Sample records for activity monitoring devices

  1. Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review.

    PubMed

    Sanders, James P; Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart J H; Esliger, Dale W

    2016-05-04

    It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time (activPAL VT, the Lumo Back, and Darma

  2. Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review

    PubMed Central

    Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart JH; Esliger, Dale W

    2016-01-01

    Background It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. Objective The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. Methods To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. Results The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time

  3. Device-based monitoring in physical activity and public health research.

    PubMed

    Bassett, David R

    2012-11-01

    Measurement of physical activity is important, given the vital role of this behavior in physical and mental health. Over the past quarter of a century, the use of small, non-invasive, wearable monitors to assess physical activity has become commonplace. This review is divided into three sections. In the first section, a brief history of physical activity monitoring is provided, along with a discussion of the strengths and weaknesses of different devices. In the second section, recent applications of physical activity monitoring in physical activity and public health research are discussed. Wearable monitors are being used to conduct surveillance, and to determine the extent and distribution of physical activity and sedentary behaviors in populations around the world. They have been used to help clarify the dose-response relation between physical activity and health. Wearable monitors that provide feedback to users have also been used in longitudinal interventions to motivate research participants and to assess their compliance with program goals. In the third section, future directions for research in physical activity monitoring are discussed. It is likely that new developments in wearable monitors will lead to greater accuracy and improved ease-of-use.

  4. Energy expenditure prediction via a footwear-based physical activity monitor: Accuracy and comparison to other devices

    NASA Astrophysics Data System (ADS)

    Dannecker, Kathryn

    2011-12-01

    Accurately estimating free-living energy expenditure (EE) is important for monitoring or altering energy balance and quantifying levels of physical activity. The use of accelerometers to monitor physical activity and estimate physical activity EE is common in both research and consumer settings. Recent advances in physical activity monitors include the ability to identify specific activities (e.g. stand vs. walk) which has resulted in improved EE estimation accuracy. Recently, a multi-sensor footwear-based physical activity monitor that is capable of achieving 98% activity identification accuracy has been developed. However, no study has compared the EE estimation accuracy for this monitor and compared this accuracy to other similar devices. Purpose . To determine the accuracy of physical activity EE estimation of a footwear-based physical activity monitor that uses an embedded accelerometer and insole pressure sensors and to compare this accuracy against a variety of research and consumer physical activity monitors. Methods. Nineteen adults (10 male, 9 female), mass: 75.14 (17.1) kg, BMI: 25.07(4.6) kg/m2 (mean (SD)), completed a four hour stay in a room calorimeter. Participants wore a footwear-based physical activity monitor, as well as three physical activity monitoring devices used in research: hip-mounted Actical and Actigraph accelerometers and a multi-accelerometer IDEEA device with sensors secured to the limb and chest. In addition, participants wore two consumer devices: Philips DirectLife and Fitbit. Each individual performed a series of randomly assigned and ordered postures/activities including lying, sitting (quietly and using a computer), standing, walking, stepping, cycling, sweeping, as well as a period of self-selected activities. We developed branched (i.e. activity specific) linear regression models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. Results. The shoe

  5. Wireless device monitoring systems and monitoring devices, and associated methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  6. Remote Monitoring of Cardiac Implantable Electronic Devices.

    PubMed

    Cheung, Christopher C; Deyell, Marc W

    2018-01-08

    Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  7. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    DOEpatents

    McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  8. [Wireless device for monitoring the patients with chronic disease].

    PubMed

    Ciorap, R; Zaharia, D; Corciovă, C; Ungureanu, Monica; Lupu, R; Stan, A

    2008-01-01

    Remote monitoring of chronic diseases can improve health outcomes and potentially lower health care costs. The high number of the patients, suffering of chronically diseases, who wish to stay at home rather then in a hospital increasing the need of homecare monitoring and have lead to a high demand of wearable medical devices. Also, extended patient monitoring during normal activity has become a very important target. In this paper are presented the design of the wireless monitoring devices based on ultra low power circuits, high storage memory flash, bluetooth communication and the firmware for the management of the monitoring device. The monitoring device is built using an ultra low power microcontroller (MSP430 from Texas Instruments) that offers the advantage of high integration of some circuits. The custom made electronic boards used for biosignal acquisition are also included modules for storage device (SD/MMC card) with FAT32 file system and Bluetooth device for short-range communication used for data transmission between monitoring device and PC or PDA. The work was focused on design and implementation of an ultra low power wearable device able to acquire patient vital parameters, causing minimal discomfort and allowing high mobility. The proposed wireless device could be used as a warning system for monitoring during normal activity.

  9. Toward flexible and wearable human-interactive health-monitoring devices.

    PubMed

    Takei, Kuniharu; Honda, Wataru; Harada, Shingo; Arie, Takayuki; Akita, Seiji

    2015-03-11

    This Progress Report introduces flexible wearable health-monitoring devices that interact with a person by detecting from and stimulating the body. Interactive health-monitoring devices should be highly flexible and attach to the body without awareness like a bandage. This type of wearable health-monitoring device will realize a new class of electronics, which will be applicable not only to health monitoring, but also to other electrical devices. However, to realize wearable health-monitoring devices, many obstacles must be overcome to economically form the active electrical components on a flexible substrate using macroscale fabrication processes. In particular, health-monitoring sensors and curing functions need to be integrated. Here recent developments and advancements toward flexible health-monitoring devices are presented, including conceptual designs of human-interactive devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Monitoring devices. 154.525... Monitoring devices. The COTP may require the facility to install monitoring devices if the installation of monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous...

  11. Recent Developments in Home Sleep-Monitoring Devices

    PubMed Central

    Kelly, Jessica M.; Strecker, Robert E.; Bianchi, Matt T.

    2012-01-01

    Improving our understanding of sleep physiology and pathophysiology is an important goal for both medical and general wellness reasons. Although the gold standard for assessing sleep remains the laboratory polysomnogram, there is an increasing interest in portable monitoring devices that provide the opportunity for assessing sleep in real-world environments such as the home. Portable devices allow repeated measurements, evaluation of temporal patterns, and self-experimentation. We review recent developments in devices designed to monitor sleep-wake activity, as well as monitors designed for other purposes that could in principle be applied in the field of sleep (such as cardiac or respiratory sensing). As the body of supporting validation data grows, these devices hold promise for a variety of health and wellness goals. From a clinical and research standpoint, the capacity to obtain longitudinal sleep-wake data may improve disease phenotyping, individualized treatment decisions, and individualized health optimization. From a wellness standpoint, commercially available devices may allow individuals to track their own sleep with the goal of finding patterns and correlations with modifiable behaviors such as exercise, diet, and sleep aids. PMID:23097718

  12. Usage monitoring of electrical devices in a smart home.

    PubMed

    Rahimi, Saba; Chan, Adrian D C; Goubran, Rafik A

    2011-01-01

    Profiling the usage of electrical devices within a smart home can be used as a method for determining an occupant's activities of daily living. A nonintrusive load monitoring system monitors the electrical consumption at a single electrical source (e.g., main electric utility service entry) and the operating schedules of individual devices are determined by disaggregating the composite electrical consumption waveforms. An electrical device's load signature plays a key role in nonintrusive load monitoring systems. A load signature is the unique electrical behaviour of an individual device when it is in operation. This paper proposes a feature-based model, using the real power and reactive power as features for describing the load signatures of individual devices. Experimental results for single device recognition for 7 devices show that the proposed approach can achieve 100% classification accuracy with discriminant analysis using Mahalanobis distances.

  13. Ambulatory Seizure Monitoring: From Concept to Prototype Device.

    PubMed

    Myers, Mark H; Threatt, Madeline; Solies, Karsten M; McFerrin, Brent M; Hopf, Lindsey B; Birdwell, J Douglas; Sillay, Karl A

    2016-07-01

    The brain, made up of billions of neurons and synapses, is the marvelous core of human thought, action and memory. However, if neuronal activity manifests into abnormal electrical activity across the brain, neural behavior may exhibit synchronous neural firings known as seizures. If unprovoked seizures occur repeatedly, a patient may be diagnosed with epilepsy. The scope of this project is to develop an ambulatory seizure monitoring system that can be used away from a hospital, making it possible for the user to stay at home, and primary care personnel to monitor a patient's seizure activity in order to provide deeper analysis of the patient's condition and apply personalized intervention techniques. The ambulatory seizure monitoring device is a research device that has been developed with the objective of acquiring a portable, clean electroencephalography (EEG) signal and transmitting it wirelessly to a handheld device for processing and notification. This device is comprised of 4 phases: acquisition, transmission, processing and notification. During the acquisition stage, the EEG signal is detected using EEG electrodes; these signals are filtered and amplified before being transmitted in the second stage. The processing stage encompasses the signal processing and seizure prediction. A notification is sent to the patient and designated contacts, given an impending seizure. Each of these phases is comprised of various design components, hardware and software. The experimental findings illustrate that there may be a triggering mechanism through the phase lock value method that enables seizure prediction. The device addresses the need for long-term monitoring of the patient's seizure condition in order to provide the clinician a better understanding of the seizure's duration and frequency and ultimately provide the best remedy for the patient.

  14. Use of a consumer market activity monitoring and feedback device improves exercise capacity and activity levels in COPD.

    PubMed

    Caulfield, Brian; Kaljo, Indira; Donnelly, Seamas

    2014-01-01

    COPD is associated with a gradual decline in physical activity, which itself contributes to a worsening of the underlying condition. Strategies that improve physical activity levels are critical to halt this cycle. Wearable sensor based activity monitoring and persuasive feedback might offer a potential solution. However it is not clear just how much intervention might be needed in this regard - i.e. whether programmes need to be tailored specifically for the target clinical population or whether more simple activity monitoring and feedback solutions, such as that offered in consumer market devices, might be sufficient. This research was carried out to investigate the impact of 4 weeks of using an off the shelf consumer market activity monitoring and feedback application on measures of physical activity, exercise capacity, and health related quality of life in a population of 10 Stage I and II COPD patients. Results demonstrate a significant and positive effect on exercise capacity (measured using a 6-minute walk test) and activity levels (measured in terms of average number of steps per hour) yet no impact on health related quality of life (St Georges Respiratory Disease Questionnaire).

  15. Remote monitoring for active cardiovascular implantable electronic devices: a European survey.

    PubMed

    Halimi, Franck; Cantù, Francesco

    2010-12-01

    This survey sampled today's European practices in the use of remote monitoring (RM) for the follow-up of active cardiovascular implantable electronic devices. Eighty-five per cent of the responding centres are currently using RM. For the majority, RM is expected to increase importantly within 5 years, and it has already led to a new organization of care based on dedicated allied professionals and/or the creation of RM units. There are still major limitations for the development of RM, such as ethical and legal aspects, reimbursement issues, and the lack of specific national- and European-updated guidelines which need to be informed.

  16. Ambulatory Seizure Monitoring: From Concept to Prototype Device

    PubMed Central

    Myers, Mark H.; Threatt, Madeline; Solies, Karsten M.; McFerrin, Brent M.; Hopf, Lindsey B.; Birdwell, J. Douglas; Sillay, Karl A.

    2016-01-01

    Background The brain, made up of billions of neurons and synapses, is the marvelous core of human thought, action and memory. However, if neuronal activity manifests into abnormal electrical activity across the brain, neural behavior may exhibit synchronous neural firings known as seizures. If unprovoked seizures occur repeatedly, a patient may be diagnosed with epilepsy. Purpose The scope of this project is to develop an ambulatory seizure monitoring system that can be used away from a hospital, making it possible for the user to stay at home, and primary care personnel to monitor a patient's seizure activity in order to provide deeper analysis of the patient's condition and apply personalized intervention techniques. Methods The ambulatory seizure monitoring device is a research device that has been developed with the objective of acquiring a portable, clean electroencephalography (EEG) signal and transmitting it wirelessly to a handheld device for processing and notification. Result This device is comprised of 4 phases: acquisition, transmission, processing and notification. During the acquisition stage, the EEG signal is detected using EEG electrodes; these signals are filtered and amplified before being transmitted in the second stage. The processing stage encompasses the signal processing and seizure prediction. A notification is sent to the patient and designated contacts, given an impending seizure. Each of these phases is comprised of various design components, hardware and software. The experimental findings illustrate that there may be a triggering mechanism through the phase lock value method that enables seizure prediction. Conclusion The device addresses the need for long-term monitoring of the patient's seizure condition in order to provide the clinician a better understanding of the seizure's duration and frequency and ultimately provide the best remedy for the patient. PMID:27647960

  17. Nitinol Temperature Monitoring Devices

    DTIC Science & Technology

    1976-01-09

    AD-A021 578 NITINOL TEMPERATURE MONITORING DEVICES William J. Buehler, et al Naval Surface Weapons Center Silver Spring, Maryland 9 January 1976...LABORATORY S NITINOL TEMPERATURE MONITORING DEVICES 9 JANUARY 1976 NAVAL SURFACE WEAPONS CENTER WHITE OAK LABORATORY SILVER SPRING, MARYLAND 20910 * Approved...GOVT ACCESSION NO. 3. RECIPIIENT’S CATALOG NUMBER NSWC/WOL/TR 75-140 ____ ______ 4 TITLE (and Subtitle) 5. TYPE OF REPCRT & PERIOD COVERED Nitinol

  18. Design of wearable health monitoring device

    NASA Astrophysics Data System (ADS)

    Devara, Kresna; Ramadhanty, Savira; Abuzairi, Tomy

    2018-02-01

    Wearable smart health monitoring devices have attracted considerable attention in both research community and industry. Some of the causes are the increasing healthcare costs, along with the growing technology. To address this demand, in this paper, design and evaluation of wearable health monitoring device integrated with smartphone were presented. This device was designed for patients in need of constant health monitoring. The performance of the proposed design has been tested by conducting measurement once in 2 minutes for 10 minutes to obtain heart rate and body temperature data. The comparation between data measured by the proposed device and that measured by the reference device yields only an average error of 1.45% for heart rate and 1.04% for body temperature.

  19. ActivityAware: An App for Real-Time Daily Activity Level Monitoring on the Amulet Wrist-Worn Device.

    PubMed

    Boateng, George; Batsis, John A; Halter, Ryan; Kotz, David

    2017-03-01

    Physical activity helps reduce the risk of cardiovascular disease, hypertension and obesity. The ability to monitor a person's daily activity level can inform self-management of physical activity and related interventions. For older adults with obesity, the importance of regular, physical activity is critical to reduce the risk of long-term disability. In this work, we present ActivityAware , an application on the Amulet wrist-worn device that measures daily activity levels (sedentary, moderate and vigorous) of individuals, continuously and in real-time. The app implements an activity-level detection model, continuously collects acceleration data on the Amulet, classifies the current activity level, updates the day's accumulated time spent at that activity level, logs the data for later analysis, and displays the results on the screen. We developed an activity-level detection model using a Support Vector Machine (SVM). We trained our classifiers using data from a user study, where subjects performed the following physical activities: sit, stand, lay down, walk and run. With 10-fold cross validation and leave-one-subject-out (LOSO) cross validation, we obtained preliminary results that suggest accuracies up to 98%, for n=14 subjects. Testing the ActivityAware app revealed a projected battery life of up to 4 weeks before needing to recharge. The results are promising, indicating that the app may be used for activity-level monitoring, and eventually for the development of interventions that could improve the health of individuals.

  20. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...

  1. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...

  2. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...

  3. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...

  4. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...

  5. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Monitoring devices. 154.525...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Equipment Requirements § 154.525...

  6. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Monitoring devices. 154.525...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Equipment Requirements § 154.525...

  7. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Monitoring devices. 154.525...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Equipment Requirements § 154.525...

  8. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Monitoring devices. 154.525...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Equipment Requirements § 154.525...

  9. Evaluation of a novel canine activity monitor for at-home physical activity analysis.

    PubMed

    Yashari, Jonathan M; Duncan, Colleen G; Duerr, Felix M

    2015-07-04

    Accelerometers are motion-sensing devices that have been used to assess physical activity in dogs. However, the lack of a user-friendly, inexpensive accelerometer has hindered the widespread use of this objective outcome measure in veterinary research. Recently, a smartphone-based, affordable activity monitor (Whistle) has become available for measurement of at-home physical activity in dogs. The aim of this research was to evaluate this novel accelerometer. Eleven large breed, privately owned dogs wore a collar fitted with both the Whistle device and a previously validated accelerometer-based activity monitor (Actical) for a 24-h time period. Owners were asked to have their dogs resume normal daily activities. Total activity time obtained from the Whistle device in minutes was compared to the total activity count from the Actical device. Activity intensity from the Whistle device was calculated manually from screenshots of the activity bars displayed in the smartphone-application and compared to the activity count recorded by the Actical in the same 3-min time period. A total of 3740 time points were compared. There was a strong correlation between activity intensity of both devices for individual time points (Pearson's correlation coefficient 0.81, p < 0.0001). An even stronger correlation was observed between the total activity data between the two devices (Pearson's correlation coefficient 0.925, p < 0.0001). Activity data provided by the Whistle activity monitor may be used as an objective outcome measurement in dogs. The total activity time provided by the Whistle application offers an inexpensive method for obtaining at-home, canine, real-time physical activity data. Limitations of the Whistle device include the limited battery life, the need for manual derivation of activity intensity data and data transfer, and the requirement of Wi-Fi and Bluetooth availability for data transmission.

  10. Survey of hydrogen monitoring devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, W.

    Presented are results of a survey of commercially available monitoring devices suitable for hydrogen detection in the secondary containment vessel of a nuclear power plant during the post postulated accident period. Available detectors were grouped into the following five classes: combustion, solid state, electrochemical, thermal conductivity, and absorption. The performance of most available sensors is likely to deteriorate when exposed to the postulated conditions which include moisture, which could be at high temperature, and radioactive noncondensibles. Of the commercial devices, those using metallic filament thermal conductivity detectors seem least susceptible to performance change. Absorption detectors are best suited for thismore » monitoring task but the only available device is designed for pipeline corrosion assessment. Initiation of experimental study to assess apparent deficiencies of commercial detectors is recommended. Also recommended is an analytical/experimental effort to determine the optimum detector array for monitoring in the secondary containment vessels.« less

  11. New monitoring technology to objectively assess adherence to prescribed footwear and assistive devices during ambulatory activity.

    PubMed

    Bus, Sicco A; Waaijman, Roelof; Nollet, Frans

    2012-11-01

    To assess the validity and feasibility of a new temperature-based adherence monitor to measure footwear use. Observational study. University medical center and participants' homes. Convenience sample of healthy subjects (n=11) and neuropathic diabetic patients at high risk for foot ulceration (n=14). In healthy subjects, the validity of the in-shoe attached adherence monitor was investigated by comparing its registrations of donning and doffing of footwear during 7 days to an accurately kept log registration. In diabetic patients, the feasibility of using the adherence monitor for 7 days in conjunction with a time-synchronized ankle-worn step activity monitor to register prescribed footwear use during walking was assessed. Furthermore, a usability questionnaire was completed. For validity, the mean time difference and 95% confidence interval (CI) between moments of donning/doffing footwear recorded with the adherence monitor and in the log were calculated. For feasibility, technical performance, usability, and the percentage of steps that the footwear was worn (adherence) were assessed. The mean time difference between the adherence monitor and log recordings was 0.4 minutes (95% CI, 0.2-0.6min). One erroneous recording and 2 incomplete recordings were obtained in diabetic patients. Three patients reported discomfort with the step activity monitor, and 4 patients would not favor repeated testing. Patients used their footwear for between 9% and 99% of their walking steps. The adherence monitor shows good validity in measuring when footwear is used or not, and is, together with instrumented monitoring of walking activity, a feasible and objective method to assess treatment adherence. This method can have wide application in clinical practice and research regarding prescribed footwear and other body-worn assistive devices. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Microfabricated fuel heating value monitoring device

    DOEpatents

    Robinson, Alex L [Albuquerque, NM; Manginell, Ronald P [Albuquerque, NM; Moorman, Matthew W [Albuquerque, NM

    2010-05-04

    A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

  13. A Comparison of Energy Expenditure Estimation of Several Physical Activity Monitors

    PubMed Central

    Dannecker, Kathryn L.; Sazonova, Nadezhda A.; Melanson, Edward L.; Sazonov, Edward S.; Browning, Raymond C.

    2013-01-01

    Accurately and precisely estimating free-living energy expenditure (EE) is important for monitoring energy balance and quantifying physical activity. Recently, single and multi-sensor devices have been developed that can classify physical activities, potentially resulting in improved estimates of EE. PURPOSE To determine the validity of EE estimation of a footwear-based physical activity monitor and to compare this validity against a variety of research and consumer physical activity monitors. METHODS Nineteen healthy young adults (10 male, 9 female), completed a four-hour stay in a room calorimeter. Participants wore a footwear-based physical activity monitor, as well as Actical, Actigraph, IDEEA, DirectLife and Fitbit devices. Each individual performed a series of postures/activities. We developed models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. RESULTS Estimated EE using the shoe-based device was not significantly different than measured EE (476(20) vs. 478(18) kcal) (Mean (SE)), respectively, and had a root mean square error (RMSE) of (29.6 kcal (6.2%)). The IDEEA and DirectLlife estimates of EE were not significantly different than the measured EE but the Actigraph and Fitbit devices significantly underestimated EE. Root mean square errors were 93.5 (19%), 62.1 kcal (14%), 88.2 kcal (18%), 136.6 kcal (27%), 130.1 kcal (26%), and 143.2 kcal (28%) for Actical, DirectLife, IDEEA, Actigraph and Fitbit respectively. CONCLUSIONS The shoe based physical activity monitor provides a valid estimate of EE while the other physical activity monitors tested have a wide range of validity when estimating EE. Our results also demonstrate that estimating EE based on classification of physical activities can be more accurate and precise than estimating EE based on total physical activity. PMID:23669877

  14. A comparison of energy expenditure estimation of several physical activity monitors.

    PubMed

    Dannecker, Kathryn L; Sazonova, Nadezhda A; Melanson, Edward L; Sazonov, Edward S; Browning, Raymond C

    2013-11-01

    Accurately and precisely estimating free-living energy expenditure (EE) is important for monitoring energy balance and quantifying physical activity. Recently, single and multisensor devices have been developed that can classify physical activities, potentially resulting in improved estimates of EE. This study aimed to determine the validity of EE estimation of a footwear-based physical activity monitor and to compare this validity against a variety of research and consumer physical activity monitors. Nineteen healthy young adults (10 men, 9 women) completed a 4-h stay in a room calorimeter. Participants wore a footwear-based physical activity monitor as well as Actical, ActiGraph, IDEEA, DirectLife, and Fitbit devices. Each individual performed a series of postures/activities. We developed models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. Estimated EE using the shoe-based device was not significantly different than measured EE (mean ± SE; 476 ± 20 vs 478 ± 18 kcal, respectively) and had a root-mean-square error of 29.6 kcal (6.2%). The IDEEA and the DirectLlife estimates of EE were not significantly different than the measured EE, but the ActiGraph and the Fitbit devices significantly underestimated EE. Root-mean-square errors were 93.5 (19%), 62.1 kcal (14%), 88.2 kcal (18%), 136.6 kcal (27%), 130.1 kcal (26%), and 143.2 kcal (28%) for Actical, DirectLife, IDEEA, ActiGraph, and Fitbit, respectively. The shoe-based physical activity monitor provides a valid estimate of EE, whereas the other physical activity monitors tested have a wide range of validity when estimating EE. Our results also demonstrate that estimating EE based on classification of physical activities can be more accurate and precise than estimating EE based on total physical activity.

  15. Biofouling detection monitoring devices: status assessment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillman, R.E.; Anson, D.; Corliss, J.M.

    1985-03-01

    An inventory of devices to detect and monitor biofouling in power plant condenser systems was prepared. The inventory was developed through a review of manufacturers' product information brochures, a general literature review, and limited personal contact with users and manufacturers. Two macrofouling and seventeen microfouling detection devices were reviewed. A summary analysis of the principal features of each device was prepared. Macrofouling devices are generally simple devices located at or near cooling water intakes. They monitor the growth of larger organisms such as mussels, barnacles, and large seaweeds. Microfouling detectors are usually located in or near the condenser tubes. Theymore » detect and monitor the growth of slime films on the tubes. Some of the devices measure changes in heat transfer or pressure drop in the condenser tubes. Other types include condenser simulators, biofilm samplers, or devices that measure the acoustic properties of the fouling films. Most devices are still in the development stage. Of the few available for general use, the type that measures heat transfer and/or pressure drop are developed to a greater degree than the other types. Recommendations for further research into development of a biofouling detection and monitoring devices include a side-by-side field comparison of selected devices, and the continued development of an effective acoustic device.« less

  16. Noninvasive health condition monitoring device for workers at high altitudes conditions.

    PubMed

    Aqueveque, Pablo; Gutierrez, Cristopher; Saavedra, Francisco; Pino, Esteban J

    2016-08-01

    This work presents the design and implementation of a continuous monitoring device to control the health state of workers, for instance miners, at high altitudes. The extreme ambient conditions are harmful for peoples' health; therefore a continuous control of the workers' vital signs is necessary. The developed system includes physiological variables: electrocardiogram (ECG), respiratory activity and body temperature (BT), and ambient variables: ambient temperature (AT) and relative humidity (RH). The noninvasive sensors are incorporated in a t-shirt to deliver a functional device, and maximum comfort to the users. The device is able to continuously calculate heart rate (HR) and respiration rate (RR), and establish a wireless data transmission to a central monitoring station.

  17. Monitoring elbow isometric contraction by novel wearable fabric sensing device

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Tao, Xiaoming; So, Raymond C. H.; Shu, Lin; Yang, Bao; Li, Ying

    2016-12-01

    Fabric-based wearable technology is highly desirable in sports, as it is light, flexible, soft, and comfortable with little interference to normal sport activities. It can provide accurate information on the in situ deformation of muscles in a continuous and wireless manner. During elbow flexion in isometric contraction, upper arm circumference increases with the contraction of elbow flexors, and it is possible to monitor the muscles’ contraction by limb circumferential strains. This paper presents a new wireless wearable anthropometric monitoring device made from fabric strain sensors for the human upper arm. The materials, structural design and calibration of the device are presented. Using an isokinetic testing system (Biodex3®) and the fabric monitoring device simultaneously, in situ measurements were carried out on elbow flexors in isometric contraction mode with ten subjects for a set of positions. Correlations between the measured values of limb circumferential strain and normalized torque were examined, and a linear relationship was found during isometric contraction. The average correlation coefficient between them is 0.938 ± 0.050. This wearable anthropometric device thus provides a useful index, the limb circumferential strain, for upper arm muscle contraction in isometric mode.

  18. Implantable cardiac resynchronization therapy devices to monitor heart failure clinical status.

    PubMed

    Fung, Jeffrey Wing-Hong; Yu, Cheuk-Man

    2007-03-01

    Cardiac resynchronization therapy is a standard therapy for selected patients with heart failure. With advances in technology and storage capacity, the device acts as a convenient platform to provide valuable information about heart failure status in these high-risk patients. Unlike other modalities of investigation which may only allow one-off evaluation, heart failure status can be monitored by device diagnostics including heart rate variability, activity status, and intrathoracic impedance in a continuous basis. These parameters do not just provide long-term prognostic information but also may be useful to predict upcoming heart failure exacerbation. Prompt and early intervention may abort decompensation, prevent hospitalization, improve quality of life, and reduce health care cost. Moreover, this information may be applied to titrate the dosage of medication and monitor response to heart failure treatment. This review will focus on the prognostic and predictive values of heart failure status monitoring provided by these devices.

  19. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  20. Antenna coupling explains unintended thermal injury caused by common operating room monitoring devices.

    PubMed

    Townsend, Nicole T; Jones, Edward L; Paniccia, Alessandro; Vandervelde, Joel; McHenry, Jennifer R; Robinson, Thomas N

    2015-04-01

    Unintended thermal injury from patient monitoring devices (eg, electrocardiogram pads, neuromonitoring leads) results in third-degree burns. A mechanism for these injuries is not clear. The monopolar "bovie" emits radiofrequency energy that transfers to nearby, nonelectrically active cables or wires without direct contact by capacitive and antenna coupling. The purpose of this study was to determine if, and to what extent, radiofrequency energy couples to common patient monitoring devices. In an ex vivo porcine model, monopolar radiofrequency energy was delivered to a handheld "bovie" pencil. Nonelectrically active neuromonitoring and cardiac-monitoring leads were placed in proximity to the monopolar pencil and its cord. Temperature changes of tissue touched by the monitoring lead were measured using a thermal camera immediately after a 5-second activation. The energy-device cords were then separated by 15 cm, the power was reduced from 30 W coag to 15 W coag and different cord angulation was tested. An advanced bipolar device, a plasma-based device, and an ultrasonic device were also tested at standard settings. The neuromonitoring lead increased tissue temperature at the insertion site by 39 ± 13°C (P<0.001) creating visible char at the skin. The electrocardiogram lead raised tissue temperature by 1.3 ± 0.5°C (P<0.001). Decreasing generator power from 30 W to 15 W and separating the bovie cord from the neuromonitoring cord by 15 cm significantly reduced the temperature change (39 ± 13°C vs. 26±5°C; P<0.001 and 39 ± 13°C vs. 10 ± 5°C; P<0.001, respectively). Lastly, monopolar energy increased tissue temperatures significantly more than argon beam energy (34 ± 15°C), advanced bipolar energy (0.2 ± 0.4°C), and ultrasonic energy (0 ± 0.3°C) (all P<0.001). Stray energy couples to commonly used patient monitoring devices resulting in potentially significant thermal injury. The handheld bovie cord transfers energy via antenna coupling to

  1. A wearable device for monitoring and prevention of repetitive ankle sprain.

    PubMed

    Attia, Mohammed; Taher, Mona F

    2015-01-01

    This study presents the design and implementation of a wearable wireless device, connected to a smart phone, which monitors and prevents repetitive ankle sprain due to chronic ankle instability (CAI). The device prevents this common foot injury by electrical stimulation of the peroneal muscles using surface electrodes which causes dorsiflexion of the foot. This is done after measuring ankle kinematics using inertial motion sensors and predicting ankle sprain. The prototype implemented here has a fast response time of 7 msec which enables prevention of ankle sprain before ligament damage occurs. Wireless communication between the components of the device, in addition to their small size, low cost and low power consumption, makes it unobtrusive, easy to wear and not hinder normal activities. The device connects via Bluetooth to an android smart phone application for continuous data logging and reporting to keep track of the incidences of possible ankle sprain and correction. This is a significant feature of this device since it enables monitoring of patients with CAI and quantifying progression of the condition or improvement in the case of treatment.

  2. How consumer physical activity monitors could transform human physiology research.

    PubMed

    Wright, Stephen P; Hall Brown, Tyish S; Collier, Scott R; Sandberg, Kathryn

    2017-03-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O 2 , and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. Copyright © 2017 the American Physiological Society.

  3. How consumer physical activity monitors could transform human physiology research

    PubMed Central

    Hall Brown, Tyish S.; Collier, Scott R.; Sandberg, Kathryn

    2017-01-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O2, and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. PMID:28052867

  4. A multi-functional, portable device with wireless transmission for home monitoring of children with a learning disability.

    PubMed

    Tura, A; Badanai, M; Longo, D; Quareni, L

    2004-01-01

    A portable monitoring device was developed to assist in the management of children with a learning disability. The device was designed for continuous home monitoring of blood oxygen saturation, heart and respiration rates, and patient activity. It could be worn on a belt, while the patient continued normal activities. Data were stored on a multimedia card and automatically transmitted to a PC at prescribed intervals via a Bluetooth wireless link. From the PC the data were transmitted to a Web server, where the information was made available to the staff involved in the patient's care. Preliminary clinical studies were performed with nine patients (four with Down's syndrome, three with cerebral palsy and two with mental retardation). Patients and families considered the device easy to use and to wear. The monitoring device identified events of possible clinical interest. Although it was designed for monitoring children with a learning disability, it may also be useful with other groups, such as elderly people.

  5. Monitoring Devices for Railroad Emergency Response Teams

    DOT National Transportation Integrated Search

    1986-02-01

    This report examines new devices and technologies either commercially available or being developed which might have application to the railroad hazardous material spill response problem. Procedure and monitoring device information from Southern Railw...

  6. Evaluating the Consistency of Current Mainstream Wearable Devices in Health Monitoring: A Comparison Under Free-Living Conditions.

    PubMed

    Wen, Dong; Zhang, Xingting; Liu, Xingyu; Lei, Jianbo

    2017-03-07

    Wearable devices are gaining increasing market attention; however, the monitoring accuracy and consistency of the devices remains unknown. The purpose of this study was to assess the consistency of the monitoring measurements of the latest wearable devices in the state of normal activities to provide advice to the industry and support to consumers in making purchasing choices. Ten pieces of representative wearable devices (2 smart watches, 4 smart bracelets of Chinese brands or foreign brands, and 4 mobile phone apps) were selected, and 5 subjects were employed to simultaneously use all the devices and the apps. From these devices, intact health monitoring data were acquired for 5 consecutive days and analyzed on the degree of differences and the relationships of the monitoring measurements ​​by the different devices. The daily measurements by the different devices fluctuated greatly, and the coefficient of variation (CV) fluctuated in the range of 2-38% for the number of steps, 5-30% for distance, 19-112% for activity duration, .1-17% for total energy expenditure (EE), 22-100% for activity EE, 2-44% for sleep duration, and 35-117% for deep sleep duration. After integrating the measurement data of 25 days among the devices, the measurements of the number of steps (intraclass correlation coefficient, ICC=.89) and distance (ICC=.84) displayed excellent consistencies, followed by those of activity duration (ICC=.59) and the total EE (ICC=.59) and activity EE (ICC=.57). However, the measurements for sleep duration (ICC=.30) and deep sleep duration (ICC=.27) were poor. For most devices, there was a strong correlation between the number of steps and distance measurements (R 2 >.95), and for some devices, there was a strong correlation between activity duration measurements and EE measurements (R 2 >.7). A strong correlation was observed in the measurements of steps, distance and EE from smart watches and mobile phones of the same brand, Apple or Samsung (r>.88

  7. Evaluating the Consistency of Current Mainstream Wearable Devices in Health Monitoring: A Comparison Under Free-Living Conditions

    PubMed Central

    Wen, Dong; Zhang, Xingting; Liu, Xingyu

    2017-01-01

    Background Wearable devices are gaining increasing market attention; however, the monitoring accuracy and consistency of the devices remains unknown. Objective The purpose of this study was to assess the consistency of the monitoring measurements of the latest wearable devices in the state of normal activities to provide advice to the industry and support to consumers in making purchasing choices. Methods Ten pieces of representative wearable devices (2 smart watches, 4 smart bracelets of Chinese brands or foreign brands, and 4 mobile phone apps) were selected, and 5 subjects were employed to simultaneously use all the devices and the apps. From these devices, intact health monitoring data were acquired for 5 consecutive days and analyzed on the degree of differences and the relationships of the monitoring measurements ​​by the different devices. Results The daily measurements by the different devices fluctuated greatly, and the coefficient of variation (CV) fluctuated in the range of 2-38% for the number of steps, 5-30% for distance, 19-112% for activity duration, .1-17% for total energy expenditure (EE), 22-100% for activity EE, 2-44% for sleep duration, and 35-117% for deep sleep duration. After integrating the measurement data of 25 days among the devices, the measurements of the number of steps (intraclass correlation coefficient, ICC=.89) and distance (ICC=.84) displayed excellent consistencies, followed by those of activity duration (ICC=.59) and the total EE (ICC=.59) and activity EE (ICC=.57). However, the measurements for sleep duration (ICC=.30) and deep sleep duration (ICC=.27) were poor. For most devices, there was a strong correlation between the number of steps and distance measurements (R2>.95), and for some devices, there was a strong correlation between activity duration measurements and EE measurements (R2>.7). A strong correlation was observed in the measurements of steps, distance and EE from smart watches and mobile phones of the same

  8. Influence of Activity Monitor Location and Bout Duration on Free-Living Physical Activity

    ERIC Educational Resources Information Center

    Heil, Daniel P.; Bennett, Gary G.; Bond, Kathleen S.; Webster, Michael D.; Wolin, Kathleen Y.

    2009-01-01

    The purpose of this study was to evaluate the influence of the location (ankle, hip, wrist) where an activity monitor (AM) is worn and of the minimum bout duration (BD) on physical activity (PA) variables during free-living monitoring. Study 1 participants wore AMs at three locations for 1 day while wearing the Intelligent Device for Energy…

  9. PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices.

    PubMed

    Pullano, Salvatore A; Mahbub, Ifana; Islam, Syed K; Fiorillo, Antonino S

    2017-04-13

    This paper presents a ferroelectric polymer-based temperature sensor designed for microfluidic devices. The integration of the sensor into a system-on-a-chip platform facilitates quick monitoring of localized temperature of a biological fluid, avoiding errors in the evaluation of thermal evolution of the fluid during analysis. The contact temperature sensor is fabricated by combining a thin pyroelectric film together with an infrared source, which stimulates the active element located on the top of the microfluidic channel. An experimental setup was assembled to validate the analytical model and to characterize the response rate of the device. The evaluation procedure and the operating range of the temperature also make this device suitable for applications where the localized temperature monitoring of biological samples is necessary. Additionally, ease of integration with standard microfluidic devices makes the proposed sensor an attractive option for in situ analysis of biological fluids.

  10. 21 CFR 882.1620 - Intracranial pressure monitoring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intracranial pressure monitoring device. 882.1620 Section 882.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1620 Intracranial...

  11. 21 CFR 882.1620 - Intracranial pressure monitoring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intracranial pressure monitoring device. 882.1620 Section 882.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1620 Intracranial...

  12. Fabric-based integrated energy devices for wearable activity monitors.

    PubMed

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Paper-based CRP Monitoring Devices

    NASA Astrophysics Data System (ADS)

    Lin, Shang-Chi; Tseng, Chung-Yuh; Lai, Po-Liang; Hsu, Min-Yen; Chu, Shueh-Yao; Tseng, Fan-Gang; Cheng, Chao-Min

    2016-12-01

    Here, we discuss the development of a paper-based diagnostic device that is inexpensive, portable, easy-to-use, robust, and capable of running simultaneous tests to monitor a relevant inflammatory protein for clinical diagnoses i.e. C-reactive protein (CRP). In this study, we first attempted to make a paper-based diagnostic device via the wax printing method, a process that was used in previous studies. This device has two distinct advantages: 1) reduced manufacturing and assay costs and operation duration via using wax printing method to define hydrophobic boundaries (for fluidic devices or general POC devices); and, 2) the hydrophilicity of filter paper, which is used to purify and chromatographically correct interference caused by whole blood components with a tiny amount of blood sample (only 5 μL). Diagnosis was based on serum stain length retained inside the paper channels of our device. This is a balanced function between surface tension and chromatographic force following immune reactions (CRP assays) with a paper-embedded biomarker.

  14. Using Commercial Activity Monitors to Measure Gait in Patients with Suspected iNPH: Implications for Ambulatory Monitoring

    PubMed Central

    Gaglani, Shiv; Haynes, M Ryan; Hoffberger, Jamie B; Rigamonti, Daniele

    2015-01-01

    Objectives: This study seeks to validate the use of activity monitors to detect and record gait abnormalities, potentially identifying patients with idiopathic normal pressure hydrocephalus (iNPH) prior to the onset of cognitive or urinary symptoms. Methods: This study compared the step counts of four common activity monitors (Omron Step Counter HJ-113, New Lifestyles 2000, Nike Fuelband, and Fitbit Ultra) to an observed step count in 17 patients with confirmed iNPH. Results: Of the four devices, the Fitbit Ultra (Fitbit, Inc., San Francisco, CA) provided the most accurate step count. The correlation with the observed step count was significantly higher (p<0.009) for the Fitbit Ultra than for any of the other three devices. Conclusions: These preliminary findings suggest that existing activity monitors have variable efficacy in the iNPH patient population and that the MEMS tri-axial accelerometer and algorithm of the Fitbit Ultra provides the most accurate gait measurements of the four devices tested. PMID:26719825

  15. Using Commercial Activity Monitors to Measure Gait in Patients with Suspected iNPH: Implications for Ambulatory Monitoring.

    PubMed

    Gaglani, Shiv; Moore, Jessica; Haynes, M Ryan; Hoffberger, Jamie B; Rigamonti, Daniele

    2015-11-17

    This study seeks to validate the use of activity monitors to detect and record gait abnormalities, potentially identifying patients with idiopathic normal pressure hydrocephalus (iNPH) prior to the onset of cognitive or urinary symptoms. This study compared the step counts of four common activity monitors (Omron Step Counter HJ-113, New Lifestyles 2000, Nike Fuelband, and Fitbit Ultra) to an observed step count in 17 patients with confirmed iNPH. Of the four devices, the Fitbit Ultra (Fitbit, Inc., San Francisco, CA) provided the most accurate step count. The correlation with the observed step count was significantly higher (p<0.009) for the Fitbit Ultra than for any of the other three devices. These preliminary findings suggest that existing activity monitors have variable efficacy in the iNPH patient population and that the MEMS tri-axial accelerometer and algorithm of the Fitbit Ultra provides the most accurate gait measurements of the four devices tested.

  16. Efficacy of Monitoring Devices in Support of Prevention of Pressure Injuries: Systematic Review and Meta-analysis.

    PubMed

    Walia, Gurjot S; Wong, Alison L; Lo, Andrea Y; Mackert, Gina A; Carl, Hannah M; Pedreira, Rachel A; Bello, Ricardo; Aquino, Carla S; Padula, William V; Sacks, Justin M

    2016-12-01

    To present a systematic review of the literature assessing the efficacy of monitoring devices for reducing the risk of developing pressure injuries. This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Explain the methodology of the literature review and its results.2. Discuss the scope of the problem and the implications of the research. OBJECTIVE: To assess the efficacy of monitoring devices for reducing the risk of developing pressure injuries (PIs). The authors systematically reviewed the literature by searching PubMed/MEDLINE and CINAHL databases through January 2016. Articles included clinical trials and cohort studies that tested monitoring devices, evaluating PI risk factors on patients in acute and skilled nursing settings. The articles were scored using the Methodological Index for Non-randomized Studies. Using a standardized extraction form, the authors extracted patient inclusion/exclusion criteria, care setting, key baseline, description of monitoring device and methodology, number of patients included in each group, description of any standard of care, follow-up period, and outcomes. Of the identified 1866 publications, 9 met the inclusion criteria. The high-quality studies averaged Methodological Index for Non-randomized Studies scores of 19.4 for clinical trials and 12.2 for observational studies. These studies evaluated monitoring devices that measured interface pressure, subdermal tissue stress, motion, and moisture. Most studies found a statistically significant decrease in PIs; 2 studies were eligible for meta-analysis, demonstrating that use of monitoring devices was associated with an 88% reduction in the risk of developing PIs (Mantel-Haenszel risk ratio, 0.12; 95% confidence interval, 0.04-0.41; I = 0%). Pressure injury monitoring devices are

  17. Optical Structural Health Monitoring Device

    NASA Technical Reports Server (NTRS)

    Buckner, Benjamin D.; Markov, Vladimir; Earthman, James C.

    2010-01-01

    This non-destructive, optical fatigue detection and monitoring system relies on a small and unobtrusive light-scattering sensor that is installed on a component at the beginning of its life in order to periodically scan the component in situ. The method involves using a laser beam to scan the surface of the monitored component. The device scans a laser spot over a metal surface to which it is attached. As the laser beam scans the surface, disruptions in the surface cause increases in scattered light intensity. As the disruptions in the surface grow, they will cause the light to scatter more. Over time, the scattering intensities over the scanned line can be compared to detect changes in the metal surface to find cracks, crack precursors, or corrosion. This periodic monitoring of the surface can be used to indicate the degree of fatigue damage on a component and allow one to predict the remaining life and/or incipient mechanical failure of the monitored component. This wireless, compact device can operate for long periods under its own battery power and could one day use harvested power. The prototype device uses the popular open-source TinyOS operating system on an off-the-shelf Mica2 sensor mote, which allows wireless command and control through dynamically reconfigurable multi-node sensor networks. The small size and long life of this device could make it possible for the nodes to be installed and left in place over the course of years, and with wireless communication, data can be extracted from the nodes by operators without physical access to the devices. While a prototype has been demonstrated at the time of this reporting, further work is required in the system s development to take this technology into the field, especially to improve its power management and ruggedness. It should be possible to reduce the size and sensitivity as well. Establishment of better prognostic methods based on these data is also needed. The increase of surface roughness with

  18. Computation offloading for real-time health-monitoring devices.

    PubMed

    Kalantarian, Haik; Sideris, Costas; Tuan Le; Hosseini, Anahita; Sarrafzadeh, Majid

    2016-08-01

    Among the major challenges in the development of real-time wearable health monitoring systems is to optimize battery life. One of the major techniques with which this objective can be achieved is computation offloading, in which portions of computation can be partitioned between the device and other resources such as a server or cloud. In this paper, we describe a novel dynamic computation offloading scheme for real-time wearable health monitoring devices that adjusts the partitioning of data between the wearable device and mobile application as a function of desired classification accuracy.

  19. A glasses-type wearable device for monitoring the patterns of food intake and facial activity

    NASA Astrophysics Data System (ADS)

    Chung, Jungman; Chung, Jungmin; Oh, Wonjun; Yoo, Yongkyu; Lee, Won Gu; Bang, Hyunwoo

    2017-01-01

    Here we present a new method for automatic and objective monitoring of ingestive behaviors in comparison with other facial activities through load cells embedded in a pair of glasses, named GlasSense. Typically, activated by subtle contraction and relaxation of a temporalis muscle, there is a cyclic movement of the temporomandibular joint during mastication. However, such muscular signals are, in general, too weak to sense without amplification or an electromyographic analysis. To detect these oscillatory facial signals without any use of obtrusive device, we incorporated a load cell into each hinge which was used as a lever mechanism on both sides of the glasses. Thus, the signal measured at the load cells can detect the force amplified mechanically by the hinge. We demonstrated a proof-of-concept validation of the amplification by differentiating the force signals between the hinge and the temple. A pattern recognition was applied to extract statistical features and classify featured behavioral patterns, such as natural head movement, chewing, talking, and wink. The overall results showed that the average F1 score of the classification was about 94.0% and the accuracy above 89%. We believe this approach will be helpful for designing a non-intrusive and un-obtrusive eyewear-based ingestive behavior monitoring system.

  20. Fetal heart rate monitoring device using condenser microphone sensor: Validation and comparison to standard devices.

    PubMed

    Ahmad, Husna Azyan Binti; El-Badawy, Ismail M; Singh, Om Prakash; Hisham, Rozana Binti; Malarvili, M B

    2018-04-27

    Fetal heart rate (FHR) monitoring device is highly demanded to assess the fetus health condition in home environments. Conventional standard devices such as ultrasonography and cardiotocography are expensive, bulky and uncomfortable and consequently not suitable for long-term monitoring. Herein, we report a device that can be used to measure fetal heart rate in clinical and home environments. The proposed device measures and displays the FHR on a screen liquid crystal display (LCD). The device consists of hardware that comprises condenser microphone sensor, signal conditioning, microcontroller and LCD, and software that involves the algorithm used for processing the conditioned fetal heart signal prior to FHR display. The device's performance is validated based on analysis of variance (ANOVA) test. FHR data was recorded from 22 pregnant women during the 17th to 37th week of gestation using the developed device and two standard devices; AngelSounds and Electronic Stethoscope. The results show that F-value (1.5) is less than F, (3.1) and p-value (p> 0.05). Accordingly, there is no significant difference between the mean readings of the developed and existing devices. Hence, the developed device can be used for monitoring FHR in clinical and home environments.

  1. Intracranial pressure monitoring in severe blunt head trauma: does the type of monitoring device matter?

    PubMed

    Aiolfi, Alberto; Khor, Desmond; Cho, Jayun; Benjamin, Elizabeth; Inaba, Kenji; Demetriades, Demetrios

    2018-03-01

    OBJECTIVE Intracranial pressure (ICP) monitoring has become the standard of care in the management of severe head trauma. Intraventricular devices (IVDs) and intraparenchymal devices (IPDs) are the 2 most commonly used techniques for ICP monitoring. Despite the widespread use of these devices, very few studies have investigated the effect of device type on outcomes. The purpose of the present study was to compare outcomes between 2 types of ICP monitoring devices in patients with isolated severe blunt head trauma. METHODS This retrospective observational study was based on the American College of Surgeons Trauma Quality Improvement Program database, which was searched for all patients with isolated severe blunt head injury who had an ICP monitor placed in the 2-year period from 2013 to 2014. Extracted variables included demographics, comorbidities, mechanisms of injury, head injury specifics (epidural, subdural, subarachnoid, intracranial hemorrhage, and diffuse axonal injury), Abbreviated Injury Scale (AIS) score for each body area, Injury Severity Score (ISS), vital signs in the emergency department, and craniectomy. Outcomes included 30-day mortality, complications, number of ventilation days, intensive care unit and hospital lengths of stay, and functional independence. RESULTS During the study period, 105,721 patients had isolated severe traumatic brain injury (head AIS score ≥ 3). Overall, an ICP monitoring device was placed in 2562 patients (2.4%): 1358 (53%) had an IVD and 1204 (47%) had an IPD. The severity of the head AIS score did not affect the type of ICP monitoring selected. There was no difference in the median ISS; ISS > 15; head AIS Score 3, 4, or 5; or the need for craniectomy between the 2 device groups. Unadjusted 30-day mortality was significantly higher in the group with IVDs (29% vs 25.5%, p = 0.046); however, stepwise logistic regression analysis showed that the type of ICP monitoring was not an independent risk factor for death

  2. Validity of Wearable Activity Monitors during Cycling and Resistance Exercise.

    PubMed

    Boudreaux, Benjamin D; Hebert, Edward P; Hollander, Daniel B; Williams, Brian M; Cormier, Corinne L; Naquin, Mildred R; Gillan, Wynn W; Gusew, Emily E; Kraemer, Robert R

    2018-03-01

    The use of wearable activity monitors has seen rapid growth; however, the mode and intensity of exercise could affect the validity of heart rate (HR) and caloric (energy) expenditure (EE) readings. There is a lack of data regarding the validity of wearable activity monitors during graded cycling regimen and a standard resistance exercise. The present study determined the validity of eight monitors for HR compared with an ECG and seven monitors for EE compared with a metabolic analyzer during graded cycling and resistance exercise. Fifty subjects (28 women, 22 men) completed separate trials of graded cycling and three sets of four resistance exercises at a 10-repetition-maximum load. Monitors included the following: Apple Watch Series 2, Fitbit Blaze, Fitbit Charge 2, Polar H7, Polar A360, Garmin Vivosmart HR, TomTom Touch, and Bose SoundSport Pulse (BSP) headphones. HR was recorded after each cycling intensity and after each resistance exercise set. EE was recorded after both protocols. Validity was established as having a mean absolute percent error (MAPE) value of ≤10%. The Polar H7 and BSP were valid during both exercise modes (cycling: MAPE = 6.87%, R = 0.79; resistance exercise: MAPE = 6.31%, R = 0.83). During cycling, the Apple Watch Series 2 revealed the greatest HR validity (MAPE = 4.14%, R = 0.80). The BSP revealed the greatest HR accuracy during resistance exercise (MAPE = 6.24%, R = 0.86). Across all devices, as exercise intensity increased, there was greater underestimation of HR. No device was valid for EE during cycling or resistance exercise. HR from wearable devices differed at different exercise intensities; EE estimates from wearable devices were inaccurate. Wearable devices are not medical devices, and users should be cautious when using these devices for monitoring physiological responses to exercise.

  3. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    DOEpatents

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  4. Small Active Radiation Monitor

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2004-01-01

    A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the

  5. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial?

    PubMed Central

    El-Amrawy, Fatema

    2015-01-01

    Objectives The new wave of wireless technologies, fitness trackers, and body sensor devices can have great impact on healthcare systems and the quality of life. However, there have not been enough studies to prove the accuracy and precision of these trackers. The objective of this study was to evaluate the accuracy, precision, and overall performance of seventeen wearable devices currently available compared with direct observation of step counts and heart rate monitoring. Methods Each participant in this study used three accelerometers at a time, running the three corresponding applications of each tracker on an Android or iOS device simultaneously. Each participant was instructed to walk 200, 500, and 1,000 steps. Each set was repeated 40 times. Data was recorded after each trial, and the mean step count, standard deviation, accuracy, and precision were estimated for each tracker. Heart rate was measured by all trackers (if applicable), which support heart rate monitoring, and compared to a positive control, the Onyx Vantage 9590 professional clinical pulse oximeter. Results The accuracy of the tested products ranged between 79.8% and 99.1%, while the coefficient of variation (precision) ranged between 4% and 17.5%. MisFit Shine showed the highest accuracy and precision (along with Qualcomm Toq), while Samsung Gear 2 showed the lowest accuracy, and Jawbone UP showed the lowest precision. However, Xiaomi Mi band showed the best package compared to its price. Conclusions The accuracy and precision of the selected fitness trackers are reasonable and can indicate the average level of activity and thus average energy expenditure. PMID:26618039

  6. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial?

    PubMed

    El-Amrawy, Fatema; Nounou, Mohamed Ismail

    2015-10-01

    The new wave of wireless technologies, fitness trackers, and body sensor devices can have great impact on healthcare systems and the quality of life. However, there have not been enough studies to prove the accuracy and precision of these trackers. The objective of this study was to evaluate the accuracy, precision, and overall performance of seventeen wearable devices currently available compared with direct observation of step counts and heart rate monitoring. Each participant in this study used three accelerometers at a time, running the three corresponding applications of each tracker on an Android or iOS device simultaneously. Each participant was instructed to walk 200, 500, and 1,000 steps. Each set was repeated 40 times. Data was recorded after each trial, and the mean step count, standard deviation, accuracy, and precision were estimated for each tracker. Heart rate was measured by all trackers (if applicable), which support heart rate monitoring, and compared to a positive control, the Onyx Vantage 9590 professional clinical pulse oximeter. The accuracy of the tested products ranged between 79.8% and 99.1%, while the coefficient of variation (precision) ranged between 4% and 17.5%. MisFit Shine showed the highest accuracy and precision (along with Qualcomm Toq), while Samsung Gear 2 showed the lowest accuracy, and Jawbone UP showed the lowest precision. However, Xiaomi Mi band showed the best package compared to its price. The accuracy and precision of the selected fitness trackers are reasonable and can indicate the average level of activity and thus average energy expenditure.

  7. Determining Resident Sleep During and After Call With Commercial Sleep Monitoring Devices.

    PubMed

    Morhardt, Duncan R; Luckenbaugh, Amy; Goldstein, Cathy; Faerber, Gary J

    2017-08-01

    To demonstrate that commercial activity monitoring devices (CAMDs) are practical for monitoring resident sleep while on call. Studies that have directly monitored resident sleep are limited, likely owing to both cost and difficulty in study interpretation. The advent of wearable CAMDs that estimate sleep presents the opportunity to more readily evaluate resident sleep in physically active settings and "home call," a coverage arrangement familiar to urology programs. Twelve urology residents were outfitted with Fitbit Flex devices during "home call" for a total of 57 (out of 64, or 89%) call or post-call night pairs. Residents were surveyed with the Stanford Sleepiness Scale (SSS), a single-question alertness survey. Time in bed (TIB) was "time to bed" to "rise for day." Fitbit accelerometers register activity as follows: (1) not moving; (2) minimal movement or restless; or (3) above threshold for accelerometer to register steps. Total sleep time (TST) was the number of minutes in level 1 activity during TIB. Sleep efficiency (SE) was defined as TST divided by TIB. While on call, 10 responding (of 12 available, 83%) residents on average reported TIB as 347 minutes, TST as 165 minutes, and had an SE of 47%. Interestingly, SSS responses did not correlate with sleep parameters. Post-call sleep demonstrated increases in TIB, SE, and TST (+23%, +15%, and +44%, respectively) while sleepiness was reduced by 22%. We demonstrate that urologic residents can consistently wear CAMDs while on home call. SSS did not correlate with Fitbit-estimated sleep duration. Further study with such devices may enhance sleep deprivation recognition to improve resident sleep. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Mobile devices for community-based REDD+ monitoring: a case study for Central Vietnam.

    PubMed

    Pratihast, Arun Kumar; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; Bartholomeus, Harm; Souza, Carlos M; Ribbe, Lars

    2012-12-20

    Monitoring tropical deforestation and forest degradation is one of the central elements for the Reduced Emissions from Deforestation and Forest Degradation in developing countries (REDD+) scheme. Current arrangements for monitoring are based on remote sensing and field measurements. Since monitoring is the periodic process of assessing forest stands properties with respect to reference data, adopting the current REDD+ requirements for implementing monitoring at national levels is a challenging task. Recently, the advancement in Information and Communications Technologies (ICT) and mobile devices has enabled local communities to monitor their forest in a basic resource setting such as no or slow internet connection link, limited power supply, etc. Despite the potential, the use of mobile device system for community based monitoring (CBM) is still exceptional and faces implementation challenges. This paper presents an integrated data collection system based on mobile devices that streamlines the community-based forest monitoring data collection, transmission and visualization process. This paper also assesses the accuracy and reliability of CBM data and proposes a way to fit them into national REDD+ Monitoring, Reporting and Verification (MRV) scheme. The system performance is evaluated at Tra Bui commune, Quang Nam province, Central Vietnam, where forest carbon and change activities were tracked. The results show that the local community is able to provide data with accuracy comparable to expert measurements (index of agreement greater than 0.88), but against lower costs. Furthermore, the results confirm that communities are more effective to monitor small scale forest degradation due to subsistence fuel wood collection and selective logging, than high resolution remote sensing SPOT imagery.

  9. Mobile Devices for Community-Based REDD+ Monitoring: A Case Study for Central Vietnam

    PubMed Central

    Pratihast, Arun Kumar; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; Bartholomeus, Harm; Souza, Carlos M.; Ribbe, Lars

    2013-01-01

    Monitoring tropical deforestation and forest degradation is one of the central elements for the Reduced Emissions from Deforestation and Forest Degradation in developing countries (REDD+) scheme. Current arrangements for monitoring are based on remote sensing and field measurements. Since monitoring is the periodic process of assessing forest stands properties with respect to reference data, adopting the current REDD+ requirements for implementing monitoring at national levels is a challenging task. Recently, the advancement in Information and Communications Technologies (ICT) and mobile devices has enabled local communities to monitor their forest in a basic resource setting such as no or slow internet connection link, limited power supply, etc. Despite the potential, the use of mobile device system for community based monitoring (CBM) is still exceptional and faces implementation challenges. This paper presents an integrated data collection system based on mobile devices that streamlines the community-based forest monitoring data collection, transmission and visualization process. This paper also assesses the accuracy and reliability of CBM data and proposes a way to fit them into national REDD+ Monitoring, Reporting and Verification (MRV) scheme. The system performance is evaluated at Tra Bui commune, Quang Nam province, Central Vietnam, where forest carbon and change activities were tracked. The results show that the local community is able to provide data with accuracy comparable to expert measurements (index of agreement greater than 0.88), but against lower costs. Furthermore, the results confirm that communities are more effective to monitor small scale forest degradation due to subsistence fuel wood collection and selective logging, than high resolution remote sensing SPOT imagery. PMID:23344371

  10. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors.

    PubMed

    Chowdhury, Enhad A; Western, Max J; Nightingale, Thomas E; Peacock, Oliver J; Thompson, Dylan

    2017-01-01

    Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices

  11. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors

    PubMed Central

    Chowdhury, Enhad A.; Western, Max J.; Nightingale, Thomas E.; Peacock, Oliver J.; Thompson, Dylan

    2017-01-01

    Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices

  12. Wearable strain sensors based on thin graphite films for human activity monitoring

    NASA Astrophysics Data System (ADS)

    Saito, Takanari; Kihara, Yusuke; Shirakashi, Jun-ichi

    2017-12-01

    Wearable health-monitoring devices have attracted increasing attention in disease diagnosis and health assessment. In many cases, such devices have been prepared by complicated multistep procedures which result in the waste of materials and require expensive facilities. In this study, we focused on pyrolytic graphite sheet (PGS), which is a low-cost, simple, and flexible material, used as wearable devices for monitoring human activity. We investigated wearable devices based on PGSs for the observation of elbow and finger motions. The thin graphite films were fabricated by cutting small films from PGSs. The wearable devices were then made from the thin graphite films assembled on a commercially available rubber glove. The human motions could be observed using the wearable devices. Therefore, these results suggested that the wearable devices based on thin graphite films may broaden their application in cost-effective wearable electronics for the observation of human activity.

  13. Estimating Accuracy at Exercise Intensities: A Comparative Study of Self-Monitoring Heart Rate and Physical Activity Wearable Devices

    PubMed Central

    Dooley, Erin E; Golaszewski, Natalie M

    2017-01-01

    Background Physical activity tracking wearable devices have emerged as an increasingly popular method for consumers to assess their daily activity and calories expended. However, whether these wearable devices are valid at different levels of exercise intensity is unknown. Objective The objective of this study was to examine heart rate (HR) and energy expenditure (EE) validity of 3 popular wrist-worn activity monitors at different exercise intensities. Methods A total of 62 participants (females: 58%, 36/62; nonwhite: 47% [13/62 Hispanic, 8/62 Asian, 7/62 black/ African American, 1/62 other]) wore the Apple Watch, Fitbit Charge HR, and Garmin Forerunner 225. Validity was assessed using 2 criterion devices: HR chest strap and a metabolic cart. Participants completed a 10-minute seated baseline assessment; separate 4-minute stages of light-, moderate-, and vigorous-intensity treadmill exercises; and a 10-minute seated recovery period. Data from devices were compared with each criterion via two-way repeated-measures analysis of variance and Bland-Altman analysis. Differences are expressed in mean absolute percentage error (MAPE). Results For the Apple Watch, HR MAPE was between 1.14% and 6.70%. HR was not significantly different at the start (P=.78), during baseline (P=.76), or vigorous intensity (P=.84); lower HR readings were measured during light intensity (P=.03), moderate intensity (P=.001), and recovery (P=.004). EE MAPE was between 14.07% and 210.84%. The device measured higher EE at all stages (P<.01). For the Fitbit device, the HR MAPE was between 2.38% and 16.99%. HR was not significantly different at the start (P=.67) or during moderate intensity (P=.34); lower HR readings were measured during baseline, vigorous intensity, and recovery (P<.001) and higher HR during light intensity (P<.001). EE MAPE was between 16.85% and 84.98%. The device measured higher EE at baseline (P=.003), light intensity (P<.001), and moderate intensity (P=.001). EE was not

  14. Estimating Accuracy at Exercise Intensities: A Comparative Study of Self-Monitoring Heart Rate and Physical Activity Wearable Devices.

    PubMed

    Dooley, Erin E; Golaszewski, Natalie M; Bartholomew, John B

    2017-03-16

    Physical activity tracking wearable devices have emerged as an increasingly popular method for consumers to assess their daily activity and calories expended. However, whether these wearable devices are valid at different levels of exercise intensity is unknown. The objective of this study was to examine heart rate (HR) and energy expenditure (EE) validity of 3 popular wrist-worn activity monitors at different exercise intensities. A total of 62 participants (females: 58%, 36/62; nonwhite: 47% [13/62 Hispanic, 8/62 Asian, 7/62 black/ African American, 1/62 other]) wore the Apple Watch, Fitbit Charge HR, and Garmin Forerunner 225. Validity was assessed using 2 criterion devices: HR chest strap and a metabolic cart. Participants completed a 10-minute seated baseline assessment; separate 4-minute stages of light-, moderate-, and vigorous-intensity treadmill exercises; and a 10-minute seated recovery period. Data from devices were compared with each criterion via two-way repeated-measures analysis of variance and Bland-Altman analysis. Differences are expressed in mean absolute percentage error (MAPE). For the Apple Watch, HR MAPE was between 1.14% and 6.70%. HR was not significantly different at the start (P=.78), during baseline (P=.76), or vigorous intensity (P=.84); lower HR readings were measured during light intensity (P=.03), moderate intensity (P=.001), and recovery (P=.004). EE MAPE was between 14.07% and 210.84%. The device measured higher EE at all stages (P<.01). For the Fitbit device, the HR MAPE was between 2.38% and 16.99%. HR was not significantly different at the start (P=.67) or during moderate intensity (P=.34); lower HR readings were measured during baseline, vigorous intensity, and recovery (P<.001) and higher HR during light intensity (P<.001). EE MAPE was between 16.85% and 84.98%. The device measured higher EE at baseline (P=.003), light intensity (P<.001), and moderate intensity (P=.001). EE was not significantly different at vigorous (P=.70

  15. Comparison of two different physical activity monitors.

    PubMed

    Paul, David R; Kramer, Matthew; Moshfegh, Alanna J; Baer, David J; Rumpler, William V

    2007-06-25

    Understanding the relationships between physical activity (PA) and disease has become a major area of research interest. Activity monitors, devices that quantify free-living PA for prolonged periods of time (days or weeks), are increasingly being used to estimate PA. A range of different activity monitors brands are available for investigators to use, but little is known about how they respond to different levels of PA in the field, nor if data conversion between brands is possible. 56 women and men were fitted with two different activity monitors, the Actigraph (Actigraph LLC; AGR) and the Actical (Mini-Mitter Co.; MM) for 15 days. Both activity monitors were fixed to an elasticized belt worn over the hip, with the anterior and posterior position of the activity monitors randomized. Differences between activity monitors and the validity of brand inter-conversion were measured by t-tests, Pearson correlations, Bland-Altman plots, and coefficients of variation (CV). The AGR detected a significantly greater amount of daily PA (216.2 +/- 106.2 vs. 188.0 +/- 101.1 counts/min, P < 0.0001). The average difference between activity monitors expressed as a CV were 3.1 and 15.5% for log-transformed and raw data, respectively. When a conversion equation was applied to convert datasets from one brand to another, the differences were no longer significant, with CV's of 2.2 and 11.7%, log-transformed and raw data, respectively. Although activity monitors predict PA on the same scale (counts/min), the results between these two brands are not directly comparable. However, the data are comparable if a conversion equation is applied, with better results for log-transformed data.

  16. Disease management: remote monitoring in heart failure patients with implantable defibrillators, resynchronization devices, and haemodynamic monitors.

    PubMed

    Abraham, William T

    2013-06-01

    Heart failure represents a major public health concern, associated with high rates of morbidity and mortality. A particular focus of contemporary heart failure management is reduction of hospital admission and readmission rates. While optimal medical therapy favourably impacts the natural history of the disease, devices such as cardiac resynchronization therapy devices and implantable cardioverter defibrillators have added incremental value in improving heart failure outcomes. These devices also enable remote patient monitoring via device-based diagnostics. Device-based measurement of physiological parameters, such as intrathoracic impedance and heart rate variability, provide a means to assess risk of worsening heart failure and the possibility of future hospitalization. Beyond this capability, implantable haemodynamic monitors have the potential to direct day-to-day management of heart failure patients to significantly reduce hospitalization rates. The use of a pulmonary artery pressure measurement system has been shown to significantly reduce the risk of heart failure hospitalization in a large randomized controlled study, the CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients (CHAMPION) trial. Observations from a pilot study also support the potential use of a left atrial pressure monitoring system and physician-directed patient self-management paradigm; these observations are under further investigation in the ongoing LAPTOP-HF trial. All these devices depend upon high-intensity remote monitoring for successful detection of parameter deviations and for directing and following therapy.

  17. Validity of Different Activity Monitors to Count Steps in an Inpatient Rehabilitation Setting.

    PubMed

    Treacy, Daniel; Hassett, Leanne; Schurr, Karl; Chagpar, Sakina; Paul, Serene S; Sherrington, Catherine

    2017-05-01

    Commonly used activity monitors have been shown to be accurate in counting steps in active people; however, further validation is needed in slower walking populations. To determine the validity of activity monitors for measuring step counts in rehabilitation inpatients compared with visually observed step counts. To explore the influence of gait parameters, activity monitor position, and use of walkers on activity monitor accuracy. One hundred and sixty-six inpatients admitted to a rehabilitation unit with an average walking speed of 0.4 m/s (SD 0.2) wore 16 activity monitors (7 different devices in different positions) simultaneously during 6-minute and 6-m walks. The number of steps taken during the tests was also counted by a physical therapist. Gait parameters were assessed using the GAITRite system. To analyze the influence of different gait parameters, the percentage accuracy for each monitor was graphed against various gait parameters for each activity monitor. The StepWatch, Fitbit One worn on the ankle and the ActivPAL showed excellent agreement with observed step count (ICC 2,1 0.98; 0.92; 0.78 respectively). Other devices (Fitbit Charge, Fitbit One worn on hip, G-Sensor, Garmin Vivofit, Actigraph) showed poor agreement with the observed step count (ICC 2,1 0.12-0.40). Percentage agreement with observed step count was highest for the StepWatch (mean 98%). The StepWatch and the Fitbit One worn on the ankle maintained accuracy in individuals who walked more slowly and with shorter strides but other devices were less accurate in these individuals. There were small numbers of participants for some gait parameters. The StepWatch showed the highest accuracy and closest agreement with observed step count. This device can be confidently used by researchers for accurate measurement of step counts in inpatient rehabilitation in individuals who walk slowly. If immediate feedback is desired, the Fitbit One when worn on the ankle would be the best choice for this

  18. Patient-centered activity monitoring in the self-management of chronic health conditions.

    PubMed

    Chiauzzi, Emil; Rodarte, Carlos; DasMahapatra, Pronabesh

    2015-04-09

    As activity tracking devices become smaller, cheaper, and more consumer-accessible, they will be used more extensively across a wide variety of contexts. The expansion of activity tracking and personal data collection offers the potential for patient engagement in the management of chronic diseases. Consumer wearable devices for activity tracking have shown promise in post-surgery recovery in cardiac patients, pulmonary rehabilitation, and activity counseling in diabetic patients, among others. Unfortunately, the data generated by wearable devices is seldom integrated into programmatic self-management chronic disease regimens. In addition, there is lack of evidence supporting sustained use or effects on health outcomes, as studies have primarily focused on establishing the feasibility of monitoring activity and the association of measured activity with short-term benefits. Monitoring devices can make a direct and real-time impact on self-management, but the validity and reliability of measurements need to be established. In order for patients to become engaged in wearable data gathering, key patient-centered issues relating to usefulness in care, motivation, the safety and privacy of information, and clinical integration need to be addressed. Because the successful usage of wearables requires an ability to comprehend and utilize personal health data, the user experience should account for individual differences in numeracy skills and apply evidence-based behavioral science principles to promote continued engagement. Activity monitoring has the potential to engage patients as advocates in their personalized care, as well as offer health care providers real world assessments of their patients' daily activity patterns. This potential will be realized as the voice of the chronic disease patients is accounted for in the design of devices, measurements are validated against existing clinical assessments, devices become part of the treatment 'prescription', behavior

  19. A chest drainage system with a real-time pressure monitoring device.

    PubMed

    Chen, Chih-Hao; Liu, Tsang-Pai; Chang, Ho; Huang, Tung-Sung; Liu, Hung-Chang; Chen, Chao-Hung

    2015-07-01

    Tube thoracostomy is a common procedure. A chest bottle may be used to both collect fluids and monitor the recovery of the chest condition. The presence of the "tidaling phenomenon" in the bottle can be reflective of the extent of patient's recovery. However, current practice essentially depends on gross observation of the bottle. The device used here is designed for a real-time monitoring of change in pleural pressure to allow clinicians to objectively determine when the lung has recovered, which is crucially important in order to judge when to remove the chest tube. The device is made of a pressure sensor with an operating range between -100 to +100 cmH2O and an amplifying using the "Wheatstone bridge" concept. Recording and analysis was performed with LABview software. The data can be shown in real-time on screen and also be checked retrospectively. The device was connected to the second part of a three-bottle drain system by a three-way connector. The test animals were two 40-kg pigs. We used a thoracoscopic procedure to create an artificial lung laceration with endoscopic scissors. Active air leaks could result in vigorous tidaling phenomenon up to 20 cmH2O. In the absence of gross tidaling phenomenon, the pressure changes were around 0.25 cmH2O. This real-time pleural pressure monitoring device can help clinicians objectively judge the extent of recovery of the chest condition. It can be used as an effective adjunct with the current chest drain system.

  20. Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring

    PubMed Central

    Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni

    2015-01-01

    This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro. PMID:26295394

  1. Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring.

    PubMed

    Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni

    2015-08-19

    This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro.

  2. Wearable sweat detector device design for health monitoring and clinical diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Qiuchen; Zhang, Xiaodong; Tian, Bihao; Zhang, Hongyan; Yu, Yang; Wang, Ming

    2017-06-01

    Miniaturized sensor is necessary part for wearable detector for biomedical applications. Wearable detector device is indispensable for online health care. This paper presents a concept of an wearable digital health monitoring device design for sweat analysis. The flexible sensor is developed to quantify the amount of hydrogen ions in sweat and skin temperature in real time. The detection system includes pH sensor, temperature sensor, signal processing module, power source, microprocessor, display module and so on. The sweat monitoring device is designed for sport monitoring or clinical diagnosis.

  3. Device for monitoring cell voltage

    DOEpatents

    Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  4. Recent Advances in Free-Living Physical Activity Monitoring: A Review

    PubMed Central

    Andre, David; Wolf, Donna L.

    2007-01-01

    It has become clear recently that the epidemic of type 2 diabetes sweeping the globe is associated with decreased levels of physical activity and an increase in obesity. Incorporating appropriate and sufficient physical activity into one's life is an essential component of achieving and maintaining a healthy weight and overall health, especially for those with type II diabetes mellitus. Regular physical activity can have a positive impact by lowering blood glucose, helping the body to be more efficient at using insulin. There are other substantial benefits for patients with diabetes, including prevention of cardiovascular disease, hyperlipidemia, hypertension, and obesity. Several complications of utilizing a self-care treatment methodology involving exercise include (1) patients may not know how much activity that they engage in and (2) health-care providers do not have objective measurements of how much activity their patients perform. However, several technological advances have brought a variety of activity monitoring devices to the market that can address these concerns. Ranging from simple pedometers to multisensor devices, the different technologies offer varying levels of accuracy, comfort, and reliability. The key notion is that by providing feedback to the patient, motivation can be increased and targets can be set and aimed toward. Although these devices are not specific to the treatment of diabetes, the importance of physical activity in treating the disease makes an understanding of these devices important. This article reviews these physical activity monitors and describes the advantages and disadvantages of each. PMID:19885145

  5. Health State Utilities Associated with Glucose Monitoring Devices.

    PubMed

    Matza, Louis S; Stewart, Katie D; Davies, Evan W; Hellmund, Richard; Polonsky, William H; Kerr, David

    2017-03-01

    Glucose monitoring is important for patients with diabetes treated with insulin. Conventional glucose monitoring requires a blood sample, typically obtained by pricking the finger. A new sensor-based system called "flash glucose monitoring" monitors glucose levels with a sensor worn on the arm, without requiring blood samples. To estimate the utility difference between these two glucose monitoring approaches for use in cost-utility models. In time trade-off interviews, general population participants in the United Kingdom (London and Edinburgh) valued health states that were drafted and refined on the basis of literature, clinician input, and a pilot study. The health states had identical descriptions of diabetes and insulin treatment, differing only in glucose monitoring approach. A total of 209 participants completed the interviews (51.7% women; mean age = 42.1 years). Mean utilities were 0.851 ± 0.140 for conventional monitoring and 0.882 ± 0.121 for flash monitoring (significant difference between the mean utilities; t = 8.3; P < 0.0001). Of the 209 participants, 78 (37.3%) had a higher utility for flash monitoring, 2 (1.0%) had a higher utility for conventional monitoring, and 129 (61.7%) had the same utility for both health states. The flash glucose monitoring system was associated with a significantly greater utility than the conventional monitoring system. This difference may be useful in cost-utility models comparing the value of glucose monitoring devices for patients with diabetes. This study adds to the literature on treatment process utilities, suggesting that time trade-off methods may be used to quantify preferences among medical devices. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  6. A chest drainage system with a real-time pressure monitoring device

    PubMed Central

    Liu, Tsang-Pai; Huang, Tung-Sung; Liu, Hung-Chang; Chen, Chao-Hung

    2015-01-01

    Background Tube thoracostomy is a common procedure. A chest bottle may be used to both collect fluids and monitor the recovery of the chest condition. The presence of the “tidaling phenomenon” in the bottle can be reflective of the extent of patient’s recovery. Objectives However, current practice essentially depends on gross observation of the bottle. The device used here is designed for a real-time monitoring of change in pleural pressure to allow clinicians to objectively determine when the lung has recovered, which is crucially important in order to judge when to remove the chest tube. Methods The device is made of a pressure sensor with an operating range between −100 to +100 cmH2O and an amplifying using the “Wheatstone bridge” concept. Recording and analysis was performed with LABview software. The data can be shown in real-time on screen and also be checked retrospectively. The device was connected to the second part of a three-bottle drain system by a three-way connector. Results The test animals were two 40-kg pigs. We used a thoracoscopic procedure to create an artificial lung laceration with endoscopic scissors. Active air leaks could result in vigorous tidaling phenomenon up to 20 cmH2O. In the absence of gross tidaling phenomenon, the pressure changes were around 0.25 cmH2O. Conclusions This real-time pleural pressure monitoring device can help clinicians objectively judge the extent of recovery of the chest condition. It can be used as an effective adjunct with the current chest drain system. PMID:26380726

  7. Post-operative blood loss monitoring device: a new tool for nursing activities.

    PubMed

    Logier, R; Carette, D; Sozanski, J P; Jeanne, M; Jounwaz, R; De Jonckheere, J

    2012-01-01

    In most medical specialties, after surgery, it is usual to place a drain at the operative site level, in order to assist the blood flow-out if necessary. This drainage allows avoiding the formation of hematomas and contributes to tissues recovery. However, postoperative blood loss can lead to serious consequences. Also, it is necessary to continuously check the blood output volume in order to be able to intervene quickly in case of too significant losses. In daily clinical practice, this task is due to the nursing staff that periodically records the blood level inside the supple bag connected to the drain. However, this method is not accurate about the volume of lost blood and does not reflect the flow of losses which is an important parameter regarding the evolution of the patient setting. We have designed and developed a prototype of a blood loss monitoring device based on the continuous weight measurement of the blood bag connected to the drain. This device is fixed on the bed and is able to instantaneously alert the medical staff in case of abnormal blood flow-out.

  8. RE-DEFINING THE ROLES OF SENSORS IN OBJECTIVE PHYSICAL ACTIVITY MONITORING

    PubMed Central

    Chen, Kong Y.; Janz, Kathleen F.; Zhu, Weimo; Brychta, Robert J.

    2011-01-01

    Background As physical activity researchers are increasingly using objective portable devices, this review describes current state of the technology to assess physical activity, with a focus on specific sensors and sensor properties currently used in monitors and their strengths and weakness. Additional sensors and sensor properties desirable for activity measurement and best practices for users and developers also are discussed. Best Practices We grouped current sensors into three broad categories for objectively measuring physical activity: associated body movement, physiology, and context. Desirable sensor properties for measuring physical activity and the importance of these properties in relationship to specific applications are addressed, and the specific roles of transducers and data acquisition systems within the monitoring devices are defined. Technical advancements in sensors, microcomputer processors, memory storage, batteries, wireless communication, and digital filters have made monitors more usable for subjects (smaller, more stable, and longer running time) and for researchers (less costly, higher time resolution and memory storage, shorter download time, and user-defined data features). Future Directions Users and developers of physical activity monitors should learn about the basic properties of their sensors, such as range, accuracy, precision, while considering the data acquisition/filtering steps that may be critical to data quality and may influence the desirable measurement outcome(s). PMID:22157770

  9. Comparison of the performance of the activPAL Professional physical activity logger to a discrete accelerometer-based activity monitor.

    PubMed

    Godfrey, A; Culhane, K M; Lyons, G M

    2007-10-01

    The aim of this study was to assess the accuracy of the 'activPAL Professional' physical activity logger by comparing its output to that of a proven discrete accelerometer-based activity monitor during extended measurements on healthy subjects while performing activities of daily living (ADL). Ten healthy adults, with unrestricted mobility, wore both the activPAL and the discrete dual accelerometer (Analog Devices ADXL202)-based activity monitor that recorded in synchronization with each other. The accelerometer derived data were then compared to that generated by the activPAL and a complete statistical and error analysis was performed using a Matlab program. This program determined trunk and thigh inclination angles to distinguish between sitting/lying, standing and stepping for the discrete accelerometer device and amount of time spent on each activity. Analysis was performed on a second-by-second basis and then categorized at 15s intervals in direct comparison with the activPAL generated data. Of the total time monitored (approximately 60 h) the detection accuracies for static and dynamic activities were approximately 98%. In a population of healthy adults, the data obtained from the activPAL Professional physical activity logger for both static and dynamic activities showed a close match to a proven discrete accelerometer data with an offset of approximately 2% between the two systems.

  10. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    PubMed Central

    Solovei, Dmitry; Žák, Jaromír; Majzlíková, Petra; Sedláček, Jiří; Hubálek, Jaromír

    2015-01-01

    A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN) was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes' coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed. PMID:25594591

  11. Vaginal Electrohysterography: The Design and Preliminary Evaluation of a Novel Device for Uterine Contraction Monitoring in an Ovine Model

    PubMed Central

    SUNWOO, Nate; HWANG, Karin; BLAKEMORE, Karin; AINA-MUMUNEY, Abimbola

    2016-01-01

    Objective Tocodynamometry is the most common method of labor evaluation but most clinicians would agree it has limited utility before 26 weeks gestation. The obesity epidemic has further reduced our ability to accurately detect uterine contractions using the tocodynamometer at any gestational age. We sought to design and test a novel contraction monitor that bypasses the maternal abdomen. Methods An optimized version of an intravaginal electrohysterographic ring device was tested in an ovine model. The device and its methodology as well as the tocodynamometer were validated against the current gold standard uterine activity monitor, the intrauterine pressure catheter in 6 sheep at varying gestational ages. Results Both the intravaginal ring device and the tocodynamometer correlated well with IUPC, r = 0.69 and 0.73 respectively (p<0.001). The number of contractions detected by each monitor remained similar even after accounting for confounders. Conclusions These results suggest that uterine activity can be monitored from the vaginal interface in an ovine model and offers an alternative clinical tool for the detection of contractions in situations in which tocodynamometry would be ineffective or intrauterine monitoring inappropriate. PMID:26458732

  12. Reliability of home blood pressure monitoring devices in pregnancy.

    PubMed

    Tremonti, Chris; Beddoe, Jennifer; Brown, Mark A

    2017-04-01

    Home blood pressure monitors are freely available and used for women during pregnancy. The exact role of home blood pressure monitoring in pregnancy remains uncertain, and few such monitors have been validated for use in pregnancy. As it has been our Unit's policy to test these devices against sphygmomanometry (as the gold standard) before clinical use for some years now, we undertook this study to ascertain the degree of accuracy or inaccuracy of these devices in usual clinical practice. We analysed 9 consecutive blood pressures (BP) alternately using an automated home BP device and sphygmomanometry in 127 pregnant women with hypertension using two different methods: a) a modified version of the British Hypertension Society's guidelines for analysing automated devices, and b) examining the difference between the mean of blood pressure readings by the device and sphygmomanometry for each patient. 87 devices (69%) had systolic BP within 5mmHg or less and 98 (77%) were within 5mmHg for diastolic BP. The frequency of systolic BPs within 5mmHg was similar for non-validated vs. validated devices (75vs. 60%; p=0.23). Similarly, diastolic BP within 5mmHg was similar for non-validated vs. validated devices (86vs. 68%, p=0.06). Our findings showed that a wide variety of devices are used and few if any have been formally validated for use in pregnancy. As a group the devices provide accurate BP in the majority of women, but up to a quarter will have a BP difference of at least 5mmHg, and this is not related to the absolute BP. Furthermore using a home BP device validated for general use in non-pregnant subjects appeared as reliable as using other non-validated devices. On the basis of these data we recommended clinicians always perform their own analysis of a patient's home BP machine accuracy prior to home use using a simple protocol as described here, even if the machine has been validated for general use. Copyright © 2017 International Society for the Study of

  13. Investigating User Identification in Remote Patient Monitoring Devices.

    PubMed

    Ondiege, Brian; Clarke, Malcolm

    2017-09-13

    With the increase in the number of people having a chronic disease, there is an increase in households having more than a single person suffering from the same chronic illness. One problem of monitoring such patients in their own home is that current devices have a limitation in the number of people who can use a single device. This study investigates the use of Near Field Communication (NFC) for identification in a multi-user environment. A mixed-method qualitative and quantitative approach was adopted, including focus groups, observations and a field trial. Data were collected in three phases. In Phase 1, five focus groups were conducted with patients to determine their beliefs, concerns and issues with using identification in remote patient monitoring devices. In Phase 2, participants were given a blood pressure monitor modified to include an NFC reader to enable identification. The modified device was given to patients living as a couple in the same household and both suffering from hypertension. Both patients used the device for a period of two weeks to observe their acceptance of the technology and determine their experience of usage. A total of 40 (20 couples) patients participated in the trial. Non-adherence to the full monitoring regimen was low and was mainly due to usability issues or commitments taking them away from the home and thus unable to take readings. After the trial period participants were invited to discuss their experiences with the technology in a focus group discussion (Phase 3), a total of five focus groups were conducted. Focus group discussions with the patients revealed that most participants liked using the system and were not apprehensive towards Healthcare Information Technology (HIT). The participants also had suggestions for improvements that could be made to the modified blood pressure monitor (such as, rechargeable in place batteries, integrate the components, easier to use cuff, and increased sensitivity of the NFC reader) that

  14. Investigating User Identification in Remote Patient Monitoring Devices

    PubMed Central

    Clarke, Malcolm

    2017-01-01

    With the increase in the number of people having a chronic disease, there is an increase in households having more than a single person suffering from the same chronic illness. One problem of monitoring such patients in their own home is that current devices have a limitation in the number of people who can use a single device. This study investigates the use of Near Field Communication (NFC) for identification in a multi-user environment. Methods: A mixed-method qualitative and quantitative approach was adopted, including focus groups, observations and a field trial. Data were collected in three phases. In Phase 1, five focus groups were conducted with patients to determine their beliefs, concerns and issues with using identification in remote patient monitoring devices. In Phase 2, participants were given a blood pressure monitor modified to include an NFC reader to enable identification. The modified device was given to patients living as a couple in the same household and both suffering from hypertension. Both patients used the device for a period of two weeks to observe their acceptance of the technology and determine their experience of usage. A total of 40 (20 couples) patients participated in the trial. Non-adherence to the full monitoring regimen was low and was mainly due to usability issues or commitments taking them away from the home and thus unable to take readings. After the trial period participants were invited to discuss their experiences with the technology in a focus group discussion (Phase 3), a total of five focus groups were conducted. Focus group discussions with the patients revealed that most participants liked using the system and were not apprehensive towards Healthcare Information Technology (HIT). The participants also had suggestions for improvements that could be made to the modified blood pressure monitor (such as, rechargeable in place batteries, integrate the components, easier to use cuff, and increased sensitivity of the NFC

  15. Device Would Monitor Body Parameters Continuously

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr.

    1995-01-01

    Proposed miniature electronic circuit continuously measures temperature of human subject. Once mounted on subject's skin with medical adhesive tape, electronic thermometer remains in thermal equilibrium with subject's body; thereafter, no need to wait until thermometer reaches body temperature before taking reading. Design provides for switches used to set alarm alerting medical attendants if subject's temperature exceeds critical level. For use on very young child, electronic thermometer sewed into shirt or other suitable garment; device held in contact with skin, and child could not swallow it. Replacement of sensor and computing algorithm changes temperature monitor to cardiorespiratory monitor.

  16. Device to monitor sock use in people using prosthetic limbs: technical report.

    PubMed

    Sanders, Joan E; Murthy, Revathi; Cagle, John C; Allyn, Katheryn J; Phillips, Reid H; Otis, Brian P

    2012-01-01

    A device using radio frequency identification (RFID) technology was developed to continuously monitor sock use in people who use prosthetic limbs. RFID tags were placed on prosthetic socks worn by subjects with transtibial limb loss, and a high-frequency RFID reader and antenna were placed in a portable unit mounted to the outside of the prosthetic socket. Bench testing showed the device to have a maximum read range between 5.6 cm and 12.7 cm, depending on the RFID tag used. Testing in a laboratory setting on three participants with transtibial amputation showed that the device correctly monitored sock presence during sitting, standing, and walking activity when one or two socks were worn but was less reliable when more socks were used. Accurate detection was sensitive to orientation of the tag relative to the reader, presence of carbon fiber in the prosthetic socket, pistoning of the limb in the socket, and overlap among the tags. Use of ultra-high-frequency RFID may overcome these limitations. With improvements, the technology may prove useful to practitioners prescribing volume accommodation strategies for patients by providing information about sock use between clinical visits, including timing and consistency of daily sock-ply changes.

  17. Activity monitoring using a mHealth device and correlations with psychopathology in patients with chronic schizophrenia.

    PubMed

    Shin, Seunghwan; Yeom, Chan-Woo; Shin, Cheolmin; Shin, Jae-Hyun; Jeong, Jae Hoon; Shin, Jung Uk; Lee, Young Ryeol

    2016-12-30

    There are few studies of mobile-Health (mHealth) device application with schizophrenic patients. We aimed to quantitatively assess patient's activity and the relationship between their physical activity and the severity of their psychopathologies. Then we attempted to identify the patients who required intervention and evaluated the feasibility of using the mHealth device. A total of 61 of the 76 available hospitalized patients with chronic schizophrenia who participated in the activity programs were enrolled. They wore a mHealth device for a week to assess their activity (steps/day). The Positive and Negative Syndrome Scale (PANSS) was completed by the subjects. As a result, the positive subscale of the PANSS and the positive and negative factors of the PANSS 5-factor structure showed a predictive value for low levels of physical activity. The group of subjects with a high total PANSS score had a significantly lower level of physical activity than the other groups. In conclusion, physical activity showed a significant association with positive symptoms as well as negative symptoms. The mHealth device showed relatively good feasibility for schizophrenic patients. We should pay more attention to the activity of patients with high PANSS scores. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study.

    PubMed

    Ferguson, Ty; Rowlands, Alex V; Olds, Tim; Maher, Carol

    2015-03-27

    Technological advances have seen a burgeoning industry for accelerometer-based wearable activity monitors targeted at the consumer market. The purpose of this study was to determine the convergent validity of a selection of consumer-level accelerometer-based activity monitors. 21 healthy adults wore seven consumer-level activity monitors (Fitbit One, Fitbit Zip, Jawbone UP, Misfit Shine, Nike Fuelband, Striiv Smart Pedometer and Withings Pulse) and two research-grade accelerometers/multi-sensor devices (BodyMedia SenseWear, and ActiGraph GT3X+) for 48-hours. Participants went about their daily life in free-living conditions during data collection. The validity of the consumer-level activity monitors relative to the research devices for step count, moderate to vigorous physical activity (MVPA), sleep and total daily energy expenditure (TDEE) was quantified using Bland-Altman analysis, median absolute difference and Pearson's correlation. All consumer-level activity monitors correlated strongly (r > 0.8) with research-grade devices for step count and sleep time, but only moderately-to-strongly for TDEE (r = 0.74-0.81) and MVPA (r = 0.52-0.91). Median absolute differences were generally modest for sleep and steps (<10% of research device mean values for the majority of devices) moderate for TDEE (<30% of research device mean values), and large for MVPA (26-298%). Across the constructs examined, the Fitbit One, Fitbit Zip and Withings Pulse performed most strongly. In free-living conditions, the consumer-level activity monitors showed strong validity for the measurement of steps and sleep duration, and moderate valid for measurement of TDEE and MVPA. Validity for each construct ranged widely between devices, with the Fitbit One, Fitbit Zip and Withings Pulse being the strongest performers.

  19. 30 CFR 77.211-1 - Continuous methane monitoring device; installation and operation; automatic deenergization of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Continuous methane monitoring device... Installations § 77.211-1 Continuous methane monitoring device; installation and operation; automatic deenergization of electric equipment. Continuous methane monitoring devices shall be set to deenergize...

  20. 30 CFR 77.211-1 - Continuous methane monitoring device; installation and operation; automatic deenergization of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Continuous methane monitoring device... Installations § 77.211-1 Continuous methane monitoring device; installation and operation; automatic deenergization of electric equipment. Continuous methane monitoring devices shall be set to deenergize...

  1. Comparison of lancing devices for self-monitoring of blood glucose regarding lancing pain.

    PubMed

    Kocher, Serge; Tshiananga, J K Tshiang; Koubek, Richard

    2009-09-01

    Self-monitoring of blood glucose empowers diabetes patients to effectively control their blood glucose (BG) levels. A potential barrier to frequent BG controls is lancing pain, intrinsically linked to pricking the finger several times a day. In this study, we compared different state-of-the-art lancing devices from leading manufacturers regarding lancing pain, and we intended to identify lancing devices that are less painful. First, 165 subjects compared 6 different BG monitoring systems-consisting of a lancing device and a BG meter-at home for 36 days and at least 3 BG tests per day. Second, the subjects directly compared 6 different lancing devices-independent from a BG meter-in a laboratory setting. The test results were collected in questionnaires, and lancing pain was rated on a numerical rating scale. One hundred fifty-seven subjects were included in the analysis. Accu-Chek BG monitoring systems were significantly (p < or = .006) preferred to competitor BG monitoring systems and were rated by >50% of the subjects as "less painful" than competitor BG monitoring systems. Accu-Chek lancing devices were significantly (p < .001) preferred to competitor lancing devices and were rated by >60% of the subjects as "less painful" than competitor lancing devices. We found significant differences in lancing pain between lancing devices. Diabetes patients clearly preferred lancing devices that cause less lancing pain. In order to improve patient compliance with respect to an adequate glycemic control, the medical staff should preferentially prescribe lancing devices that cause less lancing pain. 2009 Diabetes Technology Society.

  2. Internet-Based Device-Assisted Remote Monitoring of Cardiovascular Implantable Electronic Devices

    PubMed Central

    Pron, G; Ieraci, L; Kaulback, K

    2012-01-01

    evaluating quality of life in patients followed up remotely at 3 and 6 months; no values were reported. Patient satisfaction was evaluated in 5 cohort studies, all in short term follow-up: 1 for the Home Monitoring® RMS, 3 for the Care Link® RMS, and 1 for the House Call 11® RMS. – Patients reported receiving a sense of security from the transmitter, a good relationship with nurses and physicians, positive implications for their health, and satisfaction with RM and organization of services. – Although patients reported that the system was easy to implement and required less than 10 minutes to transmit information, a variable proportion of patients (range, 9% 39%) reported that they needed the assistance of a caregiver for their transmission. – The majority of patients would recommend RM to other ICD patients. – Patients with hearing or other physical or mental conditions hindering the use of the system were excluded from studies, but the frequency of this was not reported. Physician satisfaction was evaluated in 3 studies, all with the Care Link® RMS: – Physicians reported an ease of use and high satisfaction with a generally short-term use of the RMS. – Physicians reported being able to address the problems in unscheduled patient transmissions or physician initiated transmissions remotely, and were able to handle the majority of the troubleshooting calls remotely. – Both nurses and physicians reported a high level of satisfaction with the web registry system. 2. Effectiveness of Remote Monitoring Systems in Heart Failure Patients for Cardiac Arrhythmia and Heart Failure Episodes Remote follow-up of HF patients implanted with ICD or CRT devices, generally managed in specialized HF clinics, was evaluated in 3 cohort studies: 1 involved the Home Monitoring® RMS and 2 involved the Care Link® RMS. In these RMSs, in addition to the standard diagnostic features, the cardiac devices continuously assess other variables such as patient activity, mean heart rate

  3. Monitoring activities of daily living based on wearable wireless body sensor network.

    PubMed

    Kańtoch, E; Augustyniak, P; Markiewicz, M; Prusak, D

    2014-01-01

    With recent advances in microprocessor chip technology, wireless communication, and biomedical engineering it is possible to develop miniaturized ubiquitous health monitoring devices that are capable of recording physiological and movement signals during daily life activities. The aim of the research is to implement and test the prototype of health monitoring system. The system consists of the body central unit with Bluetooth module and wearable sensors: the custom-designed ECG sensor, the temperature sensor, the skin humidity sensor and accelerometers placed on the human body or integrated with clothes and a network gateway to forward data to a remote medical server. The system includes custom-designed transmission protocol and remote web-based graphical user interface for remote real time data analysis. Experimental results for a group of humans who performed various activities (eg. working, running, etc.) showed maximum 5% absolute error compared to certified medical devices. The results are promising and indicate that developed wireless wearable monitoring system faces challenges of multi-sensor human health monitoring during performing daily activities and opens new opportunities in developing novel healthcare services.

  4. [Development of a wearable electrocardiogram monitor with recognition of physical activity scene].

    PubMed

    Wang, Zihong; Wu, Baoming; Yin, Jian; Gong, Yushun

    2012-10-01

    To overcome the problems of current electrocardiogram (ECG) tele-monitoring devices used for daily life, according to information fusion thought and by means of wearable technology, we developed a new type of wearable ECG monitor with the capability of physical activity recognition in this paper. The ECG monitor synchronously detected electrocardiogram signal and body acceleration signal, and recognized the scene information of physical activity, and finally determined the health status of the heart. With the advantages of accuracy for measurement, easy to use, comfort to wear, private feelings and long-term continuous in monitoring, this ECG monitor is quite fit for the heart-health monitoring in daily life.

  5. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    USDA-ARS?s Scientific Manuscript database

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...

  6. Comparison of Lancing Devices for Self-Monitoring of Blood Glucose Regarding Lancing Pain

    PubMed Central

    Kocher, Serge; Tshiananga, J. K. Tshiang; Koubek, Richard

    2009-01-01

    Background Self-monitoring of blood glucose empowers diabetes patients to effectively control their blood glucose (BG) levels. A potential barrier to frequent BG controls is lancing pain, intrinsically linked to pricking the finger several times a day. In this study, we compared different state-of-the-art lancing devices from leading manufacturers regarding lancing pain, and we intended to identify lancing devices that are less painful. Methods First, 165 subjects compared 6 different BG monitoring systems—consisting of a lancing device and a BG meter—at home for 36 days and at least 3 BG tests per day. Second, the subjects directly compared 6 different lancing devices—independent from a BG meter—in a laboratory setting. The test results were collected in questionnaires, and lancing pain was rated on a numerical rating scale. Results One hundred fifty-seven subjects were included in the analysis. Accu-Chek BG monitoring systems were significantly (p ≤ .006) preferred to competitor BG monitoring systems and were rated by >50% of the subjects as “less painful” than competitor BG monitoring systems. Accu-Chek lancing devices were significantly (p < .001) preferred to competitor lancing devices and were rated by >60% of the subjects as “less painful” than competitor lancing devices. Conclusions We found significant differences in lancing pain between lancing devices. Diabetes patients clearly preferred lancing devices that cause less lancing pain. In order to improve patient compliance with respect to an adequate glycemic control, the medical staff should preferentially prescribe lancing devices that cause less lancing pain. PMID:20144427

  7. Remote monitoring of patients with implanted devices: data exchange and integration.

    PubMed

    Van der Velde, Enno T; Atsma, Douwe E; Foeken, Hylke; Witteman, Tom A; Hoekstra, Wybo H G J

    2013-06-01

    Remote follow-up of implanted implantable cardioverter defibrillators (ICDs) may offer a solution to the problem of overcrowded outpatient clinics, and may also be effective in detecting clinical events early. Data obtained from remote follow up systems, as developed by all major device companies, are stored in a central database system, operated and owned by the device company. A problem now arises that the patient's clinical information is partly stored in the local electronic health record (EHR) system in the hospital, and partly in the remote monitoring database, which may potentially result in patient safety issues. To address the requirement of integrating remote monitoring data in the local EHR, the Integrating the Healthcare Enterprise (IHE) Implantable Device Cardiac Observation (IDCO) profile has been developed. This IHE IDCO profile has been adapted by all major device companies. In our hospital, we have implemented the IHE IDCO profile to import data from the remote databases from two device vendors into the departmental Cardiology Information System (EPD-Vision). Data is exchanged via a HL7/XML communication protocol, as defined in the IHE IDCO profile. By implementing the IHE IDCO profile, we have been able to integrate the data from the remote monitoring databases in our local EHRs. It can be expected that remote monitoring systems will develop into dedicated monitoring and therapy platforms. Data retrieved from these systems should form an integral part of the electronic patient record as more and more out-patient clinic care will shift to personalized care provided at a distance, in other words at the patient's home.

  8. Device monitoring strategies in acute heart failure syndromes.

    PubMed

    Samara, Michael A; Tang, W H Wilson

    2011-09-01

    Acute heart failure syndromes (AHFS) represent the most common discharge diagnoses in adults over age 65 and translate into dramatically increased heart failure-associated morbidity and mortality. Conventional approaches to the early detection of pulmonary and systemic congestion have been shown to be of limited sensitivity. Despite their proven efficacy, disease management and structured telephone support programs have failed to achieve widespread use in part due to their resource intensiveness and reliance upon motivated patients. While once thought to hold great promise, results from recent prospective studies on telemonitoring strategies have proven disappointing. Implantable devices with their capacity to monitor electrophysiologic and hemodynamic parameters over long periods of time and with minimal reliance on patient participation may provide solutions to some of these problems. Conventional electrophysiologic parameters and intrathoracic impedance data are currently available in the growing population of heart failure patients with equipped devices. A variety of implantable hemodynamic monitors are currently under investigation. How best to integrate these devices into a systematic approach to the management of patients before, during, and after AHFS is yet to be established.

  9. FPGA Based "Intelligent Tap" Device for Real-Time Ethernet Network Monitoring

    NASA Astrophysics Data System (ADS)

    Cupek, Rafał; Piękoś, Piotr; Poczobutt, Marcin; Ziębiński, Adam

    This paper describes an "Intelligent Tap" - hardware device dedicated to support real-time Ethernet networks monitoring. Presented solution was created as a student project realized in Institute of Informatics, Silesian University of Technology with support from Softing A.G company. Authors provide description of realized FPGA based "Intelligent Tap" architecture dedicated for Real-Time Ethernet network monitoring systems. The practical device realization and feasibility study conclusions are presented also.

  10. Remote monitoring of cardiovascular implanted electronic devices: a paradigm shift for the 21st century.

    PubMed

    Cronin, Edmond M; Varma, Niraj

    2012-07-01

    Traditional follow-up of cardiac implantable electronic devices involves the intermittent download of largely nonactionable data. Remote monitoring represents a paradigm shift from episodic office-based follow-up to continuous monitoring of device performance and patient and disease state. This lessens device clinical burden and may also lead to cost savings, although data on economic impact are only beginning to emerge. Remote monitoring technology has the potential to improve the outcomes through earlier detection of arrhythmias and compromised device integrity, and possibly predict heart failure hospitalizations through integration of heart failure diagnostics and hemodynamic monitors. Remote monitoring platforms are also huge databases of patients and devices, offering unprecedented opportunities to investigate real-world outcomes. Here, the current status of the field is described and future directions are predicted.

  11. Evaluating the Validity of an Automated Device for Asthma Monitoring for Adolescents: Correlational Design.

    PubMed

    Rhee, Hyekyun; Belyea, Michael J; Sterling, Mark; Bocko, Mark F

    2015-10-16

    Symptom monitoring is a cornerstone of asthma self-management. Conventional methods of symptom monitoring have fallen short in producing objective data and eliciting patients' consistent adherence, particularly in teen patients. We have recently developed an Automated Device for Asthma Monitoring (ADAM) using a consumer mobile device as a platform to facilitate continuous and objective symptom monitoring in adolescents in vivo. The objectives of the study were to evaluate the validity of the device using spirometer data, fractional exhaled nitric oxide (FeNO), existing measures of asthma symptoms/control and health care utilization data, and to examine the sensitivity and specificity of the device in discriminating asthma cases from nonasthma cases. A total of 84 teens (42 teens with a current asthma diagnosis; 42 without asthma) aged between 13 and 17 years participated in the study. All participants used ADAM for 7 consecutive days during which participants with asthma completed an asthma diary two times a day. ADAM recorded the frequency of coughing for 24 hours throughout the 7-day trial. Pearson correlation and multiple regression were used to examine the relationships between ADAM data and asthma control, quality of life, and health care utilization at the time of the 7-day trial and 3 months later. A receiver operating characteristic (ROC) curve analysis was conducted to examine sensitivity and specificity based on the area under the curve (AUC) as an indicator of the device's capacity to discriminate between asthma versus nonasthma cases. ADAM data (cough counts) were negatively associated with forced expiratory volume in first second of expiration (FEV1) (r=-.26, P=.05), forced vital capacity (FVC) (r=-.31, P=.02), and overall asthma control (r=-.41, P=.009) and positively associated with daily activity limitation (r=.46, P=.01), nighttime (r=.40, P=.02) and daytime symptoms (r=.38, P=.02), and health care utilization (r=.61, P<.001). Device data were also

  12. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  13. Mahali: Space Weather Monitoring Using Multicore Mobile Devices

    NASA Astrophysics Data System (ADS)

    Pankratius, V.; Lind, F. D.; Coster, A. J.; Erickson, P. J.; Semeter, J. L.

    2013-12-01

    Analysis of Total Electron Content (TEC) measurements derived from Global Positioning System (GPS) signals has led to revolutionary new data products for space weather monitoring and ionospheric research. However, the current sensor network is sparse, especially over the oceans and in regions like Africa and Siberia, and the full potential of dense, global, real-time TEC monitoring remains to be realized. The Mahali project will prototype a revolutionary architecture that uses mobile devices, such as phones and tablets, to form a global space weather monitoring network. Mahali exploits the existing GPS infrastructure - more specifically, delays in multi-frequency GPS signals observed at the ground - to acquire a vast set of global TEC projections, with the goal of imaging multi-scale variability in the global ionosphere at unprecedented spatial and temporal resolution. With connectivity available worldwide, mobile devices are excellent candidates to establish crowd sourced global relays that feed multi-frequency GPS sensor data into a cloud processing environment. Once the data is within the cloud, it is relatively straightforward to reconstruct the structure of the space environment, and its dynamic changes. This vision is made possible owing to advances in multicore technology that have transformed mobile devices into parallel computers with several processors on a chip. For example, local data can be pre-processed, validated with other sensors nearby, and aggregated when transmission is temporarily unavailable. Intelligent devices can also autonomously decide the most practical way of transmitting data with in any given context, e.g., over cell networks or Wifi, depending on availability, bandwidth, cost, energy usage, and other constraints. In the long run, Mahali facilitates data collection from remote locations such as deserts or on oceans. For example, mobile devices on ships could collect time-tagged measurements that are transmitted at a later point in

  14. New study on the correlation between carbon dioxide concentration in the environment and radon monitor devices.

    PubMed

    Shahrokhi, A; Burghele, B D; Fábián, F; Kovács, T

    2015-12-01

    The influence of high geogenic carbon dioxide concentrations on monitoring devices might present a significant challenge to the measurement of radon concentrations in environments with a high level of carbon dioxide concentration such as volcano sites, mofettes, caves, etc. In this study, the influence of carbon dioxide concentration on several different types of radon monitor devices - including Alpha Spectrometry (Sarad RTM 2200, EQF 3220, RAD7), Ionizing Chamber (AlphaGUARD PQ2000 PRO) and Active Cell (Active scintillation cell, Pylon 300A) - was examined to represent new aspects of radon measuring in environments with carbon dioxide. In light of the results, all measuring devices were exposed to variable conditions affected by carbon dioxide concentration, except for the AlphaGUARD, which was kept in a steady state throughout the experiment. It was observed that alpha spectroscopy devices were affected by carbon dioxide, since measured radon concentrations decreased in the presence of 70% and 90% carbon dioxide concentrations by 26.5 ± 2% and 14.5 ± 2.5% for EQF 3220, and 32 ± 2% and 35.5 ± 2% for RTM 2200. However, the ionizing chamber instrument was unaffected by changes in carbon dioxide concentration. It was determined that the RAD7 performed relatively inefficiently in the presence of carbon dioxide concentrations higher than 67% by an overall efficiency factor of approximately 0.52, confirming that it is not an admissible radon monitor instrument in environments with high carbon dioxide concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Physical Activity Monitoring: Gadgets and Uses. Article #6 in a 6-Part Series

    ERIC Educational Resources Information Center

    Mears, Derrick

    2010-01-01

    An early 15th century drawing by Leonardo da Vinci depicted a device that used gears and a pendulum that moved in synchronization with the wearer as he or she walked. This is believed to be the early origins of today's physical activity monitoring devices. Today's devices have vastly expanded on da Vinci's ancient concept with a myriad of options…

  16. Adherence with physical activity monitoring wearable devices in a community-based population: observations from the Washington, D.C., Cardiovascular Health and Needs Assessment.

    PubMed

    Yingling, Leah R; Mitchell, Valerie; Ayers, Colby R; Peters-Lawrence, Marlene; Wallen, Gwenyth R; Brooks, Alyssa T; Troendle, James F; Adu-Brimpong, Joel; Thomas, Samantha; Henry, JaWanna; Saygbe, Johnetta N; Sampson, Dana M; Johnson, Allan A; Graham, Avis P; Graham, Lennox A; Wiley, Kenneth L; Powell-Wiley, Tiffany

    2017-12-01

    Wearable mobile health (mHealth) technologies offer approaches for targeting physical activity (PA) in resource-limited, community-based interventions. We sought to explore user characteristics of PA tracking, wearable technology among a community-based population within a health and needs assessment. In 2014-2015, we conducted the Washington, D.C., Cardiovascular Health and Needs Assessment in predominantly African-American churches among communities with higher obesity rates and lower household incomes. Participants received a mHealth PA monitor and wirelessly uploaded PA data weekly to church data collection hubs. Participants (n = 99) were 59 ± 12 years, 79% female, and 99% African-American, with a mean body mass index of 33 ± 7 kg/m 2 . Eighty-one percent of participants uploaded PA data to the hub and were termed "PA device users." Though PA device users were more likely to report lower household incomes, no differences existed between device users and non-users for device ownership or technology fluency. Findings suggest that mHealth systems with a wearable device and data collection hub may feasibly target PA in resource-limited communities.

  17. Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring.

    PubMed

    Sharma, Sanjiv; Saeed, Anwer; Johnson, Christopher; Gadegaard, Nikolaj; Cass, Anthony Eg

    2017-04-01

    The next generation of devices for personal healthcare monitoring will comprise molecular sensors to monitor analytes of interest in the skin compartment. Transdermal devices based on microneedles offer an excellent opportunity to explore the dynamics of molecular markers in the interstitial fluid, however good acceptability of these next generation devices will require several technical problems associated with current commercially available wearable sensors to be overcome. These particularly include reliability, comfort and cost. An essential pre-requisite for transdermal molecular sensing devices is that they can be fabricated using scalable technologies which are cost effective. We present here a minimally invasive microneedle array as a continuous monitoring platform technology. Method for scalable fabrication of these structures is presented. The microneedle arrays were characterised mechanically and were shown to penetrate human skin under moderate thumb pressure. They were then functionalised and evaluated as glucose, lactate and theophylline biosensors. The results suggest that this technology can be employed in the measurement of metabolites, therapeutic drugs and biomarkers and could have an important role to play in the management of chronic diseases.

  18. Monitoring devices and systems for monitoring frequency hopping wireless communications, and related methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derr, Kurt W.; Richardson, John G.

    Monitoring devices and systems comprise a plurality of data channel modules coupled to processing circuitry. Each data channel module of the plurality of data channel modules is configured to capture wireless communications for a selected frequency channel. The processing circuitry is configured to receive captured wireless communications from the plurality of data channel modules and to organize received wireless communications according to at least one parameter. Related methods of monitoring wireless communications are also disclosed.

  19. The Development of an Automated Device for Asthma Monitoring for Adolescents: Methodologic Approach and User Acceptability

    PubMed Central

    Miner, Sarah; Sterling, Mark; Halterman, Jill S; Fairbanks, Eileen

    2014-01-01

    algorithm was 70% (21/30), and, on average, 2 coughs per hour were identified as false positive. ADAM also kept track of the their activity level throughout the day using the mobile system’s built in accelerometer function. Overall, the device was well received by participants who perceived it as attractive, convenient, and helpful. The participants recognized the potential benefits of the device in asthma care, and were eager to use it for their asthma management. Conclusions ADAM can potentially automate daily symptom monitoring with minimal intrusiveness and maximal objectivity. The users’ acceptance of the device based on its recognized convenience, user-friendliness, and usefulness in increasing symptom awareness underscores ADAM’s potential to overcome the issues of symptom monitoring including poor adherence, inadequate technique, and poor symptom perception in adolescents. Further refinement of the algorithm is warranted to improve the accuracy of the device. Future study is also needed to assess the efficacy of the device in promoting self-management and asthma outcomes. PMID:25100184

  20. Adaptive Blood Glucose Monitoring and Insulin Measurement Devices for Visually Impaired Persons.

    ERIC Educational Resources Information Center

    Petzinger, R. A.

    1993-01-01

    This article describes devices that people with visual impairments and diabetes can use to monitor blood glucose levels and measure insulin. A table lists devices, their manufacturers (including address and telephone number), and comments about the devices. (DB)

  1. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  2. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, Claude R.; Ernstberger, Harold G.

    1988-01-01

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  3. The validity of activity monitors for measuring sleep in elite athletes.

    PubMed

    Sargent, Charli; Lastella, Michele; Halson, Shona L; Roach, Gregory D

    2016-10-01

    There is a growing interest in monitoring the sleep of elite athletes. Polysomnography is considered the gold standard for measuring sleep, however this technique is impractical if the aim is to collect data simultaneously with multiple athletes over consecutive nights. Activity monitors may be a suitable alternative for monitoring sleep, but these devices have not been validated against polysomnography in a population of elite athletes. Participants (n=16) were endurance-trained cyclists participating in a 6-week training camp. A total of 122 nights of sleep were recorded with polysomnography and activity monitors simultaneously. Agreement, sensitivity, and specificity were calculated from epoch-for-epoch comparisons of polysomnography and activity monitor data. Sleep variables derived from polysomnography and activity monitors were compared using paired t-tests. Activity monitor data were analysed using low, medium, and high sleep-wake thresholds. Epoch-for-epoch comparisons showed good agreement between activity monitors and polysomnography for each sleep-wake threshold (81-90%). Activity monitors were sensitive to sleep (81-92%), but specificity differed depending on the threshold applied (67-82%). Activity monitors underestimated sleep duration (18-90min) and overestimated wake duration (4-77min) depending on the threshold applied. Applying the correct sleep-wake threshold is important when using activity monitors to measure the sleep of elite athletes. For example, the default sleep-wake threshold (>40 activity counts=wake) underestimates sleep duration by ∼50min and overestimates wake duration by ∼40min. In contrast, sleep-wake thresholds that have a high sensitivity to sleep (>80 activity counts=wake) yield the best combination of agreement, sensitivity, and specificity. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. Monitoring system of hydraulic lifting device based on the fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Fajkus, Marcel; Nedoma, Jan; Novak, Martin; Martinek, Radek; Vanus, Jan; Mec, Pavel; Vasinek, Vladimir

    2017-10-01

    This article deals with the description of the monitoring system of hydraulic lifting device based on the fiber-optic sensors. For minimize the financial costs of the proposed monitoring system, the power evaluation of measured signal has been chosen. The solution is based on an evaluation of the signal obtained using the single point optic fiber sensors with overlapping reflective spectra. For encapsulation of the sensors was used polydimethylsiloxane (PDMS) polymer. To obtain a information of loading is uses the action of deformation of the lifting device on the pair single point optic fiber sensors mounted on the lifting device of the tested car. According to the proposed algorithm is determined information of pressure with an accuracy of +/- 5 %. Verification of the proposed system was realized on the various types of the tested car with different loading. The original contribution of the paper is to verify the new low-cost system for monitoring the hydraulic lifting device based on the fiber-optic sensors.

  5. A clip-free eyeglasses-based wearable monitoring device for measuring photoplethysmograhic signals.

    PubMed

    Zheng, Yali; Leung, Billy; Sy, Stanley; Zhang, Yuanting; Poon, Carmen C Y

    2012-01-01

    An eyeglasses-based device has been developed in this work to acquire photoplethysmogram (PPG) from the nose bridge. This device is aimed to provide wearable physiological monitoring without uncomfortable clips frequently used in PPG measurement from finger and ear. Switching control is applied on the LED and photo detector for power saving. An experiment involving postural change and treadmill jogging among 10 healthy young subjects was carried out to evaluate the performance of the device. Electrocardiogram (ECG) and PPG from finger, ear and nose were simultaneously recorded, from which heart rate (HR) and pulse transit time (PTT) were calculated. The results show that PPG measured from nose and ear are more resistant to motion than signal from finger during exercise. In addition, the difference between PTT measured from ear and nose indicates that local vasomotor activities may exist on ear and/or nose channel, and suggests that PPG from different sites should be used for cuff-less PTT-based BP estimation. We conclude that this wearable device has great potential to be used in the healthcare management in the future.

  6. Effects of a Physical Education Supportive Curriculum and Technological Devices on Physical Activity

    ERIC Educational Resources Information Center

    Clapham, Emily Dean; Sullivan, Eileen C.; Ciccomascolo, Lori E.

    2015-01-01

    The purpose of this study was to examine the effects of a physical education supportive curriculum and technological devices, heart rate monitor (HRM) and pedometer (PED), on physical activity. A single-subject ABAB research design was used to examine amount and level of participation in physical activity among 106 suburban fourth and fifth…

  7. Rapid deployment of internet-connected environmental monitoring devices

    USDA-ARS?s Scientific Manuscript database

    Advances in electronic sensing and monitoring systems and the growth of the communications infrastructure have enabled users to gain immediate access to information and interaction with physical devices. To facilitate the uploading, viewing, and sharing of data via the internet, while avoiding the ...

  8. Wireless communication devices and movement monitoring methods

    DOEpatents

    Skorpik, James R.

    2006-10-31

    Wireless communication devices and movement monitoring methods are described. In one aspect, a wireless communication device includes a housing, wireless communication circuitry coupled with the housing and configured to communicate wireless signals, movement circuitry coupled with the housing and configured to provide movement data regarding movement sensed by the movement circuitry, and event processing circuitry coupled with the housing and the movement circuitry, wherein the event processing circuitry is configured to process the movement data, and wherein at least a portion of the event processing circuitry is configured to operate in a first operational state having a different power consumption rate compared with a second operational state.

  9. Advances in physical activity monitoring and lifestyle interventions in obesity: a review.

    PubMed

    Bonomi, A G; Westerterp, K R

    2012-02-01

    Obesity represents a strong risk factor for developing chronic diseases. Strategies for disease prevention often promote lifestyle changes encouraging participation in physical activity. However, determining what amount of physical activity is necessary for achieving specific health benefits has been hampered by the lack of accurate instruments for monitoring physical activity and the related physiological outcomes. This review aims at presenting recent advances in activity-monitoring technology and their application to support interventions for health promotion. Activity monitors have evolved from step counters and measuring devices of physical activity duration and intensity to more advanced systems providing quantitative and qualitative information on the individuals' activity behavior. Correspondingly, methods to predict activity-related energy expenditure using bodily acceleration and subjects characteristics have advanced from linear regression to innovative algorithms capable of determining physical activity types and the related metabolic costs. These novel techniques can monitor modes of sedentary behavior as well as the engagement in specific activity types that helps to evaluate the effectiveness of lifestyle interventions. In conclusion, advances in activity monitoring have the potential to support the design of response-dependent physical activity recommendations that are needed to generate effective and personalized lifestyle interventions for health promotion.

  10. A Feasibility Study of Wearable Activity Monitors for Pre-Adolescent School-Age Children

    PubMed Central

    Van Loan, Marta; German, J. Bruce

    2014-01-01

    Introduction Understanding physical activity is key in the fight against childhood obesity. The objective of this study was to examine the feasibility of using certain wearable devices to measure physical activity among children. Methods A qualitative study was conducted with 25 children aged 7 to 10 years to assess acceptability and compliance of wearable activity devices in this age group. During March through August 2012, children participated in a 4-week study of 3 accelerometer models and a heart rate monitor. Children were asked to use a different device each week for 7 consecutive days. Children and their parents completed structured interviews after using each device; they also completed a final exit interview. Results The wrist-worn Polar Active was the device most preferred by children and was associated with the highest level of compliance. Devices that are comfortable to wear, fit properly, have engaging features, and are waterproof increase feasibility and are associated with higher levels of compliance. Conclusion The wrist-worn device was the most feasible for measuring physical activity among children aged 7 to 10 years. These findings will inform researchers in selecting tools for measuring children’s physical activity. PMID:24854236

  11. Remote Monitoring for Follow-up of Patients with Cardiac Implantable Electronic Devices

    PubMed Central

    Morichelli, Loredana; Varma, Niraj

    2014-01-01

    Follow-up of patients with cardiac implantable electronic devices is challenging due to the increasing number and technical complexity of devices coupled to increasing clinical complexity of patients. Remote monitoring (RM) offers the opportunity to optimise clinic workflow and to improve device monitoring and patient management. Several randomised clinical trials and registries have demonstrated that RM may reduce number of hospital visits, time required for patient follow-up, physician and nurse time, hospital and social costs. Furthermore, patient retention and adherence to follow-up schedule are significantly improved by RM. Continuous wireless monitoring of data stored in the device memory with automatic alerts allows early detection of device malfunctions and of events requiring clinical reaction, such as atrial fibrillation, ventricular arrhythmias and heart failure. Early reaction may improve patient outcome. RM is easy to use and patients showed a high level of acceptance and satisfaction. Implementing RM in daily practice may require changes in clinic workflow. To this purpose, new organisational models have been introduced. In spite of a favourable cost:benefit ratio, RM reimbursement still represents an issue in several European countries. PMID:26835079

  12. Technical Report: A device to monitor sock use on people using prosthetic limbs

    PubMed Central

    Sanders, Joan; Murthy, Revathi; Cagle, John; Allyn, Katheryn; Phillips, Reid

    2015-01-01

    A device using radio frequency identification technology (RFID) was developed to continuously monitor sock use on people using prosthetic limbs. RFID tags were placed on prosthetic socks worn by subjects with transtibial limb loss, and a high-frequency (HF) RFID reader and antenna were placed in a portable unit mounted to the outside of the prosthetic socket. Bench testing showed the device to have a maximum read range between 5.6 cm and 12.7 cm, depending on the RFID tag used. Testing in a laboratory setting on three participants with transtibial amputation showed that the device correctly monitored sock presence during sitting, standing, and walking activity when one or two socks were worn but was less reliable when more socks were used. Accurate detection was sensitive to orientation of the tag relative to the reader, presence of carbon fiber in the prosthetic socket, pistoning of the limb in the socket, and overlap among the tags. Use of ultra high frequency (UHF) RFID may overcome these limitations. With improvements, the technology may prove useful to practitioners prescribing volume accommodation strategies for patients by providing information about sock use between clinical visits, including timing and consistency of daily sock ply changes. PMID:23341315

  13. Ultrasonic Device Monitors Fullness Of The Bladder

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Blalock, Travis; Companion, John A.; Cavalier, AL; Mineo, Beth A.

    1991-01-01

    Ultrasonic device monitors fullness of bladder is self-contained, lightweight, portable, powered by battery, and tailored for specific patient through software modified as patient's behavior changes. Essentially quantifies amount of urine in bladder by measuring relative distension of bladder and gives suitable alarm telling patient to eliminate. Intended for use in training people who are incontinent and cannot identify when elimination necessary.

  14. [A monitor of the biomechanical cardiac activity].

    PubMed

    Masloboev, Iu P; Okhritskiĭ, A A; Prilutskiĭ, D A; Selishchev, S V

    2004-01-01

    A monitor of the biomechanical cardiac activity is described, which was elaborated on the basis of the accelerometer sensor and sigma-delta ADC for the purpose of registering the ballistocardiograms and seismocardiograms. The device ensures a non-stop signal recording for as long as 8 hours with the data being preserved in an inbuilt memory. Data are fed to the computer through the USB port. An algorithm is suggested for recordings processing by using the neuron-net technologies.

  15. [2011 after-service customer satisfaction survey of monitoring devices in Shanghai area].

    PubMed

    Wang, Lijun; Li, Bin; Qian, Jianguo; Cao, Shaoping; He, Dehua; Zheng, Yunxin

    2013-01-01

    In 2011, Shanghai Medical Equipment Management Quality Control Center launched the fifth after-sale service satisfaction survey for medical devices in Shanghai area. There are 8 classes medical devices involving in the survey. This paper demonstrates the investigation results of monitoring devices which are from different manufacturers.

  16. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  17. Agreement between activity-monitoring devices during home rehabilitation: a substudy of the AAA STOP trial.

    PubMed

    Myers, Jonathan; Dupain, Mandi; Vu, Andrew; Jaffe, Alyssa; Smith, Kimberly; Fonda, Holly; Dalman, Ronald

    2014-01-01

    As part of a home-based rehabilitation program, 24 older adult patients (71 ± 3 years) with abdominal aortic aneurysm (AAA) disease underwent 3 days (12 awake hr/day) of activity monitoring using an accelerometer (ACC), a pedometer, and a heart rate (HR) monitor, and recorded hourly activity logs. Subjects then underwent an interview to complete a 3-day activity recall questionnaire (3-DR). Mean energy expenditure (EE) in kcals/ day for HR, ACC, and 3-DR were 1,687 ± 458, 2,068 ± 529, and 1,974 ± 491, respectively. Differences in EE were not significant between 3-DR and ACC, but HR differed from both ACC (p < .001) and 3-DR (p < .01). ACC and 3-DR had the highest agreement, with a coefficient of variation of 7.9% and r = .86. Thus, ACC provided a reasonably accurate reflection of EE based the criterion measure, an activity recall questionnaire. ACC can be effectively used to monitor EE to achieve an appropriate training stimulus during home-based cardiac rehabilitation.

  18. 40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...

  19. 40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...

  20. 40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...

  1. 40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each...

  2. 40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each...

  3. 40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each...

  4. Carbohydrate administration during a day of sustained aerobic activity improves vigilance, as assessed by a novel ambulatory monitoring device, and mood.

    PubMed

    Lieberman, Harris R; Falco, Christina M; Slade, Steven S

    2002-07-01

    The brain requires a continuous supply of glucose to function adequately. During aerobic exercise, peripheral glucose requirements increase and carbohydrate supplementation improves physical performance. The brain's utilization of glucose also increases during aerobic exercise. However, the effects of energy supplementation on cognitive function during sustained aerobic exercise are not well characterized. The effects of energy supplementation, as liquid carbohydrate, on cognitive function during sustained aerobic activity were examined. A double-blind, placebo-controlled, between-subjects design was used. Young, healthy men (n = 143) were randomly assigned to 1 of 3 treatment groups. The groups received either a 6% (by vol) carbohydrate (35.1 kJ/kg), 12% (by vol) carbohydrate (70.2 kJ/kg), or placebo beverage in 6 isovolumic doses, and all groups consumed 2 meals (3200 kJ). Over the 10-h study, the subjects performed physically demanding tasks, including a 19.3-km road march and two 4.8-km runs, interspersed with rest and other activities. Wrist-worn vigilance monitors, which emitted auditory stimuli (20/h) to which the subjects responded as rapidly as possible, and a standardized self-report mood questionnaire were used to assess cognitive function. Vigilance consistently improved with supplemental carbohydrates in a dose-related manner; the 12% carbohydrate group performed the best and the placebo group the worst (P < 0.001). Mood-questionnaire results corroborated the results from the monitors; the subjects who received carbohydrates reported less confusion (P = 0.040) and greater vigor (P = 0.025) than did those who received the placebo. Supplemental carbohydrate beverages enhance vigilance and mood during sustained physical activity and interspersed rest. In addition, ambulatory monitoring devices can continuously assess the effects of nutritional factors on cognition as individuals conduct their daily activities or participate in experiments.

  5. Freeze-drying process monitoring using a cold plasma ionization device.

    PubMed

    Mayeresse, Y; Veillon, R; Sibille, P H; Nomine, C

    2007-01-01

    A cold plasma ionization device has been designed to monitor freeze-drying processes in situ by monitoring lyophilization chamber moisture content. This plasma device, which consists of a probe that can be mounted directly on the lyophilization chamber, depends upon the ionization of nitrogen and water molecules using a radiofrequency generator and spectrometric signal collection. The study performed on this probe shows that it is steam sterilizable, simple to integrate, reproducible, and sensitive. The limitations include suitable positioning in the lyophilization chamber, calibration, and signal integration. Sensitivity was evaluated in relation to the quantity of vials and the probe positioning, and correlation with existing methods, such as microbalance, was established. These tests verified signal reproducibility through three freeze-drying cycles. Scaling-up studies demonstrated a similar product signature for the same product using pilot-scale and larger-scale equipment. On an industrial scale, the method efficiently monitored the freeze-drying cycle, but in a larger industrial freeze-dryer the signal was slightly modified. This was mainly due to the positioning of the plasma device, in relation to the vapor flow pathway, which is not necessarily homogeneous within the freeze-drying chamber. The plasma tool is a relevant method for monitoring freeze-drying processes and may in the future allow the verification of current thermodynamic freeze-drying models. This plasma technique may ultimately represent a process analytical technology (PAT) approach for the freeze-drying process.

  6. [Wearable Devices for Movement Monitoring of Patients with Parkinson’s Disease].

    PubMed

    Li, Liang; Yu, Qian; Xu, Baoteng; Bai, Qifan; Zhang, Yunpeng; Zhang, Huijun; Mao, Chengjie; Liu, Chunfeng; Wang, Shouyan

    2016-12-01

    Quantitative assessment of the symptoms of Parkinson’s disease is the key for precise diagnosis and treatment and essential for long term management over years.The challenges of quantitative assessment on Parkinson’s disease are rich information,ultra-low load,long term and large range monitoring in free-moving condition.In this paper,we developed wearable devices with multiple sensors to monitor and quantify the movement symptoms of Parkinson’s disease.Five wearable sensors were used to record motion signals from bilateral forearms,legs and waist.A local area network based on low power Wi-Fi technology was built for long distance wireless data transmission.A software was developed for signal recording and analyzing.The size of each sensor was 39mm×33mm×16mm and the weight was 18 g.The sensors were rechargeable and able to run 12 hours.The wireless transmission radius is about 45 m.The wearable devices were tested in patients and normal subjects.The devices were reliable and accurate for movement monitoring in hospital.

  7. Use of a Mobile Device Simulation as a Preclass Active Learning Exercise.

    PubMed

    Keegan, Robert D; Oliver, M Cecile; Stanfill, Teresa J; Stevens, Kevin V; Brown, Gary R; Ebinger, Michael; Gay, John M

    2016-01-01

    Research shows that preclass activities introducing new material can increase student performance. In an effort to engage students in an active learning, preclass activity, the authors developed a mobile application. Eighty-four nursing students were assigned a preclass reading exercise, whereas 32 students completed the preclass simulation scenario on their mobile device. All students completed the same electronic fetal monitoring (EFM) quiz 1 week following the lecture. The effects of reading or simulation on student quiz performance was evaluated with a student's paired t test, using an alpha of .05. Students completing the preclass simulation scored higher on the EFM quiz, compared with students assigned the preclass reading (85% versus 70% correct answers, p = .01). Student survey data indicated that the mobile device simulation was perceived as an engaging and desirable instructional tool. Nursing students completing the mobile device EFM preclass simulation outperformed the students who were given the traditional reading assignment. Copyright 2016, SLACK Incorporated.

  8. Radiation area monitor device and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vencelj, Matjaz; Stowe, Ashley C.; Petrovic, Toni

    A radiation area monitor device/method, utilizing: a radiation sensor having a directional radiation sensing capability; a rotation mechanism operable for selectively rotating the radiation sensor such that the directional radiation sensing capability selectively sweeps an area of interest; and a processor operable for analyzing and storing a radiation fingerprint acquired by the radiation sensor as the directional radiation sensing capability selectively sweeps the area of interest. Optionally, the radiation sensor includes a gamma and/or neutron radiation sensor. The device/method selectively operates in: a first supervised mode during which a baseline radiation fingerprint is acquired by the radiation sensor; and amore » second unsupervised mode during which a subsequent radiation fingerprint is acquired by the radiation sensor, wherein the subsequent radiation fingerprint is compared to the baseline radiation fingerprint and, if a predetermined difference threshold is exceeded, an alert is issued.« less

  9. A Low Cost Device for Monitoring the Urine Output of Critical Care Patients

    PubMed Central

    Otero, Abraham; Palacios, Francisco; Akinfiev, Teodor; Apalkov, Andrey

    2010-01-01

    In critical care units most of the patients’ physiological parameters are sensed by commercial monitoring devices. These devices can also supervise whether the values of the parameters lie within a pre-established range set by the clinician. The automation of the sensing and supervision tasks has discharged the healthcare staff of a considerable workload and avoids human errors, which are common in repetitive and monotonous tasks. Urine output is very likely the most relevant physiological parameter that has yet to be sensed or supervised automatically. This paper presents a low cost patent-pending device capable of sensing and supervising urine output. The device uses reed switches activated by a magnetic float in order to measure the amount of urine collected in two containers which are arranged in cascade. When either of the containers fills, it is emptied automatically using a siphon mechanism and urine begins to collect again. An electronic unit sends the state of the reed switches via Bluetooth to a PC that calculates the urine output from this information and supervises the achievement of therapeutic goals. PMID:22163495

  10. A low cost device for monitoring the urine output of critical care patients.

    PubMed

    Otero, Abraham; Palacios, Francisco; Akinfiev, Teodor; Apalkov, Andrey

    2010-01-01

    In critical care units most of the patients' physiological parameters are sensed by commercial monitoring devices. These devices can also supervise whether the values of the parameters lie within a pre-established range set by the clinician. The automation of the sensing and supervision tasks has discharged the healthcare staff of a considerable workload and avoids human errors, which are common in repetitive and monotonous tasks. Urine output is very likely the most relevant physiological parameter that has yet to be sensed or supervised automatically. This paper presents a low cost patent-pending device capable of sensing and supervising urine output. The device uses reed switches activated by a magnetic float in order to measure the amount of urine collected in two containers which are arranged in cascade. When either of the containers fills, it is emptied automatically using a siphon mechanism and urine begins to collect again. An electronic unit sends the state of the reed switches via Bluetooth to a PC that calculates the urine output from this information and supervises the achievement of therapeutic goals.

  11. Monitoring of Vital Signs with Flexible and Wearable Medical Devices.

    PubMed

    Khan, Yasser; Ostfeld, Aminy E; Lochner, Claire M; Pierre, Adrien; Arias, Ana C

    2016-06-01

    Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Activity Learning as a Foundation for Security Monitoring in Smart Homes.

    PubMed

    Dahmen, Jessamyn; Thomas, Brian L; Cook, Diane J; Wang, Xiaobo

    2017-03-31

    Smart environment technology has matured to the point where it is regularly used in everyday homes as well as research labs. With this maturation of the technology, we can consider using smart homes as a practical mechanism for improving home security. In this paper, we introduce an activity-aware approach to security monitoring and threat detection in smart homes. We describe our approach using the CASAS smart home framework and activity learning algorithms. By monitoring for activity-based anomalies we can detect possible threats and take appropriate action. We evaluate our proposed method using data collected in CASAS smart homes and demonstrate the partnership between activity-aware smart homes and biometric devices in the context of the CASAS on-campus smart apartment testbed.

  13. Activity Learning as a Foundation for Security Monitoring in Smart Homes

    PubMed Central

    Dahmen, Jessamyn; Thomas, Brian L.; Cook, Diane J.; Wang, Xiaobo

    2017-01-01

    Smart environment technology has matured to the point where it is regularly used in everyday homes as well as research labs. With this maturation of the technology, we can consider using smart homes as a practical mechanism for improving home security. In this paper, we introduce an activity-aware approach to security monitoring and threat detection in smart homes. We describe our approach using the CASAS smart home framework and activity learning algorithms. By monitoring for activity-based anomalies we can detect possible threats and take appropriate action. We evaluate our proposed method using data collected in CASAS smart homes and demonstrate the partnership between activity-aware smart homes and biometric devices in the context of the CASAS on-campus smart apartment testbed. PMID:28362342

  14. Feedback from physical activity monitors is not compatible with current recommendations: A recalibration study.

    PubMed

    Thompson, Dylan; Batterham, Alan M; Peacock, Oliver J; Western, Max J; Booso, Rahuman

    2016-10-01

    Wearable devices to self-monitor physical activity have become popular with individuals and healthcare practitioners as a route to the prevention of chronic disease. It is not currently possible to reconcile feedback from these devices with activity recommendations because the guidelines refer to the amount of activity required on top of normal lifestyle activities (e.g., 150 minutes of moderate-to-vigorous intensity activity per week over-and-above normal moderate-to-vigorous lifestyle activities). The aim of this study was to recalibrate the feedback from self-monitoring. We pooled data from four studies conducted between 2006 and 2014 in patients and volunteers from the community that included both sophisticated measures of physical activity and 10-year risk for cardiovascular disease and type 2 diabetes (n=305). We determined the amount of moderate-to-vigorous intensity activity that corresponded to FAO/WHO/UNU guidance for a required PAL of 1.75 (Total Energy Expenditure/Basal Metabolic Rate). Our results show that, at the UK median PAL, total moderate-to-vigorous intensity physical activity will be around 735 minutes per week (~11% of waking time). We estimate that a 4% increase in moderate-to-vigorous intensity activity will achieve standardised guidance from FAO/WHO/UNU and will require ~1000 minutes of moderate-to-vigorous intensity activity per week. This study demonstrates that feedback from sophisticated wearable devices is incompatible with current physical activity recommendations. Without adjustment, people will erroneously form the view that they are exceeding recommendations by several fold. A more appropriate target from self-monitoring that accounts for normal moderate-to-vigorous lifestyle activities is ~1000 minutes per week, which represents ~15% of waking time. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Electronic adherence monitoring device performance and patient acceptability: a randomized control trial.

    PubMed

    Chan, Amy Hai Yan; Stewart, Alistair William; Harrison, Jeff; Black, Peter Nigel; Mitchell, Edwin Arthur; Foster, Juliet Michelle

    2017-05-01

    To investigate the performance and patient acceptability of an inhaler electronic monitoring device in a real-world childhood asthma population. Children 6 to 15 years presenting with asthma to the hospital emergency department and prescribed inhaled corticosteroids were included. Participants were randomized to receive a device with reminder features enabled or disabled for use with their preventer. Device quality control tests were conducted. Questionnaires on device acceptability, utility and ergonomics were completed at six months. A total of 1306 quality control tests were conducted; 84% passed pre-issue and 87% return testing. The most common failure reason was actuation under-recording. Acceptability scores were high, with higher scores in the reminder than non-reminder group (median, 5 th -95 th percentile: 4.1, 3.1-5.0 versus 3.7, 2.3-4.8; p < 0.001). Most (>90%) rated the device easy to use. Feedback was positive across five themes: device acceptability, ringtone acceptability, suggestions for improvement, effect on medication use, and effect on asthma control. This study investigates electronic monitoring device performance and acceptability in children using quantitative and qualitative measures. Results indicate satisfactory reliability, although failure rates of 13-16% indicate the importance of quality control. Favorable acceptability ratings support the use of these devices in children.

  16. Radiation area monitor device and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vencelj, Matjaz; Stowe, Ashley C.; Petrovic, Toni

    A radiation area monitor device/method, utilizing: a radiation sensor; a rotating radiation shield disposed about the radiation sensor, wherein the rotating radiation shield defines one or more ports that are transparent to radiation; and a processor operable for analyzing and storing a radiation fingerprint acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor. Optionally, the radiation sensor includes a gamma and/or neutron radiation sensor. The device/method selectively operates in: a first supervised mode during which a baseline radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated aboutmore » the radiation sensor; and a second unsupervised mode during which a subsequent radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor, wherein the subsequent radiation fingerprint is compared to the baseline radiation fingerprint and, if a predetermined difference threshold is exceeded, an alert is issued.« less

  17. "Periodic-table-style" paper device for monitoring heavy metals in water.

    PubMed

    Li, Miaosi; Cao, Rong; Nilghaz, Azadeh; Guan, Liyun; Zhang, Xiwang; Shen, Wei

    2015-03-03

    If a paper-based analytical device (μ-PAD) could be made by printing indicators for detection of heavy metals in chemical symbols of the metals in a style of the periodic table of elements, it could be possible for such μ-PAD to report the presence and the safety level of heavy metal ions in water simultaneously and by text message. This device would be able to provide easy solutions to field-based monitoring of heavy metals in industrial wastewater discharges and in irrigating and drinking water. Text-reporting could promptly inform even nonprofessional users of the water quality. This work presents a proof of concept study of this idea. Cu(II), Ni(II), and Cr(VI) were chosen to demonstrate the feasibility, specificity, and reliability of paper-based text-reporting devices for monitoring heavy metals in water.

  18. Dietary assessment and self-monitoring with nutrition applications for mobile devices.

    PubMed

    Lieffers, Jessica R L; Hanning, Rhona M

    2012-01-01

    Nutrition applications for mobile devices (e.g., personal digital assistants, smartphones) are becoming increasingly accessible and can assist with the difficult task of intake recording for dietary assessment and self-monitoring. This review is a compilation and discussion of research on this tool for dietary intake documentation in healthy populations and those trying to lose weight. The purpose is to compare this tool with conventional methods (e.g., 24-hour recall interviews, paper-based food records). Research databases were searched from January 2000 to April 2011, with the following criteria: healthy or weight loss populations, use of a mobile device nutrition application, and inclusion of at least one of three measures, which were the ability to capture dietary intake in comparison with conventional methods, dietary self-monitoring adherence, and changes in anthropometrics and/or dietary intake. Eighteen studies are discussed. Two application categories were identified: those with which users select food and portion size from databases and those with which users photograph their food. Overall, positive feedback was reported with applications. Both application types had moderate to good correlations for assessing energy and nutrient intakes in comparison with conventional methods. For self-monitoring, applications versus conventional techniques (often paper records) frequently resulted in better self-monitoring adherence, and changes in dietary intake and/or anthropometrics. Nutrition applications for mobile devices have an exciting potential for use in dietetic practice.

  19. An intelligent stand-alone ultrasonic device for monitoring local structural damage: implementation and preliminary experiments

    NASA Astrophysics Data System (ADS)

    Pertsch, Alexander; Kim, Jin-Yeon; Wang, Yang; Jacobs, Laurence J.

    2011-01-01

    Continuous structural health monitoring has the potential to significantly improve the safety management of aged, in-service civil structures. In particular, monitoring of local damage growth at hot-spot areas can help to prevent disastrous structural failures. Although ultrasonic nondestructive evaluation (NDE) has proved to be effective in monitoring local damage growth, conventional equipment and devices are usually bulky and only suitable for scheduled human inspections. The objective of this research is to harness the latest developments in embedded hardware and wireless communication for developing a stand-alone, compact ultrasonic device. The device is directed at the continuous structural health monitoring of civil structures. Relying on battery power, the device possesses the functionalities of high-speed actuation, sensing, signal processing, and wireless communication. Integrated with contact ultrasonic transducers, the device can generate 1 MHz Rayleigh surface waves in a steel specimen and measure response waves. An envelope detection algorithm based on the Hilbert transform is presented for efficiently determining the peak values of the response signals, from which small surface cracks are successfully identified.

  20. An Exploration into How Physical Activity Data-Recording Devices Could Be Used in Computer-Supported Data Investigations

    ERIC Educational Resources Information Center

    Lee, Victor R.; DuMont, Maneksha

    2010-01-01

    There is a great potential opportunity to use portable physical activity monitoring devices as data collection tools for educational purposes. Using one such device, we designed and implemented a weeklong workshop with high school students to test the utility of such technology. During that intervention, students performed data investigations of…

  1. Prostate thermal therapy with catheter-based ultrasound devices and MR thermal monitoring

    NASA Astrophysics Data System (ADS)

    Diederich, Chris J.; Nau, Will H.; Kinsey, Adam; Ross, Tony; Wootton, Jeff; Juang, Titania; Butts-Pauly, Kim; Ricke, Viola; Liu, Erin H.; Chen, Jing; Bouley, Donna M.; Van den Bosch, Maurice; Sommer, Graham

    2007-02-01

    Four types of transurethral applicators were devised for thermal ablation of prostate combined with MR thermal monitoring: sectored tubular transducer devices with directional heating patterns; planar and curvilinear devices with narrow heating patterns; and multi-sectored tubular devices capable of dynamic angular control without applicator movement. These devices are integrated with a 4 mm delivery catheter, incorporate an inflatable cooling balloon (10 mm OD) for positioning within the prostate and capable of rotation via an MR-compatible motor. Interstitial devices (2.4 mm OD) have been developed for percutaneous implantation with directional or dynamic angular control. In vivo experiments in canine prostate under MR temperature imaging were used to evaluate the heating technology and develop treatment control strategies. MR thermal imaging in a 0.5 T interventional MRI was used to monitor temperature and thermal dose in multiple slices through the target volume. Sectored tubular, planar, and curvilinear transurethral devices produce directional coagulation zones, extending 15-20 mm radial distance to the outer prostate capsule. Sequential rotation and modulated dwell time can conform thermal ablation to selected regions. Multi-sectored transurethral applicators can dynamically control the angular heating profile and target large regions of the gland in short treatment times without applicator manipulation. Interstitial implants with directional devices can be used to effectively ablate the posterior peripheral zone of the gland while protecting the rectum. The MR derived 52 °C and lethal thermal dose contours (t 43=240 min) allowed for real-time control of the applicators and effectively defined the extent of thermal damage. Catheter-based ultrasound devices, combined with MR thermal monitoring, can produce relatively fast and precise thermal ablation of prostate, with potential for treatment of cancer or BPH.

  2. Comparison of wrist-worn and hip-worn activity monitors under free living conditions.

    PubMed

    Hargens, Trent A; Deyarmin, Kayla N; Snyder, Kelsey M; Mihalik, Allison G; Sharpe, Lauren E

    2017-04-01

    Current recommendations state that individuals engage in 150 min of moderate or 75 min of vigorous intensity physical activity (PA) each week. Commercial PA monitors are becoming popular for everyday use. The accuracy of these devices, however, is not well understood. We sought to examine the accuracy of two commercial devices, one wrist and one hip-worn, under free-living conditions. Twenty-two subjects wore two commercially available devices and one ActiGraph (AG) for seven consecutive days under normal activity. Mean steps per day between all three devices differed significantly. No differences were found in moderate-to-vigorous intensity physical activity (MPVA). Daily energy expenditure (EE) also differed significantly between the AG and the commercial devices. Bland-Altman analysis found poor agreement between the AG and the commercial devices with regards to steps and EE, but good agreement in MVPA. Results suggest that the commercial devices are less accurate in estimating steps and EE. These devices did show good agreement with regards to MVPA, suggesting that they may provide useful feedback for individuals seeking to achieve the current PA guidelines for MVPA. Improvements are needed with regards to steps and EE estimation.

  3. Detection of physical activities using a physical activity monitor system for wheelchair users.

    PubMed

    Hiremath, Shivayogi V; Intille, Stephen S; Kelleher, Annmarie; Cooper, Rory A; Ding, Dan

    2015-01-01

    Availability of physical activity monitors for wheelchair users can potentially assist these individuals to track regular physical activity (PA), which in turn could lead to a healthier and more active lifestyle. Therefore, the aim of this study was to develop and validate algorithms for a physical activity monitoring system (PAMS) to detect wheelchair based activities. The PAMS consists of a gyroscope based wheel rotation monitor (G-WRM) and an accelerometer device (wocket) worn on the upper arm or on the wrist. A total of 45 persons with spinal cord injury took part in the study, which was performed in a structured university-based laboratory environment, a semi-structured environment at the National Veterans Wheelchair Games, and in the participants' home environments. Participants performed at least ten PAs, other than resting, taken from a list of PAs. The classification performance for the best classifiers on the testing dataset for PAMS-Arm (G-WRM and wocket on upper arm) and PAMS-Wrist (G-WRM and wocket on wrist) was 89.26% and 88.47%, respectively. The outcomes of this study indicate that multi-modal information from the PAMS can help detect various types of wheelchair-based activities in structured laboratory, semi-structured organizational, and unstructured home environments. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Management software for a universal device communication controller: application to monitoring and computerized infusions.

    PubMed

    Coussaert, E J; Cantraine, F R

    1996-11-01

    We designed a virtual device for a local area network observing, operating and connecting devices to a personal computer. To keep the widest field of application, we proceeded by using abstraction and specification rules of software engineering in the design and implementation of the hardware and software for the Infusion Monitor. We specially built a box of hardware to interface multiple medical instruments with different communication protocols to a PC via a single serial port. We called that box the Universal Device Communication Controller (UDCC). The use of the virtual device driver is illustrated by the Infusion Monitor implemented for the anaesthesia and intensive care workstation.

  5. A programmable point-of-care device for external CSF drainage and monitoring.

    PubMed

    Simkins, Jeffrey R; Subbian, Vignesh; Beyette, Fred R

    2014-01-01

    This paper presents a prototype of a programmable cerebrospinal fluid (CSF) external drainage system that can accurately measure the dispensed fluid volume. It is based on using a miniature spectrophotometer to collect color data to inform drain rate and pressure monitoring. The prototype was machined with 1 μm dimensional accuracy. The current device can reliably monitor the total accumulated fluid volume, the drain rate, the programmed pressure, and the pressure read from the sensor. Device requirements, fabrication processes, and preliminary results with an experimental set-up are also presented.

  6. Dual-Functionalization Device for Therapy through Dopamine Release and Monitoring.

    PubMed

    Fabregat, Georgina; Giménez, Alessia; Díaz, Angélica; Puiggalí, Jordi; Alemán, Carlos

    2018-05-01

    A dual-functional device is fabricated to release progressively dopamine (DA) from a biohydrogel under real-time monitoring via electrochemical detection. For this purpose, a poly-γ-glutamic acid biohydrogel is assembled with a poly(3,4-ethylenedioxythiophene) (PEDOT) layer, previously deposited onto a screen printed electrode. The biohydrogel is formulated to achieve dimensional stability and maximum DA-loading capacity. Conditions for DA-loading are influenced by the oxidation of the neurotransmitter in acid environments and the poor resistance of PEDOT to the lyophilization. The performance of the device is proved in a medium with the physiological pH of blood and the cerebrospinal fluid. The progressive release of DA is successfully monitored by the device, the limit of detection and sensitivity of the integrated sensor being 450 × 10 -9 m and 8 × 10 -5 mA µm -1 , respectively. The effect of electrochemical stimulation in the kinetics of the DA release is also investigated applying potential ramps in cyclic phase to alter the biohydrogel morphology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Design of a wearable device for ECG continuous monitoring using wireless technology.

    PubMed

    Led, Santiago; Fernández, Jorge; Serrano, Luis

    2004-01-01

    This project focuses on the design and implementation of an intelligent wearable device for ECG continuous acquisition and transmission to some remote gateway using Bluetooth technology. The acquisition device has been designed for having very low power consumption and reduced size. The Analog Devices' ADuC831 Micro-Converter for achieving the analog to digital conversion and the CSR's BlueCore2 chip for the Bluetooth transmission are the core of the device. The designed device is an important component of a complete prototype for remote ECG continuous monitoring of patients with diverse cardiac diseases.

  8. Wearable photoplethysmography device prototype for wireless cardiovascular monitoring

    NASA Astrophysics Data System (ADS)

    Kviesis-Kipge, E.; Grabovskis, A.; Marcinkevics, Z.; Mecnika, V.; Rubenis, O.

    2014-05-01

    The aim of the study was to develop a prototype system of the smart garment for real time telemetric monitoring of human cardiovascular activity. Two types of photoplethysmography (PPG) sensors for low noise and artefact free signal recording from various sites of the human body that were suitable for integration into smart textile were investigated. The reflectance sensors with single and multiple photodiodes based on "pulse-duration-based signal conversion" signal acquisition principle were designed and evaluated. The technical parameters of the system were measured both on bench and in vivo. Overall, both types of PPG sensors showed acceptable signal quality SNR 86.56±3.00 dB, dynamic range 89.84 dB. However, in-vivo condition tests revealed lower noise and higher accuracy achieved by applying the multiple photodiodes sensor. We concluded that the proposed PPG device prototype is simple and reliable, and therefore, can be utilized in low-cost smart garments.

  9. A Wearable System for Real-Time Continuous Monitoring of Physical Activity

    PubMed Central

    2018-01-01

    Over the last decades, wearable systems have gained interest for monitoring of physiological variables, promoting health, and improving exercise adherence in different populations ranging from elite athletes to patients. In this paper, we present a wearable system for the continuous real-time monitoring of respiratory frequency (fR), heart rate (HR), and movement cadence during physical activity. The system has been experimentally tested in the laboratory (by simulating the breathing pattern with a mechanical ventilator) and by collecting data from one healthy volunteer. Results show the feasibility of the proposed device for real-time continuous monitoring of fR, HR, and movement cadence both in resting condition and during activity. Finally, different synchronization techniques have been investigated to enable simultaneous data collection from different wearable modules. PMID:29849993

  10. Implantable device for in-vivo intracranial and cerebrospinal fluid pressure monitoring

    DOEpatents

    Ericson, Milton N.; McKnight, Timothy E.; Smith, Stephen F.; Hylton, James O.

    2003-01-01

    The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.

  11. 40 CFR 65.156 - General monitoring requirements for control and recovery devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Closed Vent Systems, Control Devices, and Routing to a Fuel Gas System or a Process § 65.156 General monitoring requirements for... systems. (1) All monitoring equipment shall be installed, calibrated, maintained, and operated according...

  12. Activation of QA devices and phantom materials under clinical scanning proton beams—a gamma spectrometry study

    NASA Astrophysics Data System (ADS)

    Hanušová, Tereza; Johnová, Kamila; Navrátil, Matěj; Valenta, Jiří; Müller, Lutz

    2018-06-01

    Activation of detectors and phantoms used for commissioning and quality assurance of clinical proton beams may lead to radiation protection issues. Good understanding of the activation nuclide vectors involved is necessary to assess radiation risk for the personnel working with these devices on a daily basis or to fulfill legal requirements regarding transport of radioactive material and its release to the public. 11 devices and material samples were irradiated with a 220 MeV proton pencil beam (PBS, Proton Therapy Center, Prague). This study focuses on devices manufactured by IBA Dosimetry GmbH: MatriXX PT, PPC05, Stingray, Zebra, Lynx, a Blue Phantom rail and samples of RW3, PMMA, titanium, copper and carbon fibre plastic. Monitor units (MU) were monitored during delivery. Gamma spectrometry was then performed for each item using a HPGe detector, with a focus on longer lived gamma emitting radionuclides. Activities were quantified for all found isotopes and compared to relevant legal limits for exemption and clearance of radioactive objects. Activation was found to be significant after long irradiation sessions, as done during commissioning of a proton therapy room. Some of the investigated devices may also cumulate activity in time, depending on the scenario of periodic irradiation in routine clinical practice. However, the levels of activity and resulting beta/gamma doses are more comparable to internationally recommended concentration limits for exemption than to dose limits for radiation workers. Results of this study will help to determine nuclide inventories required by some legal authorities for radiation protection purposes.

  13. Activation of QA devices and phantom materials under clinical scanning proton beams-a gamma spectrometry study.

    PubMed

    Hanušová, Tereza; Johnová, Kamila; Navrátil, Matěj; Valenta, Jiří; Müller, Lutz

    2018-06-07

    Activation of detectors and phantoms used for commissioning and quality assurance of clinical proton beams may lead to radiation protection issues. Good understanding of the activation nuclide vectors involved is necessary to assess radiation risk for the personnel working with these devices on a daily basis or to fulfill legal requirements regarding transport of radioactive material and its release to the public. 11 devices and material samples were irradiated with a 220 MeV proton pencil beam (PBS, Proton Therapy Center, Prague). This study focuses on devices manufactured by IBA Dosimetry GmbH: MatriXX PT, PPC05, Stingray, Zebra, Lynx, a Blue Phantom rail and samples of RW3, PMMA, titanium, copper and carbon fibre plastic. Monitor units (MU) were monitored during delivery. Gamma spectrometry was then performed for each item using a HPGe detector, with a focus on longer lived gamma emitting radionuclides. Activities were quantified for all found isotopes and compared to relevant legal limits for exemption and clearance of radioactive objects. Activation was found to be significant after long irradiation sessions, as done during commissioning of a proton therapy room. Some of the investigated devices may also cumulate activity in time, depending on the scenario of periodic irradiation in routine clinical practice. However, the levels of activity and resulting beta/gamma doses are more comparable to internationally recommended concentration limits for exemption than to dose limits for radiation workers. Results of this study will help to determine nuclide inventories required by some legal authorities for radiation protection purposes.

  14. Evaluation of the ability of three physical activity monitors to predict weight change and estimate energy expenditure.

    PubMed

    Correa, John B; Apolzan, John W; Shepard, Desti N; Heil, Daniel P; Rood, Jennifer C; Martin, Corby K

    2016-07-01

    Activity monitors such as the Actical accelerometer, the Sensewear armband, and the Intelligent Device for Energy Expenditure and Activity (IDEEA) are commonly validated against gold standards (e.g., doubly labeled water, or DLW) to determine whether they accurately measure total daily energy expenditure (TEE) or activity energy expenditure (AEE). However, little research has assessed whether these parameters or others (e.g., posture allocation) predict body weight change over time. The aims of this study were to (i) test whether estimated energy expenditure or posture allocation from the devices was associated with weight change during and following a low-calorie diet (LCD) and (ii) compare free-living TEE and AEE predictions from the devices against DLW before weight change. Eighty-seven participants from 2 clinical trials wore 2 of the 3 devices simultaneously for 1 week of a 2-week DLW period. Participants then completed an 8-week LCD and were weighed at the start and end of the LCD and 6 and 12 months after the LCD. More time spent walking at baseline, measured by the IDEEA, significantly predicted greater weight loss during the 8-week LCD. Measures of posture allocation demonstrated medium effect sizes in their relationships with weight change. Bland-Altman analyses indicated that the Sensewear and the IDEEA accurately estimated TEE, and the IDEEA accurately measured AEE. The results suggest that the ability of energy expenditure and posture allocation to predict weight change is limited, and the accuracy of TEE and AEE measurements varies across activity monitoring devices, with multi-sensor monitors demonstrating stronger validity.

  15. Evaluation of the ability of three physical activity monitors to predict weight change and estimate energy expenditure

    PubMed Central

    Correa, John B.; Apolzan, John W.; Shepard, Desti N.; Heil, Daniel P.; Rood, Jennifer C.; Martin, Corby K.

    2016-01-01

    Activity monitors such as the Actical accelerometer, the Sensewear armband, and the Intelligent Device for Energy Expenditure and Activity (IDEEA) are commonly validated against gold standards (e.g., doubly labeled water, or DLW) to determine whether they accurately measure total daily energy expenditure (TEE) or activity energy expenditure (AEE). However, little research has assessed whether these parameters or others (e.g., posture allocation) predict body weight change over time. The aims of this study were to (i) test whether estimated energy expenditure or posture allocation from the devices was associated with weight change during and following a low-calorie diet (LCD) and (ii) compare free-living TEE and AEE predictions from the devices against DLW before weight change. Eighty-seven participants from 2 clinical trials wore 2 of the 3 devices simultaneously for 1 week of a 2-week DLW period. Participants then completed an 8-week LCD and were weighed at the start and end of the LCD and 6 and 12 months after the LCD. More time spent walking at baseline, measured by the IDEEA, significantly predicted greater weight loss during the 8-week LCD. Measures of posture allocation demonstrated medium effect sizes in their relationships with weight change. Bland–Altman analyses indicated that the Sensewear and the IDEEA accurately estimated TEE, and the IDEEA accurately measured AEE. The results suggest that the ability of energy expenditure and posture allocation to predict weight change is limited, and the accuracy of TEE and AEE measurements varies across activity monitoring devices, with multi-sensor monitors demonstrating stronger validity. PMID:27270210

  16. A review on remote monitoring technology applied to implantable electronic cardiovascular devices.

    PubMed

    Costa, Paulo Dias; Rodrigues, Pedro Pereira; Reis, António Hipólito; Costa-Pereira, Altamiro

    2010-12-01

    Implantable electronic cardiovascular devices (IECD) include a broad spectrum of devices that have the ability to maintain rhythm, provide cardiac resynchronization therapy, and/or prevent sudden cardiac death. The incidence of bradyarrhythmias and other cardiac problems led to a broader use of IECD, which turned traditional follow-up into an extremely heavy burden for healthcare systems to support. Our aim was to assess the impact of remote monitoring on the follow-up of patients with IECD. We performed a review through PubMed using a specific query. The paper selection process included a three-step approach in which title, abstract, and cross-references were analyzed. Studies were then selected using previously defined inclusion criteria and analyzed according to the country of origin of the study, year, and journal of publication; type of study; and main issues covered. Twenty articles were included in this review. Eighty percent of the selected papers addressed clinical issues, from which 94% referred clinical events identification, clinical stability, time savings, or physician satisfaction as advantages, whereas 38% referred disadvantages that included both legal and technical issues. Forty-five percent of the papers referred patient issues, from which 89% presented advantages, focusing on patient acceptance/satisfaction, and patient time-savings. The main downsides were technical issues but patient privacy was also addressed. All the papers dealing with economic issues (20%) referred both advantages and disadvantages equally. Remote monitoring is presently a safe technology, widely accepted by patients and physicians, for its convenience, reassurance, and diagnostic potential. This review summarizes the principles of remote IECD monitoring presenting the current state-of-the-art. Patient safety and device interaction, applicability of current technology, and limitations of remote IECD monitoring are also addressed. The use of remote monitor should consider

  17. Clinical and economic impact of remote monitoring on the follow-up of patients with implantable electronic cardiovascular devices: an observational study.

    PubMed

    Costa, Paulo Dias; Reis, A Hipólito; Rodrigues, Pedro P

    2013-02-01

    Traditional follow-up of patients with cardiovascular devices is still an activity that, in addition to serving an increasing population, requires a considerable amount of time and specialized human and technical resources. Our aim was to evaluate the applicability of the CareLink(®) (Medtronic, Minneapolis, MN) remote monitoring system as a complementary option to the follow-up of patients with implanted devices, between in-office visits. Evaluated outcomes included both clinical (event detection and time to diagnosis) and nonclinical (patient's satisfaction and economic costs) aspects. An observational, longitudinal, prospective study was conducted with patients from a Portuguese central hospital sampled by convenience during 1 week (43 patients). Data were collected in four moments: two in-office visits and two remote evaluations, reproducing 1 year of clinical follow-up. Data sources included health records, implant reports, initial demographic data collection, follow-up printouts, and a questionnaire. After selection criteria were verified, 15 patients (11 men [73%]) were included, 63.4±10.8 years old, representing 14.0±6.3 implant months. Clinically, 15 events were detected (9 by remote monitoring and 6 by patient-initiated activation), of which only 9 were symptomatic. We verified that remote monitoring could detect both symptomatic and asymptomatic events, whereas patient-initiated activation only detected symptomatic ones (p=0.028). Moreover, the mean diagnosis anticipation in patients with events was approximately 58 days (p<0.001). In nonclinical terms, we observed high or very high satisfaction (67% and 33%, respectively) with using remote monitoring technology, but still 8 patients (53%) stated they preferred in-office visits. Finally, the introduction of remote monitoring technology has the ability to reduce total follow-up costs for patients by 25%. We conclude that the use of this system constitutes a viable complementary option to the follow

  18. MovAid- a novel device for advanced rehabilitation monitoring.

    PubMed

    Gupta, Prashant; Verma, Piyush; Gupta, Rakesh; Verma, Bhawna

    2015-08-01

    The present article introduces a new device "MovAid" which helps to measure and monitor rehabilitation. It has two main components- "MovAid device" and the "MovAid Smart Phone Application". The device connects wirelessly to the MovAid smart phone application via Bluetooth. It has electronic sensors to measure three important parameters of the patient- Angle of Joint Bent, Lift from the ground and Orientation of the limb. A mono-axis flex sensor to measure the degree of joint bent and a 3-axis accelerometer and gyroscope to measure the orientation of the limb and lift from the ground have been used. MovAid system bridges the gap between caretakers and patients, empowering both in ways never thought of before, by providing detailed and accurate data on every move.

  19. The validity and reliability of a novel activity monitor as a measure of walking

    PubMed Central

    Ryan, C G; Grant, P M; Tigbe, W W; Granat, M H

    2006-01-01

    Background The accurate measurement of physical activity is crucial to understanding the relationship between physical activity and disease prevention and treatment. Objective The primary purpose of this study was to investigate the validity and reliability of the activPAL physical activity monitor in measuring step number and cadence. Methods The ability of the activPAL monitor to measure step number and cadence in 20 healthy adults (age 34.5±6.9 years; BMI 26.8±4.8 (mean±SD)) was evaluated against video observation. Concurrently, the accuracy of two commonly used pedometers, the Yamax Digi‐Walker SW‐200 and the Omron HJ‐109‐E, was compared to observation for measuring step number. Participants walked on a treadmill at five different speeds (0.90, 1.12, 1.33, 1.56, and 1.78 m/s) and outdoors at three self selected speeds (slow, normal, and fast). Results At all speeds, inter device reliability was excellent for the activPAL (ICC (2,1)⩾0.99) for both step number and cadence. The absolute percentage error for the activPAL was <1.11% for step number and cadence regardless of walking speed. The accuracy of the pedometers was adversely affected by slow walking speeds. Conclusion The activPAL monitor is a valid and reliable measure of walking in healthy adults. Its accuracy is not influenced by walking speed. The activPAL may be a useful device in sports medicine. PMID:16825270

  20. Devices for monitoring content of microparticles and bacterium in injection solutions in pharmaceutical production

    NASA Astrophysics Data System (ADS)

    Bilyi, Olexander I.; Getman, Vasyl B.; Konyev, Fedir A.; Sapunkov, Olexander; Sapunkov, Pavlo G.

    2001-06-01

    The devices for monitoring of parameters of efficiency of water solutions filtration, which are based on the analysis of scattered light by microparticles are considered in this article. The efficiency of using of devices in pharmaceutics in technological processes of manufacturing medical injection solutions is shown. The examples of monitoring of contents of bacterial cultures Pseudomonas aeruginosa, Escherichia coli, and Micrococcus luteus in water solutions of glucose are indicated.

  1. Can validated wrist devices with position sensors replace arm devices for self-home blood pressure monitoring? A randomized crossover trial using ambulatory monitoring as reference.

    PubMed

    Stergiou, George S; Christodoulakis, George R; Nasothimiou, Efthimia G; Giovas, Periklis P; Kalogeropoulos, Petros G

    2008-07-01

    Electronic devices that measure blood pressure (BP) at the arm level are regarded as more accurate than wrist devices and are preferred for home BP (HBP) monitoring. Recently, wrist devices with position sensors have been successfully validated using established protocols. This study assessed whether HBP values measured with validated wrist devices are sufficiently reliable to be used for making patient-related decisions in clinical practice. This randomized crossover study compared HBP measurements taken using validated wrist devices (wrist-HBP, Omron R7 with position sensor) with those taken using arm devices (arm-HBP, Omron 705IT), and also with measurements of awake ambulatory BP (ABP, SpaceLabs), in 79 subjects (36 men and 43 women) with hypertension. The mean age of the study population was 56.7 +/- 11.8 years, and 33 of the subjects were not under treatment for hypertension. The average arm-HBP was higher than the average wrist-HBP (mean difference, systolic 5.2 +/- 9.1 mm Hg, P < 0.001, and diastolic 2.2 +/- 6.7, P < 0.01). Twenty-seven subjects (34%) had a > or =10 mm Hg difference between systolic wrist-HBP and arm-HBP and twelve subjects (15%) showed similar levels of disparity in diastolic HBP readings. Strong correlations were found between arm-HBP and wrist-HBP (r 0.74/0.74, systolic/diastolic, P < 0.0001). However, ABP was more strongly correlated with arm-HBP (r 0.73/0.76) than with wrist-HBP (0.55/0.69). The wrist-arm HBP difference was associated with systolic ABP (r 0.34) and pulse pressure (r 0.29), but not with diastolic ABP, sex, age, arm circumference, and wrist circumference. There might be important differences in HBP measured using validated wrist devices with position sensor vs. arm devices, and these could impact decisions relating to the patient in clinical practice. Measurements taken using arm devices are more closely related to ABP values than those recorded by wrist devices. More research is needed before recommending the widespread

  2. Conductivity detection for monitoring mixing reactions in microfluidic devices.

    PubMed

    Liu, Y; Wipf, D O; Henry, C S

    2001-08-01

    A conductivity detector was coupled to poly(dimethylsiloxane)-glass capillary electrophoresis microchips to monitor microfluidic flow. Electroosmotic flow was investigated with both conductivity detection (CD) and the current monitoring method. No significant variation was observed between these methods, but CD showed a lower relative standard deviation. Gradient mixing experiments were employed to investigate the relationship between the electrolyte conductivity and the electrolyte concentration. A good linear response of conductivity to concentration was obtained for solutions whose difference in concentrations were less than 27 mM. The new system holds great promise for precision mixing in microfluidic devices using electrically driven flows.

  3. Wearable Devices and Smartphones for Activity Tracking Among People with Serious Mental Illness

    PubMed Central

    Naslund, John A.; Aschbrenner, Kelly A.; Bartels, Stephen J.

    2016-01-01

    Introduction People with serious mental illness, including schizophrenia spectrum and mood disorders, are more physically inactive than people from the general population. Emerging wearable devices and smartphone applications afford opportunities for promoting physical activity in this group. This exploratory mixed methods study obtained feedback from participants with serious mental illness to assess the acceptability of using wearable devices and smartphones to support a lifestyle intervention targeting weight loss. Methods Participants with serious mental illness and obesity enrolled in a 6-month lifestyle intervention were given Fitbit activity tracking devices and smartphones to use for the study. Participants completed quantitative post-intervention usability and satisfaction surveys, and provided qualitative feedback regarding acceptability of using these devices and recommendations for improvement through in-depth interviews. Results Eleven participants wore Fitbits for an average of 84.7% (SD=18.1%) of the days enrolled in the study (median=93.8% of the days enrolled, interquartile range=83.6–94.3%). Participants were highly satisfied, stating that the devices encouraged them to be more physically active and were useful for self-monitoring physical activity and reaching daily step goals. Some participants experienced challenges using the companion mobile application on the smartphone, and recommended greater technical support, more detailed training, and group tutorials prior to using the devices. Discussion Participants’ perspectives highlight the feasibility and acceptability of using commercially available mHealth technologies to support health promotion efforts targeting people with serious mental illness. This study offers valuable insights for informing future research to assess the effectiveness of these devices for improving health outcomes in this high-risk group. PMID:27134654

  4. Advanced Materials for Health Monitoring with Skin-Based Wearable Devices.

    PubMed

    Jin, Han; Abu-Raya, Yasmin Shibli; Haick, Hossam

    2017-06-01

    Skin-based wearable devices have a great potential that could result in a revolutionary approach to health monitoring and diagnosing disease. With continued innovation and intensive attention to the materials and fabrication technologies, development of these healthcare devices is progressively encouraged. This article gives a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to recent advances and developments in the scope of skin-based wearable devices (e.g. temperature, strain, biomarker-analysis werable devices, etc.), with an emphasis on emerging materials and fabrication techniques in the relevant fields. To give a comprehensive statement, part of the review presents and discusses different aspects of these advanced materials, such as the sensitivity, biocompatibility and durability as well as the major approaches proposed for enhancing their chemical and physical properties. A complementary section of the review linking these advanced materials with wearable device technologies is particularly specified. Some of the strong and weak points in development of each wearable material/device are highlighted and criticized. Several ideas regarding further improvement of skin-based wearable devices are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Optimization of an integrated wavelength monitor device

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Farrell, Gerald

    2011-05-01

    In this paper an edge filter based on multimode interference in an integrated waveguide is optimized for a wavelength monitoring application. This can also be used as a demodulation element in a fibre Bragg grating sensing system. A global optimization algorithm is presented for the optimum design of the multimode interference device, including a range of parameters of the multimode waveguide, such as length, width and position of the input and output waveguides. The designed structure demonstrates the desired spectral response for wavelength measurements. Fabrication tolerance is also analysed numerically for this structure.

  6. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    DOEpatents

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  7. Compliance Assurance Monitoring Technical Guidance Document Appendix A: Condenser Control Device

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  8. Automatic cross-sectioning and monitoring system locates defects in electronic devices

    NASA Technical Reports Server (NTRS)

    Jacobs, G.; Slaughter, B.

    1971-01-01

    System consists of motorized grinding and lapping apparatus, sample holder, and electronic control circuit. Low power microscope examines device to pinpoint location of circuit defect, and monitor displays output signal when defect is located exactly.

  9. A device for high-throughput monitoring of degradation in soft tissue samples.

    PubMed

    Tzeranis, D S; Panagiotopoulos, I; Gkouma, S; Kanakaris, G; Georgiou, N; Vaindirlis, N; Vasileiou, G; Neidlin, M; Gkousioudi, A; Spitas, V; Macheras, G A; Alexopoulos, L G

    2018-06-06

    This work describes the design and validation of a novel device, the High-Throughput Degradation Monitoring Device (HDD), for monitoring the degradation of 24 soft tissue samples over incubation periods of several days inside a cell culture incubator. The device quantifies sample degradation by monitoring its deformation induced by a static gravity load. Initial instrument design and experimental protocol development focused on quantifying cartilage degeneration. Characterization of measurement errors, caused mainly by thermal transients and by translating the instrument sensor, demonstrated that HDD can quantify sample degradation with <6 μm precision and <10 μm temperature-induced errors. HDD capabilities were evaluated in a pilot study that monitored the degradation of fresh ex vivo human cartilage samples by collagenase solutions over three days. HDD could robustly resolve the effects of collagenase concentration as small as 0.5 mg/ml. Careful sample preparation resulted in measurements that did not suffer from donor-to-donor variation (coefficient of variance <70%). Due to its unique combination of sample throughput, measurement precision, temporal sampling and experimental versality, HDD provides a novel biomechanics-based experimental platform for quantifying the effects of proteins (cytokines, growth factors, enzymes, antibodies) or small molecules on the degradation of soft tissues or tissue engineering constructs. Thereby, HDD can complement established tools and in vitro models in important applications including drug screening and biomaterial development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. A multimodal optical and electrochemical device for monitoring surface reactions: redox active surfaces in porous silicon Rugate filters.

    PubMed

    Ciampi, Simone; Guan, Bin; Darwish, Nadim A; Zhu, Ying; Reece, Peter J; Gooding, J Justin

    2012-12-21

    Herein, mesoporous silicon (PSi) is configured as a single sensing device that has dual readouts; as a photonic crystal sensor in a Rugate filter configuration, and as a high surface area porous electrode. The as-prepared PSi is chemically modified to provide it with stability in aqueous media and to allow for the subsequent coupling of chemical species, such as via Cu(I)-catalyzed cycloaddition reactions between 1-alkynes and azides ("click" reactions). The utility of the bimodal capabilities of the PSi sensor for monitoring surface coupling procedures is demonstrated by the covalent coupling of a ferrocene derivative, as well as by demonstrating ligand-exchange reactions (LER) at the PSi surface. Both types of reactions were monitored through optical reflectivity measurements, as well as electrochemically via the oxidation/reduction of the surface tethered redox species.

  11. Physical activity monitoring: addressing the difficulties of accurately detecting slow walking speeds.

    PubMed

    Harrison, Samantha L; Horton, Elizabeth J; Smith, Robert; Sandland, Carolyn J; Steiner, Michael C; Morgan, Mike D L; Singh, Sally J

    2013-01-01

    To test the accuracy of a multi-sensor activity monitor (SWM) in detecting slow walking speeds in patients with chronic obstructive pulmonary disease (COPD). Concerns have been expressed regarding the use of pedometers in patient populations. Although activity monitors are more sophisticated devices, their accuracy at detecting slow walking speeds common in patients with COPD has yet to be proven. A prospective observational study design was employed. An incremental shuttle walk test (ISWT) was completed by 57 patients with COPD wearing an SWM. The ISWT was repeated by 20 patients wearing the same SWM. Differences were identified between metabolic equivalents (METS) and between step-count across five levels of the ISWT (p < 0.001). Good within monitor reproducibility between two ISWT was identified for total energy expenditure and step-count (p < 0.001). The SWM is able to detect slow (standardized) speeds of walking and is an acceptable method for measuring physical activity in individuals disabled by COPD. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Monitoring Business Activity

    DTIC Science & Technology

    2006-03-01

    AFRL-IF-RS-TR-2006-88 Final Technical Report March 2006 MONITORING BUSINESS ACTIVITY New York University...REPORT DATE MARCH 2006 3. REPORT TYPE AND DATES COVERED Final Sep 01 – Oct 05 4. TITLE AND SUBTITLE MONITORING BUSINESS ACTIVITY 6. AUTHOR(S...Accepted to Journal of Machine Learning Research, pending revisions. CeDER Working Paper #CeDER-04-08, Stern School of Business , New York University

  13. Using an electronic activity monitor system as an intervention modality: A systematic review.

    PubMed

    Lewis, Zakkoyya H; Lyons, Elizabeth J; Jarvis, Jessica M; Baillargeon, Jacques

    2015-06-24

    Obesity is a growing global health concern that may lead to cardiovascular disease, type II diabetes, and cancer. Several systematic reviews have shown that technology is successful in combating obesity through increased physical activity, but there is no known review on interventions that use an electronic activity monitor system (EAMS). EAMSs are defined as a wearable device that objectively measures lifestyle physical activity and can provide feedback, beyond the display of basic activity count information, via the monitor display or through a partnering application to elicit continual self-monitoring of activity behavior. These devices improve upon standard pedometers because they have the ability to provide visual feedback on activity progression, verbal encouragement, and social comparison. This systematic review aimed to synthesize the efficacy and feasibility results of EAMSs within published physical activity interventions. Electronic databases and journal references were searched for relevant articles. Data sources included CINAHL, Cochrane CENTRAL, Medline Ovid, PsycINFO, and clinicaltrials.gov. Out of the 1,574 retrieved, 11 articles met the inclusion criteria. These articles were reviewed for quality and content based on a risk of bias tool and intervention components. Most articles were determined to be of medium quality while two were of low quality, and one of high quality. Significant pre-post improvements in the EAMS group were found in five of nine studies for physical activity and in four of five studies for weight. One found a significant increase in physical activity and two studies found significant weight loss in the intervention group compared with the comparator group. The EAMS interventions appear to be feasible with most studies reporting continual wear of the device during waking hours and a higher retention rate of participants in the EAMS groups. These studies provide preliminary evidence suggesting that EAMS can increase physical

  14. A wearable device for continuous monitoring of heart mechanical function based on impedance cardiography.

    PubMed

    Panfili, G; Piccini, L; Maggi, L; Parini, S; Andreoni, G

    2006-01-01

    In this study we explored the possibility to realize a low power device for Cardiac Output continuous monitoring based on impedance cardiography technique. We assessed the possibility to develop a system able to record data allow an intra-subjective analysis based on the daily variations of this measure. The device was able to acquire and to send signals using a wireless Bluetooth transmission. The electronic circuit was designed in order to minimize power consumption, dimension and weight. The reported results were interesting for what concerns the power consumption and then noise level. In this way was obtained a wearable device that will permit to define specific clinical protocols based on continuous monitoring of the Cardiac Output signal.

  15. Behavior change techniques implemented in electronic lifestyle activity monitors: a systematic content analysis.

    PubMed

    Lyons, Elizabeth J; Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-08-15

    Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which these interventions could be translated for

  16. Targeted Prostate Thermal Therapy with Catheter-Based Ultrasound Devices and MR Thermal Monitoring

    NASA Astrophysics Data System (ADS)

    Diederich, Chris; Ross, Anthony; Kinsey, Adam; Nau, Will H.; Rieke, Viola; Butts Pauly, Kim; Sommer, Graham

    2006-05-01

    Catheter-based ultrasound devices have significant advantages for thermal therapy procedures, including potential for precise spatial and dynamic control of heating patterns to conform to targeted volumes. Interstitial and transurethral ultrasound applicators, with associated treatment strategies, were developed for thermal ablation of prostate combined with MR thermal monitoring. Four types of multielement transurethral applicators were devised, each with different levels of selectivity and intended therapeutic goals: sectored tubular transducer devices with fixed directional heating patterns; planar and lightly focused curvilinear devices with narrow heating patterns; and multi-sectored tubular devices capable of dynamic angular control without applicator movement. These devices are integrated with a 4 mm delivery catheter, incorporate an inflatable cooling balloon (10 mm OD) for positioning within the prostate and capable of rotation via an MR-compatible motor. Similarly, interstitial devices (2.4 mm OD) have been developed for percutaneous implantation with fixed directional heating patterns (e.g., 180 deg.). In vivo experiments in canine prostate (n=15) under MR temperature imaging were used to evaluate the heating technology and develop treatment strategies. MR thermal imaging in a 0.5 T interventional MRI was used to monitor temperature contours and thermal dose in multiple slices through the target volume. Sectored transurethral devices produce directional coagulation zones, extending 15-20 mm radial distance to the outer prostate capsule. The curvilinear applicator produces distinct 2-3 mm wide lesions, and with sequential rotation and modulated dwell time can precisely conform thermal ablation to selected areas or the entire prostate gland. Multi-sectored transurethral applicators can dynamically control the angular heating profile and target large regions of the gland in short treatment times without applicator manipulation. Interstitial implants with

  17. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily activity...

  18. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily activity...

  19. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily activity...

  20. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily activity...

  1. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily activity...

  2. Remote monitoring of patients with cardiac implantable electronic devices: a Southeast Asian, single-centre pilot study.

    PubMed

    Lim, Paul Chun Yih; Lee, Audry Shan Yin; Chua, Kelvin Chi Ming; Lim, Eric Tien Siang; Chong, Daniel Thuan Tee; Tan, Boon Yew; Ho, Kah Leng; Teo, Wee Siong; Ching, Chi Keong

    2016-07-01

    Remote monitoring of cardiac implantable electronic devices (CIED) has been shown to improve patient safety and reduce in-office visits. We report our experience with remote monitoring via the Medtronic CareLink(®) network. Patients were followed up for six months with scheduled monthly remote monitoring transmissions in addition to routine in-office checks. The efficacy of remote monitoring was evaluated by recording compliance to transmissions, number of device alerts requiring intervention and time from transmission to review. Questionnaires were administered to evaluate the experiences of patients, physicians and medical technicians. A total of 57 patients were enrolled; 16 (28.1%) had permanent pacemakers, 34 (59.6%) had implantable cardioverter defibrillators and 7 (12.3%) had cardiac resynchronisation therapy defibrillators. Overall, of 334 remote transmissions scheduled, 73.7% were on time, 14.5% were overdue and 11.8% were missed. 84.6% of wireless transmissions were on time, compared to 53.8% of non-wireless transmissions. Among all transmissions, 4.4% contained alerts for which physicians were informed and only 1.8% required intervention. 98.6% of remote transmissions were reviewed by the second working day. 73.2% of patients preferred remote monitoring. Physicians agreed that remote transmissions provided information equivalent to in-office checks 97.1% of the time. 77.8% of medical technicians felt that remote monitoring would help the hospital improve patient management. No adverse events were reported. Remote monitoring of CIED is safe and feasible. It has possible benefits to patient safety through earlier detection of arrhythmias or device malfunction, permitting earlier intervention. Wireless remote monitoring, in particular, may improve compliance to device monitoring. Patients may prefer remote monitoring due to possible improvements in quality of life. Copyright: © Singapore Medical Association.

  3. Remote monitoring of patients with cardiac implantable electronic devices: a Southeast Asian, single-centre pilot study

    PubMed Central

    Lim, Paul Chun Yih; Lee, Audry Shan Yin; Chua, Kelvin Chi Ming; Lim, Eric Tien Siang; Chong, Daniel Thuan Tee; Tan, Boon Yew; Ho, Kah Leng; Teo, Wee Siong; Ching, Chi Keong

    2016-01-01

    INTRODUCTION Remote monitoring of cardiac implantable electronic devices (CIED) has been shown to improve patient safety and reduce in-office visits. We report our experience with remote monitoring via the Medtronic CareLink® network. METHODS Patients were followed up for six months with scheduled monthly remote monitoring transmissions in addition to routine in-office checks. The efficacy of remote monitoring was evaluated by recording compliance to transmissions, number of device alerts requiring intervention and time from transmission to review. Questionnaires were administered to evaluate the experiences of patients, physicians and medical technicians. RESULTS A total of 57 patients were enrolled; 16 (28.1%) had permanent pacemakers, 34 (59.6%) had implantable cardioverter defibrillators and 7 (12.3%) had cardiac resynchronisation therapy defibrillators. Overall, of 334 remote transmissions scheduled, 73.7% were on time, 14.5% were overdue and 11.8% were missed. 84.6% of wireless transmissions were on time, compared to 53.8% of non-wireless transmissions. Among all transmissions, 4.4% contained alerts for which physicians were informed and only 1.8% required intervention. 98.6% of remote transmissions were reviewed by the second working day. 73.2% of patients preferred remote monitoring. Physicians agreed that remote transmissions provided information equivalent to in-office checks 97.1% of the time. 77.8% of medical technicians felt that remote monitoring would help the hospital improve patient management. No adverse events were reported. CONCLUSION Remote monitoring of CIED is safe and feasible. It has possible benefits to patient safety through earlier detection of arrhythmias or device malfunction, permitting earlier intervention. Wireless remote monitoring, in particular, may improve compliance to device monitoring. Patients may prefer remote monitoring due to possible improvements in quality of life. PMID:27439396

  4. Wireless miniature implantable devices and ASICs for monitoring, treatment, and study of glaucoma and cardiac disease

    NASA Astrophysics Data System (ADS)

    Chow, Eric Y.

    Glaucoma affects about 65 million people and is the second leading cause of blindness in the world. Although the condition is irreversible and incurable, early detection is vital to slowing and even stopping the progression of the disease. Our work focuses on the design, fabrication, and assembly of a continuous active glaucoma intraocular pressure (IOP) monitor that provides clinicians with the necessary data to more accurately diagnose and treat patients. Major benefits of an active monitoring device include the potential to develop a closed-loop treatment system and to operate independently for extended periods of time. The fully wireless operation uses gigahertzfrequency electromagnetic wave propagation, which allows for an orientation independent transfer of power and data over reasonable distances. Our system is comprised of a MEMS capacitive sensor, capacitive power storage array, ASIC, and monopole antenna assembled into a biocompatible liquid crystal polymer (LCP) package. We have performed in vivo trials on rabbits, both chronic and acute, to validate system functionality, fully wireless feasibility, and biocompatibility. Heart failure (HF) affects approximately 2% of the adult population in developed countries and 6-10% of people over the age of 65. Continuous monitoring of blood pressure, flow, and chemistry from a minimally invasive device can serve as a diagnostic and early-warning system for cardiac health. We developed a miniaturized system attached to the outer surface of an FDA approved stent, used as both the antenna for wireless telemetry/powering and structural support. The system comprises of a MEMS pressure sensor, ASIC for the sensor interface and wireless capabilities, LCP substrate, and FDA approved stent. In vivo studies on pigs validated functionality and fully wireless operation and demonstrate the feasibility of a stent-based wireless implant for continuous monitoring of blood pressure as well as other parameters including oxygen, flow

  5. Accuracy of Consumer Monitors for Estimating Energy Expenditure and Activity Type.

    PubMed

    Woodman, James A; Crouter, Scott E; Bassett, David R; Fitzhugh, Eugene C; Boyer, William R

    2017-02-01

    Increasing use of consumer-based physical activity (PA) monitors necessitates that they are validated against criterion measures. Thus, the purpose of this study was to examine the accuracy of three consumer-based PA monitors for estimating energy expenditure (EE) and PA type during simulated free-living activities. Twenty-eight participants (mean ± SD: age, 25.5 ± 3.7 yr; body mass index, 24.9 ± 2.6 kg·m) completed 11 activities ranging from sedentary behaviors to vigorous intensities. Simultaneous measurements were made with an Oxycon portable calorimeter (criterion), a Basis Peak and Garmin Vivofit on the nondominant wrist, and three Withings Pulse devices (right hip, shirt collar, dominant wrist). Repeated-measures ANOVA were used to examine differences between measured and predicted EE. Intraclass correlation coefficients were calculated to determine reliability of EE predictions between Withings placements. Paired samples t tests were used to determine mean differences between observed minutes and Basis Peak predictions during walking, running, and cycling. On average, the Basis Peak was within 8% of measured EE for the entire PA routine (P > 0.05); however, there were large individual errors (95% prediction interval, -290.4 to +233.1 kcal). All other devices were significantly different from measured EE for the entire PA routine (P < 0.05). For activity types, Basis Peak correctly identified ≥92% of actual minutes spent walking and running (P > 0.05), and 40.4% and 0% of overground and stationary cycling minutes, respectively (P < 0.001). The Basis Peak was the only device that did not significantly differ from measured EE; however, it also had the largest individual errors. Additionally, the Basis Peak accurately predicted minutes spent walking and running, but not cycling.

  6. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module

    PubMed Central

    Lee, Hyunjae; Song, Changyeong; Hong, Yong Seok; Kim, Min Sung; Cho, Hye Rim; Kang, Taegyu; Shin, Kwangsoo; Choi, Seung Hong; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2017-01-01

    Electrochemical analysis of sweat using soft bioelectronics on human skin provides a new route for noninvasive glucose monitoring without painful blood collection. However, sweat-based glucose sensing still faces many challenges, such as difficulty in sweat collection, activity variation of glucose oxidase due to lactic acid secretion and ambient temperature changes, and delamination of the enzyme when exposed to mechanical friction and skin deformation. Precise point-of-care therapy in response to the measured glucose levels is still very challenging. We present a wearable/disposable sweat-based glucose monitoring device integrated with a feedback transdermal drug delivery module. Careful multilayer patch design and miniaturization of sensors increase the efficiency of the sweat collection and sensing process. Multimodal glucose sensing, as well as its real-time correction based on pH, temperature, and humidity measurements, maximizes the accuracy of the sensing. The minimal layout design of the same sensors also enables a strip-type disposable device. Drugs for the feedback transdermal therapy are loaded on two different temperature-responsive phase change nanoparticles. These nanoparticles are embedded in hyaluronic acid hydrogel microneedles, which are additionally coated with phase change materials. This enables multistage, spatially patterned, and precisely controlled drug release in response to the patient’s glucose level. The system provides a novel closed-loop solution for the noninvasive sweat-based management of diabetes mellitus. PMID:28345030

  7. A Novel Wireless Wearable Volatile Organic Compound (VOC) Monitoring Device with Disposable Sensors.

    PubMed

    Deng, Yue; Chen, Cheng; Xian, Xiaojun; Tsow, Francis; Verma, Gaurav; McConnell, Rob; Fruin, Scott; Tao, Nongjian; Forzani, Erica S

    2016-12-03

    A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use.

  8. A Novel Wireless Wearable Volatile Organic Compound (VOC) Monitoring Device with Disposable Sensors

    PubMed Central

    Deng, Yue; Chen, Cheng; Xian, Xiaojun; Tsow, Francis; Verma, Gaurav; McConnell, Rob; Fruin, Scott; Tao, Nongjian; Forzani, Erica S.

    2016-01-01

    A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use. PMID:27918484

  9. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy

    NASA Astrophysics Data System (ADS)

    Lee, Hyunjae; Choi, Tae Kyu; Lee, Young Bum; Cho, Hye Rim; Ghaffari, Roozbeh; Wang, Liu; Choi, Hyung Jin; Chung, Taek Dong; Lu, Nanshu; Hyeon, Taeghwan; Choi, Seung Hong; Kim, Dae-Hyeong

    2016-06-01

    Owing to its high carrier mobility, conductivity, flexibility and optical transparency, graphene is a versatile material in micro- and macroelectronics. However, the low density of electrochemically active defects in graphene synthesized by chemical vapour deposition limits its application in biosensing. Here, we show that graphene doped with gold and combined with a gold mesh has improved electrochemical activity over bare graphene, sufficient to form a wearable patch for sweat-based diabetes monitoring and feedback therapy. The stretchable device features a serpentine bilayer of gold mesh and gold-doped graphene that forms an efficient electrochemical interface for the stable transfer of electrical signals. The patch consists of a heater, temperature, humidity, glucose and pH sensors and polymeric microneedles that can be thermally activated to deliver drugs transcutaneously. We show that the patch can be thermally actuated to deliver Metformin and reduce blood glucose levels in diabetic mice.

  10. SoM: a smart sensor for human activity monitoring and assisted healthy ageing.

    PubMed

    Naranjo-Hernández, David; Roa, Laura M; Reina-Tosina, Javier; Estudillo-Valderrama, Miguel Ángel

    2012-11-01

    This paper presents the hardware and software design and implementation of a low-cost, wearable, and unobstructive intelligent accelerometer sensor for the monitoring of human physical activities. In order to promote healthy lifestyles to elders for an active, independent, and healthy ageing, as well as for the early detection of psychomotor abnormalities, the activity monitoring is performed in a holistic manner in the same device through different approaches: 1) a classification of the level of activity that allows to establish patterns of behavior; 2) a daily activity living classifier that is able to distinguish activities such as climbing or descending stairs using a simple method to decouple the gravitational acceleration components of the motion components; and 3) an estimation of metabolic expenditure independent of the activity performed and the anthropometric characteristics of the user. Experimental results have demonstrated the feasibility of the prototype and the proposed algorithms.

  11. IoT/M2M wearable-based activity-calorie monitoring and analysis for elders.

    PubMed

    Soraya, Sabrina I; Ting-Hui Chiang; Guo-Jing Chan; Yi-Juan Su; Chih-Wei Yi; Yu-Chee Tseng; Yu-Tai Ching

    2017-07-01

    With the growth of aging population, elder care service has become an important part of the service industry of Internet of Things. Activity monitoring is one of the most important services in the field of the elderly care service. In this paper, we proposed a wearable solution to provide an activity monitoring service on elders for caregivers. The system uses wireless signals to estimate calorie burned by the walking and localization. In addition, it also uses wireless motion sensors to recognize physical activity, such as drinking and restroom activity. Overall, the system can be divided into four parts: wearable device, gateway, cloud server, and caregiver's android application. The algorithms we proposed for drinking activity are Decision Tree (J48) and Random Forest (RF). While for restroom activity, we proposed supervised Reduced Error Pruning (REP) Tree and Variable Order Hidden Markov Model (VOHMM). We developed a prototype service Android app to provide a life log for the recording of the activity sequence which would be useful for the caregiver to monitor elder activity and its calorie consumption.

  12. Devices for Ambulatory Monitoring of Sleep-Associated Disorders in Children with Neurological Diseases.

    PubMed

    Ulate-Campos, Adriana; Tsuboyama, Melissa; Loddenkemper, Tobias

    2017-12-25

    Good sleep quality is essential for a child's wellbeing. Early sleep problems have been linked to the later development of emotional and behavioral disorders and can negatively impact the quality of life of the child and his or her family. Sleep-associated conditions are frequent in the pediatric population, and even more so in children with neurological problems. Monitoring devices can help to better characterize sleep efficiency and sleep quality. They can also be helpful to better characterize paroxysmal nocturnal events and differentiate between nocturnal seizures, parasomnias, and obstructive sleep apnea, each of which has a different management. Overnight ambulatory detection devices allow for a tolerable, low cost, objective assessment of sleep quality in the patient's natural environment. They can also be used as a notification system to allow for rapid recognition and prompt intervention of events like seizures. Optimal monitoring devices will be patient- and diagnosis-specific, but may include a combination of modalities such as ambulatory electroencephalograms, actigraphy, and pulse oximetry. We will summarize the current literature on ambulatory sleep devices for detecting sleep disorders in children with neurological diseases.

  13. A portable ECG monitoring device with Bluetooth and Holter capabilities for telemedicine applications.

    PubMed

    Lucani, Daniel; Cataldo, Giancarlos; Cruz, Julio; Villegas, Guillermo; Wong, Sara

    2006-01-01

    A prototype of a portable ECG-monitoring device has been developed for clinical and non-clinical environments as part of a telemedicine system to provide remote and continuous surveillance of patients. The device can acquire, store and/or transmit ECG signals to computer-based platforms or specially configured access points (AP) with Intranet/Internet capabilities in order to reach remote monitoring stations. Acquired data can be stored in a flash memory card in FAT16 format for later recovery, or transmitted via Bluetooth or USB to a local station or AP. This data acquisition module (DAM) operates in two modes: Holter and on-line transmission.

  14. [A design and study of a novel electronic device for cuff-pressure monitoring].

    PubMed

    Wang, Shupeng; Li, Wei; Li, Wen; Song, Dejing; Chen, Desheng; Duan, Jun; Li, Chen; Li, Gang

    2017-06-01

    To design a novel electronic device for measuring the pressure in the cuff of the artificial airway; and to study the advantage of this device on continuous and intermittent cuff pressure monitoring. (1) a portable electronic device for cuff pressure measurement was invented, which could turn pressure signal into electrical signal through a pressure transducer. Meantime, it was possible to avoid pressure leak from the joint and the inside of the apparatus by modified Luer taper and sophisticated design. If the cuff pressure was out of the normal range, the apparatus could release a sound and light alarm. (2) Six traditional mechanical manometers were used to determine the cuff pressure in 6 tracheal tubes. The cuff pressure was maintain at 30 cmH 2 O (1 cmH 2 O = 0.098 kPa) by the manometer first, and repeated every 30 seconds for 4 times. (3) Study of continuous cuff pressure monitoring: We used a random number generator to randomize 6 tracheal tubes, 6 mechanical manometers and 6 our products by number 1-6, which has the same number of a group. Every group was further randomized into two balanced groups, one group used the mechanical manometer first, and the other used our product first. The baseline pressure was 30 cmH 2 O, measurement was performed every 4 hours for 6 times. When traditional mechanical manometer was used for cuff pressure monitoring, cuff pressure was decreased by an average of 2.9 cmH 2 O for each measurement (F = 728.2, P = 0.000). In study of continually monitoring, at each monitoring point, the pressure measured by electronic manometer was higher than the mechanical manometer. All the pressures measured by mechanical manometer were dropped below 20 cmH 2 O at 8th hour, and there was no pressure decrease below 20 cmH 2 O measured by electronic manometer in 24 hours by contrast. In study of intermittent monitoring, the same result was found. The pressure was dropped significantly with time when measured by mechanical manometer (F = 61.795, P

  15. Feasibility of a real-time self-monitoring device for sitting less and moving more: a randomised controlled trial

    PubMed Central

    Martin, Anne; Adams, Jacob M; Bunn, Christopher; Gill, Jason M R; Gray, Cindy M; Hunt, Kate; Maxwell, Douglas J; van der Ploeg, Hidde P; Wyke, Sally

    2017-01-01

    Objectives Time spent inactive and sedentary are both associated with poor health. Self-monitoring of walking, using pedometers for real-time feedback, is effective at increasing physical activity. This study evaluated the feasibility of a new pocket-worn sedentary time and physical activity real-time self-monitoring device (SitFIT). Methods Forty sedentary men were equally randomised into two intervention groups. For 4 weeks, one group received a SitFIT providing feedback on steps and time spent sedentary (lying/sitting); the other group received a SitFIT providing feedback on steps and time spent upright (standing/stepping). Change in sedentary time, standing time, stepping time and step count was assessed using activPAL monitors at baseline, 4-week follow-up (T1) and 12-week (T2) follow-up. Semistructured interviews were conducted after 4 and 12 weeks. Results The SitFIT was reported as acceptable and usable and seen as a motivating tool to reduce sedentary time by both groups. On average, participants reduced their sedentary time by 7.8 minutes/day (95% CI −55.4 to 39.7) (T1) and by 8.2 minutes/day (95% CI −60.1 to 44.3) (T2). They increased standing time by 23.2 minutes/day (95% CI 4.0 to 42.5) (T1) and 16.2 minutes/day (95% CI −13.9 to 46.2) (T2). Stepping time was increased by 8.5 minutes/day (95% CI 0.9 to 16.0) (T1) and 9.0 minutes/day (95% CI 0.5 to 17.5) (T2). There were no between-group differences at either follow-up time points. Conclusion The SitFIT was perceived as a useful tool for self-monitoring of sedentary time. It has potential as a real-time self-monitoring device to reduce sedentary and increase upright time. PMID:29081985

  16. Commercial Smartphone-Based Devices and Smart Applications for Personalized Healthcare Monitoring and Management.

    PubMed

    Vashist, Sandeep Kumar; Schneider, E Marion; Luong, John H T

    2014-08-18

    Smartphone-based devices and applications (SBDAs) with cost effectiveness and remote sensing are the most promising and effective means of delivering mobile healthcare (mHealthcare). Several SBDAs have been commercialized for the personalized monitoring and/or management of basic physiological parameters, such as blood pressure, weight, body analysis, pulse rate, electrocardiograph, blood glucose, blood glucose saturation, sleeping and physical activity. With advances in Bluetooth technology, software, cloud computing and remote sensing, SBDAs provide real-time on-site analysis and telemedicine opportunities in remote areas. This scenario is of utmost importance for developing countries, where the number of smartphone users is about 70% of 6.8 billion cell phone subscribers worldwide with limited access to basic healthcare service. The technology platform facilitates patient-doctor communication and the patients to effectively manage and keep track of their medical conditions. Besides tremendous healthcare cost savings, SBDAs are very critical for the monitoring and effective management of emerging epidemics and food contamination outbreaks. The next decade will witness pioneering advances and increasing applications of SBDAs in this exponentially growing field of mHealthcare. This article provides a critical review of commercial SBDAs that are being widely used for personalized healthcare monitoring and management.

  17. Prescribing of Electronic Activity Monitors in Cardiometabolic Diseases: Qualitative Interview-Based Study

    PubMed Central

    Macé, Sandrine; Oppert, Jean-Michel

    2017-01-01

    Background The prevalence of noncommunicable diseases, including those such as type 2 diabetes, obesity, dyslipidemia, and hypertension, so-called cardiometabolic diseases, is high and is increasing worldwide. Strong evidence supports the role of physical activity in management of these diseases. There is general consensus that mHealth technology, including electronic activity monitors, can potentially increase physical activity in patients, but their use in clinical settings remains limited. Practitioners’ requirements when prescribing electronic activity monitors have been poorly described. Objective The aims of this qualitative study were (1) to explore how specialist physicians prescribe electronic activity monitors to patients presenting with cardiometabolic conditions, and (2) to better understand their motivation for and barriers to prescribing such monitors. Methods We conducted qualitative semistructured interviews in March to May 2016 with 11 senior physicians from a public university hospital in France with expertise in management of cardiometabolic diseases (type 1 and type 2 diabetes, obesity, hypertension, and dyslipidemia). Interviews lasted 45 to 60 minutes and were audiotaped, transcribed verbatim, and analyzed using directed content analysis. We report our findings following the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist. Results Most physicians we interviewed had never prescribed electronic activity monitors, whereas they frequently prescribed blood glucose or blood pressure self-monitoring devices. Reasons for nonprescription included lack of interest in the data collected, lack of evidence for data accuracy, concern about work overload possibly resulting from automatic data transfer, and risk of patients becoming addicted to data. Physicians expected future marketing of easy-to-use monitors that will accurately measure physical activity duration and intensity and provide understandable motivating feedback

  18. Prescribing of Electronic Activity Monitors in Cardiometabolic Diseases: Qualitative Interview-Based Study.

    PubMed

    Bellicha, Alice; Macé, Sandrine; Oppert, Jean-Michel

    2017-09-23

    The prevalence of noncommunicable diseases, including those such as type 2 diabetes, obesity, dyslipidemia, and hypertension, so-called cardiometabolic diseases, is high and is increasing worldwide. Strong evidence supports the role of physical activity in management of these diseases. There is general consensus that mHealth technology, including electronic activity monitors, can potentially increase physical activity in patients, but their use in clinical settings remains limited. Practitioners' requirements when prescribing electronic activity monitors have been poorly described. The aims of this qualitative study were (1) to explore how specialist physicians prescribe electronic activity monitors to patients presenting with cardiometabolic conditions, and (2) to better understand their motivation for and barriers to prescribing such monitors. We conducted qualitative semistructured interviews in March to May 2016 with 11 senior physicians from a public university hospital in France with expertise in management of cardiometabolic diseases (type 1 and type 2 diabetes, obesity, hypertension, and dyslipidemia). Interviews lasted 45 to 60 minutes and were audiotaped, transcribed verbatim, and analyzed using directed content analysis. We report our findings following the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist. Most physicians we interviewed had never prescribed electronic activity monitors, whereas they frequently prescribed blood glucose or blood pressure self-monitoring devices. Reasons for nonprescription included lack of interest in the data collected, lack of evidence for data accuracy, concern about work overload possibly resulting from automatic data transfer, and risk of patients becoming addicted to data. Physicians expected future marketing of easy-to-use monitors that will accurately measure physical activity duration and intensity and provide understandable motivating feedback. Features of electronic activity monitors

  19. 40 CFR 63.11940 - What continuous monitoring requirements must I meet for control devices required to install CPMS...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, capable of recording the total regeneration stream mass for each regeneration cycle. For non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device...

  20. 40 CFR 63.11940 - What continuous monitoring requirements must I meet for control devices required to install CPMS...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, capable of recording the total regeneration stream mass for each regeneration cycle. For non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device...

  1. Remote monitoring of implantable cardiac devices: current state and future directions.

    PubMed

    Ganeshan, Raj; Enriquez, Alan D; Freeman, James V

    2018-01-01

    Recent evidence has demonstrated substantial benefits associated with remote monitoring of cardiac implantable electronic devices (CIEDs), and treatment guidelines have endorsed the use of remote monitoring. Familiarity with the features of remote monitoring systems and the data supporting its use are vital for physicians' care for patients with CEIDs. Remote monitoring remains underutilized, but its use is expanding including in new practice settings including emergency departments. Patient experience and outcomes are positive, with earlier detection of clinical events such as atrial fibrillation, reductions in inappropriate implantable cardioverter-defibrillator (ICD) shocks and potentially a decrease in mortality with frequent remote monitoring utilizaiton. Rates of hospitalization are reduced among remote monitoring users, and the replacement of outpatient follow-up visits with remote monitoring transmissions has been shown to be well tolerated. In addition, health resource utilization is lower and remote monitoring has been associated with considerable cost savings. A dose relationship exists between use of remote monitoring and patient outcomes, and those with early and high transmission rates have superior outcomes. Remote monitoring provides clinicians with the ability to provide comprehensive follow-up care for patients with CIEDs. Patient outcomes are improved, and resource utilization is decreased with appropriate use of remote monitoring. Future efforts must focus on improving the utilization and efficiency of remote monitoring.

  2. Diagnostic for two-mode variable valve activation device

    DOEpatents

    Fedewa, Andrew M

    2014-01-07

    A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.

  3. Magnetic Graphene Nanosheet-Based Microfluidic Device for Homogeneous Real-Time Electronic Monitoring of Pyrophosphatase Activity Using Enzymatic Hydrolysate-Induced Release of Copper Ion.

    PubMed

    Lin, Youxiu; Zhou, Qian; Li, Juan; Shu, Jian; Qiu, Zhenli; Lin, Yuping; Tang, Dianping

    2016-01-05

    A novel flow-through microfluidic device based on a magneto-controlled graphene sensing platform was designed for homogeneous electronic monitoring of pyrophosphatase (PPase) activity; enzymatic hydrolysate-induced release of inorganic copper ion (Cu(2+)) from the Cu(2+)-coordinated pyrophosphate ions (Cu(2+)-PPi) complex was assessed to determine enzyme activity. Magnetic graphene nanosheets (MGNS) functionalized with negatively charged Nafion were synthesized by using the wet-chemistry method. The Cu(2+)-PPi complexes were prepared on the basis of the coordination reaction between copper ion and inorganic pyrophosphate ions. Upon target PPase introduction into the detection system, the analyte initially hydrolyzed pyrophosphate ions into phosphate ions and released the electroactive copper ions from Cu(2+)-PPi complexes. The released copper ions could be readily captured through the negatively charged Nafion on the magnetic graphene nanosheets, which could be quantitatively monitored by using the stripping voltammetry on the flow-through detection cell with an external magnet. Under optimal conditions, the obtained electrochemical signal exhibited a high dependence on PPase activity within a dynamic range from 0.1 to 20 mU mL(-1) and allowed the detection at a concentration as low as 0.05 mU mL(-1). Coefficients of variation for reproducibility of the intra-assay and interassay were below 7.6 and 9.8%, respectively. The inhibition efficiency of sodium fluoride (NaF) also received good results in pyrophosphatase inhibitor screening research. In addition, the methodology afforded good specificity and selectivity, simplification, and low cost without the need of sample separations and multiple washing steps, thus representing a user-friendly protocol for practical utilization in a quantitative PPase activity.

  4. Compliance Assurance Monitoring Technical Guidance Document Appendix A: Fabric Filter Control Devices

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  5. Compliance Assurance Monitoring Technical Guidance Document Appendix A: Electrostatic Precipitator Control Device

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  6. Compliance Assurance Monitoring Technical Guidance Document Appendix A: Carbon Adsorber Control Device

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  7. Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.

    PubMed

    Garrett, Joanne K; Witt, Matthew J; Johanning, Lars

    2016-01-01

    Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial.

  8. Real-time ECG monitoring and arrhythmia detection using Android-based mobile devices.

    PubMed

    Gradl, Stefan; Kugler, Patrick; Lohmuller, Clemens; Eskofier, Bjoern

    2012-01-01

    We developed an application for Android™-based mobile devices that allows real-time electrocardiogram (ECG) monitoring and automated arrhythmia detection by analyzing ECG parameters. ECG data provided by pre-recorded files or acquired live by accessing a Shimmer™ sensor node via Bluetooth™ can be processed and evaluated. The application is based on the Pan-Tompkins algorithm for QRS-detection and contains further algorithm blocks to detect abnormal heartbeats. The algorithm was validated using the MIT-BIH Arrhythmia and MIT-BIH Supraventricular Arrhythmia databases. More than 99% of all QRS complexes were detected correctly by the algorithm. Overall sensitivity for abnormal beat detection was 89.5% with a specificity of 80.6%. The application is available for download and may be used for real-time ECG-monitoring on mobile devices.

  9. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 § 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a fuel...

  10. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 § 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a fuel...

  11. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 § 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a fuel...

  12. Advanced Performance Modeling with Combined Passive and Active Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dovrolis, Constantine; Sim, Alex

    2015-04-15

    To improve the efficiency of resource utilization and scheduling of scientific data transfers on high-speed networks, the "Advanced Performance Modeling with combined passive and active monitoring" (APM) project investigates and models a general-purpose, reusable and expandable network performance estimation framework. The predictive estimation model and the framework will be helpful in optimizing the performance and utilization of networks as well as sharing resources with predictable performance for scientific collaborations, especially in data intensive applications. Our prediction model utilizes historical network performance information from various network activity logs as well as live streaming measurements from network peering devices. Historical network performancemore » information is used without putting extra load on the resources by active measurement collection. Performance measurements collected by active probing is used judiciously for improving the accuracy of predictions.« less

  13. 40 CFR 63.497 - Back-end process provisions-monitoring provisions for control and recovery devices used to comply...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a..., as appropriate. (1) Where an incinerator is used, a temperature monitoring device equipped with a... temperature monitoring device shall be installed in the firebox or in the ductwork immediately downstream of...

  14. 40 CFR 63.497 - Back-end process provisions-monitoring provisions for control and recovery devices used to comply...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a..., as appropriate. (1) Where an incinerator is used, a temperature monitoring device equipped with a... temperature monitoring device shall be installed in the firebox or in the ductwork immediately downstream of...

  15. 40 CFR 63.497 - Back-end process provisions-monitoring provisions for control and recovery devices used to comply...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a..., as appropriate. (1) Where an incinerator is used, a temperature monitoring device equipped with a... temperature monitoring device shall be installed in the firebox or in the ductwork immediately downstream of...

  16. Behavior Change Techniques Implemented in Electronic Lifestyle Activity Monitors: A Systematic Content Analysis

    PubMed Central

    Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-01-01

    Background Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. Objective The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Methods Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. Results All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Conclusions Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which

  17. Research and Development for Advanced Tele-maintenance Capability with Remote Serial Console Access and Proactive Monitoring of Medical Devices

    DTIC Science & Technology

    2009-09-01

    Tele-maintenance Capability with Remote Serial Console Access and Proactive Monitoring of Medical Devices PRINCIPAL INVESTIGATOR...Remote Serial Console Access and Proactive Monitoring of Medical Devices 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...ORGANIZATION REPORT NUMBER Concepteers LLC 880 Bergen Avenue, Suite 403 Jersey City, NJ 07306 9. SPONSORING / MONITORING

  18. A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy

    NASA Astrophysics Data System (ADS)

    Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan

    2018-01-01

    The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.

  19. A Device for Fetal Monitoring by Means of Control Over Cardiovascular Parameters Based on Acoustic Data

    NASA Astrophysics Data System (ADS)

    Khokhlova, L. A.; Seleznev, A. I.; Zhdanov, D. S.; Zemlyakov, I. Yu; Kiseleva, E. Yu

    2016-01-01

    The problem of monitoring fetal health is topical at the moment taking into account a reduction in the level of fertile-age women's health and changes in the concept of perinatal medicine with reconsideration of live birth criteria. Fetal heart rate monitoring is a valuable means of assessing fetal health during pregnancy. The routine clinical measurements are usually carried out by the means of ultrasound cardiotocography. Although the cardiotocography monitoring provides valuable information on the fetal health status, the high quality ultrasound devices are expensive, they are not available for home care use. The recommended number of measurement is also limited. The passive and fully non-invasive acoustic recording provides an alternative low-cost measurement method. The article describes a device for fetal and maternal health monitoring by analyzing the frequency and periodicity of heart beats by means of acoustic signal received on the maternal abdomen. Based on the usage of this device a phonocardiographic fetal telemedicine system, which will allow to reduce the antenatal fetal mortality rate significantly due to continuous monitoring over the state of fetus regardless of mother's location, can be built.

  20. When a Step Is Not a Step! Specificity Analysis of Five Physical Activity Monitors.

    PubMed

    O'Connell, Sandra; ÓLaighin, Gearóid; Quinlan, Leo R

    2017-01-01

    Physical activity is an essential aspect of a healthy lifestyle for both physical and mental health states. As step count is one of the most utilized measures for quantifying physical activity it is important that activity-monitoring devices be both sensitive and specific in recording actual steps taken and disregard non-stepping body movements. The objective of this study was to assess the specificity of five activity monitors during a variety of prescribed non-stepping activities. Participants wore five activity monitors simultaneously for a variety of prescribed activities including deskwork, taking an elevator, taking a bus journey, automobile driving, washing and drying dishes; functional reaching task; indoor cycling; outdoor cycling; and indoor rowing. Each task was carried out for either a specific duration of time or over a specific distance. Activity monitors tested were the ActivPAL micro™, NL-2000™ pedometer, Withings Smart Activity Monitor Tracker (Pulse O2)™, Fitbit One™ and Jawbone UP™. Participants were video-recorded while carrying out the prescribed activities and the false positive step count registered on each activity monitor was obtained and compared to the video. All activity monitors registered a significant number of false positive steps per minute during one or more of the prescribed activities. The Withings™ activity performed best, registering a significant number of false positive steps per minute during the outdoor cycling activity only (P = 0.025). The Jawbone™ registered a significant number of false positive steps during the functional reaching task and while washing and drying dishes, which involved arm and hand movement (P < 0.01 for both). The ActivPAL™ registered a significant number of false positive steps during the cycling exercises (P < 0.001 for both). As a number of false positive steps were registered on the activity monitors during the non-stepping activities, the authors conclude that non

  1. SU-E-J-72: Design and Study of In-House Web-Camera Based Automatic Continuous Patient Movement Monitoring and Controlling Device for EXRT.

    PubMed

    Senthil Kumar, S; Suresh Babu, S S; Anand, P; Dheva Shantha Kumari, G

    2012-06-01

    The purpose of our study was to fabricate in-house web-camera based automatic continuous patient movement monitoring device and control the movement of the patients during EXRT. Web-camera based patient movement monitoring device consists of a computer, digital web-camera, mounting system, breaker circuit, speaker, and visual indicator. The computer is used to control and analyze the patient movement using indigenously developed software. The speaker and the visual indicator are placed in the console room to indicate the positional displacement of the patient. Studies were conducted on phantom and 150 patients with different types of cancers. Our preliminary clinical results indicate that our device is highly reliable and can accurately report smaller movements of the patients in all directions. The results demonstrated that the device was able to detect patient's movements with the sensitivity of about 1 mm. When a patient moves, the receiver activates the circuit; an audible warning sound will be produced in the console. Through real-time measurements, an audible alarm can alert the radiation technologist to stop the treatment if the user defined positional threshold is violated. Simultaneously, the electrical circuit to the teletherapy machine will be activated and radiation will be halted. Patient's movement during the course for radiotherapy was studied. The beam is halted automatically when the threshold level of the system is exceeded. By using the threshold provided in the system, it is possible to monitor the patient continuously with certain fixed limits. An additional benefit is that it has reduced the tension and stress of a treatment team associated with treating patients who are not immobilized. It also enables the technologists to do their work more efficiently, because they don't have to continuously monitor patients with as much scrutiny as was required. © 2012 American Association of Physicists in Medicine.

  2. Clinical evaluation of a new intracranial pressure monitoring device.

    PubMed

    Stendel, R; Heidenreich, J; Schilling, A; Akhavan-Sigari, R; Kurth, R; Picht, T; Pietilä, T; Suess, O; Kern, C; Meisel, J; Brock, M

    2003-03-01

    Continuous monitoring of intracranial pressure (ICP) still plays a key role in the management of patients at risk from intracranial hypertension. Numerous ICP-measuring devices are available. The aim of the present study was to investigate the clinical characteristics and the magnetic resonance imaging (MRI) compatibility of the recently developed Neurovent-P(REHAU AG+CO, REHAU, Germany) ICP monitoring device. In a prospective two-center study, a total of 98 patients with severe head injury, subarachnoid haemorrhage, intracerebral haemorrhage, and non-traumatic brain edema underwent intraparenchymal monitoring of ICP using the Neurovent-P. A control group comprising 50 patients underwent implantation of the Camino-OLM-110-4B ICP monitor. The zero drift of the probes was determined before and after the ICP recording period. Technical and medical complications were documented. The MRI compatibility of the Neurovent-P ICP probe was investigated by evaluating artifacts caused by the probe, probe function and temperature changes during MRI, and probe movement caused by the magnetic field. The mean zero drift was 0.2+/-0.41 mmHg (maximum 3 mmHg) for the Neurovent-P ICP probes and 0.4+/-0.57 mmHg (maximum 12 mmHg) for the Camino-OLM-110-4B ICP probes. No significant correlation was identified between the extent of zero drift following the removal of the probes and the length of monitoring. Intraparenchymal haemorrhage spatially related to the probe occurred in 1 out of 50 (2%) patients with a Camino-OLM-110-4B probe and in 1 out of 98 (1%) with a Neurovent-P. Damage of the probe due to kinking or overextension of the cable or glass fiber occurred in 4 of the 50 (8%) Camino-OLM-110-4B ICP probes and in 5 of the 98 (5%) Neurovent-P probes. On T2-weighted MR images, the Neurovent-P ICP probe induced only small artifacts with very good discrimination of the surrounding tissue. On T1-weighted MR images, there was a good imaging quality but artifact-related local disturbances

  3. Remote monitoring of cardiac implantable electronic devices in Europe: results of the European Heart Rhythm Association survey.

    PubMed

    Hernández-Madrid, Antonio; Lewalter, Thorsten; Proclemer, Alessandro; Pison, Laurent; Lip, Gregory Y H; Blomstrom-Lundqvist, Carina

    2014-01-01

    The aim of this European Heart Rhythm Association survey was to provide an insight into the current use of remote monitoring for cardiac implantable electronic devices in Europe. The following topics were explored: use of remote monitoring, infrastructure and organization, patient selection and benefits. Centres using remote monitoring reported performing face-to-face visits less frequently. In many centres (56.9%), a nurse reviews all the data and forwards them to the responsible physician. The majority of the centres (91.4%) stated that remote monitoring is best used in patients with implantable cardioverter-defibrillators and those live far from the hospital (76.6% top benefit). Supraventricular and ventricular arrhythmias were reported to be the major events detected earlier by remote monitoring. Remote monitoring will have a significant impact on device management.

  4. Monitoring driver fatigue using a single-channel electroencephalographic device: A validation study by gaze-based, driving performance, and subjective data.

    PubMed

    Morales, José M; Díaz-Piedra, Carolina; Rieiro, Héctor; Roca-González, Joaquín; Romero, Samuel; Catena, Andrés; Fuentes, Luis J; Di Stasi, Leandro L

    2017-12-01

    Driver fatigue can impair performance as much as alcohol does. It is the most important road safety concern, causing thousands of accidents and fatalities every year. Thanks to technological developments, wearable, single-channel EEG devices are now getting considerable attention as fatigue monitors, as they could help drivers to assess their own levels of fatigue and, therefore, prevent the deterioration of performance. However, the few studies that have used single-channel EEG devices to investigate the physiological effects of driver fatigue have had inconsistent results, and the question of whether we can monitor driver fatigue reliably with these EEG devices remains open. Here, we assessed the validity of a single-channel EEG device (TGAM-based chip) to monitor changes in mental state (from alertness to fatigue). Fifteen drivers performed a 2-h simulated driving task while we recorded, simultaneously, their prefrontal brain activity and saccadic velocity. We used saccadic velocity as the reference index of fatigue. We also collected subjective ratings of alertness and fatigue, as well as driving performance. We found that the power spectra of the delta EEG band showed an inverted U-shaped quadratic trend (EEG power spectra increased for the first hour and half, and decreased during the last thirty minutes), while the power spectra of the beta band linearly increased as the driving session progressed. Coherently, saccadic velocity linearly decreased and speeding time increased, suggesting a clear effect of fatigue. Subjective data corroborated these conclusions. Overall, our results suggest that the TGAM-based chip EEG device is able to detect changes in mental state while performing a complex and dynamic everyday task as driving. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Point-of-Care Detection Devices for Food Safety Monitoring: Proactive Disease Prevention.

    PubMed

    Wu, Marie Yung-Chen; Hsu, Min-Yen; Chen, Shih-Jen; Hwang, De-Kuang; Yen, Tzung-Hai; Cheng, Chao-Min

    2017-04-01

    Food safety has become an increasingly significant public concern in both developed and under-developed nations around the world; it increases morbidity, mortality, human suffering, and economic burden. This Opinion focuses on (i) examining the influence of pathogens and chemicals (e.g., food additives and pesticide residue) on food-borne illnesses, (ii) summarizing food hazards that are present in Asia, and (iii) summarizing the array of current point-of-care (POC) detection devices that have potential applications in food safety monitoring. In addition, we provide insight into global healthcare issues in both developing and under-developed nations with a focus on bridging the gap between food safety issues in the public sector (associated with relevant clinical cases) and the use of POC detection devices for food safety monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A Textile-Based Wearable Sensing Device Designed for Monitoring the Flexion Angle of Elbow and Knee Movements

    PubMed Central

    Shyr, Tien-Wei; Shie, Jing-Wen; Jiang, Chang-Han; Li, Jung-Jen

    2014-01-01

    In this work a wearable gesture sensing device consisting of a textile strain sensor, using elastic conductive webbing, was designed for monitoring the flexion angle of elbow and knee movements. The elastic conductive webbing shows a linear response of resistance to the flexion angle. The wearable gesture sensing device was calibrated and then the flexion angle-resistance equation was established using an assembled gesture sensing apparatus with a variable resistor and a protractor. The proposed device successfully monitored the flexion angle during elbow and knee movements. PMID:24577526

  7. Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies.

    PubMed

    Maruo, Yasuko Yamada; Nakamura, Jiro

    2011-09-30

    We have developed a portable device for formaldehyde monitoring with both high sensitivity and high temporal resolution, and carried out indoor air formaldehyde concentration analysis. The absorbance difference of the sensor element was measured in the monitoring device at regular intervals of, for example, one hour or 30 min, and the result was converted into the formaldehyde concentration. This was possible because we found that the lutidine derivative that was formed as a yellow product of the reaction between 1-phenyl-1,3-butandione and formaldehyde was stable in porous glass for at least six months. We estimated the reaction rate and to be 0.049 min(-1) and the reaction occurred quickly enough for us to monitor hourly changes in the formaldehyde concentration. The detection limit was 5 μg m(-3) h. We achieved hourly formaldehyde monitoring using the developed device under several indoor conditions, and estimated the air exchange rate and formaldehyde adsorption rate, which we adopted as a new term in the mass balance equation for formaldehyde, in one office. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. ISHNE/EHRA expert consensus on remote monitoring of cardiovascular implantable electronic devices (CIEDs).

    PubMed

    Dubner, Sergio; Auricchio, Angelo; Steinberg, Jonathan S; Vardas, Panos; Stone, Peter; Brugada, Josep; Piotrowicz, Ryszard; Hayes, David L; Kirchhof, Paulus; Breithardt, Günter; Zareba, Wojciech; Schuger, Claudio; Aktas, Mehmet K; Chudzik, Michal; Mittal, Suneet; Varma, Niraj

    2012-02-01

    We are in the midst of a rapidly evolving era of technology-assisted medicine. The field of telemedicine provides the opportunity for highly individualized medical management in a way that has never been possible before. Evolving medical technologies using cardiac implantable devices (CIEDs) with capabilities for remote monitoring permit evaluation of multiple parameters of cardiovascular physiology and risk, including cardiac rhythm, device function, blood pressure values, the presence of myocardial ischaemia, and the degree of compensation of congestive heart failure. Cardiac risk, device status, and response to therapies can now be assessed with these electronic systems of detection and reporting. This document reflects the extensive experience from investigators and innovators around the world who are shaping the evolution of this rapidly expanding field, focusing in particular on implantable pacemakers (IPGs), implantable cardioverter-defibrillators (ICDs), devices for cardiac resynchronization therapy (CRT) (both, with and without defibrillation properties), loop recorders, and haemodynamic monitoring devices. This document covers the basic methodologies, guidelines for their use, experience with existing applications, and the legal and reimbursement aspects associated with their use. To adequately cover this important emerging topic, the International Society for Holter and Noninvasive Electrocardiology (ISHNE) and the European Heart Rhythm Association (EHRA) combined their expertise in this field. We hope that the development of this field can contribute to improve care of our cardiovascular patients.

  9. Assessing physical activity using wearable monitors: measures of physical activity.

    PubMed

    Butte, Nancy F; Ekelund, Ulf; Westerterp, Klaas R

    2012-01-01

    Physical activity may be defined broadly as "all bodily actions produced by the contraction of skeletal muscle that increase energy expenditure above basal level." Physical activity is a complex construct that can be classified into major categories qualitatively, quantitatively, or contextually. The quantitative assessment of physical activity using wearable monitors is grounded in the measurement of energy expenditure. Six main categories of wearable monitors are currently available to investigators: pedometers, load transducers/foot-contact monitors, accelerometers, HR monitors, combined accelerometer and HR monitors, and multiple sensor systems. Currently available monitors are capable of measuring total physical activity as well as components of physical activity that play important roles in human health. The selection of wearable monitors for measuring physical activity will depend on the physical activity component of interest, study objectives, characteristics of the target population, and study feasibility in terms of cost and logistics. Future development of sensors and analytical techniques for assessing physical activity should focus on the dynamic ranges of sensors, comparability for sensor output across manufacturers, and the application of advanced modeling techniques to predict energy expenditure and classify physical activities. New approaches for qualitatively classifying physical activity should be validated using direct observation or recording. New sensors and methods for quantitatively assessing physical activity should be validated in laboratory and free-living populations using criterion methods of calorimetry or doubly labeled water.

  10. A Laboratory Experimental Study: An FBG-PVC Tube Integrated Device for Monitoring the Slip Surface of Landslides

    PubMed Central

    Zhang, Shaojie; Chen, Jiang; Teng, Pengxiao; Wei, Fangqiang; Chen, Qiao

    2017-01-01

    A new detection device was designed by integrating fiber Bragg grating (FBG) and polyvinyl chloride (PVC) tube in order to monitor the slip surface of a landslide. Using this new FBG-based device, a corresponding slope model with a pre-set slip surface was designed, and seven tests with different soil properties were carried out in laboratory conditions. The FBG sensing fibers were fixed on the PVC tube to measure strain distributions of PVC tube at different elevation. Test results indicated that the PVC tube could keep deformation compatible with soil mass. The new device was able to monitor slip surface location before sliding occurrence, and the location of monitored slip surface was about 1–2 cm above the pre-set slip surface, which basically agreed with presupposition results. The monitoring results are expected to be used to pre-estimate landslide volume and provide a beneficial option for evaluating the potential impact of landslides on shipping safety in the Three Gorges area. PMID:29084157

  11. A Laboratory Experimental Study: An FBG-PVC Tube Integrated Device for Monitoring the Slip Surface of Landslides.

    PubMed

    Wang, Kai; Zhang, Shaojie; Chen, Jiang; Teng, Pengxiao; Wei, Fangqiang; Chen, Qiao

    2017-10-30

    A new detection device was designed by integrating fiber Bragg grating (FBG) and polyvinyl chloride (PVC) tube in order to monitor the slip surface of a landslide. Using this new FBG-based device, a corresponding slope model with a pre-set slip surface was designed, and seven tests with different soil properties were carried out in laboratory conditions. The FBG sensing fibers were fixed on the PVC tube to measure strain distributions of PVC tube at different elevation. Test results indicated that the PVC tube could keep deformation compatible with soil mass. The new device was able to monitor slip surface location before sliding occurrence, and the location of monitored slip surface was about 1-2 cm above the pre-set slip surface, which basically agreed with presupposition results. The monitoring results are expected to be used to pre-estimate landslide volume and provide a beneficial option for evaluating the potential impact of landslides on shipping safety in the Three Gorges area.

  12. Distributed smart device for monitoring, control and management of electric loads in domotic environments.

    PubMed

    Morales, Ricardo; Badesa, Francisco J; García-Aracil, Nicolas; Perez-Vidal, Carlos; Sabater, Jose María

    2012-01-01

    This paper presents a microdevice for monitoring, control and management of electric loads at home. The key idea is to compact the electronic design as much as possible in order to install it inside a Schuko socket. Moreover, the electronic Schuko socket (electronic microdevice + Schuko socket) has the feature of communicating with a central unit and with other microdevices over the existing powerlines. Using the existing power lines, the proposed device can be installed in new buildings or in old ones. The main use of this device is to monitor, control and manage electric loads to save energy and prevent accidents produced by different kind of devices (e.g., iron) used in domestic tasks. The developed smart device is based on a single phase multifunction energy meter manufactured by Analog Devices (ADE7753) to measure the consumption of electrical energy and then to transmit it using a serial interface. To provide current measurement information to the ADE7753, an ultra flat SMD open loop integrated circuit current transducer based on the Hall effect principle manufactured by Lem (FHS-40P/SP600) has been used. Moreover, each smart device has a PL-3120 smart transceiver manufactured by LonWorks to execute the user's program, to communicate with the ADE7753 via serial interface and to transmit information to the central unit via powerline communication. Experimental results show the exactitude of the measurements made using the developed smart device.

  13. Commercial Smartphone-Based Devices and Smart Applications for Personalized Healthcare Monitoring and Management

    PubMed Central

    Vashist, Sandeep Kumar; Schneider, E. Marion; Luong, John H.T.

    2014-01-01

    Smartphone-based devices and applications (SBDAs) with cost effectiveness and remote sensing are the most promising and effective means of delivering mobile healthcare (mHealthcare). Several SBDAs have been commercialized for the personalized monitoring and/or management of basic physiological parameters, such as blood pressure, weight, body analysis, pulse rate, electrocardiograph, blood glucose, blood glucose saturation, sleeping and physical activity. With advances in Bluetooth technology, software, cloud computing and remote sensing, SBDAs provide real-time on-site analysis and telemedicine opportunities in remote areas. This scenario is of utmost importance for developing countries, where the number of smartphone users is about 70% of 6.8 billion cell phone subscribers worldwide with limited access to basic healthcare service. The technology platform facilitates patient-doctor communication and the patients to effectively manage and keep track of their medical conditions. Besides tremendous healthcare cost savings, SBDAs are very critical for the monitoring and effective management of emerging epidemics and food contamination outbreaks. The next decade will witness pioneering advances and increasing applications of SBDAs in this exponentially growing field of mHealthcare. This article provides a critical review of commercial SBDAs that are being widely used for personalized healthcare monitoring and management. PMID:26852680

  14. Trends in monitoring pharmaceuticals and personal-care products in the aquatic environment by use of passive sampling devices

    USGS Publications Warehouse

    Mills, G.A.; Vrana, B.; Allan, I.; Alvarez, D.A.; Huckins, J.N.; Greenwood, R.

    2007-01-01

    The use of passive sampling in monitoring pharmaceuticals and personal-care products (PPCPs) in the aquatic environment is discussed. The utility of passive sampling methods for monitoring the fraction of heavy metals and the biologically available fraction of non-polar organic priority pollutants is recognized and these technologies are being used in surveys of water quality. These devices are used to measure the dissolved fraction and they can yield information that can be used in the development of risk assessments models. These devices can also be used to locate illegal dumping and to monitor specific sources of input of PPCPs into the environment, or to monitor the effectiveness of water treatment processes in the removal of these compounds from wastewater. These devices can provide representative information at low cost which necessitate a combination of laboratory calibration and field studies for emerging pollutants.

  15. Design of a tracking device for on-line dose monitoring in hadrontherapy

    NASA Astrophysics Data System (ADS)

    Battistoni, G.; Collamati, F.; De Lucia, E.; Faccini, R.; Marafini, M.; Mattei, I.; Muraro, S.; Paramatti, R.; Patera, V.; Pinci, D.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.

    2017-02-01

    Hadrontherapy is a technique for cancer treatment that exploits ion beams (mostly protons and carbons). A critical issue is the accuracy that is achievable when monitoring the dose released by the beam to the tumor and to the surrounding tissues. We present the design of a tracking device, developed in the framework of the INSIDE project [1], capable of monitoring in real time the longitudinal profile of the dose delivered in the patient. This is possible by detecting the secondary particles produced by the interaction of the beam in the tissues. The position of the Bragg peak can be correlated to the charged particles emission point distribution measurement. The tracking device will be able to provide a fast response on the dose pattern by tracking the secondary charged fragments. The tracks are detected using 6 planes of scintillating fibers, providing the 3D coordinates of the track intersection with each plane. The fibers planes are followed by a plastic scintillator and by a small calorimeter built with a pixelated Lutetium Fine Silicate (LFS) crystal. A complete detector simulation, followed by the event reconstruction, has been performed to determine the achievable monitoring spatial resolution.

  16. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...

  17. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...

  18. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...

  19. Validation of Contact-Free Sleep Monitoring Device with Comparison to Polysomnography

    PubMed Central

    Tal, Asher; Shinar, Zvika; Shaki, David; Codish, Shlomi; Goldbart, Aviv

    2017-01-01

    Study Objectives: To validate a contact-free system designed to achieve maximal comfort during long-term sleep monitoring, together with high monitoring accuracy. Methods: We used a contact-free monitoring system (EarlySense, Ltd., Israel), comprising an under-the-mattress piezoelectric sensor and a smartphone application, to collect vital signs and analyze sleep. Heart rate (HR), respiratory rate (RR), body movement, and calculated sleep-related parameters from the EarlySense (ES) sensor were compared to data simultaneously generated by the gold standard, polysomnography (PSG). Subjects in the sleep laboratory underwent overnight technician-attended full PSG, whereas subjects at home were recorded for 1 to 3 nights with portable partial PSG devices. Data were compared epoch by epoch. Results: A total of 63 subjects (85 nights) were recorded under a variety of sleep conditions. Compared to PSG, the contact-free system showed similar values for average total sleep time (TST), % wake, % rapid eye movement, and % non-rapid eye movement sleep, with 96.1% and 93.3% accuracy of continuous measurement of HR and RR, respectively. We found a linear correlation between TST measured by the sensor and TST determined by PSG, with a coefficient of 0.98 (R = 0.87). Epoch-by-epoch comparison with PSG in the sleep laboratory setting revealed that the system showed sleep detection sensitivity, specificity, and accuracy of 92.5%, 80.4%, and 90.5%, respectively. Conclusions: TST estimates with the contact-free sleep monitoring system were closely correlated with the gold-standard reference. This system shows good sleep staging capability with improved performance over accelerometer-based apps, and collects additional physiological information on heart rate and respiratory rate. Citation: Tal A, Shinar Z, Shaki D, Codish S, Goldbart A. Validation of contact-free sleep monitoring device with comparison to polysomnography. J Clin Sleep Med. 2017;13(3):517–522. PMID:27998378

  20. Assessing Daily Physical Activity in Older Adults: Unraveling the Complexity of Monitors, Measures, and Methods

    PubMed Central

    Cooper, Rachel; Koster, Annemarie; Shiroma, Eric J.; Murabito, Joanne M.; Rejeski, W. Jack; Ferrucci, Luigi; Harris, Tamara B.

    2016-01-01

    At the 67th Gerontological Society of America Annual Meeting, a preconference workshop was convened to discuss the challenges of accurately assessing physical activity in older populations. The advent of wearable technology (eg, accelerometers) to monitor physical activity has created unprecedented opportunities to observe, quantify, and define physical activity in the real-world setting. These devices enable researchers to better understand the associations of physical activity with aging, and subsequent health outcomes. However, a consensus on proper methodological use of these devices in older populations has not been established. To date, much of the validation research regarding device type, placement, and data interpretation has been performed in younger, healthier populations, and translation of these methods to older populations remains problematic. A better understanding of these devices, their measurement properties, and the data generated is imperative to furthering our understanding of daily physical activity, its effects on the aging process, and vice versa. The purpose of this article is to provide an overview of the highlights of the preconference workshop, including properties of the different types of accelerometers, the methodological challenges of employing accelerometers in older study populations, a brief summary of ongoing aging-related research projects that utilize different types of accelerometers, and recommendations for future research directions. PMID:26957472

  1. Use of diagnostic imaging procedures and fetal monitoring devices in the care of pregnant women.

    PubMed

    Moore, R M; Jeng, L L; Kaczmarek, R G; Placek, P J

    1990-01-01

    Medical devices and diagnostic imaging procedures such as ultrasound, X-rays, and electronic fetal monitoring devices are used in the medical care of many pregnant women today. The responsibility for the safety and effectiveness of these diagnostic technologies is shared by a number of Public Health Service agencies, one of which is the Center for Devices and Radiological Health (CDRH), a unit within the Food and Drug Administration. The CDRH collaborated with the National Center for Health Statistics (NCHS) in conducting a study of recent trends in the uses of diagnostic ultrasound, medical X-rays, and electronic fetal monitoring devices in the medical care of pregnant women. This study used data from the 1980 National Natality and Fetal Mortality Surveys and the 1987 pretest to the National Maternal and Infant Health Survey. Hospitals and prenatal care providers of the pregnant women contributed information regarding the use of these medical devices. Between 1980 and 1987, ultrasound use more than doubled, increasing from 33.5 percent of pregnancies in 1980 to 78.8 percent in 1987 (P less than 0.001). More ultrasound examinations were performed earlier in gestation in 1987 than in 1980, with 10.1 percent being performed during the first trimester in 1987, compared with 6.9 percent in 1980 (P less than 0.001). Use of external electronic fetal monitoring devices during delivery also increased significantly between 1980 and 1987, from 33.5 percent to 74.6 percent (P less than 0.001). Use of medical X-rays among women with live births remained relatively unchanged, 15.0 percent in 1980 and 15.3 percent in 1987 (P = .282). The implications of these trends are discussed.

  2. Results of remote follow-up and monitoring in young patients with cardiac implantable electronic devices.

    PubMed

    Silvetti, Massimo S; Saputo, Fabio A; Palmieri, Rosalinda; Placidi, Silvia; Santucci, Lorenzo; Di Mambro, Corrado; Righi, Daniela; Drago, Fabrizio

    2016-01-01

    Remote monitoring is increasingly used in the follow-up of patients with cardiac implantable electronic devices. Data on paediatric populations are still lacking. The aim of our study was to follow-up young patients both in-hospital and remotely to enhance device surveillance. This is an observational registry collecting data on consecutive patients followed-up with the CareLink system. Inclusion criteria were a Medtronic device implanted and patient's willingness to receive CareLink. Patients were stratified according to age and presence of congenital/structural heart defects (CHD). A total of 221 patients with a device - 200 pacemakers, 19 implantable cardioverter defibrillators, and two loop recorders--were enrolled (median age of 17 years, range 1-40); 58% of patients were younger than 18 years of age and 73% had CHD. During a follow-up of 12 months (range 4-18), 1361 transmissions (8.9% unscheduled) were reviewed by technicians. Time for review was 6 ± 2 minutes (mean ± standard deviation). Missed transmissions were 10.1%. Events were documented in 45% of transmissions, with 2.7% yellow alerts and 0.6% red alerts sent by wireless devices. No significant differences were found in transmission results according to age or presence of CHD. Physicians reviewed 6.3% of transmissions, 29 patients were contacted by phone, and 12 patients underwent unscheduled in-hospital visits. The event recognition with remote monitoring occurred 76 days (range 16-150) earlier than the next scheduled in-office follow-up. Remote follow-up/monitoring with the CareLink system is useful to enhance device surveillance in young patients. The majority of events were not clinically relevant, and the remaining led to timely management of problems.

  3. Compliance Assurance Monitoring Technical Guidance Document Appendix A: Wet Electrostatic Precipitator Control Device

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  4. Compliance Assurance Monitoring Technical Guidance Document Appendix A: Electrified Filter Bed Control Device

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  5. Compliance Patterns and Utilization of e-Health for Glucose Monitoring: Standalone Internet Gateway and Tablet Device.

    PubMed

    Rho, Mi Jung; Kim, Hun-Sung; Yoon, Kun-Ho; Choi, In Young

    2017-04-01

    Knowledge regarding compliance patterns and service utilization in e-health is important for the development of effective services. To develop proper e-health, the characteristics of compliance patterns and utilization of e-health should be studied. We studied these for glucose monitoring of diabetic patients from primary clinics. Data were collected from 160 outpatients who participated in e-health for glucose monitoring funded by the Korean government. Specifically, this study focused on two device types: a standalone Internet gateway and a tablet device. The SPSS 18.0 software was used for statistical analyses of demographic characteristics, survival data, and Cox proportional hazards regression model. Standalone Internet gateway users demonstrated a more stable compliance pattern than did tablet device users. The compliance rate differed according to the device type. Typically, compliance decreases considerably around 8 months. In these results, standalone Internet gateway users utilized the service for longer periods than tablet device users. Gateway type and location also influenced utilization (p < 0.05). The service should be designed according to the device type to develop appropriate service models. Thus, service designers should understand the different characteristics of service devices. This study provides insight into compliance patterns and utilization to develop appropriate service models and service interventions depending on the device.

  6. Cognitive Inference Device for Activity Supervision in the Elderly

    PubMed Central

    2014-01-01

    Human activity, life span, and quality of life are enhanced by innovations in science and technology. Aging individual needs to take advantage of these developments to lead a self-regulated life. However, maintaining a self-regulated life at old age involves a high degree of risk, and the elderly often fail at this goal. Thus, the objective of our study is to investigate the feasibility of implementing a cognitive inference device (CI-device) for effective activity supervision in the elderly. To frame the CI-device, we propose a device design framework along with an inference algorithm and implement the designs through an artificial neural model with different configurations, mapping the CI-device's functions to minimise the device's prediction error. An analysis and discussion are then provided to validate the feasibility of CI-device implementation for activity supervision in the elderly. PMID:25405211

  7. TU-AB-204-00: CDRH/FDA Regulatory Processes and Device Science Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The responsibilities of the Food and Drug Administration (FDA) have increased since the inception of the Food and Drugs Act in 1906. Medical devices first came under comprehensive regulation with the passage of the 1938 Food, Drug, and Cosmetic Act. In 1971 FDA also took on the responsibility for consumer protection against unnecessary exposure to radiation-emitting devices for home and occupational use. However it was not until 1976, under the Medical Device Regulation Act, that the FDA was responsible for the safety and effectiveness of medical devices. This session will be presented by the Division of Radiological Health (DRH) andmore » the Division of Imaging, Diagnostics, and Software Reliability (DIDSR) from the Center for Devices and Radiological Health (CDRH) at the FDA. The symposium will discuss on how we protect and promote public health with a focus on medical physics applications organized into four areas: pre-market device review, post-market surveillance, device compliance, current regulatory research efforts and partnerships with other organizations. The pre-market session will summarize the pathways FDA uses to regulate the investigational use and commercialization of diagnostic imaging and radiation therapy medical devices in the US, highlighting resources available to assist investigators and manufacturers. The post-market session will explain the post-market surveillance and compliance activities FDA performs to monitor the safety and effectiveness of devices on the market. The third session will describe research efforts that support the regulatory mission of the Agency. An overview of our regulatory research portfolio to advance our understanding of medical physics and imaging technologies and approaches to their evaluation will be discussed. Lastly, mechanisms that FDA uses to seek public input and promote collaborations with professional, government, and international organizations, such as AAPM, International Electrotechnical Commission

  8. Remote Monitoring of Cardiac Implantable Electronic Devices (CIED)

    PubMed Central

    Zeitler, Emily P.; Piccini, Jonathan P.

    2016-01-01

    With increasing indications and access to cardiac implantable electronic devices (CIEDs) worldwide, the number of patients needing CIED follow up continues to rise. In parallel, the technology available for managing these devices has advanced considerably. In this setting, remote monitoring (RM) has emerged as a complement to routine in-office care. Rigorous studies, randomized and otherwise, have demonstrated advantages to CIED patient management systems which incorporates RM resulting in authoritative guidelines from relevant professional societies recommending RM for all eligible patients. In addition to clinical benefits, CIED management programs that include RM have been shown to be cost effective and associated with high patient satisfaction. Finally, RM programs hold promise for the future of CIED research in light of the massive data collected through RM databases converging with unprecedented computational capability. This review outlines the available data associated with clinical outcomes in patients managed with RM with an emphasis on randomized trials; the impact of RM on patient satisfaction, cost-effectiveness and healthcare utilization; and possible future directions for the use of RM in clinical practice and research. PMID:27134007

  9. Smart portable rehabilitation devices.

    PubMed

    Mavroidis, Constantinos; Nikitczuk, Jason; Weinberg, Brian; Danaher, Gil; Jensen, Katherine; Pelletier, Philip; Prugnarola, Jennifer; Stuart, Ryan; Arango, Roberto; Leahey, Matt; Pavone, Robert; Provo, Andrew; Yasevac, Dan

    2005-07-12

    The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s). In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Laboratory tests of the devices demonstrated that they were able to meet their design

  10. Smart portable rehabilitation devices

    PubMed Central

    Mavroidis, Constantinos; Nikitczuk, Jason; Weinberg, Brian; Danaher, Gil; Jensen, Katherine; Pelletier, Philip; Prugnarola, Jennifer; Stuart, Ryan; Arango, Roberto; Leahey, Matt; Pavone, Robert; Provo, Andrew; Yasevac, Dan

    2005-01-01

    Background The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s). Methods In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Results Laboratory tests of the devices demonstrated that they were able to

  11. Introducing a modular activity monitoring system.

    PubMed

    Reiss, Attila; Stricker, Didier

    2011-01-01

    In this paper, the idea of a modular activity monitoring system is introduced. By using different combinations of the system's three modules, different functionality becomes available: 1) a coarse intensity estimation of physical activities 2) different features based on HR-data and 3) the recognition of basic activities and postures. 3D-accelerometers--placed on lower arm, chest and foot--and a heart rate monitor were used as sensors. A dataset with 8 subjects and 14 different activities was recorded to evaluate the performance of the system. The overall performance on the intensity estimation task, relying on the chest-worn accelerometer and the HR-monitor, was 94.37%. The overall performance on the activity recognition task, using all three accelerometer placements and the HR-monitor, was 90.65%. This paper also gives an analysis of the importance of different accelerometer placements and the importance of a HR-monitor for both tasks.

  12. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... CITIZENS BAND BASE STATION ANTENNAS Pt. 1204, Figs. 1, 2 Figures 1 and 2 to Part 1204—Suggested Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...

  13. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... CITIZENS BAND BASE STATION ANTENNAS Pt. 1204, Figs. 1, 2 Figures 1 and 2 to Part 1204—Suggested Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...

  14. A tritium activity monitor for the KATRIN Experiment

    NASA Astrophysics Data System (ADS)

    Schmitt, Udo

    2008-06-01

    The KArlsruhe TRItium Neutrino experiment KATRIN is designed to measure the absolute neutrino mass scale by analyzing the endpoint region of the tritium beta-decay spectrum with a sensitivity of 0.2 eV/c2 (90 % C.L.). A high-luminous windowless gaseous tritium source with an activity of 1.7 · 1011 Bq will produce the decay electrons, their energy spectrum will be analyzed by a combination of two electrostatic retarding spectrometers with magnetic adiabatic collimation (MAC-E-filter). Fluctuations of the source column density and inelastic scattering processes within the source affect the energy distribution of the decay electrons. Hence, a precise and continuous monitoring of the source activity is necessary to correct the data taken by the main detector. A prototype of the beam monitor detector, based on a silicon drift diode, has been developed to measure an expected counting rate in the range of 106/(s · mm2). The detector element shall be moveable across the complete beam in a magnetic field of 0.8 T, resulting in a beam diameter of 20 cm. A precise sensor positioning device has been designed and built to be compatible with the primary beamline vacuum of 10-11 mbar.

  15. Wearable, Flexible, and Multifunctional Healthcare Device with an ISFET Chemical Sensor for Simultaneous Sweat pH and Skin Temperature Monitoring.

    PubMed

    Nakata, Shogo; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2017-03-24

    Real-time daily healthcare monitoring may increase the chances of predicting and diagnosing diseases in their early stages which, currently, occurs most frequently during medical check-ups. Next-generation noninvasive healthcare devices, such as flexible multifunctional sensor sheets designed to be worn on skin, are considered to be highly suitable candidates for continuous real-time health monitoring. For healthcare applications, acquiring data on the chemical state of the body, alongside physical characteristics such as body temperature and activity, are extremely important for predicting and identifying potential health conditions. To record these data, in this study, we developed a wearable, flexible sweat chemical sensor sheet for pH measurement, consisting of an ion-sensitive field-effect transistor (ISFET) integrated with a flexible temperature sensor: we intend to use this device as the foundation of a fully integrated, wearable healthcare patch in the future. After characterizing the performance, mechanical flexibility, and stability of the sensor, real-time measurements of sweat pH and skin temperature are successfully conducted through skin contact. This flexible integrated device has the potential to be developed into a chemical sensor for sweat for applications in healthcare and sports.

  16. Accurate prediction of energy expenditure using a shoe-based activity monitor.

    PubMed

    Sazonova, Nadezhda; Browning, Raymond C; Sazonov, Edward

    2011-07-01

    The aim of this study was to develop and validate a method for predicting energy expenditure (EE) using a footwear-based system with integrated accelerometer and pressure sensors. We developed a footwear-based device with an embedded accelerometer and insole pressure sensors for the prediction of EE. The data from the device can be used to perform accurate recognition of major postures and activities and to estimate EE using the acceleration, pressure, and posture/activity classification information in a branched algorithm without the need for individual calibration. We measured EE via indirect calorimetry as 16 adults (body mass index=19-39 kg·m) performed various low- to moderate-intensity activities and compared measured versus predicted EE using several models based on the acceleration and pressure signals. Inclusion of pressure data resulted in better accuracy of EE prediction during static postures such as sitting and standing. The activity-based branched model that included predictors from accelerometer and pressure sensors (BACC-PS) achieved the lowest error (e.g., root mean squared error (RMSE)=0.69 METs) compared with the accelerometer-only-based branched model BACC (RMSE=0.77 METs) and nonbranched model (RMSE=0.94-0.99 METs). Comparison of EE prediction models using data from both legs versus models using data from a single leg indicates that only one shoe needs to be equipped with sensors. These results suggest that foot acceleration combined with insole pressure measurement, when used in an activity-specific branched model, can accurately estimate the EE associated with common daily postures and activities. The accuracy and unobtrusiveness of a footwear-based device may make it an effective physical activity monitoring tool.

  17. Acceptability of mHealth Technology for Self-Monitoring Eating and Activity among Rural Men.

    PubMed

    Eisenhauer, Christine M; Hageman, Patricia A; Rowland, Sheri; Becker, Betsy J; Barnason, Susan A; Pullen, Carol H

    2017-03-01

    To examine rural men's use and perceptions of mobile and wireless devices to self-monitor eating and physical activity (mHealth). Men in this 3-week pilot study used FitBit One ® to log daily food intake and monitor activity. A companion application (app) allowed activity monitoring of fellow participants. Health-related text messages were received 1-3 times daily. A purposive sample of 12 rural men (ages 40-67) was recruited by community leaders. (1) baseline heart rate, blood pressure, and BMI, (2) FitBit One ® usage, (3) investigator-generated surveys on acceptability of mHealth, and (4) focus group on experience with mHealth. Men were overweight (n = 3) or obese (n = 9) and 9 of 12 were hypertensive. Nine of twelve wore FitBit One ® all 21 days. Eleven of 12 men logged food, with 9 of 12 doing this at least 15 of 21 days. Self-monitoring and daily text messaging increased awareness of energy intake and output. Companion app's food log needed targeting for rural foods. Rotating seasons (occupational, religious, recreational) and weak cellular signals created contextual barriers to self-monitoring eating and activity. FitBit One ® and text messaging were perceived as useful among the rural men, while the companion apps require adaptation to reflect dietary norms. © 2016 Wiley Periodicals, Inc.

  18. Pulsed Phase Lock Loop Device for Monitoring Intracranial Pressure During Space Flight

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.

    2003-01-01

    We have developed an ultrasonic device to monitor ICP waveforms non-invasively from cranial diameter oscillations using a NASA-developed pulsed phase lock loop (PPLL) technique. The purpose of this study was to attempt to validate the PPLL device for reliable recordings of ICP waveforms and analysis of ICP dynamics in vivo. METHODS: PPLL outputs were recorded in patients during invasive ICP monitoring at UCSD Medical Center (n=10). RESULTS: An averaged linear regression coefficient between ICP and PPLL waveform data during one cardiac cycle in all patients is 0.88 +/- 0.02 (mean +/- SE). Coherence function analysis indicated that ICP and PPLL waveforms have high correlation in the lst, 2nd, and 3rd harmonic waves associated with a cardiac cycle. CONCLUSIONS: PPLL outputs represent ICP waveforms in both frequency and time domains. PPLL technology enables in vivo evaluation of ICP dynamics non-invasively, and can acquire continuous ICP waveforms during spaceflight because of compactness and non-invasive nature.

  19. Continuous Activity Monitoring During Concurrent Chemoradiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohri, Nitin, E-mail: ohri.nitin@gmail.com; Kabarriti, Rafi; Bodner, William R.

    Purpose: To perform a prospective trial testing the feasibility and utility of acquiring activity data as a measure of health status during concurrent chemoradiotherapy. Methods and Materials: Ambulatory patients who were planned for treatment with concurrent chemoradiotherapy with curative intent for cancers of the head and neck, lung, or gastrointestinal tract were provided with activity monitors before treatment initiation. Patients were asked to wear the devices continuously throughout the radiation therapy course. Step count data were downloaded weekly during radiation therapy and 2 and 4 weeks after radiation therapy completion. The primary objective was to demonstrate feasibility, defined as collection ofmore » step counts for 80% of the days during study subjects' radiation therapy courses. Secondary objectives included establishing step count as a dynamic predictor of unplanned hospitalization risk. Results: Thirty-eight enrolled patients were treated with concurrent chemoradiotherapy. Primary diagnoses included head and neck cancer (n=11), lung cancer (n=13), and a variety of gastrointestinal cancers (n=14). Step data were collected for 1524 of 1613 days (94%) during patients' radiation therapy courses. Fourteen patients were hospitalized during radiation therapy or within 4 weeks of radiation therapy completion. Cox regression modeling demonstrated a significant association between recent step counts (3-day average) and hospitalization risk, with a 38% reduction in the risk of hospitalization for every 1000 steps taken each day (hazard ratio 0.62, 95% confidence interval 0.46-0.83, P=.002). Inferior quality of life scores and impaired performance status were not associated with increased hospitalization risk. Conclusion: Continuous activity monitoring during concurrent chemoradiotherapy is feasible and well-tolerated. Step counts may serve as powerful, objective, and dynamic indicators of hospitalization risk.« less

  20. Surfactant monitoring by foam generation

    DOEpatents

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  1. [Telemetry data based on comparative study of physical activity in patients with resynchronization device].

    PubMed

    Melczer, Csaba; Melczer, László; Goják, Ilona; Kónyi, Attila; Szabados, Sándor; Raposa, L Bence; Oláh, András; Ács, Pongrác

    2017-05-01

    The effect of regular physical activity on health is widely recognized, but several studies have shown its key importance for heart patients. The present study aimed to define the PA % values, and to convert them into metabolic equivalent values (MET), which describes oxygen consumption during physical activity. A total of seventeen patients with heart disease; 3 females and 14 males; age: 57.35 yrs ± 9.54; body mass 98.71 ± 9.89 kg; average BMI 36.69 ± 3.67 were recruited into the study. The measured values from Cardiac Resynchronisation Therapy devices and outer accelerometers (ActiGraph GT3X+) were studied over a 7-day time period. Using the two sets of values describing physical performance, linear regression was calculated providing a mathematical equation, thus, the Physical Activity values in percentage were converted into MET values. During the 6-minute walk test the patients achieved an average of 416.6 ± 48.2 m. During 6MWT the measured values averaged at 1.85 ± 0.18 MET's, and MET values averaged at 1.12 ± 0.06 per week. It clearly shows that this test is a challenge for the patients compared to their daily regular physical activity levels. With our method, based on the values received from the physical activity sensor implanted into the resynchronisation devices, changes in patients' health status could be monitored telemetrically with the assistance from the implanted electronic device. Orv Hetil. 2017; 158(17): 748-753.

  2. Monitoring patients with continuous-flow ventricular assist devices outside of the intensive care unit: novel challenges to bedside nursing.

    PubMed

    O'Shea, Genevieve; Teuteberg, Jeffrey J; Severyn, Donald A

    2013-03-01

    Ventricular assist devices provide therapeutic options for patients with severe heart failure who have exhausted available medical therapies. With restoration of organ perfusion with ventricular assist devices, the heart failure resolves and quality of life and functional status improve. The current generation of continuous-flow devices present novel challenges to the clinical assessment of patients by substantially reducing or nearly eliminating any palpable pulse. Patients therefore generally have inadequate arterial pulsatility for most noninvasive monitoring devices such as pulse oximeters or automated blood pressure cuffs to work accurately. This article describes the function of continuous-flow devices and how this function affects common monitoring options, as well as how to clinically assess recipients of continuous-flow devices to promptly identify those whose condition may be deteriorating or who may be receiving inadequate perfusion.

  3. Temperature monitoring device and thermocouple assembly therefor

    DOEpatents

    Grimm, Noel P.; Bauer, Frank I.; Bengel, Thomas G.; Kothmann, Richard E.; Mavretish, Robert S.; Miller, Phillip E.; Nath, Raymond J.; Salton, Robert B.

    1991-01-01

    A temperature monitoring device for measuring the temperature at a surface of a body, composed of: at least one first thermocouple and a second thermocouple; support members supporting the thermocouples for placing the first thermocouple in contact with the body surface and for maintaining the second thermocouple at a defined spacing from the body surface; and a calculating circuit connected to the thermocouples for receiving individual signals each representative of the temperature reading produced by a respective one of the first and second thermocouples and for producing a corrected temperature signal having a value which represents the temperature of the body surface and is a function of the difference between the temperature reading produced by the first thermocouple and a selected fraction of the temperature reading provided by the second thermocouple.

  4. Implantable cardiac devices: the utility of remote monitoring in a paediatric and CHD population.

    PubMed

    Olen, Melissa M; Dechert-Crooks, Brynn

    2017-01-01

    Remote monitoring in the modern era has improved outcomes for patients with cardiac implantable electronic devices. There are many advantages to remote monitoring, including improved quality of life for patients, decreased need for in-office interrogation, and secondary reduced costs. Patient safety and enhanced survival remain the most significant benefit. With most of the published literature on this topic being focussed on adults, paediatric outcomes continue to be defined. This is a review of the benefits of remote monitoring in paediatrics and in patients with CHD.

  5. 40 CFR 63.497 - Back-end process provisions-monitoring provisions for control and recovery devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Back-end process provisions-monitoring... Polymers and Resins § 63.497 Back-end process provisions—monitoring provisions for control and recovery devices. (a) An owner or operator complying with the residual organic HAP limitations in § 63.494(a) using...

  6. PhysioDroid: Combining Wearable Health Sensors and Mobile Devices for a Ubiquitous, Continuous, and Personal Monitoring

    PubMed Central

    Villalonga, Claudia; Damas, Miguel

    2014-01-01

    Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users' conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices. PMID:25295301

  7. PhysioDroid: combining wearable health sensors and mobile devices for a ubiquitous, continuous, and personal monitoring.

    PubMed

    Banos, Oresti; Villalonga, Claudia; Damas, Miguel; Gloesekoetter, Peter; Pomares, Hector; Rojas, Ignacio

    2014-01-01

    Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users' conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices.

  8. A multi-sensor monitoring system of human physiology and daily activities.

    PubMed

    Doherty, Sean T; Oh, Paul

    2012-04-01

    To present the design and pilot test results of a continuous multi-sensor monitoring system of real-world physiological conditions and daily life (activities, travel, exercise, and food consumption), culminating in a Web-based graphical decision-support interface. The system includes a set of wearable sensors wirelessly connected to a "smartphone" with a continuously running software application that compresses and transmits the data to a central server. Sensors include a Global Positioning System (GPS) receiver, electrocardiogram (ECG), three-axis accelerometer, and continuous blood glucose monitor. A food/medicine diary and prompted recall activity diary were also used. The pilot test involved 40 type 2 diabetic patients monitored over a 72-h period. All but three subjects were successfully monitored for the full study period. Smartphones proved to be an effective hub for managing multiple streams of data but required attention to data compression and battery consumption issues. ECG, accelerometer, and blood glucose devices performed adequately as long as subjects wore them. GPS tracking for a full day was feasible, although significant efforts are needed to impute missing data. Activity detection algorithms were successful in identifying activities and trip modes but could benefit by incorporating accelerometer data. The prompted recall diary was an effective tool for augmenting algorithm results, although subjects reported some difficulties with it. The food and medicine diary was completed fully, although end times and medicine dosages were occasionally missing. The unique combination of sensors holds promise for increasing accuracy and reducing burden associated with collecting individual-level activity and physiological data under real-world conditions, but significant data processing issues remain. Such data will provide new opportunities to explore the impacts of human geography and daily lifestyle on health at a fine spatial/temporal scale.

  9. Validity of activity-based devices to estimate sleep.

    PubMed

    Weiss, Allison R; Johnson, Nathan L; Berger, Nathan A; Redline, Susan

    2010-08-15

    The aim of this study was to examine the feasibility of sleep estimation using a device designed and marketed to measure core physical activity. Thirty adolescent participants in an epidemiological research study wore 3 actigraphy devices on the wrist over a single night concurrent with polysomnography (PSG). Devices used include Actical actigraph, designed and marketed for placement around the trunk to measure physical activity, in addition to 2 standard actigraphy devices used to assess sleep-wake states: Sleepwatch actigraph and Actiwatch actigraph. Sleep-wake behaviors, including total sleep time (TST) and sleep efficiency (SE), were estimated from each wrist-device and PSG. Agreements between each device were calculated using Pearson product movement correlation and Bland-Altman plots. Statistical analyses of TST revealed strong correlations between each wrist device and PSG (r = 0.822, 0.836, and 0.722 for Sleepwatch, Actiwatch, and Actical, respectively). TST measured using the Actical correlated strongly with Sleepwatch (r = 0.796), and even stronger still with Actiwatch (r = 0.955). In analyses of SE, Actical correlated strongly with Actiwatch (r = 0.820; p < 0.0001), but not with Sleepwatch (0.405; p = 0.0266). SE determined by PSG correlated somewhat strongly with SE estimated from the Sleepwatch and Actiwatch (r = 0.619 and 0.651, respectively), but only weakly with SE estimated from the Actical (r = 0.348; p = 0.0598). The results from this study suggest that a device designed for assessment of physical activity and truncal placement can be used to measure sleep duration as reliably as devices designed for wrist use and sleep wake inference.

  10. A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring

    PubMed Central

    Yang, Che-Chang; Hsu, Yeh-Liang

    2010-01-01

    Characteristics of physical activity are indicative of one’s mobility level, latent chronic diseases and aging process. Accelerometers have been widely accepted as useful and practical sensors for wearable devices to measure and assess physical activity. This paper reviews the development of wearable accelerometry-based motion detectors. The principle of accelerometry measurement, sensor properties and sensor placements are first introduced. Various research using accelerometry-based wearable motion detectors for physical activity monitoring and assessment, including posture and movement classification, estimation of energy expenditure, fall detection and balance control evaluation, are also reviewed. Finally this paper reviews and compares existing commercial products to provide a comprehensive outlook of current development status and possible emerging technologies. PMID:22163626

  11. In-situ photopolymerization and monitoring device for controlled shaping of tissue fillers, replacements, or implants

    NASA Astrophysics Data System (ADS)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Bourban, Pierre-Etienne; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2015-03-01

    Photopolymerization is a common tool to harden materials initially in a liquid state. A surgeon can directly trigger the solidification of a dental implant or a bone or tissue filler simply by illumination. Traditionally, photopolymerization has been used mainly in dentistry. Over the last decade advances in material development including a wide range of biocompatible gel- and cement-systems open up a new avenue for in-situ photopolymerization. However, at the device level, surgical endoscopic probes are required. We present a miniaturized light probe where a photoactive material can be 1) mixed, pressurized and injected 2) photopolymerized or photoactivated and 3) monitored during the chemical reaction. The device enables surgeries to be conducted through a hole smaller than 1 mm in diameter. Beside basic injection mechanics, the tool consists of an optical fiber guiding the light required for photopolymerization and for chemical analysis. Combining photorheology and fluorescence spectroscopy, the current state of the photopolymerization is inferred and monitored in real time. Biocompatible and highly tuneable Poly-Ethylene-Glycol (PEG) hydrogels were used as the injection material. The device was tested on a model for intervertebral disc replacement. Gels were successfully implanted into a bovine caudal model and mechanically tested in-vitro during two weeks. The photopolymerized gel was evaluated at the tissue level (adherence and mechanical properties of the implant), at the cellular level (biocompatibility and cytotoxicity) and ergonomic level (sterilization procedure and feasibility study). This paper covers the monitoring aspect of the device.

  12. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Monitoring activities. 300.120 Section 300.120... CHILDREN WITH DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.120 Monitoring activities. (a) The SEA must carry out activities to ensure that § 300.114 is implemented by each public...

  13. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Monitoring activities. 300.120 Section 300.120... CHILDREN WITH DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.120 Monitoring activities. (a) The SEA must carry out activities to ensure that § 300.114 is implemented by each public...

  14. Physical activity monitoring in patients with peripheral arterial disease: validation of an activity monitor.

    PubMed

    Fokkenrood, H J P; Verhofstad, N; van den Houten, M M L; Lauret, G J; Wittens, C; Scheltinga, M R M; Teijink, J A W

    2014-08-01

    The daily life physical activity (PA) of patients with peripheral arterial disease (PAD) may be severely hampered by intermittent claudication (IC). From a therapeutic, as well as research, point of view, it may be more relevant to determine improvement in PA as an outcome measure in IC. The aim of this study was to validate daily activities using a novel type of tri-axial accelerometer (Dynaport MoveMonitor) in patients with IC. Patients with IC were studied during a hospital visit. Standard activities (locomotion, lying, sitting, standing, shuffling, number of steps and "not worn" detection) were video recorded and compared with activities scored by the MoveMonitor. Inter-rater reliability (expressed in intraclass correlation coefficients [ICC]), sensitivity, specificity, and positive predictive values (PPV) were calculated for each activity. Twenty-eight hours of video observation were analysed (n = 21). Our video annotation method (the gold standard method) appeared to be accurate for most postures (ICC > 0.97), except for shuffling (ICC = 0.38). The MoveMonitor showed a high sensitivity (>86%), specificity (>91%), and PPV (>88%) for locomotion, lying, sitting, and "not worn" detection. Moderate accuracy was found for standing (46%), while shuffling appeared to be undetectable (18%). A strong correlation was found between video recordings and the MoveMonitor with regard to the calculation of the "number of steps" (ICC = 0.90). The MoveMonitor provides accurate information on a diverse set of postures, daily activities, and number of steps in IC patients. However, the detection of low amplitude movements, such as shuffling and "sitting to standing" transfers, is a matter of concern. This tool is useful in assessing the role of PA as a novel, clinically relevant outcome parameter in IC. Copyright © 2014 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  15. Multiplexed immunosensing and kinetics monitoring in nanofluidic devices with highly enhanced target capture efficiency

    PubMed Central

    Lin, Yii-Lih; Huang, Yen-Jun; Teerapanich, Pattamon; Leïchlé, Thierry

    2016-01-01

    Nanofluidic devices promise high reaction efficiency and fast kinetic responses due to the spatial constriction of transported biomolecules with confined molecular diffusion. However, parallel detection of multiple biomolecules, particularly proteins, in highly confined space remains challenging. This study integrates extended nanofluidics with embedded protein microarray to achieve multiplexed real-time biosensing and kinetics monitoring. Implementation of embedded standard-sized antibody microarray is attained by epoxy-silane surface modification and a room-temperature low-aspect-ratio bonding technique. An effective sample transport is achieved by electrokinetic pumping via electroosmotic flow. Through the nanoslit-based spatial confinement, the antigen-antibody binding reaction is enhanced with ∼100% efficiency and may be directly observed with fluorescence microscopy without the requirement of intermediate washing steps. The image-based data provide numerous spatially distributed reaction kinetic curves and are collectively modeled using a simple one-dimensional convection-reaction model. This study represents an integrated nanofluidic solution for real-time multiplexed immunosensing and kinetics monitoring, starting from device fabrication, protein immobilization, device bonding, sample transport, to data analysis at Péclet number less than 1. PMID:27375819

  16. An Oil/Water disperser device for use in an oil content Monitor/Control system

    NASA Astrophysics Data System (ADS)

    Kempel, F. D.

    1985-07-01

    This patent application discloses an oil content monitor/control unit system, including an oil/water disperser device, which is configured to automatically monitor and control processed effluent from an associated oil/water separator so that if the processed effluent exceeds predetermine in-port or at-sea oil concentration lmits, it is either recirculated to an associated oil/water separator via a ship's bilge for additional processing, or diverted to a holding tank for storage. On the other hand, if the oil concentration of the processed effluent is less than predetermine in-port or at-sea limits, it is discharged overboard. The oil/water disperser device is configured to break up any oil present in the processed effluent into uniform droplets for more accurate sensing of the oil present in the processed effluent into uniform droplets for more accurate sensing of the oil-in-water concentration level thereof. The oil/water disperser device has a flow-actuated variable orifice configured into a spring-loaded polyethylene plunger which provides the uniform distribution of oil droplets.

  17. Compliance Assurance Monitoring Technical Guidance Document Appendix A: Scrubbers for Particulate Matter Control Devices

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  18. Compliance Assurance Monitoring Technical Guidance Document Appendix A: Scrubbers for Gaseous Pollutants Control Devices

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  19. A Device for Local or Remote Monitoring of Hand Rehabilitation Sessions for Rheumatic Patients

    PubMed Central

    Barabino, Gianluca; Dessì, Alessia; Tradori, Iosto; Piga, Matteo; Mathieu, Alessandro; Raffo, Luigi

    2014-01-01

    Current clinical practice suggests that recovering the hand functionality lost or reduced by injuries, interventions and chronic diseases requires, beyond pharmacological treatments, a kinesiotherapic intervention. This form of rehabilitation consists of physical exercises adapted to the specific pathology. Its effectiveness is strongly dependent on the patient's adhesion to such a program. In this paper we present a novel device with remote monitoring capabilities expressly conceived for the needs of rheumatic patients. It comprises several sensorized tools and can be used either in an outpatient clinic for hand functional evaluation, connected to a PC, or afforded to the patient for home kinesiotherapic sessions. In the latter case, the device guides the patient in the rehabilitation session, transmitting the relevant statistics about his performance to a TCP/IP server exploiting a GSM/GPRS connection for deferred analysis. An approved clinical trial has been set up in Italy, involving 10 patients with Rheumatoid Arthritis and 10 with Systemic Sclerosis, enrolled for 12 weeks in a home rehabilitation program with the proposed device. Their evaluation has been performed with traditional methods but also with the proposed device. Subjective (hand algofunctional Dreiser's index) and objective (ROM, strength, dexterity) parameters showed a sustained improvement throughout the follow-up. The obtained results proved that the device is an effective and safe tool for assessing hand disability and monitoring kinesiotherapy exercise, portending the potential exploitability of such a methodology in clinical practice. PMID:27170875

  20. Consumer-Based Physical Activity Monitor as a Practical Way to Measure Walking Intensity During Inpatient Stroke Rehabilitation.

    PubMed

    Klassen, Tara D; Semrau, Jennifer A; Dukelow, Sean P; Bayley, Mark T; Hill, Michael D; Eng, Janice J

    2017-09-01

    Identifying practical ways to accurately measure exercise intensity and dose in clinical environments is essential to advancing stroke rehabilitation. This is especially relevant in monitoring walking activity during inpatient rehabilitation where recovery is greatest. This study evaluated the accuracy of a readily available consumer-based physical activity monitor during daily inpatient stroke rehabilitation physical therapy sessions. Twenty-one individuals admitted to inpatient rehabilitation were monitored for a total of 471 one-hour physical therapy sessions which consisted of walking and nonwalking therapeutic activities. Participants wore a consumer-based physical activity monitor (Fitbit One) and the gold standard for assessing step count (StepWatch Activity Monitor) during physical therapy sessions. Linear mixed modeling was used to assess the relationship of the step count of the Fitbit to the StepWatch Activity Monitor. Device accuracy is reported as the percent error of the Fitbit compared with the StepWatch Activity Monitor. A strong relationship (slope=0.99; 95% confidence interval, 0.97-1.01) was found between the number of steps captured by the Fitbit One and the StepWatch Activity Monitor. The Fitbit One had a mean error of 10.9% (5.3) for participants with walking velocities <0.4 m/s, 6.8% (3.0) for walking velocities between 0.4 and 0.8 m/s, and 4.4% (2.8) for walking velocities >0.8 m/s. This study provides preliminary evidence that the Fitbit One, when positioned on the nonparetic ankle, can accurately measure walking steps early after stroke during inpatient rehabilitation physical therapy sessions. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01915368. © 2017 American Heart Association, Inc.

  1. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Monitoring activities. 300.120 Section 300.120 Education... DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.120 Monitoring activities. (a) The SEA must carry out activities to ensure that § 300.114 is implemented by each public agency. (b) If there...

  2. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Monitoring activities. 300.120 Section 300.120 Education... DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.120 Monitoring activities. (a) The SEA must carry out activities to ensure that § 300.114 is implemented by each public agency. (b) If there...

  3. Nanofluidic Pre-Concentration Devices for Enhancing the Detection Sensitivity and Selectivity of Biomarkers for Human Performance Monitoring

    DTIC Science & Technology

    2016-10-17

    AFRL-AFOSR-JP-TR-2016-0082 Nanofluidic Pre -Concentration Devices for Enhancing the Detection Sensitivity and Selectivity of Biomarkers for Human...Nanofluidic Pre -Concentration Devices for Enhancing the Detection Sensitivity and Selectivity of Biomarkers for Human Performance Monitoring 5a...SUBJECT TERMS Biomarkers, Nanofluidics, Pre -concentration Devices, Sensing, AOARD 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF ABSTRACT SAR 18

  4. A Low-Power and Portable Biomedical Device for Respiratory Monitoring with a Stable Power Source

    PubMed Central

    Yang, Jiachen; Chen, Bobo; Zhou, Jianxiong; Lv, Zhihan

    2015-01-01

    Continuous respiratory monitoring is an important tool for clinical monitoring. Associated with the development of biomedical technology, it has become more and more important, especially in the measuring of gas flow and CO2 concentration, which can reflect the status of the patient. In this paper, a new type of biomedical device is presented, which uses low-power sensors with a piezoresistive silicon differential pressure sensor to measure gas flow and with a pyroelectric sensor to measure CO2 concentration simultaneously. For the portability of the biomedical device, the sensors and low-power measurement circuits are integrated together, and the airway tube also needs to be miniaturized. Circuits are designed to ensure the stability of the power source and to filter out the existing noise. Modulation technology is used to eliminate the fluctuations at the trough of the waveform of the CO2 concentration signal. Statistical analysis with the coefficient of variation was performed to find out the optimal driving voltage of the pressure transducer. Through targeted experiments, the biomedical device showed a high accuracy, with a measuring precision of 0.23 mmHg, and it worked continuously and stably, thus realizing the real-time monitoring of the status of patients. PMID:26270665

  5. An active monitoring method for flood events

    NASA Astrophysics Data System (ADS)

    Chen, Zeqiang; Chen, Nengcheng; Du, Wenying; Gong, Jianya

    2018-07-01

    Timely and active detecting and monitoring of a flood event are critical for a quick response, effective decision-making and disaster reduction. To achieve the purpose, this paper proposes an active service framework for flood monitoring based on Sensor Web services and an active model for the concrete implementation of the active service framework. The framework consists of two core components-active warning and active planning. The active warning component is based on a publish-subscribe mechanism implemented by the Sensor Event Service. The active planning component employs the Sensor Planning Service to control the execution of the schemes and models and plans the model input data. The active model, called SMDSA, defines the quantitative calculation method for five elements, scheme, model, data, sensor, and auxiliary information, as well as their associations. Experimental monitoring of the Liangzi Lake flood in the summer of 2010 is conducted to test the proposed framework and model. The results show that 1) the proposed active service framework is efficient for timely and automated flood monitoring. 2) The active model, SMDSA, is a quantitative calculation method used to monitor floods from manual intervention to automatic computation. 3) As much preliminary work as possible should be done to take full advantage of the active service framework and the active model.

  6. Wearable medical devices using textile and flexible technologies for ambulatory monitoring.

    PubMed

    Dittmar, Andre; Meffre, Richard; De Oliveira, Fabrice; Gehin, Claudine; Delhomme, Georges

    2005-01-01

    Health smart clothes are in contact with almost all the surface of the skin offer large possibilities for the location of sensors for non invasive measurements. Head band, collar, tee-shirt, socks, shoes, belts for chest, arm, wrist, legs ... provide localization with specific purpose taking into account their proximity of an organ or a source of biosignal, and also its ergonomic possibility (user friendly) to fix a sensor, and the associated instrumentations (batteries, amplifiers, signal processing, telecom, alarm, display ...). Progress in science and technology offers, for the first time, intelligence, speed, miniaturization, sophistication and new materials at low cost. In this new landscape, microtechnologies, information technologies and telecommunications are a key factor. Microsensors : Microtechnologies offer the possibility of small size, but also intelligent, active device, working with low energy, wireless and non invasive or mini invasive. These sensors have to be thin, flexible and compatible with textile, or made using textile technologies, new fibers with specific properties: mechanical, electrical, optical ... The field of applications is very large, e.g. continuous monitoring on elderly population, professional and military activities, athlete's performance and condition, and people with disabilities. The research are oriented toward two complementary directions: Improving the relevancy of each sensor and increasing the number of sensors for having a more global synthetic and robust information.

  7. Inter-device differences in monitoring for goal-directed fluid therapy.

    PubMed

    Thiele, Robert H; Bartels, Karsten; Gan, Tong-Joo

    2015-02-01

    Goal-directed fluid therapy is an integral component of many Enhanced Recovery After Surgery (ERAS) protocols currently in use. The perioperative clinician is faced with a myriad of devices promising to deliver relevant physiologic data to better guide fluid therapy. The goal of this review is to provide concise information to enable the clinician to make an informed decision when choosing a device to guide goal-directed fluid therapy. The focus of many devices used for advanced hemodynamic monitoring is on providing measurements of cardiac output, while other, more recent, devices include estimates of fluid responsiveness based on dynamic indices that better predict an individual's response to a fluid bolus. Currently available technologies include the pulmonary artery catheter, esophageal Doppler, arterial waveform analysis, photoplethysmography, venous oxygen saturation, as well as bioimpedance and bioreactance. The underlying mechanistic principles for each device are presented as well as their performance in clinical trials relevant for goal-directed therapy in ERAS. The ERAS protocols typically involve a multipronged regimen to facilitate early recovery after surgery. Optimizing perioperative fluid therapy is a key component of these efforts. While no technology is without limitations, the majority of the currently available literature suggests esophageal Doppler and arterial waveform analysis to be the most desirable choices to guide fluid administration. Their performance is dependent, in part, on the interpretation of dynamic changes resulting from intrathoracic pressure fluctuations encountered during mechanical ventilation. Evolving practice patterns, such as low tidal volume ventilation as well as the necessity to guide fluid therapy in spontaneously breathing patients, will require further investigation.

  8. Point-of-care coagulation monitoring: first clinical experience using a paper-based lateral flow diagnostic device.

    PubMed

    Hegener, Michael A; Li, Hua; Han, Daewoo; Steckl, Andrew J; Pauletti, Giovanni M

    2017-09-01

    Vitamin K antagonists such as warfarin are the most widely used class of oral anticoagulants. Due to a narrow therapeutic window, patients on warfarin require regular monitoring. Self-testing using point-of-care (POC) diagnostic devices is available, but cost makes this monitoring method beyond reach for many. The main objective of this research was to assess the clinical utility of a low-cost, paper-based lateral flow POC diagnostic device developed for anticoagulation monitoring without the need for a separate electronic reader. Custom-fabricated lateral flow assay (LFA) test strips comprised of a glass fiber sample pad, a nitrocellulose analytical membrane, a cellulose wicking pad, and a plastic backing card were assembled in a plastic cassette. Healthy volunteers and patients on warfarin therapy were recruited for this prospective study. For each participant, a whole blood sample was collected via fingerstick to determine: (1) international normalized ratio (INR) using the CoaguChek® XS coagulometer, (2) hematocrit by centrifugation, and (3) red blood cell (RBC) travel distance on the experimental LFA device after 240 s using digital image analysis. RBC travel distance measured on the LFA device using blood samples obtained from warfarin patients positively correlated with increasing INR value and the LFA device had the capability to statistically distinguish between healthy volunteer INR values and those for patients groups with INR ≥ 2.6. From these data, it is predicted that this low-cost, paper-based LFA device can have clinical utility for identifying anticoagulated patients taking vitamin K antagonists who are outside of the desired therapeutic efficacy window.

  9. Simulation of magnetic active polymers for versatile microfluidic devices

    NASA Astrophysics Data System (ADS)

    Gusenbauer, Markus; Özelt, Harald; Fischbacher, Johann; Reichel, Franz; Exl, Lukas; Bance, Simon; Kataeva, Nadezhda; Binder, Claudia; Brückl, Hubert; Schrefl, Thomas

    2013-01-01

    We propose to use a compound of magnetic nanoparticles (20-100 nm) embedded in a flexible polymer (Polydimethylsiloxane PDMS) to filter circulating tumor cells (CTCs). The analysis of CTCs is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. The combination of experiments and simulations lead to a versatile microfluidic lab-on-chip device. Simulations are essential to understand the influence of the embedded nanoparticles in the elastic PDMS when applying a magnetic gradient field. It combines finite element calculations of the polymer, magnetic simulations of the embedded nanoparticles and the fluid dynamic calculations of blood plasma and blood cells. With the use of magnetic active polymers a wide range of tunable microfluidic structures can be created. The method can help to increase the yield of needed isolated CTCs.

  10. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  11. Less invasive methods of advanced hemodynamic monitoring: principles, devices, and their role in the perioperative hemodynamic optimization

    PubMed Central

    2013-01-01

    The monitoring of the cardiac output (CO) and other hemodynamic parameters, traditionally performed with the thermodilution method via a pulmonary artery catheter (PAC), is now increasingly done with the aid of less invasive and much easier to use devices. When used within the context of a hemodynamic optimization protocol, they can positively influence the outcome in both surgical and non-surgical patient populations. While these monitoring tools have simplified the hemodynamic calculations, they are subject to limitations and can lead to erroneous results if not used properly. In this article we will review the commercially available minimally invasive CO monitoring devices, explore their technical characteristics and describe the limitations that should be taken into consideration when clinical decisions are made. PMID:24472443

  12. Predicting Activity Energy Expenditure Using the Actical[R] Activity Monitor

    ERIC Educational Resources Information Center

    Heil, Daniel P.

    2006-01-01

    This study developed algorithms for predicting activity energy expenditure (AEE) in children (n = 24) and adults (n = 24) from the Actical[R] activity monitor. Each participant performed 10 activities (supine resting, three sitting, three house cleaning, and three locomotion) while wearing monitors on the ankle, hip, and wrist; AEE was computed…

  13. Development of a Hard X-ray Beam Position Monitor for Insertion Device Beams at the APS

    NASA Astrophysics Data System (ADS)

    Decker, Glenn; Rosenbaum, Gerd; Singh, Om

    2006-11-01

    Long-term pointing stability requirements at the Advanced Photon Source (APS) are very stringent, at the level of 500 nanoradians peak-to-peak or better over a one-week time frame. Conventional rf beam position monitors (BPMs) close to the insertion device source points are incapable of assuring this level of stability, owing to mechanical, thermal, and electronic stability limitations. Insertion device gap-dependent systematic errors associated with the present ultraviolet photon beam position monitors similarly limit their ability to control long-term pointing stability. We report on the development of a new BPM design sensitive only to hard x-rays. Early experimental results will be presented.

  14. Accuracy of physical activity monitors in pregnant women.

    PubMed

    Connolly, Christopher P; Coe, Dawn P; Kendrick, Jo M; Bassett, David R; Thompson, Dixie L

    2011-06-01

    To determine the step count accuracy of three pedometers and one accelerometer in pregnant women during treadmill walking. Participants were 30 women in the second or third trimester (20-34 wk) who were screened for pregnancy-related risk factors. Each participant was fitted with a belt containing three physical activity monitors: Yamax Digiwalker SW-200 (DW), New Lifestyles NL 2000 (NL), and GT3X ActiGraph accelerometer (ACT). The Omron HJ-720ITC (HJ) was placed in the pants' front pocket. Participants walked at 54, 67, 80, and 94 m · min for 2 min each. Actual steps were determined by an investigator using a hand-tally counter. The mean percent of steps recorded was calculated for each device at each speed and compared. Pearson correlations were used to determine the effect of body mass index and tilt angle on pedometer accuracy. There was a significant interaction between speed and device (F9,20 = 7.574, P < 0.001). Across all speeds, the NL and HJ had the lowest error. The ACT and DW underestimated the actual steps taken, particularly at the slower walking speeds. At 54 m · min, the ACT averaged 77.5% of steps and the DW averaged 56.9% of steps. Significant differences in the mean percent of steps recorded were found between devices at all speeds. Body mass index was only significantly correlated with percent of steps recorded by the NL, and there were no significant correlations between steps recorded and tilt angle. In pregnant women, the ACT and DW had more error than the NL and HJ. On the basis of these results, the NL and HJ should be considered for use in further research studies and physical activity programs that focus on walking during pregnancy.

  15. Increasing physical activity with mobile devices: a meta-analysis.

    PubMed

    Fanning, Jason; Mullen, Sean P; McAuley, Edward

    2012-11-21

    Regular physical activity has established physical and mental health benefits; however, merely one quarter of the U.S. adult population meets national physical activity recommendations. In an effort to engage individuals who do not meet these guidelines, researchers have utilized popular emerging technologies, including mobile devices (ie, personal digital assistants [PDAs], mobile phones). This study is the first to synthesize current research focused on the use of mobile devices for increasing physical activity. To conduct a meta-analysis of research utilizing mobile devices to influence physical activity behavior. The aims of this review were to: (1) examine the efficacy of mobile devices in the physical activity setting, (2) explore and discuss implementation of device features across studies, and (3) make recommendations for future intervention development. We searched electronic databases (PubMed, PsychINFO, SCOPUS) and identified publications through reference lists and requests to experts in the field of mobile health. Studies were included that provided original data and aimed to influence physical activity through dissemination or collection of intervention materials with a mobile device. Data were extracted to calculate effect sizes for individual studies, as were study descriptives. A random effects meta-analysis was conducted using the Comprehensive Meta-Analysis software suite. Study quality was assessed using the quality of execution portion of the Guide to Community Preventative Services data extraction form. Four studies were of "good" quality and seven of "fair" quality. In total, 1351 individuals participated in 11 unique studies from which 18 effects were extracted and synthesized, yielding an overall weight mean effect size of g = 0.54 (95% CI = 0.17 to 0.91, P = .01). Research utilizing mobile devices is gaining in popularity, and this study suggests that this platform is an effective means for influencing physical activity behavior. Our focus

  16. Ambulatory stress monitoring with a wearable bluetooth electrocardiographic device.

    PubMed

    Hong, Sungyoup; Yang, Youngmo; Lee, Jangyoung; Yang, Heebum; Park, Kyungnam; Lee, Suyeul; Lee, Inbum; Jang, Yongwon

    2010-01-01

    We tried to monitor stress by using a wearable one channel ECG device that can send ECG signals through Bluetooth wireless communication. Noxious physical and mental arithmetic stress was given three times repeatedly to healthy adults, and cortisol and catecholamines were measured serially from peripheral blood. At the same time, time domain and frequency domain parameters of heart rate variability (HRV) were calculated by taking precordial electrocardiogram. The intensity of correlation between subjective visual analogue scale (VAS) and catecholamine, cortisol, and HRV parameters according to stress was analyzed by using concordance correlation coefficients. The HRV triangular index and LF/HF ratio had high concordance correlation with the degree of stress in the physical stress model. In mental arithmetic stress model, the HRV triangular index and LF/HF ratio had weak concordance correlation with the degree of stress, and it had lower predictability than epinephrine. In both models, cortisol had some correlation with catecholamine, but it had little correlation with HRV parameters. HRV parameters using wearable one channel ECG device can be useful in predicting acute stress and also in many other areas.

  17. Assessment of a Neck-Based Treatment and Monitoring Device for Positional Obstructive Sleep Apnea

    PubMed Central

    Levendowski, Daniel J.; Seagraves, Sean; Popovic, Djordje; Westbrook, Philip R.

    2014-01-01

    Study Objectives: A majority of patients diagnosed with obstructive sleep apnea are position dependent whereby they are at least twice as severe when sleeping supine (POSA). This study evaluated the accuracy and efficacy of a neck-worn device designed to limit supine sleep. The study included nightly measurements of snoring, sleep/wake, time supine, and the frequency and duration of feedback to monitor compliance. Methods: Thirty patients between ages 18 and 75 years, BMI ≤ 35 with an overall apnea-hypopnea index (AHI) ≥ 5 and an overall AHI ≥ 1.5 times the non-supine AHI, and an Epworth score ≥ 5 were prospectively studied. Subjective reports and polysomnography were used to assess efficacy resulting from 4 weeks of in-home supine-avoidance therapy and to measure device accuracy. From 363 polysomnography reports, 209 provided sufficient positional data to estimate one site's prevalence of positional OSA. Results: In 83% of participants exhibiting > 50% reduction in overall AHI, the mean and median reductions were 69% and 79%. Significant reductions in the overall and supine AHI, apnea index, percent time SpO2 < 90%, and snoring contributed to significant improvements in stage N1 and N2 sleep, reductions in cortical arousals and awakenings, and improved depression scores. Supine position was under-detected by > 5% in 3% of cases. Sleep efficiency by neck actigraphy was within 10% of polysomnography in 87% of the studies when position feedback was delivered. The prevalence of POSA was consistently > 70% when the overall AHI was < 60. Conclusions: The neck position therapy device is accurate and effective in restricting supine sleep, improving AHI, sleep architecture and continuity, and monitoring treatment outcomes. Citation: Levendowski DJ, Seagraves S, Popovic D, Westbrook PR. Assessment of a neck-based treatment and monitoring device for positional obstructive sleep apnea. J Clin Sleep Med 2014;10(8):863-871. PMID:25126032

  18. Mass and stiffness estimation using mobile devices for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Le, Viet; Yu, Tzuyang

    2015-04-01

    In the structural health monitoring (SHM) of civil infrastructure, dynamic methods using mass, damping, and stiffness for characterizing structural health have been a traditional and widely used approach. Changes in these system parameters over time indicate the progress of structural degradation or deterioration. In these methods, capability of predicting system parameters is essential to their success. In this paper, research work on the development of a dynamic SHM method based on perturbation analysis is reported. The concept is to use externally applied mass to perturb an unknown system and measure the natural frequency of the system. Derived theoretical expressions for mass and stiffness prediction are experimentally verified by a building model. Dynamic responses of the building model perturbed by various masses in free vibration were experimentally measured by a mobile device (cell phone) to extract the natural frequency of the building model. Single-degreeof- freedom (SDOF) modeling approach was adopted for the sake of using a cell phone. From the experimental result, it is shown that the percentage error of predicted mass increases when the mass ratio increases, while the percentage error of predicted stiffness decreases when the mass ratio increases. This work also demonstrated the potential use of mobile devices in the health monitoring of civil infrastructure.

  19. The application of selected radionuclides for monitoring of the D-D reactions produced by dense plasma-focus device.

    PubMed

    Jednorog, S; Szydlowski, A; Bienkowska, B; Prokopowicz, R

    The dense plasma focus (DPF) device-DPF-1000U which is operated at the Institute of Plasma Physics and Laser Microfusion is the largest that type plasma experiment in the world. The plasma that is formed in large plasma experiments is characterized by vast numbers of parameters. All of them need to be monitored. A neutron activation method occupies a high position among others plasma diagnostic methods. The above method is off-line, remote, and an integrated one. The plasma which has enough temperature to bring about nuclear fusion reactions is always a strong source of neutrons that leave the reactions area and take along energy and important information on plasma parameters and properties as well. Silver as activated material is used as an effective way of neutrons measurement, especially when they are emitted in the form of short pulses like as it happens from the plasma produced in Dense Plasma-Focus devices. Other elements such as beryllium and yttrium are newly introduced and currently tested at the Institute of Plasma Physics and Laser Microfusion to use them in suitable activation neutron detectors. Some specially designed massive indium samples have been recently adopted for angular neutrons distribution measurements (vertical and horizontal) and have been used in the recent plasma experiment conducted on the DPF-1000U device. This choice was substantiated by relatively long half-lives of the neutron induced isotopes and the threshold character of the 115 In(n,n') 115m In nuclear reaction.

  20. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS Supervision, Monitoring, and Equipment Testing § 800.216 Activities that shall be monitored. (a...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with.... Grain handling activities subject to monitoring for compliance with the Act include but are not limited...

  1. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATIONS Supervision, Monitoring, and Equipment Testing § 800.216 Activities that shall be monitored. (a...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with.... Grain handling activities subject to monitoring for compliance with the Act include but are not limited...

  2. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS Supervision, Monitoring, and Equipment Testing § 800.216 Activities that shall be monitored. (a...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with.... Grain handling activities subject to monitoring for compliance with the Act include but are not limited...

  3. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS Supervision, Monitoring, and Equipment Testing § 800.216 Activities that shall be monitored. (a...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with.... Grain handling activities subject to monitoring for compliance with the Act include but are not limited...

  4. Randomized trial of the ForeseeHome monitoring device for early detection of neovascular age-related macular degeneration. The HOme Monitoring of the Eye (HOME) study design - HOME Study report number 1.

    PubMed

    Chew, Emily Y; Clemons, Traci E; Bressler, Susan B; Elman, Michael J; Danis, Ronald P; Domalpally, Amitha; Heier, Jeffrey S; Kim, Judy E; Garfinkel, Richard A

    2014-03-01

    To evaluate the effects of a home-monitoring device with tele-monitoring compared with standard care in detection of progression to choroidal neovascularization (CNV) associated with age-related macular degeneration (AMD), the leading cause of blindness in the US. Participants, aged 55 to 90 years, at high risk of developing CNV associated with AMD were recruited to the HOme Monitoring of Eye (HOME) Study, an unmasked, multi-center, randomized trial of the ForeseeHome (FH) device plus standard care vs. standard care alone. The FH device utilizes preferential hyperacuity perimetry and tele-monitoring to detect changes in vision function associated with development of CNV, potentially prior to symptom and visual acuity loss. After establishing baseline measurements, subsequent changes on follow-up are detected by the device, causing the monitoring center to alert the clinical center to recall participants for an exam. Standard care consists of instructions for self-monitoring visual changes with subsequent self-report to the clinical center. The primary objective of this study is to determine whether home monitoring plus standard care in comparison with standard care alone, results in earlier detection of incident CNV with better present visual acuity. The primary outcome is the decline in visual acuity at CNV diagnosis from baseline. Detection of CNV prior to substantial vision loss is critical as vision outcome following anti-angiogenic therapy is dependent on the visual acuity at initiation of treatment. HOME Study is the first large scale study to test the use of home tele-monitoring system in the management of AMD patients. Published by Elsevier Inc.

  5. Monitoring on the Move

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The MyoMonitor EMG system was developed by Delsys, Inc. under SBIR funding from Johnson Space Center. It is a wearable four-channel device that can monitor muscle performance. Presently, its application include rehabilitative therapy, injury prevention, sports medicine, exercise training, and various other muscle monitoring activities. The MyoMonitor uses a two-bar single differential electrode. Due to the electrode-skin interface in traditional EMG equipment, during rigorous muscular activity, the movement of the skin causes the electrode detection surfaces to become compromised. The MyoMonitor eliminates this problem, enabling a wide array of applications and experiments during intense muscular activity. The ability to make such recordings, for example, enables novel experiments aboard the International Space Station for investigating the effect of microgravity on muscle performance. Product still commercially available as of March 2002.

  6. 21 CFR 26.45 - Monitoring continued equivalence.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COMMUNITY Specific Sector Provisions for Medical Devices § 26.45 Monitoring continued equivalence. Monitoring activities will be carried out in accordance with § 26.69. ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Monitoring continued equivalence. 26.45 Section 26...

  7. 21 CFR 26.45 - Monitoring continued equivalence.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COMMUNITY Specific Sector Provisions for Medical Devices § 26.45 Monitoring continued equivalence. Monitoring activities will be carried out in accordance with § 26.69. ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Monitoring continued equivalence. 26.45 Section 26...

  8. 21 CFR 26.45 - Monitoring continued equivalence.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COMMUNITY Specific Sector Provisions for Medical Devices § 26.45 Monitoring continued equivalence. Monitoring activities will be carried out in accordance with § 26.69. ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Monitoring continued equivalence. 26.45 Section 26...

  9. 21 CFR 26.45 - Monitoring continued equivalence.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... COMMUNITY Specific Sector Provisions for Medical Devices § 26.45 Monitoring continued equivalence. Monitoring activities will be carried out in accordance with § 26.69. ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Monitoring continued equivalence. 26.45 Section 26...

  10. Calibration and validation of wearable monitors.

    PubMed

    Bassett, David R; Rowlands, Alex; Trost, Stewart G

    2012-01-01

    Wearable monitors are increasingly being used to objectively monitor physical activity in research studies within the field of exercise science. Calibration and validation of these devices are vital to obtaining accurate data. This article is aimed primarily at the physical activity measurement specialist, although the end user who is conducting studies with these devices also may benefit from knowing about this topic. Initially, wearable physical activity monitors should undergo unit calibration to ensure interinstrument reliability. The next step is to simultaneously collect both raw signal data (e.g., acceleration) from the wearable monitors and rates of energy expenditure, so that algorithms can be developed to convert the direct signals into energy expenditure. This process should use multiple wearable monitors and a large and diverse subject group and should include a wide range of physical activities commonly performed in daily life (from sedentary to vigorous). New methods of calibration now use "pattern recognition" approaches to train the algorithms on various activities, and they provide estimates of energy expenditure that are much better than those previously available with the single-regression approach. Once a method of predicting energy expenditure has been established, the next step is to examine its predictive accuracy by cross-validating it in other populations. In this article, we attempt to summarize the best practices for calibration and validation of wearable physical activity monitors. Finally, we conclude with some ideas for future research ideas that will move the field of physical activity measurement forward.

  11. Increasing trend of wearables and multimodal interface for human activity monitoring: A review.

    PubMed

    Kumari, Preeti; Mathew, Lini; Syal, Poonam

    2017-04-15

    Activity recognition technology is one of the most important technologies for life-logging and for the care of elderly persons. Elderly people prefer to live in their own houses, within their own locality. If, they are capable to do so, several benefits can follow in terms of society and economy. However, living alone may have high risks. Wearable sensors have been developed to overcome these risks and these sensors are supposed to be ready for medical uses. It can help in monitoring the wellness of elderly persons living alone by unobtrusively monitoring their daily activities. The study aims to review the increasing trends of wearable devices and need of multimodal recognition for continuous or discontinuous monitoring of human activity, biological signals such as Electroencephalogram (EEG), Electrooculogram (EOG), Electromyogram (EMG), Electrocardiogram (ECG) and parameters along with other symptoms. This can provide necessary assistance in times of ominous need, which is crucial for the advancement of disease-diagnosis and treatment. Shared control architecture with multimodal interface can be used for application in more complex environment where more number of commands is to be used to control with better results in terms of controlling. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Investigation of Voltage-Activated BAW Devices and Filters

    DTIC Science & Technology

    2016-09-04

    strontium titanate (STO) and barium-strontium titanate (BST), with the ultimate objective of creating high- performance, reconfigurable filters and...Distribution Unlimited UU UU UU UU 04-09-2016 1-Sep-2010 31-Aug-2014 Final Report: Investigation of Voltage-Activated BAW Devices and Filters The views...2016 Investigation of Voltage-Activated BAW Devices and Filters Final Report Award Information: Contract Number: W911NF1010286 Period of Work

  13. Reliability of Sleep Measures from Four Personal Health Monitoring Devices Compared to Research-Based Actigraphy and Polysomnography.

    PubMed

    Mantua, Janna; Gravel, Nickolas; Spencer, Rebecca M C

    2016-05-05

    Polysomnography (PSG) is the "gold standard" for monitoring sleep. Alternatives to PSG are of interest for clinical, research, and personal use. Wrist-worn actigraph devices have been utilized in research settings for measures of sleep for over two decades. Whether sleep measures from commercially available devices are similarly valid is unknown. We sought to determine the validity of five wearable devices: Basis Health Tracker, Misfit Shine, Fitbit Flex, Withings Pulse O2, and a research-based actigraph, Actiwatch Spectrum. We used Wilcoxon Signed Rank tests to assess differences between devices relative to PSG and correlational analysis to assess the strength of the relationship. Data loss was greatest for Fitbit and Misfit. For all devices, we found no difference and strong correlation of total sleep time with PSG. Sleep efficiency differed from PSG for Withings, Misfit, Fitbit, and Basis, while Actiwatch mean values did not differ from that of PSG. Only mean values of sleep efficiency (time asleep/time in bed) from Actiwatch correlated with PSG, yet this correlation was weak. Light sleep time differed from PSG (nREM1 + nREM2) for all devices. Measures of Deep sleep time did not differ from PSG (SWS + REM) for Basis. These results reveal the current strengths and limitations in sleep estimates produced by personal health monitoring devices and point to a need for future development.

  14. 40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...

  15. 40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...

  16. 40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...

  17. 40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...

  18. 40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...

  19. Hierarchical structural health monitoring system combining a fiber optic spinal cord network and distributed nerve cell devices

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo

    2009-03-01

    This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.

  20. Engineering Novel Lab Devices Using 3D Printing and Microcontrollers.

    PubMed

    Courtemanche, Jean; King, Samson; Bouck, David

    2018-03-01

    The application of 3D printing and microcontrollers allows users to rapidly engineer novel hardware solutions useful in a laboratory environment. 3D printing is transformative as it enables the rapid fabrication of adapters, housings, jigs, and small structural elements. Microcontrollers allow for the creation of simple, inexpensive machines that receive input from one or more sensors to trigger a mechanical or electrical output. Bringing these technologies together, we have developed custom solutions that improve capabilities and reduce costs, errors, and human intervention. In this article, we describe three devices: JetLid, TipWaster, and Remote Monitoring Device (REMIND). JetLid employs a microcontroller and presence sensor to trigger a high-speed fan that reliably de-lids microtiter plates on a high-throughput screening system. TipWaster uses a presence sensor to activate an active tip waste chute when tips are ejected from a pipetting head. REMIND is a wireless, networked lab monitoring device. In its current implementation, it monitors the liquid level of waste collection vessels or bulk liquid reagent containers. The modularity of this device makes adaptation to other sensors (temperature, humidity, light/darkness, movement, etc.) relatively simple. These three devices illustrate how 3D printing and microcontrollers have enabled the process of rapidly turning ideas into useful devices.

  1. 40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream... regeneration 2. For each regeneration cycle, record the maximum carbon bed-temperature. 3. Temperature of...

  2. 40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream... regeneration 2. For each regeneration cycle, record the maximum carbon bed-temperature. 3. Temperature of...

  3. The Use of Multiple Slate Devices to Support Active Reading Activities

    ERIC Educational Resources Information Center

    Chen, Nicholas Yen-Cherng

    2012-01-01

    Reading activities in the classroom and workplace occur predominantly on paper. Since existing electronic devices do not support these reading activities as well as paper, users have difficulty taking full advantage of the affordances of electronic documents. This dissertation makes three main contributions toward supporting active reading…

  4. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of the...

  5. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of the...

  6. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of the...

  7. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  8. Medical Device Integrated Vital Signs Monitoring Application with Real-Time Clinical Decision Support.

    PubMed

    Moqeem, Aasia; Baig, Mirza; Gholamhosseini, Hamid; Mirza, Farhaan; Lindén, Maria

    2018-01-01

    This research involves the design and development of a novel Android smartphone application for real-time vital signs monitoring and decision support. The proposed application integrates market available, wireless and Bluetooth connected medical devices for collecting vital signs. The medical device data collected by the app includes heart rate, oxygen saturation and electrocardiograph (ECG). The collated data is streamed/displayed on the smartphone in real-time. This application was designed by adopting six screens approach (6S) mobile development framework and focused on user-centered approach and considered clinicians-as-a-user. The clinical engagement, consultations, feedback and usability of the application in the everyday practices were considered critical from the initial phase of the design and development. Furthermore, the proposed application is capable to deliver rich clinical decision support in real-time using the integrated medical device data.

  9. Active superconducting devices formed of thin films

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1991-05-28

    Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

  10. Second Law based definition of passivity/activity of devices

    NASA Astrophysics Data System (ADS)

    Sundqvist, Kyle M.; Ferry, David K.; Kish, Laszlo B.

    2017-10-01

    Recently, our efforts to clarify the old question, if a memristor is a passive or active device [1], triggered debates between engineers, who have had advanced definitions of passivity/activity of devices, and physicists with significantly different views about this seemingly simple question. This debate triggered our efforts to test the well-known engineering concepts about passivity/activity in a deeper way, challenging them by statistical physics. It is shown that the advanced engineering definition of passivity/activity of devices is self-contradictory when a thermodynamical system executing Johnson-Nyquist noise is present. A new, statistical physical, self-consistent definition based on the Second Law of Thermodynamics is introduced. It is also shown that, in a system with uniform temperature distribution, any rectifier circuitry that can rectify thermal noise must contain an active circuit element, according to both the engineering and statistical physical definitions.

  11. Model-based design and experimental verification of a monitoring concept for an active-active electromechanical aileron actuation system

    NASA Astrophysics Data System (ADS)

    Arriola, David; Thielecke, Frank

    2017-09-01

    Electromechanical actuators have become a key technology for the onset of power-by-wire flight control systems in the next generation of commercial aircraft. The design of robust control and monitoring functions for these devices capable to mitigate the effects of safety-critical faults is essential in order to achieve the required level of fault tolerance. A primary flight control system comprising two electromechanical actuators nominally operating in active-active mode is considered. A set of five signal-based monitoring functions are designed using a detailed model of the system under consideration which includes non-linear parasitic effects, measurement and data acquisition effects, and actuator faults. Robust detection thresholds are determined based on the analysis of parametric and input uncertainties. The designed monitoring functions are verified experimentally and by simulation through the injection of faults in the validated model and in a test-rig suited to the actuation system under consideration, respectively. They guarantee a robust and efficient fault detection and isolation with a low risk of false alarms, additionally enabling the correct reconfiguration of the system for an enhanced operational availability. In 98% of the performed experiments and simulations, the correct faults were detected and confirmed within the time objectives set.

  12. Validity of physical activity monitors for assessing lower intensity activity in adults.

    PubMed

    Calabró, M Andrés; Lee, Jung-Min; Saint-Maurice, Pedro F; Yoo, Hyelim; Welk, Gregory J

    2014-09-28

    Accelerometers can provide accurate estimates of moderate-to-vigorous physical activity (MVPA). However, one of the limitations of these instruments is the inability to capture light activity within an acceptable range of error. The purpose of the present study was to determine the validity of different activity monitors for estimating energy expenditure (EE) of light intensity, semi-structured activities. Forty healthy participants wore a SenseWear Pro3 Armband (SWA, v.6.1), the SenseWear Mini, the Actiheart, ActiGraph, and ActivPAL monitors, while being monitored with a portable indirect calorimetry (IC). Participants engaged in a variety of low intensity activities but no formalized scripts or protocols were used during these periods. The Mini and SWA overestimated total EE on average by 1.0% and 4.0%, respectively, while the AH, the GT3X, and the AP underestimated total EE on average by 7.8%, 25.5%, and 22.2%, respectively. The pattern-recognition monitors yielded non-significant differences in EE estimates during the semi-structured period (p = 0.66, p = 0.27, and p = 0.21 for the Mini, SWA, and AH, respectively). The SenseWear Mini provided more accurate estimates of EE during light to moderate intensity semi-structured activities compared to other activity monitors. This monitor should be considered when there is interest in tracking low intensity activities in groups of individuals.

  13. The validation of Fibit Zip™ physical activity monitor as a measure of free-living physical activity.

    PubMed

    Tully, Mark A; McBride, Cairmeal; Heron, Leonnie; Hunter, Ruth F

    2014-12-23

    The new generation of activity monitors allow users to upload their data to the internet and review progress. The aim of this study is to validate the Fitbit Zip as a measure of free-living physical activity. Participants wore a Fitbit Zip, ActiGraph GT3X accelerometer and a Yamax CW700 pedometer for seven days. Participants were asked their opinion on the utility of the Fitbit Zip. Validity was assessed by comparing the output using Spearman's rank correlation coefficients, Wilcoxon signed rank tests and Bland-Altman plots. 59.5% (25/47) of the cohort were female. There was a high correlation in steps/day between the Fitbit Zip and the two reference devices (r = 0.91, p < 0.001). No statistically significant difference between the Fitbit and Yamax steps/day was observed (Median (IQR) 7477 (3597) vs 6774 (3851); p = 0.11). The Fitbit measured significantly more steps/day than the Actigraph (7477 (3597) vs 6774 (3851); p < 0.001). Bland-Altman plots revealed no systematic differences between the devices. Given the high level of correlation and no apparent systematic biases in the Bland Altman plots, the use of Fitbit Zip as a measure of physical activity. However the Fitbit Zip recorded a significantly higher number of steps per day than the Actigraph.

  14. 40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each regeneration cycle, record the maximum...

  15. 40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each regeneration cycle, record the maximum...

  16. Monitoring of biofilm formation on different material surfaces of medical devices using hyperspectral imaging method

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hyun; Kim, Moon S.; Hwang, Jeeseong

    2012-03-01

    Contamination of the inner surface of indwelling (implanted) medical devices by microbial biofilm is a serious problem. Some microbial bacteria such as Escherichia coli form biofilms that lead to potentially lifethreatening infections. Other types of medical devices such as bronchoscopes and duodenoscopes account for the highest number of reported endoscopic infections where microbial biofilm is one of the major causes for these infections. We applied a hyperspectral imaging method to detect biofilm contamination on the surface of several common materials used for medical devices. Such materials include stainless steel, titanium, and stainless-steeltitanium alloy. Potential uses of hyperspectral imaging technique to monitor biofilm attachment to different material surfaces are discussed.

  17. Method and apparatus for actively controlling a micro-scale flexural plate wave device

    DOEpatents

    Dohner, Jeffrey L.

    2001-01-01

    An actively controlled flexural plate wave device provides a micro-scale pump. A method of actively controlling a flexural plate wave device produces traveling waves in the device by coordinating the interaction of a magnetic field with actively controlled currents. An actively-controlled flexural plate wave device can be placed in a fluid channel and adapted for use as a micro-scale fluid pump to cool or drive micro-scale systems, for example, micro-chips, micro-electrical-mechanical devices, micro-fluid circuits, or micro-scale chemical analysis devices.

  18. NASDA technicians test real-time radiation monitoring device

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technicians from the National Space Development Agency of Japan (NASDA) test the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  19. NASDA technician test real-time radiation monitoring device

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A technician from the National Space Development Agency of Japan (NASDA) tests the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  20. A validation study comparing self-reported travel diaries and objective data obtained from in-vehicle monitoring devices in older drivers with bilateral cataract.

    PubMed

    Agramunt, Seraina; Meuleners, Lynn; Chow, Kyle Chi; Ng, Jonathon Q; Morlet, Nigel

    2017-09-01

    Advances in technology have made it possible to examine real-world driving using naturalistic data obtained from in-vehicle monitoring devices. These devices overcome the weaknesses of self-report methods and can provide comprehensive insights into driving exposure, habits and practices of older drivers. The aim of this study is to compare self-reported and objectively measured driving exposure, habits and practices using a travel diary and an in-vehicle driver monitoring device in older drivers with bilateral cataract. A cross-sectional study was undertaken. Forty seven participants aged 58-89 years old (mean=74.1; S.D.=7.73) were recruited from three eye clinics over a one year period. Data collection consisted of a cognitive test, a researcher-administered questionnaire, a travel diary and an in-vehicle monitoring device. Participants' driving exposure and patterns were recorded for one week using in-vehicle monitoring devices. They also completed a travel diary each time they drove a motor vehicle as the driver. Paired t-tests were used to examine differences/agreement between the two instruments under different driving circumstances. The data from the older drivers' travel diaries significantly underestimated the number of overall trips (p<0.001), weekend trips (p=0.002) and trips during peak hour (p=0.004). The travel diaries also significantly overestimated overall driving duration (p<0.001) and weekend driving duration (p=0.003), compared to the data obtained from the in-vehicle monitoring devices. No significant differences were found between instruments for kilometres travelled under any of the driving circumstances. The results of this study found that relying solely on self-reported travel diaries to assess driving outcomes may not be accurate, particularly for estimates of the number of trips made and duration of trips. The clear advantages of using in-vehicle monitoring devices over travel diaries to monitor driving habits and exposure among an older

  1. Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) Groups in

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured are activities of the Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) groups in the SL POCC during the IML-1 mission.

  2. Light-activated resistance switching in SiOx RRAM devices

    NASA Astrophysics Data System (ADS)

    Mehonic, A.; Gerard, T.; Kenyon, A. J.

    2017-12-01

    We report a study of light-activated resistance switching in silicon oxide (SiOx) resistive random access memory (RRAM) devices. Our devices had an indium tin oxide/SiOx/p-Si Metal/Oxide/Semiconductor structure, with resistance switching taking place in a 35 nm thick SiOx layer. The optical activity of the devices was investigated by characterising them in a range of voltage and light conditions. Devices respond to illumination at wavelengths in the range of 410-650 nm but are unresponsive at 1152 nm, suggesting that photons are absorbed by the bottom p-type silicon electrode and that generation of free carriers underpins optical activity. Applied light causes charging of devices in the high resistance state (HRS), photocurrent in the low resistance state (LRS), and lowering of the set voltage (required to go from the HRS to LRS) and can be used in conjunction with a voltage bias to trigger switching from the HRS to the LRS. We demonstrate negative correlation between set voltage and applied laser power using a 632.8 nm laser source. We propose that, under illumination, increased electron injection and hence a higher rate of creation of Frenkel pairs in the oxide—precursors for the formation of conductive oxygen vacancy filaments—reduce switching voltages. Our results open up the possibility of light-triggered RRAM devices.

  3. Using electronic monitoring devices to measure inhaler adherence: a practical guide for clinicians.

    PubMed

    Chan, Amy Hai Yan; Harrison, Jeff; Black, Peter N; Mitchell, Edwin A; Foster, Juliet M

    2015-01-01

    Use of electronic monitoring devices (EMDs) for inhalers is growing rapidly because of their ability to provide objective and detailed adherence data to support clinical decision making. There is increasing potential for the use of EMDs in clinical settings, especially as cost-effectiveness is realized and device costs reduce. However, it is important for clinicians to know about the attributes of different EMDs so that they can select the right device for their patients and understand the factors that affect the reliability and accuracy of the data EMDs record. This article gives information on where to obtain EMDs, describes device specifications, and highlights useful features for the clinician and the patient, including user feedback data. We discuss the benefits and potential drawbacks of data collected by EMDs and provide device users with a set of tools to optimize the use of EMDs in clinical settings, such as advice on how to carry out brief EMD checks to ensure data quality and device reliability. New EMDs on the market require pretesting before use by patients. We provide information on how to carry out EMD pretesting in the clinic and patients' homes, which can be carried out by health professionals or in collaboration with researchers or manufacturers. Strategies for interpreting and managing common device malfunctions are also discussed. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. OFF-SITE ENVIRONMENTAL MONITORING REPORT: RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1986

    EPA Science Inventory

    The principal activity at the NTS is testing of nuclear devices, though other related projects are also conducted. The principal activities of the Off-Site Radiological Safety Program are routine environmental monitoring for radioactive materials in various media and for radiatio...

  5. Radio telemetry devices to monitor breathing in non-sedated animals.

    PubMed

    Samson, Nathalie; Dumont, Sylvain; Specq, Marie-Laure; Praud, Jean-Paul

    2011-12-15

    Radio telemetry equipment has significantly improved over the last 10-15 years and is increasingly being used in research for monitoring a variety of physiological parameters in non-sedated animals. The aim of this review is to provide an update on the current state of development of radio telemetry for recording respiration. Our literature review found only rare reports of respiratory studies via radio telemetry. Much of this article will hence report our experience with our custom-built radio telemetry devices designed for recording respiratory signals, together with numerous other physiological signals in lambs. Our current radio telemetry system allows to record 24 simultaneous signals 24h/day for several days. To our knowledge, this is the highest number of physiological signals, which can be recorded wirelessly. Our devices have been invaluable for studying respiration in our ovine models of preterm birth, reflux laryngitis, postnatal exposure to cigarette smoke, respiratory syncytial virus infection and nasal ventilation, all of which are relevant to neonatal respiratory problems. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Energy monitoring device for 1.5-2.4 MeV electron beams

    NASA Astrophysics Data System (ADS)

    Fuochi, P. G.; Lavalle, M.; Martelli, A.; Kovács, A.; Mehta, K.; Kuntz, F.; Plumeri, S.

    2010-03-01

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  7. The Manumeter: A non-obtrusive wearable device for monitoring spontaneous use of the wrist and fingers

    PubMed Central

    Rowe, Justin B.; Friedman, Nizan; Bachman, Mark; Reinkensmeyer, David J.

    2014-01-01

    This paper describes the design and pilot testing of a novel device for unobtrusive monitoring of wrist and hand movement through a sensorized watch and a magnetic ring system called the manumeter. The device senses the magnetic field of the ring through two triaxial magnetometers and records the data to onboard memory which can be analyzed later by connecting the watch unit to a computer. Wrist and finger joint angles are estimated using a radial basis function network. We compared joint angle estimates collected using the manumeter to direct measurements taken using a passive exoskeleton and found that after a 60 minute trial, 95% of the radial/ulnar deviation, wrist flexion/extension and finger flexion/extension estimates were within 2.4, 5.8, and 4.7 degrees of their actual values respectively. The device measured angular distance traveled for these three joints within 10.4%, 4.5%, and 14.3 % of their actual values. The manumeter has potential to improve monitoring of real world use of the hand after stroke and in other applications. PMID:24187216

  8. Highly stretchable strain sensor based on SWCNTs/CB synergistic conductive network for wearable human-activity monitoring and recognition

    NASA Astrophysics Data System (ADS)

    Guo, Xiaohui; Huang, Ying; Zhao, Yunong; Mao, Leidong; Gao, Le; Pan, Weidong; Zhang, Yugang; Liu, Ping

    2017-09-01

    Flexible, stretchable, and wearable strain sensors have attracted significant attention for their potential applications in human movement detection and recognition. Here, we report a highly stretchable and flexible strain sensor based on a single-walled carbon nanotube (SWCNTs)/carbon black (CB) synergistic conductive network. The fabrication, synergistic conductive mechanism, and characterization of the sandwich-structured strain sensor were investigated. The experimental results show that the device exhibits high stretchability (120%), excellent flexibility, fast response (˜60 ms), temperature independence, and superior stability and reproducibility during ˜1100 stretching/releasing cycles. Furthermore, human activities such as the bending of a finger or elbow and gestures were monitored and recognized based on the strain sensor, indicating that the stretchable strain sensor based on the SWCNTs/CB synergistic conductive network could have promising applications in flexible and wearable devices for human motion monitoring.

  9. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gastrointestinal motility monitoring system. 876... Gastrointestinal motility monitoring system. (a) Identification. A gastrointestinal motility monitoring system is a device used to measure peristalic activity or pressure in the stomach or esophagus by means of a probe...

  10. Activity Monitors as Support for Older Persons’ Physical Activity in Daily Life: Qualitative Study of the Users’ Experiences

    PubMed Central

    Eriksson, Lennie Carlén; Åkerberg, Nina; Johansson, Ann-Christin

    2018-01-01

    -estimated physical effort varied between participants and varied for each individual over time. Additionally, participants reported different types of accomplished activities; talking walks was most frequently reported. To be meaningful, measurements need to provide the user with a reliable receipt of whether his or her current activity behavior is sufficient for reaching an activity goal. Moreover, praise when reaching a goal was described as motivating feedback. To be useful, the devices must be easy to handle. In this study, the users perceived wearables as easy to handle, whereas tablets were perceived difficult to maneuver. Users reported in the diaries that the devices had been functional 78% (58/74) of the total test days. Conclusions Activity monitors can be valuable for supporting seniors’ PA. However, the potential of the solutions for a broader group of seniors can significantly be increased. Areas of improvement include reliability, usability, and content supporting effective BCTs with respect to increasing older adults’ PA. PMID:29391342

  11. Evaluating the Safety Profile of Non-Active Implantable Medical Devices Compared with Medicines.

    PubMed

    Pane, Josep; Coloma, Preciosa M; Verhamme, Katia M C; Sturkenboom, Miriam C J M; Rebollo, Irene

    2017-01-01

    Recent safety issues involving non-active implantable medical devices (NAIMDs) have highlighted the need for better pre-market and post-market evaluation. Some stakeholders have argued that certain features of medicine safety evaluation should also be applied to medical devices. Our objectives were to compare the current processes and methodologies for the assessment of NAIMD safety profiles with those for medicines, identify potential gaps, and make recommendations for the adoption of new methodologies for the ongoing benefit-risk monitoring of these devices throughout their entire life cycle. A literature review served to examine the current tools for the safety evaluation of NAIMDs and those for medicines. We searched MEDLINE using these two categories. We supplemented this search with Google searches using the same key terms used in the MEDLINE search. Using a comparative approach, we summarized the new product design, development cycle (preclinical and clinical phases), and post-market phases for NAIMDs and drugs. We also evaluated and compared the respective processes to integrate and assess safety data during the life cycle of the products, including signal detection, signal management, and subsequent potential regulatory actions. The search identified a gap in NAIMD safety signal generation: no global program exists that collects and analyzes adverse events and product quality issues. Data sources in real-world settings, such as electronic health records, need to be effectively identified and explored as additional sources of safety information, particularly in some areas such as the EU and USA where there are plans to implement the unique device identifier (UDI). The UDI and other initiatives will enable more robust follow-up and assessment of long-term patient outcomes. The safety evaluation system for NAIMDs differs in many ways from those for drugs, but both systems face analogous challenges with respect to monitoring real-world usage. Certain features

  12. Hand-held monitor of sympathetic nervous system using salivary amylase activity and its validation by driver fatigue assessment.

    PubMed

    Yamaguchi, Masaki; Deguchi, Mitsuo; Wakasugi, Junichi; Ono, Shin; Takai, Noriyasu; Higashi, Tomoyuki; Mizuno, Yasufumi

    2006-01-15

    In order to realize a hand-held monitor of the sympathetic nervous system, we fabricated a completely automated analytical system for salivary amylase activity using a dry-chemistry system. This was made possible by the fabrication of a disposable test-strip equipped with built-in collecting and reagent papers and an automatic saliva transfer device. In order to cancel out the effects of variations in environmental temperature and pH of saliva, temperature- and pH-adjusted equations were experimentally determined, and each theoretical value was input into the memory of the hand-held monitor. Within a range of salivary amylase activity between 10 and 140 kU/l, the calibration curve for the hand-held monitor showed a coefficient with R(2)=0.97. Accordingly, it was demonstrated that the hand-held monitor enabled a user to automatically measure the salivary amylase activity with high accuracy with only 30 microl sample of saliva within a minute from collection to completion of the measurement. In order to make individual variations of salivary amylase activity negligible during driver fatigue assessment, a normalized equation was proposed. The normalized salivary amylase activity correlated with the mental and physical fatigue states. Thus, this study demonstrated that an excellent hand-held monitor with an algorithm for normalization of individuals' differences in salivary amylase activity, which could be easily and quickly used for evaluating the activity of the sympathetic nervous system at any time. Furthermore, it is suggested that the salivary amylase activity might be used as a better index for psychological research.

  13. National physical activity surveillance: Users of wearable activity monitors as a potential data source.

    PubMed

    Omura, John D; Carlson, Susan A; Paul, Prabasaj; Watson, Kathleen B; Fulton, Janet E

    2017-03-01

    The objective of this study was to assess usage patterns of wearable activity monitors among US adults and how user characteristics might influence physical activity estimates from this type of sample. We analyzed data on 3367 respondents to the 2015 HealthStyles survey, an annual consumer mail panel survey conducted on a nationwide sample. Approximately 1 in 8 respondents (12.5%) reported currently using a wearable activity monitor. Current use varied by sex, age, and education level. Use increased with physical activity level from 4.3% for inactive adults to 17.4% for active adults. Overall, 49.9% of all adults met the aerobic physical activity guideline, while this prevalence was 69.5% among current activity monitor users. Our findings suggest that current users of wearable activity monitors are not representative of the overall US population. Estimates of physical activity levels using data from wearable activity monitors users may be an overestimate and therefore data from users alone may have a limited role in physical activity surveillance.

  14. Using off-the-shelf medical devices for biomedical signal monitoring in a telemedicine system for emergency medical services.

    PubMed

    Thelen, Sebastian; Czaplik, Michael; Meisen, Philipp; Schilberg, Daniel; Jeschke, Sabina

    2015-01-01

    In order to study new methods of telemedicine usage in the context of emergency medical services, researchers need to prototype integrated telemedicine systems. To conduct a one-year trial phase-intended to study a new application of telemedicine in German emergency medical services-we used off-the-shelf medical devices and software to realize real-time patient monitoring within an integrated telemedicine system prototype. We demonstrate its feasibility by presenting the integrated real-time patient monitoring solution, by studying signal delay and transmission robustness regarding changing communication channel characteristics, and by evaluating issues reported by the physicians during the trial phase. Where standards like HL7 and the IEEE 11073 family are intended to enable interoperability of product grade medical devices, we show that research prototypes benefit from the use of web technologies and simple device interfaces, as they simplify product development for a manufacturer and ease integration efforts for research teams. Embracing this approach for the development of new medical devices eases the constraint to use off-the-shelf products for research trials investigating innovative use of telemedicine.

  15. Recommendations for standardizing validation procedures assessing physical activity of older persons by monitoring body postures and movements.

    PubMed

    Lindemann, Ulrich; Zijlstra, Wiebren; Aminian, Kamiar; Chastin, Sebastien F M; de Bruin, Eling D; Helbostad, Jorunn L; Bussmann, Johannes B J

    2014-01-10

    Physical activity is an important determinant of health and well-being in older persons and contributes to their social participation and quality of life. Hence, assessment tools are needed to study this physical activity in free-living conditions. Wearable motion sensing technology is used to assess physical activity. However, there is a lack of harmonisation of validation protocols and applied statistics, which make it hard to compare available and future studies. Therefore, the aim of this paper is to formulate recommendations for assessing the validity of sensor-based activity monitoring in older persons with focus on the measurement of body postures and movements. Validation studies of body-worn devices providing parameters on body postures and movements were identified and summarized and an extensive inter-active process between authors resulted in recommendations about: information on the assessed persons, the technical system, and the analysis of relevant parameters of physical activity, based on a standardized and semi-structured protocol. The recommended protocols can be regarded as a first attempt to standardize validity studies in the area of monitoring physical activity.

  16. Remote maintenance monitoring system

    NASA Technical Reports Server (NTRS)

    Simpkins, Lorenz G. (Inventor); Owens, Richard C. (Inventor); Rochette, Donn A. (Inventor)

    1992-01-01

    A remote maintenance monitoring system retrofits to a given hardware device with a sensor implant which gathers and captures failure data from the hardware device, without interfering with its operation. Failure data is continuously obtained from predetermined critical points within the hardware device, and is analyzed with a diagnostic expert system, which isolates failure origin to a particular component within the hardware device. For example, monitoring of a computer-based device may include monitoring of parity error data therefrom, as well as monitoring power supply fluctuations therein, so that parity error and power supply anomaly data may be used to trace the failure origin to a particular plane or power supply within the computer-based device. A plurality of sensor implants may be rerofit to corresponding plural devices comprising a distributed large-scale system. Transparent interface of the sensors to the devices precludes operative interference with the distributed network. Retrofit capability of the sensors permits monitoring of even older devices having no built-in testing technology. Continuous real time monitoring of a distributed network of such devices, coupled with diagnostic expert system analysis thereof, permits capture and analysis of even intermittent failures, thereby facilitating maintenance of the monitored large-scale system.

  17. A randomized trial comparing INR monitoring devices in patients with anticoagulation self-management: evaluation of a novel error-grid approach.

    PubMed

    Hemkens, Lars G; Hilden, Kristian M; Hartschen, Stephan; Kaiser, Thomas; Didjurgeit, Ulrike; Hansen, Roland; Bender, Ralf; Sawicki, Peter T

    2008-08-01

    In addition to the metrological quality of international normalized ratio (INR) monitoring devices used in patients' self-management of long-term anticoagulation, the effectiveness of self-monitoring with such devices has to be evaluated under real-life conditions with a focus on clinical implications. An approach to evaluate the clinical significance of inaccuracies is the error-grid analysis as already established in self-monitoring of blood glucose. Two anticoagulation monitors were compared in a real-life setting and a novel error-grid instrument for oral anticoagulation has been evaluated. In a randomized crossover study 16 patients performed self-management of anticoagulation using the INRatio and the CoaguChek S system. Main outcome measures were clinically relevant INR differences according to established criteria and to the error-grid approach. A lower rate of clinically relevant disagreements according to Anderson's criteria was found with CoaguChek S than with INRatio without statistical significance (10.77% vs. 12.90%; P = 0.787). Using the error-grid we found principally consistent results: More measurement pairs with discrepancies of no or low clinical relevance were found with CoaguChek S, whereas with INRatio we found more differences with a moderate clinical relevance. A high rate of patients' satisfaction with both of the point of care devices was found with only marginal differences. A principal appropriateness of the investigated point-of-care devices to adequately monitor the INR is shown. The error-grid is useful for comparing monitoring methods with a focus on clinical relevance under real-life conditions beyond assessing the pure metrological quality, but we emphasize that additional trials using this instrument with larger patient populations are needed to detect differences in clinically relevant disagreements.

  18. Real-Time Human Ambulation, Activity, and Physiological Monitoring: Taxonomy of Issues, Techniques, Applications, Challenges and Limitations

    PubMed Central

    Khusainov, Rinat; Azzi, Djamel; Achumba, Ifeyinwa E.; Bersch, Sebastian D.

    2013-01-01

    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions. PMID:24072027

  19. Applicability of rapid and on-site measured enzyme activity for surface water quality monitoring in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias

    2014-05-01

    For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of

  20. Assessment of the usefulness of semipermeable membrane devices for long-term watershed monitoring in an urban slough system

    USGS Publications Warehouse

    McCarthy, K.

    2006-01-01

    Semipermeable membrane devices (SPMDs) were deployed at eight sites within the Buffalo Slough, near Portland, Oregon, to (1) measure the spatial and seasonal distribution of dissolved polycyclic aromatic hydrocarbon (PAH) and organochlorine (OC) compounds in the slough, (2) assess the usefulness of SPMDs as a tool for investigating and monitoring hydrophobic compounds throughout the Columbia Slough system, and (3) evaluate the utility of SPMDs as a tool for measuring the long-term effects of watershed improvement activities. Data from the SPMDs revealed clear spatial and seasonal differences in water quality within the slough and indicate that for hydrophobic compounds, this time-integrated passive-sampling technique is a useful tool for long-term watershed monitoring. In addition, the data suggest that a spiking rate of 2-5 ??g/SPMD of permeability/performance reference compounds, including at least one compound that is not susceptible to photodegradation, may be optimum for the conditions encountered here. ?? Springer Science + Business Media, Inc. 2006.

  1. Re-Active Passive devices for control of noise transmission through a panel

    NASA Astrophysics Data System (ADS)

    Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Dan

    2008-01-01

    Re-Active Passive devices have been developed to control low-frequency (<1000 Hz) noise transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The Re-Active Passive device uses passive constrained layer damping to cover relatively high-frequency range (>150 Hz), reactive distributed vibration absorber to cover the medium-frequency range (50-200 Hz), and active control for controlling low frequencies (<150 Hz). The actuator was applied to control noise transmission through a panel mounted in the Transmission Loss Test Facility at Virginia Tech. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three Re-Active Passive devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 g to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.

  2. Complexity of Continuous Glucose Monitoring Data in Critically Ill Patients: Continuous Glucose Monitoring Devices, Sensor Locations, and Detrended Fluctuation Analysis Methods

    PubMed Central

    Signal, Matthew; Thomas, Felicity; Shaw, Geoffrey M.; Chase, J. Geoffrey

    2013-01-01

    Background Critically ill patients often experience high levels of insulin resistance and stress-induced hyperglycemia, which may negatively impact outcomes. However, evidence surrounding the causes of negative outcomes remains inconclusive. Continuous glucose monitoring (CGM) devices allow researchers to investigate glucose complexity, using detrended fluctuation analysis (DFA), to determine whether it is associated with negative outcomes. The aim of this study was to investigate the effects of CGM device type/calibration and CGM sensor location on results from DFA. Methods This study uses CGM data from critically ill patients who were each monitored concurrently using Medtronic iPro2s on the thigh and abdomen and a Medtronic Guardian REAL-Time on the abdomen. This allowed interdevice/calibration type and intersensor site variation to be assessed. Detrended fluctuation analysis is a technique that has previously been used to determine the complexity of CGM data in critically ill patients. Two variants of DFA, monofractal and multifractal, were used to assess the complexity of sensor glucose data as well as the precalibration raw sensor current. Monofractal DFA produces a scaling exponent (H), where H is inversely related to complexity. The results of multifractal DFA are presented graphically by the multifractal spectrum. Results From the 10 patients recruited, 26 CGM devices produced data suitable for analysis. The values of H from abdominal iPro2 data were 0.10 (0.03–0.20) higher than those from Guardian REAL-Time data, indicating consistently lower complexities in iPro2 data. However, repeating the analysis on the raw sensor current showed little or no difference in complexity. Sensor site had little effect on the scaling exponents in this data set. Finally, multifractal DFA revealed no significant associations between the multifractal spectrums and CGM device type/calibration or sensor location. Conclusions Monofractal DFA results are dependent on the device

  3. Smart home design for electronic devices monitoring based wireless gateway network using cisco packet tracer

    NASA Astrophysics Data System (ADS)

    Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut

    2018-04-01

    In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.

  4. Toward noninvasive monitoring of ongoing electrical activity of human uterus and fetal heart and brain.

    PubMed

    Lew, S; Hämäläinen, M S; Okada, Y

    2017-12-01

    To evaluate whether a full-coverage fetal-maternal scanner can noninvasively monitor ongoing electrophysiological activity of maternal and fetal organs. A simulation study was carried out for a scanner with an array of magnetic field sensors placed all around the torso from the chest to the hip within a horizontal magnetic shielding enclosure. The magnetic fields from internal organs and an external noise source were computed for a pregnant woman with a 35-week old fetus. Signal processing methods were used to reject the external and internal interferences, to visualize uterine activity, and to detect activity of fetal heart and brain. External interference was reduced by a factor of 1000, sufficient for detecting signals from internal organs when combined with passive and active shielding. The scanner rejects internal interferences better than partial-coverage arrays. It can be used to estimate currents around the uterus. It clearly detects spontaneous activity from the fetal heart and brain without averaging and weaker evoked brain activity at all fetal head positions after averaging. The simulated device will be able to monitor the ongoing activity of the fetal and maternal organs. This type of scanner may become a novel tool in fetal medicine. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  5. An office-place stepping device to promote workplace physical activity.

    PubMed

    McAlpine, David A; Manohar, Chinmay U; McCrady, Shelly K; Hensrud, Donald; Levine, James A

    2007-12-01

    It was proposed that an office-place stepping device is associated with significant and substantial increases in energy expenditure compared to sitting energy expenditure. The objective was to assess the effect of using an office-place stepping device on the energy expenditure of lean and obese office workers. The office-place stepping device is an inexpensive, near-silent, low-impact device that can be housed under a standard desk and plugged into an office PC for self-monitoring. Energy expenditure was measured in lean and obese subjects using the stepping device and during rest, sitting and walking. 19 subjects (27+/-9 years, 85+/-23 kg): 9 lean (BMI<25 kg/m2) and 10 obese (BMI>29 kg/m2) attended the experimental office facility. Energy expenditure was measured at rest, while seated in an office chair, standing, walking on a treadmill and while using the office-place stepping device. The office-place stepping device was associated with an increase in energy expenditure above sitting in an office chair by 289+/-102 kcal/hour (p<0.001). The increase in energy expenditure was greater for obese (335+/-99 kcal/hour) than for lean subjects (235+/-80 kcal/hour; p = 0.03). The increments in energy expenditure were similar to exercise-style walking. The office-place stepping device could be an approach for office workers to increase their energy expenditure. If the stepping device was used to replace sitting by 2 hours per day and if other components of energy balance were constant, weight loss of 20 kg/year could occur.

  6. Using colony monitoring devices to evaluate the impacts of land use and nutritional value of forage on honey bee health

    USGS Publications Warehouse

    Smart, Matthew; Otto, Clint R.; Cornman, Robert S.; Iwanowicz, Deborah

    2018-01-01

    Colony monitoring devices used to track and assess the health status of honey bees are becoming more widely available and used by both beekeepers and researchers. These devices monitor parameters relevant to colony health at frequent intervals, often approximating real time. The fine-scale record of hive condition can be further related to static or dynamic features of the landscape, such as weather, climate, colony density, land use, pesticide use, vegetation class, and forage quality. In this study, we fit commercial honey bee colonies in two apiaries with pollen traps and digital scales to monitor floral resource use, pollen quality, and honey production. One apiary was situated in low-intensity agriculture; the other in high-intensity agriculture. Pollen traps were open for 72 h every two weeks while scales recorded weight every 15 min throughout the growing season. From collected pollen, we determined forage quantity per day, species identity using DNA sequencing, pesticide residues, amino acid content, and total protein content. From scales, we determined the accumulated hive weight change over the growing season, relating to honey production and final colony weight going into winter. Hive scales may also be used to identify the occurrence of environmental pollen and nectar dearth, and track phenological changes in plant communities. We provide comparisons of device-derived data between two apiaries over the growing season and discuss the potential for employing apiary monitoring devices to infer colony health in the context of divergent agricultural land use conditions.

  7. Real-time signal processing of accelerometer data for wearable medical patient monitoring devices.

    PubMed

    Van Wieringen, Matt; Eklund, J

    2008-01-01

    Elderly and other people who live at home but required some physical assistance to do so are often more susceptible injury causing falls in and around their place of residence. In the event that a fall does occur, as a direct result of a previous medical condition or the fall itself, these people are typically less likely to be able to seek timely medical help without assistance. The goal of this research is to develop a wearable sensor device that uses an accelerometer for monitoring the movement of the person to detect falls after they have occurred in order to enable timely medical assistance. The data coming from the accelerometer is processed in real-time in the device and sent to a remote monitoring station where operators can attempt to make contact with the person and/or notify medical personnel of the situation. The ADXL330 accelerometer is contained within a Nintendo WiiMote controller, which forms the basis of the wearable medical sensor. The accelerometer data can then be sent via Bluetooth connection and processed by a local gateway processor. If a fall is detected, the gateway will then contact a remote monitoring station, on a cellular network, for example, via satellite, and/or through a hardwired phone or Internet connection. To detect the occurrence of ta fall, the accelerometer data is passed through a matched filter and the data is compared to benchmark analysis data that will define the conditions that represents the occurrence of a fall.

  8. Design and study of ultrasound‐based automatic patient movement monitoring device for quantifying the intrafraction motion during teletherapy treatment

    PubMed Central

    Vinothraj, R.

    2012-01-01

    The aim of the present study is to fabricate indigenously ultrasonic‐based automatic patient's movement monitoring device (UPMMD) that immediately halts teletherapy treatment if a patient moves, claiming accurate field treatment. The device consists of circuit board, magnetic attachment device, LED indicator, speaker, and ultrasonic emitter and receiver, which are placed on either side of the treatment table. The ultrasonic emitter produces the ultrasound waves and the receiver accepts the signal from the patient. When the patient moves, the receiver activates the circuit, an audible warning sound will be produced in the treatment console room alerting the technologist to stop treatment. Simultaneously, the electrical circuit to the teletherapy machine will be interrupted and radiation will be halted. The device and alarm system can detect patient movements with a sensitivity of about 1 mm. Our results indicate that, in spite of its low‐cost, low‐power, high‐precision, nonintrusive, light weight, reusable and simplicity features, UPMMD is highly sensitive and offers accurate measurements. Furthermore, UPMMD is patient‐friendly and requires minimal user training. This study revealed that the device can prevent the patient's normal tissues from unnecessary radiation exposure, and also it is helpful to deliver the radiation to the correct tumor location. Using this alarming system the patient can be repositioned after interrupting the treatment machine manually. It also enables the technologists to do their work more efficiently. PACS number: 87.53.Dq PMID:23149769

  9. Covariation of depressive mood and spontaneous physical activity in major depressive disorder: toward continuous monitoring of depressive mood.

    PubMed

    Kim, Jinhyuk; Nakamura, Toru; Kikuchi, Hiroe; Yoshiuchi, Kazuhiro; Sasaki, Tsukasa; Yamamoto, Yoshiharu

    2015-07-01

    The objective evaluation of depressive mood is considered to be useful for the diagnosis and treatment of depressive disorders. Thus, we investigated psychobehavioral correlates, particularly the statistical associations between momentary depressive mood and behavioral dynamics measured objectively, in patients with major depressive disorder (MDD) and healthy subjects. Patients with MDD ( n = 14) and healthy subjects ( n = 43) wore a watch-type computer device and rated their momentary symptoms using ecological momentary assessment. Spontaneous physical activity in daily life, referred to as locomotor activity, was also continuously measured by an activity monitor built into the device. A multilevel modeling approach was used to model the associations between changes in depressive mood scores and the local statistics of locomotor activity simultaneously measured. We further examined the cross validity of such associations across groups. The statistical model established indicated that worsening of the depressive mood was associated with the increased intermittency of locomotor activity, as characterized by a lower mean and higher skewness. The model was cross validated across groups, suggesting that the same psychobehavioral correlates are shared by both healthy subjects and patients, although the latter had significantly higher mean levels of depressive mood scores. Our findings suggest the presence of robust as well as common associations between momentary depressive mood and behavioral dynamics in healthy individuals and patients with depression, which may lead to the continuous monitoring of the pathogenic processes (from healthy states) and pathological states of MDD.

  10. Clean copy association of production diseases with motor activity-sensing devices and milk progesterone concentrations in dairy cows.

    PubMed

    Williams, J; Ntallaris, T; Routly, J E; Jones, D N; Cameron, J; Holman-Coates, A; Smith, R F; Humblot, P; Dobson, H

    2018-05-31

    We have previously established that the efficiency of identifying oestrus with activity-sensing devices can be compromised by common production diseases; the present study was undertaken to determine how these diseases may affect device readings. A total of 67 Holstein-Friesian cows, >20 days postpartum, were equipped with activity-sensing neck collars and pedometers, and simultaneous milk progesterone profiles were also monitored twice a week. The influences of common production stressors on maximum activity and progesterone values were analysed. Approximately 30% potential oestrus events (low progesterone value between two high values) remained unrecognised by both activity methods, and progesterone values in these animals were higher on the potential day of oestrus when both activity methods did not detect an event (0.043 ± 0.004 versus 0.029 ± 0.004 ng/mL; P = 0.03). Data from a subset of 45 cows (two events each) were subjected to mixed models and multiple regression modelling to investigate associations with production diseases. Cow motor activity was lower in lame cows. Maximum progesterone concentrations prior to oestrus increased as time postpartum and body condition score (BCS) increased. There were also fewer days of low progesterone prior to oestrus associated with increases in BCS and maximum progesterone concentrations prior to oestrus. In conclusion, lameness was associated with lower activity values, but this suppression was insufficient to account for lowered oestrus detection efficiency of either device. However, associations were identified between production diseases and progesterone profiles. Copyright © 2018. Published by Elsevier Inc.

  11. Accelerometry: A feasible method to monitor physical activity during sub-acute rehabilitation of persons with stroke.

    PubMed

    Joseph, Conran; Strömbäck, Björn; Hagströmer, Maria; Conradsson, David

    2018-05-08

    To investigate the feasibility of using accelerometers to monitor physical activity in persons with stroke admitted to inpatient rehabilitation. Longitudinal observational study. Persons with stroke admitted to a specialized rehabilitation centre for sub-acute rehabilitation were recruited between August and December 2016. Volume and intensity of physical activity were assessed with accelerometers throughout the rehabilitation period. Indicators of feasibility included processes (recruitment, protocol adherence and participants' experiences) and scientific feasibility, which assessed the accelerometers' ability to detect change in physical activity among stroke survivors who ambulate independently and those who are dependent on a mobility device. Twenty-seven out of 31 eligible individuals took part in this study, with 23 (85%) completing it. In total, 432 days of rehabilitation were monitored and valid physical activity data were obtained for 408 days (94%). There were no indications that the measurement interfered with participants' ability to participate in rehabilitation. Despite the subjects' ambulation status, the number of steps and time spent in moderate-to-vigorous physical activity increased significantly across the first 18 days of rehabilitation, whereas sedentary time was unchanged. This study supports the feasibility of using accelerometers to capture physical activity behaviour in survivors of stroke during inpatient rehabilitation.

  12. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flue gases at the inlet of my particulate matter control device? 60.1815 Section 60.1815 Protection of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You... flue gas stream at the inlet of each particulate matter control device. ...

  13. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flue gases at the inlet of my particulate matter control device? 60.1815 Section 60.1815 Protection of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You... flue gas stream at the inlet of each particulate matter control device. ...

  14. Design and validation of a microfluidic device for blood-brain barrier monitoring and transport studies

    NASA Astrophysics Data System (ADS)

    Ugolini, Giovanni Stefano; Occhetta, Paola; Saccani, Alessandra; Re, Francesca; Krol, Silke; Rasponi, Marco; Redaelli, Alberto

    2018-04-01

    In vitro blood-brain barrier models are highly relevant for drug screening and drug development studies, due to the challenging task of understanding the transport mechanism of drug molecules through the blood-brain barrier towards the brain tissue. In this respect, microfluidics holds potential for providing microsystems that require low amounts of cells and reagent and can be potentially multiplexed for increasing the ease and throughput of the drug screening process. We here describe the design, development and validation of a microfluidic device for endothelial blood-brain barrier cell transport studies. The device comprises of two microstructured layers (top culture chamber and bottom collection chamber) sandwiching a porous membrane for the cell culture. Microstructured layers include two pairs of physical electrodes, embedded into the device layers by geometrically defined guiding channels with computationally optimized positions. These electrodes allow the use of commercial electrical measurement systems for monitoring trans-endothelial electrical resistance (TEER). We employed the designed device for performing preliminary assessment of endothelial barrier formation with murine brain endothelial cells (Br-bEnd5). Results demonstrate that cellular junctional complexes effectively form in the cultures (expression of VE-Cadherin and ZO-1) and that the TEER monitoring systems effectively detects an increase of resistance of the cultured cell layers indicative of tight junction formation. Finally, we validate the use of the described microsystem for drug transport studies demonstrating that Br-bEnd5 cells significantly hinder the transport of molecules (40 kDa and 4 kDa dextran) from the top culture chamber to the bottom collection chamber.

  15. On-line Monitoring Device for High-voltage Switch Cabinet Partial Discharge Based on Pulse Current Method

    NASA Astrophysics Data System (ADS)

    Y Tao, S.; Zhang, X. Z.; Cai, H. W.; Li, P.; Feng, Y.; Zhang, T. C.; Li, J.; Wang, W. S.; Zhang, X. K.

    2017-12-01

    The pulse current method for partial discharge detection is generally applied in type testing and other off-line tests of electrical equipment at delivery. After intensive analysis of the present situation and existing problems of partial discharge detection in switch cabinets, this paper designed the circuit principle and signal extraction method for partial discharge on-line detection based on a high-voltage presence indicating systems (VPIS), established a high voltage switch cabinet partial discharge on-line detection circuit based on the pulse current method, developed background software integrated with real-time monitoring, judging and analyzing functions, carried out a real discharge simulation test on a real-type partial discharge defect simulation platform of a 10KV switch cabinet, and verified the sensitivity and validity of the high-voltage switch cabinet partial discharge on-line monitoring device based on the pulse current method. The study presented in this paper is of great significance for switch cabinet maintenance and theoretical study on pulse current method on-line detection, and has provided a good implementation method for partial discharge on-line monitoring devices for 10KV distribution network equipment.

  16. Monitoring Location-Specific Physical Activity via Integration of Accelerometry and Geotechnology Within Patients With or At Risk of Diabetic Foot Ulcers: A Technological Report.

    PubMed

    Crews, Ryan T; Yalla, Sai V; Dhatt, Navdeep; Burdi, Drew; Hwang, Sungsoon

    2017-09-01

    Physical activity variability is a risk factor for diabetic foot ulcers (DFU). Geographic context may influence variability. This study developed initial methods for monitoring location-specific physical activity in this population. Secondarily, preliminary comparisons in location-specific physical activity were made between patients at risk versus patients with active DFU. Five at-risk and 5 actively ulcerated patients were monitored continuously for 72 hours with physical activity and GPS monitors. A custom algorithm time synchronized the 2 devices' data. On average for all 10 subjects, 1.5 ± 2.1% of activity lacked a corresponding GPS location. 80 ± 11% of self-reported activity events per subject had a GPS identified location. The GPS identified locations were in agreement with the self-reported locations 98 ± 6% of the time. DFU participants' weight-bearing activity was 188% higher at home than away from home. At-risk participants showed similar weight-bearing activity at home as active DFU participants, however, at-risk participants had 132% more weight-bearing activity away-from-home. Objectively monitoring location-specific physical activity proved feasible. Future studies using such methodology may enhance understanding of pathomechanics and treatment of DFU.

  17. Activity Monitors as Support for Older Persons' Physical Activity in Daily Life: Qualitative Study of the Users' Experiences.

    PubMed

    Ehn, Maria; Eriksson, Lennie Carlén; Åkerberg, Nina; Johansson, Ann-Christin

    2018-02-01

    varied for each individual over time. Additionally, participants reported different types of accomplished activities; talking walks was most frequently reported. To be meaningful, measurements need to provide the user with a reliable receipt of whether his or her current activity behavior is sufficient for reaching an activity goal. Moreover, praise when reaching a goal was described as motivating feedback. To be useful, the devices must be easy to handle. In this study, the users perceived wearables as easy to handle, whereas tablets were perceived difficult to maneuver. Users reported in the diaries that the devices had been functional 78% (58/74) of the total test days. Activity monitors can be valuable for supporting seniors' PA. However, the potential of the solutions for a broader group of seniors can significantly be increased. Areas of improvement include reliability, usability, and content supporting effective BCTs with respect to increasing older adults' PA. ©Maria Ehn, Lennie Carlén Eriksson, Nina Åkerberg, Ann-Christin Johansson. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 01.02.2018.

  18. Selective interference with pacemaker activity by electrical dental devices.

    PubMed

    Miller, C S; Leonelli, F M; Latham, E

    1998-01-01

    We sought to determine whether electromagnetic interference with cardiac pacemakers occurs during the operation of contemporary electrical dental equipment. Fourteen electrical dental devices were tested in vitro for their ability to interfere with the function of two Medtronics cardiac pacemakers (one a dual-chamber, bipolar Thera 7942 pacemaker, the other a single-chamber, unipolar Minix 8340 pacemaker). Atrial and ventricular pacemaker output and electrocardiographic activity were monitored by means of telemetry with the use of a Medtronics 9760/90 programmer. Atrial and ventricular pacing were inhibited by electromagnetic interference produced by the electrosurgical unit up to a distance of 10 cm, by the ultrasonic bath cleaner up to 30 cm, and by the magnetorestrictive ultrasonic scalers up to 37.5 cm. In contrast, operation of the amalgamator, electric pulp tester, composite curing light, dental handpieces, electric toothbrush, microwave oven, dental chair and light, ENAC ultrasonic instrument, radiography unit, and sonic scaler did not alter pacing rate or rhythm. These results suggest that certain electrosurgical and ultrasonic instruments may produce deleterious effects in medically fragile patients with cardiac pacemakers.

  19. The impact of using mobile-enabled devices on patient engagement in remote monitoring programs.

    PubMed

    Agboola, Stephen; Havasy, Rob; Myint-U, Khinlei; Kvedar, Joseph; Jethwani, Kamal

    2013-05-01

    Different types of data transmission technologies are used in remote monitoring (RM) programs. This study reports on a retrospective analysis of how participants engage, based on the type of data transfer technology used in a blood pressure (BP) RM program, and its potential impact on RM program design and outcomes. Thirty patients, aged 23-84 years (62 ± 14 years), who had completed at least 2 months in the program and were not participating in any other clinical trial were identified from the Remote Monitoring Data Repository. Half of these patients used wireless-based data transfer devices [wireless-based device (WBD)] while the other half used telephone modem-based data transfer devices [modem-based device (MBD)]. Participants were matched by practice and age. Engagement indices, which include frequency of BP measurements, frequency of data uploads, time to first BP measurement, and time to first data upload, were compared in both groups using the Wilcoxon-Mann-Whitney two-sample rank-sum test. Help desk call data were analyzed by Chi square test. The frequency of BP measurements and data uploads was significantly higher in the WBD group versus the MBD group [median = 0.66 versus 0.2 measurements/day (p = .01) and 0.46 versus 0.01 uploads/day (p < .001), respectively]. Time to first upload was significantly lower in the WBD group (median = 4 versus 7 days; p = .02), but time to first BP measurement did not differ between the two groups (median = 2 versus 1 day; p = .98). Wireless transmission ensures instantaneous transmission of readings, providing clinicians timely data to intervene on. Our findings suggest that mobile-enabled wireless technologies can positively impact patient engagement, outcomes, and operational workflow in RM programs. © 2013 Diabetes Technology Society.

  20. Remote monitoring of electromagnetic signals and seismic events using smart mobile devices

    NASA Astrophysics Data System (ADS)

    Georgiadis, Pantelis; Cavouras, Dionisis; Sidiropoulos, Konstantinos; Ninos, Konstantinos; Nomicos, Constantine

    2009-06-01

    This study presents the design and development of a novel mobile wireless system to be used for monitoring seismic events and related electromagnetic signals, employing smart mobile devices like personal digital assistants (PDAs) and wireless communication technologies such as wireless local area networks (WLANs), general packet radio service (GPRS) and universal mobile telecommunications system (UMTS). The proposed system enables scientists to access critical data while being geographically independent of the sites of data sources, rendering it as a useful tool for preliminary scientific analysis.

  1. Vasomotor Symptoms Monitoring with a Commercial Activity Tracking Watch

    DTIC Science & Technology

    2017-12-31

    volunteers wearing physiological monitors. The study protocol and written consent form were...available, but similar devices with EDA/GSR sensors are available. Vasomotor symptoms started disrupting the sleep of a woman volunteer on...November 23, 2015, calling attention to their occurrence. After November 23, 2015, the volunteer started personally logging the occurrence of

  2. Evaluation of mobile micro-sensing devices for GPS-based personal exposure monitoring of heat and particulate matter - a matter of context

    NASA Astrophysics Data System (ADS)

    Ueberham, Maximilian; Schlink, Uwe; Weiland, Ulrike

    2017-04-01

    The application of mobile micro-sensing devices (MSDs) for human health and personal exposure monitoring (PEM) is an emerging topic of interest in urban air quality research. In the context of climate change, urban population growth and related anthropogenic activities, an increase is expected for the intensity of citizens' exposure to heat and particulate matter (PM). Therefore more focus on the small-scale perspective of spatio-temporal distribution of air quality parameters is important to complement fixed-monitoring site data. Mobile sensors for PEM are useful for both, the investigation of the local distribution of air quality and the personal exposure profiles of individuals moving within their activity spaces. An evaluation of MSDs' accuracy is crucial, before their sophisticated application in measurement campaigns. To detect variations of exposure at small scales, it is even more important to consider the accuracy of Global Positioning System (GPS) devices within different urban structure types (USTs). We present an assessment of the performance of GPS-based MSDs under indoor laboratory conditions and outdoor testing within different USTs. The aim was to evaluate the accuracy of several GPS devices and MSDs for heat and PM 2.5 in relation to reliable standard sensing devices as part of a PhD-project. The performance parameters are summary measures (mean value, standard deviation), correlation (Pearson r), difference measures (mean bias error, mean absolute error, index of agreement) and Bland-Altman plots. The MSDs have been tested in a climate chamber under constant temperature and relative humidity. For temperature MSDs reaction time was tested because of its relevance to detect temperature variations during mobile measurements. For interpretation of the results we considered the MSDs design and technology (e.g. passive vs. active ventilation). GPS-devices have been tested within low/high dense urban residential areas and low/high dense urban green areas

  3. Transcranial Doppler monitoring during stenting of the carotid bifurcation: evaluation of two different distal protection devices in preventing embolization.

    PubMed

    Rubartelli, Paolo; Brusa, Giulia; Arrigo, Alessandro; Abbadessa, Francesco; Giachero, Corinna; Vischi, Massimo; Ricca, Maria Maddalena; Ottonello, Gian Andrea

    2006-08-01

    To compare the efficacy of 2 emboli protection devices in preventing embolization during carotid artery stenting (CAS). The GuardWire distal occlusion system (n=19) and the distal FilterWire EX (n=12) were compared in 31 consecutive patients (24 men; mean age 71+/-10 years) monitored with transcranial Doppler for microembolic signals before, during, and after CAS. The choice of the protection device was based on availability and on the patency of the contralateral carotid artery. The baseline characteristics were similar in the patients treated under protection from either device. Placement and retrieval of the protection device, stenting, and postdilation were technically successful in all patients. Two patients suffered a transient ischemic attack shortly after the procedure; no other adverse cardiovascular events occurred at 30 days. Compared to the GuardWire, the use of the FilterWire was associated with more microembolic signals during stent deployment (77.4+/-33.5 versus 1.07+/-1.94, p<0.0001), postdilation (63.9+/-21.0 versus 2.06+/-2.58, p<0.0001), and retrieval of the protection device (21.4+/-15.4 versus 10.9+/-8.3, p=0.051). Consequently, the total amount of microembolic signals during the procedure was higher when the filter device was employed (183.0+/-42.1 versus 31.7+/-12.0, p<0.0001). The distal occlusion device appears to be more effective than the filter in reducing distal embolization detected by transcranial Doppler monitoring.

  4. Field assessment and enhancement of cognitive performance: development of an ambulatory vigilance monitor.

    PubMed

    Lieberman, Harris R; Kramer, F Matthew; Montain, Scott J; Niro, Philip

    2007-05-01

    Limited opportunities to study human cognitive performance in non-laboratory, ambulatory situations exist. However, advances in technology make it possible to extend behavioral assessments to the field. One of the first devices to measure human behavior in the field was the wrist-worn actigraph. This device acquires minute-by-minute information on an individual's physical activity and can distinguish sleep from waking, the most basic aspect of behavior. Our laboratory developed a series of wrist-worn devices, not much larger than a watch, which assess reaction time, vigilance and memory. The devices concurrently assess motor activity with greater temporal resolution than standard actigraphs. They also continuously monitor multiple environmental variables including temperature, humidity, sound, and light. These monitors have been employed during training and simulated military operations to collect behavioral and environmental information that would typically be unavailable under such circumstances. Development of the vigilance monitor, and how each successive version extended capabilities of the device are described. Data from several studies are presented, including studies conducted in harsh field environments during a simulated infantry assault, an officer training course. The monitors simultaneously documented environmental conditions, patterns of sleep and activity and effects of nutritional manipulations on cognitive performance. They provide a new method to relate cognitive performance to real world environmental conditions and assess effects of various interventions on human behavior in the field. They can also monitor cognitive performance in real time, and if it is degraded, attempt to intervene to maintain

  5. The Effect of a Global, Subject, and Device-Specific Model on a Noninvasive Glucose Monitoring Multisensor System.

    PubMed

    Caduff, Andreas; Zanon, Mattia; Mueller, Martin; Zakharov, Pavel; Feldman, Yuri; De Feo, Oscar; Donath, Marc; Stahel, Werner A; Talary, Mark S

    2015-07-01

    We study here the influence of different patients and the influence of different devices with the same patients on the signals and modeling of data from measurements from a noninvasive Multisensor glucose monitoring system in patients with type 1 diabetes. The Multisensor includes several sensors for biophysical monitoring of skin and underlying tissue integrated on a single substrate. Two Multisensors were worn simultaneously, 1 on the upper left and 1 on the upper right arm by 4 patients during 16 study visits. Glucose was administered orally to induce 2 consecutive hyperglycemic excursions. For the analysis, global (valid for a population of patients), personal (tailored to a specific patient), and device-specific multiple linear regression models were derived. We find that adjustments of the model to the patients improves the performance of the glucose estimation with an MARD of 17.8% for personalized model versus a MARD of 21.1% for the global model. At the same time the effect of the measurement side is negligible. The device can equally well measure on the left or right arm. We also see that devices are equal in the linear modeling. Thus hardware calibration of the sensors is seen to be sufficient to eliminate interdevice differences in the measured signals. We demonstrate that the hardware of the 2 devices worn on the left and right arms are consistent yielding similar measured signals and thus glucose estimation results with a global model. The 2 devices also return similar values of glucose errors. These errors are mainly due to nonstationarities in the measured signals that are not solved by the linear model, thus suggesting for more sophisticated modeling approaches. © 2015 Diabetes Technology Society.

  6. Trouble-shooting deployment and recovery options for various stationary passive acoustic monitoring devices in both shallow- and deep-water applications.

    PubMed

    Dudzinski, Kathleen M; Brown, Shani J; Lammers, Marc; Lucke, Klaus; Mann, David A; Simard, Peter; Wall, Carrie C; Rasmussen, Marianne Helene; Magnúsdóttir, Edda Elísabet; Tougaard, Jakob; Eriksen, Nina

    2011-01-01

    Deployment of any type of measuring device into the ocean, whether to shallow or deeper depths, is accompanied by the hope that this equipment and associated data will be recovered. The ocean is harsh on gear. Salt water corrodes. Currents, tides, surge, storms, and winds collaborate to increase the severity of the conditions that monitoring devices will endure. All ocean-related research has encountered the situations described in this paper. In collating the details of various deployment and recovery scenarios related to stationary passive acoustic monitoring use in the ocean, it is the intent of this paper to share trouble-shooting successes and failures to guide future work with this gear to monitor marine mammal, fish, and ambient (biologic and anthropogenic) sounds in the ocean-in both coastal and open waters.

  7. A portable, inexpensive, wireless vital signs monitoring system.

    PubMed

    Kaputa, David; Price, David; Enderle, John D

    2010-01-01

    The University of Connecticut, Department of Biomedical Engineering has developed a device to be used by patients to collect physiological data outside of a medical facility. This device facilitates modes of data collection that would be expensive, inconvenient, or impossible to obtain by traditional means within the medical facility. Data can be collected on specific days, at specific times, during specific activities, or while traveling. The device uses biosensors to obtain information such as pulse oximetry (SpO2), heart rate, electrocardiogram (ECG), non-invasive blood pressure (NIBP), and weight which are sent via Bluetooth to an interactive monitoring device. The data can then be downloaded to an electronic storage device or transmitted to a company server, physician's office, or hospital. The data collection software is usable on any computer device with Bluetooth capability, thereby removing the need for special hardware for the monitoring device and reducing the total cost of the system. The modular biosensors can be added or removed as needed without changing the monitoring device software. The user is prompted by easy-to-follow instructions written in non-technical language. Additional features, such as screens with large buttons and large text, allow for use by those with limited vision or limited motor skills.

  8. Home monitoring after ambulatory implanted primary cardiac implantable electronic devices: The home ambulance pilot study.

    PubMed

    Parahuleva, Mariana S; Soydan, Nedim; Divchev, Dimitar; Lüsebrink, Ulrich; Schieffer, Bernhard; Erdogan, Ali

    2017-11-01

    The Home Monitoring (HM) system of cardiac implantable electronic devices (CIEDs) permits early detection of arrhythmias or device system failures. The aim of this pilot study was to examine how the safety and efficacy of the HM system in patients after ambulatory implanted primary CIEDs compare to patients with a standard procedure and hospitalization. We hypothesized that HM and their modifications would be a useful extension of the present concepts for ambulatory implanted CIEDs. This retrospective analysis evaluates telemetric data obtained from 364 patients in an ambulatory single center over 6 years. Patients were assigned to an active group (n = 217), consisting of those who were discharged early on the day of implantation of the primary CIED, or to a control group (n = 147), consisting of those discharged and followed up with the HM system according to usual medical practices. The mean duration of hospitalization was 73.2% shorter in the active group than in the control group, corresponding to 20.5 ± 13 fewer hours (95% confidence interval [CI]: 6.3-29.5; P < 0.01) spent in the hospital (7.5 ± 1.5 vs 28 ± 4.5 h). This shorter mean hospital stay was attributable to a 78.8% shorter postoperative period in the active group. The proportion of patients with treatment-related adverse events was 11% (n = 23) in the active group and 17% (n = 25) in the control group (95% CI: 5.5-8.3; P = 0.061). This 6% absolute risk reduction (95% CI: 3.3-9.1; P = 0.789) confirmed the noninferiority of the ambulatory implanted CIED when compared with standard management of these patients. Early discharge with the HM system after ambulatory CIED implantation was safe and not inferior to the classic medical procedure. Thus, together with lower costs, HM and its modifications would be a useful extension of the present concepts for ambulatory implanted CIEDs. © 2017 Wiley Periodicals, Inc.

  9. Metal–Organic Frameworks as Active Materials in Electronic Sensor Devices

    PubMed Central

    Campbell, Michael G.; Dincă, Mircea

    2017-01-01

    In the past decade, advances in electrically conductive metal–organic frameworks (MOFs) and MOF-based electronic devices have created new opportunities for the development of next-generation sensors. Here we review this rapidly-growing field, with a focus on the different types of device configurations that have allowed for the use of MOFs as active components of electronic sensor devices. PMID:28498308

  10. AAC Language Activity Monitoring: Entering the New Millennium.

    ERIC Educational Resources Information Center

    Hill, Katya; Romich, Barry

    This report describes how augmentative and alternative communication (AAC) automated language activity monitoring can provide clinicians with the tools they need to collect and analyze language samples from the natural environment of children with disabilities for clinical intervention and outcomes measurements. The Language Activity Monitor (LAM)…

  11. 21 CFR 868.2375 - Breathing frequency monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing frequency monitor. 868.2375 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a) Identification. A breathing (ventilatory) frequency monitor is a device intended to measure or monitor a patient...

  12. Characterization of Custom-Designed Charge-Coupled Devices for Applications to Gas and Aerosol Monitoring Sensorcraft Instrument

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Farnsworth, Glenn R.; Garcia, Christopher S.; Zawodny, Joseph M.

    2005-01-01

    Custom-designed charge-coupled devices (CCD) for Gas and Aerosols Monitoring Sensorcraft instrument were developed. These custom-designed CCD devices are linear arrays with pixel format of 512x1 elements and pixel size of 10x200 sq m. These devices were characterized at NASA Langley Research Center to achieve a full well capacity as high as 6,000,000 e-. This met the aircraft flight mission requirements in terms of signal-to-noise performance and maximum dynamic range. Characterization and analysis of the electrical and optical properties of the CCDs were carried out at room temperature. This includes measurements of photon transfer curves, gain coefficient histograms, read noise, and spectral response. Test results obtained on these devices successfully demonstrated the objectives of the aircraft flight mission. In this paper, we describe the characterization results and also discuss their applications to future mission.

  13. Re-active Passive (RAP) Devices for Control of Noise Transmission through a Panel

    NASA Technical Reports Server (NTRS)

    Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Daniel L.

    2008-01-01

    Re-Active Passive (RAP) devices have been developed to control low frequency (<1000 Hz) noise transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The RAP device uses passive constrained layer damping to cover the relatively high frequency range (>200 Hz), reactive distributed vibration absorber) to cover the medium frequency range (75 to 250 Hz), and active control for controlling low frequencies (<200 Hz). The device was applied to control noise transmission through a panel mounted in a transmission loss test facility. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three RAP devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 grams to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.

  14. Balanced: a randomised trial examining the efficacy of two self-monitoring methods for an app-based multi-behaviour intervention to improve physical activity, sitting and sleep in adults.

    PubMed

    Duncan, Mitch J; Vandelanotte, Corneel; Trost, Stewart G; Rebar, Amanda L; Rogers, Naomi; Burton, Nicola W; Murawski, Beatrice; Rayward, Anna; Fenton, Sasha; Brown, Wendy J

    2016-07-30

    Many adults are insufficiently physically active, have prolonged sedentary behaviour and report poor sleep. These behaviours can be improved by interventions that include education, goal setting, self-monitoring, and feedback strategies. Few interventions have explicitly targeted these behaviours simultaneously or examined the relative efficacy of different self-monitoring methods. This study aims to compare the efficacy of two self-monitoring methods in an app-based multi-behaviour intervention to improve objectively measured physical activity, sedentary, and sleep behaviours, in a 9 week 2-arm randomised trial. Participants will be adults (n = 64) who report being physically inactive, sitting >8 h/day and frequent insufficient sleep (≥14 days out of last 30). The "Balanced" intervention is delivered via a smartphone 'app', and includes education materials (guidelines, strategies to promote change in behaviour), goal setting, self-monitoring and feedback support. Participants will be randomly allocated to either a device-entered or user-entered self-monitoring method. The device-entered group will be provided with a activity tracker to self-monitor behaviours. The user-entered group will recall and manually record behaviours. Assessments will be conducted at 0, 3, 6, and 9 weeks. Physical activity, sedentary behaviour and sleep-wake behaviours will be measured using the wrist worn Geneactiv accelerometer. Linear mixed models will be used to examine differences between groups and over time using an alpha of 0.01. This study will evaluate an app-based multi-behavioural intervention to improve physical activity, sedentary behaviour and sleep; and the relative efficacy of two different approaches to self-monitoring these behaviours. Outcomes will provide information to inform future interventions and self-monitoring targeting these behaviours. ACTRN12615000182594 (Australian New Zealand Clinical Trials Registry. Registry URL: www.anzctr.org.au ; registered

  15. Validation of a Wireless, Self-Application, Ambulatory Electroencephalographic Sleep Monitoring Device in Healthy Volunteers.

    PubMed

    Finan, Patrick H; Richards, Jessica M; Gamaldo, Charlene E; Han, Dingfen; Leoutsakos, Jeannie Marie; Salas, Rachel; Irwin, Michael R; Smith, Michael T

    2016-11-15

    To evaluate the validity of an ambulatory electroencephalographic (EEG) monitor for the estimation of sleep continuity and architecture in healthy adults. Healthy, good sleeping participants (n = 14) were fit with both an ambulatory EEG monitor (Sleep Profiler) and a full polysomnography (PSG) montage. EEG recordings were gathered from both devices on the same night, during which sleep was permitted uninterrupted for eight hours. The study was set in an inpatient clinical research suite. PSG and Sleep Profiler records were scored by a neurologist board certified in sleep medicine, blinded to record identification. Agreement between the scored PSG record, the physician-scored Sleep Profiler record, and the Sleep Profiler record scored by an automatic algorithm was evaluated for each sleep stage, with the PSG record serving as the reference. Results indicated strong percent agreement across stages. Kappa was strongest for Stage N3 and REM. Specificity was high for all stages; sensitivity was low for Wake and Stage N1, and high for Stage N2, Stage N3, and REM. Agreement indices improved for the manually scored Sleep Profiler record relative to the autoscore record. Overall, the Sleep Profiler yields an EEG record with comparable sleep architecture estimates to PSG. Future studies should evaluate agreement between devices with a clinical sample that has greater periods of wake in order to better understand utility of this device for estimating sleep continuity indices, such as sleep onset latency and wake after sleep onset. © 2016 American Academy of Sleep Medicine

  16. On the use of microwave radar devices in chronobiology studies: an application with Periplaneta americana.

    PubMed

    Pasquali, Vittorio; Renzi, Paolo

    2005-08-01

    Modified motion detectors can be used to monitor locomotor activity and measure endogenous rhythms. Although these devices can help monitor insects in their home cages, the small size of the animals requires a very short wavelength detector. We modified a commercial microwave-based detection device, connected the detector's output to the digital input of a computer, and validated the device by recording circadian and ultradian rhythms. Periplaneta americana were housed in individual cages, and their activity was monitored at 18 degrees C and subsequently at 28 degrees C in constant darkness. Time series were analyzed by a discrete Fourier transform and a chi-square periodogram. Q10 values and the circadian free-running period confirmed the data reported in the literature, validating the apparatus. Moreover, the spectral analysis and periodogram revealed the presence of ultradian rhythmicity in the range of 1-8 h.

  17. A new device for monitoring individual activity rhythms of honey bees reveals critical effects of the social environment on behavior.

    PubMed

    Beer, Katharina; Steffan-Dewenter, Ingolf; Härtel, Stephan; Helfrich-Förster, Charlotte

    2016-08-01

    Chronobiological studies of individual activity rhythms in social insects can be constrained by the artificial isolation of individuals from their social context. We present a new experimental set-up that simultaneously measures the temperature rhythm in a queen-less but brood raising mini colony and the walking activity rhythms of singly kept honey bees that have indirect social contact with it. Our approach enables monitoring of individual bees in the social context of a mini colony under controlled laboratory conditions. In a pilot experiment, we show that social contact with the mini colony improves the survival of monitored young individuals and affects locomotor activity patterns of young and old bees. When exposed to conflicting Zeitgebers consisting of a light-dark (LD) cycle that is phase-delayed with respect to the mini colony rhythm, rhythms of young and old bees are socially synchronized with the mini colony rhythm, whereas isolated bees synchronize to the LD cycle. We conclude that the social environment is a stronger Zeitgeber than the LD cycle and that our new experimental set-up is well suited for studying the mechanisms of social entrainment in honey bees.

  18. Monitoring biofilm attachment on medical devices surfaces using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Le, Hanh N. D.; Hitchins, Victoria M.; Ilev, Ilko K.; Kim, Do-Hyun

    2014-02-01

    Microbial biofilm is a colony of single bacteria cells (planktonic) that attached to surfaces, attract other microorganisms to attach and grow, and together they build an extracellular matrix composed of polysaccharides, protein, and DNA. Eventually, some cells will detach and spread to other surface. Biofilm on medical devices can cause severe infection to all age ranges from infant to adult. Therefore, it is important to detect biofilm in a fast and efficient manner. Hyperspectral imaging was utilized for distinguishing wide area of biofilm coverage on various materials and on different textures of stainless steeltest coupons. Not only is the coverage of biofilm important, but also the shear stress of biofilm on the attached surfaces is significant. This study investigates the effects of shear stress on the adhesion of biofilms on common medical device surfaces such as glass, polycarbonate, polytetrafluoroethylene, and stainless steel with different textures. Biofilm was grown using Ps. aeruginosa and growth was monitored after 24 and 48 hours at 37° C. The coupons covered with biofilm were tilted at 45 degrees and 90 degrees for 30 seconds to induce shear stress and Hyperspectral images were taken. We hypothesize that stronger attachment on rough surface would be able to withstand greater shear stress compared to smooth surface.

  19. Fluid flow monitoring device

    DOEpatents

    McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

    1993-11-30

    A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

  20. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food...

  1. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  2. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  3. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  4. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  5. Symmetric miniaturized heating system for active microelectronic devices.

    PubMed

    McCracken, Michael; Mayer, Michael; Jourard, Isaac; Moon, Jeong-Tak; Persic, John

    2010-07-01

    To qualify interconnect technologies such as microelectronic fine wire bonds for mass production of integrated circuit (IC) packages, it is necessary to perform accelerated aging tests, e.g., to age a device at an elevated temperature or to subject the device to thermal cycling and measure the decrease of interconnect quality. There are downsides to using conventional ovens for this as they are relatively large and have relatively slow temperature change rates, and if electrical connections are required between monitoring equipment and the device being heated, they must be located inside the oven and may be aged by the high temperatures. Addressing these downsides, a miniaturized heating system (minioven) is presented, which can heat individual IC packages containing the interconnects to be tested. The core of this system is a piece of copper cut from a square shaped tube with high resistance heating wire looped around it. Ceramic dual in-line packages are clamped against either open end of the core. One package contains a Pt100 temperature sensor and the other package contains the device to be aged placed in symmetry to the temperature sensor. According to the temperature detected by the Pt100, a proportional-integral-derivative controller adjusts the power supplied to the heating wire. The system maintains a dynamic temperature balance with the core hot and the two symmetric sides with electrical connections to the device under test at a cooler temperature. Only the face of the package containing the device is heated, while the socket holding it remains below 75 degrees C when the oven operates at 200 degrees C. The minioven can heat packages from room temperature up to 200 degrees C in less than 5 min and maintain this temperature at 28 W power. During long term aging, a temperature of 200 degrees C was maintained for 1120 h with negligible resistance change of the heating wires after 900 h (heating wire resistance increased 0.2% over the final 220 h). The

  6. Can an electronic device with a single cuff be accurate in a wide range of arm size? Validation of the Visomat Comfort 20/40 device for home blood pressure monitoring.

    PubMed

    Stergiou, G S; Tzamouranis, D; Nasothimiou, E G; Protogerou, A D

    2008-11-01

    An appropriate cuff according to the individual's arm circumference is recommended with all blood pressure (BP) monitors. An electronic device for home monitoring has been developed (Visomat Comfort 20/40) that estimates the individual's arm circumference by measuring the cuff filing volume and makes an adjustment of measured BP taking into account the estimated arm circumference. Thus the manufacturer recommends the use of a single cuff for arm circumference 23-43 cm. The device accuracy was assessed using the European Society of Hypertension International Protocol. Simultaneous BP measurements were obtained in 33 adults by two observers (connected mercury sphygmomanometers) four times, sequentially with three measurements taken using the tested device. Absolute device-observer BP differences were classified into < or =5, < or =10 and < or =15 mm Hg zones. For each participant the number of measurements with a difference < or =5 mm Hg was calculated. The device produced 60/89/97 measurements within 5/10/15 mm Hg respectively for systolic BP, and 72/97/98 for diastolic. Twenty-three subjects had at least two of their systolic BP differences < or =5 mm Hg and three had no differences < or =5 mm Hg (for diastolic 27 and 1, respectively). Mean device-observer BP difference (systolic/diastolic) was 3.7 +/- 5.6/-1.5 +/- 4.7 mm Hg (4.7 +/- 4.9/ - 1.7 +/- 4.3 in arm circumference 23-29 cm [39 readings] and 3.1 +/- 5.9/-1.4 +/- 5.0 in arm 30-34 cm [60 readings], P=NS). In conclusion, the device fulfils the International Protocol requirements and can be recommended for clinical use. Interestingly, the device was accurate using a single cuff in a wide range of arm circumference (23-34 cm). This study provides no information about the device accuracy in larger arms.

  7. Cost-consequence analysis of daily continuous remote monitoring of implantable cardiac defibrillator and resynchronization devices in the UK.

    PubMed

    Burri, Haran; Sticherling, Christian; Wright, David; Makino, Koji; Smala, Antje; Tilden, Dominic

    2013-11-01

    The need for ongoing and lifelong follow-up (FU) of patients with cardiac implantable electric devices (CIED) requires significant resources. Remote CIED management has been established as a safe alternative to conventional periodical in-office FU (CFU). An economic model compares the long-term cost and consequences of using daily Home Monitoring® (HM) instead of CFU. A cost-consequence evaluation comparing HM vs. CFU was performed using a Markov cohort model and data relating to events and costs identified via a systematic review of the literature. The model is conservative, without assuming a reduction of cardiovascular events by HM such as decompensated heart failure or mortality, or considering cost savings such as for transportation. Also cost savings due to an improved timing of elective device replacement, and fewer FU visits needed in patients near device replacement are not considered. Over 10 years, HM is predicted to be cost neutral at about GBP 11 500 per patient in either treatment arm, with all costs for the initial investment into HM and fees for ongoing remote monitoring included. Fewer inappropriate shocks (-51%) reduce the need for replacing devices for battery exhaustion (-7%); the number of FU visits is predicted to be halved by HM. From a UK National Health Service perspective, HM is cost neutral over 10 years. This is mainly accomplished by reducing the number of battery charges and inappropriate shocks, resulting in fewer device replacements, and by reducing the number of in-clinic FU visits.

  8. A new device for continuous monitoring the CO2 dissolved in water

    NASA Astrophysics Data System (ADS)

    de Gregorio, S.; Camarda, M.; Cappuzzo, S.; Giudice, G.; Gurrieri, S.; Longo, M.

    2009-04-01

    The measurements of dissolved CO2 in water are common elements of industrial processes and scientific research. In order to perform gas dissolved measurements is required to separate the dissolved gaseous phase from water. We developed a new device able to separate the gases phase directly in situ and well suitable for continuous measuring the CO2 dissolved in water. The device is made by a probe of a polytetrafluorethylene (PTFE) tube connected to an I.R. spectrophotometer (I.R.) and a pump. The PTFE is a polymeric semi-permeable membrane and allows the permeation of gas in the system. Hence, this part of the device is dipped in water in order to equilibrate the probe headspace with the dissolved gases. The partial pressure of the gas i in the headspace at equilibrium (Pi) follows the Henry's law: Pi=Hi•Ci, where Hi is the Henry's constant and Ci is the dissolved concentration of gas i. After the equilibrium is achieved, the partial pressure of CO2 inside the tube is equal to the partial pressure of dissolved CO2. The concentration of CO2 is measured by the I.R. connected to the tube. The gas is moved from the tube headspace to the I.R. by using the pump. In order to test the device and assess the best operating condition, several experimental were performed in laboratory. All the test were executed in a special apparatus where was feasible to create controlled atmospheres. Afterward the device has been placed in a draining tunnel sited in the Mt. Etna Volcano edifice (Italy). The monitored groundwater intercepts the Pernicana Fault, along which degassing phenomena are often observed. The values recorded by the station result in agreement with monthly directly measurements of dissolved CO2 partial pressure.

  9. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices

    PubMed Central

    Thurow, Kerstin; Stoll, Regina

    2017-01-01

    Objectives Wearable devices are currently at the heart of just about every discussion related to the Internet of Things. The requirement for self-health monitoring and preventive medicine is increasing due to the projected dramatic increase in the number of elderly people until 2020. Developed technologies are truly able to reduce the overall costs for prevention and monitoring. This is possible by constantly monitoring health indicators in various areas, and in particular, wearable devices are considered to carry this task out. These wearable devices and mobile apps now have been integrated with telemedicine and telehealth efficiently, to structure the medical Internet of Things. This paper reviews wearable health care devices both in scientific papers and commercial efforts. Methods MIoT is demonstrated through a defined architecture design, including hardware and software dealing with wearable devices, sensors, smart phones, medical application, and medical station analyzers for further diagnosis and data storage. Results Wearables, with the help of improved technology have been developed greatly and are considered reliable tools for long-term health monitoring systems. These are applied in the observation of a large variety of health monitoring indicators in the environment, vital signs, and fitness. Conclusions Wearable devices are now used for a wide range of healthcare observation. One of the most important elements essential in data collection is the sensor. During recent years with improvement in semiconductor technology, sensors have made investigation of a full range of parameters closer to realization. PMID:28261526

  10. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices.

    PubMed

    Haghi, Mostafa; Thurow, Kerstin; Stoll, Regina

    2017-01-01

    Wearable devices are currently at the heart of just about every discussion related to the Internet of Things. The requirement for self-health monitoring and preventive medicine is increasing due to the projected dramatic increase in the number of elderly people until 2020. Developed technologies are truly able to reduce the overall costs for prevention and monitoring. This is possible by constantly monitoring health indicators in various areas, and in particular, wearable devices are considered to carry this task out. These wearable devices and mobile apps now have been integrated with telemedicine and telehealth efficiently, to structure the medical Internet of Things. This paper reviews wearable health care devices both in scientific papers and commercial efforts. MIoT is demonstrated through a defined architecture design, including hardware and software dealing with wearable devices, sensors, smart phones, medical application, and medical station analyzers for further diagnosis and data storage. Wearables, with the help of improved technology have been developed greatly and are considered reliable tools for long-term health monitoring systems. These are applied in the observation of a large variety of health monitoring indicators in the environment, vital signs, and fitness. Wearable devices are now used for a wide range of healthcare observation. One of the most important elements essential in data collection is the sensor. During recent years with improvement in semiconductor technology, sensors have made investigation of a full range of parameters closer to realization.

  11. Blood Glucose Monitoring Devices

    MedlinePlus

    ... of interferences ability to transmit data to a computer cost of the meter cost of the test ... Performance FDA expands indication for continuous glucose monitoring system, first to replace fingerstick testing for diabetes treatment ...

  12. 21 CFR 882.5500 - Lesion temperature monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lesion temperature monitor. 882.5500 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5500 Lesion temperature monitor. (a) Identification. A lesion temperature monitor is a device used to monitor the tissue...

  13. 21 CFR 882.5500 - Lesion temperature monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lesion temperature monitor. 882.5500 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5500 Lesion temperature monitor. (a) Identification. A lesion temperature monitor is a device used to monitor the tissue...

  14. 21 CFR 882.5500 - Lesion temperature monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lesion temperature monitor. 882.5500 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5500 Lesion temperature monitor. (a) Identification. A lesion temperature monitor is a device used to monitor the tissue...

  15. Monitoring Biological Activity at Geothermal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has beenmore » evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.« less

  16. In situ monitoring using Lab on Chip devices, with particular reference to dissolved silica.

    NASA Astrophysics Data System (ADS)

    Turner, G. S. C.; Loucaides, S.; Slavik, G. J.; Owsianka, D. R.; Beaton, A.; Nightingale, A.; Mowlem, M. C.

    2016-02-01

    In situ sensors are attractive alternatives to discrete sampling of natural waters, offering the potential for sustained long term monitoring and eliminating the need for sample handling. This can reduce sample contamination and degradation. In addition, sensors can be clustered into multi-parameter observatories and networked to provide both spatial and time series coverage. High resolution, low cost, and long term monitoring are the biggest advantages of these technologies to oceanographers. Microfluidic technology miniaturises bench-top assay systems into portable devices, known as a `lab on a chip' (LOC). The principle advantages of this technology are low power consumption, simplicity, speed, and stability without compromising on quality (accuracy, precision, selectivity, sensitivity). We have successfully demonstrated in situ sensors based on this technology for the measurement of pH, nitrate and nitrite. Dissolved silica (dSi) is an important macro-nutrient supporting a major fraction of oceanic primary production carried out by diatoms. The biogeochemical Si cycle is undergoing significant modifications due to human activities, which affects availability of dSi, and consequently primary production. Monitoring dSi concentrations is therefore critical in increasing our understanding of the biogeochemical Si cycle to predict and manage anthropogenic perturbations. The standard bench top air segmented flow technique utilising the reduction of silicomolybdic acid with spectrophotometric detection has been miniaturised into a LOC system; the target limit of detection is 1 nM, with ± 5% accuracy and 3% precision. Results from the assay optimisation are presented along with reagent shelf life to demonstrate the robustness of the chemistry. Laboratory trials of the sensor using ideal solutions and environmental samples in environmentally relevant conditions (temperature, pressure) are discussed, along with an overview of our current LOC analytical capabilities.

  17. 40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of each...

  18. 40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of each...

  19. 40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of each...

  20. Leisure time activities, parental monitoring and drunkenness in adolescents.

    PubMed

    Tomcikova, Zuzana; Veselska, Zuzana; Madarasova Geckova, Andrea; van Dijk, Jitse P; Reijneveld, Sijmen A

    2013-01-01

    The aim of this cross-sectional study was to explore the association between adolescent drunkenness and participation in risky leisure time activities and parental monitoring. A sample of 3,694 Slovak elementary school students (mean age 14.5 years; 49.0% males) was assessed for drunkenness in the previous month, participation in risky leisure activities and parental monitoring. Participation in risky leisure time activities increased the probability of drunkenness among adolescents, while parental monitoring decreased it. The effect did not change after adding the mother's and father's monitoring into the models. Our results imply that adolescents involved in going out with friends, having parties with friends and/or visiting sporting events every day or several times a week are at a higher risk of drunkenness, as are those less monitored by their parents. These less monitored adolescents and their parents should become a target group in prevention. Copyright © 2012 S. Karger AG, Basel.

  1. Validation of Contact-Free Sleep Monitoring Device with Comparison to Polysomnography.

    PubMed

    Tal, Asher; Shinar, Zvika; Shaki, David; Codish, Shlomi; Goldbart, Aviv

    2017-03-15

    To validate a contact-free system designed to achieve maximal comfort during long-term sleep monitoring, together with high monitoring accuracy. We used a contact-free monitoring system (EarlySense, Ltd., Israel), comprising an under-the-mattress piezoelectric sensor and a smartphone application, to collect vital signs and analyze sleep. Heart rate (HR), respiratory rate (RR), body movement, and calculated sleep-related parameters from the EarlySense (ES) sensor were compared to data simultaneously generated by the gold standard, polysomnography (PSG). Subjects in the sleep laboratory underwent overnight technician-attended full PSG, whereas subjects at home were recorded for 1 to 3 nights with portable partial PSG devices. Data were compared epoch by epoch. A total of 63 subjects (85 nights) were recorded under a variety of sleep conditions. Compared to PSG, the contact-free system showed similar values for average total sleep time (TST), % wake, % rapid eye movement, and % non-rapid eye movement sleep, with 96.1% and 93.3% accuracy of continuous measurement of HR and RR, respectively. We found a linear correlation between TST measured by the sensor and TST determined by PSG, with a coefficient of 0.98 (R = 0.87). Epoch-by-epoch comparison with PSG in the sleep laboratory setting revealed that the system showed sleep detection sensitivity, specificity, and accuracy of 92.5%, 80.4%, and 90.5%, respectively. TST estimates with the contact-free sleep monitoring system were closely correlated with the gold-standard reference. This system shows good sleep staging capability with improved performance over accelerometer-based apps, and collects additional physiological information on heart rate and respiratory rate. © 2017 American Academy of Sleep Medicine

  2. Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity

    PubMed Central

    Ardic, Fusun; Göcer, Esra

    2016-01-01

    Abstract The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer. A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland–Altman analyses were performed to show the relationship and agreement between the results of 2 devices. Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P < 0.001, r = 0.96). Correlations across all three BMI categories and both sex remained consistently high ranging from 0.92 to 0.95. There was a high level of agreement between the ECE PEDO and YX200 pedometer in the Bland–Altman analysis. Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a

  3. Main Pipelines Corrosion Monitoring Device

    NASA Astrophysics Data System (ADS)

    Anatoliy, Bazhenov; Galina, Bondareva; Natalia, Grivennaya; Sergey, Malygin; Mikhail, Goryainov

    2017-01-01

    The aim of the article is to substantiate the technical solution for the problem of monitoring corrosion changes in oil and gas pipelines with use (using) of an electromagnetic NDT method. Pipeline wall thinning under operating conditions can lead to perforations and leakage of the product to be transported outside the pipeline. In most cases there is danger for human life and environment. Monitoring of corrosion changes in pipeline inner wall under operating conditions is complicated because pipelines are mainly made of structural steels with conductive and magnetic properties that complicate test signal passage through the entire thickness of the object under study. The technical solution of this problem lies in monitoring of the internal corrosion changes in pipes under operating conditions in order to increase safety of pipelines by automated prediction of achieving the threshold pre-crash values due to corrosion.

  4. Validation of a low-cost EEG device for mood induction studies.

    PubMed

    Rodríguez, Alejandro; Rey, Beatriz; Alcañiz, Mariano

    2013-01-01

    New electroencephalography (EEG) devices, more portable and cheaper, are appearing on the market. Studying the reliability of these EEG devices for emotional studies would be interesting, as these devices could be more economical and compatible with Virtual Reality (VR) settings. Therefore, the aim in this work was to validate a low-cost EEG device (Emotiv Epoc) to monitor brain activity during a positive emotional induction procedure. Emotional pictures (IAPS) were used to induce a positive mood in sixteen participants. Changes in the brain activity of subjects were compared between positive induction and neutral conditions. Obtained results were in accordance with previous scientific literature regarding frontal EEG asymmetry, which supports the possibility of using this low-cost EEG device in future mood induction studies combined with VR.

  5. 40 CFR 60.5417 - What are the continuous control device monitoring requirements for my storage vessel or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monitoring requirements for my storage vessel or centrifugal compressor affected facility? 60.5417 Section 60... requirements for my storage vessel or centrifugal compressor affected facility? You must meet the applicable... standards for your storage vessel or centrifugal compressor affected facility. (a) For each control device...

  6. Rectal sphincter pressure monitoring device.

    PubMed

    Hellbusch, L C; Nihsen, B J

    1989-05-01

    A silicone, dual cuffed catheter designed for the control of nasal hemorrhage was used for rectal sphincter pressure monitoring. Patients with lipomyelomeningocele and tethered spinal cord were monitored during their operative procedures to aid in distinguishing sacral nerve roots from other tissues. Stimulation of sacral nerve roots was done with a disposable nerve stimulator. The use of a catheter with two balloons helps to keep the outer balloon placed against the rectal sphincter.

  7. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review.

    PubMed

    Block, Valerie A J; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A C; Allen, Diane D; Gelfand, Jeffrey M

    2016-01-01

    To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability.

  8. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review

    PubMed Central

    Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.

    2016-01-01

    Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611

  9. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper airway...

  10. Assessment of a neck-based treatment and monitoring device for positional obstructive sleep apnea.

    PubMed

    Levendowski, Daniel J; Seagraves, Sean; Popovic, Djordje; Westbrook, Philip R

    2014-08-15

    A majority of patients diagnosed with obstructive sleep apnea are position dependent whereby they are at least twice as severe when sleeping supine (POSA). This study evaluated the accuracy and efficacy of a neck-worn device designed to limit supine sleep. The study included nightly measurements of snoring, sleep/wake, time supine, and the frequency and duration of feedback to monitor compliance. Thirty patients between ages 18 and 75 years, BMI ≤ 35 with an overall apnea-hypopnea index (AHI) ≥ 5 and an overall AHI ≥ 1.5 times the non-supine AHI, and an Epworth score ≥ 5 were prospectively studied. Subjective reports and polysomnography were used to assess efficacy resulting from 4 weeks of in-home supine-avoidance therapy and to measure device accuracy. From 363 polysomnography reports, 209 provided sufficient positional data to estimate one site's prevalence of positional OSA. In 83% of participants exhibiting > 50% reduction in overall AHI, the mean and median reductions were 69% and 79%. Significant reductions in the overall and supine AHI, apnea index, percent time SpO2 < 90%, and snoring contributed to significant improvements in stage N1 and N2 sleep, reductions in cortical arousals and awakenings, and improved depression scores. Supine position was under-detected by > 5% in 3% of cases. Sleep efficiency by neck actigraphy was within 10% of polysomnography in 87% of the studies when position feedback was delivered. The prevalence of POSA was consistently > 70% when the overall AHI was < 60. The neck position therapy device is accurate and effective in restricting supine sleep, improving AHI, sleep architecture and continuity, and monitoring treatment outcomes.

  11. Development of a bench-top device for parallel climate-controlled recordings of neuronal cultures activity with microelectrode arrays.

    PubMed

    Regalia, Giulia; Biffi, Emilia; Achilli, Silvia; Ferrigno, Giancarlo; Menegon, Andrea; Pedrocchi, Alessandra

    2016-02-01

    Two binding requirements for in vitro studies on long-term neuronal networks dynamics are (i) finely controlled environmental conditions to keep neuronal cultures viable and provide reliable data for more than a few hours and (ii) parallel operation on multiple neuronal cultures to shorten experimental time scales and enhance data reproducibility. In order to fulfill these needs with a Microelectrode Arrays (MEA)-based system, we designed a stand-alone device that permits to uninterruptedly monitor neuronal cultures activity over long periods, overcoming drawbacks of existing MEA platforms. We integrated in a single device: (i) a closed chamber housing four MEAs equipped with access for chemical manipulations, (ii) environmental control systems and embedded sensors to reproduce and remotely monitor the standard in vitro culture environment on the lab bench (i.e. in terms of temperature, air CO2 and relative humidity), and (iii) a modular MEA interface analog front-end for reliable and parallel recordings. The system has been proven to assure environmental conditions stable, physiological and homogeneos across different cultures. Prolonged recordings (up to 10 days) of spontaneous and pharmacologically stimulated neuronal culture activity have not shown signs of rundown thanks to the environmental stability and have not required to withdraw the cells from the chamber for culture medium manipulations. This system represents an effective MEA-based solution to elucidate neuronal network phenomena with slow dynamics, such as long-term plasticity, effects of chronic pharmacological stimulations or late-onset pathological mechanisms. © 2015 Wiley Periodicals, Inc.

  12. Functionality and acceptability of a wireless fetal heart rate monitoring device in term pregnant women in rural Southwestern Uganda.

    PubMed

    Mugyenyi, Godfrey R; Atukunda, Esther C; Ngonzi, Joseph; Boatin, Adeline; Wylie, Blair J; Haberer, Jessica E

    2017-06-08

    Over 3 million stillbirths occur annually in sub Saharan Africa; most occur intrapartum and are largely preventable. The standard of care for fetal heart rate (FHR) assessment in most sub-Saharan African settings is a Pinard Stethoscope, limiting observation to one person, at one point in time. We aimed to test the functionality and acceptability of a wireless FHR monitor that could allow for expanded monitoring capacity in rural Southwestern Uganda. In a mixed method prospective study, we enrolled 1) non-laboring healthy term pregnant women to wear the device for 30 min and 2) non-study clinicians to observe its use. The battery-powered prototype uses Doppler technology to measure fetal cardiotocographs (CTG), which are displayed via an android device and wirelessly transmit to cloud storage where they are accessible via a password protected website. Prototype functionality was assessed by the ability to obtain and transmit a 30-min CTG. Three obstetricians independently rated CTGs for readability and agreement between raters was calculated. All participants completed interviews on acceptability. Fifty pregnant women and 7 clinicians were enrolled. 46 (92.0%) CTGs were successfully recorded and stored. Mean scores for readability were 4.71, 4.71 and 4.83 (out of 5) with high agreement (intra class correlation 0.84; 95% CI 0.74 to 0.91). All pregnant women reported liking or really liking the device, as well as high levels of comfort, flexibility and usefulness of the prototype; all would recommend it to others. Clinicians described the prototype as portable, flexible, easy-to-use and a time saver. Adequate education for clinicians and women also seemed to improve correct usage and minimise concerns on safety of the device. This prototype wireless FHR monitor functioned well in a low-resource setting and was found to be acceptable and useful to both pregnant women and clinicians. The device also seemed to have potential to improve the experience of the users

  13. Active Vibration Isolation Devices with Inertial Servo Actuators

    NASA Astrophysics Data System (ADS)

    Melik-Shakhnazarov, V. A.; Strelov, V. I.; Sofiyanchuk, D. V.; Tregubenko, A. A.

    2018-03-01

    The use of active vibration isolation devices (AVIDs) in aerospace engineering is subject to the following restrictions. First, the volume for installing additional devices is always limited in instrument racks and compartments. Secondly, in many cases, it is impossible to add supports for servo actuators for fundamental or design considerations. In the paper, it has been shown that this problem can be solved if the inertial servo actuators are used in AVIDs instead of reference actuators. A transfer function has been theoretically calculated for an AVID controlled by inertial actuators. It has been shown that the volume of a six-mode single-housing AVID with inertial actuators can be 2-2.5 times smaller than that of devices with support actuators.

  14. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children.

    PubMed

    Aminian, Saeideh; Hinckson, Erica A

    2012-10-02

    Decreasing sedentary activities that involve prolonged sitting may be an important strategy to reduce obesity and other physical and psychosocial health problems in children. The first step to understanding the effect of sedentary activities on children's health is to objectively assess these activities with a valid measurement tool. To examine the validity of the ActivPAL monitor in measuring sitting/lying, standing, and walking time, transition counts and step counts in children in a laboratory setting. Twenty five healthy elementary school children (age 9.9 ± 0.3 years; BMI 18.2 ± 1.9; mean ± SD) were randomly recruited across the Auckland region, New Zealand. Children were fitted with ActivPAL monitors and observed during simulated free-living activities involving sitting/lying, standing and walking, followed by treadmill and over-ground activities at various speeds (slow, normal, fast) against video observation (criterion measure). The ActivPAL sit-to-stand and stand-to-sit transition counts and steps were also compared with video data. The accuracy of step counts measured by the ActivPAL was also compared against the New Lifestyles NL-2000 and the Yamax Digi-Walker SW-200 pedometers. We observed a perfect correlation between the ActivPAL monitor in time spent sitting/lying, standing, and walking in simulated free-living activities with direct observation. Correlations between the ActivPAL and video observation in total numbers of sit-to-stand and stand-to-sit transitions were high (r = 0.99 ± 0.01). Unlike pedometers, the ActivPAL did not misclassify fidgeting as steps taken. Strong correlations (r = 0.88-1.00) between ActivPAL step counts and video observation in both treadmill and over-ground slow and normal walking were also observed. During treadmill and over-ground fast walking and running, the correlations were low (r = 0.21-0.46). The ActivPAL monitor is a valid measurement tool for assessing time spent sitting/lying, standing, and walking, sit

  15. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children

    PubMed Central

    2012-01-01

    Background Decreasing sedentary activities that involve prolonged sitting may be an important strategy to reduce obesity and other physical and psychosocial health problems in children. The first step to understanding the effect of sedentary activities on children’s health is to objectively assess these activities with a valid measurement tool. Purpose To examine the validity of the ActivPAL monitor in measuring sitting/lying, standing, and walking time, transition counts and step counts in children in a laboratory setting. Methods Twenty five healthy elementary school children (age 9.9 ± 0.3 years; BMI 18.2 ± 1.9; mean ± SD) were randomly recruited across the Auckland region, New Zealand. Children were fitted with ActivPAL monitors and observed during simulated free-living activities involving sitting/lying, standing and walking, followed by treadmill and over-ground activities at various speeds (slow, normal, fast) against video observation (criterion measure). The ActivPAL sit-to-stand and stand-to-sit transition counts and steps were also compared with video data. The accuracy of step counts measured by the ActivPAL was also compared against the New Lifestyles NL-2000 and the Yamax Digi-Walker SW-200 pedometers. Results We observed a perfect correlation between the ActivPAL monitor in time spent sitting/lying, standing, and walking in simulated free-living activities with direct observation. Correlations between the ActivPAL and video observation in total numbers of sit-to-stand and stand-to-sit transitions were high (r = 0.99 ± 0.01). Unlike pedometers, the ActivPAL did not misclassify fidgeting as steps taken. Strong correlations (r = 0.88-1.00) between ActivPAL step counts and video observation in both treadmill and over-ground slow and normal walking were also observed. During treadmill and over-ground fast walking and running, the correlations were low (r = 0.21-0.46). Conclusion The ActivPAL monitor is a valid measurement

  16. Design of a new tracking device for on-line beam range monitor in carbon therapy.

    PubMed

    Traini, Giacomo; Battistoni, Giuseppe; Bollella, Angela; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Frallicciardi, Paola Maria; Mancini-Terracciano, Carlo; Marafini, Michela; Mattei, Ilaria; Miraglia, Federico; Muraro, Silvia; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Senzacqua, Martina; Solfaroli-Camillocci, Elena; Toppi, Marco; Voena, Cecilia; Patera, Vincenzo

    2017-02-01

    Charged particle therapy is a technique for cancer treatment that exploits hadron beams, mostly protons and carbon ions. A critical issue is the monitoring of the beam range so to check the correct dose deposition to the tumor and surrounding tissues. The design of a new tracking device for beam range real-time monitoring in pencil beam carbon ion therapy is presented. The proposed device tracks secondary charged particles produced by beam interactions in the patient tissue and exploits the correlation of the charged particle emission profile with the spatial dose deposition and the Bragg peak position. The detector, currently under construction, uses the information provided by 12 layers of scintillating fibers followed by a plastic scintillator and a pixelated Lutetium Fine Silicate (LFS) crystal calorimeter. An algorithm to account and correct for emission profile distortion due to charged secondaries absorption inside the patient tissue is also proposed. Finally detector reconstruction efficiency for charged particle emission profile is evaluated using a Monte Carlo simulation considering a quasi-realistic case of a non-homogenous phantom. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Cardiac rhythm management devices

    PubMed

    Stevenson, Irene; Voskoboinik, Alex

    2018-05-01

    The last decade has seen ongoing evolution and use of cardiac rhythm management devices, including pacemakers, cardiac resynchronisation therapy, implantable cardioverter defibrillators and loop recorders. General practitioners are increasingly involved in follow-up and management of patients with these devices. The aim of this article is to provide an overview of different cardiac rhythm management devices, including their role, implant procedure, post-procedural care, potential complications and follow‑up. We also include practical advice for patients regarding driving, exercise, sexual intimacy and precautions with regards to electromagnetic interference. Cardiac rhythm management devices perform many functions, including bradycardia pacing, monitoring for arrhythmias, cardiac resynchronisation for heart failure, defibrillation and anti-tachycardia pacing for tachyarrhythmias. Concerns regarding potential device-related complications should be discussed with the implanting physician. In the post-implant period, patients with cardiac rhythm management devices can expect to lead normal, active lives. However, caution must occasionally be exercised in certain situations, such as near appliances with electromagnetic interference. Future innovations will move away from transvenous leads to leadless designs with combinations of different components on a 'modular' basis according to the function required.

  18. Validity of Activity Monitor Step Detection Is Related to Movement Patterns.

    PubMed

    Hickey, Amanda; John, Dinesh; Sasaki, Jeffer E; Mavilia, Marianna; Freedson, Patty

    2016-02-01

    There is a need to examine step-counting accuracy of activity monitors during different types of movements. The purpose of this study was to compare activity monitor and manually counted steps during treadmill and simulated free-living activities and to compare the activity monitor steps to the StepWatch (SW) in a natural setting. Fifteen participants performed laboratory-based treadmill (2.4, 4.8, 7.2 and 9.7 km/h) and simulated free-living activities (eg, cleaning room) while wearing an activPAL, Omron HJ720-ITC, Yamax Digi- Walker SW-200, 2 ActiGraph GT3Xs (1 in "low-frequency extension" [AGLFE] and 1 in "normal-frequency" mode), an ActiGraph 7164, and a SW. Participants also wore monitors for 1-day in their free-living environment. Linear mixed models identified differences between activity monitor steps and the criterion in the laboratory/free-living settings. Most monitors performed poorly during treadmill walking at 2.4 km/h. Cleaning a room had the largest errors of all simulated free-living activities. The accuracy was highest for forward/rhythmic movements for all monitors. In the free-living environment, the AGLFE had the largest discrepancy with the SW. This study highlights the need to verify step-counting accuracy of activity monitors with activities that include different movement types/directions. This is important to understand the origin of errors in step-counting during free-living conditions.

  19. Listening to music with personal listening devices: monitoring the noise dose using a smartphone application.

    PubMed

    Kaplan-Neeman, Ricky; Muchnik, Chava; Amir, Noam

    2017-06-01

    To monitor listening habits to personal listening devices (PLDs) using a smartphone application and to compare actual listening habits to self-report data. Two stages: self-report listening habits questionnaire, and real-time monitoring of listening habits through a smartphone application. Overall 117 participants aged 18-34 years (mean 25.5 years) completed the questionnaire, and of them, 40 participants (mean age: 25.2 years) were monitored for listening habits during two weeks. Questionnaire main findings indicated that most of the participants reported listening for 4-7 days a week, for at least 30 min at high listening levels with volume control settings at 75-100%. Monitored data showed that actual listening days per week were 1.5-6.5 d, with mean continuous time of 1.56 h, and mean volume control setting of 7.39 (on a scale of 1-15). Eight participants (22%) were found to exceed the 100% noise dose at least once during the monitoring period. One participant (2.7%) exceeded the weekly 100% daily noise dose. Correlations between actual measurements and self-report data were low to moderate. Results confirmed the feasibility of monitoring listening habits by a smartphone application, and underscore the need for such a tool to enable safe listening behaviour.

  20. 76 FR 13432 - In the Matter of Certain Display Devices, Including Digital Televisions and Monitors II; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-765] In the Matter of Certain Display Devices, Including Digital Televisions and Monitors II; Notice of Investigation AGENCY: U.S. International Trade... that a complaint was filed with the U.S. International Trade Commission on February 9, 2011, under...

  1. Technology platforms for remote monitoring of vital signs in the new era of telemedicine.

    PubMed

    Zhao, Fang; Li, Meng; Tsien, Joe Z

    2015-07-01

    Driven by healthcare cost and home healthcare need, the development of remote monitoring technologies is poised to improve and revolutionize healthcare delivery and accessibility. This paper reviews the recent progress in the field of remote monitoring technologies that may have the potential to become the basic platforms for telemedicine. In particular, key techniques and devices for monitoring cardiorespiratory activity, blood pressure and blood glucose concentration are summarized and discussed. In addition, the US FDA approved remote vital signs monitoring devices currently available on the market are presented.

  2. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties.

    PubMed

    Wolburg, Thomas; Rapp, Walter; Rieger, Jochen; Horstmann, Thomas

    2016-01-01

    To test the hypotheses that less stable therapy devices require greater muscle activity and that lower leg muscles will have greater increases in muscle activity with less stable therapy devices than upper leg muscles. Cross-sectional laboratory study. Laboratory setting. Twenty-five healthy subjects. Electromyographic activity of four lower (gastrocnemius medialis, soleus, tibialis anterior, peroneus longus) and four upper leg muscles (vastus medialis and lateralis, biceps femoris, semitendinosus) during unipedal quiet barefoot stance on the dominant leg on a flat rigid surface and on five therapy devices with varying stability properties. Muscle activity during unipedal stance differed significantly between therapy devices (P < 0.001). The order from lowest to highest relative muscle activity matched the order from most to least stable therapy device. There was no significant interaction between muscle location (lower versus upper leg) and therapy device (P = 0.985). Magnitudes of additional relative muscle activity for the respective therapy devices differed substantially among lower extremity muscles. The therapy devices offer a progressive increase in training intensity, and thus may be useful for incremental training programs in physiotherapeutic practice and sports training programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Airway pressure monitor. 868.2600 Section 868.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a devic...

  4. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device.

    PubMed

    Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun

    2017-03-03

    Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor's dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.

  5. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device

    NASA Astrophysics Data System (ADS)

    Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun

    2017-03-01

    Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor’s dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.

  6. Evaluation of traffic control devices : fifth-year activities.

    DOT National Transportation Integrated Search

    2009-02-01

    This project was established to provide a means of conducting limited scope evaluations of numerous traffic : control device issues. During the fifth, and final, year of the project, researchers conducted four activities: : improving the interface fo...

  7. Cost–consequence analysis of daily continuous remote monitoring of implantable cardiac defibrillator and resynchronization devices in the UK

    PubMed Central

    Burri, Haran; Sticherling, Christian; Wright, David; Makino, Koji; Smala, Antje; Tilden, Dominic

    2013-01-01

    Aims The need for ongoing and lifelong follow-up (FU) of patients with cardiac implantable electric devices (CIED) requires significant resources. Remote CIED management has been established as a safe alternative to conventional periodical in-office FU (CFU). An economic model compares the long-term cost and consequences of using daily Home Monitoring® (HM) instead of CFU. Methods and results A cost–consequence evaluation comparing HM vs. CFU was performed using a Markov cohort model and data relating to events and costs identified via a systematic review of the literature. The model is conservative, without assuming a reduction of cardiovascular events by HM such as decompensated heart failure or mortality, or considering cost savings such as for transportation. Also cost savings due to an improved timing of elective device replacement, and fewer FU visits needed in patients near device replacement are not considered. Over 10 years, HM is predicted to be cost neutral at about GBP 11 500 per patient in either treatment arm, with all costs for the initial investment into HM and fees for ongoing remote monitoring included. Fewer inappropriate shocks (−51%) reduce the need for replacing devices for battery exhaustion (−7%); the number of FU visits is predicted to be halved by HM. Conclusion From a UK National Health Service perspective, HM is cost neutral over 10 years. This is mainly accomplished by reducing the number of battery charges and inappropriate shocks, resulting in fewer device replacements, and by reducing the number of in-clinic FU visits. PMID:23599169

  8. Activity monitor intervention to promote physical activity of physicians-in-training: randomized controlled trial.

    PubMed

    Thorndike, Anne N; Mills, Sarah; Sonnenberg, Lillian; Palakshappa, Deepak; Gao, Tian; Pau, Cindy T; Regan, Susan

    2014-01-01

    Physicians are expected to serve as role models for healthy lifestyles, but long work hours reduce time for healthy behaviors. A hospital-based physical activity intervention could improve physician health and increase counseling about exercise. We conducted a two-phase intervention among 104 medical residents at a large hospital in Boston, Massachusetts. Phase 1 was a 6-week randomized controlled trial comparing daily steps of residents assigned to an activity monitor displaying feedback about steps and energy consumed (intervention) or to a blinded monitor (control). Phase 2 immediately followed and was a 6-week non-randomized team steps competition in which all participants wore monitors with feedback. Phase 1 outcomes were: 1) median steps/day and 2) proportion of days activity monitor worn. The Phase 2 outcome was mean steps/day on days monitor worn (≥500 steps/day). Physiologic measurements were collected at baseline and study end. Median steps/day were compared using Wilcoxon rank-sum tests. Mean steps were compared using repeated measures regression analyses. In Phase 1, intervention and control groups had similar activity (6369 vs. 6063 steps/day, p = 0.16) and compliance with wearing the monitor (77% vs. 77% of days, p = 0.73). In Phase 2 (team competition), residents recorded more steps/day than during Phase 1 (CONTROL: 7,971 vs. 7,567, p = 0.002; 7,832 vs. 7,739, p = 0.13). Mean compliance with wearing the activity monitor decreased for both groups during Phase 2 compared to Phase 1 (60% vs. 77%, p<0.001). Mean systolic blood pressure decreased (p = 0.004) and HDL cholesterol increased (p<0.001) among all participants at end of study compared to baseline. Although the activity monitor intervention did not have a major impact on activity or health, the high participation rates of busy residents and modest changes in steps, blood pressure, and HDL suggest that more intensive hospital-based wellness programs have potential for

  9. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  10. Detection of essential hypertension with physiological signals from wearable devices.

    PubMed

    Ghosh, Arindam; Torres, Juan Manuel Mayor; Danieli, Morena; Riccardi, Giuseppe

    2015-08-01

    Early detection of essential hypertension can support the prevention of cardiovascular disease, a leading cause of death. The traditional method of identification of hypertension involves periodic blood pressure measurement using brachial cuff-based measurement devices. While these devices are non-invasive, they require manual setup for each measurement and they are not suitable for continuous monitoring. Research has shown that physiological signals such as Heart Rate Variability, which is a measure of the cardiac autonomic activity, is correlated with blood pressure. Wearable devices capable of measuring physiological signals such as Heart Rate, Galvanic Skin Response, Skin Temperature have recently become ubiquitous. However, these signals are not accurate and are prone to noise due to different artifacts. In this paper a) we present a data collection protocol for continuous non-invasive monitoring of physiological signals from wearable devices; b) we implement signal processing techniques for signal estimation; c) we explore how the continuous monitoring of these physiological signals can be used to identify hypertensive patients; d) We conduct a pilot study with a group of normotensive and hypertensive patients to test our techniques. We show that physiological signals extracted from wearable devices can distinguish between these two groups with high accuracy.

  11. Increasing physical activity through mobile device interventions: A systematic review.

    PubMed

    Muntaner, Adrià; Vidal-Conti, Josep; Palou, Pere

    2016-09-01

    Physical inactivity is a health problem that affects people worldwide and has been identified as the fourth largest risk factor for overall mortality (contributing to 6% of deaths globally). Many researchers have tried to increase physical activity levels through traditional methods without much success. Thus, many researchers are turning to mobile technology as an emerging method for changing health behaviours. This systematic review sought to summarise and update the existing scientific literature on increasing physical activity through mobile device interventions, taking into account the methodological quality of the studies. The articles were identified by searching the PubMed, SCOPUS and SPORTDiscus databases for studies published between January 2003 and December 2013. Studies investigating efforts to increase physical activity through mobile phone or even personal digital assistant interventions were included. The search results allowed the inclusion of 11 studies that gave rise to 12 publications. Six of the articles included in this review reported significant increases in physical activity levels. The number of studies using mobile devices for interventions has increased exponentially in the last few years, but future investigations with better methodological quality are needed to draw stronger conclusions regarding how to increase physical activity through mobile device interventions. © The Author(s) 2015.

  12. Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors.

    PubMed

    Xi, Xugang; Tang, Minyan; Miran, Seyed M; Luo, Zhizeng

    2017-05-27

    As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short

  13. Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors

    PubMed Central

    Xi, Xugang; Tang, Minyan; Miran, Seyed M.; Luo, Zhizeng

    2017-01-01

    As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short

  14. 12 CFR 21.21 - Procedures for monitoring Bank Secrecy Act (BSA) compliance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Procedures for monitoring Bank Secrecy Act (BSA... MINIMUM SECURITY DEVICES AND PROCEDURES, REPORTS OF SUSPICIOUS ACTIVITIES, AND BANK SECRECY ACT COMPLIANCE PROGRAM Procedures for Monitoring Bank Secrecy Act Compliance § 21.21 Procedures for monitoring Bank...

  15. 12 CFR 21.21 - Procedures for monitoring Bank Secrecy Act (BSA) compliance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Procedures for monitoring Bank Secrecy Act (BSA... MINIMUM SECURITY DEVICES AND PROCEDURES, REPORTS OF SUSPICIOUS ACTIVITIES, AND BANK SECRECY ACT COMPLIANCE PROGRAM Procedures for Monitoring Bank Secrecy Act Compliance § 21.21 Procedures for monitoring Bank...

  16. 12 CFR 21.21 - Procedures for monitoring Bank Secrecy Act (BSA) compliance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Procedures for monitoring Bank Secrecy Act (BSA... MINIMUM SECURITY DEVICES AND PROCEDURES, REPORTS OF SUSPICIOUS ACTIVITIES, AND BANK SECRECY ACT COMPLIANCE PROGRAM Procedures for Monitoring Bank Secrecy Act Compliance § 21.21 Procedures for monitoring Bank...

  17. 12 CFR 21.21 - Procedures for monitoring Bank Secrecy Act (BSA) compliance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Procedures for monitoring Bank Secrecy Act (BSA... MINIMUM SECURITY DEVICES AND PROCEDURES, REPORTS OF SUSPICIOUS ACTIVITIES, AND BANK SECRECY ACT COMPLIANCE PROGRAM Procedures for Monitoring Bank Secrecy Act Compliance § 21.21 Procedures for monitoring Bank...

  18. 12 CFR 21.21 - Procedures for monitoring Bank Secrecy Act (BSA) compliance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Procedures for monitoring Bank Secrecy Act (BSA... MINIMUM SECURITY DEVICES AND PROCEDURES, REPORTS OF SUSPICIOUS ACTIVITIES, AND BANK SECRECY ACT COMPLIANCE PROGRAM Procedures for Monitoring Bank Secrecy Act Compliance § 21.21 Procedures for monitoring Bank...

  19. Inherently safe passive gas monitoring system

    DOEpatents

    Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.

    2016-09-06

    Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.

  20. Evaluation of a wireless activity monitoring system to quantify locomotor activity in horses in experimental settings.

    PubMed

    Fries, M; Montavon, S; Spadavecchia, C; Levionnois, O L

    2017-03-01

    Methods of evaluating locomotor activity can be useful in efforts to quantify behavioural activity in horses objectively. To evaluate whether an accelerometric device would be adequate to quantify locomotor activity and step frequency in horses, and to distinguish between different levels of activity and different gaits. Observational study in an experimental setting. Dual-mode (activity and step count) piezo-electric accelerometric devices were placed at each of 4 locations (head, withers, forelimb and hindlimb) in each of 6 horses performing different controlled activities including grazing, walking at different speeds, trotting and cantering. Both the activity count and step count were recorded and compared by the various activities. Statistical analyses included analysis of variance for repeated measures, receiver operating characteristic curves, Bland-Altman analysis and linear regression. The accelerometric device was able to quantify locomotor activity at each of the 4 locations investigated and to distinguish between gaits and speeds. The activity count recorded by the accelerometer placed on the hindlimb was the most accurate, displaying a clear discrimination between the different levels of activity and a linear correlation to speed. The accelerometer placed on the head was the only one to distinguish specifically grazing behaviour from standing. The accelerometer placed on the withers was unable to differentiate different gaits and activity levels. The step count function measured at the hindlimb was reliable but the count was doubled at the walk. The dual-mode accelerometric device was sufficiently accurate to quantify and compare locomotor activity in horses moving at different speeds and gaits. Positioning the device on the hindlimb allowed for the most accurate results. The step count function can be useful but must be manually corrected, especially at the walk. © 2016 EVJ Ltd.

  1. SU-E-J-211: Design and Study of In-House Software Based Respiratory Motion Monitoring, Controlling and Breath-Hold Device for Gated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugam, Senthilkumar

    Purpose: The purpose of this present work was to fabricate an in-house software based respiratory monitoring, controlling and breath-hold device using computer software programme which guides the patient to have uniform breath hold in response to request during the gated radiotherapy. Methods: The respiratory controlling device consists of a computer, inhouse software, video goggles, a highly sensitive sensor for measurement of distance, mounting systems, a camera, a respiratory signal device, a speaker and a visual indicator. The computer is used to display the respiratory movements of the patient with digital as well as analogue respiration indicators during the respiration cycle,more » to control, breath-hold and analyze the respiratory movement using indigenously developed software. Results: Studies were conducted with anthropomophic phantoms by simulating the respiratory motion on phantoms and recording the respective movements using the respiratory monitoring device. The results show good agreement between the simulated and measured movements. Further studies were conducted for 60 cancer patients with several types of cancers in the thoracic region. The respiratory movement cycles for each fraction of radiotherapy treatment were recorded and compared. Alarm indications are provided in the system to indicate when the patient breathing movement exceeds the threshold level. This will help the patient to maintain uniform breath hold during the radiotherapy treatment. Our preliminary clinical test results indicate that our device is highly reliable and able to maintain the uniform respiratory motion and breathe hold during the entire course of gated radiotherapy treatment. Conclusion: An indigenous respiratory monitoring device to guide the patient to have uniform breath hold device was fabricated. The alarm feature and the visual waveform indicator in the system guide the patient to have normal respiration. The signal from the device can be connected to the

  2. Ambulatory monitoring of activities and motor symptoms in Parkinson's disease.

    PubMed

    Zwartjes, Daphne G M; Heida, Tjitske; van Vugt, Jeroen P P; Geelen, Jan A G; Veltink, Peter H

    2010-11-01

    Ambulatory monitoring of motor symptoms in Parkinsons disease (PD) can improve our therapeutic strategies, especially in patients with motor fluctuations. Previously published monitors usually assess only one or a few basic aspects of the cardinal motor symptoms in a laboratory setting. We developed a novel ambulatory monitoring system that provides a complete motor assessment by simultaneously analyzing current motor activity of the patient (e.g. sitting, walking) and the severity of many aspects related to tremor, bradykinesia, and hypokinesia. The monitor consists of a set of four inertial sensors. Validity of our monitor was established in seven healthy controls and six PD patients treated with deep brain stimulation (DBS) of the subthalamic nucleus. Patients were tested at three different levels of DBS treatment. Subjects were monitored while performing different tasks, including motor tests of the Unified Parkinsons Disease Rating Scale (UPDRS). Output of the monitor was compared to simultaneously recorded videos. The monitor proved very accurate in discriminating between several motor activities. Monitor output correlated well with blinded UPDRS ratings during different DBS levels. The combined analysis of motor activity and symptom severity by our PD monitor brings true ambulatory monitoring of a wide variety of motor symptoms one step closer..

  3. Laser measurement of respiration activity in preterm infants: Monitoring of peculiar events

    NASA Astrophysics Data System (ADS)

    Scalise, L.; Marchionni, P.; Ercoli, I.; Tomasini, E. P.

    2012-09-01

    The Neonatal Intensive Care Unit (NICU) is a part of a pediatric hospital dedicated to the care of ill or pre-term patients . NICU's patients are underweight and most of the time they need cardiac and respiratory support therapies; they are placed in incubators or in cribs maintaining target environmental and body temperatures and protecting patients from bacteria and virus. Patients are continuously monitored for long period of time (days or weeks) due to their possible several health conditions. the most common vital signs monitored are: respiration rate, heart rate, body temperature, blood saturation, etc. Most of the devices used for transducing such quantities in electronic signals - like spirometer or electrocardiogram (ECG) - are in direct contact with the patient and results, also in consideration of the specific patient, largely invasive. In this paper, we propose a novel measurement system for non-contact and non-invasive assessment of the respiration activity, with particular reference to the detection of peculiar respiration events of extreme interest in intensive care units, such as: irregular inspiration/expiration acts, hiccups and apneas. The sensing device proposed is the Laser Doppler Vibrometer (LDVi) which is an non contact, optical measurement system for the assessment of a surface velocity and displacement. In the past it has been demonstrated to be suitable to measure heart rate (HR) and respiration rate (RR) in adult and in preterm infant trough chest-wall displacements. The measurement system is composed by a LDVi system and a data acquisition board installed on a PC, with no direct contact with the patient. Tests have been conducted on 20 NICU patients, for a total of 7219 data sampled. Results show very high correlation (R=0.99) with the reference instrument used for the patient monitoring (mechanical ventilator), with an uncertainty < ±7 ms (k=2). Moreover, during the tests, some peculiar respiration events, have been recorded on 6 of

  4. Embedded Triboelectric Active Sensors for Real-Time Pneumatic Monitoring.

    PubMed

    Fu, Xian Peng; Bu, Tian Zhao; Xi, Feng Ben; Cheng, Ting Hai; Zhang, Chi; Wang, Zhong Lin

    2017-09-20

    Pneumatic monitoring sensors have great demands for power supply in cylinder systems. Here, we present an embedded sliding triboelectric nanogenerator (TENG) in air cylinder as active sensors for position and velocity monitoring. The embedded TENG is composed of a circular poly(tetrafluoroethylene) polymer and a triangular copper electrode. The working mechanism as triboelectric active sensors and electric output performance are systematically investigated. By integrating into the pneumatic system, the embedded triboelectric active sensors have been used for real-time air pressure/flow monitoring and energy storage. Air pressures are measured from 0.04 to 0.12 MPa at a step of 0.02 MPa with a sensitivity of 49.235 V/MPa, as well as airflow from 50 to 250 L/min at a step of 50 L/min with a sensitivity of 0.002 μA·min/L. This work has first demonstrated triboelectric active sensors for pneumatic monitoring and may promote the development of TENG in intelligent pneumatic system.

  5. On-track testing of a power harvesting device for railroad track health monitoring

    NASA Astrophysics Data System (ADS)

    Hansen, Sean E.; Pourghodrat, Abolfazl; Nelson, Carl A.; Fateh, Mahmood

    2010-03-01

    A considerable proportion of railroad infrastructure exists in regions which are comparatively remote. With regard to the cost of extending electrical infrastructure into these areas, road crossings in these areas do not have warning light systems or crossing gates and are commonly marked with reflective signage. For railroad track health monitoring purposes, distributed sensor networks can be applicable in remote areas, but the same limitation regarding electrical infrastructure is the hindrance. This motivated the development of an energy harvesting solution for remote railroad deployment. This paper describes on-track experimental testing of a mechanical device for harvesting mechanical power from passing railcar traffic, in view of supplying electrical power to warning light systems at crossings and to remote networks of sensors. The device is mounted to and spans two rail ties and transforms the vertical rail displacement into electrical energy through mechanical amplification and rectification into a PMDC generator. A prototype was tested under loaded and unloaded railcar traffic at low speeds. Stress analysis and speed scaling analysis are presented, results of the on-track tests are compared and contrasted to previous laboratory testing, discrepancies between the two are explained, and conclusions are drawn regarding suitability of the device for illuminating high-efficiency LED lights at railroad crossings and powering track-health sensor networks.

  6. Reactive Nitrogen Monitoring Gaps: Issues, Activities and Needs

    EPA Science Inventory

    In this article we demonstrate the importance of ammonia and organic nitrogen to total N deposition budgets and review the current activities to close these monitoring gaps. Finally, remaining monitoring needs and issues are discussed.

  7. Cerebral monitoring devices: what we pay for.

    PubMed

    Bonhomme, V; Hans, P

    2006-01-01

    In this review paper, the authors analyse advantages, pitfalls and economical considerations related to depth of anaesthesia monitoring. They first describe the most widely distributed monitors in Europe, and the physiological basis of each index. The optimal use of those monitors and their demonstrated clinical benefits are detailed, as well as the circumstances that can lead to erroneous information or interpretation. Knowledge of patients and practitioners, as well as beliefs and expectations regarding depth of anaesthesia monitoring are discussed. Finally, the authors give their own opinion regarding the use of depth of anaesthesia monitoring, according to clinical benefit and economical considerations.

  8. Demonstration of the Use of Remote Temperature Monitoring Devices in Vaccine Refrigerators in Haiti.

    PubMed

    Cavallaro, Kathleen F; Francois, Jeannot; Jacques, Roody; Mentor, Derline; Yalcouye, Idrissa; Wilkins, Karen; Mueller, Nathan; Turner, Rebecca; Wallace, Aaron; Tohme, Rania A

    After the 2010 earthquake, Haiti committed to introducing 4 new antigens into its routine immunization schedule, which required improving its cold chain (ie, temperature-controlled supply chain) and increasing vaccine storage capacity by installing new refrigerators. We tested the feasibility of using remote temperature monitoring devices (RTMDs) in Haiti in a sample of vaccine refrigerators fueled by solar panels, propane gas, or electricity. We analyzed data from 16 RTMDs monitoring 24 refrigerators in 15 sites from March through August 2014. Although 5 of the 16 RTMDs exhibited intermittent data gaps, we identified typical temperature patterns consistent with refrigerator door opening and closing, propane depletion, thermostat insufficiency, and overstocking. Actual start-up, annual maintenance, and annual electricity costs for using RTMDs were $686, $179, and $9 per refrigerator, respectively. In Haiti, RTMD use was feasible. RTMDs could be prioritized for use with existing refrigerators with high volumes of vaccines and new refrigerators to certify their functionality before use. Vaccine vial monitors could provide additional useful information about cumulative heat exposure and possible vaccine denaturation.

  9. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...

  10. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...

  11. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...

  12. Shared performance monitor in a multiprocessor system

    DOEpatents

    Chiu, George; Gara, Alan G; Salapura, Valentina

    2014-12-02

    A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU is further programmed to monitor event signals issued from non-processor devices.

  13. 40 CFR 62.15270 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flue gases at the inlet of my particulate matter control device? 62.15270 Section 62.15270 Protection....15270 How do I monitor the temperature of flue gases at the inlet of my particulate matter control... temperature of the flue gas stream at the inlet of each particulate matter control device. ...

  14. 40 CFR 62.15270 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flue gases at the inlet of my particulate matter control device? 62.15270 Section 62.15270 Protection....15270 How do I monitor the temperature of flue gases at the inlet of my particulate matter control... temperature of the flue gas stream at the inlet of each particulate matter control device. ...

  15. Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care.

    PubMed

    Hu, Jie; Cui, Xingye; Gong, Yan; Xu, Xiayu; Gao, Bin; Wen, Ting; Lu, Tian Jian; Xu, Feng

    2016-01-01

    Cardiovascular diseases (CVDs) are the main causes of morbidity and mortality in the world where about 4 in every 5 CVD deaths happen in low- and middle-income countries (LMICs). Most CVDs are preventable and curable, which is largely dependent on timely and effective interventions, including diagnosis, prognosis and therapeutic monitoring. However, these interventions are high-cost in high income countries and are usually lacking in LMICs. Thanks to the rapid development of microfluidics and nanotechnology, lots of portable analytical devices are developed for detection of CVDs at the point-of-care (POC). In the meantime, smartphone, as a versatile and powerful handheld tool, has been employed not only as a reader for microfluidic assays, but also as an analyzer for physiological indexes. In this review, we present a comprehensive introduction of the current status and potential development direction on POC diagnostics for CVDs. First of all, we introduce some main facts about CVDs and their standard diagnostic procedures and methods. Second, we discuss about both commercially available POC devices and developed prototypes for detection of CVDs via immunoassays. Subsequently, we report the advances in smartphone-based readout for microfluidic assays. Finally, we present some examples using smartphone, individually or combined with other components or devices, for CVD monitoring. We envision an integrated smartphone-based system capable of functioning blood tests, disease examination, and imaging will come in the future. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Advanced laser-based tracking device for motor vehicle lane position monitoring and steering assistance

    NASA Astrophysics Data System (ADS)

    Bachalo, William D.; Inenaga, Andrew; Schuler, Carlos A.

    1995-12-01

    Aerometrics is developing an innovative laser-diode based device that provides a warning signal when a motor-vehicle deviates from the center of the lane. The device is based on a sensor that scans the roadway on either side of the vehicle and determines the lateral position relative to the existing painted lines marking the lane. No additional markings are required. A warning is used to alert the driver of excessive weaving or unanticipated departure from the center of the lane. The laser beams are at invisible wavelengths to that operation of the device does not pose a distraction to the driver or other motorists: When appropriate markers are not present on the road, the device is capable of detecting this condition and warn the driver. The sensor system is expected to work well irrespective of ambient light levels, fog and rain. This sensor has enormous commercial potential. It could be marketed as an instrument to warn drivers that they are weaving, used as a research tool to monitor driving patterns, be required equipment for those previously convicted of driving under the influence, or used as a backup sensor for vehicle lateral position control. It can also be used in storage plants to guide robotic delivery vehicles. In this paper, the principles of operation of the sensor, and the results of Aerometrics ongoing testing will be presented.

  17. Instructional physical activity monitor video in english and spanish

    USDA-ARS?s Scientific Manuscript database

    The ActiGraph activity monitor is a widely used method for assessing physical activity. Compliance with study procedures in critical. A common procedure is for the research team to meet with participants and demonstrate how and when to attach and remove the monitor and convey how many wear-days are ...

  18. Reporters to monitor cellular MMP12 activity

    NASA Astrophysics Data System (ADS)

    Cobos-Correa, Amanda; Mall, Marcus A.; Schultz, Carsten

    2010-02-01

    Macrophage elastase, also called MMP12, belongs to a family of proteolytic enzymes whose best known physiological function is the remodeling of the extracellular matrix. Under certain pathological conditions, including inflammation, chronic overexpression of MMP12 has been observed and its elevated proteolytic activity has been suggested to be the cause of pulmonary emphysema. However, it was until recently impossible to monitor the activity of MMP12 under disease conditions, mainly due to a lack of detection methods. Recent development of new reporters for monitoring MMP12 activity in living cells, such as LaRee1, provided novel insights into the pathobiology of MMP12 in pulmonary inflammation.1 In the future, these reporters might contribute to improved diagnosis and in finding better treatments for chronic inflammatory lung diseases and emphysema. Our approach for visualizing MMP12 activity is based on peptidic, membrane-targeted FRET (Foerster Resonance Energy Transfer) reporters. Here we describe a set of new reporters containing different fluorophore pairs as well as modifications in the membrane-targeting lipid moiety. We studied the influence of these modifications on reporter performance and the reporter mobility on live cell membranes by FRAP (fluorescence recovery after photobleaching). Finally, we generated several new fluorescently labeled MMP inhibitors based on the peptidic reporter structures as prototypes for future tools to inhibit and monitor MMP activity at the same time.

  19. Quantitative electrophysiological monitoring of anti-histamine drug effects on live cells via reusable sensor platforms.

    PubMed

    Pham Ba, Viet Anh; Cho, Dong-Guk; Kim, Daesan; Yoo, Haneul; Ta, Van-Thao; Hong, Seunghun

    2017-08-15

    We demonstrated the quantitative electrophysiological monitoring of histamine and anti-histamine drug effects on live cells via reusable sensor platforms based on carbon nanotube transistors. This method enabled us to monitor the real-time electrophysiological responses of a single HeLa cell to histamine with different concentrations. The measured electrophysiological responses were attributed to the activity of histamine type 1 receptors on a HeLa cell membrane by histamine. Furthermore, the effects of anti-histamine drugs such as cetirizine or chlorphenamine on the electrophysiological activities of HeLa cells were also evaluated quantitatively. Significantly, we utilized only a single device to monitor the responses of multiple HeLa cells to each drug, which allowed us to quantitatively analyze the antihistamine drug effects on live cells without errors from the device-to-device variation in device characteristics. Such quantitative evaluation capability of our method would promise versatile applications such as drug screening and nanoscale bio sensor researches. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Health Care Utilization and Expenditures Associated With Remote Monitoring in Patients With Implantable Cardiac Devices.

    PubMed

    Ladapo, Joseph A; Turakhia, Mintu P; Ryan, Michael P; Mollenkopf, Sarah A; Reynolds, Matthew R

    2016-05-01

    Several randomized trials and decision analysis models have found that remote monitoring may reduce health care utilization and expenditures in patients with cardiac implantable electronic devices (CIEDs), compared with in-office monitoring. However, little is known about the generalizability of these findings to unselected populations in clinical practice. To compare health care utilization and expenditures associated with remote monitoring and in-office monitoring in patients with CIEDs, we used Truven Health MarketScan Commercial Claims and Medicare Supplemental Databases. We selected patients newly implanted with an implantable cardioverter defibrillators (ICD), cardiac resynchronization therapy defibrillator (CRT-D), or permanent pacemaker (PPM), in 2009, who had continuous health plan enrollment 2 years after implantation. Generalized linear models and propensity score matching were used to adjust for confounders and estimate differences in health care utilization and expenditures in patients with remote or in-office monitoring. We identified 1,127; 427; and 1,295 pairs of patients with a similar propensity for receiving an ICD, CRT-D, or PPM, respectively. Remotely monitored patients with ICDs experienced fewer emergency department visits resulting in discharge (p = 0.050). Remote monitoring was associated with lower health care expenditures in office visits among patients with PPMs (p = 0.025) and CRT-Ds (p = 0.006) and lower total inpatient and outpatient expenditures in patients with ICDs (p <0.0001). In conclusion, remote monitoring of patients with CIEDs may be associated with reductions in health care utilization and expenditures compared with exclusive in-office care. Copyright © 2016 Elsevier Inc. All rights reserved.