    1995-01-01

    Simulations of astronaut motions during extravehicular activity (EVA) tasks were performed using computational multibody dynamics methods. The application of computational dynamic simulation to EVA was prompted by the realization that physical microgravity simulators have inherent limitations: viscosity in neutral buoyancy tanks; friction in air bearing floors; short duration for parabolic aircraft; and inertia and friction in suspension mechanisms. These limitations can mask critical dynamic effects that later cause problems during actual EVA's performed in space. Methods of formulating dynamic equations of motion for multibody systems are discussed with emphasis on Kane's method, which forms the basis of the simulations presented herein. Formulation of the equations of motion for a two degree of freedom arm is presented as an explicit example. The four basic steps in creating the computational simulations were: system description, in which the geometry, mass properties, and interconnection of system bodies are input to the computer; equation formulation based on the system description; inverse kinematics, in which the angles, velocities, and accelerations of joints are calculated for prescribed motion of the endpoint (hand) of the arm; and inverse dynamics, in which joint torques are calculated for a prescribed motion. A graphical animation and data plotting program, EVADS (EVA Dynamics Simulation), was developed and used to analyze the results of the simulations that were performed on a Silicon Graphics Indigo2 computer. EVA tasks involving manipulation of the Spartan 204 free flying astronomy payload, as performed during Space Shuttle mission STS-63 (February 1995), served as the subject for two dynamic simulations. An EVA crewmember was modeled as a seven segment system with an eighth segment representing the massive payload attached to the hand. For both simulations, the initial configuration of the lower body (trunk, upper leg, and lower leg) was a neutral

  1. Russian Extravehicular Activity (EVA) 17A.

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14467 (22 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Tyurin and astronaut Michael E. Lopez-Alegria (out of frame), commander and NASA space station science officer, were able to retract a stuck Kurs antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  2. Russian Extravehicular Activity (EVA) 17A.

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14469 (22 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Tyurin and astronaut Michael E. Lopez-Alegria (out of frame), commander and NASA space station science officer, were able to retract a stuck antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  3. Swanson moves to the S3/S4 Truss during STS-117 EVA 2

    NASA Image and Video Library

    2007-06-13

    S117-E-07264 (13 June 2007) --- Astronauts Steven Swanson and Patrick Forrester (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  4. Forrester moves to the S3/S4 Truss during STS-117 EVA 2

    NASA Image and Video Library

    2007-06-13

    S117-E-07258 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  5. ASTRONAUT KERWIN, JOSEPH P. - EXTRAVEHICULAR ACTIVITY (EVA) - SKYLAB (SL)-2

    NASA Image and Video Library

    1973-06-01

    S73-27562 (June 1973) --- Scientist-astronaut Joseph P. Kerwin, Skylab 2 science pilot, performs extravehicular activity (EVA) at the Skylab 1 and 2 space station cluster in Earth orbit, as seen in this reproduction taken from a color television transmission made by a TV camera aboard the station. Kerwin is just outside the Airlock Module. Kerwin assisted astronaut Charles Conrad Jr., Skylab 2 commander, during the successful EVA attempt to free the stuck solar array system wing on the Orbital Workshop. Photo credit: NASA

  6. SKYLAB III - POSTLAUNCH (MISSION CONTROL CENTER [MCC]) - JSC

    NASA Image and Video Library

    1973-08-06

    S73-31964 (5 August 1973) --- This group of flight controllers discuss today's approaching extravehicular activity (EVA) to be performed by the Skylab 3 crewmen. They are, left to right, scientist-astronaut Story Musgrave, a Skylab 3 spacecraft communicator; Robert Kain and Scott Millican, both of the Crew Procedures Division, EVA Procedures Section; William C. Schneider, Skylab Program Director, NASA Headquarters; and Milton Windler, flight director. Windler points to the model of the Skylab space station cluster to indicate the location of the ATM's film magazines. The group stands near consoles in the Mission Operations Control Room (MOCR) of the JSC Mission Control Center (MCC). Photo credit: NASA

  7. STS-125 MS3 Grunsfeld and MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009990 (18 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, positioned on a foot restraint on the end of Atlantis? remote manipulator system (RMS), participates in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Grunsfeld and astronaut Andrew Feustel (out of frame), mission specialist, installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics. The blackness of space and the thin line of Earth?s atmosphere provide the backdrop for this scene.

  8. STS-109 Mission Highlights Resource Tape

    NASA Astrophysics Data System (ADS)

    2002-05-01

    This video, Part 3 of 4, shows the activities of the STS-109 crew (Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, James Newman, Richard Linnehan, Michael Massimino, Mission Specialists) during flight days 6 and 7. The activities from other flight days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), and 'STS-109 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002137577). Flight day 6 features a very complicated EVA (extravehicular activity) to service the HST (Hubble Space Telescope). Astronauts Grunsfeld and Linnehan replace the HST's power control unit, disconnecting and reconnecting 36 tiny connectors. The procedure includes the HST's first ever power down. The cleanup of spilled water from the coollant system in Grunsfeld's suit is shown. The pistol grip tool, and two other space tools are also shown. On flight day 7, Newman and Massimino conduct an EVA. They replace the HST's FOC (Faint Object Camera) with the ACS (Advanced Camera for Surveys). The video ends with crew members playing in the shuttle's cabin with a model of the HST.

  9. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie

    2016-01-01

    The EVA (Extravehicular Activity) Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, searchable repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, the one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision control system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, and also for hundreds of other NASA and contract employees. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  10. Scott and Doi conduct tool evaluations during second EVA of STS-87

    NASA Image and Video Library

    1997-12-03

    STS087-341-004 (3 Dec. 1997) --- Backdropped over Africa, Takao Doi, international mission specialist representing Japan’s National Space Development Agency (NASDA), works with a crane device during a second extravehicular activity (EVA) designed to help evaluate techniques and hardware to be used in constructing the International Space Station (ISS). Takao Doi and astronaut Winston E. Scott (out of frame) were involved in the mission's second EVA in the cargo bay of the Earth-orbiting Space Shuttle Columbia. Takao Doi is working with a 156-pound crane designed to aid spacewalkers in transporting Orbital Replacement Units (ORU) from translation carts on the exterior of the ISS to various worksites on the truss structure. The view of Earth below features an inland delta in Mali (frame center). This view is from the east toward the west and was taken with a 35mm camera.

  11. Task network models in the prediction of workload imposed by extravehicular activities during the Hubble Space Telescope servicing mission

    NASA Technical Reports Server (NTRS)

    Diaz, Manuel F.; Takamoto, Neal; Woolford, Barbara

    1994-01-01

    In a joint effort with Brooks AFB, Texas, the Flight Crew Support Division at JSC has begun a computer simulation and performance modeling program directed at establishing the predictive validity of software tools for modeling human performance during spaceflight. This paper addresses the utility of task network modeling for predicting the workload that astronauts are likely to encounter in extravehicular activities (EVA) during the Hubble Space Telescope (HST) repair mission. The intent of the study was to determine whether two EVA crewmembers and one intravehicular activity (IVA) crewmember could reasonably be expected to complete HST Wide Field/Planetary Camera (WFPC) replacement in the allotted time. Ultimately, examination of the points during HST servicing that may result in excessive workload will lead to recommendations to the HST Flight Systems and Servicing Project concerning (1) expectation of degraded performance, (2) the need to change task allocation across crewmembers, (3) the need to expand the timeline, and (4) the need to increase the number of EVA's.

  12. STS-125 MS3 Grunsfeld and MS5 Feustel during EVA5

    NASA Image and Video Library

    2009-05-18

    S125-E-009967 (18 May 2009) --- Astronauts Andrew Feustel (center) and John Grunsfeld (mostly obscured, positioned on a foot restraint on the end of Atlantis? remote manipulator system), both STS-125 mission specialists, participate in the mission?s fifth and final session of extravehicular activity (EVA) as work continues to refurbish and upgrade the Hubble Space Telescope. During the seven-hour and two-minute spacewalk, Feustel and Grunsfeld installed a battery group replacement, removed and replaced a Fine Guidance Sensor and three thermal blankets (NOBL) protecting Hubble?s electronics. The Gulf of California provides the backdrop for the scene.

  13. Foreman during Expedition 16 / STS-123 EVA 4

    NASA Image and Video Library

    2008-03-21

    ISS016-E-033394 (21 March 2008) --- Astronaut Mike Foreman, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Foreman and astronaut Robert L. Behnken (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  14. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009074 (21 May 2010) --- NASA astronauts Michael Good (left) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  15. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009283 (21 May 2010) --- NASA astronauts Michael Good (top center) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  16. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009253 (21 May 2010) --- NASA astronauts Michael Good (left) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  17. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-008866 (21 May 2010) --- NASA astronauts Michael Good and Garrett Reisman (partially obscured), both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  18. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009255 (21 May 2010) --- NASA astronauts Michael Good (bottom center) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  19. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-008863 (21 May 2010) --- NASA astronauts Garrett Reisman (right) and Michael Good, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  20. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009298 (21 May 2010) --- NASA astronauts Michael Good (partially obscured at left) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  1. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-008868 (21 May 2010) --- NASA astronauts Michael Good and Garrett Reisman (partially obscured), both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  2. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009242 (21 May 2010) --- NASA astronauts Michael Good (left) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  3. Astronaut Eugene Cernan drives the Lunar Roving Vehicle during first EVA

    NASA Image and Video Library

    1972-12-10

    AS17-147-22527 (11 Dec. 1972) --- Astronaut Eugene A. Cernan, Apollo 17 mission commander, makes a short checkout of the Lunar Roving Vehicle during the early part of the first Apollo 17 extravehicular activity (EVA) at the Taurus-Littrow landing site. The Lunar Module is in the background. This photograph was taken by scientist-astronaut Harrison H. Schmitt, lunar module pilot.

  4. Astronaut Jeffrey Hoffman on RMS during third of five HST EVAs

    NASA Image and Video Library

    1993-12-07

    STS061-105-026 (7 Dec. 1993) --- Astronaut Jeffrey A. Hoffman signals directions to European Space Agency (ESA) astronaut Claude Nicollier, as the latter controls the Remote Manipulator System (RMS) arm during the third of five Extravehicular Activities (EVA) on the Hubble Space Telescope (HST) servicing mission. Astronauts Hoffman and F. Story Musgrave earlier changed out the Wide Field\\Planetary Camera (WF\\PC).

  5. Linnehan during Expedition 16/STS-123 EVA 3

    NASA Image and Video Library

    2008-03-18

    ISS016-E-033024 (17/18 March 2008) --- Astronaut Rick Linnehan, STS-123 mission specialist, uses a digital camera to expose a photo of his helmet visor during the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. Also visible in the reflections in the visor are various components of the station, the docked Space Shuttle Endeavour and a blue and white portion of Earth. During the 6-hour, 53-minute spacewalk, Linnehan and astronaut Robert L. Behnken (out of frame), mission specialist, installed a spare-parts platform and tool-handling assembly for Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM). Among other tasks, they also checked out and calibrated Dextre's end effector and attached critical spare parts to an external stowage platform. The new robotic system is scheduled to be activated on a power and data grapple fixture located on the Destiny laboratory on flight day nine.

  6. Whitson after EVA 1 completed

    NASA Image and Video Library

    2002-08-14

    ISS005-E-09719 (14 August 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, photographed in her thermal undergarment prior to donning a Russian Orlan spacesuit, prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Whitson and cosmonaut Valery G. Korzun, mission commander, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts.

  7. Olivas working on ISS construction during STS-117 EVA1

    NASA Image and Video Library

    2007-06-12

    ISS015-E-11830 (11 June 2007) --- Astronauts John "Danny" Olivas and Jim Reilly (out of frame), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4. A blue and white Earth provided the backdrop for the scene.

  8. Olivas working on ISS construction during STS-117 EVA1

    NASA Image and Video Library

    2007-06-12

    ISS015-E-11831 (11 June 2007) --- Astronauts John "Danny" Olivas and Jim Reilly (out of frame), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4. A blue and white Earth provided the backdrop for the scene.

  9. STS-118 Astronauts Rick Mastracchio and Clay Anderson Perform EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    As the construction continued on the International Space Station (ISS), STS-118 astronaut and mission specialist Rick Mastracchio was anchored on the foot restraint of the Canadarm2 as he participated in the third session of Extra Vehicular Activity (EVA) for the mission. Assisting Mastracchio was Expedition 15 flight engineer Clay Anderson (out of frame). During the 5 hour, 28 minute space walk, the two relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) truss to the Port 1 (P1) truss, installed a new transponder on P1 and retrieved the P6 transponder.

  10. Sellers translates along the S1 Truss during EVA3 on STS-121 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-07-12

    S121-E-07413 (12 July 2006) --- Astronaut Piers J. Sellers, STS-121 mission specialist, translates along a truss on the International Space Station during the mission's third and final session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the station. A blue and white Earth and the blackness of space form the backdrop for the image.

  11. View of STS-134 Crew Members during EVA-1

    NASA Image and Video Library

    2011-05-20

    S134-E-009265 (20 May 2011) --- NASA astronauts Andrew Feustel (right) and Greg Chamitoff, both STS-134 mission specialists, participate in the mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 19-minute spacewalk, Feustel and Chamitoff retrieved long-duration materials exposure experiments and installed another, installed a light on one of the station?s rail line handcarts, made preparations for adding ammonia to a cooling loop and installed an antenna for the External Wireless Communication system. The newly-installed Alpha Magnetic Spectrometer-2 (AMS) is at center frame. Photo credit: NASA

  12. View of STS-134 Crew Members during EVA-1

    NASA Image and Video Library

    2011-05-20

    S134-E-009267 (20 May 2011) --- NASA astronauts Andrew Feustel (right) and Greg Chamitoff, both STS-134 mission specialists, participate in the mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 19-minute spacewalk, Feustel and Chamitoff retrieved long-duration materials exposure experiments and installed another, installed a light on one of the station?s rail line handcarts, made preparations for adding ammonia to a cooling loop and installed an antenna for the External Wireless Communication system. The newly-installed Alpha Magnetic Spectrometer-2 (AMS) is at lower center frame. Photo credit: NASA

  13. View of MISSE-7 installed during EVA3

    NASA Image and Video Library

    2009-11-23

    ISS021-E-031746 (23 Nov. 2009) --- The MISSE 7 experiment on the Express Logistics Carrier 2 of the International Space Station was photographed by a space-walking STS-129 astronaut during the mission's third and final session of extravehicular activity (EVA). This is the latest in a series of experiments that expose materials and composite samples to space for several months before they are returned for experts to analyze. This MISSE experiment actually is plugged into the space station’s power supply.

  14. Olivas and Reilly participating in EVA during Expedition/STS-117 Joint Operations

    NASA Image and Video Library

    2007-06-11

    ISS015-E-12926 (11 June 2007) --- Astronauts Jim Reilly (right) and John "Danny" Olivas, both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction continues on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4.

  15. Views of EVA performed during STS-6

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Two STS-6 mission specialists busy near the aft bulkhead were photographed with a 70mm camera. Astronauts F. Story Musgrave (at winch device near center) and Donald H. Peterson are setting up winch operations at the aft bulkhead as a simulation for a contingency extravehicular activity (EVA). The orbital maneuvering system (OMS) pods are seen in the background (30211); Musgrave translates down the Challenger's payload bay door hinge line with a bag of latch tools. In the lower left foreground are three canisters containing three getaway special (GAS) experiments. Part of the starboard wing and OMS pod are seen in the background. The gold-foil protected object on the right is the airborne support equipment for the inertial upper stage (IUS) (30212); Peterson (starboard side) and Musgrave evaluate the handrail system on the starboard longeron and aft bulkhead during an EVA. Behind them the vertical stabilizer and OMS pods frame a portion of Mexico's state of Jalisco (30213); Musgrave sus

  16. Astronaut Sellers Performs STS-112 EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard Side Integrated Truss Structure (S1) and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. In this photograph, Astronaut Piers J. Sellers uses both a handrail on the Destiny Laboratory and a foot restraint on the Space Station Remote Manipulator System or Canadarm2 to remain stationary while performing work at the end of the STS-112 mission's second space walk. A cloud-covered Earth provides the backdrop for the scene.

  17. P6 Truss solar array, SABB and PV Radiator seen during EVA 3

    NASA Image and Video Library

    2005-08-03

    Photograph documenting the P6 Truss Solar Array Wing (SAW), Mast Canisters, Photovoltaic (PV) Radiator and Solar Array Blanket Boxes (SABB) as seen by the STS-114 crew during the third of three Extravehicular Activities (EVAs) of the mission. Part of the orbiter Discovery's nosecone is visible in the upper right of the frame.

  18. STS-111 Crew Interviews: Franklin Chang-Diaz, Mission Specialist 2

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-111 Mission Specialist 2 Franklin Chang-Diaz is seen during this interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Chang-Diaz outlines his role in the mission in general, and specifically during the extravehicular activities (EVAs). He describes in great detail his duties in the three EVAs which involved preparing the Mobile Remote Servicer Base System (MBS) for installation onto the Space Station's Mobile Transporter, attaching the MBS onto the Space Station and replacing a wrist roll joint on the station's robot arm. Chang-Diaz also discusses the science experiments which are being brought on board the Space Station by the STS-111 mission. He also offers thoughts on how the International Space Station (ISS) fits into NASA's vision and how his previous space mission experience will benefit the STS-111 flight.

  19. Astronaut David Scott using Apollo Lunar Surface Drill during second EVA

    NASA Image and Video Library

    1971-08-01

    S71-41501 (1 Aug. 1971) --- Astronaut David R. Scott, Apollo 15 commander, is seen carrying the Apollo Lunar Surface Drill (ALSD) during the second lunar surface extravehicular activity (EVA) in this black and white reproduction taken from a color transmission made by the RCA color television camera mounted on the Lunar Roving Vehicle (LRV). This transmission was the fourth made during the mission.

  20. Extravehicular activities limitations study. Volume 2: Establishment of physiological and performance criteria for EVA gloves

    NASA Technical Reports Server (NTRS)

    Ohara, John M.; Briganti, Michael; Cleland, John; Winfield, Dan

    1988-01-01

    One of the major probelms faced in Extravehicular Activity (EVA) glove development has been the absence of concise and reliable methods to measure the effects of EVA gloves on human hand capabilities. This report describes the development of a standardized set of tests designed to assess EVA-gloved hand capabilities in six measurement domains: Range of Motion, Strength, Tactile Perception, Dexterity, Fatigue, and Comfort. Based on an assessment of general human hand functioning and EVA task requirements several tests within each measurement domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand as a baseline and the EVA glove at operating pressure. A test program was conducted to evaluate the tests using a representative EVA glove. Eleven test subjects participated in a repeated-measures design. The report presents the results of the tests in each capability domain.

  1. Behnken during Expedition 16 / STS-123 EVA 4

    NASA Image and Video Library

    2008-03-21

    ISS016-E-033400 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground. A portion of the Space Shuttle Endeavour payload bay is visible in the background.

  2. STS-72 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The flight crew of the STS-72 Space Shuttle Orbiter Endeavour Cmdr. Brian Duffy, Pilot Brent W. Jett, and Mission Specialists; Leroy Chiao, Daniel T. Barry, Winston E. Scott, and Koichi Wakata (NASDA) present an overview of their mission, whose primary objective is the retrieval of two research satellites. The major activities of the mission will include retrieval of the Japanese Space Flyer Unit (SFU), which was launched aboard a Japanese H-2 rocket to conduct a variety of microgravity experiments. In addition, the STS-72 crew will deploy the AST-Flyer, a satellite, that will fly free of the Shuttle for about 50 hours. Four experiments on the science platform will operate autonomously before the satellite is retrieved by Endeavour's robot arm. Three of Endeavour's astronauts will conduct a pair of spacewalks during the mission to test hardware and tools that will be used in the assembly of the Space Station. Video footage includes the following: prelaunch and launch activities; the crew eating breakfast; shuttle launch; retrieval of the Japanese Space Flyer Unit (SFU); suit-up and EVA-1; EVA-2; crew members performing various physical exercises; various earth views; and the night landing of the shuttle at KSC.

  3. Orbiter Boom Sensor System and TPS tiles on orbiter Discovery as seen during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6310 (3 August 2005) --- The Red Sea forms the backdrop for this view featuring a portion of thermal protection tiles on the Space Shuttle Discovery’s underside and the Canadian-built remote manipulator system (RMS) robotic arm while docked to the international space station during the STS-114 mission. The image was photographed by astronaut Stephen K. Robinson (out of frame), mission specialist, during today’s extravehicular activities (EVA).

  4. EVA safety: Space suit system interoperability

    NASA Technical Reports Server (NTRS)

    Skoog, A. I.; McBarron, J. W.; Abramov, L. P.; Zvezda, A. O.

    1995-01-01

    The results and the recommendations of the International Academy of Astronautics extravehicular activities (IAA EVA) Committee work are presented. The IAA EVA protocols and operation were analyzed for harmonization procedures and for the standardization of safety critical and operationally important interfaces. The key role of EVA and how to improve the situation based on the identified EVA space suit system interoperability deficiencies were considered.

  5. Advanced extravehicular activity systems requirements definition study. Phase 2: Extravehicular activity at a lunar base

    NASA Technical Reports Server (NTRS)

    Neal, Valerie; Shields, Nicholas, Jr.; Carr, Gerald P.; Pogue, William; Schmitt, Harrison H.; Schulze, Arthur E.

    1988-01-01

    The focus is on Extravehicular Activity (EVA) systems requirements definition for an advanced space mission: remote-from-main base EVA on the Moon. The lunar environment, biomedical considerations, appropriate hardware design criteria, hardware and interface requirements, and key technical issues for advanced lunar EVA were examined. Six remote EVA scenarios (three nominal operations and three contingency situations) were developed in considerable detail.

  6. Forrester prepares to retract the P6 Truss STBD SAW during EVA 2

    NASA Image and Video Library

    2007-06-13

    S117-E-07232 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester, seen here perched on the mobile foot restraint connected to the Canadian-built remote manipulator system (RMS), and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  7. Apollo 16 astronauts in Apollo Command Module Mission Simulator

    NASA Image and Video Library

    1972-03-14

    S72-31047 (March 1972) --- Astronaut Thomas K. Mattingly II (right foreground), command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in Building 5 at the Manned Spacecraft Center (MSC). Mattingly is scheduled to perform EVA during the Apollo 16 journey home from the moon. Astronaut John W. Young, commander, can be seen in the left background. In the right background is astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator. While Mattingly remains with the Apollo 16 Command and Service Modules (CSM) in lunar orbit, Young and Duke will descend in the Lunar Module (LM) to the moon's Descartes landing site.

  8. Reilly working on ISS construction during STS-117 EVA1

    NASA Image and Video Library

    2007-06-12

    ISS015-E-11870 (11 June 2007) --- Astronauts Jim Reilly and John "Danny" Olivas (visible among Reilly's helmet reflections), both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4. The crew cabin and nose of Space Shuttle Atlantis docked to the station is visible in the background.

  9. Korzun after EVA 1 completed

    NASA Image and Video Library

    2002-08-14

    ISS005-E-09725 (14 August 2002) --- Cosmonaut Valery G. Korzun, Expedition Five mission commander, attired in his thermal undergarment prior to donning a Russian Orlan spacesuit, prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Korzun and astronaut Peggy A. Whitson, flight engineer, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts. Korzun, who represents Rosaviakosmos, is also scheduled for a spacewalk on August 22, 2002.

  10. Simulation of Martian EVA at the Mars Society Arctic Research Station

    NASA Astrophysics Data System (ADS)

    Pletser, V.; Zubrin, R.; Quinn, K.

    The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.

  11. Perrin near the S0 (S-zero) Truss during STS-111 UF-2 EVA 2

    NASA Image and Video Library

    2002-06-12

    STS111-E-5241 (11 June 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist, photographed near the S0 (S-Zero) Truss on the International Space Station (ISS), participates in the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. During the 5-hour spacewalk, Perrin and Chang-Diaz completed installation of the Mobile Remote Servicer Base System (MBS) on the station’s railcar, the Mobile Transporter. Perrin represents CNES, the French Space Agency.

  12. Extravehicular Activity Asteroid Exploration and Sample Collection Capability

    NASA Technical Reports Server (NTRS)

    Sipila, Stephanie A.; Scoville, Zebulon C.; Bowie, Jonathan T.; Buffington, Jesse A.

    2014-01-01

    One of the challenging primary objectives associated with NASA's Asteroid Redirect Crewed Mission (ARCM) is to demonstrate deep space Extravehicular Activity (EVA) and tools and to obtain asteroid samples to return to Earth for further study. Prior Shuttle and International Space Station (ISS) spacewalks have benefited from engineered EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as behavior of the asteroid capture mechanism will complicate EVA translation, tool restraint, and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the Modified Advanced Crew Escape Suit (MACES) suit. This paper will summarize the overall operational concepts for conducting EVAs for the ARCM mission including translation paths and body restraint methods, potential tools used to extract the samples, design implications for the Asteroid Redirect Vehicle (ARV) for EVA, and the results of early development testing of potential EVA tasks.

  13. Comparison Of Human Modelling Tools For Efficiency Of Prediction Of EVA Tasks

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Loughead, Tomas E.

    1998-01-01

    Construction of the International Space Station (ISS) will require extensive extravehicular activity (EVA, spacewalks), and estimates of the actual time needed continue to rise. As recently as September, 1996, the amount of time to be spent in EVA was believed to be about 400 hours, excluding spacewalks on the Russian segment. This estimate has recently risen to over 1100 hours, and it could go higher before assembly begins in the summer of 1998. These activities are extremely expensive and hazardous, so any design tools which help assure mission success and improve the efficiency of the astronaut in task completion can pay off in reduced design and EVA costs and increased astronaut safety. The tasks which astronauts can accomplish in EVA are limited by spacesuit mobility. They are therefore relatively simple, from an ergonomic standpoint, requiring gross movements rather than time motor skills. The actual tasks include driving bolts, mating and demating electric and fluid connectors, and actuating levers; the important characteristics to be considered in design improvement include the ability of the astronaut to see and reach the item to be manipulated and the clearance required to accomplish the manipulation. This makes the tasks amenable to simulation in a Computer-Assisted Design (CAD) environment. For EVA, the spacesuited astronaut must have his or her feet attached on a work platform called a foot restraint to obtain a purchase against which work forces may be actuated. An important component of the design is therefore the proper placement of foot restraints.

  14. 7. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, IN SPACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, IN SPACE SUIT AFTER TESTING IN NEUTRAL BUOYANCY TANK. AVERAGE COST OF SUIT IS $1,000,000. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  15. 8. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, GETTING OUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, GETTING OUT OF SPACE SUIT AFTER TESTING IN NEUTRAL BUOYANCY TANK. AVERAGE COST OF SUIT $1,000,000. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  16. Swanson prepares to retract the P6 Truss STBD SAW during EVA 2

    NASA Image and Video Library

    2007-06-13

    S117-E-07233 (13 June 2007) --- Astronauts Steven Swanson and Patrick Forrester (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction. Tethered to his Extravehicular Mobility Unit (EMU) spacesuit, a hockey-stick-shaped tool wrapped in insulating tape, is visible in front of Swanson.

  17. Swanson prepares to retract the P6 Truss STBD SAW during EVA 2

    NASA Image and Video Library

    2007-06-13

    S117-E-07234 (13 June 2007) --- Astronauts Steven Swanson and Patrick Forrester (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction. Tethered to his Extravehicular Mobility Unit (EMU) spacesuit, a hockey-stick-shaped tool wrapped in insulating tape, is visible in front of Swanson.

  18. Utilization of ISS to Develop and Test Operational Concepts and Hardware for Low-Gravity Terrestrial EVA

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.

    2010-01-01

    NASA has considerable experience in two areas of Extravehicular Activities (EVA). The first can be defined as microgravity, orbital EVAs. This consists of everything done in low Earth orbit (LEO), from the early, proof of concept EVAs conducted during the Gemini program of the 1960s, to the complex International Space Station (ISS) assembly tasks of the first decade of the 21st century. The second area of expertise is comprised of those EVAs conducted on the lunar surface, under a gravitational force one-sixth that of Earth. This EVA expertise encapsulates two extremes - microgravity and Earthlike gravitation - but is insufficient as humans expand their exploration purview, most notably with respect to spacewalks conducted on very low-gravity bodies, such as near- Earth objects (NEO) and the moons of Mars. The operational and technical challenges of this category of EVA have yet to be significantly examined, and as such, only a small number of operational concepts have been proposed thus far. To ensure mission success, however, EVA techniques must be developed and vetted to allow the selection of operational concepts that can be utilized across an assortment of destinations whose physical characteristics vary. This paper examines the utilization of ISS-based EVAs to test operational concepts and hardware in preparation for a low-gravity terrestrial EVA. While the ISS cannot mimic some of the fundamental challenges of a low-gravity terrestrial EVA - such as rotation rate and surface composition - it may be the most effective test bed available.

  19. View of the new CMG during Expedition 15/STS-118 EVA 2

    NASA Image and Video Library

    2007-08-13

    ISS015-E-22366 (13 Aug. 2007) --- A close-up view of the new control moment gyroscope (CMG) photographed by a crewmember during the mission's second planned session of extravehicular activity (EVA). During the spacewalk, Canadian Space Agency's astronaut Dave Williams (out of frame) and astronaut Rick Mastracchio (out of frame), both STS-118 mission specialists, removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the station's Z1 truss. The failed CMG will remain at its temporary stowage location on the station's exterior before it is returned to Earth on a later shuttle mission. The new gyroscope is one of four CMGs that are used to control the station's attitude in orbit.

  20. Behnken during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007816 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  1. Foreman during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007832 (21 March 2008) --- Astronaut Mike Foreman, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Foreman and astronaut Robert L. Behnken (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  2. Behnken during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007907 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  3. Behnken during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007906 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  4. Behnken during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007909 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  5. View of STS-129 MS2 Bresnik during EVA2

    NASA Image and Video Library

    2009-11-21

    S129-E-007227 (21 Nov. 2009) --- Astronaut Randy Bresnik (near the Columbus laboratory), STS-129 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, eight-minute spacewalk, Bresnik and astronaut Mike Foreman (out of frame), mission specialist, installed a Grappling Adaptor to On-Orbit Railing Assembly, or GATOR, on the Columbus laboratory. GATOR contains a ship-tracking antenna system and a HAM radio antenna. They relocated a floating potential measurement unit that gauges electric charges that build up on the station, deployed a Payload Attach System on the space-facing side of the Starboard 3 truss segment and installed a wireless video system that allows spacewalkers to transmit video to the station and relay it to Earth.

  6. View of STS-129 MS2 Bresnik during EVA2

    NASA Image and Video Library

    2009-11-21

    S129-E-007762 (21 Nov. 2009) --- Astronaut Randy Bresnik (near the Columbus laboratory), STS-129 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, eight-minute spacewalk, Bresnik and astronaut Mike Foreman (out of frame), mission specialist, installed a Grappling Adaptor to On-Orbit Railing Assembly, or GATOR, on the Columbus laboratory. GATOR contains a ship-tracking antenna system and a HAM radio antenna. They relocated a floating potential measurement unit that gauges electric charges that build up on the station, deployed a Payload Attach System on the space-facing side of the Starboard 3 truss segment and installed a wireless video system that allows spacewalkers to transmit video to the station and relay it to Earth.

  7. View of STS-129 MS3 Foreman during EVA2

    NASA Image and Video Library

    2009-11-21

    S129-E-007789 (21 Nov. 2009) --- Astronaut Mike Foreman, STS-129 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, eight-minute spacewalk, Foreman and astronaut Randy Bresnik (out of frame), mission specialist, installed a Grappling Adaptor to On-Orbit Railing Assembly, or GATOR, on the Columbus laboratory. GATOR contains a ship-tracking antenna system and a HAM radio antenna. They relocated a floating potential measurement unit that gauges electric charges that build up on the station, deployed a Payload Attach System on the space-facing side of the Starboard 3 truss segment and installed a wireless video system that allows spacewalkers to transmit video to the station and relay it to Earth.

  8. View of STS-129 MS2 Bresnik during EVA2

    NASA Image and Video Library

    2009-11-21

    S129-E-007756 (21 Nov. 2009) --- Astronaut Randy Bresnik (near the Columbus laboratory), STS-129 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, eight-minute spacewalk, Bresnik and astronaut Mike Foreman (out of frame), mission specialist, installed a Grappling Adaptor to On-Orbit Railing Assembly, or GATOR, on the Columbus laboratory. GATOR contains a ship-tracking antenna system and a HAM radio antenna. They relocated a floating potential measurement unit that gauges electric charges that build up on the station, deployed a Payload Attach System on the space-facing side of the Starboard 3 truss segment and installed a wireless video system that allows spacewalkers to transmit video to the station and relay it to Earth.

  9. Space shuttle EVA opportunities. [a technology assessment

    NASA Technical Reports Server (NTRS)

    Bland, D. A., Jr.

    1976-01-01

    A technology assessment is presented on space extravehicular activities (EVA) that will be possible when the space shuttle orbiter is completed and launched. The use of EVA in payload systems design is discussed. Also discussed is space crew training. The role of EVA in connection with the Large Space Telescope and Skylab are described. The value of EVA in constructing structures in space and orbital assembly is examined. Excellent color illustrations are provided which show the proposed EVA functions that were described.

  10. Investigation of the effects of extravehicular activity (EVA) gloves on performance

    NASA Technical Reports Server (NTRS)

    Bishu, Ram R.; Klute, Glenn

    1993-01-01

    The objective was to assess the effects of extravehicular activity (EVA) gloves at different pressures on human hand capabilities. A factorial experiment was performed in which three types of EVA gloves were tested at five pressure differentials. The independent variables tested in this experiment were gender, glove type, pressure differential, and glove make. Six subjects participated in an experiment where a number of dexterity measures, namely time to tie a rope, and the time to assemble a nut and bolt were recorded. Tactility was measured through a two point discrimination test. The results indicate that with EVA gloves strength is reduced by nearly 50 percent, there is a considerable reduction in dexterity, performance decrements increase with increasing pressure differential, and some interesting gender glove interactions were observed, some of which may have been due to the extent (or lack of) fit of the glove to the hand. The implications for the designer are discussed.

  11. View of Mastracchio and Williams on EVA 1 during STS-118/Expedition 15 Joint Operations

    NASA Image and Video Library

    2007-08-11

    S118-E-06281 (11 Aug. 2007) --- Astronauts Rick Mastracchio (left) and Canadian Space Agency's Dave Williams, both STS-118 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction continues on the International Space Station. During the 6-hour, 17-minute spacewalk Mastracchio and Williams attached the Starboard 5 (S5) segment of the station's truss, retracted the forward heat-rejecting radiator from the station's Port 6 (P6) truss, and performed several get-ahead tasks.

  12. SKYLAB (SL)-3 - TELEVISION (EXTRAVEHICULAR ACTIVITY [EVA])

    NASA Image and Video Library

    1973-08-27

    S73-33161 (24 Aug. 1973) --- Astronaut Jack R. Lousma, Skylab 3 pilot, hooks up a 23-foot, two-inch connecting cable for the rate gyro six pack during extravehicular activity (EVA) on Aug. 24, 1973, as seen in this photographic reproduction taken from a color television transmission made by a TV camera aboard the Skylab space station in Earth orbit. The rate gyros were mounted inside the Multiple Docking Adapter opposite the Apollo Telescope Mount control and display console. Photo credit: NASA

  13. Sellers and Fossum on the end of the OBSS during EVA1 on STS-121 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-07-08

    STS121-323-011 (8 July 2006) --- Astronauts Piers J. Sellers and Michael E. Fossum, STS-121 mission specialists, work in tandem on Space Shuttle Discovery's Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) during the mission's first scheduled session of extravehicular activity (EVA). Also visible on the OBSS are the Laser Dynamic Range Imager (LDRI), Intensified Television Camera (ITVC) and Laser Camera System (LCS).

  14. EVA Skills Training

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    Dr. Parazynski and a colleague from Extravehicular Activity (EVA), Robotics, & Crew Systems Operations (DX) worked closely to build the EVA Skills Training Program, and for the first time, defined the gold standards of EVA performance, allowing crewmembers to increase their performance significantly. As part of the program, individuals had the opportunity to learn at their own rate, taking additional water time as required, to achieve that level of performance. This focus on training to one's strengths and weaknesses to bolster them enabled the Crew Office and DX to field a much larger group of spacewalkers for the daunting "wall of EVA" required for the building and maintenance of the ISS. Parazynski also stressed the need for designers to understand the capabilities and the limitations of a human in a spacesuit, as well as opportunities to improve future generations of space. He shared lessons learned (how the Crew Office engaged in these endeavors) and illustrated the need to work as a team to develop these complex systems.

  15. Swanson and Forrester prepare to retract the P6 Truss STBD 2B SAW during EVA 2

    NASA Image and Video Library

    2007-06-13

    S117-E-07246 (13 June 2007) --- Astronauts Steven Swanson and Patrick Forrester (at left, partially out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  16. Interviews with the Apollo lunar surface astronauts in support of planning for EVA systems design

    NASA Technical Reports Server (NTRS)

    Connors, Mary M.; Eppler, Dean B.; Morrow, Daniel G.

    1994-01-01

    Focused interviews were conducted with the Apollo astronauts who landed on the moon. The purpose of these interviews was to help define extravehicular activity (EVA) system requirements for future lunar and planetary missions. Information from the interviews was examined with particular attention to identifying areas of consensus, since some commonality of experience is necessary to aid in the design of advanced systems. Results are presented under the following categories: mission approach; mission structure; suits; portable life support systems; dust control; gloves; automation; information, displays, and controls; rovers and remotes; tools; operations; training; and general comments. Research recommendations are offered, along with supporting information.

  17. Astronaut John Young reaches for tools in Lunar Roving Vehicle during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, reaches for tools in the Apollo lunar hand tool carrier at the aft end of the Lunar Roving Vehicle during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot. This view is looking south from the base of Stone Mountain.

  18. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.

    2012-01-01

    As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.

  19. Extravehicular activity at geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Shields, Nicholas, Jr.; Schulze, Arthur E.; Carr, Gerald P.; Pogue, William

    1988-01-01

    The basic contract to define the system requirements to support the Advanced Extravehicular Activity (EVA) has three phases: EVA in geosynchronous Earth orbit; EVA in lunar base operations; and EVA in manned Mars surface exploration. The three key areas to be addressed in each phase are: environmental/biomedical requirements; crew and mission requirements; and hardware requirements. The structure of the technical tasks closely follows the structure of the Advanced EVA studies for the Space Station completed in 1986.

  20. Flight controller Kevin McCluney monitors STS-61 astronauts during EVA

    NASA Image and Video Library

    1993-12-04

    STS61-S-093 (5 Dec 1993) --- Flight controller Kevin McCluney monitors the televised activity of astronauts F. Story Musgrave and Jeffrey A. Hoffman. The veteran astronauts were performing the first extravehicular activity (EVA-1) of the STS-61 Hubble Space Telescope (HST) servicing mission. McCluney's duties deal with maintenance, mechanical, arm and crew systems, meaning that he and his colleagues will be exceptionally busy for the next five days. Four astronauts in alternating pairs will perform a variety of tasks on the giant telescope during that period.

  1. STS-116 MS Fuglesang uses digital camera on the STBD side of the S0 Truss during EVA 4

    NASA Image and Video Library

    2006-12-19

    S116-E-06882 (18 Dec. 2006) --- European Space Agency (ESA) astronaut Christer Fuglesang, STS-116 mission specialist, uses a digital still camera during the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the International Space Station. Astronaut Robert L. Curbeam Jr. (out of frame), mission specialist, worked in tandem with Fuglesang, using specially-prepared, tape-insulated tools, to guide the array wing neatly inside its blanket box during the 6-hour, 38-minute spacewalk.

  2. Astronaut Russell Schweickart photographed during EVA

    NASA Image and Video Library

    1969-03-06

    AS09-19-2983 (6 March 1969) --- Astronaut Russell L. Schweickart, lunar module pilot, operates a 70mm Hasselblad camera during his extravehicular activity (EVA) on the fourth day of the Apollo 9 Earth-orbital mission. The Command and Service Modules (CSM) and Lunar Module (LM) "Spider" are docked. This view was taken from the Command Module (CM) "Gumdrop". Schweickart, wearing an Extravehicular Mobility Unit (EMU), is standing in "golden slippers" on the LM porch. On his back, partially visible, are a Portable Life Support System (PLSS) and an Oxygen Purge System (OPS). Astronaut James A. McDivitt, Apollo 9 commander, was inside the "Spider". Astronaut David R. Scott, command module pilot, remained at the controls in the CM.

  3. Bowen and Drew durring EVA 1

    NASA Image and Video Library

    2011-02-28

    ISS026-E-030708 (28 Feb. 2011) --- NASA astronauts Steve Bowen and Alvin Drew (partially obscured at center right), both STS-133 mission specialists, participate in the mission’s first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 34-minute spacewalk, Bowen and Drew installed the J612 power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese “Message in a Bottle” experiment to space.

  4. Astronaut John Young replaces tools in Lunar Roving Vehicle during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, replaces tools in the Apollo lunar hand tool carrier at the aft end of the Lunar Roving Vehicle during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Smoky Mountain, with the large Ravine crater on its flank, is in the left background. This view is looking northeast.

  5. Extravehicular Activity Asteroid Exploration and Sample Collection Capability

    NASA Technical Reports Server (NTRS)

    Scoville, Zebulon; Sipila, Stephanie; Bowie, Jonathan

    2014-01-01

    NASA's Asteroid Redirect Crewed Mission (ARCM) is challenged with primary mission objectives of demonstrating deep space Extravehicular Activity (EVA) and tools, and obtaining asteroid samples to return to Earth for further study. Although the Modified Advanced Crew Escape Suit (MACES) is used for the EVAs, it has limited mobility which increases fatigue and decreases the crews' capability to perform EVA tasks. Furthermore, previous Shuttle and International Space Station (ISS) spacewalks have benefited from EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, some vehicle interfaces and tools can leverage heritage designs and experience. However, when the crew ventures onto an asteroid capture bag to explore the asteroid and collect rock samples, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as bunching of the fabric bag will complicate EVA translation, tool restraint and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the MACES suit. The proposed concept utilizes expandable booms and integrated features of the asteroid capture bag to position and restrain the crew at the asteroid worksite. These methods enable the capability to perform both finesse, and high load tasks necessary to collect samples for scientific characterization of the asteroid. This paper will explore the design trade space and options that were examined for EVA, the

  6. CDR Altman and MS Massimino in airlock prior to EVA 4

    NASA Image and Video Library

    2002-03-07

    STS109-E-5688 (7 March 2002) --- Astronaut Scott D. Altman, mission commander, assists astronaut Michael J. Massimino, mission specialist, with suit-donning tasks prior to the STS-109 mission's fourth space walk (EVA-4). Astronauts Massimino and James H. Newman went on to install the new Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST). The image was recorded with a digital still camera.

  7. Information Flow Model of Human Extravehicular Activity Operations

    NASA Technical Reports Server (NTRS)

    Miller, Matthew J.; McGuire, Kerry M.; Feigh, Karen M.

    2014-01-01

    Future human spaceflight missions will face the complex challenge of performing human extravehicular activity (EVA) beyond the low Earth orbit (LEO) environment. Astronauts will become increasingly isolated from Earth-based mission support and thus will rely heavily on their own decision-making capabilities and onboard tools to accomplish proposed EVA mission objectives. To better address time delay communication issues, EVA characters, e.g. flight controllers, astronauts, etc., and their respective work practices and roles need to be better characterized and understood. This paper presents the results of a study examining the EVA work domain and the personnel that operate within it. The goal is to characterize current and historical roles of ground support, intravehicular (IV) crew and EV crew, their communication patterns and information needs. This work provides a description of EVA operations and identifies issues to be used as a basis for future investigation.

  8. Russian EVA 36.

    NASA Image and Video Library

    2013-11-09

    ISS037-E-028082 (9 Nov. 2013) --- Russian cosmonaut Sergey Ryazanskiy, Expedition 37 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) in support of assembly and maintenance on the International Space Station. During the five-hour, 50-minute spacewalk, Ryazanskiy and Russian cosmonaut Oleg Kotov (out of frame) continued the setup of a combination EVA workstation and biaxial pointing platform that was installed during an Expedition 36 spacewalk on Aug. 22.

  9. Russian EVA 36.

    NASA Image and Video Library

    2013-11-09

    ISS037-E-028067 (9 Nov. 2013) --- Russian cosmonaut Oleg Kotov, Expedition 37 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) in support of assembly and maintenance on the International Space Station. During the five-hour, 50-minute spacewalk, Kotov and Russian cosmonaut Sergey Ryazanskiy (out of frame) continued the setup of a combination EVA workstation and biaxial pointing platform that was installed during an Expedition 36 spacewalk on Aug. 22.

  10. Russian EVA 36.

    NASA Image and Video Library

    2013-11-09

    ISS037-E-028101 (9 Nov. 2013) --- Russian cosmonaut Oleg Kotov, Expedition 37 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) in support of assembly and maintenance on the International Space Station. During the five-hour, 50-minute spacewalk, Kotov and Russian cosmonaut Sergey Ryazanskiy (out of frame) continued the setup of a combination EVA workstation and biaxial pointing platform that was installed during an Expedition 36 spacewalk on Aug. 22.

  11. Russian EVA 36.

    NASA Image and Video Library

    2013-11-09

    ISS037-E-028094 (9 Nov. 2013) --- Russian cosmonaut Oleg Kotov, Expedition 37 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) in support of assembly and maintenance on the International Space Station. During the five-hour, 50-minute spacewalk, Kotov and Russian cosmonaut Sergey Ryazanskiy (out of frame) continued the setup of a combination EVA workstation and biaxial pointing platform that was installed during an Expedition 36 spacewalk on Aug. 22.

  12. Russian EVA 36.

    NASA Image and Video Library

    2013-11-09

    ISS037-E-028107 (9 Nov. 2013) --- Russian cosmonaut Oleg Kotov, Expedition 37 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) in support of assembly and maintenance on the International Space Station. During the five-hour, 50-minute spacewalk, Kotov and Russian cosmonaut Sergey Ryazanskiy (out of frame) continued the setup of a combination EVA workstation and biaxial pointing platform that was installed during an Expedition 36 spacewalk on Aug. 22.

  13. Russian EVA 36.

    NASA Image and Video Library

    2013-11-09

    ISS037-E-028102 (9 Nov. 2013) --- Russian cosmonaut Oleg Kotov, Expedition 37 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) in support of assembly and maintenance on the International Space Station. During the five-hour, 50-minute spacewalk, Kotov and Russian cosmonaut Sergey Ryazanskiy (out of frame) continued the setup of a combination EVA workstation and biaxial pointing platform that was installed during an Expedition 36 spacewalk on Aug. 22.

  14. View of MS Mastracchio participating in EVA 2 during STS-118/Expedition 15 Joint Operations

    NASA Image and Video Library

    2007-08-13

    S118-E-06969 (13 Aug. 2007) --- Astronaut Rick Mastracchio, STS-118 mission specialist, participates in the mission's second planned session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 28-minute spacewalk, Mastracchio and astronaut Dave Williams (out of frame), mission specialist representing the Canadian Space Agency, removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the station's Z1 truss. The failed CMG will remain at its temporary stowage location on the station's exterior until it is returned to Earth on a later shuttle mission. The new gyroscope is one of four CMGs that are used to control the station's attitude in orbit.

  15. View of MS Williams installing the new CMG during Expedition 15/STS-118 EVA 2

    NASA Image and Video Library

    2007-08-13

    ISS015-E-22358 (13 Aug. 2007) --- Astronaut Dave Williams, STS-118 mission specialist representing the Canadian Space Agency, participates in the mission's second planned session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 28-minute spacewalk Williams and astronaut Rick Mastracchio (out of frame), mission specialist, removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the station's Z1 truss. The failed CMG will remain at its temporary stowage location on the station's exterior until it is returned to Earth on a later shuttle mission. The new gyroscope is one of four CMGs that are used to control the station's attitude in orbit.

  16. View of MS Mastracchio participating in EVA 2 during STS-118/Expedition 15 Joint Operations

    NASA Image and Video Library

    2007-08-13

    S118-E-06968 (13 Aug. 2007) --- Astronaut Rick Mastracchio, STS-118 mission specialist, participates in the mission's second planned session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 28-minute spacewalk, Mastracchio and astronaut Dave Williams (out of frame), mission specialist representing the Canadian Space Agency, removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the station's Z1 truss. The failed CMG will remain at its temporary stowage location on the station's exterior until it is returned to Earth on a later shuttle mission. The new gyroscope is one of four CMGs that are used to control the station's attitude in orbit.

  17. View of MS Williams installing the new CMG during Expedition 15/STS-118 EVA 2

    NASA Image and Video Library

    2007-08-13

    ISS015-E-22371 (13 Aug. 2007) --- Astronaut Dave Williams, STS-118 mission specialist representing the Canadian Space Agency, participates in the mission's second planned session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 28-minute spacewalk, Williams and astronaut Rick Mastracchio (out of frame), mission specialist, removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the station's Z1 truss. The failed CMG will remain at its temporary stowage location on the station's exterior until it is returned to Earth on a later shuttle mission. The new gyroscope is one of four CMGs that are used to control the station's attitude in orbit.

  18. View of MS Williams installing the new CMG during Expedition 15/STS-118 EVA 2

    NASA Image and Video Library

    2007-08-13

    ISS015-E-22355 (13 Aug. 2007) --- Astronaut Dave Williams, STS-118 mission specialist representing the Canadian Space Agency, participates in the mission's second planned session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 28-minute spacewalk Williams and astronaut Rick Mastracchio (out of frame), mission specialist, removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the station's Z1 truss. The failed CMG will remain at its temporary stowage location on the station's exterior until it is returned to Earth on a later shuttle mission. The new gyroscope is one of four CMGs that are used to control the station's attitude in orbit.

  19. View of MS Williams installing the new CMG during Expedition 15/STS-118 EVA 2

    NASA Image and Video Library

    2007-08-13

    ISS015-E-22364 (13 Aug. 2007) --- Astronaut Dave Williams, STS-118 mission specialist representing the Canadian Space Agency, participates in the mission's second planned session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 28-minute spacewalk, Williams and astronaut Rick Mastracchio (out of frame), mission specialist, removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the station's Z1 truss. The failed CMG will remain at its temporary stowage location on the station's exterior until it is returned to Earth on a later shuttle mission. The new gyroscope is one of four CMGs that are used to control the station's attitude in orbit.

  20. STS-119 EVA 3 GAT S1 Truss Flex Hose Rotary Coupler (FHRC) P-Clamp Release

    NASA Image and Video Library

    2009-03-23

    S119-E-007110 (23 March 2009) --- Astronaut Joseph Acaba, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Acaba and Richard Arnold (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.