Sample records for activity test mat

  1. Applicability of the Monocyte Activation Test (MAT) in the quality control of the 17DD yellow fever vaccine.

    PubMed

    de Mattos, Katherine Antunes; Navega, Elaine Cristina Azevedo; Silva, Vitor Fernandes; Almeida, Alessandra Santos; da Silva, Cristiane Caldeira; Presgrave, Octavio Augusto França; Junior, Daniel da Silva Guedes; Delgado, Isabella Fernandes

    2018-03-01

    The need for alternatives to animal use in pyrogen testing has been driven by the Three Rs concept. This has resulted in the inclusion of the monocyte activation test (MAT) in the European Pharmacopoeia, 2010. However, some technical and regulatory obstacles must be overcome to ensure the effective implementation of the MAT by the industry, especially for the testing of biological products. The yellow fever (YF) vaccine (17DD-YFV) was chosen for evaluation in this study, in view of: a) the 2016-2018 outbreak of YF in Brazil; b) the increase in demand for 17DD-YFV doses; c) the complex production process with live attenuated virus; d) the presence of possible test interference factors, such as residual process components (e.g. ovalbumin); and e) the need for the investigation of other pyrogens that are not detectable by the methods prescribed in the YF vaccine monograph. The product-specific testing was carried out by using cryopreserved and fresh whole blood, and IL-6 and IL-1β levels were used as the marker readouts. After assessing the applicability of the MAT on a 1:10 dilution of 17DD-YFV, endotoxin and non-endotoxin pyrogens were quantified in spiked batches, by using the lipopolysaccharide and lipoteichoic acid standards, respectively. The quantitative analysis demonstrated the correlation between the MAT and the Limulus amoebocyte lysate (LAL) assays, with respect to the limits of endotoxin recovery in spiked batches and the detection of no pyrogenic contamination in commercial batches of 17DD-YFV. The data demonstrated the applicability of the MAT for 17DD-YFV pyrogen testing, and as an alternative method that can contribute to biological quality control studies. 2018 FRAME.

  2. Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats

    PubMed Central

    Lakshminarayanan, Rajamani; Sridhar, Radhakrishnan; Loh, Xian Jun; Nandhakumar, Muruganantham; Barathi, Veluchamy Amutha; Kalaipriya, Madhaiyan; Kwan, Jia Lin; Liu, Shou Ping; Beuerman, Roger Wilmer; Ramakrishna, Seeram

    2014-01-01

    Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole) electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical conformation of gelatin and the presence of gelatin decreased the hemolytic activity of polyenes. The polyene-loaded fiber mats were noncytotoxic to primary human corneal and sclera fibroblasts. The reduction of toxicity with complete retention of activity of the polyene antifungal-loaded gelatin fiber mats can provide new opportunities in the management of superficial skin infections. PMID:24920895

  3. Highly Maneuverable Aircraft Technology (HiMAT) flight-flutter test program

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.

    1984-01-01

    The highly maneuverable aircraft technology (HiMAT) vehicle was evaluated in a joint NASA and Air Force flight test program. The HiMAT vehicle is a remotely piloted research vehicle. Its design incorporates the use of advanced composite materials in the wings, and canards for aeroelastic tailoring. A flight-flutter test program was conducted to clear a sufficient flight envelope to allow for performance, stability and control, and loads testing. Testing was accomplished with and without flight control-surface dampers. Flutter clearance of the vehicle indicated satisfactory damping and damping trends for the structural modes of the HiMAT vehicle. The data presented include frequency and damping plotted as a function of Mach number.

  4. Speeding up pyrogenicity testing: Identification of suitable cell components and readout parameters for an accelerated monocyte activation test (MAT).

    PubMed

    Stoppelkamp, Sandra; Würschum, Noriana; Stang, Katharina; Löder, Jasmin; Avci-Adali, Meltem; Toliashvili, Leila; Schlensak, Christian; Wendel, Hans Peter; Fennrich, Stefan

    2017-02-01

    Pyrogen testing represents a crucial safety measure for parental drugs and medical devices, especially in direct contact with blood or liquor. The European Pharmacopoeia regulates these quality control measures for parenterals. Since 2010, the monocyte activation test (MAT) has been an accepted pyrogen test that can be performed with different human monocytic cell sources: whole blood, isolated monocytic cells or monocytic cell lines with IL1β, IL6, or TNFα as readout cytokines. In the present study, we examined the three different cell sources and cytokine readout parameters with the scope of accelerating the assay time. We could show that despite all cell types being able to detect pyrogens, primary cells were more sensitive than the monocytic cell line. Quantitative real-time PCR revealed IL6 mRNA transcripts having the largest change in Ct-values upon LPS-stimulation compared to IL1β and TNFα, but quantification was unreliable. IL6 protein secretion from whole blood or peripheral blood mononuclear cells (PBMC) was also best suited for an accelerated assay with a larger linear range and higher signal-to-noise ratios upon LPS-stimulation. The unique combination with propan-2-ol or a temperature increase could additionally increase the cytokine production for earlier detection in PBMC. The increased incubation temperature could finally increase not only responses to lipopolysaccharides (LPS) but also other pyrogens by up to 13-fold. Therefore, pyrogen detection can be accelerated considerably by using isolated primary blood cells with an increased incubation temperature and IL6 as readout. These results could expedite assay time and thus help to promote further acceptance of the MAT. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Pyrogen detection methods: Comparison of bovine whole blood assay (bWBA) and monocyte activation test (MAT)

    PubMed Central

    2014-01-01

    Background Pyrogen detection is of utmost importance in pharmaceutical industry, laboratories and health care institutions. As an alternative to the animal-consuming rabbit pyrogen test or Limulus amoebocyte lysate test, the monocyte activation test was introduced as a gold standard method in the European Pharmacopoeia. However, the monocyte activation test has not gained wide acceptance in practice. Methods We stimulated bovine whole blood with different endotoxin preparations (lipopolysaccharide E.coli 0127:B8 and 0113:H10), as well as the non-endotoxin pyrogens peptidoglycan and lipoteichoic acid. Prostaglandin E2 (PGE2) served as read out. Results Employing PGE2 as read out enabled detection limits of 0.04 EU/ml for lipopolysaccharide 0127:B8, 0.25 EU/ml for lipopolysaccharide 0113:H10 and 10 μg/ml of lipoteichoic acid as well as peptidoglycan. To evaluate the bWBA test system as a possible alternative to the MAT we performed a peer-to-peer comparison of the two methods and confirmed similar sensitivities. Conclusions In conclusion, the bovine whole blood assay (bWBA) reproducibly enabled sensitive detection of endotoxin and non-endotoxin pyrogens and may thus become a viable alternative for pyrogen testing. PMID:25209100

  6. Full-Scale Instrumented Testing and Analysis of Matting Systems for Airfield Parking Ramps and Taxiways

    DTIC Science & Technology

    2007-12-01

    system can only be precisely determined by examining all the materials used in the mat, their structure , orientation, dimensions, etc. and determining...ER D C/ G SL T R- 07 -3 3 Full-Scale Instrumented Testing and Analysis of Matting Systems for Airfield Parking Ramps and Taxiways Chad...ERDC/GSL TR-07-33 December 2007 Full-Scale Instrumented Testing and Analysis of Matting Systems for Airfield Parking Ramps and Taxiways Chad A

  7. Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials.

    PubMed

    Neo, Yun Ping; Swift, Simon; Ray, Sudip; Gizdavic-Nikolaidis, Marija; Jin, Jianyong; Perera, Conrad O

    2013-12-01

    The applicability of gallic acid loaded zein (Ze-GA) electrospun fibre mats towards potential active food packaging material was evaluated. The surface chemistry of the electrospun fibre mats was determined using X-ray photon spectroscopy (XPS). The electrospun fibre mats showed low water activity and whitish colour. Thermogravimetric analysis (TGA) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy revealed the stability of the fibre mats over time. The Ze-GA fibre mats displayed similar rapid release profiles, with Ze-GA 20% exhibiting the fastest release rate in water as compared to the others. Gallic acid diffuses from the electrospun fibres in a Fickian diffusion manner and the data obtained exhibited a better fit to Higuchi model. L929 fibroblast cells were cultured on the electrospun fibres to demonstrate the absence of cytotoxicity. Overall, the Ze-GA fibre mats demonstrated antibacterial activity and properties consistent with those considered desirable for active packaging material in the food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats.

    PubMed

    Severin, Ina; Confurius-Guns, Veronique; Stal, Lucas J

    2012-06-01

    Microbial mats are often found in intertidal areas experiencing a large range of salinities. This study investigated the effect of changing salinities on nitrogenase activity and on the composition of the active diazotrophic community (nifH transcript libraries) of three types of microbial mats situated along a littoral gradient. All three mat types exhibited highest nitrogenase activity at salinities close to ambient seawater or lower. The response to lower or higher salinity was strongest in mats higher up in the littoral zone. Changes in nitrogenase activity as the result of exposure to different salinities were accompanied by changes in the active diazotrophic community. The two stations higher up in the littoral zone showed nifH expression by Cyanobacteria (Oscillatoriales and Chroococcales) and Proteobacteria (Gammaproteobacteria and Deltaproteobacteria). At these stations, a decrease in the relative contribution of Cyanobacteria to the nifH transcript libraries was observed at increasing salinity coinciding with a decrease in nitrogenase activity. The station at the low water mark showed low cyanobacterial contribution to nifH transcript libraries at all salinities but an increase in deltaproteobacterial nifH transcripts under hypersaline conditions. In conclusion, increased salinities caused decreased nitrogenase activity and were accompanied by a lower proportion of cyanobacterial nifH transcripts.

  9. Electrospun polyvinylpyrrolidone (PVP)/green tea extract composite nanofiber mats and their antioxidant activities

    NASA Astrophysics Data System (ADS)

    Pusporini, Pusporini; Edikresnha, Dhewa; Sriyanti, Ida; Suciati, Tri; Miftahul Munir, Muhammad; Khairurrijal, Khairurrijal

    2018-05-01

    Electrospinning was employed to make PVP (polyvinylpyrrolidone)/GTE (green tea extract) composite nanofiber mats. The electrospun PVP nanofiber mat as well as the PVP/GTE nanofiber mats were uniform. The average fiber diameter of PVP/GTE composite nanofiber mat decreased with increasing the GTE weight fraction (or decreasing the PVP weight fraction) in the PVP/GTE solution because the PVP/GTE solution concentration decreased. Then, the broad FTIR peak representing the stretching vibrations of O–H in hydroxyl groups of phenols and the stretching of N–H in amine groups of the GTE paste shifted to higher wavenumbers in the PVP/GTE composite nanofiber mats. These peak shifts implied that PVP and catechins of GTE in the PVP/GTE composite nanofiber mats had intermolecular interactions via hydrogen bonds between carbonyl groups of PVP and hydroxyl groups of catechins in GTE. Lastly, the antioxidant activity of the PVP/GTE composite nanofiber mat increased with reducing the average fiber diameter because the amount of catechins in the composite nanofiber mat increased with the increase of surface area due to the reduction of the average fiber diameter.

  10. Development of an active isolation mat based on dielectric elastomer stack actuators for mechanical vibration cancellation

    NASA Astrophysics Data System (ADS)

    Karsten, Roman; Flittner, Klaus; Haus, Henry; Schlaak, Helmut F.

    2013-04-01

    This paper describes the development of an active isolation mat for cancelation of vibrations on sensitive devices with a mass of up to 500 gram. Vertical disturbing vibrations are attenuated actively while horizontal vibrations are damped passively. The dimensions of the investigated mat are 140 × 140 × 20 mm. The mat contains 5 dielectric elastomer stack actuators (DESA). The design and the optimization of active isolation mat are realized by ANSYS FEM software. The best performance shows a DESA with air cushion mounted on its circumference. Within the mounting encased air increases static and reduces dynamic stiffness. Experimental results show that vibrations with amplitudes up to 200 μm can be actively eliminated.

  11. The role of simulation in the development and flight test of the HiMAT vehicle

    NASA Technical Reports Server (NTRS)

    Evans, M. B.; Schilling, L. J.

    1984-01-01

    Real time simulations have been essential in the flight test program of the highly maneuverable aircraft technology (HiMAT) remotely piloted research vehicle at NASA Ames Research Center's Dryden Flight Research Facility. The HiMAT project makes extensive use of simulations in design, development, and qualification for flight, pilot training, and flight planning. Four distinct simulations, each with varying amounts of hardware in the loop, were developed for the HiMAT project. The use of simulations in detecting anomalous behavior of the flight software and hardware at the various stages of development, verification, and validation has been the key to flight qualification of the HiMAT vehicle.

  12. Direct piezoelectric responses of soft composite fiber mats

    NASA Astrophysics Data System (ADS)

    Varga, M.; Morvan, J.; Diorio, N.; Buyuktanir, E.; Harden, J.; West, J. L.; Jákli, A.

    2013-04-01

    Recently soft fiber mats electrospun from solutions of Barium Titanate (BT) ferroelectric ceramics particles and polylactic acid (PLA) were found to have large (d33 ˜ 1 nm/V) converse piezoelectric signals offering a myriad of applications ranging from active implants to smart textiles. Here, we report direct piezoelectric measurements (electric signals due to mechanical stress) of the BT/PLA composite fiber mats at several BT concentrations. A homemade testing apparatus provided AC stresses in the 50 Hz-1.5 kHz-frequency range. The piezoelectric constant d33 ˜ 0.5 nC/N and the compression modulus Y ˜ 104-105 Pa found are in agreement with the prior converse piezoelectric and compressibility measurements. Importantly, the direct piezoelectric signal is large enough to power a small LCD by simple finger tapping of a 0.15 mm thick 2-cm2 area mat. We propose using these mats in active Braille cells and in liquid crystal writing tablets.

  13. A Thermal Physiological Comparison of Two HazMat Protective Ensembles With and Without Active Convective Cooling

    NASA Technical Reports Server (NTRS)

    Williamson, Rebecca; Carbo, Jorge; Luna, Bernadette; Webbon, Bruce W.

    1998-01-01

    Wearing impermeable garments for hazardous materials clean up can often present a health and safety problem for the wearer. Even short duration clean up activities can produce heat stress injuries in hazardous materials workers. It was hypothesized that an internal cooling system might increase worker productivity and decrease likelihood of heat stress injuries in typical HazMat operations. Two HazMat protective ensembles were compared during treadmill exercise. The different ensembles were created using two different suits: a Trelleborg VPS suit representative of current HazMat suits and a prototype suit developed by NASA engineers. The two life support systems used were a current technology Interspiro Spirolite breathing apparatus and a liquid air breathing system that also provided convective cooling. Twelve local members of a HazMat team served as test subjects. They were fully instrumented to allow a complete physiological comparison of their thermal responses to the different ensembles. Results showed that cooling from the liquid air system significantly decreased thermal stress. The results of the subjective evaluations of new design features in the prototype suit were also highly favorable. Incorporation of these new design features could lead to significant operational advantages in the future.

  14. Regulation of electron transfer processes affects phototrophic mat structure and activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mV Ag/AgCl [cathodic (CAT) mat system] and +300 mV Ag/AgCl [anodic (AN)more » mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested that

  15. Regulation of electron transfer processes affects phototrophic mat structure and activity

    DOE PAGES

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; ...

    2015-09-03

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mV Ag/AgCl [cathodic (CAT) mat system] and +300 mV Ag/AgCl [anodic (AN)more » mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested that

  16. MAT2B promotes adipogenesis by modulating SAMe levels and activating AKT/ERK pathway during porcine intramuscular preadipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Cunzhen; Chen, Xiaochang; Wu, Wenjing

    Intramuscular fat (IMF) has been demonstrated as one of the crucial factors of livestock meat quality. The MAT2B protein with MAT2α catalyzes the formation of methyl donor S- adenosylmethionine (SAMe) to mediate cell metabolism including proliferation and apoptosis. However, the regulatory effect of MAT2B on IMF deposition is still unclear. In this study, the effect of MAT2B on adipogenesis and its potential mechanism during porcine intramuscular preadipocyte differentiation was studied. The results showed that overexpression of MAT2B promoted adipogenesis and significantly up-regulated the mRNA and protein levels of adipogenic marker genes including FASN, PPARγ and aP2, consistently, knockdown of MAT2Bmore » inhibited lipid accumulation and down-regulated the mRNA and protein levels of the above genes. Furthermore, flow cytometry and EdU-labeling assay indicated that MAT2B regulate adipogenesis was partly due to influence intracellular SAMe levels and further affect cell clonal expansion. Also, increased expression of MAT2B activated the phosphorylations of AKT and ERK1/2, whereas knockdown of MAT2B blocked AKT signaling and repressed the phosphorylation of ERK1/2. Moreover, the inhibitory effect of LY294002 (a specific PI3K inhibitor) on the activities of AKT and ERK1/2 was partially recovered by overexpression of MAT2B in porcine intramuscular adipocytes. Finally, Co-IP experiments showed that MAT2B can directly interact with AKT. Taken together, our findings suggested that MAT2B acted as a positive regulator through modifying SAMe levels as well as activating AKT/ERK signaling pathway to promote porcine intramuscular adipocyte differentiation. - Highlights: • MAT2B up-regulates the expression of adipogenic marker genes and promotes porcine intramuscular preadipocyte differentiation. • MAT2B influences intracellular SAMe levels and further affects cell clonal expansion. • MAT2B interacts with AKT and activates AKT/ERK signaling pathway.« less

  17. Active video games and physical activity recommendations: a comparison of the Gamercize Stepper, XBOX Kinect and XaviX J-Mat.

    PubMed

    Mellecker, R R; McManus, A M

    2014-05-01

    The current study was designed to evaluate the intensity levels of three exergames and determine the association with physical activity recommendations that correspond to specific outcomes. The variation in cardiovascular responses between the three exergames was also examined. We employed a cross-sectional laboratory design. We recruited 18 girls to participate in a peak VO2 test and to play Gamercize, Kinect River Rush, XaviX J-Mat at three separate exergaming sessions. Linear regression equations of heart rate and percentage of peak VO2 were calculated for each participant to determine the intensity of exergame play. Differences in intensity between the three exergames and time spent in the recommended moderate (heart rate at ≥ 55% peak VO2) and vigorous (heart rate at ≥ 75% peak VO2) intensity levels were analyzed. We calculated the coefficient of variation for the mean heart rate to determine the difference in variance in heart rate values for the three exergames. When playing Gamercize and Kinect the girls did not play at recommended moderate or vigorous levels. Although the girls did not play at vigorous levels when playing XaviX J-Mat, our results showed that when playing XaviX J-Mat they did play at moderate intensity levels. No significant differences in the coefficient of variation between the three exergames were apparent. If active gaming is to be used to increase physical activity levels then individual differences in levels of exertion and specific activity recommendations need to be taken into consideration. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Close association of active nitrifiers with Beggiatoa mats covering deep-sea hydrothermal sediments.

    PubMed

    Winkel, Matthias; de Beer, Dirk; Lavik, Gaute; Peplies, Jörg; Mußmann, Marc

    2014-06-01

    Hydrothermal sediments in the Guaymas Basin are covered by microbial mats that are dominated by nitrate-respiring and sulphide-oxidizing Beggiatoa. The presence of these mats strongly correlates with sulphide- and ammonium-rich fluids venting from the subsurface. Because ammonium and oxygen form opposed gradients at the sediment surface, we hypothesized that nitrification is an active process in these Beggiatoa mats. Using biogeochemical and molecular methods, we measured nitrification and determined the diversity and abundance of nitrifiers. Nitrification rates ranged from 74 to 605 μmol N l(-1)  mat day(-1), which exceeded those previously measured in hydrothermal plumes and other deep-sea habitats. Diversity and abundance analyses of archaeal and bacterial ammonia monooxygenase subunit A genes, archaeal 16S ribosomal RNA pyrotags and fluorescence in situ hybridization confirmed that ammonia- and nitrite-oxidizing microorganisms were associated with Beggiatoa mats. Intriguingly, we observed cells of bacterial and potential thaumarchaeotal ammonia oxidizers attached to narrow, Beggiatoa-like filaments. Such a close spatial coupling of nitrification and nitrate respiration in mats of large sulphur bacteria is novel and may facilitate mat-internal cycling of nitrogen, thereby reducing loss of bioavailable nitrogen in deep-sea sediments. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Microbial Species Richness and Metabolic Activities in Hypersaline Microbial Mats: Insight into Biosignature Formation Through Lithification

    NASA Astrophysics Data System (ADS)

    Baumgartner, Laura K.; Dupraz, Christophe; Buckley, Daniel H.; Spear, John R.; Pace, Norman R.; Visscher, Pieter T.

    2009-11-01

    Microbial mats in the hypersaline lake of Salt Pan, Eleuthera, Bahamas, display a gradient of lithification along a transect from the center to the shore of the lake. These mats exist under similar geochemical conditions, with light quantity and quality as the sole major environmental difference. Therefore, we hypothesized that the microbial community may be driving the differences in lithification and, by extension, mineral biosignature formation. The lithifying and non-lithifying mat communities were compared (via 16S rRNA gene sequencing, 485 and 464 sequences, respectively) over both temporal and spatial scales. Seven bacterial groups dominated in all the microbial mat libraries: bacteriodetes, alphaproteobacteria, deltaproetobacteria, chloroflexi, spirochaetes, cyanobacteria, and planctomycetes. The mat communities were all significantly different over space, time, and lithification state. Species richness is significantly higher in the non-lithifying mats, potentially due to differences in mat structure and activity. This increased richness may impact lithification and, hence, biosignature production.

  20. Promoting physical activity with a school-based dance mat exergaming intervention: qualitative findings from a natural experiment.

    PubMed

    Burges Watson, Duika; Adams, Jean; Azevedo, Liane B; Haighton, Catherine

    2016-07-20

    Physical activity is critical to improving health and well-being in children. Quantitative studies have found a decline in activity in the transition from primary to secondary education. Exergames (active video games) might increase physical activity in adolescents. In January 2011 exergame dance mat systems were introduced in to all secondary schools across two local authority districts in the UK. We performed a quasi-experimental evaluation of a natural experiment using a mixed methods design. The quantitative findings from this work have been previously published. The aim of this linked qualitative study was to explore the implementation of the dance mat scheme and offer insights into its uptake as a physical activity intervention. Embedded qualitative interviews at baseline and 12 month follow-up with purposively selected physical education teachers (n = 20) and 25 focus groups with a convenience sample of pupils (n = 120) from five intervention schools were conducted. Analysis was informed by sociology of translation approach. At baseline, participants (both teachers and pupils) reported different expectations about the dance mats and how they could be employed. Variation in use was seen at follow-up. In some settings they were frequently used to engage hard to reach groups of pupils. Overall, the dance mats were not used routinely to increase physical activity. However there were other unanticipated benefits to pupils such as improved reaction time, co-ordination and mathematic skills. The use of dance mats was limited in routine physical education classes because of contextual issues (school/government policy) technological failures (batteries/updates) and because of expectations about how and where they could be used. Our linked quantitative study (previously published) suggested that the dance mats were not particularly effective in increasing physical activity, but the qualitative results (reported here) show that the dance mats were not used

  1. Enzyme functionalized electrospun chitosan mats for antimicrobial treatment.

    PubMed

    Bösiger, Peter; Tegl, Gregor; Richard, Isabelle M T; Le Gat, Luce; Huber, Lukas; Stagl, Viktoria; Mensah, Anna; Guebitz, Georg M; Rossi, René M; Fortunato, Giuseppino

    2018-02-01

    This work presents electrospun chitosan mats, functionalized with glucose oxidase (GOX) to implement an in-situ hydrogen peroxide (H 2 O 2 ) generation system. The as spun CTS-PEO mats exhibited a smooth and homogenous morphology in combination with a high specific surface area (5.4m 2 /g) providing an excellent basis for further functionalization and subsequent glutaraldehyde crosslinking provided them with superior mechanical stability in aqueous environments. GOX was covalently immobilized, as proven by XPS, and resulted in activity recoveries between 20 and 40%. The functional mats generated a steady state concentration of ∼60μM H 2 O 2 per cm 2 which resulted in growth inhibition of E. coli and of S. aureus already after two hours of incubation. Additional cytotoxicity tests of the modified mats against mouse fibroblasts did not show an influence on the viability of the cells which proved it a functional biomaterial of great potential for biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The impact of long-term hydrocarbon exposure on the structure, activity, and biogeochemical functioning of microbial mats.

    PubMed

    Aubé, Johanne; Senin, Pavel; Pringault, Olivier; Bonin, Patricia; Deflandre, Bruno; Bouchez, Olivier; Bru, Noëlle; Biritxinaga-Etchart, Edurne; Klopp, Christophe; Guyoneaud, Rémy; Goñi-Urriza, Marisol

    2016-10-15

    Photosynthetic microbial mats are metabolically structured systems driven by solar light. They are ubiquitous and can grow in hydrocarbon-polluted sites. Our aim is to determine the impact of chronic hydrocarbon contamination on the structure, activity, and functioning of a microbial mat. We compared it to an uncontaminated mat harboring similar geochemical characteristics. The mats were sampled in spring and fall for 2years. Seasonal variations were observed for the reference mat: sulfur cycle-related bacteria dominated spring samples, while Cyanobacteria dominated in autumn. The contaminated mat showed minor seasonal variation; a progressive increase of Cyanobacteria was noticed, indicating a perturbation of the classical seasonal behavior. Hydrocarbon content was the main factor explaining the differences in the microbial community structure; however, hydrocarbonoclastic bacteria were among rare or transient Operational Taxonomic Units (OTUs) in the contaminated mat. We suggest that in long-term contaminated systems, hydrocarbonoclastic bacteria cannot be considered a sentinel of contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effects of feeding ratio of beet pulp to alfalfa hay or grass hay on ruminal mat characteristics and chewing activity in Holstein dry cows.

    PubMed

    Izumi, Kenichi; Unno, Chigusa

    2010-04-01

    The influence of the feeding ratio of a non-forage fiber source and hay on ruminal mat characteristics and chewing activity was evaluated in dairy dry cows. Cows were fed four different diets: the ratios of alfalfa hay (AH) to beet pulp (BP) were 8:2 (dry matter basis, A8B2) and 2:8 (A2B8), and those of grass hay (GH) to BP were 8:2 (G8B2) and 2:8 (G2B8). Total eating time was decreased with increasing BP content (P < 0.01). Total rumination time for AH was shorter than that for GH (P < 0.01), and it decreased with increasing BP content (P < 0.01). The ruminal mat was detected by using a penetration resistance test of the rumen digesta. Penetration resistance value (PRV) of ruminal mat was highest with the G8B2 diet and PRV decreased with increasing BP content (P < 0.05) and feeding AH (P < 0.05). Thickness of the ruminal mat was greater for increasing BP content (P < 0.05). Simple linear regression of ruminal mat PRV on total rumination time resulted in a high positive correlation (r = 0.744; P < 0.001; n = 16). The results demonstrated that increasing the PRV of the ruminal mat stimulated rumination activity and a ruminal mat could be formed, although it was soft even when cows were offered a large quantity of BP.

  4. The Extracellular Matrix in Photosynthetic Mats: A Cyanobacterial Gingerbread House

    NASA Astrophysics Data System (ADS)

    Stuart, R.; Stannard, W.; Bebout, B.; Pett-Ridge, J.; Mayali, X.; Weber, P. K.; Lipton, M. S.; Lee, J.; Everroad, R. C.; Thelen, M.

    2014-12-01

    Hypersaline laminated cyanobacterial mats are excellent model systems for investigating photoautotrophic contributions to biogeochemical cycling on a millimeter scale. These self-sustaining ecosystems are characterized by steep physiochemical gradients that fluctuate dramatically on hour timescales, providing a dynamic environment to study microbial response. However, elucidating the distribution of energy from light absorption into biomass requires a complete understanding of the various constituents of the mat. Extracellular polymeric substances (EPS), which can be composed of proteins, polysaccharides, lipids and DNA are a major component of these mats and may function in the redistribution of nutrients and metabolites within the community. To test this notion, we established a model mat-building culture for comparison with the phylogenetically diverse natural mat communities. In these two systems we determined how proteins and glycans in the matrix changed as a function of light and tracked nutrient flow from the matrix. Using mass spectrometry metaproteomics analysis, we found homologous proteins in both field and culture extracellular matrix that point to cyanobacterial turnover of amino acids, inorganic nutrients, carbohydrates and nucleic acids from the EPS. Other abundant functions identified included oxidative stress response from both the cyanobacteria and heterotrophs and cyanobacterial structural proteins that may play a role in mat cohesion. Several degradative enzymes also varied in abundance in the EPS in response to light availability, suggesting active secretion. To further test cyanobacterial EPS turnover, we generated isotopically-labeled EPS and used NanoSIMS to trace uptake of this labeled EPS. Our findings suggest Cyanobacteria may facilitate nutrient transfer to other groups, as well as uptake of their own products through degradation of EPS components. This work provides evidence for the essential roles of EPS for storage, structural

  5. Identification of a novel cyanobacterial group as active diazotrophs in a coastal microbial mat using NanoSIMS analysis

    DOE PAGES

    Woebken, Dagmar; Burow, Luke C.; Prufert-Bebout, Leslie; ...

    2012-01-12

    N 2 fixation is a key process in photosynthetic microbial mats to support the nitrogen demands associated with primary production. Despite its importance, groups that actively fix N 2 and contribute to the input of organic N in these ecosystems still remain largely unclear. To investigate the active diazotrophic community in microbial mats from the Elkhorn Slough estuary, Monterey Bay, CA, USA, we conducted an extensive combined approach, including biogeochemical, molecular and high-resolution secondary ion mass spectrometry (NanoSIMS) analyses. Detailed analysis of dinitrogenase reductase (nifH) transcript clone libraries from mat samples that fixed N 2 at night indicated that cyanobacterialmore » nifH transcripts were abundant and formed a novel monophyletic lineage. Independent NanoSIMS analysis of 15N2-incubated samples revealed significant incorporation of 15N into small, non-heterocystous cyanobacterial filaments. Mat-derived enrichment cultures yielded a unicyanobacterial culture with similar filaments (named Elkhorn Slough Filamentous Cyanobacterium-1 (ESFC-1)) that contained nifH gene sequences grouping with the novel cyanobacterial lineage identified in the transcript clone libraries, displaying up to 100% amino-acid sequence identity. The 16S rRNA gene sequence recovered from this enrichment allowed for the identification of related sequences from Elkhorn Slough mats and revealed great sequence diversity in this cluster. Furthermore, by combining 15N 2 tracer experiments, fluorescence in situ hybridization and NanoSIMS, in situ N 2 fixation activity by the novel ESFC-1 group was demonstrated, suggesting that this group may be the most active cyanobacterial diazotroph in the Elkhorn Slough mat. Pyrotag sequences affiliated with ESFC-1 were recovered from mat samples throughout 2009, demonstrating the prevalence of this group. Here, this work illustrates that combining standard and single-cell analyses can link phylogeny and function to identify

  6. Flow-induced Development of Unicellular Cyanobacterial Mats

    NASA Astrophysics Data System (ADS)

    Gong, J.; Tice, M. M.

    2011-12-01

    Microbial mats/biofilms are abundant microbial growth structures throughout the history of life on Earth. Understanding the mechanisms for their morphogenesis and interactions with physical sedimentary forces are important topics that allow deeper understanding of related records. When subjected to hydrodynamic influences, mats are known to vary in morphology and structure in response to fluid shear, yet mechanistically, the underlying cellular architecture due to interactions with flow remain unexplained. Moreover, mats are found to emerge larger scale roughness elements and modified cohesive strength growing under flow. It is a mystery how and why these mat-community-level features are linked in association with modified boundary layers at the mats surface. We examined unicellular cyanobacterium Synechocystis sp. PCC 6803 in a circular flow bioreactor designed to maintain a fixed set of hydrodynamic conditions. The use of monoculture strains and unidirectional currents, while not replicating natural mat systems (almost certainly multi-species and often multi-directional currents under complex wind or tidal wave actions), helps to simplify these systems and allows for specific testing of hypotheses regarding how mats evolve distinctive morphologies induced by flow. The unique design of the reactor also makes measurements such as critical erosional shear stress of the mats possible, in addition to microscopic, macroscopic imaging and weeks of continuous mats growth monitoring. We report the finding that linear chains, filament-like cell groups were present from unicellular cyanobacterial mats growing under flow (~1-5 cm/s) and these structures are organized within ~1-3mm size streamers and ~0.5-1mm size nodular macrostructures. Ultra-small, sub-micron thick EPS strings are observed under TEM and are likely the cohesive architectural elements in mats across different fluid regimes. Mat cohesion generally grows with and adapts to increasing flow shear stress within

  7. Fabrication and In Vitro/In Vivo Performance of Mucoadhesive Electrospun Nanofiber Mats Containing α-Mangostin.

    PubMed

    Samprasit, Wipada; Rojanarata, Theerasak; Akkaramongkolporn, Prasert; Ngawhirunpat, Tanasait; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet

    2015-10-01

    This study aimed to fabricate mucoadhesive electrospun nanofiber mats containing α-mangostin for the maintenance of oral hygiene and reduction of the bacterial growth that causes dental caries. Synthesized thiolated chitosan (CS-SH) blended with polyvinyl alcohol (PVA) was selected as the mucoadhesive polymer. α-Mangostin was incorporated into the CS-SH/PVA solution and electrospun to obtain nanofiber mats. Scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and tensile strength testing were used to characterize the mats. The swelling degree and mucoadhesion were also determined. The nanofiber mats were further evaluated regarding their α-mangostin content, in vitro α-mangostin release, antibacterial activity, cytotoxicity, in vivo performance, and stability. The results indicated that the mats were in the nanometer range. The α-mangostin was well incorporated into the mats, with an amorphous form. The mats showed suitable tensile strength, swelling, and mucoadhesive properties. The loading capacity increased when the initial amount of α-mangostin was increased. Rapid release of α-mangostin from the mats was achieved. Additionally, a fast bacterial killing rate occurred at the lowest concentration of nanofiber mats when α-mangostin was added to the mats. The mats were less cytotoxic after use for 72 h. Moreover, in vivo testing indicated that the mats could reduce the number of oral bacteria, with a good mouth feel. The mats maintained the amount of α-mangostin for 6 months. The results suggest that α-mangostin-loaded mucoadhesive electrospun nanofiber mats may be a promising material for oral care and the prevention of dental caries.

  8. Spatial Structure and Activity of Sedimentary Microbial Communities Underlying a Beggiatoa spp. Mat in a Gulf of Mexico Hydrocarbon Seep

    PubMed Central

    Lloyd, Karen G.; Albert, Daniel B.; Biddle, Jennifer F.; Chanton, Jeffrey P.; Pizarro, Oscar; Teske, Andreas

    2010-01-01

    Background Subsurface fluids from deep-sea hydrocarbon seeps undergo methane- and sulfur-cycling microbial transformations near the sediment surface. Hydrocarbon seep habitats are naturally patchy, with a mosaic of active seep sediments and non-seep sediments. Microbial community shifts and changing activity patterns on small spatial scales from seep to non-seep sediment remain to be examined in a comprehensive habitat study. Methodology/Principal Findings We conducted a transect of biogeochemical measurements and gene expression related to methane- and sulfur-cycling at different sediment depths across a broad Beggiatoa spp. mat at Mississippi Canyon 118 (MC118) in the Gulf of Mexico. High process rates within the mat (∼400 cm and ∼10 cm from the mat's edge) contrasted with sharply diminished activity at ∼50 cm outside the mat, as shown by sulfate and methane concentration profiles, radiotracer rates of sulfate reduction and methane oxidation, and stable carbon isotopes. Likewise, 16S ribosomal rRNA, dsrAB (dissimilatory sulfite reductase) and mcrA (methyl coenzyme M reductase) mRNA transcripts of sulfate-reducing bacteria (Desulfobacteraceae and Desulfobulbaceae) and methane-cycling archaea (ANME-1 and ANME-2) were prevalent at the sediment surface under the mat and at its edge. Outside the mat at the surface, 16S rRNA sequences indicated mostly aerobes commonly found in seawater. The seep-related communities persisted at 12–20 cm depth inside and outside the mat. 16S rRNA transcripts and V6-tags reveal that bacterial and archaeal diversity underneath the mat are similar to each other, in contrast to oxic or microoxic habitats that have higher bacterial diversity. Conclusions/Significance The visual patchiness of microbial mats reflects sharp discontinuities in microbial community structure and activity over sub-meter spatial scales; these discontinuities have to be taken into account in geochemical and microbiological inventories of seep environments. In

  9. Metabolic potential of lithifying cyanobacteria-dominated thrombolitic mats.

    PubMed

    Mobberley, Jennifer M; Khodadad, Christina L M; Foster, Jamie S

    2013-11-01

    Thrombolites are unlaminated carbonate deposits formed by the metabolic activities of microbial mats and can serve as potential models for understanding the molecular mechanisms underlying the formation of lithifying communities. To assess the metabolic complexity of these ecosystems, high throughput DNA sequencing of a thrombolitic mat metagenome was coupled with phenotypic microarray analysis. Functional protein analysis of the thrombolite community metagenome delineated several of the major metabolic pathways that influence carbonate mineralization including cyanobacterial photosynthesis, sulfate reduction, sulfide oxidation, and aerobic heterotrophy. Spatial profiling of metabolite utilization within the thrombolite-forming microbial mats suggested that the top 5 mm contained a more metabolically diverse and active community than the deeper within the mat. This study provides evidence that despite the lack of mineral layering within the clotted thrombolite structure there is a vertical gradient of metabolic activity within the thrombolitic mat community. This metagenomic profiling also serves as a foundation for examining the active role individual functional groups of microbes play in coordinating metabolisms that lead to mineralization.

  10. Development of novel electrospun dual-drug fiber mats loaded with a combination of ampicillin and metronidazole.

    PubMed

    Schkarpetkin, Dennis; Reise, Markus; Wyrwa, Ralf; Völpel, Andrea; Berg, Albrecht; Schweder, Martina; Schnabelrauch, Matthias; Watts, David C; Sigusch, Bernd W

    2016-08-01

    Our study was performed with the aim of preparing electrospun polylactide fibers with a combination of ampicillin (AMP) and metronidazole (MNZ) and investigating their drug release behavior and the antibacterial effect on Aggregatibacter actinomycetemcomitans and other oral pathogens. AMP and MNZ were integrated as a combination in two separate fibers (dual fiber mats - DFW mix) of electrospun PLA fiber mats by means of multijet electrospinning and in a single fiber (single fiber mats - SFW mix). HPLC (high-performance liquid chromatography) was used to measure the released drug quantities. Agar diffusion tests were used to determine the antibacterial effect of the eluates on A. actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis and Enterococcus faecalis. The neutral red test was made to examine the cytocompatibility of the eluates with human gingival fibroblasts (hGFs). The release of the active agents varied with the antibiotic concentrations initially used in the fiber mats, but also with the distribution of the active agents in one or two fibers. Of the total quantity of MNZ (AMP), the SFW mix fiber mats released >60% (>70%) within a span of 5min, and 76% (71%) after 96h. With these drug concentrations released by the fiber mats (≥5m%), an antibacterial effect was achieved on A. actinomycetemcomitans and on all other species tested. Fiber mats and their eluates have no cytotoxic influence on human gingival fibroblasts (hGFs). Electrospun AMP/MNZ-loaded polymer fibers are a potential drug delivery system for use in periodontal and endodontic infections. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Enhanced antibacterial nanocomposite mats by coaxial electrospinning of polycaprolactone fibers loaded with Zn-based nanoparticles.

    PubMed

    Prado-Prone, Gina; Silva-Bermudez, Phaedra; Almaguer-Flores, Argelia; García-Macedo, Jorge A; García, Victor I; Rodil, Sandra E; Ibarra, Clemente; Velasquillo, Cristina

    2018-04-16

    ZnO and Zn acetate nanoparticles were embedded in polycaprolactone coaxial-fibers and uniaxial-fibers matrices to develop potential antibacterial nanocomposite wound dressings (mats). Morphology, composition, wettability, crystallinity and fiber structure of mats were characterized. Antibacterial properties of mats were tested against E. coli and S. aureus by turbidity and MTT assays. The effect of UVA illumination (prior to bacteria inoculation) on mats' antibacterial activity was also studied. Results showed that a coaxial-fibers design maintained nanoparticles distributed in the outer-shell of fibers and, in general, enhanced the antibacterial effect of the mats, in comparison to conventional uniaxial-fibers mats. Results indicated that mats simultaneously inhibited planktonic and biofilm bacterial growth by, probably, two main antibacterial mechanisms; 1) release of Zn 2+ ions (mainly from Zn acetate nanoparticles) and 2) photocatalytic oxidative processes exerted by ZnO nanoparticles. Antibacterial properties of mats were significantly improved by coaxial-fibers design and exposure to UVA-light prior to bacteria inoculation. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. MatMRI and MatHIFU: software toolboxes for real-time monitoring and control of MR-guided HIFU

    PubMed Central

    2013-01-01

    -mimicking heating phantom. Conclusions MatMRI and MatHIFU leverage existing MRI and MR-HIFU clinical platforms to facilitate pre-clinical research. MatMRI substantially simplifies the real-time acquisition and processing of MR data. MatHIFU facilitates the testing and characterization of new therapy applications using the Philips Sonalleve clinical MR-HIFU system. Under coordination with Philips Healthcare, both MatMRI and MatHIFU are intended to be freely available as open-source software packages to other research groups. PMID:25512856

  13. Development of kenaf mat for slope stabilization

    NASA Astrophysics Data System (ADS)

    Ahmad, M. M.; Manaf, M. B. H. Ab; Zainol, N. Z.

    2017-09-01

    This study focusing on the ability of kenaf mat to act as reinforcement to laterite compared to the conventional geosynthetic in term of stabilizing the slope. Kenaf mat specimens studied in this paper are made up from natural kenaf fiber with 3mm thickness, 150mm length and 20mm width. With the same size of specimens, geosynthetic that obtain from the industry are being tested for both direct shear and tensile tests. Plasticity index of the soil sample used is equal to 13 which indicate that the soil is slightly plastic. Result shows that the friction angle of kenaf mat is higher compared to friction between soil particles itself. In term of resistance to tensile load, the tensile strength of kenaf mat is 0.033N/mm2 which is lower than the tensile strength of geosynthetic.

  14. Targeting S-adenosylmethionine biosynthesis with a novel allosteric inhibitor of Mat2A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, Casey L.; Kaiser, Stephen E.; Bolaños, Ben

    S-Adenosyl-L-methionine (SAM) is an enzyme cofactor used in methyl transfer reactions and polyamine biosynthesis. The biosynthesis of SAM from ATP and L-methionine is performed by the methionine adenosyltransferase enzyme family (Mat; EC 2.5.1.6). Human methionine adenosyltransferase 2A (Mat2A), the extrahepatic isoform, is often deregulated in cancer. We identified a Mat2A inhibitor, PF-9366, that binds an allosteric site on Mat2A that overlaps with the binding site for the Mat2A regulator, Mat2B. Studies exploiting PF-9366 suggested a general mode of Mat2A allosteric regulation. Allosteric binding of PF-9366 or Mat2B altered the Mat2A active site, resulting in increased substrate affinity and decreased enzymemore » turnover. These data support a model whereby Mat2B functions as an inhibitor of Mat2A activity when methionine or SAM levels are high, yet functions as an activator of Mat2A when methionine or SAM levels are low. The ramification of Mat2A activity modulation in cancer cells is also described.« less

  15. Material-mediated pyrogens in medical devices: Applicability of the in vitro Monocyte Activation Test.

    PubMed

    Borton, Lindsey K; Coleman, Kelly P

    2018-06-14

    Pyrogenicity presents a challenge to clinicians, medical device manufactures, and regulators. A febrile response may be caused by endotoxin contamination, microbial components other than endotoxin, or chemical agents that generate a material-mediated pyrogenic response. While test methods for the assessment of endotoxin contamination and some microbial components other than endotoxin are well-established, material-mediated pyrogens remain elusively undefined. This review presents the findings of literature searches conducted to identify material-mediated pyrogens associated with medical devices. The in vivo rabbit pyrogen test (RPT) is considered to be the "gold standard" for medical device pyrogenicity testing, despite the fact that few medical device-derived material-mediated pyrogens are known. In line with global efforts to reduce the use of research animals, an in vitro monocyte activation test (MAT) has the potential to replace the RPT. The MAT is used to detect substances that activate human monocytes to release cytokines. This review will also describe the potential opportunities and challenges associated with MAT adoption for the detection of material-mediated pyrogens in medical device testing.

  16. Solution blowing of chitosan/PVA hydrogel nanofiber mats.

    PubMed

    Liu, Ruifang; Xu, Xianlin; Zhuang, Xupin; Cheng, Bowen

    2014-01-30

    Both nanofiber mats and hydrogel have their own advantages in wound healing. In this study, a novel hydrogel nanofiber mats were fabricated via solution blowing of chitosan and PVA solution, with various content of ethylene glycol diglycidyl ether (EGDE) as cross-linker. SEM observation showed that the fibers were several hundred nanometers in diameter with smooth surface and distributed randomly forming three-dimensional mats. The structure of the chitosan/PVA nanofibers was examined by FTIR and XPS, and the results showed that the cross-linking reaction occurred between EGDE and the hydroxyl groups. The mats could quickly hydrate in an aqueous environment to form hydrogel. Their value of equilibrate water absorption varied from 680 to 459% various content of EGDE. The nanofiber mats showed good bactericidal activity against Escherichia coli. The chitosan/PVA hydrogel nanofiber mats showed the combination advantages of nanofibrous mats and hydrogel dressing, and were suggested as potential application in wound healing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Archean Microbial Mat Communities

    NASA Astrophysics Data System (ADS)

    Tice, Michael M.; Thornton, Daniel C. O.; Pope, Michael C.; Olszewski, Thomas D.; Gong, Jian

    2011-05-01

    Much of the Archean record of microbial communities consists of fossil mats and stromatolites. Critical physical emergent properties governing the evolution of large-scale (centimeters to meters) topographic relief on the mat landscape are (a) mat surface roughness relative to the laminar sublayer and (b) cohesion. These properties can be estimated for fossil samples under many circumstances. A preliminary analysis of Archean mat cohesion suggests that mats growing in shallow marine environments from throughout this time had cohesions similar to those of modern shallow marine mats. There may have been a significant increase in mat strength at the end of the Archean.

  18. Proof testing a bridge deck design with glass fiber reinforced polymer bars as top mat of reinforcement.

    DOT National Transportation Integrated Search

    2003-01-01

    The primary objective of this project was to test a full-scale prototype of a bridge deck design containing glass fiber reinforced polymer (GFRP) bars as the top mat of reinforcement. The test deck mimics the design of the deck of one span of the new...

  19. i RadMat: A thermo-mechanical testing system for in situ high-energy X-ray characterization of radioactive specimens

    DOE PAGES

    Zhang, Xuan; Xu, Chi; Wang, Leyun; ...

    2017-01-27

    Here, we present an in situ Radiated Materials (iRadMat) experimental module designed to interface with a servo-hydraulic load frame for X-ray measurements at beamline 1-ID at the Advanced Photon Source. This new capability allows in situ studies of radioactive specimens subject to thermo-mechanical loading using a suite of high-energy X-ray scattering and imaging techniques. The iRadMat is a radiation-shielded vacuum heating system with the sample rotation-under-load capability. We describe the design features and performances of the iRadMat and present a dataset from a 300 °C uniaxial tensile test of a neutron-irradiated pure Fe specimen to demonstrate its capabilities.

  20. Flight control systems development and flight test experience with the HiMAT research vehicles

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Earls, Michael R.

    1988-01-01

    Two highly maneuverable aircraft technology (HiMAT) remotely piloted vehicles were flown a total of 26 flights. These subscale vehicles were of advanced aerodynamic configuration with advanced technology concepts such as composite and metallic structures, digital integrated propulsion control, and ground (primary) and airborne (backup) relaxed static stability, digital fly-by-wire control systems. Extensive systems development, checkout, and flight qualification were required to conduct the flight test program. The design maneuver goal was to achieve a sustained 8-g turn at Mach 0.9 at an altitude of 25,000 feet. This goal was achieved, along with the acquisition of high-quality flight data at subsonic and supersonic Mach numbers. Control systems were modified in a variety of ways using the flight-determined aerodynamic characteristics. The HiMAT program was successfully completed with approximately 11 hours of total flight time.

  1. Biogeochemistry of Microbial Mats

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenizi, D. (Technical Monitor)

    2002-01-01

    The hierarchical organization of microbial ecosystems determines the rates of processes that shape Earth's environment, define the stage upon which major evolutionary events occurred, and create biosignatures in sediments and atmospheres. In cyanobacterial mats, oxygenic photosynthesis provides energy, organic substrates and oxygen to the ecosystem. Incident light changes with depth in the mat, both in intensity and spectral composition, and counteracting gradients of oxygen and sulfide shape the chemical microenvironment. A combination of benefits and hazards of light, oxygen and sulfide promotes the allocation of the various essential mat processes between light and dark periods and to various depths in the mat. Microliters produce hydrogen, small organic acids, nitrogen and sulfur species. Such compounds fuel a flow of energy and electrons in these ecosystems and thus shape interactions between groups of microorganisms. Coordinated observations of population distribution, abundance, and activity for an entire community are making fundamental questions in ecology accessible. These questions address those factors that sustain the remarkable diversity of microorganisms that are now being revealed by molecular techniques. These questions also target the processes that shape the various kinds of biosignatures that we will seek, both in ancient rocks from Earth and Mars, and in atmospheres of distant planets beyond our Solar System.

  2. Antimicrobial Activity of Silver Ions Released from Zeolites Immobilized on Cellulose Nanofiber Mats.

    PubMed

    Rieger, Katrina A; Cho, Hong Je; Yeung, Hiu Fai; Fan, Wei; Schiffman, Jessica D

    2016-02-10

    In this study, we exploit the high silver ion exchange capability of Linde Type A (LTA) zeolites and present, for the first time, electrospun nanofiber mats decorated with in-house synthesized silver (Ag(+)) ion exchanged zeolites that function as molecular delivery vehicles. LTA-Large zeolites with a particle size of 6.0 μm were grown on the surface of the cellulose nanofiber mats, whereas LTA-Small zeolites (0.2 μm) and three-dimensionally ordered mesoporous-imprinted (LTA-Meso) zeolites (0.5 μm) were attached to the surface of the cellulose nanofiber mats postsynthesis. After the three zeolite/nanofiber mat assemblies were ion-exchanged with Ag(+) ions, their ion release profiles and ability to inactivate Escherichia coli (E. coli) K12 were evaluated as a function of time. LTA-Large zeolites immobilized on the nanofiber mats displayed more than an 11 times greater E. coli K12 inactivation than the Ag-LTA-Large zeolites that were not immobilized on the nanofiber mats. This study demonstrates that by decorating nanometer to micrometer scale Ag(+) ion-exchanged zeolites on the surface of high porosity, hydrophilic cellulose nanofiber mats, we can achieve a tunable release of Ag(+) ions that inactivate bacteria faster and are more practical to use in applications over powder zeolites.

  3. Ecophysiological Changes in Microbial Mats Incubated in a Greenhouse Collaboratory

    NASA Technical Reports Server (NTRS)

    Bebout, Brad; DesMarais, David J.; GarciaPichel, Ferran; Hogan, Mary; Jahnke, Linda; Keller, Richard M.; Miller, Scott R.

    2001-01-01

    Microbial mats are modern examples of the earliest microbial communities known. Among the best studied are microbial mats growing in hypersaline ponds managed for the production of salt by Exportadora de Sal, S.A. de C.V., Guerrero Negro, Baja California Sur, Mexico. In May, 2001, we collected mats from Ponds 4 and 5 in this system and returned them to Ames Research Center, where they have been maintained for a period of over nine months. We report here on both the ecophysiological changes occurring in the mats over that period of time as well as the facility in which they were incubated. Mats (approximately 1 sq. meter total area) were incubated in a greenhouse facility modified to provide the mats with natural levels of visible and ultraviolet radiation as well as constantly flowing, temperature-controlled water. Two replicated treatments were maintained, a 'high salinity' treatment (about 120 ppt) and a 'low salinity' treatment (about 90 ppt). Rates of net biological activity (e.g., photosynthesis, respiration, trace gas production) in the mats were relatively constant over the several months, and were similar to rates of activity measured in the field. However, over the course of the incubation, mats in both treatments changed in physical appearance. The most obvious change was that mats in the higher salinity treatments developed a higher proportion of carotenoid pigments (relative to chlorophyll), resulting in a noticeably orange color in the high salinity mats. This trend is also seen in the natural salinity gradient present at the field site. Changes in the community composition of the mats, as assayed by denaturing gradient gel electrophoresis (DGGE), as well as biomarker compounds produced in the mats were also monitored. The degree to which the mats kept in the greenhouse changed from the originally collected mats, as well as differences between high and low salinity mats will be discussed. Additional information is contained in the original extended

  4. Mast cell activation test in the diagnosis of allergic disease and anaphylaxis.

    PubMed

    Bahri, Rajia; Custovic, Adnan; Korosec, Peter; Tsoumani, Marina; Barron, Martin; Wu, Jiakai; Sayers, Rebekah; Weimann, Alf; Ruiz-Garcia, Monica; Patel, Nandinee; Robb, Abigail; Shamji, Mohamed H; Fontanella, Sara; Silar, Mira; Mills, E N Clare; Simpson, Angela; Turner, Paul J; Bulfone-Paus, Silvia

    2018-03-05

    Food allergy is an increasing public health issue and the most common cause of life-threatening anaphylactic reactions. Conventional allergy tests assess for the presence of allergen-specific IgE, significantly overestimating the rate of true clinical allergy and resulting in overdiagnosis and adverse effect on health-related quality of life. To undertake initial validation and assessment of a novel diagnostic tool, we used the mast cell activation test (MAT). Primary human blood-derived mast cells (MCs) were generated from peripheral blood precursors, sensitized with patients' sera, and then incubated with allergen. MC degranulation was assessed by means of flow cytometry and mediator release. We compared the diagnostic performance of MATs with that of existing diagnostic tools to assess in a cohort of peanut-sensitized subjects undergoing double-blind, placebo-controlled challenge. Human blood-derived MCs sensitized with sera from patients with peanut, grass pollen, and Hymenoptera (wasp venom) allergy demonstrated allergen-specific and dose-dependent degranulation, as determined based on both expression of surface activation markers (CD63 and CD107a) and functional assays (prostaglandin D 2 and β-hexosaminidase release). In this cohort of peanut-sensitized subjects, the MAT was found to have superior discrimination performance compared with other testing modalities, including component-resolved diagnostics and basophil activation tests. Using functional principle component analysis, we identified 5 clusters or patterns of reactivity in the resulting dose-response curves, which at preliminary analysis corresponded to the reaction phenotypes seen at challenge. The MAT is a robust tool that can confer superior diagnostic performance compared with existing allergy diagnostics and might be useful to explore differences in effector cell function between basophils and MCs during allergic reactions. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights

  5. Closing the design loop on HiMAT (highly maneuverable aircraft technology)

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Robinson, M. R.

    1984-01-01

    The design methodology used in the HiMAT program and the wind tunnel development activities are discussed. Selected results from the flight test program are presented and the strengths and weaknesses of testing advanced technology vehicles using the RPV concept is examined. The role of simulation on the development of digital flight control systems and in RPV's in particular is emphasized.

  6. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries

    NASA Astrophysics Data System (ADS)

    Baumgartner, L. K.; Reid, R. P.; Dupraz, C.; Decho, A. W.; Buckley, D. H.; Spear, J. R.; Przekop, K. M.; Visscher, P. T.

    2006-03-01

    Sulfate reducing bacteria (SRB) have existed throughout much of Earth's history and remain major contributors to carbon cycling in modern systems. Despite their importance, misconceptions about SRB are prevalent. In particular, SRB are commonly thought to lack oxygen tolerance and to exist only in anoxic environments. Through the last two decades, researchers have discovered that SRB can, in fact, tolerate and even respire oxygen. Investigations of microbial mat systems have demonstrated that SRB are both abundant and active in the oxic zones of mats. Additionally, SRB have been found to be highly active in the lithified zones of microbial mats, suggesting a connection between sulfate reduction and mat lithification. In the present paper, we review recent research on SRB distribution and present new preliminary findings on both the diversity and distribution of δ-proteobacterial SRB in lithifying and non-lithifying microbial mat systems. These preliminary findings indicate the unexplored diversity of SRB in a microbial mat system and demonstrate the close microspatial association of SRB and cyanobacteria in the oxic zone of the mat. Possible mechanisms and further studies to elucidate mechanisms for carbonate precipitation via sulfate reduction are also discussed.

  7. Soluble β-(1,3)-glucans enhance LPS-induced response in the monocyte activation test, but inhibit LPS-mediated febrile response in rabbits: Implications for pyrogenicity tests.

    PubMed

    Pardo-Ruiz, Zenia; Menéndez-Sardiñas, Dalia E; Pacios-Michelena, Anabel; Gabilondo-Ramírez, Tatiana; Montero-Alejo, Vivian; Perdomo-Morales, Rolando

    2016-01-01

    In the present study, we aimed to determine the influence of β-(1,3)-d-glucans on the LPS-induced pro-inflammatory cytokine response in the Monocyte Activation Test (MAT) for pyrogens, and on the LPS-induced febrile response in the Rabbit Pyrogen Test (RPT), thus evaluating the resulting effect in the outcome of each test. It was found that β-(1,3)-d-glucans elicited the production of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, also known as endogenous pyrogens, but not enough to classify them as pyrogenic according to MAT. The same β-(1,3)-d-glucans samples were non-pyrogenic by RPT. However, β-(1,3)-d-glucans significantly enhanced the LPS-induced pro-inflammatory cytokines response in MAT, insomuch that samples containing non-pyrogenic concentrations of LPS become pyrogenic. On the other hand, β-(1,3)-d-glucans had no effect on sub-pyrogenic LPS doses in the RPT, but surprisingly, inhibited the LPS-induced febrile response of pyrogenic LPS concentrations. Thus, while β-(1,3)-d-glucans could mask the LPS pyrogenic activity in the RPT, they exerted an overstimulation of pro-inflammatory cytokines in the MAT. Hence, MAT provides higher safety since it evidences an unwanted biological response, which is not completely controlled and is overlooked by the RPT. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Cyanobacterial mats: Microanalysis of community metabolism

    NASA Technical Reports Server (NTRS)

    Cohen, Y.; Bermudes, D.; Fischer, U.; Haddad, R.; Prufert, L.; Scheulderman-Suylen, T.; Shaw, T.

    1985-01-01

    The microbial communities in two sites were studied using several approaches: (1) light microscopy; (2) the measurement of microprofiles of oxygen and sulfide at the surface of the microbial mat; (3) the study of diurnal variation of oxygen and sulfides; (4) in situ measurement of photosynthesis and sulfate reduction and study of the coupling of these two processes; (5) measurement of glutathione in the upper layers of the microbial mat as a possible oxygen quencher; (6) measurement of reduced iron as a possible intermediate electron donor along the established redoxcline in the mats; (7) measurement of dissolved phosphate as an indicator of processes of break down of organic matter in these systems; and (8) measurement of carbon dioxide in the interstitial water and its delta C-13 in an attempt to understand the flow of CO2 through the systems. Microbial processes of primary production and initial degradation at the most active zone of the microbial mat were analyzed.

  9. 75 FR 55360 - In the Matter of Mattingly Testing Services, Inc. Molt, MT; Order Revoking License (Effective...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... radiation safety officer, and due to expire on February 28, 2016. The license authorizes Mattingly to... effectiveness of Mattingly's radiation safety and compliance programs by commencing an assessment of Mattingly's radiation safety program within 30 days of NRC's approval of the consultant; by reviewing Mattingly's...

  10. Reactive composite compositions and mat barriers

    DOEpatents

    Langton, Christine A.; Narasimhan, Rajendran; Karraker, David G.

    2001-01-01

    A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.

  11. Effects of Mat Pilates training and habitual physical activity on thoracoabdominal expansion during quiet and vital capacity breathing in healthy women.

    PubMed

    Campos, Jeniffer L; Vancini, Rodrigo L; Zanoni, Graziely R; Barbosa DE Lira, Claudio A; Santos Andrade, Marilia; Sarro, Karine J

    2017-10-27

    Pilates is a body/mind method that requires different types of exercise (balance, endurance, strength, and flexibility) and attention to muscle control, posture, and breathing. The aim of the present study was to investigate the effects of 12 weeks of Mat Pilates training and habitual physical activity on thoracoabdominal motion of healthy and physically active women. Thirty-five women without experience in Pilates exercise, aged between 18 and 35 years, participated in the study (habitual physical activity group, n=14; and Mat Pilates group, n=21). Three- dimensional kinematic analysis was used to evaluate total and separate thoracoabdominal compartments' expansion (superior and inferior thorax and abdomen), contribution of each compartment to total thoracoabdominal expansion, and coordination between thoracoabdominal compartments. After 12 weeks of Mat Pilates training, thoracoabdominal expansion during quiet breathing was improved by increasing the expansion of abdomen by about 33% (P=0.01). Moreover, expansion of superior (P=0.04) and inferior thorax (P=0.02) and abdomen (P=0.01) was also improved in Pilates (35%, 33% and 37%, respectively) compared to the habitual physical activity group, after the experimental protocol. Finally, the habitual physical activity group presented a decrease of 13% in the expansion of abdomen (P = 0.002). The results suggest the capability of Mat Pilates in improving the action of respiratory and abdominal muscles during breathing and, thus, its benefits to breathing mechanics.

  12. Protein and Bacterial Antifouling Behavior of Melt-Coextruded Nanofiber Mats.

    PubMed

    Kim, Si-Eun; Zhang, Cong; Advincula, Abigail A; Baer, Eric; Pokorski, Jonathan K

    2016-04-13

    Antifouling surfaces are important for biomedical devices to prevent secondary infections and mitigate the effects of the foreign body response. Herein, we describe melt-coextruded poly(ε-caprolactone) (PCL) nanofiber mats grafted with antifouling polymers. Nonwoven PCL fiber mats are produced using a multilayered melt coextrusion process followed by high-pressure hydroentanglement to yield porous patches. The resulting fiber mats show submicrometer cross-sectional fiber dimensions and yield pore sizes that were nearly uniform, with a mean pore size of 1.6 ± 0.9 μm. Several antifouling polymers, including hydrophilic, zwitterionic, and amphipathic molecules, are grafted to the surface of the mats using a two-step procedure that includes photochemistry followed by the copper-catalyzed azide-alkyne cycloaddition reaction. Fiber mats are evaluated using separate adsorption tests for serum proteins and E. coli. The results indicate that poly(oligo(ethylene glycol) methyl ether methacrylate)-co-(trifluoroethyl methacrylate) (poly(OEGMEMA-co-TFEMA)) grafted mats exhibit approximately 85% less protein adhesion and 97% less E. coli adsorption when compared to unmodified PCL fibermats. In dynamic antifouling testing, the amphiphilic fluorous polymer surface shows the highest flux and highest rejection value of foulants. The work presented within has implications on the high-throughput production of antifouling microporous patches for medical applications.

  13. Processes of carbonate precipitation in modern microbial mats

    NASA Astrophysics Data System (ADS)

    Dupraz, Christophe; Reid, R. Pamela; Braissant, Olivier; Decho, Alan W.; Norman, R. Sean; Visscher, Pieter T.

    2009-10-01

    Microbial mats are ecosystems that arguably greatly affected the conditions of the biosphere on Earth through geological time. These laminated organosedimentary systems, which date back to > 3.4 Ga bp, are characterized by high metabolic rates, and coupled to this, rapid cycling of major elements on very small (mm-µm) scales. The activity of the mat communities has changed Earth's redox conditions (i.e. oxidation state) through oxygen and hydrogen production. Interpretation of fossil microbial mats and their potential role in alteration of the Earth's geochemical environment is challenging because these mats are generally not well preserved. Preservation of microbial mats in the fossil record can be enhanced through carbonate precipitation, resulting in the formation of lithified mats, or microbialites. Several types of microbially-mediated mineralization can be distinguished, including biologically-induced and biologically influenced mineralization. Biologically-induced mineralization results from the interaction between biological activity and the environment. Biologically-influenced mineralization is defined as passive mineralization of organic matter (biogenic or abiogenic in origin), whose properties influence crystal morphology and composition. We propose to use the term organomineralization sensu lato as an umbrella term encompassing biologically influenced and biologically induced mineralization. Key components of organomineralization sensu lato are the "alkalinity" engine (microbial metabolism and environmental conditions impacting the calcium carbonate saturation index) and an organic matrix comprised of extracellular polymeric substances (EPS), which may provide a template for carbonate nucleation. Here we review the specific role of microbes and the EPS matrix in various mineralization processes and discuss examples of modern aquatic (freshwater, marine and hypersaline) and terrestrial microbialites.

  14. Spatial variability in photosynthetic and heterotrophic activity drives localized δ13C org fluctuations and carbonate precipitation in hypersaline microbial mats.

    PubMed

    Houghton, J; Fike, D; Druschel, G; Orphan, V; Hoehler, T M; Des Marais, D J

    2014-11-01

    Modern laminated photosynthetic microbial mats are ideal environments to study how microbial activity creates and modifies carbon and sulfur isotopic signatures prior to lithification. Laminated microbial mats from a hypersaline lagoon (Guerrero Negro, Baja California, Mexico) maintained in a flume in a greenhouse at NASA Ames Research Center were sampled for δ(13) C of organic material and carbonate to assess the impact of carbon fixation (e.g., photosynthesis) and decomposition (e.g., bacterial respiration) on δ(13) C signatures. In the photic zone, the δ(13) C org signature records a complex relationship between the activities of cyanobacteria under variable conditions of CO2 limitation with a significant contribution from green sulfur bacteria using the reductive TCA cycle for carbon fixation. Carbonate is present in some layers of the mat, associated with high concentrations of bacteriochlorophyll e (characteristic of green sulfur bacteria) and exhibits δ(13) C signatures similar to DIC in the overlying water column (-2.0‰), with small but variable decreases consistent with localized heterotrophic activity from sulfate-reducing bacteria (SRB). Model results indicate respiration rates in the upper 12 mm of the mat alter in situ pH and HCO3- concentrations to create both phototrophic CO2 limitation and carbonate supersaturation, leading to local precipitation of carbonate minerals. The measured activity of SRB with depth suggests they variably contribute to decomposition in the mat dependent on organic substrate concentrations. Millimeter-scale variability in the δ(13) C org signature beneath the photic zone in the mat is a result of shifting dominance between cyanobacteria and green sulfur bacteria with the aggregate signature overprinted by heterotrophic reworking by SRB and methanogens. These observations highlight the impact of sedimentary microbial processes on δ(13) C org signatures; these processes need to be considered when attempting to relate

  15. Studying Microbial Mat Functioning Amidst "Unexpected Diversity": Methodological Approaches and Initial Results from Metatranscriptomes of Mats Over Diel cycles, iTags from Long Term Manipulations, and Biogeochemical Cycling in Simplified Microbial Mats Constructed from Cultures

    NASA Astrophysics Data System (ADS)

    Bebout, B.; Bebout, L. E.; Detweiler, A. M.; Everroad, R. C.; Lee, J.; Pett-Ridge, J.; Weber, P. K.

    2014-12-01

    Microbial mats are famously amongst the most diverse microbial ecosystems on Earth, inhabiting some of the most inclement environments known, including hypersaline, dry, hot, cold, nutrient poor, and high UV environments. The high microbial diversity of microbial mats makes studies of microbial ecology notably difficult. To address this challenge, we have been using a combination of metagenomics, metatranscriptomics, iTags and culture-based simplified microbial mats to study biogeochemical cycling (H2 production, N2 fixation, and fermentation) in microbial mats collected from Elkhorn Slough, Monterey Bay, California. Metatranscriptomes of microbial mats incubated over a diel cycle have revealed that a number of gene systems activate only during the day in Cyanobacteria, while the remaining appear to be constitutive. The dominant cyanobacterium in the mat (Microcoleus chthonoplastes) expresses several pathways for nitrogen scavenging undocumented in cultured strains, as well as the expression of two starch storage and utilization cycles. Community composition shifts in response to long term manipulations of mats were assessed using iTags. Changes in community diversity were observed as hydrogen fluxes increased in response to a lowering of sulfate concentrations. To produce simplified microbial mats, we have isolated members of 13 of the 15 top taxa from our iTag libraries into culture. Simplified microbial mats and simple co-cultures and consortia constructed from these isolates reproduce many of the natural patterns of biogeochemical cycling in the parent natural microbial mats, but against a background of far lower overall diversity, simplifying studies of changes in gene expression (over the short term), interactions between community members, and community composition changes (over the longer term), in response to environmental forcing.

  16. Quantification of metabolically active transient storage (MATS) in two reaches with contrasting transient storage and ecosystem respiration

    Treesearch

    Alba Argerich; Roy Haggerty; Eugènia Martí; Francesc Sabater; Jay Zarnetske

    2011-01-01

    Water transient storage zones are hotspots for metabolic activity in streams although the contribution of different types of transient storage zones to the whole�]reach metabolic activity is difficult to quantify. In this study we present a method to measure the fraction of the transient storage that is metabolically active (MATS) in two consecutive reaches...

  17. Effects of tacky mat contamination on bond degradation for Chemlok/liner and NBR/liner bonds

    NASA Technical Reports Server (NTRS)

    Padilla, A. M.

    1989-01-01

    Tacky mats are placed by the rubber lay-up areas for the solid rocket motor segments. These mats dust off the shoes prior to entering the platform where the lay-up work is performed. The possibility exists that a tacky mat could be touched with gloved hands prior to handling the uncured nitride butadiene rubber (NBR). Tests were run to determine if NBR were accidentally touched would there be any degradation of the liner/NBR bond. The tacky mats were judged solely on the basis of bond degradation caused by either direct or indirect contamination. Test results all indicate that there was no notable NBR/Chemlok or liner/NBR bond degradation on samples that came into contact with the tacky mat material. Testing procedures are described. The tacky mat adhesive composition does not contain fluorocarbons or release agents that would affect bonding.

  18. Geosynthetic Reinforcement of Sand-Mat Layer above Soft Ground

    PubMed Central

    Park, Jong-Beom; Park, Hyun-Soo; Kim, Daehyeon

    2013-01-01

    In order to improve the bearing capacity of soft ground for the purpose of getting trafficability of construction vehicles, the reinforcement of geosynthetics for sand-mat layers on soft ground has often been used. As the strength of the geosynthetics increases, and the sand-mat system becomes stronger, the bearing capacity of sand-mat systems will be increased. The depths of geosynthetics, reinforced in sand-mat layers, were varied with respect to the width of footing. The tensile strengths of geosynthetics were also varied to evaluate the effect of reinforcement on the bearing capacity of soft ground. The dispersion angles, with varying sand-mat thicknesses, were also determined in consideration of the tensile strength of geosynthetics and the depths of reinforcement installations. The bearing capacity ratios, with the variation of footing width and reinforced embedment depth, were determined for the geosynthetics-only, reinforced soft ground, 1-layer sand-mat system and 2-layer sand-mat system against the non-reinforced soft ground. From the test results of various models, a principle that better explains the concept of geosynthetic reinforcement has been found. On the basis of this principle, a new bearing capacity equation for practical use in the design of geosynthetically reinforced soft ground has been proposed by modifying Yamanouchi’s equation. PMID:28788392

  19. Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teske, A.; Ramsing, N.B.; Habicht, K.

    1998-08-01

    The sulfate-reducing bacteria within the surface layer of the hypersaline cyanobacterial mat of Solar Lake (Sinai, Egypt) were investigated with combined microbiological, molecular, and biogeochemical approaches. The diurnally oxic surface layer contained between 10{sup 6} and 10{sup 7} cultivable sulfate-reducing bacteria ml{sup {minus}1} day{sup {minus}1}, both in the same range as and sometimes higher than those in anaerobic deeper mat layers. In the oxic surface layer and in the mat layers below, filamentous sulfate-reducing Desulfonema bacteria were found in variable densities of 10{sup 4} and 10{sup 6} cells ml{sup {minus}1}. A Desulfonema-related, diurnally migrating bacterium was detected with PCR andmore » denaturing gradient gel electrophoresis within and below the oxic surface layer. Facultative aerobic respiration, filamentous morphology, motility, diurnal migration, and aggregate formation were the most conspicuous adaptations of Solar Lake sulfate-reducing bacteria to the mat matrix and to diurnal oxygen stress. A comparison of sulfate reduction rates within the mat and previously published photosynthesis rates showed that CO{sub 2} from sulfate reduction in the upper 5 mm accounted for 7 to 8% of the total photosynthetic CO{sub 2} demand of the mat.« less

  20. Clinical manifestation, serology marker & microscopic agglutination test (MAT) to mortality in human leptospirosis

    NASA Astrophysics Data System (ADS)

    Perdhana, S. A. P.; Susilo, R. S. B.; Arifin; Redhono, D.; Sumandjar, T.

    2018-03-01

    Leptospirosis is a potentially fatal zoonosis that is endemic in many tropical regions and causes large epidemics after heavy rainfall and flooding. Severe disease is estimated 5–15% of all human infections. Its mortality rate is 5-40%. MAT, isolation of the organism, or leptospiral DNA in PCR are used to confirm Leptospirosis. This cross-sectional analytic study recruited 26 hospitalized leptospirosis patients admitted to Dr. Moewardi Hospital Surakarta. The diagnosis was based on clinical, laboratory and epidemiological findings. The onset of the disease was the date when the first symptom started, and the end of the analysis was the date when the patient died or discharged. Modified Faine’s score ≥ 25 tend to die (45.5%) while modified Faine’s score 20 – 24 tend to heal (60%) (OR 1.250; CI 0.259-6.029; p=1.0). Seropositive IgM predicts mortality 7.8 times higher than seronegative IgM (OR 7.800; CI 1.162-52.353; p=0.038). MAT positive predict mortality 10.667 times higher than MAT negative (OR 10.667; CI 1.705-66.720; p=0.015). Clinical manifestation, MAT, and serologic marker are all correlated with mortality in Leptospirosis. However, statistically, clinical manifestation has an insignificant correlation.

  1. Benthic Marine Cyanobacterial Mat Ecosystems: Biogeochemistry and Biomarkers

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Cyanobacterial mats are complete ecosystems that can include processes of primary production, diagenesis and lithification. Light sustains oxygenic photosynthesis, which in turn provides energy, organic matter and oxygen to the community. Due to both absorption and scattering phenomena, incident light is transformed with depth in the mat, both in intensity and spectral composition. Mobile photo synthesizers optimize their position with respect to this light gradient. When photosynthesis ceases at night, the upper layers of the mat become reduced and sulfidic. Counteracting gradients of oxygen and sulfide combine to provide daily-contrasting environments separated on a scale of a few mm. The functional complexity of mats, coupled with the highly proximal and ordered spatial arrangement of biota, offers the potential for a staggering number of interactions. At a minimum, the products of each functional group of microorganisms affect the other groups both positively and negatively. For example, cyanobacteria generate organic matter (potential substrates) but also oxygen (a toxin for many anaerobes). Anaerobic activity recycles nutrients to the photosynthesizers but also generates potentially toxic sulfide. The combination of benefits and hazards of light, oxygen and sulfide promotes the allocation of the various essential mat processes between light and dark periods, and to various depths in the mat. Observations of mats have produced numerous surprises. For example, obligately anaerobic processes can occur in the presence of abundant oxygen, highly reduced gases are produced in the presence of abundant sulfate, meiofauna thrive at high sulfide concentrations, and the mats' constituent populations respond to environmental changes in complex ways. While photosynthetic bacteria dominate the biomass and productivity of the mat, nonphotosynthetic, anaerobic processes constitute the ultimate biological filter on the ecosystem's emergent biosignatures, including those

  2. HiRadMat at CERN SPS - A test facility with high intensity beam pulses to material samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charitonidis, N.; Fabich, A.; Efthymiopoulos, I.

    2015-07-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in amore » dedicated environment, excluding long-time irradiation studies. The facility is designed for a 10{sup 16} maximum number of protons per year, in order to limit the activation to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and showing examples of upcoming experiments scheduled in the beam period 2014/2015. (authors)« less

  3. MatLab Script and Functional Programming

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  4. Foam-mat drying technology: A review.

    PubMed

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  5. Fast releasing oral electrospun PVP/CD nanofiber mats of taste-masked meloxicam.

    PubMed

    Samprasit, Wipada; Akkaramongkolporn, Prasert; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet

    2015-06-20

    Fast release and taste masking of meloxicam (MX)-loaded polyvinylpyrrolidone (PVP)/cyclodextrin (CD) nanofiber mats were developed using an electrospinning process. CDs were blended to improve the stability of the mats. The morphology and diameter of the mats were determined using scanning electron microscopy (SEM); physical and mechanical properties were also studied. The MX content, disintegration time, MX release and cytotoxicity of the mats were investigated. In vivo studies were also performed in healthy human volunteers. The results indicated that the mats were successfully prepared with fiber in the nanometer range. MX was well incorporated into the mats, with an amorphous form. The mats showed suitable tensile strength. CDs improved the physical stability by their cage-like supramolecular structure to protect from humidity and moisture, and create bead free nanofiber mats. The nanofiber mats with CDs were physically stable without any hygroscopicity and fusion. A fast disintegration and release of MX was achieved. Moreover, this mat released MX faster than the MX powder and commercial tablets. The cytotoxicity test revealed that mats were safe for a 5-min incubation. The disintegration studies indicated that in vivo disintegration agreed with the in vitro studies; the mat rapidly disintegrated in the mouth. The less bitter of MX was occurred in the mats that incorporated CD, menthol and aspartame. In addition, this mat was physical stable for 6 months. The results suggest that these mats may be a good candidate for fast dissolving drug delivery systems of bitter drugs to increase the palatability of dosage forms. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Facile and green fabrication of electrospun poly(vinyl alcohol) nanofibrous mats doped with narrowly dispersed silver nanoparticles.

    PubMed

    Lin, Song; Wang, Run-Ze; Yi, Ying; Wang, Zheng; Hao, Li-Mei; Wu, Jin-Hui; Hu, Guo-Han; He, Hua

    2014-01-01

    Submicrometer-scale poly(vinyl alcohol) (PVA) nanofibrous mats loaded with aligned and narrowly dispersed silver nanoparticles (AgNPs) are obtained via the electrospinning process from pure water. This facile and green procedure did not need any other chemicals or organic solvents. The doped AgNPs are narrowly distributed, 4.3±0.7 nm and their contents on the nanofabric mats can be easily tuned via in situ ultraviolet light irradiation or under preheating conditions, but with different particle sizes and size distributions. The morphology, loading concentrations, and dispersities of AgNPs embedded within PVA nanofiber mats are characterized by transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible spectra, X-ray photoelectron spectroscopy, and X-ray diffraction, respectively. Moreover, the biocidal activities and cytotoxicity of the electrospun nanofiber mats are determined by zone of inhibition, dynamic shaking method, and cell counting kit (CCK)-8 assay tests.

  7. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles.

    PubMed

    Kohsari, Iraj; Shariatinia, Zahra; Pourmortazavi, Seied Mahdi

    2016-10-01

    Antimicrobial chitosan-polyethylene oxide (CS-PEO) nanofiber mats loaded with 3, 5 and 10% (w/w) of zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs, ∼60nm diameter) were developed by electrospinning technique. The CS-PEO-GA-3% ZIF-8 NPs crosslinked with glutaraldehyde (GA) vapor was also prepared. The electrospun mats were characterized by various analysis including FE-SEM, EDAX, elemental mapping, FT-IR, contact angle, TGA/DSC as well as tensile strength analysis. The nanofibers had average diameters within the range ∼70-120nm. Antimicrobial activities of the CS-PEO and CS-PEO-3% ZIF-8 mats were evaluated by the viable cell-counting method for determining their effectiveness in reducing or halting the growth of Staphylococcus aureus and Escherichia coli bacteria so that the CS-PEO mat containing 3% ZIF-8 revealed 100% bactericidal activity against both kinds of bacteria. The crosslinked CS-PEO-GA-3% ZIF-8 NPs sample was less thermally stable but more hydrophilic than its related non-crosslinked mat reflecting there was no need to crosslink the fibers using a chemical crosslinker having adverse effects. The highest hydrophobicity and appropriate thermal and tensile properties of CS-PEO-3% ZIF-8 NPs among those of the mats including 5 and 10% ZIF-8 NPs suggested that the mentioned mat is the most suitable sample for food coating applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Dynamics of archaea at fine spatial scales in Shark Bay mat microbiomes

    NASA Astrophysics Data System (ADS)

    Wong, Hon Lun; Visscher, Pieter T.; White, Richard Allen, III; Smith, Daniela-Lee; Patterson, Molly M.; Burns, Brendan P.

    2017-04-01

    The role of archaea in microbial mats is poorly understood. Delineating the spatial distribution of archaea with mat depth will enable resolution of putative niches in these systems. In the present study, high throughput amplicon sequencing was undertaken in conjunction with analysis of key biogeochemical properties of two mats (smooth and pustular) from Shark Bay, Australia. One-way analysis of similarity tests indicated the archaeal community structures of smooth and pustular mats were significantly different (global R = 1, p = 0.1%). Smooth mats possessed higher archaeal diversity, dominated by Parvarchaeota. The methanogenic community in smooth mats was dominated by hydrogenotrophic Methanomicrobiales, as well as methylotrophic Methanosarcinales, Methanococcales, Methanobacteriales and Methanomassiliicoccaceae. Pustular mats were enriched with Halobacteria and Parvarchaeota. Key metabolisms (bacterial and archaeal) were measured, and the rates of oxygen production/consumption and sulfate reduction were up to four times higher in smooth than in pustular mats. Methane production peaked in the oxic layers and was up to seven-fold higher in smooth than pustular mats. The finding of an abundance of anaerobic methanogens enriched at the surface where oxygen levels were highest, coupled with peak methane production in the oxic zone, suggests putative surface anoxic niches in these microbial mats.

  9. Diversity and stratification of archaea in a hypersaline microbial mat.

    PubMed

    Robertson, Charles E; Spear, John R; Harris, J Kirk; Pace, Norman R

    2009-04-01

    The Guerrero Negro (GN) hypersaline microbial mats have become one focus for biogeochemical studies of stratified ecosystems. The GN mats are found beneath several of a series of ponds of increasing salinity that make up a solar saltern fed from Pacific Ocean water pumped from the Laguna Ojo de Liebre near GN, Baja California Sur, Mexico. Molecular surveys of the laminated photosynthetic microbial mat below the fourth pond in the series identified an enormous diversity of bacteria in the mat, but archaea have received little attention. To determine the bulk contribution of archaeal phylotypes to the pond 4 study site, we determined the phylogenetic distribution of archaeal rRNA gene sequences in PCR libraries based on nominally universal primers. The ratios of bacterial/archaeal/eukaryotic rRNA genes, 90%/9%/1%, suggest that the archaeal contribution to the metabolic activities of the mat may be significant. To explore the distribution of archaea in the mat, sequences derived using archaeon-specific PCR primers were surveyed in 10 strata of the 6-cm-thick mat. The diversity of archaea overall was substantial albeit less than the diversity observed previously for bacteria. Archaeal diversity, mainly euryarchaeotes, was highest in the uppermost 2 to 3 mm of the mat and decreased rapidly with depth, where crenarchaeotes dominated. Only 3% of the sequences were specifically related to known organisms including methanogens. While some mat archaeal clades corresponded with known chemical gradients, others did not, which is likely explained by heretofore-unrecognized gradients. Some clades did not segregate by depth in the mat, indicating broad metabolic repertoires, undersampling, or both.

  10. Testing the utility of matK and ITS DNA regions for discrimination of Allium species

    USDA-ARS?s Scientific Manuscript database

    Molecular phylogenetic analysis of the genus Allium L. has been mainly based on the nucleotide sequences of ITS region. In 2009 matK and rbcL were accepted as a two-locus DNA barcode to classify plant species by the Consortium for the Barcode of Life (CBOL) Plant Working Group. MatK region has been ...

  11. The effect of dance mat exergaming systems on physical activity and health-related outcomes in secondary schools: results from a natural experiment.

    PubMed

    Azevedo, Liane B; Burges Watson, Duika; Haighton, Catherine; Adams, Jean

    2014-09-12

    Exergaming has been proposed as an innovative method for physical activity promotion. However, large effectiveness studies are rare. In January 2011, dance mat systems were introduced in secondary schools in two districts in England with the aim of promoting an innovative opportunity for physical activity. The aim of this natural experiment was to examine the effect of introducing the dance mat exergaming systems on physical activity and health-related outcomes in 11-13 year old students using a non-randomised controlled design and mixed methods. Participants were recruited from five schools in intervention districts (n = 280) and two schools in neighbouring control districts (n = 217). Data on physical activity (accelerometer), anthropometrics (weight, BMI and percentage of body fat), aerobic fitness (20-m multistage shuttle run test), health-related quality of life (Kidscreen questionnaire), self-efficacy (children's physical activity self-efficacy survey), school attendance, focus groups with children and interviews with teachers were collected at baseline and approximately 12 months follow-up. There was a negative intervention effect on total physical activity (-65.4 cpm CI: -12.6 to -4.7), and light and sedentary physical activity when represented as a percentage of wear time (Light: -2.3% CI: -4.5 to 0.2; Sedentary: 3.3% CI: 0.7 to 5.9). However, compliance with accelerometers at follow-up was poor. There was a significant positive intervention effect on weight (-1.7 kg, 95% CI: -2.9 to -0.4), BMI (-0.9 kg/m2, 95% CI: -1.3 to -0.4) and percentage of body fat (-2.2%, 95% CI: -4.2 to -0.2). There was also evidence of improvement in some health-related quality of life parameters: psychological well-being (2.5, 95% CI: 0.1 to 4.8) and autonomy and parent relation (4.2, 95% CI: 1.4 to 7.0). The implementation of a dance mat exergaming scheme was associated with improvement in anthropometric measurements and parameters of health-related quality of life. However

  12. Nitrogen cycle in microbial mats: completely unknown?

    NASA Astrophysics Data System (ADS)

    Coban, O.; Bebout, B.

    2015-12-01

    Microbial mats are thought to have originated around 3.7 billion years ago, most likely in the areas around submarine hydrothermal vents, which supplied a source of energy in the form of reduced chemical species from the Earth's interior. Active hydrothermal vents are also believed to exist on Jupiter's moon Europa, Saturn's moon Enceladus, and on Mars, earlier in that planet's history. Microbial mats have been an important force in the maintenance of Earth's ecosystems and the first photosynthesis was also originated there. Microbial mats are believed to exhibit most, if not all, biogeochemical processes that exist in aquatic ecosystems, due to the presence of different physiological groups of microorganisms therein. While most microbially mediated biogeochemical transformations have been shown to occur within microbial mats, the nitrogen cycle in the microbial mats has received very little study in spite of the fact that nitrogen usually limits growth in marine environments. We will present the first results in the determination of a complete nitrogen budget for a photosynthetic microbial mat. Both in situ sources and sinks of nitrogen in photosynthetic microbial mats are being measured using stable isotope techniques. Our work has a particular focus on recently described, but poorly understood, processes, e.g., anammox and dissimilatory nitrate reduction, and an emphasis on understanding the role that nitrogen cycling may play in generating biogenic nitrogen isotopic signatures and biomarker molecules. Measurements of environmental controls on nitrogen cycling should offer insight into the nature of co-evolution of these microbial communities and their planets of origin. Identifying the spatial (microscale) as well as temporal (diel and seasonal) distribution of nitrogen transformations, e.g., rates of nitrification and denitrification, within mats, particularly with respect to the distribution of photosynthetically-produced oxygen, is anticipated. The results

  13. Total mercury and methyl-mercury contents and accumulation in polar microbial mats.

    PubMed

    Camacho, Antonio; Rochera, Carlos; Hennebelle, Raphaëlle; Ferrari, Christophe; Quesada, Antonio

    2015-03-15

    Although polar regions are considered isolated and pristine areas, the organisms that inhabit these zones are exposed to global pollution. Heavy metals, such as mercury, are global pollutants and can reach almost any location on Earth. Mercury may come from natural, volcanic or geological sources, or result from anthropogenic sources, in particular industrial or mining activities. In this study, we have investigated one of the most prominent biological non-marine communities in both polar regions, microbial mats, in terms of their Hg and methyl-mercury (MeHg) concentrations and accumulation capacities. The main hypotheses posed argued on the importance of different factors, and to test them, we have measured Hg concentrations in microbial mats that were collected from 6 locations in different ecological situations. For this purpose, the direct anthropogenic impacts, volcanic influences, proximity to the seashore, latitudinal gradients and C contents were investigated. Our results show that, other than the direct anthropogenic influence, none of the other hypotheses alone satisfactorily explains the Hg content in microbial mats. In contrast, the MeHg contents were noticeably different between the investigated locations, with a higher proportion of MeHg on the McMurdo Ice Shelf (Antarctica) and a lower proportion on Ward Hunt Island (High Arctic). Furthermore, our results from in situ experiments indicated that the microbial mats from South Shetland Islands could quickly accumulate (48 h) Hg when Hg dissolved salts were supplied. Over short-term periods, these mats do not transform Hg into MeHg under field conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Fabricating poly(1,8-octanediol citrate) elastomer based fibrous mats via electrospinning for soft tissue engineering scaffold.

    PubMed

    Zhu, Lei; Zhang, Yuanzheng; Ji, Yali

    2017-06-01

    Poly(1,8-octanediol citrate) (POC) is a recently developed biodegradable crosslinked elastomer that possesses good cytocompatibility and matchable mechanical properties to soft tissues. However, the thermosetting characteristic reveals a big challenge to manufacture its porous scaffold. Herein, POC elastomer was electrospun into fiber mat using poly(L-lactic acid) (PLLA) as a spinnable carrier. The obtained POC/PLLA fiber mats were characterized by scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), uniaxial tensile test, static-water-contact-angle, thermal analysis, in vitro degradation and biocompatibility test. It was found that the fibrous structure could be formed so long as the POC pre-polymer's content was no more than 50 wt%. The presence of elastic POC component not only strengthened the fiber mats but also toughened the fiber mats. The hydrophilicity of 50/50 fiber mat significantly improved. In vitro degradation rate of POC based fiber mats was much faster than that of pure PLLA. Cyto- and histo-compatibility tests confirmed that the POC/PLLA fiber mats had good biocompatibility for potential applications in soft tissue engineering.

  15. Mating-Type Genes and MAT Switching in Saccharomyces cerevisiae

    PubMed Central

    Haber, James E.

    2012-01-01

    Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break. PMID:22555442

  16. Cyanobacterial reuse of extracellular organic carbon in microbial mats

    PubMed Central

    Stuart, Rhona K; Mayali, Xavier; Lee, Jackson Z; Craig Everroad, R; Hwang, Mona; Bebout, Brad M; Weber, Peter K; Pett-Ridge, Jennifer; Thelen, Michael P

    2016-01-01

    Cyanobacterial organic matter excretion is crucial to carbon cycling in many microbial communities, but the nature and bioavailability of this C depend on unknown physiological functions. Cyanobacteria-dominated hypersaline laminated mats are a useful model ecosystem for the study of C flow in complex communities, as they use photosynthesis to sustain a more or less closed system. Although such mats have a large C reservoir in the extracellular polymeric substances (EPSs), the production and degradation of organic carbon is not well defined. To identify extracellular processes in cyanobacterial mats, we examined mats collected from Elkhorn Slough (ES) at Monterey Bay, California, for glycosyl and protein composition of the EPS. We found a prevalence of simple glucose polysaccharides containing either α or β (1,4) linkages, indicating distinct sources of glucose with differing enzymatic accessibility. Using proteomics, we identified cyanobacterial extracellular enzymes, and also detected activities that indicate a capacity for EPS degradation. In a less complex system, we characterized the EPS of a cyanobacterial isolate from ES, ESFC-1, and found the extracellular composition of biofilms produced by this unicyanobacterial culture were similar to that of natural mats. By tracing isotopically labeled EPS into single cells of ESFC-1, we demonstrated rapid incorporation of extracellular-derived carbon. Taken together, these results indicate cyanobacteria reuse excess organic carbon, constituting a dynamic pool of extracellular resources in these mats. PMID:26495994

  17. Deletion and Complementation of the Mating Type (MAT) Locus of the Wheat Head Blight Pathogen Gibberella zeae

    PubMed Central

    Desjardins, A. E.; Brown, D. W.; Yun, S.-H.; Proctor, R. H.; Lee, T.; Plattner, R. D.; Lu, S.-W.; Turgeon, B. G.

    2004-01-01

    Gibberella zeae, a self-fertile, haploid filamentous ascomycete, causes serious epidemics of wheat (Triticum aestivum) head blight worldwide and contaminates grain with trichothecene mycotoxins. Anecdotal evidence dating back to the late 19th century indicates that G. zeae ascospores (sexual spores) are a more important inoculum source than are macroconidia (asexual spores), although the fungus can produce both during wheat head blight epidemics. To develop fungal strains to test this hypothesis, the entire mating type (MAT1) locus was deleted from a self-fertile (MAT1-1/MAT1-2), virulent, trichothecene-producing wild-type strain of G. zeae. The resulting MAT deletion (mat1-1/mat1-2) strains were unable to produce perithecia or ascospores and appeared to be unable to mate with the fertile strain from which they were derived. Complementation of a MAT deletion strain by transformation with a copy of the entire MAT locus resulted in recovery of production of perithecia and ascospores. MAT deletion strains and MAT-complemented strains retained the ability to produce macroconidia that could cause head blight, as assessed by direct injection into wheat heads in greenhouse tests. Availability of MAT-null and MAT-complemented strains provides a means to determine the importance of ascospores in the biology of G. zeae and perhaps to identify novel approaches to control wheat head blight. PMID:15066842

  18. Dynamics of archaea at fine spatial scales in Shark Bay mat microbiomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Hon Lun; Visscher, Pieter T.; White, III, Richard Allen

    Modern microbial mats provide remarkable insights into assembly, function and origin of complex microbial ecosystems. An excellent model of such systems is located in Shark Bay, Australia. Although bacteria have been extensively investigated in these communities, the role of archaea in microbial mats is poorly understood. Delineating the spatial distribution of archaea with mat depth will enable resolution of specific niches associated with this domain. In the present study, high throughput amplicon sequencing was undertaken in conjunction with key biogeochemical properties of two mat types (smooth and pustular). A total of 13,547,552 unfiltered sequences were obtained, and classified sequences weremore » affiliated to three archaeal and candidate phyla, Parvarchaeota, Euryarchaeota and Crenarchaeota. One way analysis of similarity tests (ANOSIM) indicated the archaeal community structures of smooth and pustular mats were significantly different (global R = 1, p = 0.1 %). Smooth mats possessed higher archaeal diversity, dominated by Parvarchaeota, followed by Thermoplasmata, Class marine benthic group B and Halobacteria. The methanogenic community in smooth mats was dominated by hydrogenotrophic Methanomicrobiales, as well as methylotrophic Methanosarcinales, Methanococcales, Methanobacteriales and Methanomassiliicoccaceae. Conversely, pustular mats were enriched with Halobacteria and Parvarchaeota. The rates of oxygen production/consumption as well as sulphate reduction were up to four times higher in smooth than in pustular mats. Methane production peaked in the oxic part of mats and was up to seven-fold higher in smooth than in pustular mats. Metabolic cooperation in putative surface anoxic niches is proposed to be key in efficient cycling of key nutrients in these systems.« less

  19. Dynamics of archaea at fine spatial scales in Shark Bay mat microbiomes

    DOE PAGES

    Wong, Hon Lun; Visscher, Pieter T.; White, III, Richard Allen; ...

    2017-04-11

    Modern microbial mats provide remarkable insights into assembly, function and origin of complex microbial ecosystems. An excellent model of such systems is located in Shark Bay, Australia. Although bacteria have been extensively investigated in these communities, the role of archaea in microbial mats is poorly understood. Delineating the spatial distribution of archaea with mat depth will enable resolution of specific niches associated with this domain. In the present study, high throughput amplicon sequencing was undertaken in conjunction with key biogeochemical properties of two mat types (smooth and pustular). A total of 13,547,552 unfiltered sequences were obtained, and classified sequences weremore » affiliated to three archaeal and candidate phyla, Parvarchaeota, Euryarchaeota and Crenarchaeota. One way analysis of similarity tests (ANOSIM) indicated the archaeal community structures of smooth and pustular mats were significantly different (global R = 1, p = 0.1 %). Smooth mats possessed higher archaeal diversity, dominated by Parvarchaeota, followed by Thermoplasmata, Class marine benthic group B and Halobacteria. The methanogenic community in smooth mats was dominated by hydrogenotrophic Methanomicrobiales, as well as methylotrophic Methanosarcinales, Methanococcales, Methanobacteriales and Methanomassiliicoccaceae. Conversely, pustular mats were enriched with Halobacteria and Parvarchaeota. The rates of oxygen production/consumption as well as sulphate reduction were up to four times higher in smooth than in pustular mats. Methane production peaked in the oxic part of mats and was up to seven-fold higher in smooth than in pustular mats. Metabolic cooperation in putative surface anoxic niches is proposed to be key in efficient cycling of key nutrients in these systems.« less

  20. Aerobic sulfate reduction in microbial mats

    NASA Technical Reports Server (NTRS)

    Canfield, Donald E.; Des Marais, David J.

    1991-01-01

    Measurements of bacterial sulfate reduction and dissolved oxygen (O2) in hypersaline bacterial mats from Baja California, Mexico, revealed that sulfate reduction occurred consistently within the well-oxygenated photosynthetic zone of the mats. This evidence that dissimilatory sulfate reduction can occur in the presence of O2 challenges the conventional view that sulfate reduction is a strictly anaerobic process. At constant temperature, the rates of sulfate reduction in oxygenated mats during daytime were similar to rates in anoxic mats at night: thus, during a 24-hour cycle, variations in light and O2 have little effect on rates of sulfate reduction in these mats.

  1. Study on the Strength of GFRP/Stainless Steel Adhesive Joints Reinforced with Glass Mat

    NASA Astrophysics Data System (ADS)

    Iwasa, Masaaki

    The adhesive strengths of glass fiber reinforced plastics/metal adhesive joints reinforced with glass mat under tensile shear loads and tensile loads were investigated analytically and experimentally. First, the stress singularity parameters of the bonding edges were analyzed by FEM for various types of adhesive joints reinforced with glass mat. The shear stress and normal stress distributions near the bonding edge can be expressed by two stress singularity parameters. Second, tensile shear tests were performed on taper lap joint and taper lap joint reinforced with glass mat and tensile tests were performed on T-type adhesive joint and T-type adhesive joint reinforced with glass mat. The relationships between the loads and the crosshead displacements were measured. We concluded that reinforcing adhesive joints has a greater effect on strength under tensile load than under tensile shear load. The adhesive joints strength reinforced with glass mat can be evaluated by using stress singularity parameters.

  2. Flow visualization study of the HiMAT RPRV

    NASA Technical Reports Server (NTRS)

    Lorincz, D. J.

    1980-01-01

    Water tunnel studies were performed to qualitatively define the flow field of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT RPRV). Particular emphasis was placed on defining the vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop water tunnel using a 1/15 scale model of the HiMAT RPRV. Flow visualization photographs were obtained for angles of attack up to 40 deg and sideslip angles up to 5 deg. The HiMAT model was investigated in detail to determine the canard and wing vortex flow field development, vortex paths, and vortex breakdown characteristics as a function of angle of attack and sideslip. The presence of the canard caused the wing vortex to form further outboard and delayed the breakdown of the wing vortex to higher angles of attack. An increase in leading edge camber of the maneuver configuration delayed both the formation and the breakdown of the wing and canard vortices. Additional tests showed that the canard vortex was sensitive to variations in inlet mass flow ratio and canard flap deflection angle.

  3. Using Intact Iron Microbial Mats to Gain Insights Into Mat Ecology and Geochemical Niche at the Microbial Scale

    NASA Astrophysics Data System (ADS)

    Glazer, B. T.; Chan, C. S. Y.; Mcallister, S.; Leavitt, A.; Emerson, D.

    2015-12-01

    Microbial mats are formed by microorganisms working in coordinated symbiosis, often benefitting the community by controlling the local geochemical or physical environment. Thus, the ecology of the mat depends on the individual roles of microbes organized into niches within a larger architecture. Chemolithotrophic Fe-oxidizing bacteria (FeOB) form distinctive Fe oxyhydroxide biominerals which constitute the building blocks of the mat. However, the majority of our progress has been in understanding the overall community structure. Understanding the physical mat structure on the microbial scale is important to unraveling FeOB evolution, the biogeochemistry and ecology of Fe-rich habitats, and ultimately interpreting FeOB biosignatures in the rock record. Mats in freshwater and marine environments contain strikingly similar biomineral morphologies, yet they are formed by phylogenetically distinct microorganisms. This suggests that the overall architecture and underlying genetics of freshwater and marine mats has evolved to serve particular roles specific to Fe oxidation. Thus, we conducted a comparative study of Fe seep freshwater mats and marine hydrothermal mats. We have developed a new approach to sampling Fe mats in order to preserve the delicate structure for analysis by confocal and scanning electron microscopy. Our analyses of these intact mats show that freshwater and marine mats are similarly initiated by a single type of structure-former. These ecosystem engineers form either a hollow sheath or a twisted stalk biomineral during mat formation, with a highly directional structure. These microbes appear to be the vanguard organisms that anchor the community within oxygen/Fe(II) gradients, further allowing for community succession in the mat interior as evidenced by other mineralized morphologies. Patterns in biomineral thickness and directionality were indicative of redox gradients and temporal changes in the geochemical environment. These observations show that

  4. Comparative microbial diversity analyses of modern marine thrombolitic mats by barcoded pyrosequencing.

    PubMed

    Mobberley, Jennifer M; Ortega, Maya C; Foster, Jamie S

    2012-01-01

    Thrombolites are unlaminated carbonate structures that form as a result of the metabolic interactions of complex microbial mat communities. Thrombolites have a long geological history; however, little is known regarding the microbes associated with modern structures. In this study, we use a barcoded 16S rRNA gene-pyrosequencing approach coupled with morphological analysis to assess the bacterial, cyanobacterial and archaeal diversity associated with actively forming thrombolites found in Highborne Cay, Bahamas. Analyses revealed four distinct microbial mat communities referred to as black, beige, pink and button mats on the surfaces of the thrombolites. At a coarse phylogenetic resolution, the domain bacterial sequence libraries from the four mats were similar, with Proteobacteria and Cyanobacteria being the most abundant. At the finer resolution of the rRNA gene sequences, significant differences in community structure were observed, with dramatically different cyanobacterial communities. Of the four mat types, the button mats contained the highest diversity of Cyanobacteria, and were dominated by two sequence clusters with high similarity to the genus Dichothrix, an organism associated with the deposition of carbonate. Archaeal diversity was low, but varied in all mat types, and the archaeal community was predominately composed of members of the Thaumarchaeota and Euryarchaeota. The morphological and genetic data support the hypothesis that the four mat types are distinctive thrombolitic mat communities. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Spatially-resolved carbon flow through a hypersaline phototrophic microbial mat

    NASA Astrophysics Data System (ADS)

    Moran, J.; Lindemann, S. R.; Cory, A. B.; Courtney, S.; Cole, J. K.; Fredrickson, J.

    2013-12-01

    Hot Lake is a hypersaline, meromictic lake located in an endorheic basin in north-central Washington. Low annual rainfall and high evaporation rates contribute to the lake's high salinity. The predominant dissolved salt is magnesium sulfate, of which monimolimnion waters may seasonally exceed 2 M concentrations. Induced by its high salinity and meromictic nature, Hot Lake displays an inverse thermal gradient with deep horizons seasonally exceeding 50 °C. Despite extreme conditions, dense benthic microbial mats composed of cyanobacteria, anoxygenic photoheterotrophs, and bacterial heterotroph populations develop in the lake. These mats can exceed 1 cm in thickness and display vertical stratification in color due to bacterial pigmentation. Typical mat stratification includes an orange surface layer underlain by green and purple layers at increasing depth. Carbonates, including aragonite and magnesite, are observed within the mat and their formation is likely induced or influenced by microbial metabolic activities and associated pH excursions. We are exploring the role Hot Lake's microbial mats play in carbon cycling. Cyanobacteria are the dominant CO2-fixing organisms in the mat and we seek to understand the spatial and metabolic controls on how the carbon initially fixed by mat cyanobacteria is transferred to associated heterotrophic populations spread throughout the mat strata. Secondly, we seek to understand the overall net carbon balance of the mat through a growing season. We are using a stable isotope probing approach for assessing carbon uptake and migration through representative mat samples. We performed a series of ex situ incubations of freshly harvested mat samples in lake water amended with 13C-labeled bicarbonate or substrates commonly consumed by heterotrophs (including acetate and glucose) and using multiple stable isotope techniques to track label uptake, residence time, remineralization, and location within the mat. In addition to bulk isotope

  6. The MATS Satellite Mission - Tomographic Perspectives on the Mesosphere

    NASA Astrophysics Data System (ADS)

    Karlsson, B.; Gumbel, J.

    2015-12-01

    Tomography in combination with space-borne limb imaging opens exciting new ways of probing atmospheric structures. MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is a new Swedish satellite mission that applies these ideas to the mesosphere. MATS science questions focus on mesospheric wave activity and noctilucent clouds. Primary measurement targets are O2 Atmospheric band dayglow and nightglow in the near infrared (759-767 nm) and sunlight scattered from noctilucent clouds in the ultraviolet (270-300 nm). While tomography provides horizontally and vertically resolved data, spectroscopy allows analysis in terms of mesospheric composition, temperature and cloud properties. This poster introduces instrument and analysis ideas, and discusses scientific perspectives and connections to other missions. MATS is being prepared for a launch in 2018.

  7. M.A.T. Programs.

    ERIC Educational Resources Information Center

    Wildman, Louis

    A proposal is presented for developing a Master of Arts in Teaching (MAT) program at California State University, Bakersfield. The criteria for a MAT program are examined by outlining existing programs at: (1) Harvard Graduate School; (2) University of California, Berkeley; (3) Portland State University; (4) Stanford University; (5) University of…

  8. Identification of Desulfobacterales as primary hydrogenotrophs in a complex microbial mat community

    DOE PAGES

    Burow, L. C.; Woebken, D.; Marshall, I. P. G.; ...

    2014-04-15

    Hypersaline microbial mats have been shown to produce significant quantities of H 2 under dark, anoxic conditions via cyanobacterial fermentation. This flux of a widely accessible microbial substrate has potential to significantly influence the ecology of the mat, and any consumption will affect the net efflux of H 2 that might otherwise be captured as a resource. Here, we focus on H 2 consumption in a microbial mat from Elkhorn Slough, California, USA, for which H 2 production has been previously characterized. Active biologic H 2 consumption in this mat is indicated by a significant time-dependent decrease in added Hmore » 2 compared with a killed control. Inhibition of sulfate reduction, as indicated by a decrease in hydrogen sulfide production relative to controls, resulted in a significant increase in H 2 efflux, suggesting that sulfate-reducing bacteria (SRB) are important hydrogenotrophs. Low methane efflux under these same conditions indicated that methanogens are likely not important hydrogenotrophs. Analyses of genes and transcripts that encode for rRNA or dissimilatory sulfite reductase, using both PCR-dependent and PCR-independent metatranscriptomic sequencing methods, demonstrated that Desulfobacterales are the dominant, active SRB in the upper, H 2-producing layer of the mat (0–2 mm). This hypothesis was further supported by the identification of transcripts encoding hydrogenases derived from Desulfobacterales capable of H 2 oxidation. Analysis of molecular data provided no evidence for the activity of hydrogenotrophic methanogens. Lastly, the combined biogeochemical and molecular data strongly indicate that SRB belonging to the Desulfobacterales are the quantitatively important hydrogenotrophs in the Elkhorn Slough mat.« less

  9. PA15 Beer mat chat.

    PubMed

    Hazelwood, Mark A; Patterson, Rebecca M

    2015-04-01

    Storytelling/remembrance can the reduce isolation of recently (and less recently) bereaved people, and are beneficial to participants. Traditional rituals and approaches which supported storytelling/remembrance are declining in Scotland. Pubs are hubs of social interaction and storytelling, especially for men. To explore the acceptability of beer mats in pubs as a prompt to storytelling and remembrance of people who have died, and to promote To Absent Friends, a peoples' festival of storytelling and remembrance. 5 mats were designed - each had a carefully selected quotation or piece of trivia relating to loss or remembrance, plus a web link to www.toabsentfriends.org.uk. 20,000 mats were made available to order. Feedback regarding acceptability was elicited through conversation with bar tenders, direct observation and a questionnaire dispatched with some orders. A press release was issued. The mats were generally viewed as being acceptable. A local brewer distributed Approximately 15,000 mats to pubs across Edinburgh. The main Edinburgh newspaper ran a prominent article about the mats, the To Absent Friends Festival and the value of greater openness about death and dying. Beer mats are an acceptable way of introducing reflection on loss, grief and mortality into pubs. More research is needed to establish the effectiveness of the mats in prompting storytelling and remembrance. © 2015, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Electrospun antimicrobial hybrid mats: Innovative packaging material for meat and meat-products.

    PubMed

    Amna, Touseef; Yang, Jieun; Ryu, Kyeong-Seon; Hwang, I H

    2015-07-01

    To prevent the development and spread of spoilage/pathogenic microorganisms via meat foodstuffs, antimicrobial nanocomposite packaging can serve as a potential alternative. The objective of this study was to develop a new class of antimicrobial hybrid packaging mat composed of biodegradable polyurethane supplemented with virgin olive oil and zinc oxide via electrospinning. Instead of mixing antimicrobial compounds directly with food, incorporation in packaging materials allows the functional effect at food surfaces where microbial activity is localized. The nanofibers were characterized by SEM, EDX, XRD and TEM. The antibacterial activity was tested against two common foodborne pathogens viz., Staphylococcus aureus and Salmonella typhimurium. The present results indicated that incorporation of olive oil in the polymer affected morphology of PU nanofibers and nanocomposite packaging were able to inhibit growth of pathogens. Thus; as-spun mat can be used as prospective antimicrobial packaging, which potentially reduces contamination of meat/meat-products. Moreover, introduced biodegradable packaging for meat products could serve to replace PVC films and simultaneously help to protect natural environment.

  11. Metagenomic and metabolic profiling of nonlithifying and lithifying stromatolitic mats of Highborne Cay, The Bahamas.

    PubMed

    Khodadad, Christina L M; Foster, Jamie S

    2012-01-01

    Stromatolites are laminated carbonate build-ups formed by the metabolic activity of microbial mats and represent one of the oldest known ecosystems on Earth. In this study, we examined a living stromatolite located within the Exuma Sound, The Bahamas and profiled the metagenome and metabolic potential underlying these complex microbial communities. The metagenomes of the two dominant stromatolitic mat types, a nonlithifying (Type 1) and lithifying (Type 3) microbial mat, were partially sequenced and compared. This deep-sequencing approach was complemented by profiling the substrate utilization patterns of the mats using metabolic microarrays. Taxonomic assessment of the protein-encoding genes confirmed previous SSU rRNA analyses that bacteria dominate the metagenome of both mat types. Eukaryotes comprised less than 13% of the metagenomes and were rich in sequences associated with nematodes and heterotrophic protists. Comparative genomic analyses of the functional genes revealed extensive similarities in most of the subsystems between the nonlithifying and lithifying mat types. The one exception was an increase in the relative abundance of certain genes associated with carbohydrate metabolism in the lithifying Type 3 mats. Specifically, genes associated with the degradation of carbohydrates commonly found in exopolymeric substances, such as hexoses, deoxy- and acidic sugars were found. The genetic differences in carbohydrate metabolisms between the two mat types were confirmed using metabolic microarrays. Lithifying mats had a significant increase in diversity and utilization of carbon, nitrogen, phosphorus and sulfur substrates. The two stromatolitic mat types retained similar microbial communities, functional diversity and many genetic components within their metagenomes. However, there were major differences detected in the activity and genetic pathways of organic carbon utilization. These differences provide a strong link between the metagenome and the

  12. Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering.

    PubMed

    Prasad, Tilak; Shabeena, E A; Vinod, D; Kumary, T V; Anil Kumar, P R

    2015-01-01

    The electrospinning technique allows engineering biomimetic scaffolds within micro to nanoscale range mimicking natural extracellular matrix (ECM). Chitosan (CS) and polycaprolactone (PCL) were dissolved in a modified solvent mixture consisting of formic acid and acetone (3:7) and mixed in different weight ratios to get chitosan-polycaprolactone [CS-PCL] blend solutions. The CS-PCL blend polymer was electrospun in the same solvent system and compared with PCL. The physicochemical characterization of the electrospun fibrous mats was done using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), tensile test, swelling properties, water contact angle (WCA) analysis, surface profilometry and thermo gravimetric analysis (TGA). The CS-PCL fibrous mat showed decreased hydrophobicity. The CS-PCL mats also showed improved swelling property, tensile strength, thermal stability and surface roughness. The cytocompatibility of the CS-PCL and PCL fibrous mats were examined using mouse fibroblast (L-929) cell line by direct contact and cellular activity with extract of materials confirmed non-cytotoxic nature. The potential of CS-PCL and PCL fibrous mats as skin tissue engineering scaffolds were assessed by cell adhesion, viability, proliferation and actin distribution using human keratinocytes (HaCaT) and L-929 cell lines. Results indicate that CS-PCL is a better scaffold for attachment and proliferation of keratinocytes and is a potential material for skin tissue engineering.

  13. MAT - MULTI-ATTRIBUTE TASK BATTERY FOR HUMAN OPERATOR WORKLOAD AND STRATEGIC BEHAVIOR RESEARCH

    NASA Technical Reports Server (NTRS)

    Comstock, J. R.

    1994-01-01

    MAT, a Multi-Attribute Task battery, gives the researcher the capability of performing multi-task workload and performance experiments. The battery provides a benchmark set of tasks for use in a wide range of laboratory studies of operator performance and workload. MAT incorporates tasks analogous to activities that aircraft crew members perform in flight, while providing a high degree of experiment control, performance data on each subtask, and freedom to use non-pilot test subjects. The MAT battery primary display is composed of four separate task windows which are as follows: a monitoring task window which includes gauges and warning lights, a tracking task window for the demands of manual control, a communication task window to simulate air traffic control communications, and a resource management task window which permits maintaining target levels on a fuel management task. In addition, a scheduling task window gives the researcher information about future task demands. The battery also provides the option of manual or automated control of tasks. The task generates performance data for each subtask. The task battery may be paused and onscreen workload rating scales presented to the subject. The MAT battery was designed to use a serially linked second computer to generate the voice messages for the Communications task. The MATREMX program and support files, which are included in the MAT package, were designed to work with the Heath Voice Card (Model HV-2000, available through the Heath Company, Benton Harbor, Michigan 49022); however, the MATREMX program and support files may easily be modified to work with other voice synthesizer or digitizer cards. The MAT battery task computer may also be used independent of the voice computer if no computer synthesized voice messages are desired or if some other method of presenting auditory messages is devised. MAT is written in QuickBasic and assembly language for IBM PC series and compatible computers running MS-DOS. The

  14. Analysis of the MAT1-1 and MAT1-2 Gene Ratio in Black Koji Molds Isolated from Meju.

    PubMed

    Mageswari, Anbazhagan; Kim, Jeong-Seon; Cheon, Kyu-Ho; Kwon, Soon-Wo; Yamada, Osamu; Hong, Seung-Beom

    2016-12-01

    Aspergillus luchuensis is known as an industrially important fungal species used for making fermented foods such as awamori and shochu in Japan, makgeolli and Meju in Korea, and Pu-erh tea in China. Nonetheless, this species has not yet been widely studied regarding mating-type genes. In this study, we examined the MAT1-1 and MAT1-2 gene ratio in black koji molds ( A. luchuensis , Aspergillus niger , and Aspergillus tubingensis ) and in Aspergillus welwitschiae isolated from Meju, a fermented soybean starting material for traditional soy sauce and soybean paste in Korea. The number of strains with the MAT1-1 locus was 2 of 23 ( A. luchuensis ), 6 of 13 ( A. tubingensis ), 21 of 28 ( A. niger ), and 5 of 10 ( A. welwitschiae ). Fungal species A. tubingensis and A. welwitschiae showed a 1 : 1 ratio of MAT1-1 and MAT1-2 mating-type loci. In contrast, A. luchuensis revealed predominance of MAT1-2 (91.3%) and A. niger of MAT1-1 (75%). We isolated and identified 2 A. luchuensis MAT1-1 strains from Meju, although all strains for making shochu in Japan are of the MAT1-2 type. These strains may be a good resource for breeding of A. luchuensis to be used in the Asian fermented-food industry.

  15. Analysis of the MAT1-1 and MAT1-2 Gene Ratio in Black Koji Molds Isolated from Meju

    PubMed Central

    Mageswari, Anbazhagan; Kim, Jeong-seon; Cheon, Kyu-Ho; Kwon, Soon-Wo

    2016-01-01

    Aspergillus luchuensis is known as an industrially important fungal species used for making fermented foods such as awamori and shochu in Japan, makgeolli and Meju in Korea, and Pu-erh tea in China. Nonetheless, this species has not yet been widely studied regarding mating-type genes. In this study, we examined the MAT1-1 and MAT1-2 gene ratio in black koji molds (A. luchuensis, Aspergillus niger, and Aspergillus tubingensis) and in Aspergillus welwitschiae isolated from Meju, a fermented soybean starting material for traditional soy sauce and soybean paste in Korea. The number of strains with the MAT1-1 locus was 2 of 23 (A. luchuensis), 6 of 13 (A. tubingensis), 21 of 28 (A. niger), and 5 of 10 (A. welwitschiae). Fungal species A. tubingensis and A. welwitschiae showed a 1 : 1 ratio of MAT1-1 and MAT1-2 mating-type loci. In contrast, A. luchuensis revealed predominance of MAT1-2 (91.3%) and A. niger of MAT1-1 (75%). We isolated and identified 2 A. luchuensis MAT1-1 strains from Meju, although all strains for making shochu in Japan are of the MAT1-2 type. These strains may be a good resource for breeding of A. luchuensis to be used in the Asian fermented-food industry. PMID:28154484

  16. Molecular Ecological and Stable Isotopic Studies of Nitrogen Fixation in Modern Microbial Mats

    NASA Technical Reports Server (NTRS)

    Bebout, B. M.; Crumbliss, L. L.; DesMarais, D. J.; Hogan, M. E.; Omoregie, E.; Turk, K. A.; Zehr, J. P.

    2003-01-01

    Nitrogen is usually the element limiting biological productivity in the marine environment. Microbial mats, laminated microbial communities analogous to some of the oldest forms of life on Earth, are often the sites of high rates of N fixation (the energetically expensive conversion of atmospheric dinitrogen into a biologically useful form). The N fixing enzyme nitrogenase is generally considered to be of ancient origin, and is widely distributed throughout the Bacterial and Archaeal domains of life, indicating an important role for this process over evolutionary time. The stable isotopic signature of N fixation is purportedly recognizable in organic matter (ancient kerogens as well as present-day microbial mats) as a delta (15)N(sub organic) near zero. We studied two microbial mats exhibiting different rates of N fixation in order to better understand the impact of N fixation on the delta (15)N (sub organic) of the mats, as well as what organisms are important in this process. Mats dominated by the cyanobacterium Microcoleus chthonoplastes grow in permanently submerged hypersaline salterns, and exhibit low rates of N fixation, whereas mats dominated by the cyanobacterium Lyngbya spp grow in an intertidal area, and exhibit rates of N fixation an order of magnitude higher. To examine successional stages in mat growth, both developing and established mats at each location were sampled. PCR and RT-PCR based approaches were used to identify, respectively, the organisms containing nifH (one of the genes that encode nitrogenase) as well as those expressing nifH in these mats. Both mats exhibited a distinct diel cycle of N fixation, with highest rates occurring at night. The delta (15)N(sub organic) of the subtidal Microcoleus mats is near zero whereas the delta (15)N(sub organic) is slightly more positive (+ 2-3%), in the intertidal Lyngbya mats, an interesting difference in view of the fact that overall rates of activity in the intertidal mats are much higher that those

  17. Ecological succession leads to chemosynthesis in mats colonizing wood in sea water.

    PubMed

    Kalenitchenko, Dimitri; Dupraz, Marlène; Le Bris, Nadine; Petetin, Carole; Rose, Christophe; West, Nyree J; Galand, Pierre E

    2016-09-01

    Chemosynthetic mats involved in cycling sulfur compounds are often found in hydrothermal vents, cold seeps and whale falls. However, there are only few records of wood fall mats, even though the presence of hydrogen sulfide at the wood surface should create a perfect niche for sulfide-oxidizing bacteria. Here we report the growth of microbial mats on wood incubated under conditions that simulate the Mediterranean deep-sea temperature and darkness. We used amplicon and metagenomic sequencing combined with fluorescence in situ hybridization to test whether a microbial succession occurs during mat formation and whether the wood fall mats present chemosynthetic features. We show that the wood surface was first colonized by sulfide-oxidizing bacteria belonging to the Arcobacter genus after only 30 days of immersion. Subsequently, the number of sulfate reducers increased and the dominant Arcobacter phylotype changed. The ecological succession was reflected by a change in the metabolic potential of the community from chemolithoheterotrophs to potential chemolithoautotrophs. Our work provides clear evidence for the chemosynthetic nature of wood fall ecosystems and demonstrates the utility to develop experimental incubation in the laboratory to study deep-sea chemosynthetic mats.

  18. Ectomycorrhizal mats alter forest soil biogeochemistry

    Treesearch

    Laurel A. Kluber; Kathryn M. Tinnesand; Bruce A. Caldwell; Susie M. Dunham; Rockie R. Yarwood; Peter J. Bottomley; David D. Myrold

    2010-01-01

    Dense hyphal mats formed by ectomycorrhizal (EcM) fungi are prominent features in Douglas-fir forest ecosystems, and have been estimated to cover up to 40% of the soil surface in some forest stands. Two morphotypes of EcM mats have been previously described: rhizomorphic mats, which have thick hyphal rhizomorphs and are found primarily in the organic horizon, and...

  19. Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy

    PubMed Central

    Klatt, Judith M; Meyer, Steffi; Häusler, Stefan; Macalady, Jennifer L; de Beer, Dirk; Polerecky, Lubos

    2016-01-01

    We studied the interaction between phototrophic and chemolithoautotrophic sulphide-oxidizing microorganisms in natural microbial mats forming in sulphidic streams. The structure of these mats varied between two end-members: one characterized by a layer dominated by large sulphur-oxidizing bacteria (SOB; mostly Beggiatoa-like) on top of a cyanobacterial layer (B/C mats) and the other with an inverted structure (C/B mats). C/B mats formed where the availability of oxygen from the water column was limited (<5 μm). Aerobic chemolithotrophic activity of the SOB depended entirely on oxygen produced locally by cyanobacteria during high light conditions. In contrast, B/C mats formed at locations where oxygen in the water column was comparatively abundant (>45 μM) and continuously present. Here SOB were independent of the photosynthetic activity of cyanobacteria and outcompeted the cyanobacteria in the uppermost layer of the mat where energy sources for both functional groups were concentrated. Outcompetition of photosynthetic microbes in the presence of light was facilitated by the decoupling of aerobic chemolithotrophy and oxygenic phototrophy. Remarkably, the B/C mats conserved much less energy than the C/B mats, although similar amounts of light and chemical energy were available. Thus ecosystems do not necessarily develop towards optimal energy usage. Our data suggest that, when two independent sources of energy are available, the structure and activity of microbial communities is primarily determined by the continuous rather than the intermittent energy source, even if the time-integrated energy flux of the intermittent energy source is greater. PMID:26405833

  20. Nitrogen fixation in a non-heterocystous cyanobacterial mat from a mountain river

    NASA Astrophysics Data System (ADS)

    Berrendero, Esther; Valiente, Eduardo Fernández; Perona, Elvira; Gómez, Claudia L.; Loza, Virginia; Muñoz-Martín, M. Ángeles; Mateo, Pilar

    2016-08-01

    In situ nitrogen fixation was investigated in a cyanobacterial mat growing on the bed of rocks of the Muga River, Spain. The filamentous non-heterocystous cyanobacterium Schizothrix dominated the mat, showing nitrogenase activity in the light at similar rates to those found in nearby heterocystous Rivularia colonies. N2 fixation in the light was significantly increased by an inhibitor of PSII and oxygen evolution, DCMU (3-[3,4-dichlorophenyl]-1,1-dimethylurea), and anaerobic conditions. However, no nitrogenase activity was found in the dark. Addition of fructose as a respiratory substrate induced nitrogenase activity in samples incubated under aerobic conditions in the dark but not in anaerobic conditions. Microelectrode oxygen profiles showed internal microaerobic microzones where nitrogen fixation might concentrate. Analyses of the 16S rRNA gene revealed only the presence of sequences belonging to filamentous non-heterocystous cyanobacteria. nifH gene diversity showed that the major phylotypes also belonged to this group. One of the three strains isolated from the Schizothrix mat was capable of fixing N2 and growing in the absence of combined N. This was consistent with the nifH gene analysis. These results suggest a relevant contribution of non-heterocystous cyanobacteria to nitrogen fixation in these mats.

  1. Comparative protein modeling of methionine S-adenosyltransferase (MAT) enzyme from Mycobacterium tuberculosis: a potential target for antituberculosis drug discovery.

    PubMed

    Khedkar, Santosh A; Malde, Alpeshkumar K; Coutinho, Evans C

    2005-01-01

    Mycobacterium tuberculosis (Mtb) is a successful pathogen that overcomes the numerous challenges presented by the immune system of the host. In the last 40 years few anti-TB drugs have been developed, while the drug-resistance problem is increasing; there is thus a pressing need to develop new anti-TB drugs active against both the acute and chronic growth phases of the mycobacterium. Methionine S-adenosyltransferase (MAT) is an enzyme involved in the synthesis of S-adenosylmethionine (SAM), a methyl donor essential for mycolipid biosynthesis. As an anti-TB drug target, Mtb-MAT has been well validated. A homology model of MAT has been constructed using the X-ray structures of E. coli MAT (PDB code: 1MXA) and rat MAT (PDB code: 1QM4) as templates, by comparative protein modeling principles. The resulting model has the correct stereochemistry as gauged from the Ramachandran plot and good three-dimensional (3D) structure compatibility as assessed by the Profiles-3D score. The structurally and functionally important residues (active site) of Mtb-MAT have been identified using the E. coli and rat MAT crystal structures and the reported point mutation data. The homology model conserves the topological and active site features of the MAT family of proteins. The differences in the molecular electrostatic potentials (MEP) of Mtb and human MAT provide evidences that selective and specific Mtb-MAT inhibitors can be designed using the homology model, by the structure-based drug design approaches.

  2. Mulching effects of plant fiber and plant fiber-polyester mats combined with fertilizer on loblslly pine seedlings

    Treesearch

    James D. Haywood; John A. Youngquist

    1991-01-01

    In this preliminary study, several mattings, combined with and without fertilizer application, were tested around newly planted loblolly, pine (Pinus taeda L.) seedlings. After 9 months in the field, jute- polyester and jute mats had similar survival rates relitive to controls, but hemlock-po1yvester mats had depressed survival when used in...

  3. Magnetoacoustic tomography with magnetic induction (MAT-MI)

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; He, Bin

    2005-11-01

    We report our theoretical and experimental investigations on a new imaging modality, magnetoacoustic tomography with magnetic induction (MAT-MI). In MAT-MI, the sample is located in a static magnetic field and a time-varying (µs) magnetic field. The time-varying magnetic field induces an eddy current in the sample. Consequently, the sample will emit ultrasonic waves by the Lorentz force. The ultrasonic signals are collected around the object to reconstruct images related to the electrical impedance distribution in the sample. MAT-MI combines the good contrast of electrical impedance tomography with the good spatial resolution of sonography. MAT-MI has two unique features due to the solenoid nature of the induced electrical field. Firstly, MAT-MI could provide an explicit or simple quantitative reconstruction algorithm for the electrical impedance distribution. Secondly, it promises to eliminate the shielding effects of other imaging modalities in which the current is applied directly with electrodes. In the theoretical part, we provide formulae for both the forward and inverse problems of MAT-MI and estimate the signal amplitude in biological tissues. In the experimental part, the experimental setup and methods are introduced and the signals and the image of a metal object by means of MAT-MI are presented. The promising pilot experimental results suggest the feasibility of the proposed MAT-MI approach.

  4. Poly(L-lactide)/halloysite nanotube electrospun mats as dual-drug delivery systems and their therapeutic efficacy in infected full-thickness burns.

    PubMed

    Zhang, Xiazhi; Guo, Rui; Xu, Jiqing; Lan, Yong; Jiao, Yanpeng; Zhou, Changren; Zhao, Yaowu

    2015-11-01

    In this study, poly(L-lactide) (PLLA)/halloysite nanotube (HNT) electrospun mats were prepared as a dual-drug delivery system. HNTs were used to encapsulate polymyxin B sulphate (a hydrophilic drug). Dexamethasone (a hydrophobic drug) was directly dissolved in the PLLA solution. The drug-loaded HNTs with optimised encapsulation efficiency were then mixed with the PLLA solution for subsequent electrospinning to form composite dual-drug-loaded fibre mats. The structure, morphology, degradability and mechanical properties of the electrospun composite mats were characterised in detail. The results showed that the HNTs were uniformly distributed in the composite PLLA mats. The HNTs content in the mats could change the morphology and average diameter of the electrospun fibres. The HNTs improved both the tensile strength of the PLLA electrospun mats and their degradation ratio. The drug-release kinetics of the electrospun mats were investigated using ultraviolet-visible spectrophotometry. The HNTs/PLLA ratio could be varied to adjust the release of polymyxin B sulphate and dexamethasone. The antibacterial activity in vitro of the mats was evaluated using agar diffusion and turbidimetry tests, which indicated the antibacterial efficacy of the dual-drug delivery system against Gram-positive and -negative bacteria. Healing in vivo of infected full-thickness burns and infected wounds was investigated by macroscopic observation, histological observation and immunohistochemical staining. The results indicated that the electrospun mats were capable of co-loading and co-delivering hydrophilic and hydrophobic drugs, and could potentially be used as novel antibacterial wound dressings. © The Author(s) 2015.

  5. Validity Study of a Jump Mat Compared to the Reference Standard Force Plate.

    PubMed

    Rogan, Slavko; Radlinger, Lorenz; Imhasly, Caroline; Kneubuehler, Andrea; Hilfiker, Roger

    2015-12-01

    In the field of vertical jump diagnostics, force plates (FP) are the reference standard. Recently, despite a lack of evidence, jump mats have been used increasingly. Important factors in favor of jumping mats are their low cost and portability. This validity study compared the Haynl-Elektronik jump mat (HE jump mat) with the reference standard force plate. Ten healthy volunteers participated and each participant completed three series of five drop jumps (DJ). The parameters ground contact time (GCT) and vertical jump height (VJH) from the HE jump mat and the FP were used to evaluate the concurrent validity. The following statistical calculations were performed: Pearson's correlation (r), Bland-Altman plots (standard and for adjusted trend), and regression equations. The Bland-Altman plots suggest that the HE jump mat measures shorter contact times and higher jump heights than the FP. The trend-adjusted Bland-Altman plot shows higher mean differences and wider wing-spreads of confidence limits during longer GCT. During the VJH the mean differences and the wing-spreads of the confidence limits throughout the range present as relatively constant. The following regression equations were created, as close as possible to the true value: GCT = 5.920385 + 1.072293 × [value HE jump mat] and VJH = -1.73777 + 1.011156 × [value HE jump mat]. The HE jump mat can be recommended in relation to the validity of constraints. In this study, only a part of the quality criteria were examined. For the final recommendation it is advised to examine the HE jump mat on the other quality criteria (test-retest reliability, sensitivity change).

  6. Evaluation of various isotherm models, and metal sorption potential of cyanobacterial mats in single and multi-metal systems.

    PubMed

    Kumar, Dhananjay; Pandey, Lalit K; Gaur, J P

    2010-12-01

    Isotherm curves for the biosorption of Cu(II), Cd(II) and Pb(II) by the biomass of five different cyanobacterial mats (Mat # 1-5) showed concave shape and plateau. Suitability of ten different isotherm models was evaluated for the equilibrium modeling of these isotherm curves, however, only the Toth model was found appropriate. Mat # 2, dominated by Phormidium sp., was identified as an excellent metal biosorbent because: (i) the Toth estimated maximum biosorption capacity (mmol g(-1)) of Mat # 2 for Pb(II) (1.028), Cu(II) (0.696) and Cd(II) (0.549) was the highest among the tested mats and compares favourably with Langmuir estimated metal sorption capacity of many seaweeds, regarded as the best metal biosorbents, (ii) Na+, K+ and Ca2+ did not substantially inhibit the biosorption of the test metals, (iii) and total metal sorption ability of Mat # 2 increased or remained unaffected in binary and ternary metal systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. A niche for cyanobacteria producing chlorophyll f within a microbial mat.

    PubMed

    Ohkubo, Satoshi; Miyashita, Hideaki

    2017-10-01

    Acquisition of additional photosynthetic pigments enables photosynthetic organisms to survive in particular niches. To reveal the ecological significance of chlorophyll (Chl) f, we investigated the distribution of Chl and cyanobacteria within two microbial mats. In a 7-mm-thick microbial mat beneath the running water of the Nakabusa hot spring, Japan, Chl f was only distributed 4.0-6.5 mm below the surface, where the intensity of far-red light (FR) was higher than that of photosynthetically active radiation (PAR). In the same mat, two ecotypes of Synechococcus and two ecotypes of Chl f-producing Leptolyngbya were detected in the upper and deeper layers, respectively. Only the Leptolyngbya strains could grow when FR was the sole light source. These results suggest that the deeper layer of the microbial mat was a habitat for Chl f-producing cyanobacteria, and Chl f enabled them to survive in a habitat with little PAR.

  8. Accuracy of a vertical jump contact mat for determining jump height and flight time.

    PubMed

    Whitmer, Tyler D; Fry, Andrew C; Forsythe, Charles M; Andre, Matthew J; Lane, Michael T; Hudy, Andrea; Honnold, Darric E

    2015-04-01

    Several devices are available to measure vertical jump (VJ) height based on flight time, VJ reach height, or ground reaction forces. The purpose of this study was to determine the accuracy of a VJ mat for measuring flight time and VJ height compared with a VJ tester or a force plate. Seventeen men and 18 women (X ± SD; age = 20.9 ± 0.7 years, height = 176.1 ± 0.9 cm, weight = 72.6 ± 13.5 kg) served as subjects. Subjects performed counter-movement vertical jumps while standing on both a force plate (1,000 Hz) and a VJ mat. A Vertec VJ tester was used to measure jump reach. Compared with the force plate, the VJ mat reported greater VJ height (VJ mat = 0.50 ± 0.12 m, force plate = 0.34 ± 0.10 m) and flight time (VJ mat = 0.629 ± 0.078 seconds, force plate = 0.524 ± 0.077 seconds). Comparison of VJ heights from the VJ mat and the Vertec revealed no significant differences (Vertec = 0.48 ± 0.11 m). Regression analyses indicated strong relationships between testing methods and suggested that high VJ performances may be underestimated with the VJ mat. This particular VJ mat compared favorably with the Vertec but not the force plate. It seems that the different flight times derived from the VJ mat may permit the VJ mat to be in closer agreement with VJ heights from the Vertec. Also, the VJ mat may not be an appropriate tool for assessing high VJ performances (i.e., ≥0.70 m; ≈28 inches). Practitioners and researchers using similar VJ mats may not obtain accurate flight times and may underestimate high performers.

  9. Biodiversity of the microbial mat of the Garga hot spring.

    PubMed

    Rozanov, Alexey Sergeevich; Bryanskaya, Alla Victorovna; Ivanisenko, Timofey Vladimirovich; Malup, Tatyana Konstantinovna; Peltek, Sergey Evgenievich

    2017-12-28

    the three studied points sampled at 70 °C, 55 °C, and 45 °C had similar species composition. Cyanobacteria of the genus Leptolyngbya dominated in the upper layer of the microbial mat. Chloroflexi and Chlorobi were less abundant and were mostly observed in the middle part of the microbial mat. We detected domains of heterotrophic organisms in high abundance (Proteobacteria, Firmicutes, Verrucomicrobia, Planctomicetes, Bacteroidetes, Actinobacteria, Thermi), according to metabolic properties of known relatives, which can form complete cycles of carbon, sulphur, and nitrogen in the microbial mat. The studied microbial mats evolved in early stages of biosphere formation. They can live autonomously, providing full cycles of substances and preventing live activity products poisoning.

  10. Utilization of MatPIV program to different geotechnical models

    NASA Astrophysics Data System (ADS)

    Aklik, P.; Idinger, G.

    2009-04-01

    The Particle Imaging Velocimetry (PIV) technique is being used to measure soil displacements. PIV has been used for many years in fluid mechanics; but for physical modeling in geotechnical engineering, this technique is still relatively new. PIV is a worldwide growth in soil mechanics over the last decade owing to the developments in digital cameras and laser technologies. The use of PIV is feasible provided the surface contains sufficient texture. A Cambridge group has shown that natural sand contains enough texture for applying PIV. In a texture-based approach, the only requirement is for any patch, big or small to be sufficiently unique so that statistical tracking of this patch is possible. In this paper, some of the soil mechanic's models were investigated such as retaining walls, slope failures, and foundations. The photographs were taken with the help of the high resolution digital camera, the displacements of soils were evaluated with free software named as MatPIV and the displacement graphics between the two images were obtained. Nikon D60 digital camera is 10.2 MB and it has special properties which makes it possible to use in PIV applications. These special properties are Airflow Control System and Image Sensor cleaning for protection against dust, Active D-Lighting for highlighted or shadowy areas while shooting, advanced three-point AF system for fast, efficient and precise autofocus. Its fast and continuous shooting mode enables up to 100 JPEG images at three frames per second. Norm Sand (DIN 1164) was used for all the models in a glass rectangular box. For every experiment, MatPIV was used to calculate the velocities from the two images. MatPIV program was used in two ways such as easy way and difficult way: In the easy way, the two images with 64*64 pixels with 50% or 75% overlap of the interrogation windows were taken into consideration and the calculation was performed with a single iteration through the images and the result consisted of four

  11. Earth's Earliest Ecosystems in the C: The Use of Microbial Mats to Demonstrate General Principles of Scientific Inquiry and Microbial Ecology

    NASA Technical Reports Server (NTRS)

    Bebout, Brad M.; Bucaria, Robin

    2006-01-01

    Microbial mats are living examples of the most ancient biological communities on Earth. As Earth's earliest ecosystems, they are centrally important to understanding the history of life on our planet and are useful models for the search for life elsewhere. As relatively compact (but complete) ecosystems, microbial mats are also extremely useful for educational activities. Mats may be used to demonstrate a wide variety of concepts in general and microbial ecology, including the biogeochemical cycling of elements, photosynthesis and respiration, and the origin of the Earth's present oxygen containing atmosphere. Microbial mats can be found in a number of common environments accessible to teachers, and laboratory microbial mats can be constructed using materials purchased from biological supply houses. With funding from NASA's Exobiology program, we have developed curriculum and web-based activities centered on the use of microbial mats as tools for demonstrating general principles in ecology, and the scientific process. Our web site (http://microbes.arc.nasa.gov) includes reference materials, lesson plans, and a "Web Lab", featuring living mats maintained in a mini-aquarium. The site also provides information as to how research on microbial mats supports NASA's goals, and various NASA missions. A photo gallery contains images of mats, microscopic views of the organisms that form them, and our own research activities. An animated educational video on the web site uses computer graphic and video microscopy to take students on a journey into a microbial mat. These activities are targeted to a middle school audience and are aligned with the National Science Standards.

  12. Compositions of constructed microbial mats

    DOEpatents

    Bender, Judith A.; Phillips, Peter C.

    1999-01-01

    Compositions and methods of use of constructed microbial mats, comprising cyanobacteria and purple autotrophic bacteria and an organic nutrient source, in a laminated structure, are described. The constructed microbial mat is used for bioremediation of different individual contaminants and for mixed or multiple contaminants, and for production of beneficial compositions and molecules.

  13. Reclamation of skid roads with fiber mats and native vegetation: effects on erosion

    Treesearch

    shawn T. Grushecky; David w. McGill; William Grafton; John Edwards; Lisa Tager

    2007-01-01

    A research study was established to test the effectiveness of fiber mats and native seed mixtures in reducing soil erosion from newly-constructed skid roads in the Elk River Watershed in central West Virginia. Twelve road sections of equal grade were paired with a randomly-selected section receiving a fiber mat and native grass seed while the other road section was not...

  14. Carbon nanotube mat as mediator-less glucose sensor electrode.

    PubMed

    Ryu, Jongeun; Kim, Hansang; Lee, Sangeui; Hahn, H Thomas; Lashmore, David

    2010-02-01

    In this paper, the direct electron transfer of glucose oxidase (GOx) on carbon nanotube (CNT) mat electrode is demonstrated. Because of the electrical conductivity and mechanical strength of CNT mat, it can be used as an electrode as well as a catalyst support. Therefore, the preparation process for the CNT mat based sensor electrode is simpler than that of the conventional CNT dispersed sensor electrodes. GOx was covalently immobilized on the oxidized CNT mat, which is connected to a wire by using silver paste and epoxy glue. Attenuated Total Reflectance Fourier Transform-Infrared (ATR-FTIR) result shows transmittance peaks at 1637 cm(-1) and 1525 cm(-1) which are corresponding to the band I and II of amide. Cyclic voltammetric shows a pair of well-defined redox peaks with the average formal potential of -0.425 V (vs. Ag/AgCl reference electrode) in the phosphate buffered saline solution (1 x PBS, pH 7.4). Calculated electron transfer rate constant and the surface density of GOx were 1.71 s(-1) and (3.27 +/- 0.20) x 10(-13) mol/cm2, respectively. Cyclic voltammograms of GOx-CNT mat in glucose solution show that the immobilized GOx retains its catalytic activity to glucose. The amperometric sensor response showed a linear dependence on the glucose concentration in the range of 0.2 mM to 2.18 mM with a detection sensitivity of 4.05 microA mM(-1) cm(-2). The Michaelis-Menten constant of the immobilized GOx was calculated to be 2.18 mM.

  15. Photosynthesis below the surface in a cryptic microbial mat

    NASA Astrophysics Data System (ADS)

    Rothschild, Lynn J.; Giver, Lorraine J.

    2002-10-01

    The discovery of subsurface communities has encouraged speculation that such communities might be present on planetary bodies exposed to harsh surface conditions, including the early Earth. While the astrobiology community has focused on the deep subsurface, near-subsurface environments are unique in that they provide some protection while allowing partial access to photosynthetically active radiation. Previously we identified near-surface microbial communities based on photosynthesis. Here we assess the productivity of such an ecosystem by measuring in situ carbon fixation rates in an intertidal marine beach through a diurnal cycle, and find them surprisingly productive. Gross fixation along a transect (99×1 m) perpendicular to the shore was highly variable and depended on factors such as moisture and mat type, with a mean of ~41 mg C fixed m[minus sign]2 day[minus sign]1. In contrast, an adjacent well-established cyanobacterial mat dominated by Lyngbya aestuarii was ~12 times as productive (~500 mg C fixed m[minus sign]2 day[minus sign]1). Measurements made of the Lyngbya mat at several times per year revealed a correlation between total hours of daylight and gross daily production. From these data, annual gross fixation was estimated for the Lyngbya mat and yielded a value of ~1.3×105 g m[minus sign]2 yr[minus sign]1. An analysis of pulse-chase data obtained in the study in conjunction with published literature on similar ecosystems suggests that subsurface interstitial mats may be an overlooked endogenous source of organic carbon, mostly in the form of excreted fixed carbon.

  16. Performance Prediction Relationships for AM2 Airfield Matting Developed from Full-Scale Accelerated Testing and Laboratory Experimentation

    DTIC Science & Technology

    2018-01-01

    work, the prevailing methods used to predict the performance of AM2 were based on the CBR design procedure for flexible pavements using a small number...suitable for design and evaluation frameworks currently used for airfield pavements and matting systems. DISCLAIMER: The contents of this report...methods used to develop the equivalency curves equated the mat-surfaced area to an equivalent thickness of flexible pavement using the CBR design

  17. Biosilica-loaded poly(ϵ-caprolactone) nanofibers mats provide a morphogenetically active surface scaffold for the growth and mineralization of the osteoclast-related SaOS-2 cells.

    PubMed

    Müller, Werner E G; Tolba, Emad; Schröder, Heinz C; Diehl-Seifert, Bärbel; Link, Thorben; Wang, Xiaohong

    2014-10-01

    Bioprinting/3D cell printing procedures for the preparation of scaffolds/implants have the potential to revolutionize regenerative medicine. Besides biocompatibility and biodegradability, the hardness of the scaffold material is of critical importance to allow sufficient mechanical protection and, to the same extent, allow migration, cell-cell, and cell-substrate contact formation of the matrix-embedded cells. In the present study, we present a strategy to encase a bioprinted, cell-containing, and soft scaffold with an electrospun mat. The electrospun poly(ϵ-caprolactone) (PCL) nanofibers mats, containing tetraethyl orthosilicate (TEOS), were subsequently incubated with silicatein. Silicatein synthesizes polymeric biosilica by polycondensation of ortho-silicate that is formed from prehydrolyzed TEOS. Biosilica provides a morphogenetically active matrix for the growth and mineralization of osteoblast-related SaOS-2 cells in vitro. Analysis of the microstructure of the 300-700 nm thick PCL/TEOS nanofibers, incubated with silicatein and prehydrolyzed TEOS, displayed biosilica deposits on the mats formed by the nanofibers. We conclude and propose that electrospun PCL nanofibers mats, coated with biosilica, may represent a morphogenetically active and protective cover for bioprinted cell/tissue-like units with a suitable mechanical stability, even if the cells are embedded in a softer matrix. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Six weeks of Mat Pilates training are enough to improve functional capacity in elderly women.

    PubMed

    Bertoli, Josefina; Biduski, Grazieli Maria; de la Rocha Freitas, Cíntia

    2017-10-01

    The aim of the study was to evaluate the effect of Mat Pilates on the functional capacity (FC) of elderly women before and after six weeks of intervention. Eighteen women aged 62.28 (±2.34) participated in the study. Timed Up and Go test, Timed Up Stairs, Timed Down Stairs, 30-s Chair Stand, Chair Sit-and-Reach and Back Scratch tests were assessed. The results showed significant improvements in all FC tests after six weeks of the Mat Pilates intervention. Summarizing, only six weeks of Mat Pilates training of 60 min per session, three times a week, three series beginning with six repetitions and eight repetitions at the last two weeks of intervention, were enough to improve FC in elderly women. Furthermore, the exercises difficulty increased from beginners to intermediate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. An extraterrestrial habitat on earth: The algal mat of Don Jaun Pond

    NASA Astrophysics Data System (ADS)

    Siegel, B. Z.; Siegel, S. M.; Chen, J.; Larock, P.

    On the edge of Don Juan Pond in the Wright Valley of Antarctica lies a mat of mineral and detritus cemented by organic matter. In spite of a CaCl2 concentration of about 33% (w/v), the mat contains Oscillatoria and other cyanobacteria, unicellular forms, colonial forms rich in carotenoids, and diatoms. Bacteria are rare; fungal filaments are not. Oscillatoria showed motility, but only at temperatures <10°C. Acetone extracts of the mat and nearby muds yielded visible spectra similar to those of laboratory grown O. sancta, with 50- to 70-fold molar ratio of chlorophyll a to b. Although rare, tardigrades were also found. The algal mat had enzymatic activities characteristic of peroxidase, catalase, dehydrogenase, and amylase. Cellulose, chitin, protein, lipid and ATP were present. Previously, algae in the Wright Valley have been described in melt water, not in the brine itself. Wright Valley has been used as a near sterile Martian model. It obviously contains an array of hardy terrestrial organisms.

  20. Use of palm-mat geotextiles for rainsplash erosion control

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, R.; Fullen, M. A.; Davies, K.; Booth, C. A.

    2010-07-01

    Soil detachment by raindrop action (rainsplash erosion) is a very important subprocess of erosion by water. It is a particular problem in the UK as most soils are sandy or loamy sand in texture and lands have gentle to medium slope. However, few studies report potential rainsplash erosion control options under field conditions. Hence, the utilization of palm-mat geotextiles as a rainsplash erosion control technique was investigated at Hilton, east Shropshire, U.K. (52°33'5.7″ N, 2°19'18.3″ W). Geotextile-mats constructed from Borassus aethiopum (Borassus palm of West Africa) and Mauritia flexuosa (Buriti palm of South America) leaves are termed Borassus mats and Buriti mats, respectively. Two-year field experiments were conducted at Hilton to study the effects of emplacing Borassus and Buriti mats on rainsplash erosion of a loamy sand soil. Two sets (12 plots each) of experiments were established to study the effects of these mats on splash height and splash erosion. Splash height needs to be known to assess the transport mechanism of major soil fraction and its constituents on sloping land by rainsplash. In both sets, six randomly-selected plots were covered with mats, and the rest were bare. Results (during 22/01/2007‒23/01/2009; total precipitation = 1731.5 mm) show that Borassus mat-covered plots had ˜ 89% ( P < 0.001) less total splash erosion (2.97 kg m - 2 ) than bare plots (27.02 kg m - 2 ). Comparatively, mean splash height from Borassus mat-covered plots (0.12 m) was significantly ( P < 0.001) less than the bare plots, by ˜ 54%. However, Buriti mat-cover on bare plots had no significant ( P > 0.05) effect in rainsplash erosion control during that period, although plots with Buriti mats significantly ( P < 0.05) decreased splash height (by ˜ 18%) compared with bare plots (0.26 m). Buriti mats, probably due to their ˜ 43, 62 and 50% lower cover percentage (44%), mass per unit area (413 g - 2 ) and thickness (10 mm), respectively, compared with

  1. Dinitrogen-fixing cyanobacteria in microbial mats of two shallow coral reef ecosystems.

    PubMed

    Charpy, Loic; Palinska, Katarzyna A; Casareto, Beatriz; Langlade, Marie José; Suzuki, Yoshimi; Abed, Raeid M M; Golubic, Stjepko

    2010-01-01

    Dinitrogen-fixing organisms in cyanobacterial mats were studied in two shallow coral reef ecosystems: La Reunion Island, southwestern Indian Ocean, Sesoko (Okinawa) Island, and northwestern Pacific Ocean. Rapidly expanding benthic miniblooms, frequently dominated by a single cyanobacterial taxon, were identified by microscopy and molecular tools. In addition, nitrogenase activity by these blooms was measured in situ. Dinitrogen fixation and its contribution to mat primary production were calculated using (15)N(2) and (13)C methods. Dinitrogen-fixing cyanobacteria from mats in La Reunion and Sesoko showed few differences in taxonomic composition. Anabaena sp. among heterocystous and Hydrocoleum majus and Symploca hydnoides among nonheterocystous cyanobacteria occurred in microbial mats of both sites. Oscillatoria bonnemaisonii and Leptolyngbya spp. occurred only in La Reunion, whereas Hydrocoleum coccineum dominated in Sesoko. Other mats dominated by Hydrocoleum lyngbyaceum, Phormidium laysanense, and Trichocoleus tenerrimus occurred at lower frequencies. The 24-h nitrogenase activity, as measured by acetylene reduction, varied between 11 and 324 nmoles C(2)H(2) reduced microg(-1) Chl a. The highest values were achieved by heterocystous Anabaena sp. performed mostly during the day. Highest values for nonheterocystous cyanobacteria were achieved by H. coccineum mostly during the night. Daily nitrogen fixation varied from nine (Leptolyngbya) to 238 nmoles N(2) microg(-1) Chl day(-1) (H. coccineum). Primary production rates ranged from 1,321 (S. hydnoides) to 9,933 nmoles C microg(-1) Chl day(-1) (H. coccineum). Dinitrogen fixation satisfied between 5% and 21% of the nitrogen required for primary production.

  2. [The effects of 16-weeks pilates mat program on anthropometric variables and body composition in active adult women after a short detraining period].

    PubMed

    Vaquero-Cristóbal, Raquel; Alacid, Fernando; Esparza-Ros, Francisco; Muyor, José M; López-Miñarro, Pedro Ángel

    2015-04-01

    previous studies have analysed the effect of mat Pilates practice on anthropometric variables and body composition in sedentaries. To date no researchs have investigated the benefits of Pilates on these variables after a short detraining period. to determine the effect of a 16-week mat Pilates program on anthropometric variables, body composition and somatotype of women with previous practice experience after three weeks of detraining period. twenty-one women underwent a complete anthropometric assessment according with ISAK guidelines before and after a 16 week mat Pilates program (two days, one hour). All women had one to three years of mat Pilates experience and came to three weeks of detraining period (Christmas holiday). women showed significant decreases for body mass, BMI, upper limb (biceps and triceps) and trunk (subscapular, iliac crest, supraspinale and abdominal) individual skinfolds, 6 and 8 skinfold sums, endomorphy and fat mass; and a significant increases for muscle mass. The mean somatotype was classified as mesomorphic endomorph in the pre- (4.91, 4.01, 1.47) and post-test (4.68, 4.16, 1.69). Eight women changed their somatotype clasification after the intervention program. the practice of mat Pilates for 16 weeks caused changes associated with health state improvements on anthropometric variables, especially on skinfolds which significantly decreased, body composition (fat and muscle masses decreased and increased, respectively) and somatotype (there was a significantly decreased on the endomorph component in experienced women after three week of detraning. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  3. Microbial mat of the thermal springs Kuchiger Republic of Buryatia: species composition, biochemical properties and electrogenic activity in biofuel cell

    NASA Astrophysics Data System (ADS)

    Aleksandrovich Yuriev, Denis; Viktorovna Zaitseva, Svetlana; Olegovna Zhdanova, Galina; Yurievich Tolstoy, Mikhail; Dondokovna Barkhutova, Darima; Feodorovna Vyatchina, Olga; Yuryevna Konovalova, Elena; Iosifovich Stom, Devard

    2018-02-01

    Electrogenic, molecular and some other properties of a microbial mat isolated from the Kuchiger hot spring (Kurumkansky District, Republic of Buryatia) were studied. Molecular analysis showed that representatives of Proteobacteria (85.5 % of the number of classified bacterial sequences) prevailed in the microbial mat of the Kuchiger springs, among which sulfur bacteria of the genus Thiothrix were the most numerous. In the microbial mat there were bacteria from the families Rhodocyclaceae, Comamonadaceae and Flavobacteriaceae. Phylum Bacteroidetes, Cyanobacteria/Chloroplast, Fusobacteria, Fibrobacteres, Acidobacteria, Chlorobi, Spirochaetes, Verrucomicrobia, Firmicutes, Deinococcus-Thermus, Chloroflexi and Actinobacteria are also noted in the composition of the microbial mat. Under the experimental conditions using Kuchiger-mat 16 as bioagents, glucose and peptone as substrates, the power of BFC was 240 and 221 mW / m2, respectively. When replacing the substrate with sodium acetate, the efficiency of the BFC was reduced by a factor of 10 (20 mW / m2). The prospects of using a microbial mat “Kuchiger-16” as an electrogen in BFC when utilizing alkaline waste water components to generate electricity are discussed.

  4. Investigation of VEGGIE Root Mat

    NASA Technical Reports Server (NTRS)

    Subbiah, Arun M.

    2013-01-01

    VEGGIE is a plant growth facility that utilizes the phenomenon of capillary action as its primary watering system. A cloth made of Meta Aramid fiber, known as Nomex is used to wick water up from a reservoir to the bottom of the plants roots. This root mat system is intended to be low maintenance with no moving parts and requires minimal crew interface time. Unfortunately, the water wicking rates are inconsistent throughout the plant life cycle, thus causing plants to die. Over-wicking of water occurs toward the beginning of the cycle, while under-wicking occurs toward the middle. This inconsistency of wicking has become a major issue, drastically inhibiting plant growth. The primary objective is to determine the root cause of the inconsistent wicking through experimental testing. Suspect causes for the capillary water column to break include: a vacuum effect due to a negative pressure gradient in the water reservoir, contamination of material due to minerals in water and back wash from plant fertilizer, induced air bubbles while using syringe refill method, and material limitations of Nomex's ability to absorb and retain water. Experimental testing will be conducted to systematically determine the cause of under and over-wicking. Pressure gages will be used to determine pressure drop during the course of the plant life cycle and during the water refill process. A debubbler device will be connected to a root mat in order to equalize pressure inside the reservoir. Moisture and evaporation tests will simultaneously be implemented to observe moisture content and wicking rates over the course of a plant cycle. Water retention tests will be performed using strips of Nomex to determine materials wicking rates, porosity, and absorptivity. Through these experimental tests, we will have a better understanding of material properties of Nomex, as well as determine the root cause of water column breakage. With consistent test results, a forward plan can be achieved to resolve

  5. Experimental Studies on Geocells and Mat Systems for Stabilization of Unpaved Shoulders and Temporary Roads

    NASA Astrophysics Data System (ADS)

    Guo, Jun

    Geosynthetics have been used to improve the performance of geomaterials, especially when weak soil exists in roadway applications. In this study, two types of geosynthetic materials, geocell and a mat system, were studied for their applications for unpaved roads and shoulders. The study of geocell was focused on its application for unpaved shoulders. The ability of geocell to improve different geomaterials over intermediate strength subgrade and its possible effect on vegetation were investigated. The study of the mat system was focused on investigating the performance of the mat system over soft and intermediate subgrade with different strengths under cyclic loading to simulate temporary roadway conditions. In the study of geocell for the application for unpaved shoulders, six large scale plate loading tests were conducted on a single type of geocell on target 5% CBR subgrade to investigate the benefits of geocell reinforcement on different base course and topsoil combinations. Different base course and topsoil combinations were investigated including: 200-mm thick unreinforced aggregate, 200-mm thick soil-aggregate mixture (50% aggregate and 50% top soil) with and without geocell reinforcement, 200-mm thick geocell-reinforced topsoil, 50-mm thick aggregate over 150-mm soil-aggregate mixture (50% aggregate and 50% top soil), and 50-mm thick top soil over 150-mm thick geocell-reinforced soil-aggregate mixture (50% aggregate and 50% top soil). Earth pressure cells were install at the interface between subgrade and base course to monitor the load distribution. The cyclic plate loading tests showed that geocell effectively reduced the permanent deformation and the geocell-reinforced soil-aggregate mixture slightly outperformed the unreinforced aggregate at the same thickness. The plate loading tests also suggested the topsoil cover resulted in large permanent deformations. A one-year long outdoor field vegetation test was conducted on base courses with different

  6. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data.

    PubMed

    Shen, Shihao; Park, Juw Won; Lu, Zhi-xiang; Lin, Lan; Henry, Michael D; Wu, Ying Nian; Zhou, Qing; Xing, Yi

    2014-12-23

    Ultra-deep RNA sequencing (RNA-Seq) has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We previously developed multivariate analysis of transcript splicing (MATS), a statistical method for detecting differential alternative splicing between two RNA-Seq samples. Here we describe a new statistical model and computer program, replicate MATS (rMATS), designed for detection of differential alternative splicing from replicate RNA-Seq data. rMATS uses a hierarchical model to simultaneously account for sampling uncertainty in individual replicates and variability among replicates. In addition to the analysis of unpaired replicates, rMATS also includes a model specifically designed for paired replicates between sample groups. The hypothesis-testing framework of rMATS is flexible and can assess the statistical significance over any user-defined magnitude of splicing change. The performance of rMATS is evaluated by the analysis of simulated and real RNA-Seq data. rMATS outperformed two existing methods for replicate RNA-Seq data in all simulation settings, and RT-PCR yielded a high validation rate (94%) in an RNA-Seq dataset of prostate cancer cell lines. Our data also provide guiding principles for designing RNA-Seq studies of alternative splicing. We demonstrate that it is essential to incorporate biological replicates in the study design. Of note, pooling RNAs or merging RNA-Seq data from multiple replicates is not an effective approach to account for variability, and the result is particularly sensitive to outliers. The rMATS source code is freely available at rnaseq-mats.sourceforge.net/. As the popularity of RNA-Seq continues to grow, we expect rMATS will be useful for studies of alternative splicing in diverse RNA-Seq projects.

  7. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats

    PubMed Central

    Lee, Jackson Z.; Burow, Luke C.; Woebken, Dagmar; Everroad, R. Craig; Kubo, Mike D.; Spormann, Alfred M.; Weber, Peter K.; Pett-Ridge, Jennifer; Bebout, Brad M.; Hoehler, Tori M.

    2013-01-01

    Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB). However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico—permanently submerged Microcoleus microbial mat (GN-S), and intertidal Lyngbya microbial mat (GN-I)—were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of DsrA phylotypes were responsible for H2 consumption. Incubation with 13C-acetate and NanoSIMS (secondary ion mass-spectrometry) indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen) was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi. PMID:24616716

  8. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats

    DOE PAGES

    Lee, Jackson Z.; Burow, Luke C.; Woebken, Dagmar; ...

    2014-01-01

    Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB). However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico$-$ permanently submerged Microcoleus microbial mat (GN-S), and intertidal Lyngbya microbial mat (GN-I)$-$were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H 2 production occurred under dark anoxic conditions with simultaneous production of a suitemore » of organic acids. H 2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO 2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of DsrA phylotypes were responsible for H 2 consumption. Incubation with 13C-acetate and NanoSIMS (secondary ion mass-spectrometry) indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen) was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi.« less

  9. Identification of Members of the Metabolically Active Microbial Populations Associated with Beggiatoa Species Mat Communities from Gulf of Mexico Cold-Seep Sediments

    PubMed Central

    Mills, Heath J.; Martinez, Robert J.; Story, Sandra; Sobecky, Patricia A.

    2004-01-01

    In this study, the composition of the metabolically active fraction of the microbial community occurring in Gulf of Mexico marine sediments (water depth, 550 to 575 m) with overlying filamentous bacterial mats was determined. The mats were mainly composed of either orange- or white-pigmented Beggiatoa spp. Complementary 16S ribosomal DNA (crDNA) was obtained from rRNA extracted from three different sediment depths (0 to 2, 6 to 8, and 10 to 12 cm) that had been subjected to reverse transcription-PCR amplification. Domain-specific 16S PCR primers were used to construct 12 different 16S crDNA libraries containing 333 Archaea and 329 Bacteria clones. Analysis of the Archaea clones indicated that all sediment depths associated with overlying orange- and white-pigmented microbial mats were almost exclusively dominated by ANME-2 (95% of total Archaea clones), a lineage related to the methanogenic order Methanosarcinales. In contrast, bacterial diversity was considerably higher, with the dominant phylotype varying by sediment depth. An equivalent number of clones detected at 0 to 2 cm, representing a total of 93%, were related to the γ and δ classes of Proteobacteria, whereas clones related to δ-Proteobacteria dominated the metabolically active fraction of the bacterial community occurring at 6 to 8 cm (79%) and 10 to 12 cm (85%). This is the first phylogenetics-based evaluation of the presumptive metabolically active fraction of the Bacteria and Archaea community structure investigated along a sediment depth profile in the northern Gulf of Mexico, a hydrocarbon-rich cold-seep region. PMID:15345432

  10. Diversity and physiology of polyhydroxyalkanoate-producing and -degrading strains in microbial mats.

    PubMed

    Villanueva, Laura; Del Campo, Javier; Guerrero, Ricardo

    2010-10-01

    Photosynthetic microbial mats are sources of microbial diversity and physiological strategies that reflect the physical and metabolic interactions between their resident species. This study focused on the diversity and activity of polyhydroxyalkanoate-producing and -degrading bacteria and their close partnership with cyanobacteria in an estuarine and a hypersaline microbial mat. The aerobic heterotrophic population was characterized on the basis of lipid biomarkers (respiratory quinones, sphingoid bases), polyhydroxyalkanoate determination, biochemical analysis of the isolates, and interaction assays. Most of the polyhydroxyalkanoate-producing isolates obtained from an estuarine mat belonged to the Halomonas and Labrenzia genera, while species of Sphingomonas and Bacillus were more prevalent in the hypersaline mat. Besides, the characterization of heterotrophic bacteria coisolated with filamentous cyanobacteria after selection suggested a specific association between them and diversification of the heterotrophic partner belonging to the Halomonas genus. Preliminary experiments suggested that syntrophic associations between strains of the Pseudoalteromonas and Halomonas genera explain the dynamics of polyhydroxyalkanoate accumulation in some microbial mats. These metabolic interactions and the diversity of the bacteria that participate in them are most likely supported by the strong mutual dependence of the partners. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. High Areal Capacity Si/LiCoO 2 Batteries from Electrospun Composite Fiber Mats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Self, Ethan C.; Naguib, Michael; Ruther, Rose E.

    Here, freestanding nanofiber mat Li-ion battery anodes containing Si nanoparticles, carbon black, and poly(acrylic acid) (Si/C/PAA) are prepared using electrospinning. The mats are compacted to a high fiber volume fraction (~0.85), and interfiber contacts are welded by exposing the mat to methanol vapor. A compacted+welded fiber mat anode containing 40 wt % Si exhibits high capacities of 1,484 mA h g -1 (3,500 mA h gmore » $$-1\\atop{Si}$$) at 0.1 C and 489 mAh g -1 at 1 C and good cycling stability (e.g., 73% capacity retention over 50 cycles). Post-mortem analysis of the fiber mats shows that the overall electrode structure is preserved during cycling. Whereas many nanostructured Si anodes are hindered by their low active material loadings and densities, thick, densely packed Si/C/PAA fiber mat anodes reported here have high areal and volumetric capacities (e.g., 4.5 mA h cm -2 and 750 mA h cm -3, respectively). A full cell containing an electrospun Si/C/PAA anode and electrospun LiCoO 2-based cathode has a high specific energy density of 270 Wh kg -1. The excellent performance of the electrospun Si/C/PAA fiber mat anodes is attributed to the: (i) PAA binder which interacts with the SiO x surface of Si nanoparticles and (ii) high material loading, high fiber volume fraction, and welded interfiber contacts of the electrospun mats« less

  12. High Areal Capacity Si/LiCoO 2 Batteries from Electrospun Composite Fiber Mats

    DOE PAGES

    Self, Ethan C.; Naguib, Michael; Ruther, Rose E.; ...

    2017-03-24

    Here, freestanding nanofiber mat Li-ion battery anodes containing Si nanoparticles, carbon black, and poly(acrylic acid) (Si/C/PAA) are prepared using electrospinning. The mats are compacted to a high fiber volume fraction (~0.85), and interfiber contacts are welded by exposing the mat to methanol vapor. A compacted+welded fiber mat anode containing 40 wt % Si exhibits high capacities of 1,484 mA h g -1 (3,500 mA h gmore » $$-1\\atop{Si}$$) at 0.1 C and 489 mAh g -1 at 1 C and good cycling stability (e.g., 73% capacity retention over 50 cycles). Post-mortem analysis of the fiber mats shows that the overall electrode structure is preserved during cycling. Whereas many nanostructured Si anodes are hindered by their low active material loadings and densities, thick, densely packed Si/C/PAA fiber mat anodes reported here have high areal and volumetric capacities (e.g., 4.5 mA h cm -2 and 750 mA h cm -3, respectively). A full cell containing an electrospun Si/C/PAA anode and electrospun LiCoO 2-based cathode has a high specific energy density of 270 Wh kg -1. The excellent performance of the electrospun Si/C/PAA fiber mat anodes is attributed to the: (i) PAA binder which interacts with the SiO x surface of Si nanoparticles and (ii) high material loading, high fiber volume fraction, and welded interfiber contacts of the electrospun mats« less

  13. Electrospun PVA/Bentonite Nanocomposites Mats for Drug Delivery

    PubMed Central

    Ferrández-Rives, Mariola; Gómez Ribelles, José Luis

    2017-01-01

    Electrospun mats and films of polyvinyl alcohol (PVA) hydrogel are produced for drug delivery. To provide mechanical consistency to the gel a reinforcement by nanoclays is introduced in the polymer matrix. Four different suspensions of nanoparticles in the polymer solution are prepared in an adequate solvent. These suspensions are subjected to an electrospinning process to produce the nanofiber mat, while films are produced by casting. The influence of the process parameters over the nanofibers microstructure is analyzed by scanning electron microscopy (SEM). The effectiveness of nanoclay encapsulation in the nanocomposites is tested by a thermogravimetric analysis. A crosslinking reaction in solution is carried out to prevent the dissolution of the nanocomposites in aqueous media. A model protein (bovine serum albumin, BSA) is absorbed in the nanocomposites to characterize the release kinetics in phosphate-buffered saline (PBS). PMID:29261123

  14. Controls on O2 Production in Cyanobacterial Mats and Implications for Earth's Oxygenation

    NASA Astrophysics Data System (ADS)

    Dick, Gregory J.; Grim, Sharon L.; Klatt, Judith M.

    2018-05-01

    Cyanobacterial mats are widely assumed to have been globally significant hot spots of biogeochemistry and evolution during the Archean and Proterozoic, but little is known about their quantitative contributions to global primary productivity or Earth's oxygenation. Modern systems show that mat biogeochemistry is the outcome of concerted activities and intimate interactions between various microbial metabolisms. Emerging knowledge of the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis by versatile cyanobacteria, and their interactions with sulfur-oxidizing bacteria and sulfate-reducing bacteria, highlights how ecological and geochemical processes can control O2 production in cyanobacterial mats in unexpected ways. This review explores such biological controls on O2 production. We argue that the intertwined effects of light availability, redox geochemistry, regulation and competition of microbial metabolisms, and biogeochemical feedbacks result in emergent properties of cyanobacterial mat communities that are all critical yet largely overlooked mechanisms to potentially explain the protracted nature of Earth's oxygenation.

  15. Chlorophyll and carotenoid pigments in solar saltern microbial mats

    NASA Astrophysics Data System (ADS)

    Villanueva, Joan; Grimalt, Joan O.; de Wit, Rutger; Keely, Brendan J.; Maxwell, James R.

    1994-11-01

    The distributions of carotenoids, chlorophylls, and their degradation products have been studied in two microbial mat systems developed in the calcite and calcite/gypsum evaporite domains of a solar saltern system. Phormidium valderianum and Microcoleus chthonoplastes are the dominant cyanobacterial species, respectively, and large amounts of Chloroflexus-like bacteria occur in the carbonate/gypsum mat. In both systems, the major pigments are chlorophyll a, zeaxanthin, β-carotene and myxoxanthophyll, which originate from these mat-building cyanobacteria. This common feature contrasts with differences in other pigments that are specific for each mat community. Thus, chlorophyll c and fucoxanthin, reflecting diatom inputs, are only found in the calcite mat, whereas the calcite/gypsum mat contains high concentrations of bacteriochlorophylls c produced by the multicellular green filamentous bacteria. In both cases, the depth concentration profiles (0-30 and 0-40 mm) show a relatively good preservation of the cyanobacterial carotenoids, zeaxanthin, β-carotene, myxoxanthophyll, and echinenone. This contrasts with the extensive biodegradation of cyanobacterial remains observed microscopically. Fucoxanthin in the calcite mat is also transformed at a faster rate than the cyanobacterial carotenoids. Chlorophyll a, the major pigment in both mats, exhibits different transformation pathways. In the calcite/gypsum mat, it is transformed via C-13 2 carbomethoxy defunctionalization prior to loss of the phytyl chain, leading to the formation of pyrophaeophytin a and, subsequently, pyrophaeophorbide a. On the other hand, the occurrence of the enzyme chlorophyllase, attributed to diatoms in the calcite mat, gives rise to extensive phytyl hydrolysis, with the formation of chlorophyllide a, pyrophaeophorbide a and, in minor proportion, phaeophorbide a. Studies of the sources of the photosynthetic pigments and of their transformation pathways in such simplified ecosystems provide a

  16. Spatial patterns of cyanobacterial mat growth on sand ripples

    NASA Astrophysics Data System (ADS)

    Mariotti, G.; Klepac-Ceraj, V.; Perron, J. T.; Bosak, T.

    2016-02-01

    Photosynthetic microbial mats produce organic matter, cycle nutrients, bind pollutants and stabilize sediment in sandy marine environments. Here, we investigate the influence of bedforms and wave motion on the growth rate, composition and spatial variability of microbial mats by growing cyanobacterial mats on a rippled bed of carbonate sand in a wave tank. The tank was forced with an oscillatory flow with velocities below the threshold for sediment motion yet able to induce a porewater flow within the sediment. Different spatial patterns developed in mats depending on the initial biochemistry of the water medium. When growing in a medium rich in nitrogen, phosphorous and micronutrients, mats grew faster on ripple troughs than on ripple crests. After two months, mats covered the bed surface uniformly, and the microbial communities on the crests and in the troughs had similar compositions. Differences in bed shear stress and nutrient availability between crests and troughs were not able to explain the faster growth in the troughs. We hypothesize that this growth pattern is due to a "strainer" effect, i.e. the suspended bacteria from the inoculum were preferentially delivered to troughs by the wave-induced porewater flow. In the experiments initiated in a medium previously used up by a microbial mat and thus depleted in nutrients, mats grew preferentially on the ripple crests. This spatial pattern persisted for nearly two years, and the microbial composition on troughs and crests was different. We attribute this pattern to the upwelling of porewater in the crests, which increased the delivery of nutrients from sediment to the cyanobacteria on the bed surface. Thus, the macroscopic patterns formed by photosynthetic microbial mats on sand ripples may be used to infer whether mats are nutrient-limited and whether they are recently colonized or older than a month.

  17. Magnetoacoustic Tomography with Magnetic Induction (MAT-MI) for Breast Tumor Imaging: Numerical Modeling and Simulation

    PubMed Central

    Zhou, Lian; Li, Xu; Zhu, Shanan; He, Bin

    2011-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) was recently introduced as a noninvasive electrical conductivity imaging approach with high spatial resolution close to ultrasound imaging. In the present study, we test the feasibility of the MAT-MI method for breast tumor imaging using numerical modeling and computer simulation. Using the finite element method, we have built three dimensional numerical breast models with varieties of embedded tumors for this simulation study. In order to obtain an accurate and stable forward solution that does not have numerical errors caused by singular MAT-MI acoustic sources at conductivity boundaries, we first derive an integral forward method for calculating MAT-MI acoustic sources over the entire imaging volume. An inverse algorithm for reconstructing the MAT-MI acoustic source is also derived with spherical measurement aperture, which simulates a practical setup for breast imaging. With the numerical breast models, we have conducted computer simulations under different imaging parameter setups and all the results suggest that breast tumors that have large conductivity contrast to its surrounding tissues as reported in literature may be readily detected in the reconstructed MAT-MI images. In addition, our simulations also suggest that the sensitivity of imaging breast tumors using the presented MAT-MI setup depends more on the tumor location and the conductivity contrast between the tumor and its surrounding tissues than on the tumor size. PMID:21364262

  18. Carbonate mineralisation in sabkha microbial mats; a comparative study of field and laboratory systems

    NASA Astrophysics Data System (ADS)

    Dutton, Kirsten E.; Paul, Andreas; Lessa Andrade, Luiza; Sherry, Angela; Lokier, Stephen; Head, Ian M.; van der Land, Cees

    2017-04-01

    biweekly basis. In addition to these parameter measurements already in place in current experiments, temperature and tidal cycle were monitored in the field. Over the course of the first three months, the microbial mat, which was submerged in an artificial seawater medium, grew vertically and developed a green surface at the top and sides. Thermogravimetric analysis has established that the top 1 mm surface mat biomass contains carbonate minerals, leading to an initial inferred carbonate mineralisation rate of approximately 0.5 g per 1 cm2 per year (approx. per 10 g surface mat material). This rate of mineralisation will become more accurate as more analysis is completed particularly comparing samples of mat, initially before they went in to the tank experiment and after incremental time periods, 3 months, 6 months etc. Further analysis of mat growth will establish the extent to which the precipitated carbonate minerals result from microbial activity and the types of minerals precipitated. The rate of mineralisation can be scaled-up to the km scale with the potential to isolate mineralisation rates promoted by different communities and in different types of microbial mat.

  19. Are floating algal mats a refuge from hypoxia for estuarine invertebrates?

    PubMed Central

    Knysh, Kyle M.; Theriault, Emma F.; Pater, Christina C.; Courtenay, Simon C.; van den Heuvel, Michael R.

    2017-01-01

    Eutrophic aquatic habitats are characterized by the proliferation of vegetation leading to a large standing biomass that upon decomposition may create hypoxic (low-oxygen) conditions. This is indeed the case in nutrient impacted estuaries of Prince Edward Island, Canada, where macroalgae, from the genus Ulva, form submerged ephemeral mats. Hydrological forces and gases released from photosynthesis and decomposition lead to these mats occasionally floating to the water’s surface, henceforth termed floating mats. Here, we explore the hypothesis that floating mats are refugia during periods of sustained hypoxia/anoxia and examine how the invertebrate community responds to it. Floating mats were not always present, so in the first year (2013) sampling was attempted monthly and limited to when both floating and submerged mats occurred. In the subsequent year sampling was weekly, but at only one estuary due to logistical constraints from increased sampling frequency, and was not limited to when both mat types occurred. Water temperature, salinity, and pH were monitored bi-weekly with dissolved oxygen concentration measured hourly. The floating and submerged assemblages shared many of the same taxa but were statistically distinct communities; submerged mats tended to have a greater proportion of benthic animals and floating mats had more mobile invertebrates and insects. In 2014, sampling happened to occur in the weeks before the onset of anoxia, during 113 consecutive hours of sustained anoxia, and for four weeks after normoxic conditions returned. The invertebrate community on floating mats appeared to be unaffected by anoxia, indicating that these mats may be refugia during times of oxygen stress. Conversely, there was a dramatic decrease in animal abundances that remained depressed on submerged mats for two weeks. Cluster analysis revealed that the submerged mat communities from before the onset of anoxia and four weeks after anoxia were highly similar to each other

  20. MAT1, cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with TFIIH.

    PubMed

    Adamczewski, J P; Rossignol, M; Tassan, J P; Nigg, E A; Moncollin, V; Egly, J M

    1996-04-15

    MAT1, cyclin H and cdk7 are part of TFIIH, a class II transcription factor which possesses numerous subunits of which several have been shown to be involved in processes other than transcription. Two of them, XPD (ERCC2) and XPB (ERCC3), are helicases involved in nucleotide excision repair (NER), whereas cdk7, cyclin H and MAT1 are thought to participate in cell cycle regulation. MAT1, cyclin H and cdk7 exist as a ternary complex either free or associated with TFIIH from which the latter can be dissociated at high salt concentration. MAT1 is strongly associated with cdk7 and cyclin H. Although not strictly required for the formation and activity of the complex, it stimulates its kinase activity. The kinase activity of TFIIH, which is constant during the cell cycle, is reduced after UV light irradiation.

  1. Nonwoven glass fiber mat reinforces polyurethane adhesive

    NASA Technical Reports Server (NTRS)

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  2. Microbial mats and the early evolution of life

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.

    1990-01-01

    Microbial mats have descended from perhaps the oldest and most widespread biological communities known. Mats harbor microbes that are crucial for studies of bacterial phylogeny and physiology. They illustrate how several oxygen-sensitive biochemical processes have adapted to oxygen, and they show how life adapted to dry land long before the rise of plants. The search for the earliest grazing protists and metazoa in stromatolites is aided by observations of mats: in them, organic compounds characteristic of ancient photosynthetic protists can be identified. Recent mat studies suggest that the 13C/12C increase observed over geological time in stromatolitic organic matter was driven at least in part by a long-term decline in atmospheric carbon dioxide levels.

  3. Tracing biosignatures from the Recent to the Jurassic in sabkha-associated microbial mats

    NASA Astrophysics Data System (ADS)

    van der Land, Cees; Dutton, Kirsten; Andrade, Luiza; Paul, Andreas; Sherry, Angela; Fender, Tom; Hewett, Guy; Jones, Martin; Lokier, Stephen W.; Head, Ian M.

    2017-04-01

    Microbial mat ecosystems have been operating at the sediment-fluid interface for over 3400 million years, influencing the flux, transformation and preservation of carbon from the biosphere to the physical environment. These ecosystems are excellent recorders of rapid and profound changes in earth surface environments and biota as they often survive crisis-induced extreme paleoenvironmental conditions. Their biosignatures, captured in the preserved organic matter and the biominerals that form the microbialite rock, constitute a significant tool in understanding geobiological processes and the interactions of the microbial communities with sediments and with the prevailing physical chemical parameters, as well as the environmental conditions at a local and global scale. Nevertheless, the exact pathways of diagenetic organic matter transformation and early-lithification, essential for the accretion and preservation in the geological record as microbialites, are not well understood. The Abu Dhabi coastal sabkha system contains a vast microbial mat belt that is dominated by continuous polygonal and internally-laminated microbial mats across the upper and middle intertidal zones. This modern system is believed to be the best analogue for the Upper Jurassic Arab Formation, which is both a prolific hydrocarbon reservoir and source rock facies in the United Arab Emirates and in neighbouring countries. In order to characterise the processes that lead to the formation of microbialites we investigated the modern and Jurassic system using a multidisciplinary approach, including growth of field-sampled microbial mats under controlled conditions in the laboratory and field-based analysis of microbial communities, mat mineralogy and organic biomarker analysis. In this study, we focus on hydrocarbon biomarker data obtained from the surface of microbial mats actively growing in the intertidal zone of the modern system. By comparing these findings to data obtained from recently

  4. An Energy Balance Model to Predict Chemical Partitioning in a Photosynthetic Microbial Mat

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Albert, Daniel B.; DesMarais, David J.

    2006-01-01

    Studies of biosignature formation in photosynthetic microbial mat communities offer potentially useful insights with regards to both solar and extrasolar astrobiology. Biosignature formation in such systems results from the chemical transformation of photosynthetically fixed carbon by accessory microorganisms. This fixed carbon represents a source not only of reducing power, but also energy, to these organisms, so that chemical and energy budgets should be coupled. We tested this hypothesis by applying an energy balance model to predict the fate of photosynthetic productivity under dark, anoxic conditions. Fermentation of photosynthetically fixed carbon is taken to be the only source of energy available to cyanobacteria in the absence of light and oxygen, and nitrogen fixation is the principal energy demand. The alternate fate for fixed carbon is to build cyanobacterial biomass with Redfield C:N ratio. The model predicts that, under completely nitrogen-limited conditions, growth is optimized when 78% of fixed carbon stores are directed into fermentative energy generation, with the remainder allocated to growth. These predictions were compared to measurements made on microbial mats that are known to be both nitrogen-limited and populated by actively nitrogen-fixing cyanobacteria. In these mats, under dark, anoxic conditions, 82% of fixed carbon stores were diverted into fermentation. The close agreement between these independent approaches suggests that energy balance models may provide a quantitative means of predicting chemical partitioning within such systems - an important step towards understanding how biological productivity is ultimately partitioned into biosignature compounds.

  5. Effect of light wavelength on hot spring microbial mat biodiversity.

    PubMed

    Nishida, Akifumi; Thiel, Vera; Nakagawa, Mayuko; Ayukawa, Shotaro; Yamamura, Masayuki

    2018-01-01

    Hot spring associated phototrophic microbial mats are purely microbial communities, in which phototrophic bacteria function as primary producers and thus shape the community. The microbial mats at Nakabusa hot springs in Japan harbor diverse photosynthetic bacteria, mainly Thermosynechococcus, Chloroflexus, and Roseiflexus, which use light of different wavelength for energy conversion. The aim of this study was to investigate the effect of the phototrophs on biodiversity and community composition in hot spring microbial mats. For this, we specifically activated the different phototrophs by irradiating the mats with different wavelengths in situ. We used 625, 730, and 890 nm wavelength LEDs alone or in combination and confirmed the hypothesized increase in relative abundance of different phototrophs by 16S rRNA gene sequencing. In addition to the increase of the targeted phototrophs, we studied the effect of the different treatments on chemotrophic members. The specific activation of Thermosynechococcus led to increased abundance of several other bacteria, whereas wavelengths specific to Chloroflexus and Roseiflexus induced a decrease in >50% of the community members as compared to the dark conditions. This suggests that the growth of Thermosynechococcus at the surface layer benefits many community members, whereas less benefit is obtained from an increase in filamentous anoxygenic phototrophs Chloroflexus and Roseiflexus. The increases in relative abundance of chemotrophs under different light conditions suggest a relationship between the two groups. Aerobic chemoheterotrophs such as Thermus sp. and Meiothermus sp. are thought to benefit from aerobic conditions and organic carbon in the form of photosynthates by Thermosynechococcus, while the oxidation of sulfide and production of elemental sulfur by filamentous anoxygenic phototrophs benefit the sulfur-disproportionating Caldimicrobium thiodismutans. In this study, we used an experimental approach under controlled

  6. Effect of light wavelength on hot spring microbial mat biodiversity

    PubMed Central

    Nishida, Akifumi; Thiel, Vera; Nakagawa, Mayuko; Ayukawa, Shotaro

    2018-01-01

    Hot spring associated phototrophic microbial mats are purely microbial communities, in which phototrophic bacteria function as primary producers and thus shape the community. The microbial mats at Nakabusa hot springs in Japan harbor diverse photosynthetic bacteria, mainly Thermosynechococcus, Chloroflexus, and Roseiflexus, which use light of different wavelength for energy conversion. The aim of this study was to investigate the effect of the phototrophs on biodiversity and community composition in hot spring microbial mats. For this, we specifically activated the different phototrophs by irradiating the mats with different wavelengths in situ. We used 625, 730, and 890 nm wavelength LEDs alone or in combination and confirmed the hypothesized increase in relative abundance of different phototrophs by 16S rRNA gene sequencing. In addition to the increase of the targeted phototrophs, we studied the effect of the different treatments on chemotrophic members. The specific activation of Thermosynechococcus led to increased abundance of several other bacteria, whereas wavelengths specific to Chloroflexus and Roseiflexus induced a decrease in >50% of the community members as compared to the dark conditions. This suggests that the growth of Thermosynechococcus at the surface layer benefits many community members, whereas less benefit is obtained from an increase in filamentous anoxygenic phototrophs Chloroflexus and Roseiflexus. The increases in relative abundance of chemotrophs under different light conditions suggest a relationship between the two groups. Aerobic chemoheterotrophs such as Thermus sp. and Meiothermus sp. are thought to benefit from aerobic conditions and organic carbon in the form of photosynthates by Thermosynechococcus, while the oxidation of sulfide and production of elemental sulfur by filamentous anoxygenic phototrophs benefit the sulfur-disproportionating Caldimicrobium thiodismutans. In this study, we used an experimental approach under controlled

  7. Methanogenic and Sulfate-Reducing Activities in a Hypersaline Microbial Mat and Associated Microbial Diversity.

    PubMed

    Cadena, Santiago; García-Maldonado, José Q; López-Lozano, Nguyen E; Cervantes, Francisco J

    2018-05-01

    Methanogenesis and sulfate reduction are important microbial processes in hypersaline environments. However, key aspects determining substrate competition between these microbial processes have not been well documented. We evaluated competitive and non-competitive substrates for stimulation of both processes through microcosm experiments of hypersaline microbial mat samples from Guerrero Negro, Baja California Sur, Mexico, and we assessed the effect of these substrates on the microbial community composition. Methylotrophic methanogenesis evidenced by sequences belonging to methanogens of the family Methanosarcinaceae was found as the dominant methanogenic pathway in the studied hypersaline microbial mat. Nevertheless, our results showed that incubations supplemented with acetate and lactate, performed in absence of sulfate, also produced methane after 40 days of incubation, apparently driven by hydrogenotrophic methanogens affiliated to the family Methanomicrobiaceae. Sulfate reduction was mainly stimulated by addition of acetate and lactate; however, after 40 days of incubation, an increase of the H 2 S concentrations in microcosms amended with trimethylamine and methanol was also observed, suggesting that these substrates are putatively used for sulfate reduction. Moreover, 16S rRNA gene sequencing analysis showed remarkable differences in the microbial community composition among experimental treatments. In the analyzed sample amended with acetate, sulfate-reducing bacteria (SRB) belonging to the family Desulfobacteraceae were dominant, while members of Desulfohalobiaceae, Desulfomicrobiaceae, and Desulfovibrionaceae were found in the incubation with lactate. Additionally, we detected an unexpected high abundance of unclassified Hydrogenedentes (near 25%) in almost all the experimental treatments. This study contributes to better understand methanogenic and sulfate-reducing activities, which play an important role in the functioning of hypersaline environments.

  8. Testlet-Based Multidimensional Adaptive Testing.

    PubMed

    Frey, Andreas; Seitz, Nicki-Nils; Brandt, Steffen

    2016-01-01

    Multidimensional adaptive testing (MAT) is a highly efficient method for the simultaneous measurement of several latent traits. Currently, no psychometrically sound approach is available for the use of MAT in testlet-based tests. Testlets are sets of items sharing a common stimulus such as a graph or a text. They are frequently used in large operational testing programs like TOEFL, PISA, PIRLS, or NAEP. To make MAT accessible for such testing programs, we present a novel combination of MAT with a multidimensional generalization of the random effects testlet model (MAT-MTIRT). MAT-MTIRT compared to non-adaptive testing is examined for several combinations of testlet effect variances (0.0, 0.5, 1.0, and 1.5) and testlet sizes (3, 6, and 9 items) with a simulation study considering three ability dimensions with simple loading structure. MAT-MTIRT outperformed non-adaptive testing regarding the measurement precision of the ability estimates. Further, the measurement precision decreased when testlet effect variances and testlet sizes increased. The suggested combination of the MTIRT model therefore provides a solution to the substantial problems of testlet-based tests while keeping the length of the test within an acceptable range.

  9. Testlet-Based Multidimensional Adaptive Testing

    PubMed Central

    Frey, Andreas; Seitz, Nicki-Nils; Brandt, Steffen

    2016-01-01

    Multidimensional adaptive testing (MAT) is a highly efficient method for the simultaneous measurement of several latent traits. Currently, no psychometrically sound approach is available for the use of MAT in testlet-based tests. Testlets are sets of items sharing a common stimulus such as a graph or a text. They are frequently used in large operational testing programs like TOEFL, PISA, PIRLS, or NAEP. To make MAT accessible for such testing programs, we present a novel combination of MAT with a multidimensional generalization of the random effects testlet model (MAT-MTIRT). MAT-MTIRT compared to non-adaptive testing is examined for several combinations of testlet effect variances (0.0, 0.5, 1.0, and 1.5) and testlet sizes (3, 6, and 9 items) with a simulation study considering three ability dimensions with simple loading structure. MAT-MTIRT outperformed non-adaptive testing regarding the measurement precision of the ability estimates. Further, the measurement precision decreased when testlet effect variances and testlet sizes increased. The suggested combination of the MTIRT model therefore provides a solution to the substantial problems of testlet-based tests while keeping the length of the test within an acceptable range. PMID:27917132

  10. Maté: a risk factor for oral and oropharyngeal cancer.

    PubMed

    Goldenberg, David

    2002-10-01

    Maté is a tea-like beverage consumed mainly in Argentina, Uruguay, Paraguay, southern Brazil and to a lesser degree in other areas of the world such as Germany, Syria, Lebanon and Northern Israel. It is brewed from the dried leaves and stemlets of the perennial tree Ilex paraguarensis ("yerba mate") a species that belongs to the Aquifoliaceae family. Maté consumption has been associated with an increased rate of oral and oropharyngeal cancers. The purpose of this study is to review the literature and discuss the role of Maté consumption in the development of oral and oropharyngeal cancer and the potential carcinogenic mechanisms. A review of the relevant literature linking Maté consumption with oral and oropharyngeal cancer and the carcinogenicity of Maté was performed. The search was performed using Medline, library catalogues, OCLC first search and ISI web of science databases. Case control studies on Maté drinking populations and, in vivo and in vitro studies on the carcinogenicity of Maté were reviewed. The populations reviewed in many of these studies also used alcohol and tobacco products confounding the influence of Maté as an independent risk factor. There is evidence in the literature that Maté consumption is in itself carcinogenic and plays a role in the development of cancers of the oral cavity and oropharynx. Although the exact mechanism of carcinogenesis is still unknown, available information suggests that Maté drinking should be considered one of the risk factors for oral and oropharyngeal cancer.

  11. Design and Construction of Mat Foundations

    DTIC Science & Technology

    1989-11-01

    column loads indicates the effectiveness of stiffening beams in spreading applied loads ... beams centered on rows of columns , (3) a shear and moment diagram may be constructed assuming that the column loads are point loads , (4) the mat depth...flexible consisting of precast concrete panels on a structural steel frame. Column loads , Figure 48, lead to an average pressure of 1.4 ksf. The mat

  12. Characterizing Microbial Mat Morphology with Structure from Motion Techniques in Ice-Covered Lake Joyce, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Mackey, T. J.; Leidman, S. Z.; Allen, B.; Hawes, I.; Lawrence, J.; Jungblut, A. D.; Krusor, M.; Coleman, L.; Sumner, D. Y.

    2015-12-01

    Structure from Motion (SFM) techniques can provide quantitative morphological documentation of otherwise inaccessible benthic ecosystems such as microbial mats in Lake Joyce, a perennially ice-covered lake of the Antarctic McMurdo Dry Valleys (MDV). Microbial mats are a key ecosystem of MDV lakes, and diverse mat morphologies like pinnacles emerge from interactions among microbial behavior, mineralization, and environmental conditions. Environmental gradients can be isolated to test mat growth models, but assessment of mat morphology along these gradients is complicated by their inaccessibility: the Lake Joyce ice cover is 4-5 m thick, water depths containing diverse pinnacle morphologies are 9-14 m, and relevant mat features are cm-scale. In order to map mat pinnacle morphology in different sedimentary settings, we deployed drop cameras (SeaViewer and GoPro) through 29 GPS referenced drill holes clustered into six stations along a transect spanning 880 m. Once under the ice cover, a boom containing a second GoPro camera was unfurled and rotated to collect oblique images of the benthic mats within dm of the mat-water interface. This setup allowed imaging from all sides over a ~1.5 m diameter area of the lake bottom. Underwater lens parameters were determined for each camera in Agisoft Lens; images were reconstructed and oriented in space with the SFM software Agisoft Photoscan, using the drop camera axis of rotation as up. The reconstructions were compared to downward facing images to assess accuracy, and similar images of an object with known geometry provided a test for expected error in reconstructions. Downward facing images identify decreasing pinnacle abundance in higher sedimentation settings, and quantitative measurements of 3D reconstructions in KeckCAVES LidarViewer supplement these mat morphological facies with measurements of pinnacle height and orientation. Reconstructions also help isolate confounding variables for mat facies trends with measurements

  13. Freeze-thaw revival of rotifers and algae in a desiccated, high-elevation (5500 meters) microbial mat, high Andes, Perú.

    PubMed

    Schmidt, S K; Darcy, J L; Sommers, Pacifica; Gunawan, Eva; Knelman, J E; Yager, Karina

    2017-05-01

    This is the first study of the highest elevation cyanobacteria-dominated microbial mat yet described. The desiccated mat was sampled in 2010 from an ephemeral rock pool at 5500 m above sea level in the Cordillera Vilcanota of southern Perú. After being frozen for 6 years at -20 °C in the lab, pieces of the mat were sequenced to fully characterize both the 16 and 18S microbial communities and experiments were conducted to determine if organisms in the mat could revive and become active under the extreme freeze-thaw conditions that these mats experience in the field. Sequencing revealed an unexpectedly diverse, multi-trophic microbial community with 16S OTU richness comparable to similar, seasonally desiccated mats from the Dry Valleys of Antarctica and low elevation sites in the Atacama Desert region. The bacterial community of the mat was dominated by phototrophs in the Cyanobacteria (Nostoc) and the Rhodospirillales, whereas the eukaryotic community was dominated by predators such as bdelloid rotifers (Philodinidae). Microcosm experiments showed that bdelloid rotifers in the mat were able to come out of dormancy and actively forage even under realistic field conditions (diurnal temperature fluctuations of -12 °C at night to + 27 °C during the day), and after being frozen for 6 years. Our results broaden our understanding of the diversity of life in periodically desiccated, high-elevation habitats and demonstrate that extreme freeze-thaw cycles per se are not a major factor limiting the development of at least some members of these unique microbial mat systems.

  14. MAT1, cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with TFIIH.

    PubMed Central

    Adamczewski, J P; Rossignol, M; Tassan, J P; Nigg, E A; Moncollin, V; Egly, J M

    1996-01-01

    MAT1, cyclin H and cdk7 are part of TFIIH, a class II transcription factor which possesses numerous subunits of which several have been shown to be involved in processes other than transcription. Two of them, XPD (ERCC2) and XPB (ERCC3), are helicases involved in nucleotide excision repair (NER), whereas cdk7, cyclin H and MAT1 are thought to participate in cell cycle regulation. MAT1, cyclin H and cdk7 exist as a ternary complex either free or associated with TFIIH from which the latter can be dissociated at high salt concentration. MAT1 is strongly associated with cdk7 and cyclin H. Although not strictly required for the formation and activity of the complex, it stimulates its kinase activity. The kinase activity of TFIIH, which is constant during the cell cycle, is reduced after UV light irradiation. Images PMID:8617234

  15. Mineralogy of Iron Microbial Mats from Loihi Seamount

    PubMed Central

    Toner, Brandy M.; Berquó, Thelma S.; Michel, F. Marc; Sorensen, Jeffry V.; Templeton, Alexis S.; Edwards, Katrina J.

    2011-01-01

    Extensive mats of Fe oxyhydroxides and associated Fe-oxidizing microbial organisms form in diverse geochemical settings – freshwater seeps to deep-sea vents – where ever opposing Fe(II)-oxygen gradients prevail. The mineralogy, reactivity, and structural transformations of Fe oxyhydroxides precipitated from submarine hydrothermal fluids within microbial mats remains elusive in active and fossil systems. In response, a study of Fe microbial mat formation at the Loihi Seamount was conducted to describe the physical and chemical characteristics of Fe-phases using extended X-ray absorption fine structure spectroscopy, powder X-ray diffraction, synchrotron radiation X-ray total scattering, low-temperature magnetic measurements, and Mössbauer spectroscopy. Particle sizes of 3.5–4.6 nm were estimated from magnetism data, and coherent scattering domain (CSD) sizes as small as 1.6 nm are indicated by pair distribution function (PDF) analysis. Disorder in the nanostructured Fe-bearing phases results in limited intermediate-range structural order: less than that of standard two-line ferrihydrite (Fh), except for the Pohaku site. The short-range ordered natural Fh (FhSRO) phases were stable at 4°C in the presence of oxygen for at least 1 year and during 400°C treatment. The observed stability of the FhSRO is consistent with magnetic observations that point to non-interacting nanoparticles. PDF analyses of total scattering data provide further evidence for FhSRO particles with a poorly ordered silica coating. The presence of coated particles explains the small CSD for the mat minerals, as well as the stability of the minerals over time and against heating. The mineral properties observed here provide a starting point from which progressively older and more extensively altered Fe deposits may be examined, with the ultimate goal of improved interpretation of past biogeochemical conditions and diagenetic processes. PMID:22485113

  16. MatLab Programming for Engineers Having No Formal Programming Knowledge

    NASA Technical Reports Server (NTRS)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.

  17. ERB master archival tape specification no. T 134081 ERB MAT, revision 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Earth radiation budget (ERB)MAT tapes are generated by the ERB MATGEN software using the IBM 3081 computer system operated by the Science and Applications Computer Center at Goddard Space Flight Center. All MAT's are 9-track and MAT data are in ascending time order. The gross tape format for NIMBUS year-1 and year-2 MAT's is different from the format of MAT's starting with year-3. The MATs from the first two years are to contain one day's worth of data while all other MATs are to contain multiple day's worth of data stacked onto the tapes.

  18. Accuracy of Jump-Mat Systems for Measuring Jump Height.

    PubMed

    Pueo, Basilio; Lipinska, Patrycja; Jiménez-Olmedo, José M; Zmijewski, Piotr; Hopkins, Will G

    2017-08-01

    Vertical-jump tests are commonly used to evaluate lower-limb power of athletes and nonathletes. Several types of equipment are available for this purpose. To compare the error of measurement of 2 jump-mat systems (Chronojump-Boscosystem and Globus Ergo Tester) with that of a motion-capture system as a criterion and to determine the modifying effect of foot length on jump height. Thirty-one young adult men alternated 4 countermovement jumps with 4 squat jumps. Mean jump height and standard deviations representing technical error of measurement arising from each device and variability arising from the subjects themselves were estimated with a novel mixed model and evaluated via standardization and magnitude-based inference. The jump-mat systems produced nearly identical measures of jump height (differences in means and in technical errors of measurement ≤1 mm). Countermovement and squat-jump height were both 13.6 cm higher with motion capture (90% confidence limits ±0.3 cm), but this very large difference was reduced to small unclear differences when adjusted to a foot length of zero. Variability in countermovement and squat-jump height arising from the subjects was small (1.1 and 1.5 cm, respectively, 90% confidence limits ±0.3 cm); technical error of motion capture was similar in magnitude (1.7 and 1.6 cm, ±0.3 and ±0.4 cm), and that of the jump mats was similar or smaller (1.2 and 0.3 cm, ±0.5 and ±0.9 cm). The jump-mat systems provide trustworthy measurements for monitoring changes in jump height. Foot length can explain the substantially higher jump height observed with motion capture.

  19. Evaluation of Faun MLC-70 Trackway Mat System Under Simulated F-15 Traffic

    DTIC Science & Technology

    2014-05-01

    stronger soils. Results of traffic tests presented herein include individual mat panel properties, pretest and posttest sub- grade soil conditions, subgrade...strength of the subgrade had changed during the evaluation. The average pretest and posttest CBR measurements for each item are shown in Table 3... Pretest A1 25.2 50 A2 33.3 60 A3 30.9 35 Posttest A1 12.5 10 -12.7 -40 A2 18.5 15 -14.8 -45 A3 12.8 30 -18.1 -5 2.3.1.2 Mat

  20. Method for production of carbon nanofiber mat or carbon paper

    DOEpatents

    Naskar, Amit K.

    2015-08-04

    Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.

  1. A study on tinea gladiatorum in young wrestlers and dermatophyte contamination of wrestling mats from Sari, Iran

    PubMed Central

    Hedayati, Mohammad T; Afshar, Parvaneh; Shokohi, Tahereh; Aghili, Reza

    2007-01-01

    Objective To study the prevalence of tinea gladiatorum among young wrestlers and dermatophyte contamination of wrestling mats from Sari city, the capital of Mazandaran, a northern province of Iran. Design 324 wrestlers (aged 9–20 years) from 7 active clubs in Sari city were examined, and skin scrapings were obtained from 135 wrestlers suspected of having tinea gladiatorum. The scraped skin samples were evaluated with potassium hydroxide. Pleated carpet sterile fragments (5×5 cm) were used for to survey of wrestling mat contamination. Sabouraud's dextrose agar with and without chloramphenicole and cyclohexamide was used to culture scrapings and wrestling mat samples. The dermatophytes were identified by routine laboratory techniques. Results Our study showed that of the 324 wrestlers, 65 (20.1%) had tinea gladiatorum. Most lesions were on the trunk and head. All the wrestling mat samples were positive for dermatophytes. Trichophyton tonsurans was isolated from all the scrapings and wrestling mat samples. Conclusion Considering that several colonies of T tonsurans were isolated from all the wrestling mats and from wrestlers with tinea gladiatorum (as the only dermatophyte species) we think that the contamination of wrestling mats with T tonsurans has a crucial role in the injection of wrestlers. PMID:17138633

  2. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Treesearch

    C. Phillips; L.A. Kluber; J.P. Martin; B.A. Caldwell; B.J. Bond

    2012-01-01

    Distinct aggregations of fungal hyphae and rhizomorphs, or “mats”, formed by some genera of ectomycorrhizal (EcM) fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was...

  3. Environmental Controls on Photosynthetic Microbial Mat Distribution and Morphogenesis on a 3.42 Ga Clastic-Starved Platform

    NASA Astrophysics Data System (ADS)

    Tice, Michael M.

    2009-12-01

    All mats are preserved in the shallowest-water interval of those rocks deposited below normal wave base and above storm wave base. This interval is bounded below by a transgressive lag formed during regional flooding and above by a small condensed section that marks a local relative sea-level maximum. Restriction of all mat morphotypes to the shallowest interval of the storm-active layer in the BRC ocean reinforces previous interpretations that these mats were constructed primarily by photosynthetic organisms. Morphotypes α and β dominate the lower half of this interval and grew during deposition of relatively coarse detrital carbonaceous grains, while morphotype γ dominates the upper half and grew during deposition of fine detrital carbonaceous grains. The observed mat distribution suggests that either light intensity or, more likely, small variations in ambient current energy acted as a first-order control on mat morphotype distribution. These results demonstrate significant environmental control on biological morphogenetic processes independent of influences from siliciclastic sedimentation.

  4. Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc

    PubMed Central

    Hager, Kevin W.; Fullerton, Heather; Butterfield, David A.; Moyer, Craig L.

    2017-01-01

    The Mariana region exhibits a rich array of hydrothermal venting conditions in a complex geological setting, which provides a natural laboratory to study the influence of local environmental conditions on microbial community structure as well as large-scale patterns in microbial biogeography. We used high-throughput amplicon sequencing of the bacterial small subunit (SSU) rRNA gene from 22 microbial mats collected from four hydrothermally active locations along the Mariana Arc and back-arc to explore the structure of lithotrophically-based microbial mat communities. The vent effluent was classified as iron- or sulfur-rich corresponding with two distinct community types, dominated by either Zetaproteobacteria or Epsilonproteobacteria, respectively. The Zetaproteobacterial-based communities had the highest richness and diversity, which supports the hypothesis that Zetaproteobacteria function as ecosystem engineers creating a physical habitat within a chemical environment promoting enhanced microbial diversity. Gammaproteobacteria were also high in abundance within the iron-dominated mats and some likely contribute to primary production. In addition, we also compare sampling scale, showing that bulk sampling of microbial mats yields higher diversity than micro-scale sampling. We present a comprehensive analysis and offer new insights into the community structure and diversity of lithotrophically-driven microbial mats from a hydrothermal region associated with high microbial biodiversity. Our study indicates an important functional role of for the Zetaproteobacteria altering the mat habitat and enhancing community interactions and complexity. PMID:28970817

  5. Photosynthetic Microbial Mats are Exemplary Sources of Diverse Biosignatures (Invited)

    NASA Astrophysics Data System (ADS)

    Des Marais, D. J.; Jahnke, L. L.

    2013-12-01

    Marine cyanobacterial microbial mats are widespread, compact, self-contained ecosystems that create diverse biosignatures and have an ancient fossil record. Within the mats, oxygenic photosynthesis provides organic substrates and O2 to the community. Both the absorption and scattering of light change the intensity and spectral composition of incident radiation as it penetrates a mat. Some phototrophs utilize infrared light near the base of the photic zone. A mat's upper layers can become highly reduced and sulfidic at night. Counteracting gradients of O2 and sulfide shape the chemical environment and provide daily-contrasting microenvironments separated on a scale of a few mm. Radiation hazards (UV, etc.), O2 and sulfide toxicity elicit motility and other physiological responses. This combination of benefits and hazards of light, O2 and sulfide promotes the allocation of various essential mat processes between light and dark periods and to various depths in the mat. Associated nonphotosynthetic communities, including anaerobes, strongly influence many of the ecosystem's overall characteristics, and their processes affect any biosignatures that enter the fossil record. A biosignature is an object, substance and/or pattern whose origin specifically requires a biological agent. The value of a biosignature depends not only on the probability of life creating it, but also on the improbability of nonbiological processes producing it. Microbial mats create biosignatures that identify particular groups of organisms and also reveal attributes of the mat ecosystem. For example, branched hydrocarbons and pigments can be diagnostic of cyanobacteria and other phototrophic bacteria, and isoprenoids can indicate particular groups of archea. Assemblages of lipid biosignatures change with depth due to changes in microbial populations and diagenetic transformations of organic matter. The 13C/12C values of organic matter and carbonates reflect isotopic discrimination by particular

  6. Influence of layer-by-layer assembled electrospun poly (L-lactic acid) nanofiber mats on the bioactivity of endothelial cells

    NASA Astrophysics Data System (ADS)

    Wu, Keke; Zhang, Xiazhi; Yang, Wufeng; Liu, Xiaoyan; Jiao, Yanpeng; Zhou, Changren

    2016-12-01

    Electrospun poly(L-lactic acid) (PLLA) nanofiber mats were successfully modified by deposition of multilayers with chitosan (CS), heparin (Hep) and graphene oxide (GO) through electrostatic layer-by-layer (LBL) self-assembly method. In this study, the surface properties of PLLA nanofiber mats before and after modification were investigated via scanning electron microscope (SEM), atomic force microscopy (AFM), attenuated total reflectance fourier transformation infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. In addition, the cytocompatibility of the modified PLLA nanofiber mats were investigated by testing endothelial cells compatibility, including cell attachment, cell proliferation and cell cycle. The results revealed that the surfaces of modified PLLA nanofiber mats become much rougher, stifiness and the hydrophilicity of the LBL modified PLLA nanofiber mats were improved compared to original PLLA one. Moreover, the modified PLLA nanofiber mats had promoted the endothelial cells viability attachment significantly. Besides, we studied the PLLA nanofiber mats on the expression of necrosis factor (TNF-α), interleukine-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) in endothelial cells. The results showed that modified PLLA nanofiber mats had inhibited the inflammatory response to some extent.

  7. Chemotrophic Microbial Mats and Their Potential for Preservation in the Rock Record

    NASA Astrophysics Data System (ADS)

    Bailey, Jake V.; Orphan, Victoria J.; Joye, Samantha B.; Corsetti, Frank A.

    2009-11-01

    Putative microbialites are commonly regarded to have formed in association with photosynthetic microorganisms, such as cyanobacteria. However, many modern microbial mat ecosystems are dominated by chemotrophic bacteria and archaea. Like phototrophs, filamentous sulfur-oxidizing bacteria form large mats at the sediment/water interface that can act to stabilize sediments, and their metabolic activities may mediate the formation of marine phosphorites. Similarly, bacteria and archaea associated with the anaerobic oxidation of methane (AOM) catalyze the precipitation of seafloor authigenic carbonates. When preserved, lipid biomarkers, isotopic signatures, body fossils, and lithological indicators of the local depositional environment may be used to identify chemotrophic mats in the rock record. The recognition of chemotrophic communities in the rock record has the potential to transform our understanding of ancient microbial ecologies, evolution, and geochemical conditions. Chemotrophic microbes on Earth occupy naturally occurring interfaces between oxidized and reduced chemical species and thus may provide a new set of search criteria to target life-detection efforts on other planets.

  8. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat

    NASA Technical Reports Server (NTRS)

    Canfield, Donald E.; Des Marais, David J.

    1993-01-01

    Complete budgets for carbon and oxygen have been constructed for cyanobacterial mats dominated by Microcoleus chthonoplastes from the evaporating ponds of a salt works. We infer from the data the various sinks for O2 as well as the sources of carbon for primary production. Although seasonal variability exists, a major percentage of the O2 produced during the day did not diffuse out of the mat but was used within the mat to oxidize both organic carbon and the sulfide produced by sulfate reduction. At night, most of the O2 that diffused into the mat was used to oxidize sulfide, with O2 respiration of minor importance. During the day, the internal mat processes of sulfate reduction and O2 respiration generated as much or more inorganic carbon (DIC) for primary production as diffusion into the mat. Oxygenic photosynthesis was the most important process of carbon fixation. At night, the DIC lost from the mat was mostly from sulfate reduction. Elemental fluxes across the mat/brine interface indicated that carbon with an oxidation state of greater than zero was taken up by the mat during the day and liberated from the mat at night. Overall, carbon with an average oxidation state of near zero accumulated in the mat. Both carbon fixation and carbon oxidation rates varied with temperature by a similar amount.

  9. An extraterrestrial habitat on Earth: the algal mat of Don Juan [correction of Jaun] Pond.

    PubMed

    Siegel, B Z; Siegel, S M; Chen, J; LaRock, P

    1983-01-01

    On the edge of Don Juan Pond in the Wright Valley of Antarctica lies a mat of mineral and detritus cemented by organic matter. In spite of a CaCl2 concentration of about 33% (w/v), the mat contains Oscillatoria and other cyanobacteria, unicellular forms, colonial forms rich in carotenoids, and diatoms. Bacteria are rare; fungal filaments are not. Oscillatoria showed motility but only at temperatures <10 degrees C. Acetone extracts of the mat and nearby muds yielded visible spectra similar to those of laboratory grown O. sancta, with 50- to 70-fold molar ratio of chlorophyll a to b. Although rare, tardigrades were also found. The algal mat had enzymatic activities characteristic of peroxidase, catalase, dehydrogenase, and amylase. Cellulose, chitin, protein, lipid and ATP were present. Previously, algae in the Wright Valley have been described in melt water, not in the brine itself. Wright Valley has been used as a near sterile Martian model. It obviously contains an array of hardy terrestrial organisms.

  10. Water flow and solute transport in floating fen root mats

    NASA Astrophysics Data System (ADS)

    Stofberg, Sija F.; EATM van der Zee, Sjoerd

    2015-04-01

    Floating fens are valuable wetlands, found in North-Western Europe, that are formed by floating root mats when old turf ponds are colonized by plants. These terrestrialization ecosystems are known for their biodiversity and the presence of rare plant species, and the root mats reveal different vegetation zones at a small scale. The vegetation zones are a result of strong gradients in abiotic conditions, including groundwater dynamics, nutrients and pH. To prevent irreversible drought effects such as land subsidence and mineralization of peat, water management involves import of water from elsewhere to maintain constant surface water levels. Imported water may have elevated levels of salinity during dry summers, and salt exposure may threaten the vegetation. To assess the risk of exposure of the rare plant species to salinity, the hydrology of such root mats must be understood. Physical properties of root mats have scarcely been investigated. We have measured soil characteristics, hydraulic conductivity, vertical root mat movement and groundwater dynamics in a floating root mat in the nature reserve Nieuwkoopse Plassen, in the Netherlands. The root mat mostly consists of roots and organic material, in which the soil has a high saturated water content, and strongly varies in its stage of decomposition. We have found a distinct negative correlation between degree of decomposition and hydraulic conductivity, similar to observations for bogs in the literature. Our results show that the relatively young, thin edge of the root mat that colonizes the surface water has a high hydraulic conductivity and floats in the surface water, resulting in very small groundwater fluctuations within the root mat. The older part of the root mat, that is connected to the deeper peat layers is hydrologically more isolated and the material has a lower conductivity. Here, the groundwater fluctuates strongly with atmospheric forcing. The zones of hydraulic properties and vegetation, appear to

  11. MATS--Management Accounting Tutorial System. Version 1.0. User Guide.

    ERIC Educational Resources Information Center

    Wardle, Andrew; O'Connor, Rodric

    The Management Accounting Tutorial System (MATS) is a management accounting database for a carpet manufacturing company. The system allows the display and output of monthly activities, and is intended to provide a means of illustrating the main topics of the second year management accounting course at Manchester University. The system itself…

  12. MATS--Management Accounting Tutorial System. Version 1.0. Project Documentation.

    ERIC Educational Resources Information Center

    Wardle, Andrew; O'Connor, Rodric

    The Management Accounting Tutorial System (MATS) is a management accounting database for a carpet manufacturing company. The system allows the display and output of monthly activities, and is intended to provide a means of illustrating the main topics of the second year management accounting course at Manchester University. The system itself…

  13. BIOGEOCHEMICAL STUDIES OF PHOTOSYNTHETIC MICROBIAL MATS AND THEIR BIOTA

    NASA Technical Reports Server (NTRS)

    DesMarais, David; Discipulo, M.; Turk, K.; Londry, K. L.

    2005-01-01

    Photosynthetic microbial mats offer an opportunity to define holistic functionality at the millimeter scale. At the same time. their biogeochemistry contributes to environmental processes on a planetary scale. These mats are possibly direct descendents of the most ancient biological communities; communities in which oxygenic photosynthesis might have been invented. Mats provide one of the best natural systems to study how microbial populations associate to control dynamic biogeochemical gradients. These are self- sustaining, complete ecosystems in which light energy absorbed over a dial (24 hour) cycle drives the synthesis of spatially-organized, diverse biomass. Tightly-coupled microorganisms in the mat have specialized metabolisms that catalyze transformations of carbon, nitrogen, sulfur, and a host of other elements.

  14. Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring

    NASA Technical Reports Server (NTRS)

    Pierson, B. K.; Parenteau, M. N.; Griffin, B. M.

    1999-01-01

    At Chocolate Pots Hot Springs in Yellowstone National Park the source waters have a pH near neutral, contain high concentrations of reduced iron, and lack sulfide. An iron formation that is associated with cyanobacterial mats is actively deposited. The uptake of [(14)C]bicarbonate was used to assess the impact of ferrous iron on photosynthesis in this environment. Photoautotrophy in some of the mats was stimulated by ferrous iron (1.0 mM). Microelectrodes were used to determine the impact of photosynthetic activity on the oxygen content and the pH in the mat and sediment microenvironments. Photosynthesis increased the oxygen concentration to 200% of air saturation levels in the top millimeter of the mats. The oxygen concentration decreased with depth and in the dark. Light-dependent increases in pH were observed. The penetration of light in the mats and in the sediments was determined. Visible radiation was rapidly attenuated in the top 2 mm of the iron-rich mats. Near-infrared radiation penetrated deeper. Iron was totally oxidized in the top few millimeters, but reduced iron was detected at greater depths. By increasing the pH and the oxygen concentration in the surface sediments, the cyanobacteria could potentially increase the rate of iron oxidation in situ. This high-iron-content hot spring provides a suitable model for studying the interactions of microbial photosynthesis and iron deposition and the role of photosynthesis in microbial iron cycling. This model may help clarify the potential role of photosynthesis in the deposition of Precambrian banded iron formations.

  15. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat

    NASA Astrophysics Data System (ADS)

    Canfield, Donald E.; Des Marais, David J.

    1993-08-01

    Complete budgets for carbon and oxygen have been constructed for cyanobacterial mats dominated by Microcoleus chthonoplastes from the evaporating ponds of a salt works located in Guerrero Negro, Baja California Sur, Mexico. Included in the budget are measured rates of O 2 production, sulfate reduction, and elemental exchange across the mat/brine interface, day and night, at various temperatures and times of the year. We infer from this data the various sinks for O 2, as well as the sources of carbon for primary production. To summarize, although seasonal variability exists, a major percentage of the O 2 produced during the day did not diffuse out of the mat but was used within the mat to oxidize both organic carbon and the sulfide produced by sulfate reduction. At night, most of the O 2 that diffused into the mat was used to oxidize sulfide, with O 2 respiration of minor importance. During the day, the internal mat processes of sulfate reduction and O 2 respiration generated as much or more inorganic carbon (DIC) for primary production as diffusion into the mat. Also, oxygenic photosynthesis was the most important process of carbon fixation, although anoxygenic photosynthesis may have been important at low light levels during some times of the year. At night, the DIC lost from the mat was mostly from sulfate reduction. Elemental fluxes across the mat/brine interface indicated that carbon with an oxidation state of greater than zero was taken up by the mat during the day and liberated from the mat at night. Overall, carbon with an average oxidation state of near zero accumulated in the mat. Both carbon fixation and carbon oxidation rates varied with temperature by a similar amount. These mats are thus closely coupled systems where rapid rates of photosynthesis both require and fuel rapid rates of heterotrophic carbon oxidation.

  16. Characterization of Chemosynthetic Microbial Mats Associated with Intertidal Hydrothermal Sulfur Vents in White Point, San Pedro, CA, USA

    PubMed Central

    Miranda, Priscilla J.; McLain, Nathan K.; Hatzenpichler, Roland; Orphan, Victoria J.; Dillon, Jesse G.

    2016-01-01

    The shallow-sea hydrothermal vents at White Point (WP) in Palos Verdes on the southern California coast support microbial mats and provide easily accessed settings in which to study chemolithoautotrophic sulfur cycling. Previous studies have cultured sulfur-oxidizing bacteria from the WP mats; however, almost nothing is known about the in situ diversity and activity of the microorganisms in these habitats. We studied the diversity, micron-scale spatial associations and metabolic activity of the mat community via sequence analysis of 16S rRNA and aprA genes, fluorescence in situ hybridization (FISH) microscopy and sulfate reduction rate (SRR) measurements. Sequence analysis revealed a diverse group of bacteria, dominated by sulfur cycling gamma-, epsilon-, and deltaproteobacterial lineages such as Marithrix, Sulfurovum, and Desulfuromusa. FISH microscopy suggests a close physical association between sulfur-oxidizing and sulfur-reducing genotypes, while radiotracer studies showed low, but detectable, SRR. Comparative 16S rRNA gene sequence analyses indicate the WP sulfur vent microbial mat community is similar, but distinct from other hydrothermal vent communities representing a range of biotopes and lithologic settings. These findings suggest a complete biological sulfur cycle is operating in the WP mat ecosystem mediated by diverse bacterial lineages, with some similarity with deep-sea hydrothermal vent communities. PMID:27512390

  17. Fabrication of nanofiber mats from electrospinning of functionalized polymers

    NASA Astrophysics Data System (ADS)

    Oktay, Burcu; Kayaman-Apohan, Nilhan; Erdem-Kuruca, Serap

    2014-08-01

    Electrospinning technique enabled us to prepare nanofibers from synthetic and natural polymers. In this study, it was aimed to fabricate electrospun poly(vinyl alcohol) (PVA) based nanofibers by reactive electrospinning process. To improve endurance of fiber toward to many solvents, PVA was functionalized with photo-crosslinkable groups before spinning. Afterward PVA was crosslinked by UV radiation during electrospinning process. The nanofiber mats were characterized by scanning electron microscopy (SEM). The results showed that homogenous, uniform and crosslinked PVA nanofibers in diameters of about 200 nm were obtained. Thermal stability of the nanofiber mat was investigated with thermal gravimetric analysis (TGA). Also the potential use of this nanofiber mats for tissue engineering was examined. Osteosarcoma (Saos) cells were cultured on the nanofiber mats.

  18. Evaluation of polyacrylonitrile electrospun nano-fibrous mats as leukocyte removal filter media.

    PubMed

    Pourbaghi, Raha; Zarrebini, Mohammad; Semnani, Dariush; Pourazar, Abbasali; Akbari, Nahid; Shamsfar, Reihaneh

    2018-07-01

    Removal of leukocytes from blood products is the most effective means for elimination of undesirable side effects and prevention of possible reactions in recipients. Micro-fibrous mats are currently used for removal of leukocytes from blood. In this study, samples of electrospun nano-fibrous mats were produced. The performance of the produced electrospun nano-fibrous mats as means of leukocytes removal from fresh whole blood was both evaluated and compared with that of commercially available micro-fibrous mats. In order to produce the samples, polyacrylonitrile (PAN) nano-fibrous mats were made under different electrospinning conditions. Mean fiber diameter, pore characterization and surface roughness of the PAN nano-fibrous mats were determined using image processing technique. In order to evaluate the surface tension of the fabricated mats, water contact angle was measured. The leukocyte removal performance, erythrocytes recovery percent and hemolysis rate of the nano-fibrous mats were compared. The effectiveness of nano-fibrous mats in removing leukocyte was established using both scanning electron microscope and optical microscope. Results showed that for given weight, the fabricated nano-fibrous mats were not only more efficient but also more cost-effective than their commercial counterparts. Results confirmed that changes in mean fiber diameter, the number of layer and weight of each layer in the absence of any chemical reaction or physical surface modification, the fabricated nano-fibrous mats were able to remove 5-log of leukocytes. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1759-1769, 2018. © 2017 Wiley Periodicals, Inc.

  19. Microbial Diversity in Sediment Ecosystems (Evaporites Domes, Microbial Mats, and Crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile.

    PubMed

    Fernandez, Ana B; Rasuk, Maria C; Visscher, Pieter T; Contreras, Manuel; Novoa, Fernando; Poire, Daniel G; Patterson, Molly M; Ventosa, Antonio; Farias, Maria E

    2016-01-01

    We combined nucleic acid-based molecular methods, biogeochemical measurements, and physicochemical characteristics to investigate microbial sedimentary ecosystems of Laguna Tebenquiche, Atacama Desert, Chile. Molecular diversity, and biogeochemistry of hypersaline microbial mats, rhizome-associated concretions, and an endoevaporite were compared with: The V4 hypervariable region of the 16S rRNA gene was amplified by pyrosequencing to analyze the total microbial diversity (i.e., bacteria and archaea) in bulk samples, and in addition, in detail on a millimeter scale in one microbial mat and in one evaporite. Archaea were more abundant than bacteria. Euryarchaeota was one of the most abundant phyla in all samples, and particularly dominant (97% of total diversity) in the most lithified ecosystem, the evaporite. Most of the euryarchaeal OTUs could be assigned to the class Halobacteria or anaerobic and methanogenic archaea. Planctomycetes potentially also play a key role in mats and rhizome-associated concretions, notably the aerobic organoheterotroph members of the class Phycisphaerae. In addition to cyanobacteria, members of Chromatiales and possibly the candidate family Chlorotrichaceae contributed to photosynthetic carbon fixation. Other abundant uncultured taxa such as the candidate division MSBL1, the uncultured MBGB, and the phylum Acetothermia potentially play an important metabolic role in these ecosystems. Lithifying microbial mats contained calcium carbonate precipitates, whereas endoevoporites consisted of gypsum, and halite. Biogeochemical measurements revealed that based on depth profiles of O2 and sulfide, metabolic activities were much higher in the non-lithifying mat (peaking in the least lithified systems) than in lithifying mats with the lowest activity in endoevaporites. This trend in decreasing microbial activity reflects the increase in salinity, which may play an important role in the biodiversity.

  20. Microbial Diversity in Sediment Ecosystems (Evaporites Domes, Microbial Mats, and Crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile

    PubMed Central

    Fernandez, Ana B.; Rasuk, Maria C.; Visscher, Pieter T.; Contreras, Manuel; Novoa, Fernando; Poire, Daniel G.; Patterson, Molly M.; Ventosa, Antonio; Farias, Maria E.

    2016-01-01

    We combined nucleic acid-based molecular methods, biogeochemical measurements, and physicochemical characteristics to investigate microbial sedimentary ecosystems of Laguna Tebenquiche, Atacama Desert, Chile. Molecular diversity, and biogeochemistry of hypersaline microbial mats, rhizome-associated concretions, and an endoevaporite were compared with: The V4 hypervariable region of the 16S rRNA gene was amplified by pyrosequencing to analyze the total microbial diversity (i.e., bacteria and archaea) in bulk samples, and in addition, in detail on a millimeter scale in one microbial mat and in one evaporite. Archaea were more abundant than bacteria. Euryarchaeota was one of the most abundant phyla in all samples, and particularly dominant (97% of total diversity) in the most lithified ecosystem, the evaporite. Most of the euryarchaeal OTUs could be assigned to the class Halobacteria or anaerobic and methanogenic archaea. Planctomycetes potentially also play a key role in mats and rhizome-associated concretions, notably the aerobic organoheterotroph members of the class Phycisphaerae. In addition to cyanobacteria, members of Chromatiales and possibly the candidate family Chlorotrichaceae contributed to photosynthetic carbon fixation. Other abundant uncultured taxa such as the candidate division MSBL1, the uncultured MBGB, and the phylum Acetothermia potentially play an important metabolic role in these ecosystems. Lithifying microbial mats contained calcium carbonate precipitates, whereas endoevoporites consisted of gypsum, and halite. Biogeochemical measurements revealed that based on depth profiles of O2 and sulfide, metabolic activities were much higher in the non-lithifying mat (peaking in the least lithified systems) than in lithifying mats with the lowest activity in endoevaporites. This trend in decreasing microbial activity reflects the increase in salinity, which may play an important role in the biodiversity. PMID:27597845

  1. Long Term Manipulations of Intact Microbial Mat Communities in a Greenhouse Collaboratory: Simulating Earth's Present and Past Field Environments

    NASA Technical Reports Server (NTRS)

    Bebout, Brad; DesMarais, David J.; Discipulo, Mykell; Embaye, Tsegereda; Garcia-Pichel, Ferran; Hogan, Mary; Jahnke, Linda L.; Keller, Richard M.; Miller, Scott R.; Prufert-Bebout, Leslie E.; hide

    2002-01-01

    Photosynthetic microbial mat communities were obtained from marine hypersaline saltern ponds, maintained in a greenhouse facility, and examined for the effects of salinity variations. Because these microbial mats are considered to be useful analogs of equivalent ancient marine communities, they offer insights about evolutionary events during the greater than 3 billion year time interval wherein mats co-evolved with Earth's geosphere and atmosphere. Although photosynthetic mats can be highly dynamic and exhibit extremely high activity, the mats in the present study have been maintained for more than one year with relatively minor changes. The major groups of microorganisms, as assayed using microscopic, genetic, and biomarker methodologies, are essentially the same as those in the original field samples. Field and greenhouse mats were similar with respect to rates of exchange of oxygen and dissolved inorganic carbon across the mat-water interface, both during the day and at night. Field and greenhouse mats exhibited similar rates of efflux of methane and hydrogen. Manipulations of salinity in the water overlying the mats produced changes in the community that strongly resemble those observed in the field. A collaboratory testbed and an array of automated features are being developed to support remote scientific experimentation with the assistance of intelligent software agents. This facility will permit teams of investigators to explore ancient environmental conditions that are rare or absent today but might have influenced the early evolution of these photosynthetic ecosystems.

  2. Long-Term Manipulations of Intact Microbial Mat Communities in a Greenhouse Collaboratory: Simulating Earth's Present and Past Field Environments

    NASA Astrophysics Data System (ADS)

    Bebout, Brad M.; Carpenter, Steven P.; Des Marais, David J.; Discipulo, Mykell; Embaye, Tsegereda; Garcia-Pichel, Ferran; Hoehler, Tori M.; Hogan, Mary; Jahnke, Linda L.; Keller, Richard M.; Miller, Scott R.; Prufert-Bebout, Leslie E.; Raleigh, Chris; Rothrock, Michael; Turk, Kendra

    2002-12-01

    Photosynthetic microbial mat communities were obtained from marine hypersaline saltern ponds, maintained in a greenhouse facility, and examined for the effects of salinity variations. Because these microbial mats are considered to be useful analogs of ancient marine communities, they offer insights about evolutionary events during the >3 billion year time interval wherein mats co-evolved with Earth's lithosphere and atmosphere. Although photosynthetic mats can be highly dynamic and exhibit extremely high activity, the mats in the present study have been maintained for >1 year with relatively minor changes. The major groups of microorganisms, as assayed using microscopic, genetic, and biomarker methodologies, are essentially the same as those in the original field samples. Field and greenhouse mats were similar with respect to rates of exchange of oxygen and dissolved inorganic carbon across the mat-water interface, both during the day and at night. Field and greenhouse mats exhibited similar rates of efflux of methane and hydrogen. Manipulations of salinity in the water overlying the mats produced changes in the community that strongly resemble those observed in the field. A collaboratory testbed and an array of automated features are being developed to support remote scientific experimentation with the assistance of intelligent software agents. This facility will permit teams of investigators the opportunity to explore ancient environmental conditions that are rare or absent today but that might have influenced the early evolution of these photosynthetic ecosystems.

  3. Revisiting N2 fixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach

    PubMed Central

    Woebken, Dagmar; Burow, Luke C; Behnam, Faris; Mayali, Xavier; Schintlmeister, Arno; Fleming, Erich D; Prufert-Bebout, Leslie; Singer, Steven W; Cortés, Alejandro López; Hoehler, Tori M; Pett-Ridge, Jennifer; Spormann, Alfred M; Wagner, Michael; Weber, Peter K; Bebout, Brad M

    2015-01-01

    Photosynthetic microbial mats are complex, stratified ecosystems in which high rates of primary production create a demand for nitrogen, met partially by N2 fixation. Dinitrogenase reductase (nifH) genes and transcripts from Cyanobacteria and heterotrophic bacteria (for example, Deltaproteobacteria) were detected in these mats, yet their contribution to N2 fixation is poorly understood. We used a combined approach of manipulation experiments with inhibitors, nifH sequencing and single-cell isotope analysis to investigate the active diazotrophic community in intertidal microbial mats at Laguna Ojo de Liebre near Guerrero Negro, Mexico. Acetylene reduction assays with specific metabolic inhibitors suggested that both sulfate reducers and members of the Cyanobacteria contributed to N2 fixation, whereas 15N2 tracer experiments at the bulk level only supported a contribution of Cyanobacteria. Cyanobacterial and nifH Cluster III (including deltaproteobacterial sulfate reducers) sequences dominated the nifH gene pool, whereas the nifH transcript pool was dominated by sequences related to Lyngbya spp. Single-cell isotope analysis of 15N2-incubated mat samples via high-resolution secondary ion mass spectrometry (NanoSIMS) revealed that Cyanobacteria were enriched in 15N, with the highest enrichment being detected in Lyngbya spp. filaments (on average 4.4 at% 15N), whereas the Deltaproteobacteria (identified by CARD-FISH) were not significantly enriched. We investigated the potential dilution effect from CARD-FISH on the isotopic composition and concluded that the dilution bias was not substantial enough to influence our conclusions. Our combined data provide evidence that members of the Cyanobacteria, especially Lyngbya spp., actively contributed to N2 fixation in the intertidal mats, whereas support for significant N2 fixation activity of the targeted deltaproteobacterial sulfate reducers could not be found. PMID:25303712

  4. Revisiting N 2 fixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach

    DOE PAGES

    Woebken, Dagmar; Burow, Luke C.; Behnam, Faris; ...

    2014-10-10

    Photosynthetic microbial mats are complex, stratified ecosystems in which high rates of primary production create a demand for nitrogen, met partially by N 2 fixation. Dinitrogenase reductase ( nifH) genes and transcripts from Cyanobacteria and heterotrophic bacteria (for example, Deltaproteobacteria) were detected in these mats, yet their contribution to N 2 fixation is poorly understood. We used a combined approach of manipulation experiments with inhibitors, nifH sequencing and single-cell isotope analysis to investigate the active diazotrophic community in intertidal microbial mats at Laguna Ojo de Liebre near Guerrero Negro, Mexico. Acetylene reduction assays with specific metabolic inhibitors suggested that bothmore » sulfate reducers and members of the Cyanobacteria contributed to N 2 fixation, whereas 15N 2 tracer experiments at the bulk level only supported a contribution of Cyanobacteria. Cyanobacterial and nifH Cluster III (including deltaproteobacterial sulfate reducers) sequences dominated the nifH gene pool, whereas the nifH transcript pool was dominated by sequences related to Lyngbya spp. Single-cell isotope analysis of 15N 2-incubated mat samples via high-resolution secondary ion mass spectrometry (NanoSIMS) revealed that Cyanobacteria were enriched in 15N, with the highest enrichment being detected in Lyngbya spp. filaments (on average 4.4 at% 15N), whereas the Deltaproteobacteria (identified by CARD-FISH) were not significantly enriched. We investigated the potential dilution effect from CARD-FISH on the isotopic composition and concluded that the dilution bias was not substantial enough to influence our conclusions. As a result, our combined data provide evidence that members of the Cyanobacteria, especially Lyngbya spp., actively contributed to N 2 fixation in the intertidal mats, whereas support for significant N 2 fixation activity of the targeted deltaproteobacterial sulfate reducers could not be found.« less

  5. Research on Bayes matting algorithm based on Gaussian mixture model

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Jiang, Shan; Han, Cheng; Zhang, Chao; Jiang, Zhengang

    2015-12-01

    The digital matting problem is a classical problem of imaging. It aims at separating non-rectangular foreground objects from a background image, and compositing with a new background image. Accurate matting determines the quality of the compositing image. A Bayesian matting Algorithm Based on Gaussian Mixture Model is proposed to solve this matting problem. Firstly, the traditional Bayesian framework is improved by introducing Gaussian mixture model. Then, a weighting factor is added in order to suppress the noises of the compositing images. Finally, the effect is further improved by regulating the user's input. This algorithm is applied to matting jobs of classical images. The results are compared to the traditional Bayesian method. It is shown that our algorithm has better performance in detail such as hair. Our algorithm eliminates the noise well. And it is very effectively in dealing with the kind of work, such as interested objects with intricate boundaries.

  6. Reduced Gas Cycling in Microbial Mats: Implications for Early Earth

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Bebout, Brad M.; DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    For more than half the history of life on Earth, biological productivity was dominated by photosynthetic microbial mats. During this time, mats served as the preeminent biological influence on earth's surface and atmospheric chemistry and also as the primary crucible for microbial evolution. We find that modern analogs of these ancient mat communities generate substantial quantities of hydrogen, carbon monoxide, and methane. Escape of these gases from the biosphere would contribute strongly to atmospheric evolution and potentially to the net oxidation of earth's surface; sequestration within the biosphere carries equally important implications for the structure, function, and evolution of anaerobic microbial communities within the context of mat biology.

  7. Chitosan-rectorite nanospheres immobilized on polystyrene fibrous mats via alternate electrospinning/electrospraying techniques for copper ions adsorption

    NASA Astrophysics Data System (ADS)

    Tu, Hu; Huang, Mengtian; Yi, Yang; Li, Zhenshun; Zhan, Yingfei; Chen, Jiajia; Wu, Yang; Shi, Xiaowen; Deng, Hongbing; Du, Yumin

    2017-12-01

    Chitosan (CS), as a kind of well characterized biopolymer, has been used for heavy metal adsorption due to its low cost and high efficacy. However, when used directly, chitosan particles had small surface area and weak mechanical strength which is unfavorable to metal adsorption and reused. Besides, it cannot be easily recycled that may cause a secondary pollution. In this paper, CS and layered silicate rectorite (REC) were fully mixed and the mixtures were subsequently electrosprayed nano-sized spheres, which were immobilized on the surface of electrospun polystyrene (PS) mats for metal adsorption. The morphology analysis taken from SEM confirmed that CS-REC nanospheres were loaded on the surface of PS fibrous mats. Small Angle X-ray diffraction patterns showed that the interlayer distance of REC in composite mats was enlarged by the intercalation of CS chains; such structure meant bigger surface area which was helpful for metal adsorption. The data of contact angle implied that PS mats coated with CS-REC nanospheres exhibited better hydrophilicity than PS mats, which was conductive to adsorption rate. Besides, the copper ions adsorption of composite mats was tested at different conditions including the adsorption time, the initial pH and the initial concentration of copper ion. The results demonstrated that PS mats coated with CS-REC nanospheres had the adsorption capacity up to 134 mg/g. In addition, the addition of REC containing Ca2+ could also improve the metal adsorption because of cation exchange. The desorption assay indicated that PS mats immobilized with CS and CS-REC still kept high adsorption ability which retained 74% and 78% after three adsorption-desorption cycles.

  8. MAT@USC Candidates and Latino English Language Learners

    ERIC Educational Resources Information Center

    Lomeli, Cynthia Leticia

    2012-01-01

    The purpose of this study was to further understand the perceptions of MAT@USC teacher candidates and how their perceptions and previous experiences affect the educational experiences of Latino English language learners. Three questions were developed to guide this study: (1) What are the perceptions of MAT@USC candidates in selected courses…

  9. Hypersaline Microbial Mat Lipid Biomarkers

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Embaye, Tsegereda; Turk, Kendra A.; Summons, Roger E.

    2002-01-01

    Lipid biomarkers and compound specific isotopic abundances are powerful tools for studies of contemporary microbial ecosystems. Knowledge of the relationship of biomarkers to microbial physiology and community structure creates important links for understanding the nature of early organisms and paleoenvironments. Our recent work has focused on the hypersaline microbial mats in evaporation ponds at Guerrero Negro, Baja California Sur, Mexico. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, sulfur oxidizing and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface. The delta C-13 of cyanobacterial biomarkers such as the monomethylalkanes and hopanoids are consistent with the delta C-13 measured for bulk mat (-10%o), while a GNS biomarker, wax esters (WXE), suggests a more depleted delta C-13 for GNS biomass (-16%o). This isotopic relationship is different than that observed in mats at Octopus Spring, Yellowstone National Park (YSNP) where GNS appear to grow photoheterotrophic ally. WXE abundance, while relatively low, is most pronounced in an anaerobic zone just below the cyanobacterial layer. The WXE isotope composition at GN suggests that these bacteria utilize photoautotrophy incorporating dissolved inorganic carbon (DIC) via the 3-hydroxypropionate pathway using H2S or H2.

  10. Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics [Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics and NanoSIMS.

    DOE PAGES

    Burow, Luke C.; Woebken, Dagmar; Marshall, Ian PG; ...

    2012-11-29

    Photosynthetic microbial mats possess extraordinary phylogenetic and functional diversity that makes linking specific pathways with individual microbial populations a daunting task. Close metabolic and spatial relationships between Cyanobacteria and Chloroflexi have previously been observed in diverse microbial mats. Here in this paper, we report that an expressed metabolic pathway for the anoxic catabolism of photosynthate involving Cyanobacteria and Chloroflexi in microbial mats can be reconstructed through metatranscriptomic sequencing of mats collected at Elkhorn Slough, Monterey Bay, CA, USA. In this reconstruction, Microcoleus spp., the most abundant cyanobacterial group in the mats, ferment photosynthate to organic acids, CO 2 and Hmore » 2 through multiple pathways, and an uncultivated lineage of the Chloroflexi take up these organic acids to store carbon as polyhydroxyalkanoates. The metabolic reconstruction is consistent with metabolite measurements and single cell microbial imaging with fluorescence in situ hybridization and NanoSIMS.« less

  11. Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics [Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics and NanoSIMS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burow, Luke C.; Woebken, Dagmar; Marshall, Ian PG

    Photosynthetic microbial mats possess extraordinary phylogenetic and functional diversity that makes linking specific pathways with individual microbial populations a daunting task. Close metabolic and spatial relationships between Cyanobacteria and Chloroflexi have previously been observed in diverse microbial mats. Here in this paper, we report that an expressed metabolic pathway for the anoxic catabolism of photosynthate involving Cyanobacteria and Chloroflexi in microbial mats can be reconstructed through metatranscriptomic sequencing of mats collected at Elkhorn Slough, Monterey Bay, CA, USA. In this reconstruction, Microcoleus spp., the most abundant cyanobacterial group in the mats, ferment photosynthate to organic acids, CO 2 and Hmore » 2 through multiple pathways, and an uncultivated lineage of the Chloroflexi take up these organic acids to store carbon as polyhydroxyalkanoates. The metabolic reconstruction is consistent with metabolite measurements and single cell microbial imaging with fluorescence in situ hybridization and NanoSIMS.« less

  12. Engineering and Scientific Applications: Using MatLab(Registered Trademark) for Data Processing and Visualization

    NASA Technical Reports Server (NTRS)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    practIcal scripts (pro grams) that extend the basic features of MatLab TOPICS mclude (1) Ma trix and vector analysis and manipulations (2) Mathematical functions (3) Symbolic calculations & functions (4) Import/export data files (5) Program lOgic and flow control (6) Writing function and passing parameters (7) Test application programs

  13. Methane Production by Microbial Mats Under Low Sulfate Concentrations

    NASA Technical Reports Server (NTRS)

    Bebout, Brad M.; Hoehler, Tori M.; Thamdrup, Bo; Albert, Dan; Carpenter, Steven P.; Hogan, Mary; Turk, Kendra; DesMarais, David J.

    2003-01-01

    Cyanobacterial mats collected in hypersaline salterns were incubated in a greenhouse under low sulfate concentrations ([SO4]) and examined for their primary productivity and emissions of methane and other major carbon species. Atmospheric greenhouse warming by gases such as carbon dioxide and methane must have been greater during the Archean than today in order to account for a record of moderate to warm paleoclemates, despite a less luminous early sun. It has been suggested that decreased levels of oxygen and sulfate in Archean oceans could have significantly stimulated microbial methanogenesis relative to present marine rates, with a resultant increase in the relative importance of methane in maintaining the early greenhouse. We maintained modern microbial mats, models of ancient coastal marine communities, in artificial brine mixtures containing both modern [SO4=] (ca. 70 mM) and "Archean" [SO4] (less than 0.2 mM). At low [SO4], primary production in the mats was essentially unaffected, while rates of sulfate reduction decreased by a factor of three, and methane fluxes increased by up to ten-fold. However, remineralization by methanogenesis still amounted to less than 0.4 % of the total carbon released by the mats. The relatively low efficiency of conversion of photosynthate to methane is suggested to reflect the particular geometry and chemical microenvironment of hypersaline cyanobacterial mats. Therefore, such mats w-ere probably relatively weak net sources of methane throughout their 3.5 Ga history, even during periods of low- environmental levels oxygen and sulfate.

  14. Arc_Mat: a Matlab-based spatial data analysis toolbox

    NASA Astrophysics Data System (ADS)

    Liu, Xingjian; Lesage, James

    2010-03-01

    This article presents an overview of Arc_Mat, a Matlab-based spatial data analysis software package whose source code has been placed in the public domain. An earlier version of the Arc_Mat toolbox was developed to extract map polygon and database information from ESRI shapefiles and provide high quality mapping in the Matlab software environment. We discuss revisions to the toolbox that: utilize enhanced computing and graphing capabilities of more recent versions of Matlab, restructure the toolbox with object-oriented programming features, and provide more comprehensive functions for spatial data analysis. The Arc_Mat toolbox functionality includes basic choropleth mapping; exploratory spatial data analysis that provides exploratory views of spatial data through various graphs, for example, histogram, Moran scatterplot, three-dimensional scatterplot, density distribution plot, and parallel coordinate plots; and more formal spatial data modeling that draws on the extensive Spatial Econometrics Toolbox functions. A brief review of the design aspects of the revised Arc_Mat is described, and we provide some illustrative examples that highlight representative uses of the toolbox. Finally, we discuss programming with and customizing the Arc_Mat toolbox functionalities.

  15. Mechanisms of mindfulness training: Monitor and Acceptance Theory (MAT).

    PubMed

    Lindsay, Emily K; Creswell, J David

    2017-02-01

    Despite evidence linking trait mindfulness and mindfulness training with a broad range of effects, still little is known about its underlying active mechanisms. Mindfulness is commonly defined as (1) the ongoing monitoring of present-moment experience (2) with an orientation of acceptance. Building on conceptual, clinical, and empirical work, we describe a testable theoretical account to help explain mindfulness effects on cognition, affect, stress, and health outcomes. Specifically, Monitor and Acceptance Theory (MAT) posits that (1), by enhancing awareness of one's experiences, the skill of attention monitoring explains how mindfulness improves cognitive functioning outcomes, yet this same skill can increase affective reactivity. Second (2), by modifying one's relation to monitored experience, acceptance is necessary for reducing affective reactivity, such that attention monitoring and acceptance skills together explain how mindfulness improves negative affectivity, stress, and stress-related health outcomes. We discuss how MAT contributes to mindfulness science, suggest plausible alternatives to the account, and offer specific predictions for future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Archaeal populations in hypersaline sediments underlying orange microbial mats in the Napoli mud volcano.

    PubMed

    Lazar, Cassandre Sara; L'haridon, Stéphane; Pignet, Patricia; Toffin, Laurent

    2011-05-01

    Microbial mats in marine cold seeps are known to be associated with ascending sulfide- and methane-rich fluids. Hence, they could be visible indicators of anaerobic oxidation of methane (AOM) and methane cycling processes in underlying sediments. The Napoli mud volcano is situated in the Olimpi Area that lies on saline deposits; from there, brine fluids migrate upward to the seafloor. Sediments associated with a brine pool and microbial orange mats of the Napoli mud volcano were recovered during the Medeco cruise. Based on analysis of RNA-derived sequences, the "active" archaeal community was composed of many uncultured lineages, such as rice cluster V or marine benthic group D. Function methyl coenzyme M reductase (mcrA) genes were affiliated with the anaerobic methanotrophic Archaea (ANME) of the ANME-1, ANME-2a, and ANME-2c groups, suggesting that AOM occurred in these sediment layers. Enrichment cultures showed the presence of viable marine methylotrophic Methanococcoides in shallow sediment layers. Thus, the archaeal community diversity seems to show that active methane cycling took place in the hypersaline microbial mat-associated sediments of the Napoli mud volcano.

  17. Feasibility and Efficacy of Mat Pilates on People with Mild-to-Moderate Parkinson's Disease: A Preliminary Study.

    PubMed

    Cancela, Jose Maria; Mollinedo Cardalda, Irimia; Ayán, Carlos; de Oliveira, Iris Machado

    2018-04-01

    This pilot study aimed at assessing the feasibility and efficacy of a Mat Pilates program in people with mild-to-moderate Parkinson's disease (PD). The participants carried out a Mat Pilates program twice a week for 12 weeks. The Senior Fitness Test battery and the 39-item PD Questionnaire were used to assess the effects of the program on the participants' fitness level and quality of life. A total of 16 patients with mild-to-moderate PD volunteered for and finished the study. The Mat Pilates program proved to be feasible. Adherence to the program was excellent, and no adverse effects were observed. The program had a positive effect on the participants' fitness levels, except for shoulder range of motion and dynamic balance, and on their quality of life. Assessments at follow-up indicated a regression in the improvements obtained by the end of the intervention, even though the sample still showed higher levels of fitness and quality of life than those tested at baseline. Mat Pilates is feasible and may be a beneficial rehabilitation strategy to improve fitness and quality of life in people with mild-to-moderate PD. Future randomized controlled trials might determine the extent of such benefits.

  18. Protocyanobacteria: Oxygenic and Anoxygenic photosynthesis in mat-forming bacteria

    NASA Technical Reports Server (NTRS)

    Cohen, Y.

    1985-01-01

    The oldest record of life is preserved in prePhanerozoic stromatolites dated 3500 million years old and is most likely of filamentous mat-forming cyanobacteria. The sedimentary records of cyanobacterial mats in stromatolites are the most abundant record of life throughout the prePhanerozoic. Stromatolites persisted into the Phanerozoic Eon, yet they become much less pronounced relative to earlier ones. The abundance and persistence of cyanobacterial mats throughout most of geological time point to the evolutionary success of these kinds of microbial communities and their possible role in the evolution of the earth and atmosphere.

  19. Benchscale Assessment of the Efficacy of a Reactive Core Mat to Isolate PAH-spiked Aquatic Sediments.

    PubMed

    Meric, Dogus; Barbuto, Sara; Sheahan, Thomas C; Shine, James P; Alshawabkeh, Akram N

    2014-01-01

    This paper describes the results of a benchscale testing program to assess the efficacy of a reactive core mat (RCM) for short term isolation and partial remediation of contaminated, subaqueous sediments. The 1.25 cm thick RCM (with a core reactive material such as organoclay with filtering layers on top and bottom) is placed on the sediment, and approximately 7.5 - 10 cm of overlying soil is placed on the RCM for stability and protection. A set of experiments were conducted to measure the sorption characteristics of the mat core (organoclay) and sediment used in the experiments, and to determine the fate of semi-volatile organic contaminants and non-reactive tracers through the sediment and reactive mat. The experimental study was conducted on naphthalene-spiked Neponset River (Milton, MA) sediment. The results show nonlinear sorption behavior for organoclay, with sorption capacity increasing with increasing naphthalene concentration. Neponset River sediment showed a notably high sorption capacity, likely due to the relatively high organic carbon fraction (14%). The fate and transport experiments demonstrated the short term efficiency of the reactive mat to capture the contamination that is associated with the post-capping period during which the highest consolidation-induced advective flux occurs, driving solid particles, pore fluid and soluble contaminants toward the reactive mat. The goal of the mat placement is to provide a physical filtering and chemically reactive layer to isolate contamination from the overlying water column. An important finding is that because of the high sorption capacity of the Neponset River sediment, the physical filtering capability of the mat is as critical as its chemical reactive capacity.

  20. Environmental controls on photosynthetic microbial mat distribution and morphogenesis on a 3.42 Ga clastic-starved platform.

    PubMed

    Tice, Michael M

    2009-12-01

    Three morphotypes of microbial mats are preserved in rocks deposited in shallow-water facies of the 3.42 Ga Buck Reef chert (BRC). Morphotype alpha consists of fine anastomosing and bifurcating carbonaceous laminations, which loosely drape underlying detrital grains or form silica-filled lenses. Morphotype beta consists of meshes of fine carbonaceous strands intergrown with detrital grains and dark laminations, which loosely drape coarse detrital grains. Morphotype gamma consists of fine, even carbonaceous laminations that tightly drape underlying detrital grains. Preservation of nearly uncompacted mat morphologies and detrital grains deposited during mat growth within a well-characterized sedimentary unit makes quantitative correlation between morphology and paleoenvironment possible. All mats are preserved in the shallowest-water interval of those rocks deposited below normal wave base and above storm wave base. This interval is bounded below by a transgressive lag formed during regional flooding and above by a small condensed section that marks a local relative sea-level maximum. Restriction of all mat morphotypes to the shallowest interval of the storm-active layer in the BRC ocean reinforces previous interpretations that these mats were constructed primarily by photosynthetic organisms. Morphotypes alpha and beta dominate the lower half of this interval and grew during deposition of relatively coarse detrital carbonaceous grains, while morphotype gamma dominates the upper half and grew during deposition of fine detrital carbonaceous grains. The observed mat distribution suggests that either light intensity or, more likely, small variations in ambient current energy acted as a first-order control on mat morphotype distribution. These results demonstrate significant environmental control on biological morphogenetic processes independent of influences from siliciclastic sedimentation.

  1. Macro Analysis Tool - MAT

    EPA Science Inventory

    This product is an easy-to-use Excel-based macro analysis tool (MAT) for performing comparisons of air sensor data with reference data and interpreting the results. This tool tackles one of the biggest hurdles in citizen-led community air monitoring projects – working with ...

  2. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    PubMed Central

    Rieger, Katrina A.; Porter, Michael; Schiffman, Jessica D.

    2016-01-01

    Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid) (PAA), chitosan (CS), and polydiallyldimethylammonium chloride (pDADMAC). The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm) of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%). Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process. PMID:28773422

  3. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat.

    PubMed

    Harris, J Kirk; Caporaso, J Gregory; Walker, Jeffrey J; Spear, John R; Gold, Nicholas J; Robertson, Charles E; Hugenholtz, Philip; Goodrich, Julia; McDonald, Daniel; Knights, Dan; Marshall, Paul; Tufo, Henry; Knight, Rob; Pace, Norman R

    2013-01-01

    The microbial mats of Guerrero Negro (GN), Baja California Sur, Mexico historically were considered a simple environment, dominated by cyanobacteria and sulfate-reducing bacteria. Culture-independent rRNA community profiling instead revealed these microbial mats as among the most phylogenetically diverse environments known. A preliminary molecular survey of the GN mat based on only ∼1500 small subunit rRNA gene sequences discovered several new phylum-level groups in the bacterial phylogenetic domain and many previously undetected lower-level taxa. We determined an additional ∼119,000 nearly full-length sequences and 28,000 >200 nucleotide 454 reads from a 10-layer depth profile of the GN mat. With this unprecedented coverage of long sequences from one environment, we confirm the mat is phylogenetically stratified, presumably corresponding to light and geochemical gradients throughout the depth of the mat. Previous shotgun metagenomic data from the same depth profile show the same stratified pattern and suggest that metagenome properties may be predictable from rRNA gene sequences. We verify previously identified novel lineages and identify new phylogenetic diversity at lower taxonomic levels, for example, thousands of operational taxonomic units at the family-genus levels differ considerably from known sequences. The new sequences populate parts of the bacterial phylogenetic tree that previously were poorly described, but indicate that any comprehensive survey of GN diversity has only begun. Finally, we show that taxonomic conclusions are generally congruent between Sanger and 454 sequencing technologies, with the taxonomic resolution achieved dependent on the abundance of reference sequences in the relevant region of the rRNA tree of life.

  4. Pressure Mapping Mat for Tele-Home Care Applications

    PubMed Central

    Saenz-Cogollo, Jose Francisco; Pau, Massimiliano; Fraboni, Beatrice; Bonfiglio, Annalisa

    2016-01-01

    In this paper we present the development of a mat-like pressure mapping system based on a single layer textile sensor and intended to be used in home environments for monitoring the physical condition of persons with limited mobility. The sensor is fabricated by embroidering silver-coated yarns on a light cotton fabric and creating pressure-sensitive resistive elements by stamping the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) at the crossing points of conductive stitches. A battery-operated mat prototype was developed and includes the scanning circuitry and a wireless communication module. A functional description of the system is presented together with a preliminary experimental evaluation of the mat prototype in the extraction of plantar pressure parameters. PMID:26978369

  5. Biomarkers: d13C and d15N Distribution Tightly Coupled to Nutrient Dynamics and Viral Lysing in a Microbial Mat From Death Valley, California

    NASA Astrophysics Data System (ADS)

    Hewson, I.; Archer, R.; Mahaffey, C.; Scott, J.; Tsapin, A.

    2002-12-01

    downward organic C (polysaccaride exudates) transport within the mat. Subsequent accumulation of d13C as well as heavier d15N in deeper sediment(denitrification)horizons elucidates tight nutrient coupling between evaporite substrate, nitrogen fixing primary producers and downcore zones of active denitrification and sulphate reduction. Discrepencies between d13C of ancient stromatolites (in line with C-3 photosynthetic pathways) and modern analogues (Badwater, CA) suggest a migration of microbial mats towards more extreme environments through time. A methodology for isotopically testing environmental and physiological responses in the geological record is presented here.

  6. Flakeboard thickness swelling. Part I, Stress relaxation in a flakeboard mat

    Treesearch

    R. L. Geimer; J. H. Kwon; J. Bolton

    1998-01-01

    The steam injection schedule best suited for dimensionally stabilizing a flake mat is one in which steam treatment is initiated before the press is closed and is continued at least until the mat attains target thickness. Experiments showed that resinless mats treated with 20 sec of steam at 600 kPa had maximum thickness swelling of 205% compared to 350% for resinless...

  7. Carbon and Oxygen Budgets of Hypersaline Cyanobacterial Mats: Effects of Tidal Cycle and Temperature

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; Bebout, Brad M.; Carpenter, Steven; Discipulo, Mykell; Turk, Kendra

    2003-01-01

    The hierarchical organization of microbial ecosystems determines the rates of processes that shape Earth#s environment, define the stage upon which major evolutionary events occurred, and create biosignatures in sediments and atmospheres. In cyanobacterial mats, oxygenic photosynthesis provides energy, organic substrates and oxygen to the ecosystem. Incident light changes with depth in the mat, both in intensity and spectral composition, and counteracting gradients of oxygen and sulfide shape the chemical microenvironment. A combination of benefits and hazards of light, oxygen and sulfide promotes the allocation of the various essential mat processes between light and dark periods and to various depths in the mat. Microbiota produce hydrogen, small organic acids, and nitrogen and sulfur species. Such compounds fuel a flow of energy and electrons in these ecosystems and thus shape interactions between groups of microorganisms. Coordinated observations of population distribution, abundance, and activity for an entire community are making fundamental questions in ecology accessible. These questions address those factors that sustain the remarkable diversity of microorganisms that are now being revealed by molecular techniques. These questions also target the processes that shape the various kinds of biosignatures that we will seek, both in ancient rocks from Earth and Mars, and in atmospheres of distant planets beyond our Solar System.

  8. The biogeochemistry of microbial mats, stromatolites and the ancient biosphere

    NASA Technical Reports Server (NTRS)

    Desmarais, D. J.; Canfield, D. E.

    1991-01-01

    Stromatolites offer an unparalleled geologic record of early life, because they constitute the oldest and most abundant recognizable remains of microbial ecosystems. Microbial mats are living homologs of stromatolites; thus, the physiology of the microbiota as well as the processes which create those features of mats (e.g., biomarker organic compounds, elemental and stable isotopic compositions) which are preserved in the ancient record. Observations of the carbon isotopic composition (delta C-13) of stromatolites and microbial mats were made and are consistent with the hypothesis that atmospheric CO2 concentrations have declined by at least one to two orders of magnitude during the past 2.5 Ga. Whereas delta C-13 values of carbonate carbon average about 0 permil during both the early and mid-Proterozoic, the delta C-13 values of stromatolitic organic matter increase from an average of -35 between 2.0 and 2.6 Ga ago to an average of about -28 about 1.0 Ga ago. Modern microbial mats in hypersaline environments have delta C-13 values typically in the range of -5 to -9, relative to an inorganic bicarbonate source at 0 permil. Both microbial mats and pur cultures of cyanobacteria grown in waters in near equilibrium with current atmospheric CO2 levels exhibit minimal discrimination against C-13. In contrast, hot spring cyanobacterial mats or cyanobacterial cultures grown under higher CO2 levels exhibit substantially greater discrimination. If care is taken to compare modern mats with stromatolites from comparable environments, it might be possible to estimate ancient levels of atmospheric CO2. In modern microbial mats, a tight coupling exists between photosynthetic organic carbon production and subsequent carbon oxidation, mostly by sulfate reduction. The rate of one process fuels a high rate of the other, with much of the sulfate reduction occurring within the same depth interval as oxygenic photosynthesis. Other aspects of this study are presented.

  9. Dynamic footprint measurement collection technique and intrarater reliability: ink mat, paper pedography, and electronic pedography.

    PubMed

    Fascione, Jeanna M; Crews, Ryan T; Wrobel, James S

    2012-01-01

    Identifying the variability of footprint measurement collection techniques and the reliability of footprint measurements would assist with appropriate clinical foot posture appraisal. We sought to identify relationships between these measures in a healthy population. On 30 healthy participants, midgait dynamic footprint measurements were collected using an ink mat, paper pedography, and electronic pedography. The footprints were then digitized, and the following footprint indices were calculated with photo digital planimetry software: footprint index, arch index, truncated arch index, Chippaux-Smirak Index, and Staheli Index. Differences between techniques were identified with repeated-measures analysis of variance with post hoc test of Scheffe. In addition, to assess practical similarities between the different methods, intraclass correlation coefficients (ICCs) were calculated. To assess intrarater reliability, footprint indices were calculated twice on 10 randomly selected ink mat footprint measurements, and the ICC was calculated. Dynamic footprint measurements collected with an ink mat significantly differed from those collected with paper pedography (ICC, 0.85-0.96) and electronic pedography (ICC, 0.29-0.79), regardless of the practical similarities noted with ICC values (P = .00). Intrarater reliability for dynamic ink mat footprint measurements was high for the footprint index, arch index, truncated arch index, Chippaux-Smirak Index, and Staheli Index (ICC, 0.74-0.99). Footprint measurements collected with various techniques demonstrate differences. Interchangeable use of exact values without adjustment is not advised. Intrarater reliability of a single method (ink mat) was found to be high.

  10. 30 CFR 77.513 - Insulating mats at power switches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden... switchboards and power-control switches where shock hazards exist. However, metal plates on which a person...

  11. 30 CFR 77.513 - Insulating mats at power switches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden... switchboards and power-control switches where shock hazards exist. However, metal plates on which a person...

  12. 30 CFR 77.513 - Insulating mats at power switches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden... switchboards and power-control switches where shock hazards exist. However, metal plates on which a person...

  13. 30 CFR 77.513 - Insulating mats at power switches.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden... switchboards and power-control switches where shock hazards exist. However, metal plates on which a person...

  14. 30 CFR 77.513 - Insulating mats at power switches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden... switchboards and power-control switches where shock hazards exist. However, metal plates on which a person...

  15. Spatiotemporal patterns in community structure of macroinvertebrates inhabiting calcareous periphyton mats

    USGS Publications Warehouse

    Liston, S.E.; Trexler, J.C.

    2005-01-01

    Calcareous floating periphyton mats in the southern Everglades provide habitat for a diverse macroinvertebrate community that has not been well characterized. Our study described this community in an oligotrophic marsh, compared it with the macroinvertebrate community associated with adjacent epiphytic algae attached to macrophytes in the water column, and detected spatial patterns in density and community structure. The floating periphyton mat (floating mat) and epiphytic algae in the water column (submerged epiphyton) were sampled at 4 sites (???1 km apart) in northern Shark River Slough, Everglades National Park (ENP), in the early (July) and late (November) wet season. Two perpendicular 90-m transects were established at each site and ???100 samples were taken in a nested design. Sites were located in wet-prairie spikerush-dominated sloughs with similar water depths and emergent macrophyte communities. Floating mats were sampled by taking cores (6-cm diameter) that were sorted under magnification to enumerate infauna retained on a 250-??m-mesh sieve and with a maximum dimension >1 mm. Our results showed that floating mats provide habitat for a macroinvertebrate community with higher densities (no. animals/g ash-free dry mass) of Hyalella azteca, Dasyhelea spp., and Cladocera, and lower densities of Chironomidae and Planorbella spp. than communities associated with submerged epiphyton. Densities of the most common taxa increased 3x to 15x from early to late wet season, and community differences between the 2 habitat types became more pronounced. Floating-mat coverage and estimated floating-mat biomass increased 20 to 30%, and 30 to 110%, respectively, at most sites in the late wet season. Some intersite variation was observed in individual taxa, but no consistent spatial pattern in any taxon was detected at any scale (from 0.2 m to 3 km). Floating mats and their resident macroinvertebrate communities are important components in the Everglades food web. This

  16. Users guide for ERB 7 MAT (including the first year quality control)

    NASA Technical Reports Server (NTRS)

    Groveman, B.

    1984-01-01

    In the first section of this report background information for the use of the ERB-7 Master Archival Tapes (MAT) is provided. The second section gives details regarding the scientific validity and quality of the MAT. The MAT data analyzed covers the period from November 16, 1978 to October 31, 1979.

  17. Compositions and method of use of constructed microbial mats

    DOEpatents

    Bender, Judith A.; Phillips, Peter C.

    1997-01-01

    Compositions and methods of use of constructed microbial mats, comprising cyanobacteria and purple autotrophic bacteria and an organic nutrient source, in a laminated structure, are described. The constructed microbial mat is used for bioremediation of different individual contaminants and for mixed or multiple contaminants, and for production of beneficial compositions and molecules.

  18. Mechanisms of Mindfulness Training: Monitor and Acceptance Theory (MAT)1

    PubMed Central

    Lindsay, Emily K.; Creswell, J. David

    2016-01-01

    Despite evidence linking trait mindfulness and mindfulness training with a broad range of effects, still little is known about its underlying active mechanisms. Mindfulness is commonly defined as (1) the ongoing monitoring of present-moment experience (2) with an orientation of acceptance. Building on conceptual, clinical, and empirical work, we describe a testable theoretical account to help explain mindfulness effects on cognition, affect, stress, and health outcomes. Specifically, Monitor and Acceptance Theory (MAT) posits that (1), by enhancing awareness of one’s experiences, the skill of attention monitoring explains how mindfulness improves cognitive functioning outcomes, yet this same skill can increase affective reactivity. Second (2), by modifying one’s relation to monitored experience, acceptance is necessary for reducing affective reactivity, such that attention monitoring and acceptance skills together explain how mindfulness improves negative affectivity, stress, and stress-related health outcomes. We discuss how MAT contributes to mindfulness science, suggest plausible alternatives to the account, and offer specific predictions for future research. PMID:27835764

  19. The MAT-sf: identifying risk for major mobility disability.

    PubMed

    Rejeski, W Jack; Rushing, Julia; Guralnik, Jack M; Ip, Edward H; King, Abby C; Manini, Todd M; Marsh, Anthony P; McDermott, Mary M; Fielding, Roger A; Newman, Anne B; Tudor-Locke, Catrine; Gill, Thomas M

    2015-05-01

    The assessment of mobility is essential to both aging research and clinical geriatric practice. A newly developed self-report measure of mobility, the mobility assessment tool-short form (MAT-sf), uses video animations as an innovative method to improve measurement accuracy/precision. The primary aim of the current study was to evaluate whether MAT-sf scores can be used to identify risk for major mobility disability (MMD). This article is based on data collected from the Lifestyle Interventions and Independence for Elders study and involved 1,574 older adults between the ages of 70-89. The MAT-sf was administered at baseline; MMD, operationalized as failure to complete the 400-m walk ≤ 15 minutes, was evaluated at 6-month intervals across a period of 42 months. The outcome of interest was the first occurrence of MMD or incident MMD. After controlling for age, sex, clinic site, and treatment arm, baseline MAT-sf scores were found to be effective in identifying risk for MMD (p < .0001). Partitioning the MAT-sf into four groups revealed that persons with scores <40, 40-49, 50-59, and 60+ had failure rates across 42 months of follow-up of 66%, 52%, 35%, and 22%, respectively. The MAT-sf is a quick and efficient way of identifying older adults at risk for MMD. It could be used to clinically identify older adults that are in need of intervention for MMD and provides a simple means for monitoring the status of patients' mobility, an important dimension of functional health. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. The compression of wood/thermoplastic fiber mats during consolidation

    Treesearch

    Karl R. Englund; Michael P. Wolcott; John C. Hermanson

    2004-01-01

    Secondary processing of non-woven wood and wood/thermoplastic fiber mats is generally performed using compression molding, where heated platens or dies form the final product. Although the study and use of wood-fiber composites is widespread, few research efforts have explicitly described the fundamentals of mat consolidation. In contrast, the wood composite literature...

  1. Microbial and Functional Gene Diversity in the Thrombolitic Mats of Highborne Cay, Bahamas

    NASA Astrophysics Data System (ADS)

    Foster, J. S.; Mobberley, J. M.

    2010-04-01

    In this study we examine the metagenome of modern thrombolitic mats. Our results indicate that thrombolitic mats are far more diverse than previously assumed; and gene analysis is now elucidating the molecular pathways needed for thrombolitic mat development.

  2. The Effects of Low Sulfate Concentrations on Modern Microbial Mat Communities: A Long Term Manipulation

    NASA Technical Reports Server (NTRS)

    Bebout, Brad; Carpenter, Steve; DesMarais, David J.; Discipulo, Mykell; Hogan, Mary; Turk, Kendra

    2002-01-01

    Microbial mats were widespread during the first ca. 2 Ga. of our biosphere's history. To better understand microbial ecosystems and their biomarkers under the low sulfate levels present in early oceans, we attempted a long-term (ca. 1 year) manipulation of sulfate in modem mats. Mats collected from salt ponds at Guerrero Negro, Baja Calif. Sur were incubated in a Greenhouse "Collaboratory" at Ames. Mats were maintained in artificial seawater brine containing either: 1) sulfate levels normal for these mats (70 mM), or 2) brine in which sulfate was replaced by chloride. Sulfate concentrations in the "low sulfate" brine gradually approached their lowest (to date) value of 0. 1 mM as sulfate was consumed and/or diffused out of the mat over a period of ca. 4 months. During that period of time, a number of differences between the treatments emerged. Relative to the "low sulfate" mats, "normal sulfate" mats had: 1) lower consumption of oxygen in the lower levels of the mat, 2) higher efficiencies of oxygenic photosynthesis, and 3) higher rates of nitrogen fixation. Rates of methane production by the mats increased greatly as sulfate concentrations fell below ca. 0.2 mM. In contrast, "low" and "normal" sulfate mats had similar net rates of exchange of O2 and dissolved inorganic C between the mats and overlying water. Reduced sulfate levels have diverse impacts upon these ecosystems.

  3. Quantifying Thin Mat Floating Marsh Strength and Interaction with Hydrodynamic Conditions

    NASA Astrophysics Data System (ADS)

    Collins, J. H., III; Sasser, C.; Willson, C. S.

    2016-12-01

    Louisiana possesses over 350,000 acres of unique floating vegetated systems known as floating marshes or flotants. Floating marshes make up 70% of the Terrebonne and Barataria basin wetlands and exist in several forms, mainly thick mat or thin mat. Salt-water intrusion, nutria grazing, and high-energy wave events are believed to be some contributing factors to the degradation of floating marshes; however, there has been little investigation into the hydrodynamic effects on their structural integrity. Due to their unique nature, floating marshes could be susceptible to changes in the hydrodynamic environment that may result from proposed river freshwater and sediment diversion projects introducing flow to areas that are typically somewhat isolated. This study aims to improve the understanding of how thin mat floating marshes respond to increased hydrodynamic stresses and, more specifically, how higher water velocities might increase the washout probability of this vegetation type. There are two major components of this research: 1) A thorough measurement of the material properties of the vegetative mats as a root-soil matrix composite material; and 2) An accurate numerical simulation of the hydrodynamics and forces imposed on the floating marsh mats by the flow. To achieve these goals, laboratory and field experiments were conducted using a customized device to measure the bulk properties of typical floating marshes. Additionally, Delft-3D FLOW and ANSYS FLUENT were used to simulate the flow around a series of simplified mat structures in order to estimate the hydrodynamic forcings on the mats. The hydrodynamic forcings are coupled with a material analysis, allowing for a thorough analysis of their interaction under various conditions. The 2-way Fluid Structure Interaction (F.S.I.) between the flow and the mat is achieved by coupling a Finite Element Analysis (F.E.A.) solver in ANSYS with FLUENT. The flow conditions necessary for the structural failure of the

  4. A pilot study on the improvement of the lying area of finishing pigs by a soft lying mat.

    PubMed

    Savary, Pascal; Gygax, Lorenz; Jungbluth, Thomas; Wechsler, Beat; Hauser, Rudolf

    2011-01-01

    In this pilot study, we tested whether a soft mat (foam covered with a heat-sealed thermoplastic) reduces alterations and injuries at the skin and the leg joints.The soft mat in the lying area of partly slatted pens was compared to a lying area consisting of either bare or slightly littered (100 g straw per pig and day) concrete flooring. In this study we focused on skin lesions on the legs of finishing pigs as indicators of impaired welfare. Pigs were kept in 19 groups of 8-10 individuals and were examined for skin lesions around the carpal and tarsal joints either at a weight of <35 kg, or at close to 100 kg. The likelihood of hairless patches and wounds at the tarsal joints was significantly lower in pens with the soft lying mat than in pens with a bare concrete floor. Pens with a littered concrete floor did not differ compared to pens with a bare concrete floor. The soft lying mat thus improved floor quality in the lying area in terms of preventing skin lesions compared to bare and slightly littered concrete flooring. Such soft lying mats have thus the potential to improve lying comfort and welfare of finishing pigs.

  5. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda; Orphan, Victoria; Embaye, Tsegereda; Turk, Kendra; Kubo, Mike; Summons, Roger

    2004-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. Various lipids associated with specific microbial groups can serve as biomarkers for establishing organism source and function in contemporary microbial ecosystems (membrane lipids), and by analogy, potential relevance to ancient organic-rich sedimentary rocks (geolipids). As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments. Our recent work has focused on lipid biomarker analysis of a potential analogue for such ancient mats growing in a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico. The aerobic, surface layer of this mat (0 to 1 mm) contained a variety of ester-bound fatty acids (FA) representing a diverse bacterial population including cyanobacteria, sulphate reducers (SRB) and heterotrophs. Biomarkers for microeukaryotes detected in this layer included sterols, C-20 polyunsaturated FA and a highly branched isoprenoid, diagnostic for diatoms. Cyanobacteria were also indicated by the presence of a diagnostic set of mid-chain methylalkanes. C-28, to C-34 wax esters (WXE) present in relatively small amounts in the upper 3 mm of the mat are considered biomarkers for green non-sulphur bacteria. Ether-bound isoprenoids were also identified although in considerably lower abundance than ester-bound FA (approx. 1:l0). These complex ether lipids included archatol, hydroxyarchaeol and a C-40 tetraether, all in small amounts. After ether cleavage with boron tribromide, the major recovered isoprenyl was a C-30:1. This C(sub 30;1) yelded squalane after hydrogenation, a known geobiomarker for hypersaline environments in ancient oils and sediments. In this mat, it represents the dominant Archaeal population. The carbon isotopic composition of biomarker lipids were generally depleted relative to the bulk organic material (delta C-13 TOC -10%). Most

  6. Lipids of recently-deposited algal mats at Laguna Mormona, Baja California

    NASA Technical Reports Server (NTRS)

    Cardoso, J.; Brooks, P. W.; Eglinton, G.; Goodfellow, R.; Maxwell, J. R.; Philp, R. P.

    1976-01-01

    A preliminary survey of the lipid composition of the core of a recently deposited algal mat of a subtropical, hypersaline coastal pond is described. Two layers of the core were examined: the upper, 2-cm-thick layer, comprising the fresh algal mat of predominantly the blue-green species Microcoleus chthonoplastes, and the black anaerobic algal ooze at a depth of 10 cm. About 75% of the n-alkanes in the mat were accounted for by n-C17, with smaller amounts of higher homologues maximizing at n-C27. The ooze was characterized by a bimodal distribution with maxima at n-C17 and n-C27. The n-alkanoic acids distributions were similar to the corresponding n-alkane distributions. A marked decrease in the ratio of monounsaturated to saturated acids in the ooze relative to the mat was observed, which indicates a preferential removal of unsaturated components. Certain triterpenes of the hopane skeletal type were present in the mat and ooze. The presence of stanols and sterenes in the ooze with similar carbon number distributions suggests a relationship between them.

  7. Description of the HiMAT Tailored composite structure and laboratory measured vehicle shape under load

    NASA Technical Reports Server (NTRS)

    Monaghan, R. C.

    1981-01-01

    The aeroelastically tailored outer wing and canard of the highly maneuverable aircraft technology (HiMAT) vehicle are closely examined and a general description of the overall structure of the vehicle is provided. Test data in the form of laboratory measured twist under load and predicted twist from the HiMAT NASTRAN structural design program are compared. The results of this comparison indicate that the measured twist is generally less than the NASTRAN predicted twist. These discrepancies in twist predictions are attributed, at least in part, to the inability of current analytical composite materials programs to provide sufficiently accurate properties of matrix dominated laminates for input into structural programs such as NASTRAN.

  8. Topographic control of mat-surface structures evolution: Examples from modern evaporitic carbonate (Abu Dhabi) and evaporitic siliciclastic (Tunisia) tidal flats.

    NASA Astrophysics Data System (ADS)

    Hafid Bouougri, El; Porada, Hubertus

    2010-05-01

    typical shore-parallel zonality. In contrast, in tidal flats with slight changes in topography, the typical shore-parallel zonality appears disturbed mainly along the intertidal and lower supratidal zones. The mat surface structures within each tidal zone show local and lateral transitions but all evolve from an incipient flat or polygonal mat. On the mat scale, microtopographic differences are created by the mats themselves, e.g., in the form of upturned crack margins, bulges and domes. All these are small-scale topographic highs that influence the distribution of microbial activity and mat growth dynamics. In the Abu Dhabi area it is observed that smooth or polygonal mats may grade temporally into mammilate, cinder or pustular and tufted mats along an evolutionary path controlled by preferred growth along bulges and upturned crack margins. A similar temporal evolution appears in the intertidal and supratidal zones in Tunisia where local changes on mat-surface induce a variety of mat-growth struc¬tures on and along upturned crack margins, gas domes and isolated to polygonal bulges and petee ridges. References Kendall C.G.St.C, Skipwith, P.A.d'E. (1968) Recent algal mats of a Persian gulf lagoon. J. Sedim. Res., 38, 1040-1058. Logan B.W. Hoffman P. Gebelein, C.D. (1974) Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. AAPG Mem., 22, 140-194.

  9. Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field.

    PubMed

    Crépeau, Valentin; Cambon Bonavita, Marie-Anne; Lesongeur, Françoise; Randrianalivelo, Henintsoa; Sarradin, Pierre-Marie; Sarrazin, Jozée; Godfroy, Anne

    2011-06-01

    Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge) were investigated using molecular approaches. DNA and RNA were extracted from mat samples overlaying hydrothermal deposits and Bathymodiolus azoricus mussel assemblages. We constructed and analyzed libraries of 16S rRNA gene sequences and sequences of functional genes involved in autotrophic carbon fixation [forms I and II RuBisCO (cbbL/M), ATP-citrate lyase B (aclB)]; methane oxidation [particulate methane monooxygenase (pmoA)] and sulfur oxidation [adenosine-5'-phosphosulfate reductase (aprA) and soxB]. To gain new insights into the relationships between mats and mussels, we also used new domain-specific 16S rRNA gene primers targeting Bathymodiolus sp. symbionts. All identified archaeal sequences were affiliated with a single group: the marine group 1 Thaumarchaeota. In contrast, analyses of bacterial sequences revealed much higher diversity, although two phyla Proteobacteria and Bacteroidetes were largely dominant. The 16S rRNA gene sequence library revealed that species affiliated to Beggiatoa Gammaproteobacteria were the dominant active population. Analyses of DNA and RNA functional gene libraries revealed a diverse and active chemolithoautotrophic population. Most of these sequences were affiliated with Gammaproteobacteria, including hydrothermal fauna symbionts, Thiotrichales and Methylococcales. PCR and reverse transcription-PCR using 16S rRNA gene primers targeted to Bathymodiolus sp. symbionts revealed sequences affiliated with both methanotrophic and thiotrophic endosymbionts. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat

    PubMed Central

    Haas, Sebastian; de Beer, Dirk; Klatt, Judith M.; Fink, Artur; Rench, Rebecca McCauley; Hamilton, Trinity L.; Meyer, Volker; Kakuk, Brian; Macalady, Jennifer L.

    2018-01-01

    We report extremely low-light-adapted anoxygenic photosynthesis in a thick microbial mat in Magical Blue Hole, Abaco Island, The Bahamas. Sulfur cycling was reduced by iron oxides and organic carbon limitation. The mat grows below the halocline/oxycline at 30 m depth on the walls of the flooded sinkhole. In situ irradiance at the mat surface on a sunny December day was between 0.021 and 0.084 μmol photons m-2 s-1, and UV light (<400 nm) was the most abundant part of the spectrum followed by green wavelengths (475–530 nm). We measured a light-dependent carbon uptake rate of 14.5 nmol C cm-2 d-1. A 16S rRNA clone library of the green surface mat layer was dominated (74%) by a cluster (>97% sequence identity) of clones affiliated with Prosthecochloris, a genus within the green sulfur bacteria (GSB), which are obligate anoxygenic phototrophs. Typical photopigments of brown-colored GSB, bacteriochlorophyll e and (β-)isorenieratene, were abundant in mat samples and their absorption properties are well-adapted to harvest light in the available green and possibly even UV-A spectra. Sulfide from the water column (3–6 μmol L-1) was the main source of sulfide to the mat as sulfate reduction rates in the mats were very low (undetectable-99.2 nmol cm-3 d-1). The anoxic water column was oligotrophic and low in dissolved organic carbon (175–228 μmol L-1). High concentrations of pyrite (FeS2; 1–47 μmol cm-3) together with low microbial process rates (sulfate reduction, CO2 fixation) indicate that the mats function as net sulfide sinks mainly by abiotic processes. We suggest that abundant Fe(III) (4.3–22.2 μmol cm-3) is the major source of oxidizing power in the mat, and that abiotic Fe-S-reactions play the main role in pyrite formation. Limitation of sulfate reduction by low organic carbon availability along with the presence of abundant sulfide-scavenging iron oxides considerably slowed down sulfur cycling in these mats. PMID:29755448

  11. Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat.

    PubMed

    Haas, Sebastian; de Beer, Dirk; Klatt, Judith M; Fink, Artur; Rench, Rebecca McCauley; Hamilton, Trinity L; Meyer, Volker; Kakuk, Brian; Macalady, Jennifer L

    2018-01-01

    We report extremely low-light-adapted anoxygenic photosynthesis in a thick microbial mat in Magical Blue Hole, Abaco Island, The Bahamas. Sulfur cycling was reduced by iron oxides and organic carbon limitation. The mat grows below the halocline/oxycline at 30 m depth on the walls of the flooded sinkhole. In situ irradiance at the mat surface on a sunny December day was between 0.021 and 0.084 μmol photons m -2 s -1 , and UV light (<400 nm) was the most abundant part of the spectrum followed by green wavelengths (475-530 nm). We measured a light-dependent carbon uptake rate of 14.5 nmol C cm -2 d -1 . A 16S rRNA clone library of the green surface mat layer was dominated (74%) by a cluster (>97% sequence identity) of clones affiliated with Prosthecochloris , a genus within the green sulfur bacteria (GSB), which are obligate anoxygenic phototrophs. Typical photopigments of brown-colored GSB, bacteriochlorophyll e and (β-)isorenieratene, were abundant in mat samples and their absorption properties are well-adapted to harvest light in the available green and possibly even UV-A spectra. Sulfide from the water column (3-6 μmol L -1 ) was the main source of sulfide to the mat as sulfate reduction rates in the mats were very low (undetectable-99.2 nmol cm -3 d -1 ). The anoxic water column was oligotrophic and low in dissolved organic carbon (175-228 μmol L -1 ). High concentrations of pyrite (FeS 2 ; 1-47 μmol cm -3 ) together with low microbial process rates (sulfate reduction, CO 2 fixation) indicate that the mats function as net sulfide sinks mainly by abiotic processes. We suggest that abundant Fe(III) (4.3-22.2 μmol cm -3 ) is the major source of oxidizing power in the mat, and that abiotic Fe-S-reactions play the main role in pyrite formation. Limitation of sulfate reduction by low organic carbon availability along with the presence of abundant sulfide-scavenging iron oxides considerably slowed down sulfur cycling in these mats.

  12. Colonization of oak wilt fungal mats by Ophiostoma piceae during spring in Minnesota

    Treesearch

    Jennifer Juzwik; Jason M. Meyer

    1997-01-01

    The colonization of Ceratocystis fagacearum fungal mats of different ages by Ophiostoma piceae on Quercus spp. was determined in three east-central Minnesota locations during the spring of 1995. The extent of the mat area colonized by O. piceae generally increased with mat age. Subsamples per...

  13. Bioflumology: Microbial mat growth in flumes

    NASA Astrophysics Data System (ADS)

    Airo, A.; Weigert, S.; Beck, C.

    2014-04-01

    The emergence of oxygenic photosynthesis resulted in a transformational change of Earth's geochemical cycles and the subsequent evolution of life. However, it remains vigorously debated when this metabolic ability had evolved in cyanobacteria. This is largely because studies of Archean microfossil morphology, molecular biomarkers, and isotopic characteristics are frequently ambiguous. However, the high degree of morphological similarities between modern photosynthetic and Archean fossil mats has been interpreted to indicate phototactic microbial behavior or oxygenic photosynthesis. In order to better evaluate the relationship between mat morphology and metabolism, we here present a laboratory set-up for conducting month-long experiments in several sterilizable circular flumes designed to allow single-species cyanobacterial growth under adjustable fluid-flow conditions and protected from contamination.

  14. B-Scan Based Acoustic Source Reconstruction for Magnetoacoustic Tomography with Magnetic Induction (MAT-MI)

    PubMed Central

    Mariappan, Leo; Li, Xu; He, Bin

    2011-01-01

    We present in this study an acoustic source reconstruction method using focused transducer with B mode imaging for magnetoacoustic tomography with magnetic induction (MAT-MI). MAT-MI is an imaging modality proposed for non-invasive conductivity imaging with high spatial resolution. In MAT-MI acoustic sources are generated in a conductive object by placing it in a static and a time-varying magnetic field. The acoustic waves from these sources propagate in all directions and are collected with transducers placed around the object. The collected signal is then usedto reconstruct the acoustic source distribution and to further estimate the electrical conductivity distribution of the object. A flat piston transducer acting as a point receiver has been used in previous MAT-MI systems to collect acoustic signals. In the present study we propose to use B mode scan scheme with a focused transducer that gives a signal gain in its focus region and improves the MAT-MI signal quality. A simulation protocol that can take into account different transducer designs and scan schemes for MAT-MI imaging is developed and used in our evaluation of different MAT-MI system designs. It is shown in our computer simulations that, as compared to the previous approach, the MAT-MI system using B-scan with a focused transducer allows MAT-MI imaging at a closer distance and has improved system sensitivity. In addition, the B scan imaging technique allows reconstruction of the MAT-MI acoustic sources with a discrete number of scanning locations which greatly increases the applicability of the MAT-MI approach especially when a continuous acoustic window is not available in real clinical applications. We have also conducted phantom experiments to evaluate the proposed method and the reconstructed image shows a good agreement with the target phantom. PMID:21097372

  15. Eight-Week Traditional Mat Pilates Training-Program Effects on Adult Fitness Characteristics

    ERIC Educational Resources Information Center

    Rogers, Kate; Gibson, Ann L.

    2009-01-01

    We investigated responses of adult, novice practitioners (n = 9) to an 8-week traditional mat Pilates program (P) that met 1 hr/day three times/week. Classes consisted primarily of beginner and intermediate level exercises. Compared to an active control group (C; n = 13) that showed no improvements, those in P significantly (p less than 0.05)…

  16. Thermoelectric Properties of Poly(3-Hexylthiophene) Nanofiber Mat with a Large Void Fraction.

    PubMed

    Hiura, Shogo; Okada, Naoki; Wakui, Junma; Narita, Hikari; Kanehashi, Shinji; Shimomura, Takeshi

    2017-04-28

    The thermoelectric properties of a poly(3-hexylthiophene) (P3HT) nanofiber mat which has higher crystallinity-and thus exhibits larger carrier mobility-than a non-fibrous P3HT film, were investigated. No significant difference was observed in the maximum values of the power factor between the P3HT nanofiber mat and the P3HT film. However, the thermal conductivity of the nanofiber mat was less than half that of the film despite having almost the same electrical conductivity. This higher thermoelectric property of the nanofiber mat than the film is attributed to the existence of highly effective conducting pathways and a large void fraction, and the result means that the nanofiber mat was a good candidate for use as a thermoelectric material.

  17. Evaluating five different loci (rbcL, rpoB, rpoC1, matK, and ITS) for DNA barcoding of Indian orchids.

    PubMed

    Parveen, Iffat; Singh, Hemant K; Malik, Saloni; Raghuvanshi, Saurabh; Babbar, Shashi B

    2017-08-01

    Orchidaceae, one of the largest families of angiosperms, is represented in India by 1600 species distributed in diverse habitats. Orchids are in high demand owing to their beautiful flowers and therapeutic properties. Overexploitation and habitat destruction have made many orchid species endangered. In the absence of effective identification methods, illicit trade of orchids continues unabated. Considering DNA barcoding as a potential identification tool, species discrimination capability of five loci, ITS, matK, rbcL, rpoB, and rpoC1, was tested in 393 accessions of 94 Indian orchid species belonging to 47 genera, including one listed in Appendix I of CITES and 26 medicinal species. ITS provided the highest species discrimination rate of 94.9%. While, among the chloroplast loci, matK provided the highest species discrimination rate of 85.7%. None of the tested loci individually discriminated 100% of the species. Therefore, multi-locus combinations of up to five loci were tested for their species resolution capability. Among two-locus combinations, the maximum species resolution (86.7%) was provided by ITS+matK. ITS and matK sequences of the medicinal orchids were species specific, thus providing unique molecular identification tags for their identification and detection. These observations emphasize the need for the inclusion of ITS in the core barcode for plants, whenever required and available.

  18. An in vitro examination of the antioxidant, cytoprotective and anti-inflammatory properties of chrysin-loaded nanofibrous mats for potential wound healing applications.

    PubMed

    Deldar, Yaghoub; Pilehvar-Soltanahmadi, Younes; Dadashpour, Mehdi; Montazer Saheb, Soheila; Rahmati-Yamchi, Mohammad; Zarghami, Nosratollah

    2018-06-01

    Chrysin (Chr) is a naturally occurring flavone with a wide spectrum of biological functions including anti-cancer, anti-inflammatory and anti-oxidant properties. Due to the low bioavailability and in vivo stability of Chr at therapeutic levels for wound-healing applications, Chr-loaded PCL/PEG nanofibrous mats were successfully fabricated by optimizing the electrospinning parameters and characterized using FE-SEM and FTIR. Results of MTT showed that Human foreskin fibroblast cells (HFF-1) have more than 80% viability on Chr-loaded nanofibers. The antioxidant activity of Chr-loaded PCL/PEG electrospun nanofibers was demonstrated applying an ORAC assay and by the capability of the nanofibers to maintain the viability of HFF-1 cells on the mats under an oxidative stress condition. The Chr-blended PCL/PEG nanofibrous mats also reduced overexpression of IL-6, IL-1β, TNF-α and excessive production of nitric oxide (NO) in J774A1 following stimulation by lipopolysaccharide (LPS). These results suggest that the proposed natural substance based nanofibrous mats can accelerate wound healing process with cell proliferation, antioxidative and anti-inflammatory activities.

  19. Using the 4MAT Framework to Design a Problem-Based Learning Biostatistics Course

    ERIC Educational Resources Information Center

    Nowacki, Amy S.

    2011-01-01

    The study presents and applies the 4MAT theoretical framework to educational planning to transform a biostatistics course into a problem-based learning experience. Using a four-question approach, described are specific activities/materials utilized at both the class and course levels. Two web-based instruments collected data regarding student…

  20. Alpha Matting with KL-Divergence Based Sparse Sampling.

    PubMed

    Karacan, Levent; Erdem, Aykut; Erdem, Erkut

    2017-06-22

    In this paper, we present a new sampling-based alpha matting approach for the accurate estimation of foreground and background layers of an image. Previous sampling-based methods typically rely on certain heuristics in collecting representative samples from known regions, and thus their performance deteriorates if the underlying assumptions are not satisfied. To alleviate this, we take an entirely new approach and formulate sampling as a sparse subset selection problem where we propose to pick a small set of candidate samples that best explains the unknown pixels. Moreover, we describe a new dissimilarity measure for comparing two samples which is based on KLdivergence between the distributions of features extracted in the vicinity of the samples. The proposed framework is general and could be easily extended to video matting by additionally taking temporal information into account in the sampling process. Evaluation on standard benchmark datasets for image and video matting demonstrates that our approach provides more accurate results compared to the state-of-the-art methods.

  1. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms.

    PubMed

    Dillon, Jesse G; Fishbain, Susan; Miller, Scott R; Bebout, Brad M; Habicht, Kirsten S; Webb, Samuel M; Stahl, David A

    2007-08-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation.

  2. Electrospinning and stabilization of chitosan nanofiber mats

    NASA Astrophysics Data System (ADS)

    Grimmelsmann, N.; Grothe, T.; Homburg, S. V.; Ehrmann, A.

    2017-10-01

    Chitosan is of special interest for biotechnological and medical applications due to its antibacterial, antifungal and other intrinsic physical and chemical properties. The biopolymer can, e.g., be used for biotechnological purposes, as a filter medium, in medical products, etc. In all these applications, the inner surface should be maximized to increase the contact area with the filtered medium etc. and thus the chitosan’s efficacy. Chitosan dissolves in acidic solutions, opposite to neutral water. Electrospinning is possible, e.g., by co-spinning with PEO (poly(ethylene oxide)). Tests with different chitosan:PEO ratios revealed that higher PEO fractions resulted in better spinnability and more regular fibre mats, but make stabilization of the fibre structure more challenging.

  3. Electrospun poly(methyl methacrylate) fibrous mat showing piezoelectric properties

    NASA Astrophysics Data System (ADS)

    Nobeshima, Taiki; Ishii, Yuya; Sakai, Heisuke; Uemura, Sei; Yoshida, Manabu

    2018-05-01

    A piezoelectric effect, such as actuation behavior with voltage application, could be observed from a poly(methyl methacrylate) (PMMA) fibrous mat fabricated by electrospinning. This fibrous mat increased or decreased its thickness in accordance with the polarity of the applied voltage, which appears to be an inverse piezoelectric effect. The appearance d T constant was as large as 8.5 nm/V owing to the softness of the fibrous structure, and the coupling constant K T = 0.31 indicated its efficient piezoelectric property. This piezoelectric behavior was repeatedly observed to be stable at room temperature. In addition, the polarization components of the fibrous mat, which are considered to be the origin of its piezoelectric effect, and its relaxation behavior were confirmed from the results of thermally stimulated current measurements.

  4. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mobberley, Jennifer M.; Lindemann, Stephen R.; Bernstein, Hans C.

    2017-03-21

    Phototrophic mat communities are model ecosystems for studying energy cycling and elemental transformations because complete biogeochemical cycles occur over millimeter-to-centimeter scales. Characterization of energy and nutrient capture within hypersaline phototrophic mats has focused on specific processes and organisms, however little is known about community-wide distribution of and linkages between these processes. To investigate energy and macronutrient capture and flow through a structured community, the spatial and organismal distribution of metabolic functions within a compact hypersaline mat community from Hot Lake have been broadly elucidated through species-resolved metagenomics and geochemical, microbial diversity, and metabolic gradient measurements. Draft reconstructed genomes of abundantmore » organisms revealed three dominant cyanobacterial populations differentially distributed across the top layers of the mat suggesting niche separation along light and oxygen gradients. Many organisms contained diverse functional profiles, allowing for metabolic response to changing conditions within the mat. Organisms with partial nitrogen and sulfur metabolisms were widespread indicating dependence upon metabolite exchange. In addition, changes in community spatial structure were observed over the diel. These results indicate that organisms within the mat community have adapted to the temporally dynamic environmental gradients in this hypersaline mat through metabolic flexibility and fluid syntrophic interactions, including shifts in spatial arrangements.« less

  5. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats

    NASA Astrophysics Data System (ADS)

    Wong, Hon Lun; Smith, Daniela-Lee; Visscher, Pieter T.; Burns, Brendan P.

    2015-10-01

    Modern microbial mats can provide key insights into early Earth ecosystems, and Shark Bay, Australia, holds one of the best examples of these systems. Identifying the spatial distribution of microorganisms with mat depth facilitates a greater understanding of specific niches and potentially novel microbial interactions. High throughput sequencing coupled with elemental analyses and biogeochemical measurements of two distinct mat types (smooth and pustular) at a millimeter scale were undertaken in the present study. A total of 8,263,982 16S rRNA gene sequences were obtained, which were affiliated to 58 bacterial and candidate phyla. The surface of both mats were dominated by Cyanobacteria, accompanied with known or putative members of Alphaproteobacteria and Bacteroidetes. The deeper anoxic layers of smooth mats were dominated by Chloroflexi, while Alphaproteobacteria dominated the lower layers of pustular mats. In situ microelectrode measurements revealed smooth mats have a steeper profile of O2 and H2S concentrations, as well as higher oxygen production, consumption, and sulfate reduction rates. Specific elements (Mo, Mg, Mn, Fe, V, P) could be correlated with specific mat types and putative phylogenetic groups. Models are proposed for these systems suggesting putative surface anoxic niches, differential nitrogen fixing niches, and those coupled with methane metabolism.

  6. Characterization and Modification of Electrospun Fiber Mats for Use in Composite Proton Exchange Membranes

    NASA Astrophysics Data System (ADS)

    Mannarino, Matthew Marchand

    conducting material or forms a continuous fuel-blocking film. The LbL component consists of a proton-conducting, methanolimpermeable poly(diallyl dimethyl ammonium chloride)/sulfonated poly(2,6-dimethyl 1,4-phenylene oxide) (PDAC/sPPO) thin film. The electrospun fiber component consists of PA 6(3)T fibers of average diameter between 400 and 800 nm, in a nonwoven matrix of 60-90% porosity depending on the temperature of thermal annealing utilized to improve the mechanical properties. This thesis demonstrates the versatility and flexibility of this fabrication technique, since any ion conducting LbL system may be sprayed onto any electrospun fiber mat, allowing for independent control of functionality and mechanical properties. The mechanical properties of the spray coated electrospun mats are shown to be superior to the LbL-only system, and possess intrinsically greater dimensional stability and lower mechanical hysteresis than Nafion under hydration cycling. The electrochemical selectivity of the composite LbL-electrospun membrane is found to be superior to Nafion, which makes them a viable alternative proton exchange membrane for fuel cell applications. The composite proton exchange membranes fabricated in this work were tested in an operational direct methanol fuel cell, with results showing the capability for higher open circuit voltages (OCV) and comparable cell resistances when compared to Nafion. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  7. Mechanical characterization of glass fiber (woven roving/chopped strand mat E-glass fiber) reinforced polyester composites

    NASA Astrophysics Data System (ADS)

    Bhaskar, V. Vijaya; Srinivas, Kolla

    2017-07-01

    Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.

  8. Bacterial Diversity in Microbial Mats and Sediments from the Atacama Desert.

    PubMed

    Rasuk, Maria Cecilia; Fernández, Ana Beatriz; Kurth, Daniel; Contreras, Manuel; Novoa, Fernando; Poiré, Daniel; Farías, María Eugenia

    2016-01-01

    The Atacama Desert has extreme environmental conditions that allow the development of unique microbial communities. The present paper reports the bacterial diversity of microbial mats and sediments and its mineralogical components. Some physicochemical conditions of the water surrounding these ecosystems have also been studied trying to determine their influence on the diversity of these communities. In that way, mats and sediments distributed among different hypersaline lakes located in salt flats of the Atacama Desert were subjected to massive parallel sequencing of the V4 region of the 16S rRNA genes of Bacteria. A higher diversity in sediment than in mat samples have been found. Lakes that harbor microbial mats have higher salinity than lakes where mats are absent. Proteobacteria and/or Bacteroidetes are the major phyla represented in all samples. An interesting item is the finding of a low proportion or absence of Cyanobacteria sequences in the ecosystems studied, suggesting the possibility that other groups may be playing an essential role as primary producers in these extreme environments. Additionally, the large proportion of 16S rRNA gene sequences that could not be classified at the level of phylum indicates potential new phyla present in these ecosystems.

  9. Investigation of needleless electrospun PAN nanofiber mats

    NASA Astrophysics Data System (ADS)

    Sabantina, Lilia; Mirasol, José Rodríguez; Cordero, Tomás; Finsterbusch, Karin; Ehrmann, Andrea

    2018-04-01

    Polyacrylonitrile (PAN) can be spun from a nontoxic solvent (DMSO, dimethyl sulfoxide) and is nevertheless waterproof, opposite to the biopolymers which are spinnable from aqueous solutions. This makes PAN an interesting material for electrospinning nanofiber mats which can be used for diverse biotechnological or medical applications, such as filters, cell growth, wound healing or tissue engineering. On the other hand, PAN is a typical base material for producing carbon nanofibers. Nevertheless, electrospinning PAN necessitates convenient spinning parameters to create nanofibers without too many membranes or agglomerations. Thus we have studied the influence of spinning parameters on the needleless electrospinning process of PAN dissolved in DMSO and the resulting nanofiber mats.

  10. Selected properties of MDF and flakeboard overlaid with fiberglass mats

    Treesearch

    Zhiyong Cai

    2006-01-01

    Nonwoven fiberglass face laminates have long been applied to consolidated wood- based composites to improve their performance and serviceability. In this study, fiberglass mats with 50 percent resin binder were applied as face laminates to unconsolidated wood fiber or flake mats, then hot-pressed to make overlaid medium density fiberboard and flakeboard. Fiberglass...

  11. Effects of medication assisted treatment (MAT) for opioid use disorder on functional outcomes: A systematic review.

    PubMed

    Maglione, Margaret A; Raaen, Laura; Chen, Christine; Azhar, Gulrez; Shahidinia, Nima; Shen, Mimi; Maksabedian, Ervant; Shanman, Roberta M; Newberry, Sydne; Hempel, Susanne

    2018-06-01

    This systematic review synthesizes evidence on the effects of Medication-Assisted Treatment (MAT) for opioid use disorder (OUD) on functional outcomes, including cognitive (e.g., memory), physical (e.g., fatigue), occupational (e.g., return to work), social/behavioral (e.g., criminal activity), and neurological (e.g., balance) function. Five databases were searched from inception to July 2017 to identify English-language controlled trials, case control studies, and cohort comparisons of one or more groups; cross-sectional studies were excluded. Two independent reviewers screened identified literature, abstracted study-level information, and assessed the quality of included studies. Meta-analyses used the Hartung-Knapp method for random-effects models. The quality of evidence was assessed using the GRADE approach. A comprehensive search followed by 1411 full text publication screenings yielded 30 randomized controlled trials (RCTs) and 10 observational studies meeting inclusion criteria. The studies reported highly diverse functional outcome measures. Only one RCT was rated as high quality, but several methodologically sound observational studies were identified. The statistical power to detect differences in functional outcomes was unclear in most studies. When compared with matched "healthy" controls with no history of substance use disorder (SUD), in two studies MAT patients had significantly poorer working memory and cognitive speed. One study found MAT patients scored worse in aggressive responding than did "healthy" controls. A large observational study found that MAT users had twice the odds of involvement in an injurious traffic accident as non-users. When compared with persons with OUD not on MAT, one cohort study found lower fatigue rates among buprenorphine-treated OUD patients. No differences were reported for occupational outcomes and results for criminal activity and other social/behavioral areas were mixed. There were few differences among MAT drug

  12. The Architecture of Iron Microbial Mats Reflects the Adaptation of Chemolithotrophic Iron Oxidation in Freshwater and Marine Environments

    PubMed Central

    Chan, Clara S.; McAllister, Sean M.; Leavitt, Anna H.; Glazer, Brian T.; Krepski, Sean T.; Emerson, David

    2016-01-01

    Microbes form mats with architectures that promote efficient metabolism within a particular physicochemical environment, thus studying mat structure helps us understand ecophysiology. Despite much research on chemolithotrophic Fe-oxidizing bacteria, Fe mat architecture has not been visualized because these delicate structures are easily disrupted. There are striking similarities between the biominerals that comprise freshwater and marine Fe mats, made by Beta- and Zetaproteobacteria, respectively. If these biominerals are assembled into mat structures with similar functional morphology, this would suggest that mat architecture is adapted to serve roles specific to Fe oxidation. To evaluate this, we combined light, confocal, and scanning electron microscopy of intact Fe microbial mats with experiments on sheath formation in culture, in order to understand mat developmental history and subsequently evaluate the connection between Fe oxidation and mat morphology. We sampled a freshwater sheath mat from Maine and marine stalk and sheath mats from Loihi Seamount hydrothermal vents, Hawaii. Mat morphology correlated to niche: stalks formed in steeper O2 gradients while sheaths were associated with low to undetectable O2 gradients. Fe-biomineralized filaments, twisted stalks or hollow sheaths, formed the highly porous framework of each mat. The mat-formers are keystone species, with nascent marine stalk-rich mats comprised of novel and uncommon Zetaproteobacteria. For all mats, filaments were locally highly parallel with similar morphologies, indicating that cells were synchronously tracking a chemical or physical cue. In the freshwater mat, cells inhabited sheath ends at the growing edge of the mat. Correspondingly, time lapse culture imaging showed that sheaths are made like stalks, with cells rapidly leaving behind an Fe oxide filament. The distinctive architecture common to all observed Fe mats appears to serve specific functions related to chemolithotrophic Fe

  13. The calcium carbonate saturation state in cyanobacterial mats throughout Earth’s history

    NASA Astrophysics Data System (ADS)

    Aloisi, Giovanni

    2008-12-01

    Through early lithification, cyanobacterial mats produced vast amounts of CaCO 3 on Precambrian carbonate platforms (before 540 Myr ago). The superposition of lithified cyanobacterial mats forms internally laminated, macroscopic structures known as stromatolites. Similar structures can be important constituents of Phanerozoic carbonate platforms (540 Myr to present). Early lithification in modern marine cyanobacterial mats is thought to be driven by a metabolically-induced increase of the CaCO 3 saturation state ( Ω) in the mat. However, it is uncertain which microbial processes produce the Ω increase and to which extent similar Ω shifts were possible in Precambrian oceans whose chemistry differed from that of the modern ocean. I developed a numerical model that calculates Ω in cyanobacterial mats and used it to tackle these questions. The model is first applied to simulate Ω in modern calcifying cyanobacterial mats forming at Highborne Cay (Bahamas); it shows that while cyanobacterial photosynthesis increases Ω considerably, sulphate reduction has a small and opposite effect on mat Ω because it is coupled to H 2S oxidation with O 2 which produces acidity. Numerical experiments show that the magnitude of the Ω increase is proportional to DIC in DIC-limited waters (DIC < 3-10 mM), is proportional to pH when ambient water DIC is not limiting and always proportional to the concentration of Ca 2+ in ambient waters. With oceanic Ca 2+ concentrations greater than a few millimolar, an appreciable increase in Ω occurs in mats under a wide range of environmental conditions, including those supposed to exist in the oceans of the past 2.8 Gyr. The likely lithological expression is the formation of the microsparitic stromatolite microtexture—indicative of CaCO 3 precipitation within the mats under the control of microbial activity—which is found in carbonate rocks spanning from the Precambrian to recent. The model highlights the potential for an increase in the

  14. IPM Analysis of the Final Mercury and Air Toxics Standards (MATS)

    EPA Pesticide Factsheets

    EPA used version 4.10_MATS of the Integrated Planning Model (IPM) to analyze the impact of the Mercury and Air Toxics Standards (MATS) rule on the U.S. electric power sector. Learn about the results and view links to documentation.

  15. Sedimentary Parameters Controlling Occurrence and Preservation of Microbial Mats in Siliciclastic Depositional Systems

    NASA Technical Reports Server (NTRS)

    Noffke, Nora; Knoll, Andrew H.

    2001-01-01

    Shallow-marine, siliciclastic depositional systems are governed by physical sedimentary processes. Mineral precipitation or penecontemporaneous cementation play minor roles. Today, coastal siliciclastic environments may be colonized by a variety of epibenthic, mat-forming cyanobacteria. Studies on microbial mats showed that they are not randomly distributed in modern tidal environments. Distribution and abundancy is mainly function of a particular sedimentary facies. Fine-grained sands composed of "clear" (translucent) quartz particles constitute preferred substrates for cyanobacteria. Mat-builders also favor sites characterized by moderate hydrodynamic flow regimes, which permit biomass enrichment and construction of mat fabrics without lethal burial of mat populations by fine sediments. A comparable facies relationship can be observed in ancient siliciclastic shelf successions from the terminal Neoproterozoic Nama Group, Namibia. Wrinkle structures that record microbial mats are present but sparsely distributed in mid- to inner shelf sandstones of the Nudaus Formation. The sporadic distribution of these structures reflects both the narrow ecological window that governs mat development and the distinctive taphonomic conditions needed to preserve the structures. These observations caution that statements about changing mat abundance across the Proterozoic-Cambrian boundary must be firmly rooted in paleoenvironmental and taphonomic analysis. Understanding the factors that influence the formation and preservation of microbial structures in siliciclastic regimes can facilitate exploration for biological signatures in Earth's oldest rocks. Moreover, insofar as these structures can be preserved on bedding surfaces and are not easily mimicked by physical processes, they constitute a set of biological markers that can be searched for on Mars by remotely controlled rovers.

  16. Use of Lightweight Cellular Mats to Reduce the Settlement of Structure on Soft Soil

    NASA Astrophysics Data System (ADS)

    Ganasan, R.; Lim, A. J. M. S.; Wijeyesekera, D. C.

    2016-07-01

    Construction of structures on soft soils gives rise to some difficulties in Malaysia and other country especially in settlement both in short and long term. The focus of this research is to minimize the differential and non-uniform settlement on peat soil with the use of an innovative cellular mat. The behaviour and performance of the lightweight geo-material (in block form) is critically investigated and in particular the use as a fill in embankment on soft ground. Hemic peat soil, sponge and innovative cellular mat will be used as the main material in this study. The monitoring in settlement behavior from this part of research will be done as laboratory testing only. The uneven settlement in this problem was uniquely monitored photographically using spot markers. In the end of the research, it is seen that the innovative cellular mat has reduce the excessive and differential settlement up to 50% compare to flexible and rigid foundations. This had improve the stiffness of soils as well as the porous contain in cellular structure which help in allowing water/moisture to flow through in or out thus resulting in prevent the condition of floating.

  17. Urinary Concentrations of Polycyclic Aromatic Hydrocarbon Metabolites in Maté Drinkers in Rio Grande do Sul, Brazil

    PubMed Central

    Lopes, Antonio Barros; Metzdorf, Marcela; Metzdorf, Luiza; Ramalho, Marcos Paulo; Kavalco, Caroline; Etemadi, Arash; Pritchett, Natalie R.; Murphy, Gwen; Calafat, Antonia M.; Abnet, Christian C.; Dawsey, Sanford M.; Fagundes, Renato Borges

    2017-01-01

    Background Consumption of maté, an infusion of the herb Ilex paraguariensis (yerba maté), is associated with increased risk of esophageal squamous cell carcinoma (ESCC), but the carcinogenic mechanism is unclear. Commercial brands of yerba maté contain high levels of carcinogenic polycyclic aromatic hydrocarbons (PAHs), which are acquired during the traditional drying process. The purpose of this study was to characterize exposure to PAHs in maté drinkers over a wide range of maté consumption. Methods We recruited 244 adults who answered a questionnaire and collected a fasting spot urine specimen. We quantified urinary concentrations of seven PAH metabolites, and assessed associations between self-reported recent maté consumption and urinary PAH metabolites by multivariate regression. Results Recent maté consumption showed a significant dose-response association with 6 of 7 PAH metabolites in unadjusted models (p-for-trend <0.05). After adjustment for creatinine and potential confounders, concentrations of 2-naphthol, 1-hydroxyphenanthrene, and the sum of 2- and 3-hydroxyphenanthrene remained significantly associated with recent maté intake. The sum of the urinary concentrations of the phenanthrene metabolites was similar or higher among maté drinkers who did not smoke than among smokers who did not drink maté. Conclusions Urinary concentrations of PAH metabolites were significantly associated with self-reported amount of recent maté intake, and drinking maté increased urinary concentrations of some PAH metabolites as much as smoking cigarettes. Impact Drinking maté is a source of exposure to potentially carcinogenic PAHs, consistent with the hypothesis that the PAH content of maté may contribute to the increased risk of ESCC in maté drinkers. PMID:29263183

  18. Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) Users' Workshop Presentations

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S. (Compiler)

    2018-01-01

    NASA Glenn Research Center hosted a Users' Workshop on the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) on August 21, 2017. The objective of this workshop was to update the user community on the latest features of T-MATS, and to provide a forum to present work performed using T-MATS. Presentations highlighted creative applications and the development of new features and libraries, and emphasized the flexibility and simulation power of T-MATS.

  19. Micropatterned stretchable circuit and strain sensor fabricated by lithography on an electrospun nanofiber mat.

    PubMed

    Park, Minwoo; Im, Jungkyun; Park, Jongjin; Jeong, Unyong

    2013-09-11

    This paper describes a novel approach for composite nanofiber mats and its application to fabricate a strain sensor. Electrospun poly(4-vinylpyridine) (P4VP) nanofiber mats are micropatterned by a lithographic approach that includes selective oxidation of the nanofibers and removal of unreacted fibers. The P4VP/HAuCl4 complex is converted to P4VP/Au composites by chemical reduction. We investigate the electrical resistivity of the composite mats according to the number of complexation-and-reduction cycles, the thickness of the fiber mats, and the annealing temperatures which control the percolation of the Au nanoparticles in the fiber mats. Nozzle printing of a polymeric solution on the patterned nanofiber mats simply produces an array of strain-sensitive and strain-invariant units. The patterns demonstrate high strain-sensing performance without any mechanical and electrical failure over 200 bending cycles in the strain range of ε<0.17.

  20. HIDRA-MAT: A Material Analysis Tool for Fusion Devices

    NASA Astrophysics Data System (ADS)

    Andruczyk, Daniel; Rizkallah, Rabel; Bedoya, Felipe; Kapat, Aveek; Schamis, Hanna; Allain, Jean Paul

    2017-10-01

    The former WEGA stellarator which is now operating as HIDRA at the University of Illinois will be almost exclusively used to study the intimate relationship between the plasma interacting with surfaces of different materials. A Material Analysis Tool (HIDRA-MAT) is being designed and will be built based on the successful Material Analysis and Particle Probe (MAPP) which is currently used on NSTX-U at PPPL. This will be an in-situ material diagnostic probe, meaning that all analysis can be done without breaking vacuum. This allows surface changes to be studied in real-time. HIDRA-MAT will consist of several in-situ diagnostics including Langmuir probes (LP), Thermal Desorption Spectroscopy (TDS), X-ray Photo Spectroscopy (XPS) and Ion Scattering Spectroscopy (ISS). This presentation will outline the HIDRA-MAT diagnostic and initial design, as well as its integration into the HIDRA system.

  1. Using Talking Mats to Support Communication in Persons with Huntington's Disease

    ERIC Educational Resources Information Center

    Ferm, Ulrika; Sahlin, Anna; Sundin, Linda; Hartelius, Lena

    2010-01-01

    Background: Many individuals with Huntington's disease experience reduced functioning in cognition, language and communication. Talking Mats is a visually based low technological augmentative communication framework that supports communication in people with different cognitive and communicative disabilities. Aims: To evaluate Talking Mats as a…

  2. High Rates of Sulfate Reduction in a Low-Sulfate Hot Spring Microbial Mat Are Driven by a Low Level of Diversity of Sulfate-Respiring Microorganisms▿

    PubMed Central

    Dillon, Jesse G.; Fishbain, Susan; Miller, Scott R.; Bebout, Brad M.; Habicht, Kirsten S.; Webb, Samuel M.; Stahl, David A.

    2007-01-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation. PMID:17575000

  3. Urinary Concentrations of Polycyclic Aromatic Hydrocarbon Metabolites in Maté Drinkers in Rio Grande do Sul, Brazil.

    PubMed

    Lopes, Antonio Barros; Metzdorf, Marcela; Metzdorf, Luiza; Sousa, Marcos Paulo Ramalho; Kavalco, Caroline; Etemadi, Arash; Pritchett, Natalie R; Murphy, Gwen; Calafat, Antonia M; Abnet, Christian C; Dawsey, Sanford M; Fagundes, Renato Borges

    2018-03-01

    Background: Consumption of maté , an infusion of the herb Ilex paraguariensis (yerba maté) , is associated with increased risk of esophageal squamous cell carcinoma (ESCC), but the carcinogenic mechanism is unclear. Commercial brands of yerba maté contain high levels of carcinogenic polycyclic aromatic hydrocarbons (PAHs), which are acquired during the traditional drying process. The purpose of this study was to characterize exposure to PAHs in maté drinkers over a wide range of maté consumption. Methods: We recruited 244 adults who answered a questionnaire and collected a fasting spot urine specimen. We quantified urinary concentrations of seven PAH metabolites and assessed associations between self-reported recent maté consumption and urinary PAH metabolites by multivariate regression. Results: Recent maté consumption showed a significant dose-response association with 6 of 7 PAH metabolites in unadjusted models ( P trend < 0.05). After adjustment for creatinine and potential confounders, concentrations of 2-naphthol, 1-hydroxyphenanthrene, and the sum of 2- and 3-hydroxyphenanthrene remained significantly associated with recent maté intake. The sum of the urinary concentrations of the phenanthrene metabolites was similar or higher among maté drinkers who did not smoke than among smokers who did not drink maté Conclusions: Urinary concentrations of PAH metabolites were significantly associated with self-reported amounts of recent maté intake, and drinking maté increased urinary concentrations of some PAH metabolites as much as smoking cigarettes. Impact: Drinking maté is a source of exposure to potentially carcinogenic PAHs, consistent with the hypothesis that the PAH content of maté may contribute to the increased risk of ESCC in maté drinkers. Cancer Epidemiol Biomarkers Prev; 27(3); 331-7. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. The Function of the Superficial Root Mat in the Biogeochemical Cycles of Nutrients in Congolese Eucalyptus Plantations

    PubMed Central

    LACLAU, JEAN‐PAUL; TOUTAIN, FRANÇOIS; M’BOU, ARMEL THONGO; ARNAUD, MICHEL; JOFFRE, RICHARD; RANGER, JACQUES

    2004-01-01

    • Background and Aims The importance of superficial root mats inside the forest floor for the nutrition of Amazonian rain forests has been extensively investigated. The present study was aimed at assessing the function of a root mat adherent to decomposing organic material observed in Eucalyptus plantations. • Methods The development of the root mat was studied through micromorphological observations of thin litter sections, and the influence of soil microtopography and soil water repellency on root mat biomass was assessed in situ on an area of 5 m2. In addition, input–output budgets of nutrients within the forest floor were established from measurements of litterfall, dissolved nutrients in gravitational solutions, and forest floor nutrient contents. • Key Findings The amounts of nutrients released during litter decay in this ecosystem during the period of study were, on average, 46, 3, 4, 19 and 17 kg ha–1 year–1 for N, P, K, Ca and Mg, respectively. The simultaneous measurements of the chemical composition of throughfall solutions and leachates beneath the forest floor showed a very quick uptake of nutrients by the root mat during the decomposition processes. Indeed, the solutions did not become noticeably enriched in nutrients during their passage through the holorganic layer, despite large amounts of elements being released during litter decay. The root mat biomass decreased significantly during the dry season, and a preferential development in microdepressions at the soil surface was observed. A strong water repellency observed in these depressions might enhance the ability of the roots to take up water and nutrients during the dry periods. • Conclusions The root mat was active throughout the year to catch the flux of nutrients from the biodegradation of the forest floor, preventing the transfer of dissolved nutrients toward deeper soil horizons. This mechanism is involved in the successful adaptation of this Eucalyptus hybrid in areas

  5. Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats.

    PubMed

    Jay, Zackary J; Beam, Jacob P; Dlakić, Mensur; Rusch, Douglas B; Kozubal, Mark A; Inskeep, William P

    2018-05-14

    The discovery of archaeal lineages is critical to our understanding of the universal tree of life and evolutionary history of the Earth. Geochemically diverse thermal environments in Yellowstone National Park provide unprecedented opportunities for studying archaea in habitats that may represent analogues of early Earth. Here, we report the discovery and characterization of a phylum-level archaeal lineage proposed and herein referred to as the 'Marsarchaeota', after the red planet. The Marsarchaeota contains at least two major subgroups prevalent in acidic, microaerobic geothermal Fe(III) oxide microbial mats across a temperature range from ~50-80 °C. Metagenomics, single-cell sequencing, enrichment culturing and in situ transcriptional analyses reveal their biogeochemical role as facultative aerobic chemoorganotrophs that may also mediate the reduction of Fe(III). Phylogenomic analyses of replicate assemblies corresponding to two groups of Marsarchaeota indicate that they branch between the Crenarchaeota and all other major archaeal lineages. Transcriptomic analyses of several Fe(III) oxide mat communities reveal that these organisms were actively transcribing two different terminal oxidase complexes in situ and genes comprising an F 420 -dependent butanal catabolism. The broad distribution of Marsarchaeota in geothermal, microaerobic Fe(III) oxide mats suggests that similar habitat types probably played an important role in the evolution of archaea.

  6. Hydroponic root mats for wastewater treatment-a review.

    PubMed

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  7. Community living long before man: fossil and living microbial mats and early life

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Lopez Baluja, L.; Awramik, S. M.; Sagan, D.

    1986-01-01

    Microbial mats are layered communities of bacteria that form cohesive structures, some of which are preserved in sedimentary rocks as stromatolites. Certain rocks, approximately three and a half thousand million years old and representing the oldest known fossils, are interpreted to derive from microbial mats and to contain fossils of microorganisms. Modern microbial mats (such as the one described here from Matanzas, Cuba) and their fossil counterparts are of great interest in the interpretation of early life on Earth. Since examination of microbial mats and stromatolites increases our understanding of long-term stability and change, within the global environment, such structures should be protected wherever possible as natural science preserves. Furthermore, since they have existed virtually from the time of life's origin, microbial mats have developed exemplary mechanisms of local community persistence and may even play roles in the larger global environment that we do not understand.

  8. Regulation of nif gene expression and the energetics of N2 fixation over the diel cycle in a hot spring microbial mat.

    PubMed

    Steunou, Anne-Soisig; Jensen, Sheila I; Brecht, Eric; Becraft, Eric D; Bateson, Mary M; Kilian, Oliver; Bhaya, Devaki; Ward, David M; Peters, John W; Grossman, Arthur R; Kühl, Michael

    2008-04-01

    Nitrogen fixation, a prokaryotic, O2-inhibited process that reduces N2 gas to biomass, is of paramount importance in biogeochemical cycling of nitrogen. We analyzed the levels of nif transcripts of Synechococcus ecotypes, NifH subunit and nitrogenase activity over the diel cycle in the microbial mat of an alkaline hot spring in Yellowstone National Park. The results showed a rise in nif transcripts in the evening, with a subsequent decline over the course of the night. In contrast, immunological data demonstrated that the level of the NifH polypeptide remained stable during the night, and only declined when the mat became oxic in the morning. Nitrogenase activity was low throughout the night; however, it exhibited two peaks, a small one in the evening and a large one in the early morning, when light began to stimulate cyanobacterial photosynthetic activity, but O2 consumption by respiration still exceeded the rate of O2 evolution. Once the irradiance increased to the point at which the mat became oxic, the nitrogenase activity was strongly inhibited. Transcripts for proteins associated with energy-producing metabolisms in the cell also followed diel patterns, with fermentation-related transcripts accumulating at night, photosynthesis- and respiration-related transcripts accumulating during the day and late afternoon, respectively. These results are discussed with respect to the energetics and regulation of N2 fixation in hot spring mats and factors that can markedly influence the extent of N2 fixation over the diel cycle.

  9. A hetero-core fiber optic smart mat sensor for discrimination between a moving human and object on temporal loss peaks

    NASA Astrophysics Data System (ADS)

    Hosoki, Ai; Nishiyama, Michiko; Choi, Yongwoon; Watanabe, Kazuhiro

    2011-05-01

    In this paper, we propose discrimination method between a moving human and object by means of a hetero-core fiber smart mat sensor which induces the optical loss change in time. In addition to several advantages such as flexibility, thin size and resistance to electro-magnetic interference for a fiber optic sensor, a hetero-core fiber optic sensor is sensitive to bending action of the sensor portion and independent of temperature fluctuations. Therefore, the hetero-core fiber thin mat sensor can have a fewer sensing portions than the conventional floor pressure sensors, furthermore, can detect the wide area covering the length of strides. The experimental results for human walking tests showed that the mat sensors were reproducibly working in real-time under limiting locations the foot passed in the mat sensor. Focusing on the temporal peak numbers in the optical loss, human walking and wheeled platform moving action induced the peak numbers in the range of 1 - 3 and 5 - 7, respectively, for the 10 persons including 9 male and 1 female. As a result, we conclude that the hetero-core fiber mat sensor is capable of discriminating between the moving human and object such as a wheeled platform focusing on the peak numbers in the temporal optical loss.

  10. Sway Area and Velocity Correlated With MobileMat Balance Error Scoring System (BESS) Scores.

    PubMed

    Caccese, Jaclyn B; Buckley, Thomas A; Kaminski, Thomas W

    2016-08-01

    The Balance Error Scoring System (BESS) is often used for sport-related concussion balance assessment. However, moderate intratester and intertester reliability may cause low initial sensitivity, suggesting that a more objective balance assessment method is needed. The MobileMat BESS was designed for objective BESS scoring, but the outcome measures must be validated with reliable balance measures. Thus, the purpose of this investigation was to compare MobileMat BESS scores to linear and nonlinear measures of balance. Eighty-eight healthy collegiate student-athletes (age: 20.0 ± 1.4 y, height: 177.7 ± 10.7 cm, mass: 74.8 ± 13.7 kg) completed the MobileMat BESS. MobileMat BESS scores were compared with 95% area, sway velocity, approximate entropy, and sample entropy. MobileMat BESS scores were significantly correlated with 95% area for single-leg (r = .332) and tandem firm (r = .474), and double-leg foam (r = .660); and with sway velocity for single-leg (r = .406) and tandem firm (r = .601), and double-leg (r = .575) and single-leg foam (r = .434). MobileMat BESS scores were not correlated with approximate or sample entropy. MobileMat BESS scores were low to moderately correlated with linear measures, suggesting the ability to identify changes in the center of mass-center of pressure relationship, but not higher-order processing associated with nonlinear measures. These results suggest that the MobileMat BESS may be a clinically-useful tool that provides objective linear balance measures.

  11. Complex polar lipids of a hot spring cyanobacterial mat and its cultivated inhabitants

    NASA Technical Reports Server (NTRS)

    Ward, D. M.; Panke, S.; Kloppel, K. D.; Christ, R.; Fredrickson, H.

    1994-01-01

    The complex polar lipids of the hot spring cyanobacterial mat in the 50 to 55 degrees C region of Octopus Spring, Yellowstone National Park, and of thermophilic bacteria cultivated from this or similar habitats, were compared in an attempt to understand the microbial sources of the major lipid biomarkers in this community. Intact complex lipids were analyzed directly by fast atom bombardment mass spectrometry (FAB-MS), two-dimensional thin-layer chromatography (TLC), and combined TLC-FAB-MS. FAB-MS and TLC gave qualitatively similar results, suggesting that the mat contains major lipids most like those of the cyanobacterial isolate we studied, Synechococcus sp. strain Y-7c-s. These include monoglycosyl, diglycosyl, and sulfoquinosovyl diglycerides (MG, DG, and SQ, respectively) and phosphatidyl glycerol (PG). Though Chloroflexus aurantiacus also contains MG, DG, and PG, the fatty acid chain lengths of mat MGs, DGs, and PGs resemble more those of cyanobacterial than green nonsulfur bacterial lipids. FAB-MS spectra of the lipids of nonphototrophic bacterial isolates were distinctively different from those of the mat and phototrophic isolates. The lipids of these nonphototrophic isolates were not detected in the mat, but most could be detected when added to mat samples. The mat also contains major glycolipids and aminophospholipids of unknown structure and origin. FAB-MS and TLC did not always give quantitatively similar results. In particular, PG and SQ may give disproportionately high FAB-MS responses.

  12. A novel chitosan-polyethylene oxide nanofibrous mat designed for controlled co-release of hydrocortisone and imipenem/cilastatin drugs.

    PubMed

    Fazli, Yousef; Shariatinia, Zahra; Kohsari, Iraj; Azadmehr, Amirreza; Pourmortazavi, Seied Mahdi

    2016-11-20

    Antimicrobial chitosan-polyethylene oxide (CS-PEO) nanofibrous mats containing ZnO nanoparticles (NPs) and hydrocortisone-imipenem/cilastatin-loaded ZnO NPs were produced by electrospinning technique. The FE-SEM images displayed that the spherical ZnO NPs were ∼70-200nm in size and the CS-PEO nanofibers were very uniform and free of any beads which had average diameters within the range of ∼20-130nm. For all of the nanofibrous mats, the water uptakes were the highest in acidic medium but they were decreased in the buffer and the least swellings were obtained in the alkaline environment. The drug incorporated mat preserved its bactericidal activity even after it was utilized in the release experiment for 8days in the PBS buffer. The hydrocortisone release was increased to 82% within first 12h while the release rate of imipenem/cilastatin was very much slower so that 20% of the drug was released during this period of time suggesting this nanofibrous mat is very suitable to inhibit inflammation (by hydrocortisone) and infection (using imipenem/cilastatin antibiotic and ZnO NPs) principally for the wound dressing purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Vertical Geochemical Profiling Across a 3.33 Ga Microbial Mat from Barberton

    NASA Astrophysics Data System (ADS)

    Westall, F.; Lemelle, L.; Simionovici, A.; Southam, G.; Maclean, L.; Salomé, M.; Wirick, S.; Toporski, J.; Jauss, A.

    2008-03-01

    The Josefdal Chert (3.33 Ga), Barberton, contains a superbly preserved microbial mat. High resolution geochemical profiling across the mat documents textures and compositions indicative of a mixed microbial community of anoxygenic photosynthesisers and probably SRBs.

  14. Cantera Integration with the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas M.; Chapman, Jeffryes W.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    NASA Glenn Research Center (GRC) has recently developed a software package for modeling generic thermodynamic systems called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a library of building blocks that can be assembled to represent any thermodynamic system in the Simulink(Registered TradeMark) (The MathWorks, Inc.) environment. These elements, along with a Newton Raphson solver (also provided as part of the T-MATS package), enable users to create models of a wide variety of systems. The current version of T-MATS (v1.0.1) uses tabular data for providing information about a specific mixture of air, water (humidity), and hydrocarbon fuel in calculations of thermodynamic properties. The capabilities of T-MATS can be expanded by integrating it with the Cantera thermodynamic package. Cantera is an object-oriented analysis package that calculates thermodynamic solutions for any mixture defined by the user. Integration of Cantera with T-MATS extends the range of systems that may be modeled using the toolbox. In addition, the library of elements released with Cantera were developed using MATLAB native M-files, allowing for quicker prototyping of elements. This paper discusses how the new Cantera-based elements are created and provides examples for using T-MATS integrated with Cantera.

  15. Cantera Integration with the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas M.; Chapman, Jeffryes W.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    NASA Glenn Research Center (GRC) has recently developed a software package for modeling generic thermodynamic systems called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a library of building blocks that can be assembled to represent any thermodynamic system in the Simulink (The MathWorks, Inc.) environment. These elements, along with a Newton Raphson solver (also provided as part of the T-MATS package), enable users to create models of a wide variety of systems. The current version of T-MATS (v1.0.1) uses tabular data for providing information about a specific mixture of air, water (humidity), and hydrocarbon fuel in calculations of thermodynamic properties. The capabilities of T-MATS can be expanded by integrating it with the Cantera thermodynamic package. Cantera is an object-oriented analysis package that calculates thermodynamic solutions for any mixture defined by the user. Integration of Cantera with T-MATS extends the range of systems that may be modeled using the toolbox. In addition, the library of elements released with Cantera were developed using MATLAB native M-files, allowing for quicker prototyping of elements. This paper discusses how the new Cantera-based elements are created and provides examples for using T-MATS integrated with Cantera.

  16. matK-QR classifier: a patterns based approach for plant species identification.

    PubMed

    More, Ravi Prabhakar; Mane, Rupali Chandrashekhar; Purohit, Hemant J

    2016-01-01

    DNA barcoding is widely used and most efficient approach that facilitates rapid and accurate identification of plant species based on the short standardized segment of the genome. The nucleotide sequences of maturaseK ( matK ) and ribulose-1, 5-bisphosphate carboxylase ( rbcL ) marker loci are commonly used in plant species identification. Here, we present a new and highly efficient approach for identifying a unique set of discriminating nucleotide patterns to generate a signature (i.e. regular expression) for plant species identification. In order to generate molecular signatures, we used matK and rbcL loci datasets, which encompass 125 plant species in 52 genera reported by the CBOL plant working group. Initially, we performed Multiple Sequence Alignment (MSA) of all species followed by Position Specific Scoring Matrix (PSSM) for both loci to achieve a percentage of discrimination among species. Further, we detected Discriminating Patterns (DP) at genus and species level using PSSM for the matK dataset. Combining DP and consecutive pattern distances, we generated molecular signatures for each species. Finally, we performed a comparative assessment of these signatures with the existing methods including BLASTn, Support Vector Machines (SVM), Jrip-RIPPER, J48 (C4.5 algorithm), and the Naïve Bayes (NB) methods against NCBI-GenBank matK dataset. Due to the higher discrimination success obtained with the matK as compared to the rbcL , we selected matK gene for signature generation. We generated signatures for 60 species based on identified discriminating patterns at genus and species level. Our comparative assessment results suggest that a total of 46 out of 60 species could be correctly identified using generated signatures, followed by BLASTn (34 species), SVM (18 species), C4.5 (7 species), NB (4 species) and RIPPER (3 species) methods As a final outcome of this study, we converted signatures into QR codes and developed a software matK -QR Classifier (http

  17. Community structure of free-floating filamentous cyanobacterial mats from the Wonder Lake geothermal springs in the Philippines.

    PubMed

    Lacap, Donnabella C; Smith, Gavin J D; Warren-Rhodes, Kimberley; Pointing, Stephen B

    2005-07-01

    Cyanobacterial mats were characterized from pools of 45-60 degrees C in near-neutral pH, low-sulphide geothermal springs in the Philippines. Mat structure did not vary with temperature. All mats possessed highly ordered layers of airspaces at both the macroscopic and microscopic level, and these appear to be an adaptation to a free-floating growth habit. Upper mat layers supported biomass with elevated carotenoid:chlorophyll a ratios and an as yet uncharacterized waxy layer on the dorsal surface. Microscopic examination revealed mats comprised a single Fischerella morphotype, with abundant heterocysts throughout mats at all temperatures. Molecular analysis of mat community structure only partly matched morphological identification. All samples supported greater 16S rDNA-defined diversity than morphology suggested, with a progressive loss in the number of genotypes with increasing temperature. Fischerella-like sequences were recovered from mats occurring at all temperatures, but some mats also yielded Oscillatoria-like sequences, although corresponding phenotypes were not observed. Phylogenetic analysis revealed that Fischerella-like sequences were most closely affiliated with Fischerella major and the Oscillatoria-like sequences with Oscillatoria amphigranulata.

  18. MatSeis and the GNEM R&E regional seismic anaylsis tools.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chael, Eric Paul; Hart, Darren M.; Young, Christopher John

    2003-08-01

    To improve the nuclear event monitoring capability of the U.S., the NNSA Ground-based Nuclear Explosion Monitoring Research & Engineering (GNEM R&E) program has been developing a collection of products known as the Knowledge Base (KB). Though much of the focus for the KB has been on the development of calibration data, we have also developed numerous software tools for various purposes. The Matlab-based MatSeis package and the associated suite of regional seismic analysis tools were developed to aid in the testing and evaluation of some Knowledge Base products for which existing applications were either not available or ill-suited. This presentationmore » will provide brief overviews of MatSeis and each of the tools, emphasizing features added in the last year. MatSeis was begun in 1996 and is now a fairly mature product. It is a highly flexible seismic analysis package that provides interfaces to read data from either flatfiles or an Oracle database. All of the standard seismic analysis tasks are supported (e.g. filtering, 3 component rotation, phase picking, event location, magnitude calculation), as well as a variety of array processing algorithms (beaming, FK, coherency analysis, vespagrams). The simplicity of Matlab coding and the tremendous number of available functions make MatSeis/Matlab an ideal environment for developing new monitoring research tools (see the regional seismic analysis tools below). New MatSeis features include: addition of evid information to events in MatSeis, options to screen picks by author, input and output of origerr information, improved performance in reading flatfiles, improved speed in FK calculations, and significant improvements to Measure Tool (filtering, multiple phase display), Free Plot (filtering, phase display and alignment), Mag Tool (maximum likelihood options), and Infra Tool (improved calculation speed, display of an F statistic stream). Work on the regional seismic analysis tools (CodaMag, EventID, PhaseMatch, and

  19. Biogeochemistry of Stinking Springs, Utah. Part II: Microbial Diversity and Photo- and Chemo-Autotrophic Growth Rates in a Layered Microbial Mat

    NASA Astrophysics Data System (ADS)

    Monteverde, D.; Metzger, J. G.; Bournod, C.; Kelly, H.; Johnson, H.; Sessions, A. L.; Osburn, M.; Shapiro, R. S.; Rideout, J.; Johnston, D. T.; Stevenson, B.; Stamps, B. W.; Vuono, D.; Hanselmann, K.; Spear, J. R.

    2013-12-01

    Layered microbial mats have garnered attention for their high phylogenetic diversity and exploitation of geochemical gradients often on the mm scale. However, despite their novelty and implications for early life diversification, little is known about layered microbial mat growth rates or the interdependence of the microbial communities within the system. Stinking Springs, a warm, sulfidic, saline spring northeast of the Great Salt Lake, serves as our test-site to investigate some of these questions. Stinking Springs undergoes downstream changes in pH (6.59-8.14), sulfide (527μM - below detection), sulfate (13-600μM), TCO2 (7.77-3.71mM), and temperature (40-21°C) along its ~150m flow path. The first 10m of discharge is channelized, beyond that, the spring supports a 10 to 40mm-thick layered microbial mat covering ~40% of the total spring runoff area. The mat was divided into four texturally-distinct layers which were each analyzed for 16S rRNA, lipid abundance, and bicarbonate and acetate uptake rates in addition to standard microscopy analyses. 16S rRNA analyses confirmed high taxa diversity within each layer, which varied significantly in taxa makeup such that no single phylum dominated the abundance (>33%) in more than one mat layer. The taxonomic diversity tended to increase with mat depth, a similar finding to other studies on layered microbial mats. A mat sampling transect across 16 meters showed that layer taxonomic diversity was conserved horizontally for all four mat layers, which implies mat depth has a larger control on diversity than physical or chemical parameters. Microscopy indicated the presence of diatoms in all layers which was confirmed by lipid abundance of sterols and long-branch fatty acid methyl esters. Incubation experiments were conducted in light and dark conditions over 24 hours with separate 13C-tagged bicarbonate and acetate additions. Heterotrophic growth rates (acetate uptake; 0.03-0.65%/day) were higher than autotrophic growth

  20. Fabrication, characterization and biomedical application of two-nozzle electrospun polycaprolactone/zein-calcium lactate composite nonwoven mat.

    PubMed

    Liao, Nina; Joshi, Mahesh Kumar; Tiwari, Arjun Prasad; Park, Chan-Hee; Kim, Cheol Sang

    2016-07-01

    The objective of the current work is to incorporate calcium lactate (CL) into polycaprolactone (PCL)/zein composite micro/nanofibrous scaffolds via electrospinning to engineer bone tissue. In this study, a composite micro/nano fibrous scaffold was fabricated using a single two-nozzle electrospinning system to combine indicative nanofibers from a blended solution of zein-CL and micro-sized fibers from a PCL solution. Incorporation of the CL into the PCL/zein fibers were shown to improve the wettability, tensile strength and biological activity of the composite mats. Moreover, the composite mats have a high efficiency to nucleate calcium phosphate from simulated body fluid (SBF) solution. An in vitro cell culture with osteoblast cells demonstrated that the electrospun composite mats possessed improved biological properties, including a better cell adhesion, spread and proliferation. This study has demonstrated that the PCL/zein-CL composite provides a simple platform to fabricate a new biomimetic scaffold for bone tissue engineering, which can recapitulate both the morphology of extracellular matrix and composition of the bone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming.

    PubMed

    Boyd, Eric S; King, Susan; Tomberlin, Jeffery K; Nordstrom, D Kirk; Krabbenhoft, David P; Barkay, Tamar; Geesey, Gill G

    2009-04-01

    Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH approximately 3.0) thermal springs were found to serve as a food source for stratiomyid (Diptera: Stratiomyidae) larvae. Mercury in spring source water was taken up and concentrated by the mat biomass. Monomethylmercury compounds (MeHg(+)), while undetectable or near the detection limit (0.025 ng l(-1)) in the source water of the springs, was present at concentrations of 4-7 ng g(-1) dry weight of mat biomass. Detection of MeHg(+) in tracheal tissue of larvae grazing the mat suggests that MeHg(+) enters this geothermal food web through the phototrophic microbial mat community. The concentration of MeHg(+) was two to five times higher in larval tissue than mat biomass indicating MeHg(+) biomagnification occurred between primary producer and primary consumer trophic levels. The Zygogonium mat community and stratiomyid larvae may also play a role in the transfer of MeHg(+) to species in the food web whose range extends beyond a particular geothermal feature of YNP.

  2. Maté drinking and esophageal squamous cell carcinoma in South America: pooled results from two large multicenter case-control studies.

    PubMed

    Lubin, Jay H; De Stefani, Eduardo; Abnet, Christian C; Acosta, Gisele; Boffetta, Paolo; Victora, Cesar; Graubard, Barry I; Muñoz, Nubia; Deneo-Pellegrini, Hugo; Franceschi, Silvia; Castellsagué, Xavier; Ronco, Alvaro L; Dawsey, Sanford M

    2014-01-01

    Maté tea is a nonalcoholic infusion widely consumed in southern South America, and may increase risk of esophageal squamous cell carcinoma (ESCC) and other cancers due to polycyclic aromatic hydrocarbons (PAH) and/or thermal injury. We pooled two case-control studies: a 1988 to 2005 Uruguay study and a 1986 to 1992 multinational study in Argentina, Brazil, Paraguay, and Uruguay, including 1,400 cases and 3,229 controls. We computed ORs and fitted a linear excess OR (EOR) model for cumulative maté consumption in liters/day-year (LPDY). The adjusted OR for ESCC with 95% confidence interval (CI) by ever compared with never use of maté was 1.60 (1.2-2.2). ORs increased linearly with LPDY (test of nonlinearity; P = 0.69). The estimate of slope (EOR/LPDY) was 0.009 (0.005-0.014) and did not vary with daily intake, indicating maté intensity did not influence the strength of association. EOR/LPDY estimates for consumption at warm, hot, and very hot beverage temperatures were 0.004 (-0.002-0.013), 0.007 (0.003-0.013), and 0.016 (0.009-0.027), respectively, and differed significantly (P < 0.01). EOR/LPDY estimates were increased in younger (<65) individuals and never alcohol drinkers, but these evaluations were post hoc, and were homogeneous by sex. ORs for ESCC increased linearly with cumulative maté consumption and were unrelated to intensity, so greater daily consumption for shorter duration or lesser daily consumption for longer duration resulted in comparable ORs. The strength of association increased with higher maté temperatures. Increased understanding of cancer risks with maté consumption enhances the understanding of the public health consequences given its purported health benefits.

  3. Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats.

    PubMed

    Xiang, Chunhui; Frey, Margaret W

    2016-04-07

    Tensile strength, Young's modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber-fiber load sharing. Single-walled carbon nanotubes (CNTs) were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young's modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 wt % CNTs into the nylon 6 nanofibers. Three methods were investigated to enhance fiber-fiber load sharing: increasing friction between fibers, thermal bonding, and solvent bonding. The addition of beaded nylon 6 nanofibers into the non-woven fiber mats to increase fiber-fiber friction resulted in a statistically significantly increase in Young's modulus over comparable smooth non-woven fiber mats. After annealing, tensile strength, elongation, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % + 10 wt % solutions increased 26%, 28%, and 68% compared to those from 20 wt % solutions. Solvent bonding with formic acid vapor at room temperature for 30 min caused increases of 56%, 67%, and 39% in the Young's modulus, tensile strength, and toughness of non-woven fiber mats, respectively. The increases attributed to increased individual nanofiber strength and solvent bonding synergistically resulted in the improvement of Young's modulus of the electrospun nylon 6 non-woven fiber mats.

  4. Microbial communities inhabiting hypersaline microbial mats from the Abu Dhabi sabkha

    NASA Astrophysics Data System (ADS)

    Andrade, Luiza; Dutton, Kirsten; Paul, Andreas; van der Land, Cees; Sherry, Angela; Lokier, Stephen; Head, Ian

    2017-04-01

    Microbial mats are organo-sedimentary structures that are typically found in areas with extreme environmental conditions. Since these ecosystems are considered to be representative of the oldest forms of life on Earth, the study of microbial mats can inform our understanding of the development of life early in the history of our planet. In this study, we used hypersaline microbial mats from the Abu Dhabi sabkha (coastal salt flats). Cores of microbial mats (ca. 90 mm depth) were collected within an intertidal region. The cores were sliced into layers 2-3 mm thick and genomic DNA was extracted from each layer. A fragment of the 16S rRNA encoding gene was amplified in all DNA extracts, using barcoded primers, and the amplicons sequenced with the Ion Torrent platform to investigate the composition of the microbial communities down the depth of the cores. Preliminary results revealed a high proportion of Archaea (15.5-40.8% abundance) in all layers, with Halobacteria appearing to be more significant in the first 40 mm (0.4-10.3% of the total microbial community). Members of the Deltaproteobacteria were dominant in almost all layers of the microbial mat (≤ 48.6% relative abundance); however this dominance was not reflected in the first 8 mm, where the abundance was less than 2%. Chloroflexi and Anaerolinea, representing 93% of bacterial abundance, dominated the first 8 mm depth and decreased at greater depth (≤ 3% relative abundance). Cyanobacteria were found only in the top 10 mm, with unexpected low abundance (≤ 3% of the total number of reads). These results show a vertical zonation of microbial communities and processes in the microbial mats. Further analyses are underway to investigate if these patterns are repeated at other sites along a transect of the sabkha, and to relate the microbial composition to the physical-chemical conditions of the sites.

  5. The micromorphology of Younger Dryas-aged black mats from Nevada, Arizona, Texas and New Mexico

    NASA Astrophysics Data System (ADS)

    Harris-Parks, Erin

    2016-01-01

    Black mats are organic-rich sediments and soils that form in wet environments associated with spring discharge. Micromorphological and geochemical analyses of 25 black mats dating to the Younger Dryas Chronozone (12.9-11.7 ka) and early Holocene were conducted to determine their composition and depositional environment. Samples were collected from Arizona, New Mexico, Texas and Nevada. Micromorphological analyses were conducted on thin sections using polarized and blue fluorescent light. These analyses determined that black mats contain humic acids, fine (5-20 μm) plant fragments, diatoms, phytoliths, and gastropods. The dominant type of organic matter in black mats is derived from herbaceous plants, contradicting previous studies that supported algal or charcoal sources. Differences in the micromorphological characteristics of the samples revealed that black mats formed as three different types, organic horizons, moist soils and, ponded sediments, depending on their topographic position in relation to the water table. The microscopic evidence found in black mats supports the presence of widespread wet environments in Nevada and Arizona during the Younger Dryas Chronozone, clearly indicating a sustained period of greater effective moisture, optimal for spring discharge and black mat formation.

  6. Iron microbial mats in modern and phanerozoic environments

    NASA Astrophysics Data System (ADS)

    Baele, Jean-Marc; Bouvain, Frédéric; De Jong, Jeroen; Matielli, Nadine; Papier, Séverine; Préat, Alain

    2008-08-01

    The recognition of iron microbial mats in terrestrial environments is of great relevance for the search for extraterrestrial life, especially on mars where significant iron minerals were identified in the subsurface. Most researches focused on very ancient microbial mats (e.g. BIFs) since they formed on Earth at a time where similar conditions are supposed to have prevailed on Mars too. However, environmental proxies are often difficult to use for these deposits on Earth which, in addition, may be heavily transformed due to diagenesis or even metamorphism. Here we present modern and phanerozoic iron microbial mats occurrences illustrating the wide variety of environments in which they form, including many marine settings, ponds, creeks, caves, volcanoes, etc. Contrarily to their Precambrian counterparts, Modern and Phanerozoic deposits are usually less affected by diagenesis and the environmental conditions likely to be better constrained. Therefore, their investigation may help for the search for morphological and geochemical biosignatures (e.g. iron isotopes) in ancient iron microbial occurrences on Earth but also on other Planets. In particular, many of the case studies presented here show that microstromatolithe-like morphologies may be valuable targets for screening potential biosignatures in various rock types.

  7. A precision multi-sampler for deep-sea hydrothermal microbial mat studies

    NASA Astrophysics Data System (ADS)

    Breier, J. A.; Gomez-Ibanez, D.; Reddington, E.; Huber, J. A.; Emerson, D.

    2012-12-01

    A new tool was developed for deep-sea microbial mat studies by remotely operated vehicles and was successfully deployed during a cruise to the hydrothermal vent systems of the Mid-Cayman Rise. The Mat Sampler allows for discrete, controlled material collection from complex microbial structures, vertical-profiling within thick microbial mats and particulate and fluid sample collection from venting seafloor fluids. It has a reconfigurable and expandable sample capacity based on magazines of 6 syringes, filters, or water bottles. Multiple magazines can be used such that 12-36 samples can be collected routinely during a single dive; several times more if the dive is dedicated for this purpose. It is capable of hosting in situ physical, electrochemical, and optical sensors, including temperature and oxygen probes in order to guide sampling and to record critical environmental parameters at the time and point of sample collection. The precision sampling capability of this instrument will greatly enhance efforts to understand the structured, delicate, microbial mat communities that grow in diverse benthic habitats.

  8. Spatial and Temporal Variability in Microbial Communities from Pre- and Post-Eruption Microbial Mats Collected from Loihi Seamount, Hawaii: An Update

    NASA Astrophysics Data System (ADS)

    Moyer, C. L.; Davis, R. E.; Curtis, A. C.; Rassa, A. C.

    2007-12-01

    Loihi Seamount is an active submarine volcano that marks the southernmost extent of the Hawaiian hotspot. Loihi rises over 3000 meters from the seafloor and summits nearly 1000 meters below sea level. Hydrothermal activity was discovered at Loihi in 1987, yielding diffuse vent effluent (Tmax 37°C) with associated high CO2 and Fe(II) concentrations and luxuriant microbial mats located near the summit of the volcano. Loihi erupted most recently in 1996 forming a new 300 meter deep caldera (Pele's Pit) with hydrothermal venting up to 200°C. Pele's Pit has cooled and now contains multiple hydrothermal vents with hydrothermal fluids ranging from 8-58°C with concentrations of Fe(II) remaining between 50 and 750 μM. Community fingerprints from over 75 microbial mat samples have now been collected from Loihi Seamount from 1993 to 2006, with temperatures ranging from ambient (~4°C) up to nearly ~200°C. These samples were analyzed using Pearson product-moment coupled with UPGMA cluster analysis of terminal- restriction fragment length polymorphisms (T-RFLP) coupled with traditional clone library and sequence analysis to identify the primary populations within each community. These mat samples form two distinct community clusters (Loihi Cluster Group 1 and Group 2) representing a combined 90% of all mat samples collected. Loihi Cluster Group 1 is by far the largest group (n = 45) and contains the most mat samples collected over time. Group 1 is dominated by phylotypes closely related to the recently described zeta- Proteobacteria that includes the type strain Mariprofundus ferrooxydans, an obligately lithotrophic, Fe-oxidizing bacterium. Loihi Cluster Group 2 is comprised of only post-eruption communities (n = 18) that generally contain greater diversity (in terms of richness) than Group 1 communities. Group 2 communities are primarily dominated by a unique array of phylotypes belonging to the Nitrospira division and by the class epsilon- Proteobacteria, including many

  9. Enhancement of the in-plane shear properties of carbon fiber composites containing carbon nanotube mats

    NASA Astrophysics Data System (ADS)

    Kim, Hansang

    2015-01-01

    The in-plane shear property of carbon fiber laminates is one of the most important structural features of aerospace and marine structures. Fiber-matrix debonding caused by in-plane shear loading is the major failure mode of carbon fiber composites because of the stress concentration at the interfaces. In this study, carbon nanotube mats (CNT mat) were incorporated in two different types of carbon fiber composites. For the case of woven fabric composites, mechanical interlocking between the CNTs and the carbon fibers increased resistance to shear failure. However, not much improvement was observed for the prepreg composites as a result of incorporation of the CNT mats. The reinforcement mechanism of the CNT mat layer was investigated by a fractographic study using scanning electron microscopy. In addition, the CNT mat was functionalized by three different methods and the effectiveness of the functionalization methods was determined and the most appropriate functionalization method for the CNT mat was air oxidation.

  10. Archaeal Populations in Hypersaline Sediments Underlying Orange Microbial Mats in the Napoli Mud Volcano▿†

    PubMed Central

    Lazar, Cassandre Sara; L'Haridon, Stéphane; Pignet, Patricia; Toffin, Laurent

    2011-01-01

    Microbial mats in marine cold seeps are known to be associated with ascending sulfide- and methane-rich fluids. Hence, they could be visible indicators of anaerobic oxidation of methane (AOM) and methane cycling processes in underlying sediments. The Napoli mud volcano is situated in the Olimpi Area that lies on saline deposits; from there, brine fluids migrate upward to the seafloor. Sediments associated with a brine pool and microbial orange mats of the Napoli mud volcano were recovered during the Medeco cruise. Based on analysis of RNA-derived sequences, the “active” archaeal community was composed of many uncultured lineages, such as rice cluster V or marine benthic group D. Function methyl coenzyme M reductase (mcrA) genes were affiliated with the anaerobic methanotrophic Archaea (ANME) of the ANME-1, ANME-2a, and ANME-2c groups, suggesting that AOM occurred in these sediment layers. Enrichment cultures showed the presence of viable marine methylotrophic Methanococcoides in shallow sediment layers. Thus, the archaeal community diversity seems to show that active methane cycling took place in the hypersaline microbial mat-associated sediments of the Napoli mud volcano. PMID:21335391

  11. Groundwater mixing at fracture intersections triggers massive iron-rich microbial mats

    NASA Astrophysics Data System (ADS)

    Bochet, O.; Le Borgne, T.; Bethencourt, L.; Aquilina, L.; Dufresne, A.; Pédrot, M.; Farasin, J.; Abbott, B. W.; Labasque, T.; Chatton, E.; Lavenant, N.; Petton, C.

    2017-12-01

    While most freshwater on Earth resides and flows in groundwater systems, these deep subsurface environments are often assumed to have little biogeochemical activity compared to surface environments. Here we report a massive microbial mat of iron-oxidizing bacteria, flourishing 60 meters below the surface, far below the mixing zone where most microbial activity is believed to occur. The abundance of microtubular structures in the mat hinted at the prevalence of of Leptothrix ochracea, but metagenomic analysis revealed a diverse consortium of iron-oxidizing bacteria dominated by unknown members of the Gallionellaceae family. This deep biogeochemical hot spot formed at the intersection of bedrock fractures, which maintain redox gradients by mixing water with different residence times and chemical compositions. Using measured fracture properties and hydrological conditions we developed a quantitative model to simulate the reactive zone where such deep hot spots could occur. While seasonal fluctuations are generally thought to decrease with depth, we found that meter-scale changes in water table level moved the depth of the reactive zone hundreds of meters because the microaerophilic threshold for ironoxidizers is highly sensitive to changes in mixing rates at fracture intersections. These results demonstrate that dynamic microbial communities can be sustained deep below the surface in bedrock fractures. Given the ubiquity of fractures at multiple scales in Earth's subsurface, such deep hot spots may strongly influence global biogeochemical cycles.

  12. The type of mat (Contact vs. Photocell) affects vertical jump height estimated from flight time.

    PubMed

    García-López, Juan; Morante, Juan C; Ogueta-Alday, Ana; Rodríguez-Marroyo, Jose A

    2013-04-01

    The purposes of this study were to analyze the validity and reliability of 2 photocell mats and to probe the possible influence of the type of mat (contact vs. photocell) on vertical jump height estimated from flight time. In 2 separate studies, 89 and 92 physical students performed 3 countermovement jumps that were simultaneously registered by a Force Plate (gold standard method), 2 photocell mats (SportJump System Pro and ErgoJump Plus), and a contact mat (SportJump-v1.0). The first study showed that the 2 photocell mats underestimated the vertical jump height (1.3 ± 0.2 cm and 5.9 ± 5.2 cm, respectively), but only SportJump System Pro showed a high correlation with the Force Plate (r = 0.999 and 0.676, respectively) and good intraday reliability (coefficient of variation = 2.98 and 15.94%, intraclass correlation coefficients = 0.95-0.97 and 0.45-0.57, respectively). The second study demonstrated a strong correlation (r = 0.994) between the 2 technologies (contact vs. photocell mats) with differences in vertical jump height of 2.0 ± 0.8 cm (95% confidence interval = 1.9-2.1 cm), which depended on both flight time and subjects' body mass. In conclusion, SportJump System Pro was a valid and reliable device. The new devices to measure vertical jump height from flight time should be validated. The type of mat (contact vs. photocell) affected approximately 6% the vertical jump height (approximately 2 cm in this study), which should be considered in further studies. The use of validated photocell mats instead of the contact mats was recommended.

  13. Exposure to brominated and organophosphate ester flame retardants in U.S. childcare environments: Effect of removal of flame-retarded nap mats on indoor levels.

    PubMed

    Stubbings, W A; Schreder, E D; Thomas, M B; Romanak, K; Venier, M; Salamova, A

    2018-07-01

    We assessed exposure to 39 brominated and 16 organophosphate ester flame retardants (FRs) from both dust and indoor air at seven childcare centres in Seattle, USA, and investigated the importance of nap mats as a source of these chemicals. Many childcare centres serving young children use polyurethane foam mats for the children's naptime. Until recently, the vast majority of these mats sold in the United States contained flame-retarded polyurethane foam to meet California Technical Bulletin 117 (TB117) requirements. With the 2013 update of TB117, allowing manufacturers to meet flammability standards without adding FRs to filling materials, FR-free nap mats have become widely available. We conducted an intervention study by actively switching out FR-treated nap mats with FR-free nap mats and measuring FR levels in indoor air and dust before and after the switch-out. The predominant FRs found in dust and indoor air were 2-ethylhexyl tetrabromobenzoate (EHTBB) and tris(1-chloro-2-propyl) phosphate (TCIPP), respectively. Nap mat samples analysed from four of the six centres contained a Firemaster ® mixture, while one mat was predominantly treated with tris(1,3-dichloroisopropyl) phosphate (TDCIPP) and the other contained no detectable target FRs. After replacement, there was a significant decrease (p = 0.03-0.09) in median dust concentrations for bis(2-ethylhexyl) tetrabromophthalate (BEHTBP), EHTBB, tris(4-butylphenyl) phosphate (TBPP), and TDCIPP with reductions of 90%, 79%, 65%, and 42%, respectively. These findings suggest that the nap mats were an important source of these FRs to dust in the investigated childcare environments and that a campaign of swapping out flame-retarded mats for FR-free ones would reduce exposure to these chemicals. While calculated exposure estimates to the investigated FRs via inhalation, dust ingestion, and dermal absorption were below established reference dose values, they are likely underestimated when considering the toddlers

  14. Preface - BraMat 2017

    NASA Astrophysics Data System (ADS)

    Munteanu, Daniel

    2018-04-01

    The main goal of the BraMat 2017 Conference was, as for the previous editions, to stimulate an international exchange of information in the field of materials science and engineering and to establish future research directions. The main topics of this edition included: ​Metallic materials (Section I), Biomaterials (Section II), Ceramics, polymers and composite materials (Section III), Surface engineering (Section IV), Nanomaterials (Section V), Welding engineering (Section VI), Safety engineering (Section VII), and Magnesium science and engineering (Section VIII).

  15. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Boyd, E.S.; King, S.; Tomberlin, J.K.; Nordstrom, D. Kirk; Krabbenhoft, D.P.; Barkay, T.; Geesey, G.G.

    2009-01-01

    Summary Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH ??? 3.0) thermal springs were found to serve as a food source for stratiomyid (Diptera: Stratiomyidae) larvae. Mercury in spring source water was taken up and concentrated by the mat biomass. Monomethylmercury compounds (MeHg +), while undetectable or near the detection limit (0.025 ng l -1) in the source water of the springs, was present at concentrations of 4-7 ng g-1 dry weight of mat biomass. Detection of MeHg + in tracheal tissue of larvae grazing the mat suggests that MeHg+ enters this geothermal food web through the phototrophic microbial mat community. The concentration of MeHg+ was two to five times higher in larval tissue than mat biomass indicating MeHg+ biomagnification occurred between primary producer and primary consumer trophic levels. The Zygogonium mat community and stratiomyid larvae may also play a role in the transfer of MeHg+ to species in the food web whose range extends beyond a particular geothermal feature of YNP. ?? 2008 The Authors. Journal compilation ?? 2008 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat.

    PubMed

    Babauta, Jerome T; Atci, Erhan; Ha, Phuc T; Lindemann, Stephen R; Ewing, Timothy; Call, Douglas R; Fredrickson, James K; Beyenal, Haluk

    2014-01-01

    Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH, and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell was light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode) with tip size ~20 μm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode at depth in the mat. Subsequently, to characterize the microelectrode-associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1-V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community.

  17. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat

    PubMed Central

    Babauta, Jerome T.; Atci, Erhan; Ha, Phuc T.; Lindemann, Stephen R.; Ewing, Timothy; Call, Douglas R.; Fredrickson, James K.; Beyenal, Haluk

    2014-01-01

    Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH, and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell was light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode) with tip size ~20 μm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode at depth in the mat. Subsequently, to characterize the microelectrode-associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1–V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community. PMID:24478768

  18. Black Mats, Spring-Fed Streams, and Late-Glacial-Age Recharge in the Southern Great Basin

    USGS Publications Warehouse

    Quade, Jay; Forester, R.M.; Pratt, W.L.; Carter, C.

    1998-01-01

    Black mats are prominent features of the late Pleistocene and Holocene stratigraphic record in the southern Great Basin. Faunal, geochemical, and sedimentological evidence shows that the black mats formed in several microenvironments related to spring discharge, ranging from wet meadows to shallow ponds. Small land snails such as Gastrocopta tappaniana and Vertigo berryi are the most common mollusk taxa present. Semiaquatic and aquatic taxa are less abundant and include Catinellids, Fossaria parva, Gyraulus parvus, and others living today in and around perennial seeps and ponds. The ostracodes Cypridopsis okeechobi and Scottia tumida, typical of seeps and low-discharge springs today, as well as other taxa typical of springs and wetlands, are common in the black mats. Several new species that lived in the saturated subsurface also are present, but lacustrine ostracodes are absent. The ??13C values of organic matter in the black mats range from -12 to -26???, reflecting contributions of tissue from both C3 (sedges, most shrubs and trees) and C4 (saltbush, saltgrass) plants. Carbon-14 dates on the humate fraction of 55 black mats fall between 11,800 to 6300 and 2300 14C yr B.P. to modern. The total absence of mats in our sample between 6300 and 2300 14C yr B.P. likely reflects increased aridity associated with the mid-Holocene Altithermal. The oldest black mats date to 11,800-11,600 14C yr B.P., and the peak in the 14C black mat distribution falls at ???10,000 14C yr B.P. As the formation of black mats is spring related, their abundance reflects refilling of valley aquifers starting no later than 11,800 and peaking after 11,000 14C yrB.P. Reactivation of spring-fed channels shortly before 11,200 14C yr B.P. is also apparent in the stratigraphic records from the Las Vegas and Pahrump Valleys. This age distribution suggests that black mats and related spring-fed channels in part may have formed in response to Younger Dryas (YD)-age recharge in the region. However, the

  19. Black Mats, Spring-Fed Streams, and Late-Glacial-Age Recharge in the Southern Great Basin

    NASA Astrophysics Data System (ADS)

    Quade, Jay; Forester, Richard M.; Pratt, William L.; Carter, Claire

    1998-03-01

    Black mats are prominent features of the late Pleistocene and Holocene stratigraphic record in the southern Great Basin. Faunal, geochemical, and sedimentological evidence shows that the black mats formed in several microenvironments related to spring discharge, ranging from wet meadows to shallow ponds. Small land snails such as Gastrocopta tappanianaand Vertigo berryiare the most common mollusk taxa present. Semiaquatic and aquatic taxa are less abundant and include Catinellids, Fossaria parva, Gyraulus parvus,and others living today in and around perennial seeps and ponds. The ostracodes Cypridopsis okeechobiand Scottia tumida,typical of seeps and low-discharge springs today, as well as other taxa typical of springs and wetlands, are common in the black mats. Several new species that lived in the saturated subsurface also are present, but lacustrine ostracodes are absent. The δ 13C values of organic matter in the black mats range from -12 to -26‰, reflecting contributions of tissue from both C 3(sedges, most shrubs and trees) and C 4(saltbush, saltgrass) plants. Carbon-14 dates on the humate fraction of 55 black mats fall between 11,800 to 6300 and 2300 14C yr B.P. to modern. The total absence of mats in our sample between 6300 and 2300 14C yr B.P. likely reflects increased aridity associated with the mid-Holocene Altithermal. The oldest black mats date to 11,800-11,600 14C yr B.P., and the peak in the 14C black mat distribution falls at ˜10,000 14C yr B.P. As the formation of black mats is spring related, their abundance reflects refilling of valley aquifers starting no later than 11,800 and peaking after 11,000 14C yr B.P. Reactivation of spring-fed channels shortly before 11,200 14C yr B.P. is also apparent in the stratigraphic records from the Las Vegas and Pahrump Valleys. This age distribution suggests that black mats and related spring-fed channels in part may have formed in response to Younger Dryas (YD)-age recharge in the region. However, the

  20. MAT, a Novel Polyherbal Aphrodisiac Formulation, Enhances Sexual Function and Nrf2/HO-1 Pathway While Reducing Oxidative Damage in Male Rats

    PubMed Central

    Tuzcu, Mehmet; Orhan, Cemal; Sahin, Nurhan; Akdemir, Fatih; Yilmaz, Ismet

    2018-01-01

    Mucuna pruriens, Ashwagandha, and Tribulus terrestris are known as the enhancers for sexual health, functional activities, vitality, and longevity. These herbs had been widely used in the Ayurveda medicine as aphrodisiacs through the ages, and their efficacy was also verified separately in our previous publication. Therefore, the aim of this study was to determine the effects of Mucuna, Ashwagandha, and Tribulus complexes on sexual function in rats. Twenty-eight male rats allocated to four groups as follows: (i) negative control (C); (ii) positive control or sildenafil citrate treated group (5 mg/kg) (S); (iii) MAT1 (combination of 10 mg Mucuna (M) + 10 mg Ashwagandha (A) + 10 mg Tribulus (T)/kg BW); (iv) MAT 2 (20 mg Mucuna + 20 mg Ashwagandha + 20 mg Tribulus/kg BW). There was no significant difference found between the MAT1 and MAT2 groups while they showed significantly increased testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels when compared to the negative control. Significant increases in Nrf2/HO1 levels and decreases in NF-κB were detected in MAT groups similar to the decrease in serum and testis malondialdehyde (MDA) levels as compared to both controls. The sperm motility, count, and rate also significantly improved in both MAT groups, while ALT, AST, creatinine, ALP, and urea levels did not change in any of the groups. Oral consumption of MATs combination in male rats resulted in inhibition of NF-κB and MDA and also increased sex hormones with Nrf2-mediated HO-1 induction. MAT combinations may improve sexual functions by increasing levels of sexual hormones and regulation of NF-κB and Nrf2/HO-1 signaling pathways. PMID:29853975

  1. Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats

    PubMed Central

    Xiang, Chunhui; Frey, Margaret W.

    2016-01-01

    Tensile strength, Young’s modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber–fiber load sharing. Single-walled carbon nanotubes (CNTs) were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young’s modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 wt % CNTs into the nylon 6 nanofibers. Three methods were investigated to enhance fiber–fiber load sharing: increasing friction between fibers, thermal bonding, and solvent bonding. The addition of beaded nylon 6 nanofibers into the non-woven fiber mats to increase fiber-fiber friction resulted in a statistically significantly increase in Young’s modulus over comparable smooth non-woven fiber mats. After annealing, tensile strength, elongation, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % + 10 wt % solutions increased 26%, 28%, and 68% compared to those from 20 wt % solutions. Solvent bonding with formic acid vapor at room temperature for 30 min caused increases of 56%, 67%, and 39% in the Young’s modulus, tensile strength, and toughness of non-woven fiber mats, respectively. The increases attributed to increased individual nanofiber strength and solvent bonding synergistically resulted in the improvement of Young’s modulus of the electrospun nylon 6 non-woven fiber mats. PMID:28773397

  2. Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Des Marais, D. J.

    1988-01-01

    A fiber-optic microphobe was used to analyze the spectral light gradients in benthic cyanobacterial mats with 50-micrometer depth resolution and 10-nm spectral resolution. Microcoleus chthononplastes mats were collected from hypersaline, coastal ponds at Guerrero Negro, Baja California. Gradients of spectral radiance, L, were measured at different angles through the mats and the spherically integrated scalar irradiance, Eo, was calculated. Maximal spectral light attenuation was found at the absorption peaks for the dominant photosynthetic pigments: chlorophyll a at 430 and 670 nm, carotenoids at 450-500 nm, phycocyanin at 620 nm, and bacteriochlorophyll a at 800-900 nm. Scattered light had a marked spectral effect on the scalar irradiance which near the mat surface reached up to 190% of the incident irradiance. The spherically integrated irradiance thus differed strongly from the incident irradiance both in total intensity and in spectral composition. These basic optical properties are important for the understanding of photosynthesis and light harvesting in benthic and epiphytic communities.

  3. Validation of FRP Matting Requirements

    DTIC Science & Technology

    2016-08-01

    airfield pavements using crushed stone. A side-by-side comparison between FRP and folded fiberglass matting (FFM) was performed on simulated small...medium, and large craters in Portland cement concrete and asphalt concrete pavements . The demonstration took place at the Silver Flag Exercise Site...report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. DESTROY THIS

  4. Lipophilic pigments from cyanobacterial (blue-green algal) and diatom mats in Hamelin Pool, Shark Bay, Western Australia

    NASA Technical Reports Server (NTRS)

    Palmisano, A. C.; Summons, R. E.; Cronin, S. E.; Des Marais, D. J.

    1989-01-01

    Lipophilic pigments were examined in microbial mat communities dominated by cyanobacteria in the intertidal zone and by diatoms in the subtidal and sublittoral zones of Hamelin Pool, Shark Bay, Western Australia. These microbial mats have evolutionary significance because of their similarity to lithfied stromatolites from the Proterozoic and Early Paleozoic eras. Fucoxanthin, diatoxanthin, diadinoxanthin, beta-carotene, and chlorophylls a and c characterized the diatom mats, whereas cyanobacterial mats contained myxoxanthophyll, zeaxanthin, echinenone, beta-carotene, chlorophyll a and, in some cases, sheath pigment. The presence of bacteriochlorophyll a within the mats suggest a close association of photosynthetic bacteria with diatoms and cyanobacteria. The high carotenoids : chlorophyll a ratios (0.84-2.44 wt/wt) in the diatom mats suggest that carotenoids served a photoprotective function in this high light environment. By contrast, cyanobacterial sheath pigment may have largely supplanted the photoprotective role of carotenoids in the intertidal mats.

  5. Highly ordered vertical structure of Synechococcus populations within the one-millimeter-thick photic zone of a hot spring cyanobacterial mat

    NASA Technical Reports Server (NTRS)

    Ramsing, N. B.; Ferris, M. J.; Ward, D. M.

    2000-01-01

    A variety of contemporary techniques were used to investigate the vertical distribution of thermophilic unicellular cyanobacteria, Synechococcus spp., and their activity within the upper 1-mm-thick photic zone of the mat community found in an alkaline siliceous hot spring in Yellowstone National Park in Wyoming. Detailed measurements were made over a diel cycle at a 61 degrees C site. Net oxygenic photosynthesis measured with oxygen microelectrodes was highest within the uppermost 100- to 200-microm-thick layer until midmorning, but as the day progressed, the peak of net activity shifted to deeper layers, stabilizing at a depth of 300 microm from midday throughout the afternoon. Examination of vertical thin sections by bright-field and autofluorescence microscopy revealed the existence of different populations of Synechococcus which form discrete bands at different vertical positions. Denaturing gradient gel electrophoresis analysis of PCR-amplified 16S rRNA gene segments from horizontal cryosections obtained at 100-microm-thick vertical intervals also suggested vertical stratification of cyanobacterial, green sulfur bacterium-like, and green nonsulfur bacterium-like populations. There was no evidence of diel migration. However, image analysis of vertical thin sections revealed the presence of a narrow band of rod-shaped Synechococcus cells in which the cells assumed an upright position. These upright cells, located 400 to 800 microm below the surface, were observed only in mat samples obtained around noon. In mat samples obtained at other time points, the cells were randomly oriented throughout the mat. These combined observations reveal the existence of a highly ordered structure within the very thin photic zone of this hot spring microbial mat, consisting of morphologically similar Synechococcus populations that are likely to be differentially adapted, some co-occurring with green sulfur bacterium-like populations, and all overlying green nonsulfur bacterium

  6. Engineering and Scientific Applications: Using MatLab(Registered Trademark) for Data Processing and Visualization

    NASA Technical Reports Server (NTRS)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    MatLab(TradeMark)(MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many countries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its real strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbox. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using symbolic operations. MatLab in its interpreter programming language form (command interface) is similar with well known programming languages such as C/C++, support data structures and cell arrays to define classes in object oriented programming. As such, MatLab is equipped with most of the essential constructs of a higher programming language. MatLab is packaged with an editor and debugging functionality useful to perform analysis of large MatLab programs and find errors. We believe there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and analysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applications. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientific problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabular format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed.

  7. Morphological Survey of Microbial Mats Near Deep-Sea Thermal Vents †

    PubMed Central

    Jannasch, Holger W.; Wirsen, Carl O.

    1981-01-01

    A microscopic survey is presented of the most commonly observed and morphologically conspicuous microorganisms found attached to natural surfaces or to artificial materials deposited in the immediate vicinity of thermal submarine vents at the Galapagos Rift ocean spreading zone at a depth of 2,550 meters. Of special interest were the following findings: (i) all surfaces intermittently exposed to H2S-containing hydrothermal fluid were covered by layers, ca. 5 to 10 μm thick, of procaryotic, gram-negative cells interspaced with amorphous metal (Mn-Fe) deposits; (ii) although some of the cells were encased by dense metal deposits, there was little apparent correlation between metal deposition and the occurrence of microbial mats, (iii) highly differentiated forms appeared to be analogues of certain cyanobacteria, (iv) isolates from massive mats of a prosthecate bacterium could be identified as Hyphomicrobium spp., (v) intracellular membrane systems similar to those found in methylotrophic and nitrifying bacteria were observed in approximately 20% of the cells composing the mats, (vi) thiosulfate enrichments made from mat material resulted in isolations of different types of sulfur-oxidizing bacteria including the obligately chemolithotrophic genus Thiomicrospira. Images PMID:16345722

  8. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babauta, Jerome T.; Atci, Erhan; Ha, Phuc T.

    2014-01-01

    Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH, and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell wasmore » light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode) with tip size ~20 μm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode at depth in the mat. Subsequently, to characterize the microelectrode- associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1-V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community.« less

  9. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    DOE PAGES

    Beam, Jacob P.; Bernstein, Hans C.; Jay, Zackary J.; ...

    2016-02-15

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3-3.5; temperature = 68-75°C) inmore » YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4-40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14-30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1-2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day -1 , and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems.« less

  10. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs.

    PubMed

    Beam, Jacob P; Bernstein, Hans C; Jay, Zackary J; Kozubal, Mark A; Jennings, Ryan deM; Tringe, Susannah G; Inskeep, William P

    2016-01-01

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3-3.5; temperature = 68-75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4-40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14-30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1-2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day(-1), and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems.

  11. Development of feedback-speed-control system of fixed-abrasive tool for mat-surface fabrication

    NASA Astrophysics Data System (ADS)

    Yanagihara, K.; Kita, R.

    2018-01-01

    This study deals with the new method to fabricate a mat-surface by using fixed-abrasive tool. Mat-surface is a surface with microscopic irregularities whose dimensions are close to the wavelengths of visible light (400-700 nanometers). In order to develop the new method to fabricate mat-surface without pre-masking and large scale back up facility, utilization of fixed-abrasive tool is discussed. The discussion clarifies that abrasives in shot blasting are given kinetic energy along to only plunge-direction while excluding traverse-direction. If the relative motion between tool and work in fixed-abrasive process can be realized as that in blasting, mat-surface will be accomplished with fixed-abrasive process. To realize the proposed idea, new surface-fabrication system to which is adopted feedback-speed-control of abrasive wheel has been designed. The system consists of micro-computer unit (MPU), work-speed sensor, fixed-abrasive wheel, and wheel driving unit. The system can control relative speed between work and wheel in optimum range to produce mat-surface. Finally experiment to verify the developed system is carried out. The results of experiments show that the developed system is effective and it can produce the surface from grinding to mat-surface seamlessly.

  12. Electron microscopy study of microbial mat in the North Fiji basin hydrothermal vent

    NASA Astrophysics Data System (ADS)

    Park, H.; Kim, J. W.; Lee, J. W.

    2017-12-01

    Hydrothermal vent systems consisting of hydrothermal vent, hydrothermal sediment and microbial mat are widely spread around the ocean, particularly spreading axis, continental margin and back-arc basin. Scientists have perceived that the hydrothermal systems, which reflect the primeval earth environment, are one of the best places to reveal the origin of life and extensive biogeochemical process of microbe-mineral interaction. In the present study multiline of analytical methods (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)) were utilized to investigate the mineralogy/chemistry of microbe-mineral interaction in hydrothermal microbial mat. Microbial mat samples were recovered by Canadian scientific submersible ROPOS on South Pacific North Fiji basin KIOST hydrothermal vent expedition 1602. XRD analysis showed that red-colored microbial mat contains Fe-oxides and Fe-oxyhydroxides. Various morphologies of minerals in the red-colored microbial mat observed by SEM are mainly showed sheath shaped, resembled with Leptothrix microbial structure, stalks shaped, similar with Marioprofundus microbial structure and globule shaped microbial structures. They are also detected with DNA analysis. The cross sectional observation of microbial structures encrusted with Fe-oxide and Fe-oxyhydroxide at a nano scale by Transmission Electron Microscopy (TEM) and Focused Ion Beam (FIB) technique was developed to verify the structural/biogeochemical properties in the microbe-mineral interaction. Systematic nano-scale measurements on the biomineralization in the microbial mat leads the understandings of biogeochemical environments around the hydrothermal vent.

  13. Earth's Earliest Ecosystems in the Classroom: The Use of Microbial Mats to Teach General Principles in Microbial Ecology, and Scientific Inquiry

    NASA Technical Reports Server (NTRS)

    Beboutl, Brad M.; Bucaria, Robin

    2004-01-01

    Microbial mats are living examples of the most ancient biological communities on earth, and may also be useful models for the search for life elsewhere. They are centrally important to Astrobiology. In this lecture, we will present an introduction to microbial mats, as well as an introduction to our web-based educational module on the subject of microbial ecology, featuring living mats maintained in a mini "Web Lab" complete with remotely-operable instrumentation. We have partnered with a number of outreach specialists in order to produce an informative and educational web-based presentation, aspects of which will be exported to museum exhibits reaching a wide audience. On our web site, we will conduct regularly scheduled experimental manipulations, linking the experiments to our research activities, and demonstrating fundamental principles of scientific research.

  14. [Inefficiency of electrosmog-shielding mats. Part 2: radio frequency range].

    PubMed

    Leitgeb, N; Cech, R

    2005-09-01

    It could already be shown that electromagnetic shielding mats do not reduce but even enhance electric field exposure in daily life situations. By measurements and numerical simulations the claims of manufacturers were checked who pretend that radio frequency electromagnetic fields can be shielded to 99% and more, and transferred to earth by earth cables (if attached). It could be shown that in the radio frequency range such products do not fulfil the justified expectations of customers, but in most cases even cause the opposite. The results depend on the electric properties of the material. Good electric conductivity of shielding mats even considerably increases electromagnetic field exposure. To connect the mats with earth potential by an attached cable might increase the beliefs on a protective effect, however, this is not capable to enhance the shielding effect. The investigation demonstrates that in spite of references made to experts opinions manufacturers claims about the shielding efficiency of radio frequency fields are misleading and fool clients about the real situation. Overall, acquisition and use of electrosmog shielding mats must be discouraged. If at all, shielding can be reached by placing a shielding cover between the source and the person. However, even in this case, efficiency is much lower than promised by manufacturers and decreases even more if it is taken into account that the head naturally remains uncovered and hence unshielded.

  15. The ichthyofauna of drifting macrophyte mats in the Ivinhema River, upper Paraná River basin, Brazil

    USGS Publications Warehouse

    Bulla, C. K.; Gomes, Luiz Carlos; Miranda, Leandro E.; Agostinho, A. A.

    2011-01-01

    We describe the fish assemblages associated with drifting macrophyte mats and consider their possible role as dispersal vectors in the Ivinhema River, a major tributary of the upper Paraná River, Brazil. Fish associated with drifting mats were sampled in the main river channel during January and March 2005, when the wind and/or the increased water level were sufficient to transport macrophyte stands. Fish in the drifting mats were sampled with a floating sieve (4 m long x 2 m wide x 0.6 m high, and 2 mm mesh size). In the laboratory, larvae, juvenile, and adult fish were counted and identified to the lowest possible taxonomic level. In four drifting macrophyte mats we captured 218 individuals belonging to at least 28 species, 17 families, and 6 orders. Aphyocharax dentatus, Serrasalmus spp., and Trachelyopterus galeatus were the most abundant taxa associated with the mats, but species richness ranged from 6 to 24 species per mat. In addition, 85% of the total number of individuals caught was larvae and juveniles. Although preliminary and based on limited samples, this study of drifting macrophyte mats was the first one in the last unregulated stretch of the Paraná River remaining inside Brazilian territory, and alerts us to the potential role of macrophytes mats as dispersers of fish species in the region.

  16. Heuristic Constraint Management Methods in Multidimensional Adaptive Testing

    ERIC Educational Resources Information Center

    Born, Sebastian; Frey, Andreas

    2017-01-01

    Although multidimensional adaptive testing (MAT) has been proven to be highly advantageous with regard to measurement efficiency when several highly correlated dimensions are measured, there are few operational assessments that use MAT. This may be due to issues of constraint management, which is more complex in MAT than it is in unidimensional…

  17. When to Go to the Mat

    ERIC Educational Resources Information Center

    Smith, Carol A.

    2017-01-01

    School leaders rightly tend toward collaboration and consensus-building when it comes to important decisions affecting students. But there are moments when, perhaps to their own surprise, they may find themselves willing to "go to the mat" on an important decision, whether consensus has been reached or not. Smith, a professor and chair…

  18. Microbial Diversity and Lipid Abundance in Microbial Mats from a Sulfidic, Saline, Warm Spring in Utah, USA

    NASA Astrophysics Data System (ADS)

    Gong, J.; Edwardson, C.; Mackey, T. J.; Dzaugis, M.; Ibarra, Y.; Course 2012, G.; Frantz, C. M.; Osburn, M. R.; Hirst, M.; Williamson, C.; Hanselmann, K.; Caporaso, J.; Sessions, A. L.; Spear, J. R.

    2012-12-01

    The microbial diversity of Stinking Springs, a sulfidic, saline, warm spring northeast of the Great Salt Lake was investigated. The measured pH, temperature, salinity, and sulfide concentration along the flow path ranged from 6.64-7.77, 40-28° C, 2.9-2.2%, and 250 μM to negligible, respectively. Five sites were selected along the flow path and within each site microbial mats were dissected into depth profiles based on the color and texture of the mat layers. Genomic DNA was extracted from each layer, and the 16S rRNA gene was amplified and sequenced on the Roche 454 Titanium platform. Fatty acids were also extracted from the mat layers and analyzed by liquid chromatography and mass spectrometry. The mats at Stinking Springs were classified into roughly two morphologies with respect to their spatial distribution: loose, sometimes floating mats proximal to the spring source; and thicker, well-laminated mats distal to the spring source. Loosely-laminated mats were found in turbulent stream flow environments, whereas well-laminated mats were common in less turbulent sheet flows. Phototrophs, sulfur oxidizers, sulfate reducers, methanogens, other bacteria and archaea were identified by 16S rRNA gene sequences. Diatoms, identified by microscopy and lipid analysis were found to increase in abundance with distance from the source. Methanogens were generally more abundant in deeper mat laminae. Photoheterotrophs were found in all mat layers. Microbial diversity increased significantly with depth at most sites. In addition, two distinct microbial streamers were identified and characterized at the two fast flowing sites. These two streamer varieties were dominated by either cyanobacteria or flavobacteria. Overall, our genomic and lipid analysis suggest that the physical and chemical environment is more predictive of the community composition than mat morphology. Site Map

  19. UAV, DGPS, and Laser Transit Mapping of Microbial Mat Ecosystems on Little Ambergris Cay, B.W.I.

    NASA Astrophysics Data System (ADS)

    Stein, N.; Quinn, D. P.; Grotzinger, J. P.; Fischer, W. W.; Knoll, A. H.; Cantine, M.; Gomes, M. L.; Grotzinger, H. M.; Lingappa, U.; Metcalfe, K.; O'Reilly, S. S.; Orzechowski, E. A.; Riedman, L. A.; Strauss, J. V.; Trower, L.

    2016-12-01

    Little Ambergris Cay is a 6 km long, 1.6 km wide uninhabited island on the Caicos platform in the Turks and Caicos. Little Ambergris provides an analog for the study of microbial mat development in the sedimentary record. Recent field mapping during July of 2016 used UAV- and satellite-based images, differential GPS (DGPS), and total station theodolite (TST) measurements to characterize sedimentology and biofacies across the entirety of Little Ambergris Cay. Nine facies were identified in-situ during DGPS island transects including oolitic grainstone bedrock, sand flats, cutbank and mat-filled channels, hardground-lined bays with EPS-rich mat particles, mangroves, EPS mats, polygonal mats, and mats with blistered surface texture. These facies were mapped onto a 15 cm/pixel visible light orthomosaic of the island generated from more than 1500 nadir images taken by a UAV at 350 m standoff distance. A corresponding stereogrammetric digital elevation map was generated from drone images and 910 DGPS measurements acquired during several island transects. More than 1000 TST measurements provide additional facies elevation constraints, control points for satellite-based water depth calculations, and means to cross-calibrate and reconstruct the topographic profile of bedrock exposed at the beach. Additionally, the thickness of the underlying Holocene sediment fill was estimated over several island transects using a depth probe. Sub-cm resolution drone-based orthophotos of microbial mats were used to quantify polygonal mat size and textures. The mapping results highlight that sedimentary and bio-facies (including mat morphology and fabrics) correlate strongly with elevation. Notably, mat morphology was observed to be highly sensitive to cm-scale variations in topography and water depth. The productivity metric NDVI was computed for mat and vegetation facies using nadir images from a UAV-mounted two-band red-NIR camera. In combination with in situ facies mapping, these

  20. Evolution of Mat Strength from the Paleoarchean to the Modern: A Record of Evolving Microbial Communities?

    NASA Astrophysics Data System (ADS)

    Tice, M.; Pope, M.; Thornton, D.

    2011-12-01

    Fossil microbial mats, i.e. surface-attached communities of benthic microorganisms, form the most extensive record of life on Earth. Qualitatively changing mat morphologies from 3.43-0.56-billion-years-ago may reflect the evolution of microorganism communities or changing environmental conditions. However, mat morphogenesis is not well understood or easily quantifiable, making interpretation of the mat record difficult. We show that microbial mat cohesion increased from ~1 Pa to ~13 Pa at 2.7-billion-years-ago (Ga), and has remained high for most of the rest of Earth history. This initial increase may represent an early increase in the productivity of mat communities, a change in the composition of extracellular polymeric substances (EPS) produced by mat-formers, or a change in the composition of seawater affecting EPS strength. The appearance of early high-strength communities was coincident with the appearance of voids representing gas bubbles in the apices of conical stromatolites; together, these changes may record the emergence of productive mat communities dominated by oxygenic cyanobacteria. The earliest high-strength communities, like early bubble-forming conical stromatolites, grew in low-energy environments. The appearance of high-strength communities in shallow-water environments starting 2.63-2.52 Ga coincided with the appearance of the first barrier reef complexes. We hypothesize that the first oxygenic cyanobacteria were most competitive with anoxygenic phototrophs in diffusion-limited environments. As the cyanobacteria became more proficient at oxygenic photosynthesis, they eventually outcompeted anoxygenic phototrophs in higher-energy environments. Competition with higher strength seaweed and grazing by metazoans has displaced mat communities from essentially all modern high-energy niches.

  1. Diversity, distribution and hydrocarbon biodegradation capabilities of microbial communities in oil-contaminated cyanobacterial mats from a constructed wetland.

    PubMed

    Abed, Raeid M M; Al-Kharusi, Samiha; Prigent, Stephane; Headley, Tom

    2014-01-01

    Various types of cyanobacterial mats were predominant in a wetland, constructed for the remediation of oil-polluted residual waters from an oil field in the desert of the south-eastern Arabian Peninsula, although such mats were rarely found in other wetland systems. There is scarce information on the bacterial diversity, spatial distribution and oil-biodegradation capabilities of freshwater wetland oil-polluted mats. Microbial community analysis by Automated Ribosomal Spacer Analysis (ARISA) showed that the different mats hosted distinct microbial communities. Average numbers of operational taxonomic units (OTUsARISA) were relatively lower in the mats with higher oil levels and the number of shared OTUsARISA between the mats was <60% in most cases. Multivariate analyses of fingerprinting profiles indicated that the bacterial communities in the wetland mats were influenced by oil and ammonia levels, but to a lesser extent by plant density. In addition to oil and ammonia, redundancy analysis (RDA) showed also a significant contribution of temperature, dissolved oxygen and sulfate concentration to the variations of the mats' microbial communities. Pyrosequencing yielded 282,706 reads with >90% of the sequences affiliated to Proteobacteria (41% of total sequences), Cyanobacteria (31%), Bacteriodetes (11.5%), Planctomycetes (7%) and Chloroflexi (3%). Known autotrophic (e.g. Rivularia) and heterotrophic (e.g. Azospira) nitrogen-fixing bacteria as well as purple sulfur and non-sulfur bacteria were frequently encountered in all mats. On the other hand, sequences of known sulfate-reducing bacteria (SRBs) were rarely found, indicating that SRBs in the wetland mats probably belong to yet-undescribed novel species. The wetland mats were able to degrade 53-100% of C12-C30 alkanes after 6 weeks of incubation under aerobic conditions. We conclude that oil and ammonia concentrations are the major key players in determining the spatial distribution of the wetland mats' microbial

  2. Timescales of Growth Response of Microbial Mats to Environmental Change in an Ice-Covered Antarctic Lake

    PubMed Central

    Hawes, Ian; Sumner, Dawn Y.; Andersen, Dale T.; Jungblut, Anne D.; Mackey, Tyler J.

    2013-01-01

    Lake Vanda is a perennially ice-covered, closed-basin lake in the McMurdo Dry Valleys, Antarctica. Laminated photosynthetic microbial mats cover the floor of the lake from below the ice cover to >40 m depth. In recent decades, the water level of Lake Vanda has been rising, creating a “natural experiment” on development of mat communities on newly flooded substrates and the response of deeper mats to declining irradiance. Mats in recently flooded depths accumulate one lamina (~0.3 mm) per year and accrue ~0.18 µg chlorophyll-a cm−2 y−1. As they increase in thickness, vertical zonation becomes evident, with the upper 2-4 laminae forming an orange-brown zone, rich in myxoxanthophyll and dominated by intertwined Leptolyngbya trichomes. Below this, up to six phycobilin-rich green/pink-pigmented laminae form a subsurface zone, inhabited by Leptolyngbya, Oscillatoria and Phormidium morphotypes. Laminae continued to increase in thickness for several years after burial, and PAM fluorometry indicated photosynthetic potential in all pigmented laminae. At depths that have been submerged for >40 years, mats showed similar internal zonation and formed complex pinnacle structures that were only beginning to appear in shallower mats. Chlorophyll-a did not change over time and these mats appear to represent resource-limited “climax” communities. Acclimation of microbial mats to changing environmental conditions is a slow process, and our data show how legacy effects of past change persist into the modern community structure. PMID:24832656

  3. Timescales of growth response of microbial mats to environmental change in an ice-covered antarctic lake.

    PubMed

    Hawes, Ian; Sumner, Dawn Y; Andersen, Dale T; Jungblut, Anne D; Mackey, Tyler J

    2013-01-25

    Lake Vanda is a perennially ice-covered, closed-basin lake in the McMurdo Dry Valleys, Antarctica. Laminated photosynthetic microbial mats cover the floor of the lake from below the ice cover to >40 m depth. In recent decades, the water level of Lake Vanda has been rising, creating a "natural experiment" on development of mat communities on newly flooded substrates and the response of deeper mats to declining irradiance. Mats in recently flooded depths accumulate one lamina (~0.3 mm) per year and accrue ~0.18 µg chlorophyll-a cm-2 y-1. As they increase in thickness, vertical zonation becomes evident, with the upper 2-4 laminae forming an orange-brown zone, rich in myxoxanthophyll and dominated by intertwined Leptolyngbya trichomes. Below this, up to six phycobilin-rich green/pink-pigmented laminae form a subsurface zone, inhabited by Leptolyngbya, Oscillatoria and Phormidium morphotypes. Laminae continued to increase in thickness for several years after burial, and PAM fluorometry indicated photosynthetic potential in all pigmented laminae. At depths that have been submerged for >40 years, mats showed similar internal zonation and formed complex pinnacle structures that were only beginning to appear in shallower mats. Chlorophyll-a did not change over time and these mats appear to represent resource-limited "climax" communities. Acclimation of microbial mats to changing environmental conditions is a slow process, and our data show how legacy effects of past change persist into the modern community structure.

  4. Microbial Mat Communities along an Oxygen Gradient in a Perennially Ice-Covered Antarctic Lake

    PubMed Central

    Hawes, Ian; Mackey, Tyler J.; Krusor, Megan; Doran, Peter T.; Sumner, Dawn Y.; Eisen, Jonathan A.; Hillman, Colin; Goroncy, Alexander K.

    2015-01-01

    Lake Fryxell is a perennially ice-covered lake in the McMurdo Dry Valleys, Antarctica, with a sharp oxycline in a water column that is density stabilized by a gradient in salt concentration. Dissolved oxygen falls from 20 mg liter−1 to undetectable over one vertical meter from 8.9- to 9.9-m depth. We provide the first description of the benthic mat community that falls within this oxygen gradient on the sloping floor of the lake, using a combination of micro- and macroscopic morphological descriptions, pigment analysis, and 16S rRNA gene bacterial community analysis. Our work focused on three macroscopic mat morphologies that were associated with different parts of the oxygen gradient: (i) “cuspate pinnacles” in the upper hyperoxic zone, which displayed complex topography and were dominated by phycoerythrin-rich cyanobacteria attributable to the genus Leptolyngbya and a diverse but sparse assemblage of pennate diatoms; (ii) a less topographically complex “ridge-pit” mat located immediately above the oxic-anoxic transition containing Leptolyngbya and an increasing abundance of diatoms; and (iii) flat prostrate mats in the upper anoxic zone, dominated by a green cyanobacterium phylogenetically identified as Phormidium pseudopriestleyi and a single diatom, Diadesmis contenta. Zonation of bacteria was by lake depth and by depth into individual mats. Deeper mats had higher abundances of bacteriochlorophylls and anoxygenic phototrophs, including Chlorobi and Chloroflexi. This suggests that microbial communities form assemblages specific to niche-like locations. Mat morphologies, underpinned by cyanobacterial and diatom composition, are the result of local habitat conditions likely defined by irradiance and oxygen and sulfide concentrations. PMID:26567300

  5. Microbial Mat Communities along an Oxygen Gradient in a Perennially Ice-Covered Antarctic Lake.

    PubMed

    Jungblut, Anne D; Hawes, Ian; Mackey, Tyler J; Krusor, Megan; Doran, Peter T; Sumner, Dawn Y; Eisen, Jonathan A; Hillman, Colin; Goroncy, Alexander K

    2016-01-15

    Lake Fryxell is a perennially ice-covered lake in the McMurdo Dry Valleys, Antarctica, with a sharp oxycline in a water column that is density stabilized by a gradient in salt concentration. Dissolved oxygen falls from 20 mg liter(-1) to undetectable over one vertical meter from 8.9- to 9.9-m depth. We provide the first description of the benthic mat community that falls within this oxygen gradient on the sloping floor of the lake, using a combination of micro- and macroscopic morphological descriptions, pigment analysis, and 16S rRNA gene bacterial community analysis. Our work focused on three macroscopic mat morphologies that were associated with different parts of the oxygen gradient: (i) "cuspate pinnacles" in the upper hyperoxic zone, which displayed complex topography and were dominated by phycoerythrin-rich cyanobacteria attributable to the genus Leptolyngbya and a diverse but sparse assemblage of pennate diatoms; (ii) a less topographically complex "ridge-pit" mat located immediately above the oxic-anoxic transition containing Leptolyngbya and an increasing abundance of diatoms; and (iii) flat prostrate mats in the upper anoxic zone, dominated by a green cyanobacterium phylogenetically identified as Phormidium pseudopriestleyi and a single diatom, Diadesmis contenta. Zonation of bacteria was by lake depth and by depth into individual mats. Deeper mats had higher abundances of bacteriochlorophylls and anoxygenic phototrophs, including Chlorobi and Chloroflexi. This suggests that microbial communities form assemblages specific to niche-like locations. Mat morphologies, underpinned by cyanobacterial and diatom composition, are the result of local habitat conditions likely defined by irradiance and oxygen and sulfide concentrations. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Compound-specific Isotope Analysis of Cyanobacterial Pure cultures and Microbial Mats: Effects of Photorespiration?

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Summons, R. E.

    2006-01-01

    Microbial mats are considered modern homologs of Precambrian stromatolites. The carbon isotopic compositions of organic matter and biomarker lipids provide clues to the depositional environments of ancient mat ecosystems. As the source of primary carbon fixation for over two billion years, an understanding of cyanobacterial lipid biosynthesis, associated isotopic discriminations, and the influence of physiological factors on growth and isotope expression is essential to help us compare modern microbial ecosystems to their ancient counterparts. Here, we report on the effects of photorespiration (PR) on the isotopic composition of cyanobacteria and biomarker lipids, and on potential PR effects associated with the composition of various microbial mats. The high light, high O2 and limiting CO2 conditions often present at the surface of microbial mats are known to support PR in cyanobacteria. The oxygenase function of ribulose bisphosphate carboxylase/oxygenase can result in photoexcretion of glycolate and subsequent degration by heterotrophic bacteria. We have found evidence which supports an isotopic depletion (increased apparent E) scaled to O2 level associated with growth of Phormidium luridum at low CO2 concentrations (less than 0.04%). Similar to previous studies, isotopic differences between biomass and lipid biomarkers, and between lipid classes were positively correlated with overall fractionation, and should provide a means of estimating the influence of PR on overall isotopic composition of microbial mats. Several examples of microbial mats growing in the hydrothermal waters of Yellowstone National Park and the hypersaline marine evaporation ponds at Guerrero Negro, Baja Sur Mexico will be compared with a view to PR as a possible explanation of the relatively heavy C-isotope composition of hypersaline mats.

  7. Rapid spectrofluorometric screening of poly-hydroxyalkanoate-producing bacteria from microbial mats.

    PubMed

    Berlanga, Mercedes; Montero, M T; Fernández-Borrell, Jordi; Guerrero, Ricardo

    2006-06-01

    Microbial mat ecosystems are characterized by both seasonal and diel fluctuations in several physicochemical variables, so that resident microorganisms must frequently adapt to the changing conditions of their environment. It has been pointed out that, under stress conditions, bacterial cells with higher contents of poly-hydroxyalkanoates (PHA) survive longer than those with lower PHA content. In the present study, PHA-producing strains from Ebro Delta microbial mats were selected using the Nile red dying technique and the relative accumulation of PHA was monitored during further laboratory cultivation. The number of heterotrophic isolates in trypticase soy agar (TSA) was ca. 107 colony-forming units/g microbial mat. Of these, 100 randomly chosen colonies were replicated on mineral salt agar limited in nitrogen, and Nile red was added to the medium to detect PHA. Orange fluorescence, produced upon binding of the dye to polymer granules in the cell, was detected in approximately 10% of the replicated heterotrophic isolates. The kinetics of PHA accumulation in Pseudomonas putida, and P. oleovorans were compared with those of several of the environmental isolates spectrofluorometry. PHA accumulation, measured as relative fluorescence intensity, resulted in a steady-state concentration after 48 h of incubation in all strains assayed. At 72 h, the maximum fluorescence intensity of each strain incubated with glucose and fructose was usually similar. MAT-28 strain accumulated more PHA than the other isolates. The results show that data obtained from environmental isolates can highly improve studies based on modeling-simulation programs, and that microbial mats constitute an excellent source for the isolation of PHA-producing strains with industrial applications.

  8. Full-Scale Evaluation of DuraDeck (registered trademark) and MegaDeck (trademark) Matting Systems

    DTIC Science & Technology

    2013-07-01

    plates studded with threaded bolts were placed ERDC/GSL TR-13-27 10 underneath two pre-drilled corners of the panel. The plates were positioned so...metal plates studded with threaded ERDC/GSL TR-13-27 4 Figure 1. DuraDeck® mat panel, top surface. Figure 2. DuraDeck® mat panel, bottom surface...ERDC/GSL TR-13-27 5 bolts , as shown in Figure 3, underneath the mat corners and then installing special connector nuts from the top surface

  9. Widespread anatoxin-a detection in benthic cyanobacterial mats throughout a river network

    PubMed Central

    Kudela, Raphael M.; Power, Mary E.

    2018-01-01

    Benthic algae fuel summer food webs in many sunlit rivers, and are hotspots for primary and secondary production and biogeochemical cycling. Concerningly, riverine benthic algal assemblages can become dominated by toxic cyanobacteria, threatening water quality and public health. In the Eel River in Northern California, over a dozen dog deaths have been attributed to cyanotoxin poisonings since 2000. During the summers of 2013–2015, we documented spatial and temporal patterns of cyanotoxin concentrations in the watershed, showing widespread distribution of anatoxin-a in benthic cyanobacterial mats. Solid phase adsorption toxin tracking (SPATT) samplers were deployed weekly to record dissolved microcystin and anatoxin-a levels at 10 sites throughout the watershed, and 187 Anabaena-dominated or Phormidium-dominated cyanobacterial mat samples were collected from 27 locations to measure intracellular anatoxin-a (ATX) and microcystins (MCY). Anatoxin-a levels were higher than microcystin for both SPATT (mean MCY = 0.8 and ATX = 4.8 ng g resin-1 day-1) and cyanobacterial mat samples (mean MCY = 0.074 and ATX = 1.89 μg g-1 DW). Of the benthic mats sampled, 58.9% had detectable anatoxin-a (max = 70.93 μg g-1 DW), while 37.6% had detectable microcystins (max = 2.29 μg g-1 DW). SPATT cyanotoxin levels peaked in mid-summer in warm mainstem reaches of the watershed. This is one of the first documentations of widespread anatoxin-a occurrence in benthic cyanobacterial mats in a North American watershed. PMID:29775481

  10. All-Organic High-Performance Piezoelectric Nanogenerator with Multilayer Assembled Electrospun Nanofiber Mats for Self-Powered Multifunctional Sensors.

    PubMed

    Maity, Kuntal; Mandal, Dipankar

    2018-05-30

    Rapid development of wearable electronics, piezoelectric nanogenerator (PNG), has been paid a special attention because of its sustainable and accessible energy generation. In this context, we present a simple yet highly efficient design strategy to enhance the output performance of an all-organic PNG (OPNG) based on multilayer assembled electrospun poly(vinylidene fluoride) (PVDF) nanofiber (NF) mats where vapor-phase polymerized poly(3,4-ethylenedioxythiophene)-coated PVDF NFs are assembled as electrodes and neat PVDF NFs are utilized as an active component. In addition to the multilayer assembly, electrode compatibility and durability remain a challenging task to mitigate the primary requirements of wearable electronics. A multilayer networked three-dimensional structure integrated with a compatible electrode thereby provides enhanced output voltage and current (e.g., open-circuit voltage, V oc ≈ 48 V, and short-circuit current, I sc ≈ 6 μA, upon 8.3 kPa of the applied stress amplitude) with superior piezoelectric energy conversion efficiency of 66% compared to the single-mat device. Besides, OPNG also shows ultrasensitivity toward human movements such as foot strikes and walking. The weight measurement mapping is critically explored by principal component analysis that may have enormous applications in medical diagnosis to smart packaging industries. More importantly, fatigue test under continuous mechanical impact (over 6 months) shows great promise as a robust wearable mechanical energy harvester.

  11. Kodak T-Mat G film in rotational panoramic radiography.

    PubMed

    Ponce, A Z; McDavid, W D; Lundeen, R C; Morris, C R

    1986-06-01

    Panoramic radiographs were taken of a tissue-equivalent phantom to evaluate T-Mat G and Ortho G films in combination with rare earth screens. The radiographs were compared to radiographs made with high-speed calcium tungstate screens and Kodak XRP film. The reduction in the amount of radiation necessary for the use of rare earth screens (50% to 70%) was accomplished by lowering the mA and adding filtration. All evaluated films were diagnostically acceptable. There was a marked preference of the T-Mat radiographs over the Ortho G radiographs and a slight preference over radiographs made with the standard calcium-tungstate screen-film system.

  12. Simulated Carbon Cycling in a Model Microbial Mat.

    NASA Astrophysics Data System (ADS)

    Decker, K. L.; Potter, C. S.

    2006-12-01

    We present here the novel addition of detailed organic carbon cycling to our model of a hypersaline microbial mat ecosystem. This ecosystem model, MBGC (Microbial BioGeoChemistry), simulates carbon fixation through oxygenic and anoxygenic photosynthesis, and the release of C and electrons for microbial heterotrophs via cyanobacterial exudates and also via a pool of dead cells. Previously in MBGC, the organic portion of the carbon cycle was simplified into a black-box rate of accumulation of simple and complex organic compounds based on photosynthesis and mortality rates. We will discuss the novel inclusion of fermentation as a source of carbon and electrons for use in methanogenesis and sulfate reduction, and the influence of photorespiration on labile carbon exudation rates in cyanobacteria. We will also discuss the modeling of decomposition of dead cells and the ultimate release of inorganic carbon. The detailed modeling of organic carbon cycling is important to the accurate representation of inorganic carbon flux through the mat, as well as to accurate representation of growth models of the heterotrophs under different environmental conditions. Because the model ecosystem is an analog of ancient microbial mats that had huge impacts on the atmosphere of early earth, this MBGC can be useful as a biological component to either early earth models or models of other planets that potentially harbor life.

  13. Enhancing the Mechanical Properties of Electrospun Nanofiber Mats through Controllable Welding at the Cross Points.

    PubMed

    Li, Haoxuan; Zhu, Chunlei; Xue, Jiajia; Ke, Qinfei; Xia, Younan

    2017-05-01

    This communication describes a simple and effective method for welding electrospun nanofibers at the cross points to enhance the mechanical properties of their nonwoven mats. The welding is achieved by placing a nonwoven mat of the nanofibers in a capped vial with the vapor of a proper solvent. For polycaprolactone (PCL) nanofibers, the solvent is dichloromethane (DCM). The welding can be managed in a controllable fashion by simply varying the partial pressure of DCM and/or the exposure time. Relative to the pristine nanofiber mat, the mechanical strength of the welded PCL nanofiber mat can be increased by as much as 200%. Meanwhile, such a treatment does not cause any major structural changes, including morphology, fiber diameter, and pore size. This study provides a generic method for improving the mechanical properties of nonwoven nanofiber mats, holding great potential in various applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. NASA Planetary Science Division's Instrument Development Programs, PICASSO and MatISSE

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2016-01-01

    The Planetary Science Division (PSD) has combined several legacy instrument development programs into just two. The Planetary Instrument Concepts Advancing Solar System Observations (PICASSO) program funds the development of low TRL instruments and components. The Maturation of Instruments for Solar System Observations (MatISSE) program funds the development of instruments in the mid-TRL range. The strategy of PSD instrument development is to develop instruments from PICASSO to MatISSE to proposing for mission development.

  15. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    PubMed Central

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Wu, Jingshen

    2016-01-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes. PMID:28083098

  16. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    NASA Astrophysics Data System (ADS)

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Hong, Mei; Wu, Jingshen

    2016-12-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes.

  17. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    PubMed Central

    Beam, Jacob P.; Bernstein, Hans C.; Jay, Zackary J.; Kozubal, Mark A.; Jennings, Ryan deM.; Tringe, Susannah G.; Inskeep, William P.

    2016-01-01

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3–3.5; temperature = 68–75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4–40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14–30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1–2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day−1, and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems. PMID:26913020

  18. Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates

    NASA Astrophysics Data System (ADS)

    Iniesto, Miguel; Buscalioni, Ángela D.; Carmen Guerrero, M.; Benzerara, Karim; Moreira, David; López-Archilla, Ana I.

    2016-05-01

    Microbial mats have been hypothesized to improve the persistence and the preservation of organic remains during fossilization processes. We test this hypothesis with long-term experiments (up to 5.5 years) using invertebrate and vertebrate corpses. Once placed on mats, the microbial community coats the corpses and forms a three-dimensional sarcophagus composed of microbial cells and exopolymeric substances (EPS). This coverage provides a template for i) moulding superficial features, resulting in negative impressions, and ii) generating replicas. The impressions of fly setulae, fish scales and frog skin verrucae are shaped mainly by small cells in an EPS matrix. Microbes also replicate delicate structures such as the three successive layers that compose a fish eye. The sarcophagus protects the body integrity, allowing the persistence of inner organs such as the ovaries and digestive apparatus in flies, the swim bladder and muscles in fish, and the bone marrow in frog legs. This study brings strong experimental evidence to the idea that mats favour metazoan fossilization by moulding, replicating and delaying decay. Rapid burial has classically been invoked as a mechanism to explain exceptional preservation. However, mats may play a similar role during early fossilization as they can preserve complex features for a long time.

  19. Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates

    PubMed Central

    Iniesto, Miguel; Buscalioni, Ángela D.; Carmen Guerrero, M.; Benzerara, Karim; Moreira, David; López-Archilla, Ana I.

    2016-01-01

    Microbial mats have been hypothesized to improve the persistence and the preservation of organic remains during fossilization processes. We test this hypothesis with long-term experiments (up to 5.5 years) using invertebrate and vertebrate corpses. Once placed on mats, the microbial community coats the corpses and forms a three-dimensional sarcophagus composed of microbial cells and exopolymeric substances (EPS). This coverage provides a template for i) moulding superficial features, resulting in negative impressions, and ii) generating replicas. The impressions of fly setulae, fish scales and frog skin verrucae are shaped mainly by small cells in an EPS matrix. Microbes also replicate delicate structures such as the three successive layers that compose a fish eye. The sarcophagus protects the body integrity, allowing the persistence of inner organs such as the ovaries and digestive apparatus in flies, the swim bladder and muscles in fish, and the bone marrow in frog legs. This study brings strong experimental evidence to the idea that mats favour metazoan fossilization by moulding, replicating and delaying decay. Rapid burial has classically been invoked as a mechanism to explain exceptional preservation. However, mats may play a similar role during early fossilization as they can preserve complex features for a long time. PMID:27162204

  20. Magnetoacoustic Tomography with Magnetic Induction (MAT-MI) for Imaging Electrical Conductivity of Biological Tissue: A Tutorial Review

    PubMed Central

    Li, Xu; Yu, Kai; He, Bin

    2016-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a noninvasive imaging method developed to map electrical conductivity of biological tissue with millimeter level spatial resolution. In MAT-MI, a time-varying magnetic stimulation is applied to induce eddy current inside the conductive tissue sample. With the existence of a static magnetic field, the Lorentz force acting on the induced eddy current drives mechanical vibrations producing detectable ultrasound signals. These ultrasound signals can then be acquired to reconstruct a map related to the sample’s electrical conductivity contrast. This work reviews fundamental ideas of MAT-MI and major techniques developed in these years. First, the physical mechanisms underlying MAT-MI imaging are described including the magnetic induction and Lorentz force induced acoustic wave propagation. Second, experimental setups and various imaging strategies for MAT-MI are reviewed and compared together with the corresponding experimental results. In addition, as a recently developed reverse mode of MAT-MI, magneto-acousto-electrical tomography with magnetic induction (MAET-MI) is briefly reviewed in terms of its theory and experimental studies. Finally, we give our opinions on existing challenges and future directions for MAT-MI research. With all the reported and future technical advancement, MAT-MI has the potential to become an important noninvasive modality for electrical conductivity imaging of biological tissue. PMID:27542088

  1. Reliability, agreement, and validity of digital weighing scale with MatScan in limb load measurement.

    PubMed

    Kumar, Senthil N S; Omar, Baharudin; Htwe, Ohnmar; Joseph, Leonard H; Krishnan, Jagannathan; Jafarzedah Esfehani, Ali; Min, Lee L

    2014-01-01

    Limb loading measurements serve as an objective evaluation of asymmetrical weight bearing in the lower limb. Digital weighing scales (DWSs) could be used in clinical settings for measurement of static limb loading. However, ambiguity exists whether limb loading measurements of DWSs are comparable with a standard tool such as MatScan. A cross-sectional study composed of 33 nondisabled participants was conducted to investigate the reliability, agreement, and validity of DWSs with MatScan in static standing. Amounts of weight distribution and plantar pressure on the individual lower limb were measured using two DWSs (A, B) and MatScan during eyes open (EO) and eyes closed (EC) conditions. The results showed that intra- and interrater reliability (3, 1) were excellent (0.94-0.97) within and between DWS A and B. Bland-Altman plot revealed good agreement between DWS and MatScan in EO and EC conditions. The area under the receiver operating characteristic curve was significant and identified as 0.68 (p = 0.01). The measurements obtained with DWSs are valid and in agreement with MatScan measurements. Hence, DWSs could be used interchangeably with MatScan and could provide clinicians an objective measurement of limb loading suitable for clinical settings.

  2. Molecular Diversity of Cyanobacteria Inhabiting Coniform Structures and Surrounding Mat in a Yellowstone Hot Spring

    NASA Astrophysics Data System (ADS)

    Lau, Evan; Nash, Cody Z.; Vogler, Detlev R.; Cullings, K. W.

    2005-02-01

    Lithified coniform structures are common within cyanobacterial mats in Yellowstone National Park hot springs. It is unknown whether these structures and the mats from which they develop are inhabited by the same cyanobacterial populations. Denaturing gradient gel electrophoresis and sequencing and phylogenetic analysis of 16S rDNA was used to determine whether (1) three different morphological types of lithified coniform structures are inhabited by different cyanobacterial species, (2) these species are partitioned along a vertical gradient of these structures, and (3) lithified and non-lithified sections of mat are inhabited by different cyanobacterial species. Our results, based on multiple samplings, indicate that the cyanobacterial community compositions in the three lithified morphological types were identical and lacked any vertical differentiation. However, lithified and non-lithified portions of the same mat were inhabited by distinct and different populations of cyanobacteria. Cyanobacteria inhabiting lithified structures included at least one undefined Oscillatorialean taxon, which may represent the dominant cyanobacteria genus in lithified coniform stromatolites, Phormidium, three Synechococcus-like species, and two unknown cyanobacterial taxa. In contrast, the surrounding mats contained four closely related Synechococcus-like species. Our results indicate that the distribution of lithified coniform stromatolites may be dependent on the presence of one or more microorganisms, which are phylogenetically different from those inhabiting surrounding non-lithified mats.

  3. Modifying landing mat material properties may decrease peak contact forces but increase forefoot forces in gymnastics landings.

    PubMed

    Mills, Chris; Yeadon, Maurice R; Pain, Matthew T G

    2010-09-01

    This study investigated how changes in the material properties of a landing mat could minimise ground reaction forces (GRF) and internal loading on a gymnast during landing. A multi-layer model of a gymnastics competition landing mat and a subject-specific seven-link wobbling mass model of a gymnast were developed to address this aim. Landing mat properties (stiffness and damping) were optimised using a Simplex algorithm to minimise GRF and internal loading. The optimisation of the landing mat parameters was characterised by minimal changes to the mat's stiffness (<0.5%) but increased damping (272%) compared to the competition landing mat. Changes to the landing mat resulted in reduced peak vertical and horizontal GRF and reduced bone bending moments in the shank and thigh compared to a matching simulation. Peak bone bending moments within the thigh and shank were reduced by 6% from 321.5 Nm to 302.5Nm and GRF by 12% from 8626 N to 7552 N when compared to a matching simulation. The reduction in these forces may help to reduce the risk of bone fracture injury associated with a single landing and reduce the risk of a chronic injury such as a stress fracture.

  4. A Process for the Creation of T-MATS Propulsion System Models from NPSS data

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink (Math Works, Inc.) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.

  5. A Process for the Creation of T-MATS Propulsion System Models from NPSS Data

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink(Trademark) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.

  6. A Process for the Creation of T-MATS Propulsion System Models from NPSS Data

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink(Registered TradeMark) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.

  7. Microbial mats: an ecological niche for fungi

    PubMed Central

    Cantrell, Sharon A.; Duval-Pérez, Lisabeth

    2013-01-01

    Fungi were documented in tropical hypersaline microbial mats and their role in the degradation of complex carbohydrates (exopolymeric substance – EPS) was explored. Fungal diversity is higher during the wet season with Acremonium, Aspergillus, Cladosporium, and Penicillium among the more common genera. Diversity is also higher in the oxic layer and in young and transient mats. Enrichments with xanthan (a model EPS) show that without antibiotics (full community) degradation is faster than enrichments with antibacterial (fungal community) and antifungal (bacterial community) agents, suggesting that degradation is performed by a consortium of organisms (bacteria and fungi). The combined evidence from all experiments indicates that bacteria carried out approximately two-third of the xanthan degradation. The pattern of degradation is similar between seasons and layers but degradation is faster in enrichments from the wet season. The research suggests that fungi thrive in these hypersaline consortia and may participate in the carbon cycle through the degradation of complex carbohydrates. PMID:23577004

  8. Comparative effects of 12 weeks of equipment based and mat Pilates in patients with Chronic Low Back Pain on pain, function and transversus abdominis activation. A randomized controlled trial.

    PubMed

    Cruz-Díaz, David; Bergamin, M; Gobbo, S; Martínez-Amat, Antonio; Hita-Contreras, Fidel

    2017-08-01

    Pilates method has been recommended for patients with chronic low back pain (CLBP) and the activation of transversus abdominis has been deemed to play an important role in the improvement of these patients. Nevertheless, the evidence of the activation of TrA in Pilates practitioners remains unclear. To assess the effectiveness of 12 weeks of Pilates practice in disability, pain, kinesiophobia and transversus abdominis activation in patients with chronic nonspecific Low Back Pain. A randomized controlled trial was carried out. A single-blind randomized controlled trial with repeated measures at 6 and 12 weeks was carried out. A total of ninety eight patients with low back pain were included and randomly allocated to a Pilates Mat group (PMG) equipment based with apparatus Pilates (PAG) or control group (CG). Roland Morris Disability Questionnaire (RMDQ), visual analog scale (VAS) Tampa Scale of Kinesiophobia (TSK), and transversus abdominis (TrA) activation assessed by real time ultrasound measurement (US) were assessed as outcome measures. Improvement were observed in both intervention groups in all the included variables at 6 and 12 weeks (p<0.001). Faster enhancement was observed in the equipment based Pilates group (p=0.007). Equipment based and mat Pilates modalities are both effective in the improvement of TaA activation in patients with CLBP with associate improvement on pain, function and kinesiophobia. Significant differences were observed after 12 weeks of intervention in PMG and PAG with faster improvement in PAG suggesting that, feedback provided by equipment could help in the interiorization of Pilates principles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. HiMAT Subscale Research Vehicle Mated to B-52 Mothership in Flight

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Highly Maneuverable Aircraft Technology (HiMAT) research vehicle is shown here mated to a wing pylon on NASA's B-52 mothership aircraft. The HiMAT was a technology demonstrator to test structures and configurations for advanced fighter concepts. Over the course of more than 40 years, the B-52 proved a valuable workhorse for NASA's Dryden Flight Research Center (under various names), launching a wide variety of vehicles and conducting numerous other research flights. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for

  10. Wetting and Coalescence of Drops of Self-Healing Agents on Electrospun Nanofiber Mats.

    PubMed

    An, Seongpil; Kim, Yong Il; Lee, Min Wook; Yarin, Alexander L; Yoon, Sam S

    2017-10-10

    Here we study experimentally the behavior of liquid healing agents released in vascular core-shell nanofiber mats used in self-healing engineered materials. It is shown that wettability-driven spreading of liquid drops is accompanied by the imbibition into the nanofiber matrix, and its laws deviate from those known for spreading on an intact surface. We also explore coalescence of the released drops on nanofiber mats, in particular, coalescence of drops of resin monomer and cure important for self-healing. The coalescence process is also affected by the imbibition into the pores of an underlying nanofiber mat. A theoretical model is developed to account for the imbibition effect on drop coalescence.

  11. A Cyanine Dye Encapsulated Porous Fibrous Mat for Naked-Eye Ammonia Sensing.

    PubMed

    Ji, Chendong; Ma, Lijing; Yin, Meizhen; Yang, Wantai; Pan, Kai

    2016-08-19

    Electrospun ultrathin fiber-based sensors are desirable because of their practicality and sensitivity. Ammonia-detection systems are in high demand in different areas, including the industrial and agricultural fields. However, current technologies rely on large and complex instruments that restrict their actual utilization. Herein, we report a flexible naked-eye ammonia sensor, the polylactic acid-cyanine (PLA-Cy) fibrous mat, which was fabricated by blending a carboxyl-functionalized cyanine dye (D1) into electospun PLA porous fibers. The sensing mat was shown to undergo a naked-eye-detectable color change from white to blue upon exposure to ammonia vapor. The mat showed high selectivity to ammonia gas with a detection limit of 3.3 ppm. Aggregated D1 was first encapsulated by PLA and was then ionized by NH3 . These mechanisms were examined by photophysical studies and scanning electron microscopy. The aggregation-deaggregation process of D1 in the PLA-Cy fibrous mat led to the color change. This work provides a facile method for the naked-eye detection of ammonia and a novel strategy for the use of organic dyes in ammonia sensing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Diatom-driven recolonization of microbial mat-dominated siliciclastic tidal flat sediments.

    PubMed

    Pan, Jerónimo; Cuadrado, Diana G; Bournod, Constanza N

    2017-10-01

    Modern microbial mats and biofilms play a paramount role in sediment biostabilization. When sporadic storms affect tidal flats of Bahía Blanca Estuary, the underlying siliciclastic sediment is exposed by physical disruption of the mat, and in a few weeks' lapse, a microbial community re-establishes. With the objective of studying colonization patterns and the ecological succession of microorganisms at the scale of these erosional structures, these were experimentally made and their biological recolonization followed for 8 weeks, with replication in winter and spring. Motile pennate diatoms led the initial colonization following two distinct patterns: a dominance by Cylindrotheca closterium in winter and by naviculoid and nitzschioid diatoms in spring. During the first 7 days, cell numbers increased 2- to 17-fold. Cell densities further increased exhibiting sigmoidal community growth, reaching 2.9-8.9 × 106 cells cm-3 maxima around day 30; centric diatoms maintained low densities throughout. In 56 days after removal of the original mat, filamentous cyanobacteria that dominate mature mats did not establish a significant biomass, leading to the rejection of the hypothesis that cyanobacteria would drive the colonization. The observed dominance of pennate diatoms is attributed to extrinsic factors determined by tidal flooding, and intrinsic ones, e.g. motility, nutrient affinity and high growth rate. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Resilience and receptivity worked in tandem to sustain a geothermal mat community amidst erratic environmental conditions.

    PubMed

    Ghosh, Wriddhiman; Roy, Chayan; Roy, Rimi; Nilawe, Pravin; Mukherjee, Ambarish; Haldar, Prabir Kumar; Chauhan, Neeraj Kumar; Bhattacharya, Sabyasachi; Agarwal, Atima; George, Ashish; Pyne, Prosenjit; Mandal, Subhrangshu; Rameez, Moidu Jameela; Bala, Goutam

    2015-07-17

    To elucidate how geothermal irregularities affect the sustainability of high-temperature microbiomes we studied the synecological dynamics of a geothermal microbial mat community (GMMC) vis-à-vis fluctuations in its environment. Spatiotemporally-discrete editions of a photosynthetic GMMC colonizing the travertine mound of a circum-neutral hot spring cluster served as the model-system. In 2010 a strong geyser atop the mound discharged mineral-rich hot water, which nourished a GMMC continuum from the proximal channels (PC) upto the slope environment (SE) along the mound's western face. In 2011 that geyser extinguished and consequently the erstwhile mats disappeared. Nevertheless, two relatively-weaker vents erupted in the southern slope and their mineral-poor outflow supported a small GMMC patch in the SE. Comparative metagenomics showed that this mat was a relic of the 2010 community, conserved via population dispersal from erstwhile PC as well as SE niches. Subsequently in 2012, as hydrothermal activity augmented in the southern slope, ecological niches widened and the physiologically-heterogeneous components of the 2011 "seed-community" split into PC and SE meta-communities, thereby reclaiming either end of the thermal gradient. Resilience of incumbent populations, and the community's receptiveness towards immigrants, were the key qualities that ensured the GMMC's sustenance amidst habitat degradation and dispersal to discrete environments.

  14. Gro2mat: a package to efficiently read gromacs output in MATLAB.

    PubMed

    Dien, Hung; Deane, Charlotte M; Knapp, Bernhard

    2014-07-30

    Molecular dynamics (MD) simulations are a state-of-the-art computational method used to investigate molecular interactions at atomic scale. Interaction processes out of experimental reach can be monitored using MD software, such as Gromacs. Here, we present the gro2mat package that allows fast and easy access to Gromacs output files from Matlab. Gro2mat enables direct parsing of the most common Gromacs output formats including the binary xtc-format. No openly available Matlab parser currently exists for this format. The xtc reader is orders of magnitudes faster than other available pdb/ascii workarounds. Gro2mat is especially useful for scientists with an interest in quick prototyping of new mathematical and statistical approaches for Gromacs trajectory analyses. © 2014 Wiley Periodicals, Inc. Copyright © 2014 Wiley Periodicals, Inc.

  15. Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal.

    PubMed

    Kampalanonwat, Pimolpun; Supaphol, Pitt

    2010-12-01

    Polyacrylonitrile (PAN) nanofiber mats were prepared by electrospinning and they were further modified to contain amidino diethylenediamine chelating groups on their surface via heterogeneous reaction with diethylenetriamine (DETA). The obtained aminated PAN (APAN) nanofiber mats were evaluated for their chelating property with four types of metal ions, namely Cu(II), Ag(I), Fe(II), and Pb(II) ions. The amounts of the metal ions adsorbed onto the APAN nanofiber mats were influenced by the initial pH and the initial concentration of the metal ion solutions. Increasing the contact time also resulted in a monotonous increase in the adsorbed amounts of the metal ions, which finally reached equilibria at about 10 h for Cu(II) ions and about 5 h for Ag(I), Fe(II), and Pb(II) ions. The maximal adsorption capacities of the metal ions on the APAN nanofiber mats, as calculated from the Langmuir model, were 150.6, 155.5, 116.5, and 60.6 mg g(-1), respectively. Lastly, the spent APAN nanofiber mats could be facilely regenerated with a hydrochloric acid (HCl) aqueous solution.

  16. Thermophilic methanogenesis in a hot-spring algal-bacterial mat (71 to 30/sup 0/C)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, D.M.

    1978-06-01

    Algal-bacterial mats which grow in the effluent channels of alkaline hot springs provided an environment suitable for studying natural thermophilic methane-producing bacteria. Methane was rapidly produced in cores taken from the mat and appeared to be an end product of decomposition of the algal-bacterial organic matter. Formaldehyde prevented production of methane. Initial methanogenic rate was lower and methanogenesis became exponential when samples were permitted to cool before laboratory incubation. Methanogenesis occurred and methanogenic bateria were present over a range of 68 to 30/sup 0/C, with optimum methanogenesis near 45/sup 0/C. The temperature distribution of methanogenesis in the mat is discussedmore » relative to published results on standing crop, primary production, and decomposition in the thermal gradient. The depth distribution of methanogenesis was similar to that of freshwater sediments, with a zone of intense methanogenesis near the mat surface. Methanogenesis in deeper mat layers was very low or undetectable despite large numbers of viable methanogenic bacteria and could not be stimulated by addition of anoxic source water, sulfide, or a macronutrient solution.« less

  17. Nitrogen Fixation (Acetylene Reduction) Associated with Duckweed (Lemnaceae) Mats

    PubMed Central

    Zuberer, D. A.

    1982-01-01

    Duckweed (Lemnaceae) mats in Texas and Florida were investigated, using the acetylene reduction assay, to determine whether nitrogen fixation occurred in these floating aquatic macrophyte communities. N2-fixing microorganisms were enumerated by plating or most-probable-number techniques, using appropriate N-free media. Results of the investigations indicated that substantial N2-fixation (C2H2) was associated with duckweed mats in Texas and Florida. Acetylene reduction values ranged from 1 to 18 μmol of C2H4 g (dry weight)−1 day−1 for samples incubated aerobically in light. Dark N2 fixation was always two- to fivefold lower. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea (7 to 10 μM) reduced acetylene reduction to levels intermediate between light and dark incubation. Acetylene reduction was generally greatest for samples incubated anaerobically in the light. It was estimated that 15 to 20% of the N requirement of the duckweed could be supplied through biological nitrogen fixation. N2-fixing heterotrophic bacteria (105 cells g [wet weight]−1 and cyanobacteria (105 propagules g [wet weight]−1 were associated with the duckweed mats. Azotobacter sp. was not detected in these investigations. One diazotrophic isolate was classified as Klebsiella. PMID:16345992

  18. Distinctive fungal and bacterial communities are associated with mats formed by ectomycorrhizal fungi

    Treesearch

    Laurel A. Kluber; Jane E. Smith; David D. Myrold

    2011-01-01

    The distinct rhizomorphic mats formed by ectomycorrhizal Piloderma fungi are common features of the organic soil horizons of coniferous forests of the Pacific Northwest. These mats have been found to cover 25-40% of the forest floor in some Douglas-fir stands, and are associated with physical and biochemical properties that distinguish them from...

  19. Resistance and resilience of floating mat fens in interior Alaska following airboat disturbance

    Treesearch

    Amy Zacheis; Kate Doran

    2009-01-01

    The floating mat fens of the Tanana Flats in interior Alaska are productive wetlands near the urban center of Fairbanks. Airboat traffic has created a network of trails through the floating vegetation mats. We established protected areas along established trails, which allowed for measurement of plant community resistance to airboat traffic and resilience following...

  20. Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application.

    PubMed

    Sheng, Xiaoyue; Fan, Linpeng; He, Chuanglong; Zhang, Kuihua; Mo, Xiumei; Wang, Hongsheng

    2013-05-01

    In the present study, we reported fabrication and skin benefit of a novel vitamin E (VE)-loaded silk fibroin (SF) nanofibrous mats. RRR-α-Tocopherol polyethylene glycol 1000 succinate (VE TPGS), a water-soluble derivative of VE, was incorporated into SF nanofiber successfully by aqua solution electrospinning for the first time. Morphology of the composite nanofibers changed with the different amount of VE TPGS: a ribbon-like shape for lower loading dose of VE TPGS, while a round shape for higher loading dose (more than 4% (wt/wt) based on the weight of SF). After treated with 75% (v/v) ethanol vapor, the composite nanofibrous mats showed an excellent water-resistant ability. In vitro study disclosed a sustained release behavior of VE TPGS disassociated from the nanofibrous mats. The mouse skin fibroblasts (L929 cells) cultured on the VE-loaded SF nanofibrous mats spread and proliferated much better than on cover slips. Moreover, the incorporation of VE TPGS was found strengthening the ability of SF nanofibrous mats on protecting the cells against oxidation stress induced by tert-butyl hydroperoxide. Our data presented impressive skin benefits of this VE-loaded SF nanofibrous mats, suggesting a promising applicative potential of this novel product on personal skin care, tissue regeneration and other related area. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Benthic cyanobacterial mats in the high arctic: multi-layer structure and fluorescence responses to osmotic stress.

    PubMed

    Lionard, Marie; Péquin, Bérangère; Lovejoy, Connie; Vincent, Warwick F

    2012-01-01

    Cyanobacterial mats are often a major biological component of extreme aquatic ecosystems, and in polar lakes and streams they may account for the dominant fraction of total ecosystem biomass and productivity. In this study we examined the vertical structure and physiology of Arctic microbial mats relative to the question of how these communities may respond to ongoing environmental change. The mats were sampled from Ward Hunt Lake (83°5.297'N, 74°9.985'W) at the northern coast of Arctic Canada, and were composed of three visibly distinct layers. Microsensor profiling showed that there were strong gradients in oxygen within each layer, with an overall decrease from 100% saturation at the mat surface to 0%, at the bottom, accompanied by an increase of 0.6 pH units down the profile. Gene clone libraries (16S rRNA) revealed the presence of Oscillatorian sequences throughout the mat, while Nostoc related species dominated the two upper layers, and Nostocales and Synechococcales sequences were common in the bottom layer. High performance liquid chromatography analyses showed a parallel gradient in pigments, from high concentrations of UV-screening scytonemin in the upper layer to increasing zeaxanthin and myxoxanthin in the bottom layer, and an overall shift from photoprotective to photosynthetic carotenoids down the profile. Climate change is likely to be accompanied by lake level fluctuations and evaporative concentration of salts, and thus increased osmotic stress of the littoral mat communities. To assess the cellular capacity to tolerate increasing osmolarity on physiology and cell membrane integrity, mat sections were exposed to a gradient of increasing salinities, and PAM measurements of in vivo chlorophyll fluorescence were made to assess changes in maximum quantum yield. The results showed that the mats were tolerant of up to a 46-fold increase in salinity. These features imply that cyanobacterial mats are resilient to ongoing climate change, and that in the

  2. HazMatID (trademark) Replacement Project

    DTIC Science & Technology

    2013-05-09

    replacement for the Smiths Detection HazMatIDTM on the 886H allowance standard, a search of Fourier transform infrared spectroscopy ( FTIR ) instruments was...uses FTIR spectroscopy. It has the capability to identify chemical warfare agents, explosives , toxic industrial chemicals, narcotics, and...uses FTIR technology , providing a wider spectral coverage and higher spectral resolution. Findings: As I operated the Mobile-IR, I found it to

  3. Pressure load on specific body areas of gestating sows lying on rubber mats with different softness.

    PubMed

    Schubbert, A; Hartung, E; Schrader, L

    2014-08-01

    Rubber mats offer a possibility to increase lying comfort for sows with positive effects on sow lying behavior and health. However, until now, no information has been reported about the relationship between the softness of rubber mats and the pressure load on certain body areas of sows. We used a total of 68 (40 multiparous, 28 primiparous) German Landrace × German Landrace sows with a BW within the range of 90 to 330 kg (divided in 3 weight classes) to measure peak force and distribution of pressure during lying in the sternal and half recumbent position. Measures were done in an experimental pen that was equipped with a pressure sensor map system (5400 NTL; Tekscan Inc., Boston, MA). Three rubber mats differing in softness (penetration depth: hard mat, 4.0 mm [HM]; soft mat, 14.6 mm [SM]; very soft mat, 43.0 mm [VSM]) were tested and compared to concrete floor (CF) as a reference. Pressure load was analyzed in the sternal position for the sternum, belly, and ham body regions and also in the half recumbent position for the shoulder. For each lying position we determined the body region with the highest pressure load and analyzed the peak force (PF) and the contact area (CA) using a mixed model ANOVA (MIXED procedure of SAS Enterprise, version 4.3., SAS Inst. Inc., Cary, NC) with floor type, weight class of sows, and their interaction as fixed factors. Overall, the highest values for PF in the sternal position were found on the sternum (median: 1.62 N/cm(2)) and in the half recumbent position on the shoulder (median: 2.72 N/cm(2)). In the sternal position PF on the sternum was lower on VSM compared to CF (P = 0.001). In the half-recumbent position PF on the shoulder was lower on VSM compared to CF (P = 0.013) and compared to HM (P = 0.011). The weight of the sows affected PF on the sternum in the sternal position, with lower values in weight class 1 compared to weight class 2 (P = 0.001) and weight class 3 (P = 0.002). Contact area under the sternum was larger on

  4. Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats

    PubMed Central

    Gomez-Garcia, Maria R; Davison, Michelle; Blain-Hartnung, Matthew; Grossman, Arthur R; Bhaya, Devaki

    2011-01-01

    Synechococcus sp. represents an ecologically diverse group of cyanobacteria found in numerous environments, including hot-spring microbial mats, where they are spatially distributed along thermal, light and oxygen gradients. These thermophiles engage in photosynthesis and aerobic respiration during the day, but switch to fermentative metabolism and nitrogen fixation at night. The genome of Synechococcus OS-B′, isolated from Octopus Spring (Yellowstone National Park) contains a phn gene cluster encoding a phosphonate (Phn) transporter and a C–P lyase. A closely related isolate, Synechococcus OS-A, lacks this cluster, but contains genes encoding putative phosphonatases (Phnases) that appear to be active only in the presence of the Phn substrate. Both isolates grow well on several different Phns as a sole phosphorus (P) source. Interestingly, Synechococcus OS-B′ can use the organic carbon backbones of Phns for heterotrophic growth in the dark, whereas in the light this strain releases organic carbon from Phn as ethane or methane (depending on the specific Phn available); Synechococcus OS-A has neither of these capabilities. These differences in metabolic strategies for assimilating the P and C of Phn by two closely related Synechococcus spp. are suggestive of niche-specific constraints in the evolution of nutrient assimilation pathways and syntrophic relationships among the microbial populations of the hot-spring mats. Thus, it is critical to evaluate levels of various P sources, including Phn, in thermally active habitats and the potential importance of these compounds in the biogeochemical cycling of P and C (some Phn compounds also contain N) in diverse terrestrial environments. PMID:20631809

  5. The epsomitic phototrophic microbial mat of Hot Lake, Washington: community structural responses to seasonal cycling

    PubMed Central

    Lindemann, Stephen R.; Moran, James J.; Stegen, James C.; Renslow, Ryan S.; Hutchison, Janine R.; Cole, Jessica K.; Dohnalkova, Alice C.; Tremblay, Julien; Singh, Kanwar; Malfatti, Stephanie A.; Chen, Feng; Tringe, Susannah G.; Beyenal, Haluk; Fredrickson, James K.

    2013-01-01

    Phototrophic microbial mats are compact ecosystems composed of highly interactive organisms in which energy and element cycling take place over millimeter-to-centimeter-scale distances. Although microbial mats are common in hypersaline environments, they have not been extensively characterized in systems dominated by divalent ions. Hot Lake is a meromictic, epsomitic lake that occupies a small, endorheic basin in north-central Washington. The lake harbors a benthic, phototrophic mat that assembles each spring, disassembles each fall, and is subject to greater than tenfold variation in salinity (primarily Mg2+ and SO2−4) and irradiation over the annual cycle. We examined spatiotemporal variation in the mat community at five time points throughout the annual cycle with respect to prevailing physicochemical parameters by amplicon sequencing of the V4 region of the 16S rRNA gene coupled to near-full-length 16S RNA clone sequences. The composition of these microbial communities was relatively stable over the seasonal cycle and included dominant populations of Cyanobacteria, primarily a group IV cyanobacterium (Leptolyngbya), and Alphaproteobacteria (specifically, members of Rhodobacteraceae and Geminicoccus). Members of Gammaproteobacteria (e.g., Thioalkalivibrio and Halochromatium) and Deltaproteobacteria (e.g., Desulfofustis) that are likely to be involved in sulfur cycling peaked in summer and declined significantly by mid-fall, mirroring larger trends in mat community richness and evenness. Phylogenetic turnover analysis of abundant phylotypes employing environmental metadata suggests that seasonal shifts in light variability exert a dominant influence on the composition of Hot Lake microbial mat communities. The seasonal development and organization of these structured microbial mats provide opportunities for analysis of the temporal and physical dynamics that feed back to community function. PMID:24312082

  6. The Epsomitic Phototrophic Microbial Mat of Hot Lake, Washington. Community Structural Responses to Seasonal Cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindemann, Stephen R.; Moran, James J.; Stegen, James C.

    2013-11-13

    Phototrophic microbial mats are compact ecosystems composed of highly interactive organisms in which energy and element cycling take place over millimeter-to-centimeter-scale distances. Although microbial mats are common in hypersaline environments, they have not been extensively characterized in systems dominated by divalent ions. Hot Lake is a meromictic, epsomitic lake that occupies a small, endorheic basin in north-central Washington. The lake harbors a benthic, phototrophic mat that assembles each spring, disassembles each fall, and is subject to greater than tenfold variation in salinity (primarily Mg 2+ and SO 2 -4) and irradiation over the annual cycle. We examined spatiotemporal variation inmore » the mat community at five time points throughout the annual cycle with respect to prevailing physicochemical parameters by amplicon sequencing of the V4 region of the 16S rRNA gene coupled to near-full-length 16S RNA clone sequences. The composition of these microbial communities was relatively stable over the seasonal cycle and included dominant populations of Cyanobacteria, primarily a group IV cyanobacterium (Leptolyngbya), and Alphaproteobacteria (specifically, members of Rhodobacteraceae and Geminicoccus). Members of Gammaproteobacteria (e.g., Thioalkalivibrio and Halochromatium) and Deltaproteobacteria (e.g., Desulfofustis) that are likely to be involved in sulfur cycling peaked in summer and declined significantly by mid-fall, mirroring larger trends in mat community richness and evenness. Phylogenetic turnover analysis of abundant phylotypes employing environmental metadata suggests that seasonal shifts in light variability exert a dominant influence on the composition of Hot Lake microbial mat communities. The seasonal development and organization of these structured microbial mats provide opportunities for analysis of the temporal and physical dynamics that feed back to community function.« less

  7. Thermally Altered Silurian Cyanobacterial Mats: A Key to Earth's Oldest Fossils

    NASA Astrophysics Data System (ADS)

    Kazmierczak, Józef; Kremer, Barbara

    2009-10-01

    Diagenetic changes in thermally altered cyanobacterial mats from early Silurian black radiolarian cherts of southwestern Poland (Bardzkie Montains, Sudetes) have been studied. These early diagenetically silicified mats are composed of variously degraded remains of benthic microbes that resemble some modern chroococcalean and pleurocapsalean cyanobacteria. Two modes of degradational processes have been recognized in the studied mats: (i) early postmortem biodegradation and (ii) late diagenetic thermal or thermobaric degradation. The latter led to partial transformation of the fossilized organic remnants of cyanobacterial sheaths and capsules, which resulted in the formation of objects morphologically distant from the original microbiota but preserved features that allow for their identification as bona fide biogenic structures. Some of these thermally generated Silurian fossils are highly similar to the controversial microfossil-like carbonaceous structures described from the Early Archean Apex Chert of Australia. This similarity opens a promising way for credible recognition of remnants of cyanobacteria and similar microbiota in other thermally metamorphosed Archean sedimentary rocks

  8. Methane-Oxidizing Bacteria Shunt Carbon to Microbial Mats at a Marine Hydrocarbon Seep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Blair G.; Ding, Haibing; Bagby, Sarah C.

    The marine subsurface is a reservoir of the greenhouse gas methane. While microorganisms living in water column and seafloor ecosystems are known to be a major sink limiting net methane transport from the marine subsurface to the atmosphere, few studies have assessed the flow of methane-derived carbon through the benthic mat communities that line the seafloor on the continental shelf where methane is emitted. We analyzed the abundance and isotope composition of fatty acids in microbial mats grown in the shallow Coal Oil Point seep field off Santa Barbara, CA, USA, where seep gas is a mixture of methane andmore » CO 2. We further used stable isotope probing (SIP) to track methane incorporation into mat biomass. We found evidence that multiple allochthonous substrates supported the rich growth of these mats, with notable contributions from bacterial methanotrophs and sulfur-oxidizers as well as eukaryotic phototrophs. Fatty acids characteristic of methanotrophs were shown to be abundant and 13C-enriched in SIP samples, and DNA-SIP identified members of the methanotrophic family Methylococcaceae as major 13CH 4 consumers. Members of Sulfuricurvaceae, Sulfurospirillaceae, and Sulfurovumaceae are implicated in fixation of seep CO 2. The mats’ autotrophs support a diverse assemblage of co-occurring bacteria and protozoa, with Methylophaga as key consumers of methane-derived organic matter. This study identifies the taxa contributing to the flow of seep-derived carbon through microbial mat biomass, revealing the bacterial and eukaryotic diversity of these remarkable ecosystems.« less

  9. Methane-Oxidizing Bacteria Shunt Carbon to Microbial Mats at a Marine Hydrocarbon Seep

    DOE PAGES

    Paul, Blair G.; Ding, Haibing; Bagby, Sarah C.; ...

    2017-02-27

    The marine subsurface is a reservoir of the greenhouse gas methane. While microorganisms living in water column and seafloor ecosystems are known to be a major sink limiting net methane transport from the marine subsurface to the atmosphere, few studies have assessed the flow of methane-derived carbon through the benthic mat communities that line the seafloor on the continental shelf where methane is emitted. We analyzed the abundance and isotope composition of fatty acids in microbial mats grown in the shallow Coal Oil Point seep field off Santa Barbara, CA, USA, where seep gas is a mixture of methane andmore » CO 2. We further used stable isotope probing (SIP) to track methane incorporation into mat biomass. We found evidence that multiple allochthonous substrates supported the rich growth of these mats, with notable contributions from bacterial methanotrophs and sulfur-oxidizers as well as eukaryotic phototrophs. Fatty acids characteristic of methanotrophs were shown to be abundant and 13C-enriched in SIP samples, and DNA-SIP identified members of the methanotrophic family Methylococcaceae as major 13CH 4 consumers. Members of Sulfuricurvaceae, Sulfurospirillaceae, and Sulfurovumaceae are implicated in fixation of seep CO 2. The mats’ autotrophs support a diverse assemblage of co-occurring bacteria and protozoa, with Methylophaga as key consumers of methane-derived organic matter. This study identifies the taxa contributing to the flow of seep-derived carbon through microbial mat biomass, revealing the bacterial and eukaryotic diversity of these remarkable ecosystems.« less

  10. Methane-Oxidizing Bacteria Shunt Carbon to Microbial Mats at a Marine Hydrocarbon Seep

    PubMed Central

    Paul, Blair G.; Ding, Haibing; Bagby, Sarah C.; Kellermann, Matthias Y.; Redmond, Molly C.; Andersen, Gary L.; Valentine, David L.

    2017-01-01

    The marine subsurface is a reservoir of the greenhouse gas methane. While microorganisms living in water column and seafloor ecosystems are known to be a major sink limiting net methane transport from the marine subsurface to the atmosphere, few studies have assessed the flow of methane-derived carbon through the benthic mat communities that line the seafloor on the continental shelf where methane is emitted. We analyzed the abundance and isotope composition of fatty acids in microbial mats grown in the shallow Coal Oil Point seep field off Santa Barbara, CA, USA, where seep gas is a mixture of methane and CO2. We further used stable isotope probing (SIP) to track methane incorporation into mat biomass. We found evidence that multiple allochthonous substrates supported the rich growth of these mats, with notable contributions from bacterial methanotrophs and sulfur-oxidizers as well as eukaryotic phototrophs. Fatty acids characteristic of methanotrophs were shown to be abundant and 13C-enriched in SIP samples, and DNA-SIP identified members of the methanotrophic family Methylococcaceae as major 13CH4 consumers. Members of Sulfuricurvaceae, Sulfurospirillaceae, and Sulfurovumaceae are implicated in fixation of seep CO2. The mats’ autotrophs support a diverse assemblage of co-occurring bacteria and protozoa, with Methylophaga as key consumers of methane-derived organic matter. This study identifies the taxa contributing to the flow of seep-derived carbon through microbial mat biomass, revealing the bacterial and eukaryotic diversity of these remarkable ecosystems. PMID:28289403

  11. HiMAT Subscale Research Vehicle Mated to B-52 Mothership in Flight, Close-up View

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A close-up view of the Highly Maneuverable Aircraft Technology (HiMAT) research vehicle attached to a wing pylon on NASA's B-52 mothership during a 1980 test flight. The HiMAT used sharply swept-back wings and a canard configuration to test possible technology for advanced fighters. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported

  12. Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures

    NASA Technical Reports Server (NTRS)

    Ward, D. M.; Santegoeds, C. M.; Nold, S. C.; Ramsing, N. B.; Ferris, M. J.; Bateson, M. M.

    1997-01-01

    We have begun to examine the basis for incongruence between hot spring microbial mat populations detected by cultivation or by 16S rRNA methods. We used denaturing gradient gel electrophoresis (DGGE) to monitor enrichments and isolates plated therefrom. At near extincting inoculum dilutions we observed Chloroflexus-like and cyanobacterial populations whose 16S rRNA sequences have been detected in the 'New Pit' Spring Chloroflexus mat and the Octopus Spring cyanobacterial mat. Cyanobacterial populations enriched from 44 to 54 degrees C and 56 to 63 degrees C samples at near habitat temperatures were similar to those previously detected in mat samples of comparable temperatures. However, a lower temperature enrichment from the higher temperature sample selected for the populations found in the lower temperature sample. Three Thermus populations detected by both DGGE and isolation exemplify even more how enrichment may bias our view of community structure. The most abundant population was adapted to the habitat temperature (50 degrees C), while populations adapted to 65 degrees C and 70 degrees C were 10(2)- and 10(4)-fold less abundant, respectively. However, enrichment at 70 degrees C favored the least abundant strain. Inoculum dilution and incubation at the habitat temperature favored the more numerically relevant populations. We enriched many other aerobic chemoorganotrophic populations at various inoculum dilutions and substrate concentrations, most of whose 16S rRNA sequences have not been detected in mats. A common feature of numerically relevant cyanobacterial, Chloroflexus-like and aerobic chemorganotrophic populations, is that they grow poorly and resist cultivation on solidified medium, suggesting plating bias, and that the medium composition and incubation conditions may not reflect the natural microenvironments these populations inhabit.

  13. Production and Consumption of Hydrogen in Hot Spring Microbial Mats Dominated by a Filamentous Anoxygenic Photosynthetic Bacterium

    PubMed Central

    Otaki, Hiroyo; Everroad, R. Craig; Matsuura, Katsumi; Haruta, Shin

    2012-01-01

    Microbial mats containing the filamentous anoxygenic photosynthetic bacterium Chloroflexus aggregans develop at Nakabusa hot spring in Japan. Under anaerobic conditions in these mats, interspecies interaction between sulfate-reducing bacteria as sulfide producers and C. aggregans as a sulfide consumer has been proposed to constitute a sulfur cycle; however, the electron donor utilized for microbial sulfide production at Nakabusa remains to be identified. In order to determine this electron donor and its source, ex situ experimental incubation of mats was explored. In the presence of molybdate, which inhibits biological sulfate reduction, hydrogen gas was released from mat samples, indicating that this hydrogen is normally consumed as an electron donor by sulfate-reducing bacteria. Hydrogen production decreased under illumination, indicating that C. aggregans also functions as a hydrogen consumer. Small amounts of hydrogen may have also been consumed for sulfur reduction. Clone library analysis of 16S rRNA genes amplified from the mats indicated the existence of several species of hydrogen-producing fermentative bacteria. Among them, the most dominant fermenter, Fervidobacterium sp., was successfully isolated. This isolate produced hydrogen through the fermentation of organic carbon. Dispersion of microbial cells in the mats resulted in hydrogen production without the addition of molybdate, suggesting that simultaneous production and consumption of hydrogen in the mats requires dense packing of cells. We propose a cyclic electron flow within the microbial mats, i.e., electron flow occurs through three elements: S (elemental sulfur, sulfide, sulfate), C (carbon dioxide, organic carbon) and H (di-hydrogen, protons). PMID:22446313

  14. Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E.

    PubMed

    Taepaiboon, Pattama; Rungsardthong, Uracha; Supaphol, Pitt

    2007-09-01

    The present contribution reports the use of mats of electrospun cellulose acetate (CA; acetyl content=39.8%; Mw=30,000 Da) nanofibers as carriers for delivery of the model vitamins, all-trans retinoic acid or vitamin A acid (Retin-A) and alpha-tocopherol or vitamin E (Vit-E). The amounts of Vit-E and Retin-A loaded in the base CA solution [17% w/v in 2:1 v/v acetone/N,N-dimethylacetamide (DMAc)] were 5 and 0.5 wt% (based on the weight of CA), respectively. Cross-sectionally round and smooth fibers were obtained. The average diameters of these fibers ranged between 247 and 265 nm. The total immersion of the vitamin-loaded as-spun CA fiber mats in the acetate buffer solutions containing either 0.5 vol % Tween 80 or 0.5 vol % Tween 80 and 10 vol % methanol was used to arrive at the cumulative release of the vitamins from the fiber mat samples. The same was also conducted on the vitamin-loaded solution-cast CA films for comparison. In most cases, the vitamin-loaded as-spun fiber mats exhibited a gradual and monotonous increase in the cumulative release of the vitamins over the test periods (i.e., 24 h for Vit-E-loaded samples and 6 h for Retin-A-loaded ones), while the corresponding as-cast films exhibited a burst release of the vitamins.

  15. Millimeter Wavelength Observations of Galactic Sources with the Mobile Anisotropy Telescope (MAT)

    NASA Astrophysics Data System (ADS)

    Cruz, K. L.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Miller, A. D.; Nolta, M. R.; Page, L. A.; Puchalla, J. L.; Torbet, E.; Tran, H. T.

    1999-12-01

    The Mobile Anisotropy Telescope (MAT) has completed two observing seasons (1997 and 1998) in Chile from the Cerro Toco site. Although the primary goal of MAT was to measure anisotropy in the Cosmic Microwave Background (CMB) radiation, the chosen observation scheme also allowed daily viewing of the Galactic Plane. We present filtered maps at 30, 40 and 144 GHz of a region of the Galactic Plane which contains several millimeter-bright regions including the Carinae nebula and IRAS 11097-6102. We report the best fit brightness temperatures as well as the total flux densities in the MAT beams (0.9, 0.6 and 0.2 degrees FWHM) . The data are calibrated with respect to Jupiter whose flux is known to better than 8% in all frequency bands. This work was funded by the National Science Foundation and the Packard Foundation.

  16. Microbial mats in playa lakes and other saline habitats: Early Mars analog?

    NASA Technical Reports Server (NTRS)

    Bauld, John

    1989-01-01

    Microbial mats are cohesive benthic microbial communities which inhabit various Terra (Earth-based) environments including the marine littoral and both permanent and ephemeral (playa) saline lakes. Certain geomorphological features of Mars, such as the Margaritifer Sinus, were interpreted as ancient, dried playa lakes, presumably formed before or during the transition to the present Mars climate. Studies of modern Terran examples suggest that microbial mats on early Mars would have had the capacity to survive and propagate under environmental constraints that would have included irregularly fluctuating regimes of water activity and high ultraviolet flux. Assuming that such microbial communities did indeed inhabit early Mars, their detection during the Mars Rover Sample Return (MRSR) mission depends upon the presence of features diagnostic of the prior existence of these communities or their component microbes or, as an aid to choosing suitable landing, local exploration or sampling sites, geomorphological, sedimentological or chemical features characteristic of their playa lake habitats. Examination of modern Terran playas (e.g., the Lake Eyre basin) shows that these features span several orders of magnitude in size. While stromatolites are commonly centimeter-meter scale features, bioherms or fields of individuals may extend to larger scales. Preservation of organic matter (mats and microbes) would be favored in topographic lows such as channels or ponds of high salinity, particularly those receiving silica-rich groundwaters. These areas are likely to be located near former zones of groundwater emergence and/or where flood channels entered the paleo-playa. Fossil playa systems which may aid in assessing the applicability of this particular Mars analog include the Cambrian Observatory Hill Beds of the Officer Basin and the Eocene Wilkins Peak Member of the Green River Formation.

  17. Within-Mat Variability in Anatoxin-a and Homoanatoxin-a Production among Benthic Phormidium (Cyanobacteria) Strains

    PubMed Central

    Wood, Susanna A.; Smith, Francine M. J.; Heath, Mark W.; Palfroy, Thomas; Gaw, Sally; Young, Roger G.; Ryan, Ken G.

    2012-01-01

    Benthic Phormidium mats can contain high concentrations of the neurotoxins anatoxin-a and homoanatoxin-a. However, little is known about the co-occurrence of anatoxin-producing and non-anatoxin-producing strains within mats. There is also no data on variation in anatoxin content among toxic genotypes isolated from the same mat. In this study, 30 Phormidium strains were isolated from 1 cm2 sections of Phormidium-dominated mats collected from three different sites. Strains were grown to stationary phase and their anatoxin-a, homoanatoxin-a, dihydroanatoxin-a and dihydrohomoanatoxin-a concentrations determined using liquid chromatography-mass spectrometry. Each strain was characterized using morphological and molecular (16S rRNA gene sequences) techniques. Eighteen strains produced anatoxin-a, dihydroanatoxin-a or homoanatoxin-a. Strains isolated from each mat either all produced toxins, or were a mixture of anatoxin and non-anatoxin-producing genotypes. Based on morphology these genotypes could not be separated. The 16S rRNA gene sequence comparisons showed a difference of at least 17 nucleotides among anatoxin and non-anatoxin-producing strains and these formed two separate sub-clades during phylogenetic analysis. The total anatoxin concentration among toxic strains varied from 2.21 to 211.88 mg kg−1 (freeze dried weight), representing a 100 fold variation in toxin content. These data indicate that both the relative abundance of anatoxin and non-anatoxin-producing genotypes, and variations in anatoxin producing capability, can influence the overall toxin concentration of benthic Phormidium mat samples. PMID:23162704

  18. HiMAT highly maneuverable aircraft technology, flight report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Flight verification of a primary flight control system, designed to control the unstable HiMAT aircraft is presented. The initial flight demonstration of a maneuver autopilot in the level cruise mode and the gathering of a limited amount of airspeed calibration data.

  19. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics

    PubMed Central

    Ruvindy, Rendy; White III, Richard Allen; Neilan, Brett Anthony; Burns, Brendan Paul

    2016-01-01

    Modern microbial mats are potential analogues of some of Earth's earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic next-generation sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marine mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats. PMID:26023869

  20. Dosimetric comparison of 3D conformal, IMRT, and V-MAT techniques for accelerated partial-breast irradiation (APBI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Jian-Jian; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai

    2014-07-01

    The purpose is to dosimetrically compare the following 3 delivery techniques: 3-dimensional conformal radiation therapy (3D-CRT), intensity-modulated arc therapy (IMRT), and volumetric-modulated arc therapy (V-MAT) in the treatment of accelerated partial-breast irradiation (APBI). Overall, 16 patients with T1/2N0 breast cancer were treated with 3D-CRT (multiple, noncoplanar photon fields) on the RTOG 0413 partial-breast trial. These cases were subsequently replanned using static gantry IMRT and V-MAT technology to understand dosimetric differences among these 3 techniques. Several dosimetric parameters were used in plan quality evaluation, including dose conformity index (CI) and dose-volume histogram analysis of normal tissue coverage. Quality assurance studies includingmore » gamma analysis were performed to compare the measured and calculated dose distributions. The IMRT and V-MAT plans gave more conformal target dose distributions than the 3D-CRT plans (p < 0.05 in CI). The volume of ipsilateral breast receiving 5 and 10 Gy was significantly less using the V-MAT technique than with either 3D-CRT or IMRT (p < 0.05). The maximum lung dose and the ipsilateral lung volume receiving 10 (V{sub 10}) or 20 Gy (V{sub 20}) were significantly less with both V-MAT and IMRT (p < 0.05). The IMRT technique was superior to 3D-CRT and V-MAT of low dose distributions in ipsilateral lung (p < 0.05 in V{sub 5} and D{sub 5}). The total mean monitor units (MUs) for V-MAT (621.0 ± 111.9) were 12.2% less than those for 3D-CRT (707.3 ± 130.9) and 46.5% less than those for IMRT (1161.4 ± 315.6) (p < 0.05). The average machine delivery time was 1.5 ± 0.2 minutes for the V-MAT plans, 7.0 ± 1.6 minutes for the 3D-CRT plans, and 11.5 ± 1.9 minutes for the IMRT plans, demonstrating much less delivery time for V-MAT. Based on this preliminary study, V-MAT and IMRT techniques offer improved dose conformity as compared with 3D-CRT techniques without increasing dose to the ipsilateral

  1. The effect of the 4MAT learning model on the achievement and motivation of 7th grade students on the subject of particulate nature of matter and an examination of student opinions on the model

    NASA Astrophysics Data System (ADS)

    Aktas, İdris; Bılgın, İbrahim

    2015-01-01

    Background:Many researchers agree that students, especially primary students, have learning difficulties on the 'Particulate Nature of Matter' unit. One reason for this difficulty is not considering individual differences for teaching science. In 4MAT model learning, environment is arranged according to individual differences. Purpose:The purpose of this study is to examine (1) the effects of the 4MAT learning model on the7th grade students' academic achievement and motivation on the 'Particulate Nature of Matter' unit and (2) identify student opinions on the 4MAT model. Sample:The sample consists of 235 students (115 experimental, 120 control) in Turkey. Design and methods:Experimental groups were instructed with the 4MAT model while control groups were instructed with a traditional method. Achievement Test (AchToM) and Motivation Scale (MotScl) were administered to students as pre- and post-tests. Moreover, the opinions of students in the experimental groups on the 4MAT model were ascertained through open-ended questions after the application. Results:According to independent t-test results, statistical difference in favour of the experimental groups was detected between the post-AchToM (ES = 1.43; p < .0001) and post-MotScl (ES = 0.32; p < .05) scores. According to data obtained from the questionnaire, the application of the 4MAT model increases student motivation and participation in the lesson, lessons are more amusing and enjoyable, and the self-confidence of the students increases. Besides these positive opinions, however, a few students stated that the method took too much time, they were not motivated and it did not help them in understanding the subject. Conclusions:The 4MAT model is more effective than traditional method in terms of increasing achievement and motivation. The model takes all learners into account. Thus, the teacher or educator should use the 4MAT model to ensure all students' learning in their classroom.

  2. Flat laminated microbial mat communities

    NASA Astrophysics Data System (ADS)

    Franks, Jonathan; Stolz, John F.

    2009-10-01

    Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems.

  3. MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR

    NASA Astrophysics Data System (ADS)

    Rodríguez, D.; Blaum, K.; Nörtershäuser, W.; Ahammed, M.; Algora, A.; Audi, G.; Äystö, J.; Beck, D.; Bender, M.; Billowes, J.; Block, M.; Böhm, C.; Bollen, G.; Brodeur, M.; Brunner, T.; Bushaw, B. A.; Cakirli, R. B.; Campbell, P.; Cano-Ott, D.; Cortés, G.; Crespo López-Urrutia, J. R.; Das, P.; Dax, A.; de, A.; Delheij, P.; Dickel, T.; Dilling, J.; Eberhardt, K.; Eliseev, S.; Ettenauer, S.; Flanagan, K. T.; Ferrer, R.; García-Ramos, J.-E.; Gartzke, E.; Geissel, H.; George, S.; Geppert, C.; Gómez-Hornillos, M. B.; Gusev, Y.; Habs, D.; Heenen, P.-H.; Heinz, S.; Herfurth, F.; Herlert, A.; Hobein, M.; Huber, G.; Huyse, M.; Jesch, C.; Jokinen, A.; Kester, O.; Ketelaer, J.; Kolhinen, V.; Koudriavtsev, I.; Kowalska, M.; Krämer, J.; Kreim, S.; Krieger, A.; Kühl, T.; Lallena, A. M.; Lapierre, A.; Le Blanc, F.; Litvinov, Y. A.; Lunney, D.; Martínez, T.; Marx, G.; Matos, M.; Minaya-Ramirez, E.; Moore, I.; Nagy, S.; Naimi, S.; Neidherr, D.; Nesterenko, D.; Neyens, G.; Novikov, Y. N.; Petrick, M.; Plaß, W. R.; Popov, A.; Quint, W.; Ray, A.; Reinhard, P.-G.; Repp, J.; Roux, C.; Rubio, B.; Sánchez, R.; Schabinger, B.; Scheidenberger, C.; Schneider, D.; Schuch, R.; Schwarz, S.; Schweikhard, L.; Seliverstov, M.; Solders, A.; Suhonen, M.; Szerypo, J.; Taín, J. L.; Thirolf, P. G.; Ullrich, J.; van Duppen, P.; Vasiliev, A.; Vorobjev, G.; Weber, C.; Wendt, K.; Winkler, M.; Yordanov, D.; Ziegler, F.

    2010-05-01

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique “fingerprint”. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10-5 to below 10-8 for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an A_dvanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10-9 can be reached by employing highly-charged ions and a non

  4. Fired glaciofluvial sediment in the northwestern Andes: Biotic aspects of the Black Mat

    NASA Astrophysics Data System (ADS)

    Mahaney, William C.; Krinsley, David; Langworthy, Kurt; Kalm, Volli; Havics, Tony; Hart, Kris M.; Kelleher, Brian P.; Schwartz, Stephane; Tricart, Pierre; Beukens, Roelf

    2011-05-01

    Fired glaciofluvial beds in outwash considered to date from the onset of the Younger Dryas Event (~ 12.9 ka) in the northwestern Venezuelan Andes are considered equivalent to the Black Mat deposits described in other areas of North and South America and Europe. It may be equivalent to sediment recovered from other sites containing beds with spikes of cosmic nuclides and charcoal indicating the presence of widespread fire, one of the signatures of the Black Mat conflagration that followed the proposed breakup of Comet Encke or an unknown asteroid over the Laurentide Icesheet at 12.9 ka. In the northern Andes at Site MUM7B, sediment considered coeval with the Black Mat contains glassy carbon spherules, tri-coatings of C welded onto quartz and feldspar covered with Fe and Mn. Monazite with excessive concentrations of REEs, platinum metals including Ru and Rh, possible pdf's, and disrupted/brecciated and microfractured quartz and feldspar from impacting ejecta and excessive heating summarize the data obtained so far. The purpose of this paper is to document the physical character, mineralogy and biotic composition of the Black Mat.

  5. Contribution by Macroalgal Mats to Primary Production of a Shallow Embayment Under High and Low Nitrogen-loading Rates

    NASA Astrophysics Data System (ADS)

    Peckol, P.; Rivers, J. S.

    1996-09-01

    The limits on primary production in areas undergoing eutrophication may be set by indirect effects of nitrogen loading, i.e. decreasing irradiances, associated with proliferating opportunistic algae. Using in situphoton flux density (PFD) availability estimates within unattached algal mats and photosynthetic parameters determined from photosynthesis vs.irradiance (P vs.I) curves generated for the dominant components of mat assemblages, Cladophora vagabundaand Gracilaria tikvahiae, seasonal net mat production rate for estuaries (Waquoit Bay, Massachusetts, U.S.A.) receiving high (Childs River) and low (Sage Lot Pond) N-loading rates were determined. Although abundance of C. vagabundawas 2× greater than G. tikvahiae, the former species contributed only about 50% of total mat productivity, due largely to rapid light attenuation within the dense algal mat. While mat production was low and similar at both sides during winter (≈0·35 g C m -2 day -1), for other seasons, the net mat daytime productivity at Childs River, the N-loaded site, was 2·5× higher than rates determined for Sage Lot Pond. Although annual net daytime production at Childs River (1094 g C m -2 year -1) was comparable to estimates for other algal mat assemblages in eutrophic systems, primary production of the Waquoit Bay system was found to become self-limiting as available PFD controls maximum productivity. In photosynthetically inactive portions of the algal mat, carbon release was estimated from tissue-loss measurements at 0·14 g C m -2 day -1for C. vagabundaand 0·05 g C m -2 day -1for G. tikvahiae. Annual in situC release of 73 g C m -2is ≈20% of annual net mat production (fixed carbon not respired by algae) in this embayment. Although both estuaries showed net autotrophy year round (Pg:R>1), the high metabolic cost of a large, inactive mat resulted in lower Pg:R ratios at Childs Rivers than at Sage Lot Pond, particularly during the summer period of peak production. Thus, it is predicted

  6. Design and Performance of an Enhanced Bioremediation Pilot Test in a Tidal Wetland Seep, West Branch Canal Creek, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Majcher, Emily H.; Lorah, Michelle M.; Phelan, Daniel J.; McGinty, Angela L.

    2009-01-01

    unconsolidated sediments between 1.5 and 6 years following installation of the reactive mat. To ensure hydraulic compatibility in the mat design, mat materials that had a hydraulic conductivity greater than the surrounding wetland sediments were selected, and the mixture was optimized to consist of 1.5 parts compost, 1.5 parts peat and 1 part sand as a safeguard against fluidization. Sediment and matrix properties also indicated that a nonwoven geotextile with a cross-plane flow greater than that of the native sediments was suitable as the base of the reactive mat. Another nonwoven geotextile was selected for installation between the iron mix and organic zones of the mat to create more laminar flow conditions within the mat. Total metals and sequential extraction procedure analyses of mat materials, which were conducted to evaluate water-quality compatibility of the mat materials, showed that concentrations of metals in the compost ranged from one-half to one order of magnitude below consensus-based probable effect concentrations in sediment. A 22-inch-thick reactive mat, containing 0.5 percent WBC-2 by volume, was constructed at seep area 3-4W and monitored from October 2004 through October 2005 for the pilot test. No local, immediate failure of the mat or of wetland sediments was observed during mat installation, indicating that design estimates of bearing capacity and geotextile textile selection ensured the integrity of the mat and wetland sediments during and following installation. Measurements of surface elevation of the mat showed an average settlement of the mat surface of approximately 0.25 feet after 10 months, which was near the predicted settlement for unconsolidated sediment. Monitoring showed rapid establishment and sustainment throughout the year of methanogenic conditions conducive to anaerobic biodegradation and efficient dechlorination activity by WBC-2. The median mass removal of chloromethanes and total chloroethenes and ethane during the

  7. Method and system of culturing an algal mat

    DOEpatents

    Das, Keshav C; Cannon, Benjamin R; Bhatnagar, Ashish; Chinnasamy, Senthil

    2014-05-13

    A system and method for culturing algae are presented. The system and method utilize a fog of growth medium that is delivered to an algal mat generator along with a stream of CO.sub.2 to promote growth of algal cells contained in the generator.

  8. Electrospinning of caseinates to create protective fibrous mats

    USDA-ARS?s Scientific Manuscript database

    Electrospinning is a nonthermal process that produces fibers on the micron- or nano-scale from a polymer solution. If produced by electrospinning of biopolymer solutions, fibrous mats may be created for protecting foods and allowing for the preservation and controlled release of bioactives for healt...

  9. Electrospinning of caseinates to create protective fibrous mats

    USDA-ARS?s Scientific Manuscript database

    JUSTIFICATION Electrospinning is a nonthermal process that produces fibers with diameters on the micron- or nano-scales from a polymer solution. If produced by electrospinning of biopolymer solutions, fibrous mats may be created for protecting foods, improving food quality and allowing for the prese...

  10. Atmospheric exchange of carbon dioxide and methane of a small water body and a floating mat in the Luther Marsh peatland, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Burger, Magdalena; Berger, Sina; Blodau, Christian

    2015-04-01

    Recent investigations have suggested that small water bodies cover larger areas in northern peatlands than previously assumed. Their role in the carbon cycle and gas exchange rates are poorly constrained so far. To address this issue we measured CO2 and CH4 fluxes on a small water body (ca. 700 m2) and the surrounding floating mat in the Luther Marsh peatland in Ontario, Canada from July to September 2014. To this end we used closed chambers combined with a portable Los Gatos high-resolution trace gas analyzer at different water depths and distances from the shore on the pond and with different dominating plant types on the floating mat surrounding the pond. In addition, CO2 concentrations were recorded in high temporal resolution using an infrared sensor system during selected periods. Air and water temperature, humidity and temperature of the floating mat, wind speed and direction, photosynthetically active radiation, air pressure and relative humidity were also recorded as auxiliary data at the study site. The results show that pond and floating mat were sources of methane throughout the whole measuring period. Methane emissions via the ebullition pathway occurred predominantly near the shore and on the floating mat. During the daytime measurements the floating mat acted as a net sink and the pond as a net source of CO2. The dynamics of CO2 exchange was also strongly time dependent, as CO2 emissions from the pond strongly increased after mid-August. This suggests that photosynthesis was more affected by seasonal decline than respiration process in the pond and that the allochthonous component of the CO2 flux increased in relative importance towards fall.

  11. Direct Electrolytic Deposition of Mats of Mn(x)O(y) Nanowires

    NASA Technical Reports Server (NTRS)

    Myung, Nosang; West, William; Whitacre, Jay; Bugga, Ratnakumar

    2004-01-01

    Mats of free-standing manganese oxide (MnxOy) nanowires have been fabricated as experimental electrode materials for rechargeable electrochemical power cells and capacitors. Because they are free-standing, the wires in these mats are electrochemically accessible. The advantage of the mat-of-nanowires configuration, relative to other configurations of electrode materials, arises from the combination of narrowness and high areal number density of the wires. This combination offers both high surface areas for contact with electrolytes and short paths for diffusion of ions into and out of the electrodes, thereby making it possible to charge and discharge at rates higher than would otherwise be possible and, consequently, to achieve greater power densities. The nanowires are fabricated in an electrolytic process in which there is no need for an electrode binder material. Moreover, there is no need to incorporate an electrically conductive additive into the electrode material; the only electrically conductive material that must be added is a thin substrate contact film at the anchored ends of the nanowires. Hence, the mass fraction of active electrode material is close to 100 percent, as compared with about 85 percent in conventional electrodes made from a slurry of active electrode material, binder, and conductive additive pressed onto a metal foil. The locations and sizes of the nanowires are defined by holes in templates in the form of commercially available porous alumina membranes. In experiments to demonstrate the present process, alumina membranes of various pore sizes and degrees of porosity were used. First, a film of Au was sputtered onto one side of each membrane. The membranes were then attached, variously, to carbon tape or a gold substrate by use of silver or carbon paste. Once thus attached, the membranes were immersed in a plating solution comprising 0.01 M MnSO4 + 0.03 M (NH4)2SO4. The pH of the solution was kept constant at 8 by addition of H2SO4 or NH4

  12. Resilience and receptivity worked in tandem to sustain a geothermal mat community amidst erratic environmental conditions

    PubMed Central

    Ghosh, Wriddhiman; Roy, Chayan; Roy, Rimi; Nilawe, Pravin; Mukherjee, Ambarish; Haldar, Prabir Kumar; Chauhan, Neeraj Kumar; Bhattacharya, Sabyasachi; Agarwal, Atima; George, Ashish; Pyne, Prosenjit; Mandal, Subhrangshu; Rameez, Moidu Jameela; Bala, Goutam

    2015-01-01

    To elucidate how geothermal irregularities affect the sustainability of high-temperature microbiomes we studied the synecological dynamics of a geothermal microbial mat community (GMMC) vis-à-vis fluctuations in its environment. Spatiotemporally-discrete editions of a photosynthetic GMMC colonizing the travertine mound of a circum-neutral hot spring cluster served as the model-system. In 2010 a strong geyser atop the mound discharged mineral-rich hot water, which nourished a GMMC continuum from the proximal channels (PC) upto the slope environment (SE) along the mound’s western face. In 2011 that geyser extinguished and consequently the erstwhile mats disappeared. Nevertheless, two relatively-weaker vents erupted in the southern slope and their mineral-poor outflow supported a small GMMC patch in the SE. Comparative metagenomics showed that this mat was a relic of the 2010 community, conserved via population dispersal from erstwhile PC as well as SE niches. Subsequently in 2012, as hydrothermal activity augmented in the southern slope, ecological niches widened and the physiologically-heterogeneous components of the 2011 “seed-community” split into PC and SE meta-communities, thereby reclaiming either end of the thermal gradient. Resilience of incumbent populations, and the community’s receptiveness towards immigrants, were the key qualities that ensured the GMMC’s sustenance amidst habitat degradation and dispersal to discrete environments. PMID:26184838

  13. Phylogenetic Evidence for the Existence of Novel Thermophilic Bacteria in Hot Spring Sulfur-Turf Microbial Mats in Japan

    PubMed Central

    Yamamoto, Hiroyuki; Hiraishi, Akira; Kato, Kenji; Chiura, Hiroshi X.; Maki, Yonosuke; Shimizu, Akira

    1998-01-01

    So-called sulfur-turf microbial mats, which are macroscopic white filaments or bundles consisting of large sausage-shaped bacteria and elemental sulfur particles, occur in sulfide-containing hot springs in Japan. However, no thermophiles from sulfur-turf mats have yet been isolated as cultivable strains. This study was undertaken to determine the phylogenetic positions of the sausage-shaped bacteria in sulfur-turf mats by direct cloning and sequencing of 16S rRNA genes amplified from the bulk DNAs of the mats. Common clones with 16S rDNA sequences with similarity levels of 94.8 to 99% were isolated from sulfur-turf mat samples from two geographically remote hot springs. Phylogenetic analysis showed that the phylotypes of the common clones formed a major cluster with members of the Aquifex-Hydrogenobacter complex, which represents the most deeply branching lineage of the domain bacteria. Furthermore, the bacteria of the sulfur-turf mat phylotypes formed a clade distinguishable from that of other members of the Aquifex-Hydrogenobacter complex at the order or subclass level. In situ hybridization with clone-specific probes for 16S rRNA revealed that the common phylotype of sulfur-turf mat bacteria is that of the predominant sausage-shaped bacteria. PMID:9572936

  14. Evidence from the northwestern Venezuelan Andes for extraterrestrial impact: The black mat enigma

    NASA Astrophysics Data System (ADS)

    Mahaney, W. C.; Kalm, V.; Krinsley, D. H.; Tricart, P.; Schwartz, S.; Dohm, J.; Kim, K. J.; Kapran, B.; Milner, M. W.; Beukens, R.; Boccia, S.; Hancock, R. G. V.; Hart, K. M.; Kelleher, B.

    2010-03-01

    A carbon-rich black layer encrusted on a sandy pebbly bed of outwash in the northern Venezuelan Andes, previously considered the result of an alpine grass fire, is now recognized as a 'black mat' candidate correlative with Clovis Age sites in North America, falling within the range of 'black mat' dated sites (~ 12.9 ka cal BP). As such, the bed at site MUM7B, which dates to < 11.8 ka 14C years BP (raw dates) and appears to be contemporaneous with the Younger Dryas (YD) cooling event, marks a possibly much more extensive occurrence than previously identified. No fossils (megafauna) or tool assemblages were observed at this newly identified candidate site (3800 a.m.s.l.), as in the case of the North American sites. Here, evidence is presented for an extraterrestrial impact event at ~ 12.9 ka. The impact-related Andean bed, located ~ 20 cm above 13.7-13.3 ka cal BP alluvial and glaciolacustrine deposits, falls within the sediment characteristics and age range of 'black mat' dated sites (~ 12.9 ka cal BP) in North America. Site sediment characteristics include: carbon, glassy spherules, magnetic microspherules, carbon mat 'welded' onto coarse granular material, occasional presence of platinum group metals (Rh and Ru), planar deformation features (pdfs) in fine silt-size fragmental grains of quartz, as well as orthoclase, and monazite (with an abundance of Rare Earth Elements—REEs). If the candidate site is 'black mat', correlative with the 'black mat' sites of North America, such an extensive occurrence may support the hypothesized airburst/impact over the Laurentide Glacier, which led to a reversal of Allerød warming and the onset of YD cooling and readvance of glaciers. While this finding does not confirm such, it merits further investigation, which includes the reconnaissance for additional sites in South America. Furthermore, if confirmed, such an extensive occurrence may corroborate an impact origin.

  15. Application of materials database (MAT.DB.) to materials education

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1994-01-01

    Finding the right material for the job is an important aspect of engineering. Sometimes the choice is as fundamental as selecting between steel and aluminum. Other times, the choice may be between different compositions in an alloy. Discovering and compiling materials data is a demanding task, but it leads to accurate models for analysis and successful materials application. Mat. DB. is a database management system designed for maintaining information on the properties and processing of engineered materials, including metals, plastics, composites, and ceramics. It was developed by the Center for Materials Data of American Society for Metals (ASM) International. The ASM Center for Materials Data collects and reviews material property data for publication in books, reports, and electronic database. Mat. DB was developed to aid the data management and material applications.

  16. Identification And Survival Of Bacteriohopanepolyol In A Hot Spring Microbial Mat

    NASA Technical Reports Server (NTRS)

    Janke, Linda L.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    The polar lipids of a hot spring microbial mat located in Yellowstone National Park were examined for the presence of bacteriohopanepolvols (BHP). BHP are a group of molecules consisting of a hopanoid (peotacyclic triterpene) linked via a n-alkyl polyhydroxylated chain to a variety of polar end groups. BHP have been isolated in varying amounts from phylogenetically diverse eubacterial groups including cyanobacteria, methanotrophs and the Rhodospirillaceae. The hopanoids are excellent biomarkers and have been detected in sedimentary rocks as old as 1.7 bya. In order to interpret the ancient organic record, it is important to understand the abundance, source and fate of such biomarker compounds in microbial mats. A 40 sq cm mat section was taken from a 52 to 55 C site in the effluent channel of Octopus Spring and was sampled vertically over approximately 16 mm. The first 5-6 mm was sectioned into a top green layer (310 mg dry weight) and several subjacent, deep orange layers (240 and 250 mg, respectively). The lower 10 mm of the mat was sectioned into two gelatinous orange layers containing a siliceous gritty material (260 and 440 mg) which increased with depth, and a bottom layer composed almost exclusively of siliceous sinter (4.1 g). The progressive decrease in total organic carbon from 45% in the top green layer to only 4% in the bottom layer reflects the observed increase in siliceous deposition. GC-MS analysis of the phospholipid and glycolipid fatty acids yielded predominantly saturated normal chain acids, n-15 to n-18, and iso-branched acids, i-15 to i-17. Small amounts of unsaturated fatty acids (16:1, two positional isomers of 18:1, and two cyclopropyl acids, C(sub 17) and C(sub 19)) were present mainly in the top layer. Esterified fatty acid which is a good index for intact cellular membrane, i.e. viable organisms, was highest in the top two layers (203 and 231 micro g/mg total lipid, respectively) and gradually decreased to 66 micro g/mg total lipid in

  17. DD3MAT - a code for yield criteria anisotropy parameters identification.

    NASA Astrophysics Data System (ADS)

    Barros, P. D.; Carvalho, P. D.; Alves, J. L.; Oliveira, M. C.; Menezes, L. F.

    2016-08-01

    This work presents the main strategies and algorithms adopted in the DD3MAT inhouse code, specifically developed for identifying the anisotropy parameters. The algorithm adopted is based on the minimization of an error function, using a downhill simplex method. The set of experimental values can consider yield stresses and r -values obtained from in-plane tension, for different angles with the rolling direction (RD), yield stress and r -value obtained for biaxial stress state, and yield stresses from shear tests performed also for different angles to RD. All these values can be defined for a specific value of plastic work. Moreover, it can also include the yield stresses obtained from in-plane compression tests. The anisotropy parameters are identified for an AA2090-T3 aluminium alloy, highlighting the importance of the user intervention to improve the numerical fit.

  18. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation

    PubMed Central

    Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Tivey, Margaret K.; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032

  19. FunSimMat: a comprehensive functional similarity database

    PubMed Central

    Schlicker, Andreas; Albrecht, Mario

    2008-01-01

    Functional similarity based on Gene Ontology (GO) annotation is used in diverse applications like gene clustering, gene expression data analysis, protein interaction prediction and evaluation. However, there exists no comprehensive resource of functional similarity values although such a database would facilitate the use of functional similarity measures in different applications. Here, we describe FunSimMat (Functional Similarity Matrix, http://funsimmat.bioinf.mpi-inf.mpg.de/), a large new database that provides several different semantic similarity measures for GO terms. It offers various precomputed functional similarity values for proteins contained in UniProtKB and for protein families in Pfam and SMART. The web interface allows users to efficiently perform both semantic similarity searches with GO terms and functional similarity searches with proteins or protein families. All results can be downloaded in tab-delimited files for use with other tools. An additional XML–RPC interface gives automatic online access to FunSimMat for programs and remote services. PMID:17932054

  20. Molecular phylogenetic and chemical analyses of the microbial mats in deep-sea cold seep sediments at the northeastern Japan Sea.

    PubMed

    Arakawa, Shizuka; Sato, Takako; Sato, Rumi; Zhang, Jing; Gamo, Toshitaka; Tsunogai, Urumu; Hirota, Akinari; Yoshida, Yasuhiko; Usami, Ron; Inagaki, Fumio; Kato, Chiaki

    2006-08-01

    Microbial communities inhabiting deep-sea cold seep sediments at the northeastern Japan Sea were characterized by molecular phylogenetic and chemical analyses. White patchy microbial mats were observed along the fault offshore the Hokkaido Island and sediment samples were collected from two stations at the southern foot of the Shiribeshi seamount (M1 site at a depth of 2,961 m on the active fault) and off the Motta Cape site (M2 site at a depth of 3,064 m off the active fault). The phylogenetic and terminal-restriction fragment polymorphism analyses of PCR-amplified 16S rRNA genes revealed that microbial community structures were different between two sampling stations. The members of ANME-2 archaea and diverse bacterial components including sulfate reducers within Deltaproteobacteria were detected from M1 site, indicating the occurrence of biologically mediated anaerobic oxidation of methane, while microbial community at M2 site was predominantly composed of members of Marine Crenarchaeota group I, sulfate reducers of Deltaproteobacteria, and sulfur oxidizers of Epsilonproteobacteria. Chemical analyses of seawater above microbial mats suggested that concentrations of sulfate and methane at M1 site were largely decreased relative to those at M2 site and carbon isotopic composition of methane at M1 site shifted heavier ((13)C-enriched), the results of which are consistent with molecular analyses. These results suggest that the mat microbial communities in deep-sea cold seep sediments at the northeastern Japan Sea are significantly responsible for sulfur and carbon circulations and the geological activity associated with plate movements serves unique microbial habitats in deep-sea environments.

  1. Propulsion System Simulation Using the Toolbox for the Modeling and Analysis of Thermodynamic System T-MATS

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.

  2. Propulsion System Simulation Using the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS)

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.

  3. Terminal proterozoic mid-shelf Benthic microbial mats in the Centralian Superbasin and their environmental significance

    NASA Astrophysics Data System (ADS)

    Logan, Graham A.; Calver, Clive R.; Gorjan, Paul; Summons, Roger E.; Hayes, John M.; Walter, Malcolm R.

    1999-05-01

    A combined sedimentological and biogeochemical study has been conducted on several Terminal Proterozoic mid-shelf microbial mat facies from the Centralian Super-basin. Isotopic and organic geochemical analysis of the bitumen and kerogen indicated that two sources of organic matter from 'planktonic' and 'benthic microbial-mat' populations contributed to the sediment. The 'planktonic' source provided a suite of n-alkanes with C 20, whereas, the 'benthic' source contributed an overlay of n-alkanes >C 20 with a strong even preference, together with mid-chain methyl alkanes. Kerogen and biomarkers derived from the microbial mat were found to be depleted in 13C relative to planktonic material. Pyrite in the micorbial mats was also found to be depleted in 34S compared to surrounding facies. The combination of these observations suggested that the mats may have been at least partly composed of sulfide oxidising bacteria. These organisms have specific environmental tolerances that set limits on palaeo-environment. Their requirement for oxygen indicates that the water column above the mid-shelf could not have been anoxic. Accordingly, from the results and age determinations reported here, it would appear that mid-shelf environments of the Centralian Superbasin of Australia were seeing significant levels of oxygen through the Ediacarian.

  4. Increasing the speed of medical image processing in MatLab®

    PubMed Central

    Bister, M; Yap, CS; Ng, KH; Tok, CH

    2007-01-01

    MatLab® has often been considered an excellent environment for fast algorithm development but is generally perceived as slow and hence not fit for routine medical image processing, where large data sets are now available e.g., high-resolution CT image sets with typically hundreds of 512x512 slices. Yet, with proper programming practices – vectorization, pre-allocation and specialization – applications in MatLab® can run as fast as in C language. In this article, this point is illustrated with fast implementations of bilinear interpolation, watershed segmentation and volume rendering. PMID:21614269

  5. Swept Away: Resuspension of Bacterial Mats Regulates Benthic-Pelagic Exchange of Sulfur

    NASA Astrophysics Data System (ADS)

    Grant, Jonathan; Bathmann, Ulrich V.

    1987-06-01

    Filaments and extracellular material from colorless sulfur bacteria (Beggiatoa spp.) form extensive white sulfur mats on surface sediments of coastal, oceanic, and even deep-sea environments. These chemoautotrophic bacteria oxidize soluble reduced sulfur compounds and deposit elemental sulfur, enriching the sulfur content of surface sediment fivefold over that of deeper sediments. Laboratory flume experiments with Beggiatoa mats from an intertidal sandflat (Nova Scotia) demonstrated that even slight erosion of sediment causes a flux of 160 millimoles of sulfur per square meter per hour, two orders of magnitude greater than the flux produced by sulfur transformations involving either sulfate reduction or sulfide oxidation by benthic bacteria. These experiments indicate that resuspension of sulfur bacterial mats by waves and currents is a rapid mechanism by which sediment sulfur is recycled to the water column. Benthic communities thus lose an important storage intermediate for reduced sulfur as well as a high-quality bacterial food source for benthic grazers.

  6. Quorum-sensing inhibitory compounds from extremophilic microorganisms isolated from a hypersaline cyanobacterial mat.

    PubMed

    Abed, Raeid M M; Dobretsov, Sergey; Al-Fori, Marwan; Gunasekera, Sarath P; Sudesh, Kumar; Paul, Valerie J

    2013-07-01

    In this study, extremely halophilic and moderately thermophilic microorganisms from a hypersaline microbial mat were screened for their ability to produce antibacterial, antidiatom, antialgal, and quorum-sensing (QS) inhibitory compounds. Five bacterial strains belonging to the genera Marinobacter and Halomonas and one archaeal strain belonging to the genus Haloterrigena were isolated from a microbial mat. The strains were able to grow at a maximum salinity of 22-25 % and a maximum temperature of 45-60 °C. Hexanes, dichloromethane, and butanol extracts from the strains inhibited the growth of at least one out of nine human pathogens. Only butanol extracts of supernatants of Halomonas sp. SK-1 inhibited growth of the microalga Dunaliella salina. Most extracts from isolates inhibited QS of the acyl homoserine lactone producer and reporter Chromobacterium violaceum CV017. Purification of QS inhibitory dichloromethane extracts of Marinobacter sp. SK-3 resulted in isolation of four related diketopiperazines (DKPs): cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), cyclo(L-Pro-L-isoLeu), and cyclo(L-Pro-D-Phe). QS inhibitory properties of these DKPs were tested using C. violaceum CV017 and Escherichia coli-based QS reporters (pSB401 and pSB1075) deficient in AHL production. Cyclo(L-Pro-L-Phe) and cyclo(L-Pro-L-isoLeu) inhibited QS-dependent production of violacein by C. violaceum CV017. Cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), and cyclo(L-Pro-L-isoLeu) reduced QS-dependent luminescence of the reporter E. coli pSB401 induced by 3-oxo-C6-HSL. Our study demonstrated the ability of halophilic and moderately thermophilic strains from a hypersaline microbial mat to produce biotechnologically relevant compounds that could be used as antifouling agents.

  7. Computer-Adaptive Testing: Implications for Students' Achievement, Motivation, Engagement, and Subjective Test Experience

    ERIC Educational Resources Information Center

    Martin, Andrew J.; Lazendic, Goran

    2018-01-01

    The present study investigated the implications of computer-adaptive testing (operationalized by way of multistage adaptive testing; MAT) and "conventional" fixed order computer testing for various test-relevant outcomes in numeracy, including achievement, test-relevant motivation and engagement, and subjective test experience. It did so…

  8. Bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong, China.

    PubMed

    Pagaling, Eulyn; Grant, William D; Cowan, Don A; Jones, Brian E; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2012-07-01

    We investigated the bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong in the Yunnan Province, China, using direct molecular analyses. The Langpu (LP) laminated mat was found by the side of a boiling pool with temperature of 60-65 °C and a pH of 8.5, while the Tengchong (TC) streamer mat consisted of white streamers in a slightly acidic (pH 6.5) hot pool outflow with a temperature of 72 °C. Four 16S rRNA gene clone libraries were constructed and restriction enzyme analysis of the inserts was used to identify unique sequences and clone frequencies. From almost 200 clones screened, 55 unique sequences were retrieved. Phylogenetic analysis showed that the LP mat consisted of a diverse bacterial population [Cyanobacteria, Chloroflexi, Chlorobia, Nitrospirae, 'Deinococcus-Thermus', Proteobacteria (alpha, beta and delta subdivisions), Firmicutes, Bacteroidetes and Actinobacteria], while the archaeal population was dominated by methanogenic Euryarchaeota and Crenarchaeota. In contrast, the TC streamer mat consisted of a bacterial population dominated by Aquificae, while the archaeal population also contained Korarchaeota as well as Crenarchaeota and methanogenic Euryarchaeota. These mats harboured clone sequences affiliated to unidentified lineages, suggesting that they are a potential source for discovering novel bacteria and archaea.

  9. Marine Microbial Mats and the Search for Evidence of Life in Deep Time and Space

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.

    2011-01-01

    Cyanobacterial mats in extensive seawater evaporation ponds at Guerrero Negro, Baja California, Mexico, have been excellent subjects for microbial ecology research. The studies reviewed here have documented the steep and rapidly changing environmental gradients experienced by mat microorganisms and the very high rates of biogeochemical processes that they maintained. Recent genetic studies have revealed an enormous diversity of bacteria as well as the spatial distribution of Bacteria, Archaea and Eukarya. These findings, together with emerging insights into the intimate interactions between these diverse populations, have contributed substantially to our understanding of the origins, environmental impacts, and biosignatures of photosynthetic microbial mats. The biosignatures (preservable cells, sedimentary fabrics, organic compounds, minerals, stable isotope patterns, etc.) potentially can serve as indicators of past life on early Earth. They also can inform our search for evidence of any life on Mars. Mars exploration has revealed evidence of evaporite deposits and thermal spring deposits; similar deposits on Earth once hosted ancient microbial mat ecosystems.

  10. Isotopic biosignatures in carbonate-rich, cyanobacteria-dominated microbial mats of the Cariboo Plateau, B.C.

    PubMed

    Brady, A L; Druschel, G; Leoni, L; Lim, D S S; Slater, G F

    2013-09-01

    Photosynthetic activity in carbonate-rich benthic microbial mats located in saline, alkaline lakes on the Cariboo Plateau, B.C. resulted in pCO2 below equilibrium and δ(13) CDIC values up to +6.0‰ above predicted carbon dioxide (CO2 ) equilibrium values, representing a biosignature of photosynthesis. Mat-associated δ(13) Ccarb values ranged from ~4 to 8‰ within any individual lake, with observations of both enrichments (up to 3.8‰) and depletions (up to 11.6‰) relative to the concurrent dissolved inorganic carbon (DIC). Seasonal and annual variations in δ(13) C values reflected the balance between photosynthetic (13) C-enrichment and heterotrophic inputs of (13) C-depleted DIC. Mat microelectrode profiles identified oxic zones where δ(13) Ccarb was within 0.2‰ of surface DIC overlying anoxic zones associated with sulphate reduction where δ(13) Ccarb was depleted by up to 5‰ relative to surface DIC reflecting inputs of (13) C-depleted DIC. δ(13) C values of sulphate reducing bacteria biomarker phospholipid fatty acids (PLFA) were depleted relative to the bulk organic matter by ~4‰, consistent with heterotrophic synthesis, while the majority of PLFA had larger offsets consistent with autotrophy. Mean δ(13) Corg values ranged from -18.7 ± 0.1 to -25.3 ± 1.0‰ with mean Δ(13) Cinorg-org values ranging from 21.1 to 24.2‰, consistent with non-CO2 -limited photosynthesis, suggesting that Precambrian δ(13) Corg values of ~-26‰ do not necessitate higher atmospheric CO2 concentrations. Rather, it is likely that the high DIC and carbonate content of these systems provide a non-limiting carbon source allowing for expression of large photosynthetic offsets, in contrast to the smaller offsets observed in saline, organic-rich and hot spring microbial mats. © 2013 John Wiley & Sons Ltd.

  11. Validity of Hip-worn Inertial Measurement Unit Compared to Jump Mat for Jump Height Measurement in Adolescents.

    PubMed

    Rantalainen, T; Hesketh, K D; Rodda, C; Duckham, R L

    2018-06-16

    Jump tests assess lower body power production capacity, and can be used to evaluate athletic ability and development during growth. Wearable inertial measurement units (IMU) seem to offer a feasible alternative to laboratory-based equipment for jump height assessments. Concurrent validity of these devices for jump height assessments has only been established in adults. Therefore, the purpose of this study was to evaluate the concurrent validity of IMU-based jump height estimate compared to contact mat-based jump height estimate in adolescents. Ninety-five adolescents (10-13 years-of-age; girls N=41, height = 154 (SD 9) cm, weight = 44 (11) kg; boys N=54, height=156 (10) cm, weight = 46 (13) kg) completed three counter-movement jumps for maximal jump height on a contact mat. Inertial recordings (accelerations, rotations) were concurrently recorded with a hip-worn IMU (sampling at 256 Hz). Jump height was evaluated based on flight time. The mean IMU-derived jump height was 27.1 (SD 3.8) cm, and the corresponding mean jump-mat-derived value was 21.5 (3.4) cm. While a significant 26% mean difference was observed between the methods (5.5 [95% limits of agreement 2.2 to 8.9] cm, p = 0.006), the correspondence between methods was excellent (ICC = 0.89). The difference between methods was weakly positively associated with jump height (r = 0.28, P = 0.007). Take-off velocity derived jump height was also explored but produced only fair congruence. In conclusion, IMU-derived jump height exhibited excellent congruence to contact mat-based jump height and therefore presents a feasible alternative for jump height assessments in adolescents. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. The influence of landing mat composition on ankle injury risk during a gymnastic landing: a biomechanical quantification.

    PubMed

    Xiao, Xiaofei; Hao, Weiya; Li, Xuhong; Wan, Bingjun; Shan, Gongbing

    2017-01-01

    About 70% injury of gymnasts happened during landing - an interaction between gymnast and landing mat. The most injured joint is the ankle. The current study examined the effect of mechanical properties of landing mat on ankle loading with aims to identify means of decreasing the risk of ankle injury. Gymnastic skill - salto backward stretched with 3/2 twist was captured by two high-speed camcorders and digitized by using SIMI-Motion software. A subject-specific, 14-segment rigid-body model and a mechanical landing-mat model were built using BRG.LifeMODTM. The landings were simulated with varied landing-mat mechanical properties (i.e., stiffness, dampness and friction coefficients). Real landing performance could be accurately reproduced by the model. The simulations revealed that the ankle angle was relatively sensitive to stiffness and dampness of the landing mat, the ankle loading rate increased 26% when the stiffness was increased by 30%, and the changing of dampness had notable effect on horizontal ground reaction force and foot velocity. Further, the peak joint-reaction force and joint torque were more sensitive to friction than to stiffness and dampness of landing mat. Finally, ankle muscles would dissipate about twice energy (189%) when the friction was increased by 30%. Loads to ankles during landing would increase as the stiffness and dampness of the landing mat increase. Yet, increasing friction would cause a substantial rise of the ankle internal loads. As such, the friction should be a key factor influencing the risk of injury. Unfortunately, this key factor has rarely attracted attention in practice.

  13. Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats - Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt

    NASA Technical Reports Server (NTRS)

    D'Amelio, Elisa D'antoni; Des Marais, David J.; Cohen, Jehuda

    1989-01-01

    The ultrastructure of the submerged microbial mat from the Solar Lake (SL), Egypt, was compared to that of samples from the Guerrero Negro (GN), Mexico, salt pans. The locations and distributions of the main organisms were determined light microscopy, and the corresponding ultrathin sections were examined under TEM; chemical microprofile analyses were carried out on the day of sampling for microscopic studies. Both communities were found to be dominated by Microleus chthonoplastes, although several morphological species found in the GN mat were absent from the SL mat, including the Tropica nigra and the 'big' Microleus chthonoplastes component. The chemical microprofiles of oxygen, sulfide, pH, and the oxygenic photosynthesis in the two mats were virtually identical. In both mats, the photic zone was restricted to the upper 800 microns of the mat, and oxygenic photosynthesis was detected down to 600 microns.

  14. Protein Oxidation and Sensory Quality of Brine-Injected Pork Loins Added Ascorbate or Extracts of Green Tea or Maté during Chill-Storage in High-Oxygen Modified Atmosphere.

    PubMed

    Jongberg, Sisse; Tørngren, Mari Ann; Skibsted, Leif H

    2018-01-15

    Background: Ascorbate is often applied to enhance stability and robustness of brine-injected pork chops sold for retail, but may affect protein oxidation, while plant extracts are potential substitutes. Methods: Brine-injected pork chops (weight-gain ~12%, NaCl ~0.9%) prepared with ascorbate (225 ppm), green tea extract (25 ppm gallic acid equivalents (GAE)), or maté extract (25 ppm GAE) stored (5 °C, seven days) in high-oxygen atmosphere packaging (MAP: 80% O₂ and 20% CO₂) were analyzed for color changes, sensory quality, and protein oxidation compared to a control without antioxidant. Results: No significant differences were observed for green tea and maté extracts as compared to ascorbate when evaluated based on lipid oxidation derived off-flavors, except for stale flavor, which maté significantly reduced. All treatments increased the level of the protein oxidation product, α-aminoadipic semialdehyde as compared to the control, and ascorbate was further found to increase thiol loss and protein cross-linking, with a concomitant decrease in the sensory perceived tenderness. Conclusions: Green tea and maté were found to equally protect against lipid oxidation derived off-flavors, and maté showed less prooxidative activity towards proteins as compared to ascorbate, resulting in more tender meat. Maté is a valuable substitute for ascorbate in brine-injected pork chops.

  15. Protein Oxidation and Sensory Quality of Brine-Injected Pork Loins Added Ascorbate or Extracts of Green Tea or Maté during Chill-Storage in High-Oxygen Modified Atmosphere

    PubMed Central

    Tørngren, Mari Ann

    2018-01-01

    Background: Ascorbate is often applied to enhance stability and robustness of brine-injected pork chops sold for retail, but may affect protein oxidation, while plant extracts are potential substitutes. Methods: Brine-injected pork chops (weight-gain ~12%, NaCl ~0.9%) prepared with ascorbate (225 ppm), green tea extract (25 ppm gallic acid equivalents (GAE)), or maté extract (25 ppm GAE) stored (5 °C, seven days) in high-oxygen atmosphere packaging (MAP: 80% O2 and 20% CO2) were analyzed for color changes, sensory quality, and protein oxidation compared to a control without antioxidant. Results: No significant differences were observed for green tea and maté extracts as compared to ascorbate when evaluated based on lipid oxidation derived off-flavors, except for stale flavor, which maté significantly reduced. All treatments increased the level of the protein oxidation product, α-aminoadipic semialdehyde as compared to the control, and ascorbate was further found to increase thiol loss and protein cross-linking, with a concomitant decrease in the sensory perceived tenderness. Conclusions: Green tea and maté were found to equally protect against lipid oxidation derived off-flavors, and maté showed less prooxidative activity towards proteins as compared to ascorbate, resulting in more tender meat. Maté is a valuable substitute for ascorbate in brine-injected pork chops. PMID:29342928

  16. Apollo 13 Astronaut Thomas Mattingly during water egress training

    NASA Image and Video Library

    1970-01-17

    S70-24016 (17 Jan. 1970) --- Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 13 lunar landing mission, participates in water egress training in a water tank in Building 260 at the Manned Spacecraft Center.

  17. rbcL and matK earn two thumbs up as the core DNA barcode for ferns.

    PubMed

    Li, Fay-Wei; Kuo, Li-Yaung; Rothfels, Carl J; Ebihara, Atsushi; Chiou, Wen-Liang; Windham, Michael D; Pryer, Kathleen M

    2011-01-01

    DNA barcoding will revolutionize our understanding of fern ecology, most especially because the accurate identification of the independent but cryptic gametophyte phase of the fern's life history--an endeavor previously impossible--will finally be feasible. In this study, we assess the discriminatory power of the core plant DNA barcode (rbcL and matK), as well as alternatively proposed fern barcodes (trnH-psbA and trnL-F), across all major fern lineages. We also present plastid barcode data for two genera in the hyperdiverse polypod clade--Deparia (Woodsiaceae) and the Cheilanthes marginata group (currently being segregated as a new genus of Pteridaceae)--to further evaluate the resolving power of these loci. Our results clearly demonstrate the value of matK data, previously unavailable in ferns because of difficulties in amplification due to a major rearrangement of the plastid genome. With its high sequence variation, matK complements rbcL to provide a two-locus barcode with strong resolving power. With sequence variation comparable to matK, trnL-F appears to be a suitable alternative barcode region in ferns, and perhaps should be added to the core barcode region if universal primer development for matK fails. In contrast, trnH-psbA shows dramatically reduced sequence variation for the majority of ferns. This is likely due to the translocation of this segment of the plastid genome into the inverted repeat regions, which are known to have a highly constrained substitution rate. Our study provides the first endorsement of the two-locus barcode (rbcL+matK) in ferns, and favors trnL-F over trnH-psbA as a potential back-up locus. Future work should focus on gathering more fern matK sequence data to facilitate universal primer development.

  18. rbcL and matK Earn Two Thumbs Up as the Core DNA Barcode for Ferns

    PubMed Central

    Li, Fay-Wei; Kuo, Li-Yaung; Rothfels, Carl J.; Ebihara, Atsushi; Chiou, Wen-Liang; Windham, Michael D.; Pryer, Kathleen M.

    2011-01-01

    Background DNA barcoding will revolutionize our understanding of fern ecology, most especially because the accurate identification of the independent but cryptic gametophyte phase of the fern's life history—an endeavor previously impossible—will finally be feasible. In this study, we assess the discriminatory power of the core plant DNA barcode (rbcL and matK), as well as alternatively proposed fern barcodes (trnH-psbA and trnL-F), across all major fern lineages. We also present plastid barcode data for two genera in the hyperdiverse polypod clade—Deparia (Woodsiaceae) and the Cheilanthes marginata group (currently being segregated as a new genus of Pteridaceae)—to further evaluate the resolving power of these loci. Principal Findings Our results clearly demonstrate the value of matK data, previously unavailable in ferns because of difficulties in amplification due to a major rearrangement of the plastid genome. With its high sequence variation, matK complements rbcL to provide a two-locus barcode with strong resolving power. With sequence variation comparable to matK, trnL-F appears to be a suitable alternative barcode region in ferns, and perhaps should be added to the core barcode region if universal primer development for matK fails. In contrast, trnH-psbA shows dramatically reduced sequence variation for the majority of ferns. This is likely due to the translocation of this segment of the plastid genome into the inverted repeat regions, which are known to have a highly constrained substitution rate. Conclusions Our study provides the first endorsement of the two-locus barcode (rbcL+matK) in ferns, and favors trnL-F over trnH-psbA as a potential back-up locus. Future work should focus on gathering more fern matK sequence data to facilitate universal primer development. PMID:22028918

  19. Impacts of Canada's minimum age for tobacco sales (MATS) laws on youth smoking behaviour, 2000-2014.

    PubMed

    Callaghan, Russell Clarence; Sanches, Marcos; Gatley, Jodi; Cunningham, James K; Chaiton, Michael Oliver; Schwartz, Robert; Bondy, Susan; Benny, Claire

    2018-01-13

    Recently, the US Institute of Medicine has proposed that raising the minimum age for tobacco purchasing/sales to 21 years would likely lead to reductions in smoking behavior among young people. Surprisingly few studies, however, have assessed the potential impacts of minimum-age tobacco restrictions on youth smoking. To estimate the impacts of Canadian minimum age for tobacco sales (MATS) laws on youth smoking behaviour. A regression-discontinuity design, using seven merged cycles of the Canadian Community Health Survey, 2000-2014. Survey respondents aged 14-22 years (n=98 320). Current Canadian MATS laws are 18 years in Alberta, Saskatchewan, Manitoba, Quebec, the Yukon and Northwest Territories, and 19 years of age in the rest of the country. Current, occasional and daily smoking status; smoking frequency and intensity; and average monthly cigarette consumption. In comparison to age groups slightly younger than the MATS, those just older had significant and abrupt increases immediately after the MATS in the prevalence of current smokers (absolute increase: 2.71%; 95% CI 0.70% to 4.80%; P=0.009) and daily smokers (absolute increase: 2.43%; 95% CI 0.74% to 4.12%; P=0.005). Average past-month cigarette consumption within age groups increased immediately following the MATS by 18% (95% CI 3% to 39%; P=0.02). There was no evidence of significant increases in smoking intensity for daily or occasional smokers after release from MATS restrictions. The study provides relevant evidence supporting the effectiveness of Canadian MATS laws for limiting smoking among tobacco-restricted youth. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Mathematical simulation of the diel O, S, and C biogeochemistry of a hypersaline microbial mat

    NASA Astrophysics Data System (ADS)

    Decker, K.; Potter, C.

    2003-12-01

    The creation of a mathematical simulation model of photosynthetic microbial mats is an important step in our understanding of key biogeochemical cycles that may have altered the atmospheres of early Earth and of other terrestrial planets. A modeling investigation is presented here as a tool to utilize and integrate empirical results from research on hypersaline mats from Baja California, Mexico into a computational system that can be used to simulate biospheric inputs of trace gases to the atmosphere. An early version of our model calculates fluxes and cycling of oxygen, sulfide, and dissolved inorganic carbon (DIC) via abiotic components and via the major bacterial guilds: cyanobacteria (CYA), sulfur reducing bacteria (SRB), purple sulfur bacteria (PSB) and colorless sulfur bacteria (CSB). We used generalized monod-type equations that incorporate substrate and energy limits upon maximum rates of metabolic processes such as photosynthesis and sulfate reduction. We ran a simulation using temperature and irradiance inputs from data collected from a microbial mat in Guerrero Negro in Baja Mexico. Model oxygen, sulfide, and DIC results compared well with data collected in the field mats. A divergence from the field data was an initial large negative DIC flux early in the morning and little flux into the mat thereafter in the simulation. We hypothesize that this divergence will be reduced or eliminated if the salinity of the water surrounding the mat were used as an environmental input and as a limit to photosynthesis rates. Salinity levels, organic carbon, methane, methanogens and green nonsulfur bacteria will be added to this model before it is incorporated into a global model to simulate geological time scales.

  1. Electro-Responsive Behaviour Multi-Wall Nanotubes/Gelatin Composites and Cross-Linked Gelatin Electrospun Mats

    DTIC Science & Technology

    2008-02-11

    sample , could explain large swelling in blend samples which might enhance ions diffusion and lead to an increase of bending. 21 References [1...1 Final Report on Electro-responsive behaviour multi-wall nanotubes/gelatin composites and cross-linked gelatin electrospun mats...12-10-2007 4. TITLE AND SUBTITLE Electro-responsive behaviour multi-wall nanotubes/gelatin composites and cross-linked gelatin electrospun mats

  2. Preservation in microbial mats: mineralization by a talc-like phase of a fish embedded in a microbial sarcophagus

    NASA Astrophysics Data System (ADS)

    Iniesto, Miguel; Zeyen, Nina; López-Archilla, Ana; Bernard, Sylvain; Buscalioni, Ángela; Guerrero, M. Carmen; Benzerara, Karim

    2015-09-01

    Microbial mats have been repeatedly suggested to promote early fossilization of macroorganisms. Yet, experimental simulations of this process remain scarce. Here, we report results of 5 year-long experiments performed onfish carcasses to document the influence of microbial mats on mineral precipitation during early fossilization. Carcasses were initially placed on top of microbial mats. After two weeks, fishes became coated by the mats forming a compact sarcophagus, which modified the microenvironment close to the corpses. Our results showed that these conditions favoured the precipitation of a poorly crystalline silicate phase rich in magnesium. This talc-like mineral phase has been detected in three different locations within the carcasses placed in microbial mats for more than 4 years: 1) within inner tissues, colonized by several bacillary cells; 2) at the surface of bones of the upper face of the corpse buried in the mat; and 3) at the surface of several bones such as the dorsal fin which appeared to be gradually replaced by the Mg-silicate phase. This mineral phase has been previously shown to promote bacteria fossilization. Here we provide first experimental evidence that such Mg-rich phase can also be involved in exceptional preservation of animals.

  3. The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Des Marais, D. J.

    1990-01-01

    Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sediment-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane. Surface topography thereby increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.

  4. High-resolution (SIMS) versus bulk sulfur isotope patterns of pyrite in Proterozoic microbialites with diverse mat textures

    NASA Astrophysics Data System (ADS)

    Gomes, M. L.; Fike, D. A.; Bergmann, K.; Knoll, A. H.

    2015-12-01

    Sulfur (S) isotope signatures of sedimentary pyrite preserved in marine rocks provide a rich suite of information about changes in biogeochemical cycling associated with the evolution of microbial metabolisms and oxygenation of Earth surface environments. Conventionally, these S isotope records are based on bulk rock measurements. Yet, in modern microbial mat environments, S isotope compositions of sulfide can vary by up to 40‰ over a spatial range of ~ 1 mm. Similar ranges of S isotope variability have been found in Archean pyrite grains using both Secondary Ion Mass Spectrometry and other micro-analytical techniques. These micron-scale patterns have been linked to changes in rates of microbial sulfate reduction and/or sulfide oxidation, isotopic distillation of the sulfate reservoir due to microbial sulfate reduction, and post-depositional alteration. Fine-scale mapping of S isotope compositions of pyrite can thus be used to differentiate primary environmental signals from post-depositional overprinting - improving our understanding of both. Here, we examine micron-scale S isotope patterns of pyrite in microbialites from the Mesoproterozoic-Neoproterozoic Sukhaya Tunguska Formation and Neoproterozoic Draken Formation in order to explore S isotope variability associated with different mat textures and pyrite grain morphologies. A primary goal is to link modern observations of how sulfide spatial isotope distributions reflect active microbial communities present at given depths in the mats to ancient processes driving fine-sale pyrite variability in microbialites. We find large (up to 60‰) S isotope variability within a spatial range of less than 2.5cm. The micron-scale S isotope measurements converge around the S isotope composition of pyrite extracted from bulk samples of the same microbialites. These micron-scale pyrite S isotope patterns have the potential to reveal important information about ancient biogeochemical cycling in Proterozoic mat environments

  5. Physiological and Metagenomic Analyses of Microbial Mats Involved in Self-Purification of Mine Waters Contaminated with Heavy Metals

    PubMed Central

    Drewniak, Lukasz; Krawczyk, Pawel S.; Mielnicki, Sebastian; Adamska, Dorota; Sobczak, Adam; Lipinski, Leszek; Burec-Drewniak, Weronika; Sklodowska, Aleksandra

    2016-01-01

    Two microbial mats found inside two old (gold and uranium) mines in Zloty Stok and Kowary located in SW Poland seem to form a natural barrier that traps heavy metals leaking from dewatering systems. We performed complex physiological and metagenomic analyses to determine which microorganisms are the main driving agents responsible for self-purification of the mine waters and identify metabolic processes responsible for the observed features. SEM and energy dispersive X-ray microanalysis showed accumulation of heavy metals on the mat surface, whereas, sorption experiments showed that neither microbial mats were completely saturated with heavy metals present in the mine waters, indicating that they have a large potential to absorb significant quantities of metal. The metagenomic analysis revealed that Methylococcaceae and Methylophilaceae families were the most abundant in both communities, moreover, it strongly suggest that backbones of both mats were formed by filamentous bacteria, such as Leptothrix, Thiothrix, and Beggiatoa. The Kowary bacterial community was enriched with the Helicobacteraceae family, whereas the Zloty Stok community consist mainly of Sphingomonadaceae, Rhodobacteraceae, and Caulobacteraceae families. Functional (culture-based) and metagenome (sequence-based) analyses showed that bacteria involved in immobilization of heavy metals, rather than those engaged in mobilization, were the main driving force within the analyzed communities. In turn, a comparison of functional genes revealed that the biofilm formation and heavy metal resistance (HMR) functions are more desirable in microorganisms engaged in water purification than the ability to utilize heavy metals in the respiratory process (oxidation-reduction). These findings provide insight on the activity of bacteria leading, from biofilm formation to self-purification, of mine waters contaminated with heavy metals. PMID:27559332

  6. Bagging system, soil stabilization mat, and tent frame for a lunar base

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Georgia Tech's School of Textile and Fiber Engineering and School of Mechanical Engineering participated in four cooperative design efforts this year. Each of two interdisciplinary teams designed a system consisting of a lunar regolith bag and an apparatus for filling this bag. The third group designed a mat for stabilization of lunar soil during takeoff and landing, and a method for packaging and deploying this mat. Finally, the fourth group designed a sunlight diffusing tent to be used as a lunar worksite. Summaries of these projects are given.

  7. Bagging system, soil stabilization mat, and tent frame for a lunar base

    NASA Astrophysics Data System (ADS)

    1990-11-01

    Georgia Tech's School of Textile and Fiber Engineering and School of Mechanical Engineering participated in four cooperative design efforts this year. Each of two interdisciplinary teams designed a system consisting of a lunar regolith bag and an apparatus for filling this bag. The third group designed a mat for stabilization of lunar soil during takeoff and landing, and a method for packaging and deploying this mat. Finally, the fourth group designed a sunlight diffusing tent to be used as a lunar worksite. Summaries of these projects are given.

  8. Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing.

    PubMed

    Bolhuis, Henk; Stal, Lucas J

    2011-11-01

    Coastal microbial mats are small-scale and largely closed ecosystems in which a plethora of different functional groups of microorganisms are responsible for the biogeochemical cycling of the elements. Coastal microbial mats play an important role in coastal protection and morphodynamics through stabilization of the sediments and by initiating the development of salt-marshes. Little is known about the bacterial and especially archaeal diversity and how it contributes to the ecological functioning of coastal microbial mats. Here, we analyzed three different types of coastal microbial mats that are located along a tidal gradient and can be characterized as marine (ST2), brackish (ST3) and freshwater (ST3) systems. The mats were sampled during three different seasons and subjected to massive parallel tag sequencing of the V6 region of the 16S rRNA genes of Bacteria and Archaea. Sequence analysis revealed that the mats are among the most diverse marine ecosystems studied so far and consist of several novel taxonomic levels ranging from classes to species. The diversity between the different mat types was far more pronounced than the changes between the different seasons at one location. The archaeal community for these mats have not been studied before and revealed a strong reaction on a short period of draught during summer resulting in a massive increase in halobacterial sequences, whereas the bacterial community was barely affected. We concluded that the community composition and the microbial diversity were intrinsic of the mat type and depend on the location along the tidal gradient indicating a relation with salinity.

  9. In situ analysis of oxygen consumption and diffusive transport in high-temperature acidic iron-oxide microbial mats.

    PubMed

    Bernstein, Hans C; Beam, Jacob P; Kozubal, Mark A; Carlson, Ross P; Inskeep, William P

    2013-08-01

    The role of dissolved oxygen as a principal electron acceptor for microbial metabolism was investigated within Fe(III)-oxide microbial mats that form in acidic geothermal springs of Yellowstone National Park (USA). Specific goals of the study were to measure and model dissolved oxygen profiles within high-temperature (65-75°C) acidic (pH = 2.7-3.8) Fe(III)-oxide microbial mats, and correlate the abundance of aerobic, iron-oxidizing Metallosphaera yellowstonensis organisms and mRNA gene expression levels to Fe(II)-oxidizing habitats shown to consume oxygen. In situ oxygen microprofiles were obtained perpendicular to the direction of convective flow across the aqueous phase/Fe(III)-oxide microbial mat interface using oxygen microsensors. Dissolved oxygen concentrations dropped from ∼ 50-60 μM in the bulk-fluid/mat surface to below detection (< 0.3 μM) at a depth of ∼ 700 μm (∼ 10% of the total mat depth). Net areal oxygen fluxes into the microbial mats were estimated to range from 1.4-1.6 × 10(-4)  μmol cm(-2)  s(-1) . Dimensionless parameters were used to model dissolved oxygen profiles and establish that mass transfer rates limit the oxygen consumption. A zone of higher dissolved oxygen at the mat surface promotes Fe(III)-oxide biomineralization, which was supported using molecular analysis of Metallosphaera yellowstonensis 16S rRNA gene copy numbers and mRNA expression of haem Cu oxidases (FoxA) associated with Fe(II)-oxidation. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Spatial and temporal variation of papyrus root mat thickness and water storage in a tropical wetland system.

    PubMed

    Kayendeke, Ellen Jessica; Kansiime, Frank; French, Helen K; Bamutaze, Yazidhi

    2018-06-18

    Papyrus wetlands are predominant in permanently inundated areas of tropical Sub Saharan Africa (SSA) and offer both provisioning and regulatory services. Although a wealth of literature exists on wetland functions, the seasonal behaviour of the papyrus mat and function in water storage has received less attention. The objective of this study was to assess the response of the papyrus root mat to changing water levels in a tropical wetland system in Eastern Uganda. We delineated seven transects through a section of a wetland system and mapped wetland bathymetry along these transects. We used three transects to measure spatial and temporal changes in mat thickness and free water column, and to monitor variations in total depth during two seasons. The free water column increased across all transects in the wet season. However, changes in the mat thickness varied spatially and were influenced by the rate of increase of the free water column as well as wetland bathymetry. The proportion of mat compression was higher at the shallow end of the wetland (83%) compared to the deep end (67%). There was a significant negative correlation between changes in free water column and papyrus mat thickness (r = -0.85, p = 000). Therefore, the mat compresses in response to increase in free water column, which increases the ratio of the free water column to root mat thickness. Hence, the wetland accommodates excess water during rainy seasons. Water depth varied from 1.5 m to 2.1 m during the monitoring period, corresponding to a water storage of 61,597 m 3 and 123,355 m 3 respectively. This means a 50% change in water volume for the studied wetland section. This water regulatory function mitigates severity of floods downstream, but the stored water is also useful to the surrounding communities for wetland-edge farm irrigation during dry seasons. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Distribution and Composition of Thiotrophic Mats in the Hypoxic Zone of the Black Sea (150–170 m Water Depth, Crimea Margin)

    PubMed Central

    Jessen, Gerdhard L.; Lichtschlag, Anna; Struck, Ulrich; Boetius, Antje

    2016-01-01

    At the Black Sea chemocline, oxygen- and sulfide-rich waters meet and form a niche for thiotrophic pelagic bacteria. Here we investigated an area of the Northwestern Black Sea off Crimea close to the shelf break, where the chemocline reaches the seafloor at around 150–170 m water depth, to assess whether thiotrophic bacteria are favored in this zone. Seafloor video transects were carried out with the submersible JAGO covering 20 km2 on the region between 110 and 200 m depth. Around the chemocline we observed irregular seafloor depressions, covered with whitish mats of large filamentous bacteria. These comprised 25–55% of the seafloor, forming a belt of 3 km width around the chemocline. Cores from the mats obtained with JAGO showed higher accumulations of organic matter under the mats compared to mat-free sediments. The mat-forming bacteria were related to Beggiatoa-like large filamentous sulfur bacteria based on 16S rRNA sequences from the mat, and visual characteristics. The microbial community under the mats was significantly different from the surrounding sediments and enriched with taxa affiliated with polymer degrading, fermenting and sulfate reducing microorganisms. Under the mats, higher organic matter accumulation, as well as higher remineralization and radiotracer-based sulfate reduction rates were measured compared to outside the mat. Mat-covered and mat-free sediments showed similar degradability of the bulk organic matter pool, suggesting that the higher sulfide fluxes and subsequent development of the thiotrophic mats in the patches are consequences of the accumulation of organic matter rather than its qualitative composition. Our observations suggest that the key factors for the distribution of thiotrophic mat-forming communities near to the Crimean shelf break are hypoxic conditions that (i) repress grazers, (ii) enhance the accumulation and degradation of labile organic matter by sulfate-reducers, and (iii) favor thiotrophic filamentous bacteria

  12. Flight control systems development of highly maneuverable aircraft technology /HiMAT/ vehicle

    NASA Technical Reports Server (NTRS)

    Petersen, K. L.

    1979-01-01

    The highly maneuverable aircraft technology (HiMAT) program was conceived to demonstrate advanced technology concepts through scaled-aircraft flight tests using a remotely piloted technique. Closed-loop primary flight control is performed from a ground-based cockpit, utilizing a digital computer and up/down telemetry links. A backup flight control system for emergency operation resides in an onboard computer. The onboard systems are designed to provide fail-operational capabilities and utilize two microcomputers, dual uplink receiver/decoders, and redundant hydraulic actuation and power systems. This paper discusses the design and validation of the primary and backup digital flight control systems as well as the unique pilot and specialized systems interfaces.

  13. Distribution of Major Chlorogenic Acids and Related Compounds in Brazilian Green and Toasted Ilex paraguariensis (Maté) Leaves.

    PubMed

    Lima, Juliana de Paula; Farah, Adriana; King, Benjamin; de Paulis, Tomas; Martin, Peter R

    2016-03-23

    Ilex paraguariensis (maté) is one of the best sources of chlorogenic acids (CGA) in nature. When leaves are toasted, some isomers are partly transformed into 1,5-γ-quinolactones (CGL). Both CGA and CGL are important contributors to the brew's flavor and are thought to contribute to human health. In this study, we quantified 9 CGA, 2 CGL, and caffeic acid in 20 samples of dried green and toasted maté that are commercially available in Brazil. Total CGA content in green maté varied from 8.7 to 13.2 g/100 g, dry weight (dw). Caffeic acid content varied from 10.8 to 13.5 mg/100 g dw, respectively. Content in toasted maté varied from 1.5 to 4.6 g/100 g and from 1.5 to 7.2 mg/100 g dw, respectively. Overall, caffeoylquinic acid isomers (CQA) were the most abundant CGA in both green and toasted maté, followed by dicaffeoylquinic acids (diCQA) and feruloylquinic acids (FQA). These classes accounted for 58.5%, 40.0%, and 1.5% of CGA, respectively, in green maté and 76.3%, 20.7%, and 3.0%, respectively, in toasted maté. Average contents of 3-caffeoylquinolactone (3-CQL) and 4-caffeoylquinolactone (4-CQL) in commercial toasted samples were 101.5 mg/100 g and 61.8 mg/100 g dw, respectively. These results show that, despite overall losses during the toasting process, CGA concentrations are still substantial in toasted leaves, compared to other food sources of CGA and phenolic compounds in general. In addition to evaluating commercial samples, investigation of changes in CGA profile and formation of 1,5-γ-quinolactones was performed in experimental maté toasting.

  14. Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats

    NASA Technical Reports Server (NTRS)

    Ruff-Roberts, A. L.; Kuenen, J. G.; Ward, D. M.

    1994-01-01

    Oligodeoxynucleotide hybridization probes were developed to complement specific regions of the small subunit (SSU) rRNA sequences of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria, which inhabit hot spring microbial mats. The probes were used to investigate the natural distribution of SSU rRNAs from these species in mats of Yellowstone hot springs of different temperatures and pHs as well as changes in SSU rRNA distribution resulting from 1-week in situ shifts in temperature, pH, and light intensity. Synechococcus lividus Y-7c-s SSU rRNA was detected only in the mat of a slightly acid spring, from which it may have been initially isolated, or when samples from a more alkaline spring were incubated in the more acid spring. Chloroflexus aurantiacus Y-400-fl SSU rRNA was detected only in a high-temperature mat sample from the alkaline Octopus Spring or when lower-temperature samples from this mat were incubated at the high-temperature site. SSU rRNAs of uncultivated species were more widely distributed. Temperature distributions and responses to in situ temperature shifts suggested that some of the uncultivated cyanobacteria might be adapted to high-, moderate-, and low-temperature ranges whereas an uncultivated Chloroflexus-like bacterium appears to have broad temperature tolerance. SSU rRNAs of all uncultivated species inhabiting a 48 to 51 degrees C Octopus Spring mat site were most abundant in the upper 1 mm and were not detected below a 2.5-to 3.5-mm depth, a finding consistent with their possible phototrophic nature. However, the effects of light intensity reduction on these SSU rRNAs were variable, indicating the difficulty of demonstrating a phototrophic phenotype in light reduction experiments.

  15. Post-eruption colonization and community succession of hydrothermal microbial mats

    NASA Astrophysics Data System (ADS)

    Moyer, C. L.; Hager, K. W.; Fullerton, H.

    2015-12-01

    T-RFLP fingerprint cluster analysis and qPCR of microbial mat communities from hydrothermal vent habitats among recent post-eruption sites exhibit similar communities containing Epsilonproteobacteria that are phylogenetically similar and capable of hydrogen-oxidation (e.g., Nitratiruptor, Caminibacter, Nautilia, Thioreductor, and/or Lebetimonas). This community is the first (Group I) of three community types that represent different stages in the transition from vapor-dominated to brine-dominated water-rock interactions (i.e., vent effluent geochemistry). We have now observed this similar transition from four hydrothermal regions from across the Pacific Ocean. The second type of mat community (Group II) that has been observed is characterized by the presence of another group of Epsilonproteobacteria; however, these are mostly sulfur-oxidizing phylotypes (e.g., Sulfurimonas, Sulfurovum, and/or Sulfuricurvum). Finally, once the transition from sulfur to iron is complete, then the third type (Group III) cluster together by the presence of Zetaproteobacteria, which are known to use iron-oxidation. Each of these community types are dominated by groups of microorganisms characterized by cultured isolates, all of which are strict chemolithoautotrophs capable of carbon fixation and are hypothesized as both ecosystem engineers and primary producers in these energy-rich ecosystems. We also consider the thermodynamic implications towards carbon fixation for each of the three groups of mat communities.

  16. Acquisition of Ophiostoma quercus and Ceratocystis fagacearum by nitidulids from O. quercus-colonized oak wilt mats

    Treesearch

    Jennifer Juzwik; Kory R. Cease; Jason M. Meyer

    1998-01-01

    Field experiments were conducted to determine whether the frequency of Ceratocystis fagacearum and Ophiostoma quercus propagule acquisition by nitidulids visiting oak wilt fungal mats is affected by the presence of O. quercus on the mats. Augmentation sprays with O. quercus were used to achieve...

  17. Exploring ancient microbial community assemblages by creating complex lipid biomarker profiles for stromatolites and microbial mats in Hamelin Pool, Shark Bay, Australia

    NASA Astrophysics Data System (ADS)

    Myers, E.; Summons, R. E.; Schubotz, F.; Matys, E. D.

    2015-12-01

    Stromatolites that are biogenic in origin, a characteristic that can be determined by the coexistence of microbial mats (active microbial communities) and stromatolites (lithified structures) like in Hamelin Pool, comprise one of the best modern analogs to ancient microbial community assemblages. Comprehensive lipid biomarker profiles that include lipids of varying persistence in the rock record can help determine how previously living microbial communities are represented in lithified stromatolites. To create these profiles, the samples analyzed included non-lithified smooth, pustular, and colloform microbial mats, as well as smooth and colloform stromatolites. Select samples were separated into upper and lower layers of 5cm depth each. Intact polar lipids, glycerol dialkyl glycerol tetraethers, and bacteriohopanepolyols were analyzed via liquid chromatography-mass spectrometry (LC-MS) coupled to a Quadropole Time-of-Flight (QTOF) mass spectrometer; additionally, fatty acids from each sample were analyzed using gas chromatography-mass spectrometry (GC-MS) to prove consistent signatures with those determined by Allen et al. in 2010 for similar microbial mat samples. In accordance with those findings, 2-methylhopanoids were detected, as well as limited signals from higher (vascular) plants, the latter of which suggests terrestrial inputs, potentially from runoff. The rarely detected presence of 3-methylhopanoids appears in a significant portion of the samples, though further isolations of the molecule are needed to confirm. While all lipid profiles were relatively similar, certain differences in relative composition are likely attributable to morphological differences of the mats, some of which allow deeper oxygen and/or sunlight penetration, which influence the microbial community. However, overall similarities of transient and persistent lipids suggest that the microbial communities of both the non-lithified microbial mats and stromatolites are similar.

  18. Investigation of local ferroelectric and piezoelectric effects on mats of electrospun poly(vinylidene fluoride) (PVDF) fibers

    NASA Astrophysics Data System (ADS)

    Durgaprasad, P.; Hemalatha, J.

    2018-04-01

    Poly(vinylidene fluoride) (PVDF) fiber mat was synthesized by using electrospinning technique by using DMF/Acetone as mixed solvent. Structural and functional group studies were studied by using X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy respectively. The morphology of the fiber mat was investigated by using scanning electron microscopy (SEM) which revealed the formation of uniform fibers with an average diameter of 500nm. The local ferroelectric, piezo electric properties and also the domain switching of the fiber mats were investigated by Dynamic Contact Electrostatic Force Microscopy (DC-EFM) studies. The peizoelectric/ferroelectric response was recorded and analyzed.

  19. Improve Data Mining and Knowledge Discovery Through the Use of MatLab

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali; Martin, Dawn (Elliott); Beil, Robert

    2011-01-01

    Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(R) (MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and its

  20. Improve Data Mining and Knowledge Discovery through the use of MatLab

    NASA Technical Reports Server (NTRS)

    Shaykahian, Gholan Ali; Martin, Dawn Elliott; Beil, Robert

    2011-01-01

    Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(TradeMark)(MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and

  1. Microbial mats as a biological treatment approach for saline wastewaters: the case of produced water from hydraulic fracturing.

    PubMed

    Akyon, Benay; Stachler, Elyse; Wei, Na; Bibby, Kyle

    2015-05-19

    Treatment of produced water, i.e. wastewater from hydraulic fracturing, for reuse or final disposal is challenged by both high salinity and the presence of organic compounds. Organic compounds in produced water may foul physical-chemical treatment processes or support microbial corrosion, fouling, and sulfide release. Biological approaches have potential applications in produced water treatment, including reducing fouling of physical-chemical treatment processes and decreasing biological activity during produced water holding; however, conventional activated sludge treatments are intolerant of high salinity. In this study, a biofilm treatment approach using constructed microbial mats was evaluated for biodegradation performance, microbial community structure, and metabolic potential in both simulated and real produced water. Results demonstrated that engineered microbial mats are active at total dissolved solids (TDS) concentrations up to at least 100,000 mg/L, and experiments in real produced water showed a biodegradation capacity of 1.45 mg COD/gramwet-day at a TDS concentration of 91,351 mg/L. Additionally, microbial community and metagenomic analyses revealed an adaptive microbial community that shifted based upon the sample being treated and has the metabolic potential to degrade a wide array of contaminants, suggesting the potential of this approach to treat produced waters with varying composition.

  2. Soil stabilization mat for lunar launch/landing site

    NASA Technical Reports Server (NTRS)

    Acord, Amy L.; Cohenour, Mark W.; Ephraim, Daniel; Gochoel, Dennis; Roberts, Jefferson G.

    1990-01-01

    Facilities which are capable of handling frequent arrivals and departures of spaceships between Earth and a lunar colony are necessary. The facility must be able to provide these services with minimal interruption of operational activity within the colony. The major concerns associated with the space traffic are the dust and rock particles that will be kicked up by the rocket exhaust. As a result of the reduced gravitation of the Moon, these particles scatter over large horizontal distances. This flying debris will not only seriously interrupt the routine operations of the colony, but could cause damage to the equipment and facilities surrounding the launch site. An approach to overcome this problem is presented. A proposed design for a lunar take-off/landing mat is presented. This proposal goes beyond dealing with the usual problems of heat and load resistances associated with take-off and landing, by solving the problem of soil stabilization at the site. Through adequate stabilization, the problem of flying debris is eliminated.

  3. Evaluating carbon stores at the earth-atmosphere interface: moss and lichen mats of subarctic Alaska

    Treesearch

    Robert J. Smith; Sarah Jovan; Bruce McCune

    2015-01-01

    A fundamental goal of the forest inventory in interior Alaska is to accurately estimate carbon pools in a way that sheds light on the feedbacks between forests and climate. In boreal forests, moss and lichen mats often serve as the interface between soils and the atmosphere, therefore characterizing the biomass and composition of mats is essential for understanding how...

  4. The MAT-sf: identifying risk for major mobility disability

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: The assessment of mobility is essential to both aging research and clinical geriatric practice. A newly developed self-report measure of mobility, the mobility assessment tool-short form (MAT-sf), uses video animations as an innovative method to improve measurement accuracy/precision. Th...

  5. Nitrification-driven forms of nitrogen metabolism in microbial mat communities thriving along an ammonium-enriched subsurface geothermal stream

    NASA Astrophysics Data System (ADS)

    Nishizawa, Manabu; Koba, Keisuke; Makabe, Akiko; Yoshida, Naohiro; Kaneko, Masanori; Hirao, Shingo; Ishibashi, Jun-ichiro; Yamanaka, Toshiro; Shibuya, Takazo; Kikuchi, Tohru; Hirai, Miho; Miyazaki, Junichi; Nunoura, Takuro; Takai, Ken

    2013-07-01

    We report here the concurrence and interaction among forms of nitrogen metabolism in thermophilic microbial mat communities that developed in an ammonium-abundant subsurface geothermal stream. First, the physical and chemical conditions of the stream water at several representative microbial mat habitats (including upper, middle and downstream sites) were characterized. A thermodynamic calculation using these physical and chemical conditions predicted that nitrification consisting of ammonia and nitrite oxidations would provide one of the largest energy yields of chemolithotrophic metabolisms. Second, near-complete prokaryotic 16S rRNA gene clone analysis was conducted for representative microbial mat communities at the upper, middle and downstream sites. The results indicated a dynamic shift in the 16S rRNA gene phylotype composition through physical and chemical variations of the stream water. The predominant prokaryotic components varied from phylotypes related to hydrogeno (H2)- and thio (S)-trophic Aquificales, thermophilic methanotrophs and putative ammonia-oxidizing Archaea (AOA) located upstream (72 °C) to the phylotypes affiliated with putative AOA and nitrite-oxidizing bacteria (NOB) located at the middle and downstream sites (65 and 57 °C, respectively). In addition, the potential in situ metabolic activities of different forms of nitrogen metabolism were estimated through laboratory experiments using bulk microbial mat communities. Finally, the compositional and isotopic variation in nitrogen compounds was investigated in the stream water flowing over the microbial mats and in the interstitial water inside the mats. Although the stream water was characterized by a gradual decrease in the total ammonia concentration (ΣNH3: the sum of ammonia and ammonium concentrations) and a gradual increase in the total concentration of nitrite and nitrate (NO2- + NO3-), the total inorganic nitrogen concentration (TIN: the sum of ΣNH3, NO2- and NO3- concentrations

  6. A Serious Look at the 4MAT Model.

    ERIC Educational Resources Information Center

    Scott, Harry V.

    4MAT is an 8-step, sequential instructional model based on two theoretical constructs: Kolb's model of learning styles and the concept of brain hemisphericity. The model, developed by B. McCarthy (1987), is derived by interacting each of Kolb's four quadrants with both left and right brain. Kolb outlined four learning styles based on the four…

  7. Dolomite Formation within Microbial Mats in the Sabkha of Abu Dhabi (UAE) and Associated Microsedimentary Structures

    NASA Astrophysics Data System (ADS)

    Bontognali, T. R.; Vasconcelos, C.; McKenzie, J. A.

    2008-12-01

    The link between microbial activity and dolomite formation has been evaluated in the coastal sabkha of Abu Dhabi (UAE). This modern dolomite-forming environment is frequently cited as the type analogue for the interpretation of many ancient evaporitic sequences. The investigation of sabkha sediments along a transect from intertidal to supratidal zones revealed a close association between microbial mats and dolomite. Authigenic dolomite occurs within surface and buried microbial mats, which are comprised of exopolymeric substances (EPS). Dolomite forms as a direct consequence of mineral nucleation and growth within microbially produced EPS. The cation-binding effect of the EPS molecules influences the composition of the precipitate. The early stage of this process is characterized by the complexation of an amorphous Mg-Si precipitate, which promotes dolomite development. Mineral formation within EPS appears to be enhanced by evaporation with consequent supersaturation of the pore waters with respect to dolomite. Partial EPS degradation during diagenesis may also provide an additional source of cations. However, the specific mineral-template property of EPS, rather than an increase in cation concentrations, is the key factor for dolomite formation in the studied area of the sabkha. Indeed, within the modern microbial mat located at the surface, dolomite precipitates from pore waters whose composition is very close to seawater. In the supratidal zone, pore water analysis and stable isotope values did not reveal any linkage between dolomite formation and microbial excretion and/or consumption of metabolites along the sediment profiles. This is in contrast with current models, in which dolomite formation is mainly linked to microbial increase of pH and alkalinity or consumption of dissolved SO4 in pore-waters. The EPS of the microbial mats is characterized by an alveolar microfabric, which can be mineralized during early diagenesis, preserving fossil imprints of the

  8. The effect of sulfate concentration on (sub)millimeter-scale sulfide δ 34S in hypersaline cyanobacterial mats over the diurnal cycle

    NASA Astrophysics Data System (ADS)

    Fike, David A.; Finke, Niko; Zha, Jessica; Blake, Garrett; Hoehler, Tori M.; Orphan, Victoria J.

    2009-10-01

    Substantial isotopic fractionations are associated with many microbial sulfur metabolisms and measurements of the bulk δ 34S isotopic composition of sulfur species (predominantly sulfates and/or sulfides) have been a key component in developing our understanding of both modern and ancient biogeochemical cycling. However, the interpretations of bulk δ 34S measurements are often non-unique, making reconstructions of paleoenvironmental conditions or microbial ecology challenging. In particular, the link between the μm-scale microbial activity that generates isotopic signatures and their eventual preservation as a bulk rock value in the geologic record has remained elusive, in large part because of the difficulty of extracting sufficient material at small scales. Here we investigate the potential for small-scale (˜100 μm-1 cm) δ 34S variability to provide additional constraints for environmental and/or ecological reconstructions. We have investigated the impact of sulfate concentrations (0.2, 1, and 80 mM SO 4) on the δ 34S composition of hydrogen sulfide produced over the diurnal (day/night) cycle in cyanobacterial mats from Guerrero Negro, Baja California Sur, Mexico. Sulfide was captured as silver sulfide on the surface of a 2.5 cm metallic silver disk partially submerged beneath the mat surface. Subsequent analyses were conducted on a Cameca 7f-GEO secondary ion mass spectrometer (SIMS) to record spatial δ 34S variability within the mats under different environmental conditions. Isotope measurements were made in a 2-dimensional grid for each incubation, documenting both lateral and vertical isotopic variation within the mats. Typical grids consisted of ˜400-800 individual measurements covering a lateral distance of ˜1 mm and a vertical depth of ˜5-15 mm. There is a large isotopic enrichment (˜10-20‰) in the uppermost mm of sulfide in those mats where [SO 4] was non-limiting (field and lab incubations at 80 mM). This is attributed to rapid recycling of

  9. Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs

    NASA Astrophysics Data System (ADS)

    Taepaiboon, Pattama; Rungsardthong, Uracha; Supaphol, Pitt

    2006-05-01

    Mats of PVA nanofibres were successfully prepared by the electrospinning process and were developed as carriers of drugs for a transdermal drug delivery system. Four types of non-steroidal anti-inflammatory drug with varying water solubility property, i.e. sodium salicylate (freely soluble in water), diclofenac sodium (sparingly soluble in water), naproxen (NAP), and indomethacin (IND) (both insoluble in water), were selected as model drugs. The morphological appearance of the drug-loaded electrospun PVA mats depended on the nature of the model drugs. The 1H-nuclear magnetic resonance results confirmed that the electrospinning process did not affect the chemical integrity of the drugs. Thermal properties of the drug-loaded electrospun PVA mats were analysed by differential scanning calorimetry and thermogravimetric analysis. The molecular weight of the model drugs played a major role on both the rate and the total amount of drugs released from the as-prepared drug-loaded electrospun PVA mats, with the rate and the total amount of the drugs released decreasing with increasing molecular weight of the drugs. Lastly, the drug-loaded electrospun PVA mats exhibited much better release characteristics of the model drugs than drug-loaded as-cast films.

  10. Énergie photovoltaïque : matériaux utilisés et perspectives

    NASA Astrophysics Data System (ADS)

    Marfaing, Y.

    2002-04-01

    Les matériaux pour la conversion photovoltaïque sont des semi-conducteurs dont la largeur de bande interdite peut se situer dans l'intervalle 1 - 1,8 eV. Les principes physiques de l'effet photovoltaïque sont d'abord rappelés afin de mettre en évidence les relations nécessaires entre les caractéristiques optiques et électroniques du semi-conducteur et l'épaisseur de la structure de conversion ou cellule. Les matériaux actuellement utilisés ou étudiés sont ensuite passés en revue en commençant par le silicium cristallin massif puis en décrivant le vaste secteur des couches minces : silicium amorphe, composés polycristallins, silicium cristallisé en film mince. Les développements attendus dans chacune de ces filières sont présentés ainsi que les recherches en cours sur d'autres types de matériaux et de structures.

  11. Expansion rate and geometry of floating vegetation mats on the margins of thermokarst lakes, northern Seward Peninsula, Alaska, USA

    USGS Publications Warehouse

    Parsekian, A.D.; Jones, Benjamin M.; Jones, M.; Grosse, G.; Walter, Anthony K.M.; Slater, L.

    2011-01-01

    Investigations on the northern Seward Peninsula in Alaska identified zones of recent (<50years) permafrost collapse that led to the formation of floating vegetation mats along thermokarst lake margins. The occurrence of floating vegetation mat features indicates rapid degradation of near-surface permafrost and lake expansion. This paper reports on the recent expansion of these collapse features and their geometry is determined using geophysical and remote sensing measurements. The vegetation mats were observed to have an average thickness of 0.57m and petrophysical modeling indicated that gas content of 1.5-5% enabled floatation above the lake surface. Furthermore, geophysical investigation provides evidence that the mats form by thaw and subsidence of the underlying permafrost rather than terrestrialization. The temperature of the water below a vegetation mat was observed to remain above freezing late in the winter. Analysis of satellite and aerial imagery indicates that these features have expanded at maximum rates of 1-2myr-1 over a 56year period. Including the spatial coverage of floating 'thermokarst mats' increases estimates of lake area by as much as 4% in some lakes. ?? 2011 John Wiley & Sons, Ltd.

  12. Identifying the hotspots of non-renewable water use using HiGW-MAT: A new land surface model coupled with human interventions and ground water reservoir

    NASA Astrophysics Data System (ADS)

    Oki, T.; Pokhrel, Y. N.; Yeh, P. J.; Koirala, S.; Kanae, S.; Hanasaki, N.

    2011-12-01

    The real hydrological cycles on the Earth are not natural anymore. Global hydrological model simulations of the water cycle and available water resources should have an ability to consider the effects of human interventions on hydrological cycles. Anthropogenic activity modules (Hanasaki et al., 2008), such as reservoir operation, crop growth and water demand in crop lands, and environmental flows, were incorporated into a land surface model called MATSIRO (Takata et al., 2003), to form a new model, MAT-HI (Pokhrel et al., 2011). Total terrestrial water storages (TWS) in large river basins were estimated using the new model by off-line simulation, and compared with the TWS observed by GRACE for 2002-2007. The results showed MAT-HI has an advantage estimating TWS particularly in arid river basins compared with H08 (Hanasaki et al., 2008). MAT-HI was further coupled with a module representing the ground water level fluctuations (Yeh et al., 2005), and consists a new land surface scheme HiGW-MAT (Human Intervention and Ground Water coupled MATSIRO). HiGW-MAT is also associated with a scheme tracing the origin and flow path with the consideration on the sources of water withdrawal from stream flow, medium-size reservoirs and nonrenewable groundwater in addition to precipitation to croplands enabled the assessment of the origin of water producing major crops as Hanasaki et al. (2010). Areas highly dependent on nonrenewable groundwater are detected in the Pakistan, Bangladesh, western part of India, north and western parts of China, some regions in the Arabian Peninsula and the western part of the United States through Mexico. Cumulative nonrenewable groundwater withdrawals estimated by the model are corresponding fairly well with the country statistics of total groundwater withdrawals. Ground water table depletions in large aquifers in US estimated by HiGW-MAT were compared with in-situ observational data, and the correspondences are very good. Mean global exploitation

  13. Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand.

    PubMed

    Hongmei, Jing; Aitchison, Jonathan C; Lacap, Donnabella C; Peerapornpisal, Yuwadee; Sompong, Udomluk; Pointing, Stephen B

    2005-08-01

    Most community molecular studies of thermophilic cyanobacterial mats to date have focused on Synechococcus occurring at temperatures of approximately 50-65 degrees C. These reveal that molecular diversity exceeds that indicated by morphology, and that phylogeographic lineages exist. The moderately thermophilic and generally filamentous cyanobacterial mat communities occurring at lower temperatures have not previously been investigated at the community molecular level. Here we report community diversity in mats of 42-53 degrees C recovered from previously unstudied geothermal locations. Separation of 16S rRNA gene-defined genotypes from community DNA was achieved by DGGE. Genotypic diversity was greater than morphotype diversity in all mats sampled, although genotypes generally corresponded to observed morphotypes. Thirty-six sequences were recovered from DGGE bands. Phylogenetic analyses revealed these to form novel thermophilic lineages distinct from their mesophilic counterparts, within Calothrix, Cyanothece, Fischerella, Phormidium, Pleurocapsa, Oscillatoria and Synechococcus. Where filamentous cyanobacterial sequences belonging to the same genus were recovered from the same site, these were generally closely affiliated. Location-specific sequences were observed for some genotypes recovered from geochemically similar yet spatially separated sites, thus providing evidence for phylogeographic lineages that evolve in isolation. Other genotypes were more closely affiliated to geographically remote counterparts from similar habitats suggesting that adaptation to certain niches is also important.

  14. Microscale characterization of dissolved organic matter production and uptake in marine microbial mat communities

    NASA Technical Reports Server (NTRS)

    Paerl, H. W.; Bebout, B. M.; Joye, S. B.; Des Marais, D. J.

    1993-01-01

    Intertidal marine microbial mats exhibited biologically mediated uptake of low molecular weight dissolved organic matter (DOM), including D-glucose, acetate, and an L-amino acid mixture at trace concentrations. Uptake of all compounds occurred in darkness, but was frequently enhanced under natural illumination. The photosystem 2 inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) generally failed to inhibit light-stimulated DOM uptake. Occasionally, light plus DCMU-amended treatments led to uptake rates higher than light-incubated samples, possibly due to phototrophic bacteria present in subsurface anoxic layers. Uptake was similar with either 3H- or 14C-labeled substrates, indicating that recycling of labeled CO2 via photosynthetic fixation was not interfering with measurements of light-stimulated DOM uptake. Microautoradiographs showed a variety of pigmented and nonpigmented bacteria and, to a lesser extent, cyanobacteria and eucaryotic microalgae involved in light-mediated DOM uptake. Light-stimulated DOM uptake was often observed in bacteria associated with sheaths and mucilage surrounding filamentous cyanobacteria, revealing a close association of organisms taking up DOM with photoautotrophic members of the mat community. The capacity for dark- and light-mediated heterotrophy, coupled to efficient retention of fixed carbon in the mat community, may help optimize net production and accretion of mats, even in oligotrophic waters.

  15. Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.

    2003-01-01

    Photosynthetic microbial mats are remarkably complete self-sustaining ecosystems at the millimeter scale, yet they have substantially affected environmental processes on a planetary scale. These mats may be direct descendents of the most ancient biological communities in which even oxygenic photosynthesis might have developed. Photosynthetic mats are excellent natural laboratories to help us to learn how microbial populations associate to control dynamic biogeochemical gradients.

  16. Effect of concrete slats, three mat types and out-wintering pads on performance and welfare of finishing beef steers.

    PubMed

    Earley, Bernadette; McNamara, John D; Jerrams, Stephen J; O'Riordan, Edward G

    2017-05-30

    The objective was to investigate the effect of placing mats on concrete slatted floors on performance, behaviour, hoof condition, dirt scores, physiological and immunological variables of beef steers, and to compare responses with animals on out-wintering pads. Continental crossbred beef steers [n = 360; mean (±SD) initial live weight 539 kg (42.2)] were blocked by breed and live weight and randomly assigned to one of five treatments; (1) Concrete slats alone, (2) Mat 1 (Natural Rubber structure) (Durapak Rubber Products), (3) Mat 2 (Natural rubber structure) (EasyFix), (4) Mat 3 (modified ethylene vinyl acetate (EVA) foam structure) and (5) Out-wintering pads (OWP's). Animals on the OWPs had a greater (P < 0.05) live weight gain (P < 0.05) compared with the slat and Mat 2 treatments: results for Mat 1 and Mat 3 were the same (P > 0.05) as the other treatments. Animals on the OWPs had reduced lying percentage time compared with all the other treatments. Dry matter (DM) intake was greater for animals on the OWPs compared with all the other treatments. Carcass weight, kill out proportion, carcass fat score, carcass composition score, FCR and physiological responses were similar (P > 0.05) among treatments. No incidence of laminitis was observed among treatments. The number of hoof lesions was greater on all mat types (P < 0.05) compared with concrete slats and OWP treatments. Dirt scores were greater (P < 0.05) for animals on OWPs when measured on days 42, 84, 105, 126 and 150 compared with animals on slats. Under the conditions adopted for the present study, there was no evidence to suggest that animals housed on bare concrete slats were disadvantaged in respect of animal welfare compared with animals housed on other floor types. It is concluded that the welfare of steers was not adversely affected by slats compared with different mat types or OWPs.

  17. Zirconium Hydroxide-coated Nanofiber Mats for Nerve Agent Decontamination.

    PubMed

    Kim, Sohee; Ying, Wu Bin; Jung, Hyunsook; Ryu, Sam Gon; Lee, Bumjae; Lee, Kyung Jin

    2017-03-16

    Diverse innovative fabrics with specific functionalities have been developed for requirements such as self-decontamination of chemical/biological pollutants and toxic nerve agents. In this work, Zr(OH) 4 -coated nylon-6,6 nanofiber mats were fabricated for the decontamination of nerve agents. Nylon-6,6 fabric was prepared via the electrospinning process, followed by coating with Zr(OH) 4 , which was obtained by the hydrolysis of Zr(OBu) 4 by a sol-gel reaction on nanofiber surfaces. The reaction conditions were optimized by varying the amounts of Zr(OBu) 4 ,the reaction time, and the temperature of the sol-gel reaction. The composite nanofibers show high decontamination efficiency against diisopropylfluorophosphate, which is a nerve agent analogue, due to its high nucleophilicity that aids in the catalysis of the hydrolysis of the phosphonate ester bonds. Composite nanofiber mats have a large potential and can be applied in specific fields such as military and medical markets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. 17 CFR 249.1300T - Form MA-T, for temporary registration as a municipal advisor, and for amendments to, and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Form MA-T, for temporary... Information Regarding Certain Natural Persons § 249.1300T Form MA-T, for temporary registration as a municipal... Register citations affecting Form MA-T, see the List of CFR Sections Affected, which appears in the Finding...

  19. Phylogeny of Valerianaceae based on matK and ITS markers, with reference to matK individual polymorphism

    PubMed Central

    HIDALGO, ORIANE; GARNATJE, TERESA; SUSANNA, ALFONSO; MATHEZ, JOËL

    2004-01-01

    • Background and Aims The monophyly of Valerianaceae and the precise delimitation of the family are not totally resolved. Our knowledge on the phylogeny of the group is only partial: on a morphological basis, some contradicting taxonomic proposals have been published, which demonstrates the difficulties in establishing a natural classification of the family and especially in proposing a relevant treatment of the large genus Valeriana. The aims of this study are to contribute to the phylogeny and generic delineation of the Valerianaceae on the basis of molecular data. • Methods A cladistic analysis of the sequences of one plastid (matK) and one nuclear (ITS) molecular marker was carried out, both individually and in combination. • Key Results The results of the analyses of both regions confirm that the family is monophyletic, with the exclusion of Triplostegia. The tribe Patrinieae is monophyletic, and the tribe Valerianeae is also a natural group. Two of the subtribes of Valerianeae, Fediinae and Centranthinae, are also monophyletic, with the exclusion of the genus Plectritis from Fediinae. The subtribe Valerianinae, on the other hand, is paraphyletic. • Conclusions Our results confirm, for the first time on a molecular basis, the suggested paraphyly of Valeriana in its present circumscription, with profound nomenclatural and taxonomic implications. The correlation between molecular phylogeny and biogeography is close. In the course of the plastid DNA sequencing, a polymorphism concerning the matK gene was found, a fact that should be carefully evaluated in phylogenetic analyses. PMID:14988097

  20. Compositions and methods of use of constructed microbial mats

    DOEpatents

    Bender, Judith A.; Phillips, Peter C.

    2000-01-01

    Compositions, methods and devices for bioremediation that comprise components of constructed microbial mats with organic and inorganic materials are described. The compositions, methods and devices can be used for bioremediation of different individual contaminants and for mixed or multiple contaminants, and for production of beneficial compositions and molecules.

  1. Organic geochemical studies of modern microbial mats from Shark Bay: Part I: Influence of depth and salinity on lipid biomarkers and their isotopic signatures.

    PubMed

    Pagès, A; Grice, K; Ertefai, T; Skrzypek, G; Jahnert, R; Greenwood, P

    2014-09-01

    The present study investigated the influence of abiotic conditions on microbial mat communities from Shark Bay, a World Heritage area well known for a diverse range of extant mats presenting structural similarities with ancient stromatolites. The distributions and stable carbon isotopic values of lipid biomarkers [aliphatic hydrocarbons and polar lipid fatty acids (PLFAs)] and bulk carbon and nitrogen isotope values of biomass were analysed in four different types of mats along a tidal flat gradient to characterize the microbial communities and systematically investigate the relationship of the above parameters with water depth. Cyanobacteria were dominant in all mats, as demonstrated by the presence of diagnostic hydrocarbons (e.g. n-C17 and n-C17:1). Several subtle but important differences in lipid composition across the littoral gradient were, however, evident. For instance, the shallower mats contained a higher diatom contribution, concordant with previous mat studies from other locations (e.g. Antarctica). Conversely, the organic matter (OM) of the deeper mats showed evidence for a higher seagrass contribution [high C/N, 13C-depleted long-chain n-alkanes]. The morphological structure of the mats may have influenced CO2 diffusion leading to more 13C-enriched lipids in the shallow mats. Alternatively, changes in CO2 fixation pathways, such as increase in the acetyl COA-pathway by sulphate-reducing bacteria, could have also caused the observed shifts in δ13C values of the mats. In addition, three smooth mats from different Shark Bay sites were analysed to investigate potential functional relationship of the microbial communities with differing salinity levels. The C25:1 HBI was identified in the high salinity mat only and a lower abundance of PLFAs associated with diatoms was observed in the less saline mats, suggesting a higher abundance of diatoms at the most saline site. Furthermore, it appeared that the most and least saline mats were dominated by

  2. Interactions between macro-algal mats and invertebrates in the Ythan estuary, Aberdeenshire, Scotland

    NASA Astrophysics Data System (ADS)

    Raffaelli, D.

    2000-07-01

    Blooms of opportunistic green macro-algae are a common feature of coastal areas and their effects on mudflat invertebrates can be dramatic. On the Ythan estuary, Aberdeenshire, Scotland, we have carried out a number of manipulative field experiments designed to evaluate the effects on invertebrates of different species of macro-algae with contrasting ecologies, and the effects of invertebrates on the development of the blooms. Macro-algal mats were found to have dramatic nega- tive effects on the density of the amphipod Corophium volutator, with higher algal biomasses having greater impact. The mechanism for this interaction seems to be interference by the algal filaments with the feeding behaviour of the amphipod. In contrast, the polychaete Capitella spp. increases in abundance under macro-algal mats due to enrichment of the sediment with organic material. These two interactions are seen at all scales, in areas of less than 1 m2 to the scale of the entire estuary, irrespective of the species composition of the macro- algal mats. Bioturbation by Corophium and grazing by the snail Hydrobia ulvae had little effect on macro-algal biomass, but there were less algae when the polychaete Nereis diversicolor was present. The most significant interaction in this system is the pronounced negative impact of algal mats on the abundance of Corophium, probably the most important invertebrate species in the diets of the estuary's shorebirds, fish and epibenthic crustaceans.

  3. Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair.

    PubMed

    Yao, Chun-Hsu; Lee, Chia-Yu; Huang, Chiung-Hua; Chen, Yueh-Sheng; Chen, Kuo-Yu

    2017-10-01

    A bilayer membrane (GKU) with a commercial polyurethane wound dressing as an outer layer and electrospun gelatin/keratin nanofibrous mat as an inner layer was fabricated as a novel wound dressing. Scanning electron micrographs showed that gelatin/keratin nanofibers had a uniform morphology and bead-free structure with average fiber diameter of 160.4nm. 3-(4,5-Dimethylthiazolyl)-2,5-diphenyltetrazolium bromide assay using L929 fibroblast cells indicated that the residues released from the gelatin/keratin composite nanofibrous mat accelerated cell proliferation. Cell attachment experiments revealed that adhered cells spread better and migrated deeper into the gelatin/keratin nanofibrous mat than that into the gelatin nanofibrous mat. In animal studies, compared with the bilayer membrane without keratin, gauze and commercial wound dressing, Comfeel®, GKU membrane gave much more number of blood vessels and a greater reduction in wound area at 4days, and better wound repair at 14days with a thicker epidermis and larger number of newly formed hair follicles. GKU membrane, thus, could be a good candidate for wound dressing applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: Tensile properties and rate of fire propagation

    NASA Astrophysics Data System (ADS)

    Thongpin, C.; Srimuk, J.; hipkam, N.; Wachirapong, P.

    2015-07-01

    In this study, 3 types of natural fibres, i.e. jute, sisal and abaca, were plain weaved to fibre mat. Before weaving, the fibres were treated with 5% NaOH to remove hemi cellulose and lignin. The weaving was performed by hand using square wooden block fit with nails for weaving using one and two types of natural fibres as weft and warp fibre to produce natural fibre mat. The fibre mat was also impregnated in sodium silicate solution extracted from rich husk ash. The pH of the solution was adjusted to pH 7 using H2SO4 before impregnation. After predetermined time, sodium silicate was gelled and deposited on the mat. The fabric mat and sodium silicate coated mat were then impregnated with PLA solution to produce prepreg. Dried pepreg was laminated with PLA sheet using compressing moulding machine to obtain natural fibre mat/PLA composite. The composite containing abaca aligned in longitudinal direction with respect to tension force enhanced Young's modulus more than 300%. Fibre mat composites with abaca aligned in longitudinal direction also showed tensile strength enhancement nearly 400% higher than neat PLA. After coating with sodium silicate, the tensile modulus of the composites was found slightly increased. The silicate coating was disadvantage on tensile strength of the composite due to the effect of sodium hydroxide solution that was used as solvent for silicate extraction from rice husk ash. However, sodium silicate could retard rate of fire propagation about 50%compare to neat PLA and about 10% reduction compared to fibre mat composites without sodium silicate coated fibre mat.

  5. Impact of glutathione supplementation of parenteral nutrition on hepatic methionine adenosyltransferase activity.

    PubMed

    Elremaly, Wesam; Mohamed, Ibrahim; Rouleau, Thérèse; Lavoie, Jean-Claude

    2016-08-01

    The oxidation of the methionine adenosyltransferase (MAT) by the combined impact of peroxides contaminating parenteral nutrition (PN) and oxidized redox potential of glutathione is suspected to explain its inhibition observed in animals. A modification of MAT activity is suspected to be at origin of the PN-associated liver disease as observed in newborns. We hypothesized that the correction of redox potential of glutathione by adding glutathione in PN protects the MAT activity. To investigate whether the addition of glutathione to PN can reverse the inhibition of MAT observed in animal on PN. Three days old guinea pigs received through a jugular vein catheter 2 series of solutions. First with methionine supplement, (1) Sham (no infusion); (2) PN: amino acids, dextrose, lipids and vitamins; (3) PN-GSSG: PN+10μM GSSG. Second without methionine, (4) D: dextrose; (5) D+180μM ascorbylperoxide; (6) D+350μM H2O2. Four days later, liver was sampled for determination of redox potential of glutathione and MAT activity in the presence or absence of 1mM DTT. Data were compared by ANOVA, p<0.05. MAT activity was 45±4% lower in animal infused with PN and 23±7% with peroxides generated in PN. The inhibition by peroxides was associated with oxidized redox potential and was reversible by DTT. Correction of redox potential (PN+GSSG) or DTT was without effect on the inhibition of MAT by PN. The slope of the linear relation between MAT activity and redox potential was two fold lower in animal infused with PN than in others groups. The present study suggests that prevention of peroxide generation in PN and/or correction of the redox potential by adding glutathione in PN are not sufficient, at least in newborn guinea pigs, to restore normal MAT activity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  6. A Comparison of Standardized Achievement Test Scores on Right and Left Brain Dominant Fourth-Grade Students.

    ERIC Educational Resources Information Center

    Bell, Michael L.; Roubinek, Darrell L.

    1989-01-01

    Compares fourth-graders' subtest scores on the Stanford Achievement Test (SAT), the Iowa Test of Basic Skills (ITBS), and the Metropolitan Achievement Test (MAT). Finds right-brain dominant students scored better on four SAT subtests, and left-brain dominant students scored better on four ITBS subtests and two MAT subtests. (NH)

  7. Usefulness of a single-assay chemiluminescence test (Tularaemia VIRCLIA IgG + IgM monotest) for the diagnosis of human tularemia. Comparison of five serological tests.

    PubMed

    Cubero, África; Durántez, Carlos; Almaraz, Ana; Fernández-Lago, Luis; Gutiérrez, María P; Castro, María J; Bratos, Miguel A; Simarro, María; March, Gabriel A; Orduña, Antonio

    2018-04-01

    The aim of this work was to ascertain the usefulness of a new commercially-available single-assay chemiluminescence test (CHT) for the diagnosis of human tularemia (Tularaemia VIRCLIA IgG + IgM monotest, Vircell, Santa Fe, Granada, Spain). A total of 773 sera from 773 patients including 364 initial sera from patients with diagnosed tularemia, patients with suspected tularemia not confirmed (100), healthy people (152), patients with serology positive to Brucella (97), patients diagnosed with other infectious diseases (30), and patients diagnosed with autoimmune diseases (30) were included. All sera were tested by CHT, "in-house" microagglutination test (MAT), immunochromatographic test (ICT) (Virapid Tularaemia, Vircell, Santa Fe Granada, Spain), and "in-house" ELISA IgG, and ELISA IgM. Of the total initial sera, 334 (sensitivity 91.8%) were positive in the CHT, 332 (sensitivity 91.2%) in the MAT, 330 (sensitivity 90.7%) in the ICT, and 328 (sensitivity 90.1%) in the ELISA IgG and ELISA IgM tests. The specificity of the CHT was 96.7%; of the MAT, 100%; of the ICT, 98.7%; and of the ELISA IgG and ELISA IgM, 97.4%. In the group of patients with serology positive to Brucella, at least 12.4% of sera were positive in tularemia tests (12.4% in ELISA IgM, 13.4% in MAT, 14.4% in ICT, and 15.5% in CHT and ELISA IgG). In conclusion, CHT presents a sensitivity and specificity in early diagnosis of human tularemia, similar to MAT, ICT, and ELISA IgG and ELISA IgM. Its single assay design allows lower costs, especially in areas of low endemicity or inter-epidemic periods.

  8. Development of a Twin-spool Turbofan Engine Simulation Using the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

    NASA Technical Reports Server (NTRS)

    Zinnecker, Alicia M.; Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Johathan S.

    2014-01-01

    The Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS) is a tool that has been developed to allow a user to build custom models of systems governed by thermodynamic principles using a template to model each basic process. Validation of this tool in an engine model application was performed through reconstruction of the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) (v2) using the building blocks from the T-MATS (v1) library. In order to match the two engine models, it was necessary to address differences in several assumptions made in the two modeling approaches. After these modifications were made, validation of the engine model continued by integrating both a steady-state and dynamic iterative solver with the engine plant and comparing results from steady-state and transient simulation of the T-MATS and C-MAPSS models. The results show that the T-MATS engine model was accurate within 3 of the C-MAPSS model, with inaccuracy attributed to the increased dimension of the iterative solver solution space required by the engine model constructed using the T-MATS library. This demonstrates that, given an understanding of the modeling assumptions made in T-MATS and a baseline model, the T-MATS tool provides a viable option for constructing a computational model of a twin-spool turbofan engine that may be used in simulation studies.

  9. Hazardous material transportation safety and security field operational test final detailed test plans : executive summary

    DOT National Transportation Integrated Search

    2003-09-16

    The objective of this Hazardous Material (HazMat) Transportation Safety and Security Field Operational Test (FOT) Final Detailed Test Plans evaluation is to measure the impact of technology solutions on the safety, security, and operational efficienc...

  10. Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Des Marais, D. J.

    1986-01-01

    The vertical zonation of light, O2, H2S, pH, and sulfur bacteria was studied in two benthic cyanobacterial mats from hypersaline ponds at Guerrero Negro, Baja California, Mexico. The physical-chemical gradients were analyzed in the upper few mm at < or = 100 micrometers spatial resolution by microelectrodes and by a fiber optic microprobe. In mats, where oxygen produced by photosynthesis diffused far below the depth of the photic zone, colorless sulfur bacteria (Beggiatoa sp.) were the dominant sulfide oxidizing organisms. In a mat, where the O2-H2S interface was close to the photic zone, but yet received no significant visible light, purple sulfur bacteria (Chromatium sp.) were the dominant sulfide oxidizers. Analysis of the spectral light distribution here showed that the penetration of only 1% of the incident near-IR light (800-900 nm) into the sulfide zone was sufficient for the mass development of Chromatium in a narrow band of 300 micromoles thickness. The balance between O2 and light penetration down into the sulfide zone thus determined in micro-scale which type of sulfur bacteria became dominant.

  11. Comparative Analysis of Microbial Communities in Iron-Dominated Flocculent Mats in Deep-Sea Hydrothermal Environments

    PubMed Central

    Kikuchi, Sakiko; Mitsunobu, Satoshi; Takaki, Yoshihiro; Yamanaka, Toshiro; Toki, Tomohiro; Noguchi, Takuroh; Nakamura, Kentaro; Abe, Mariko; Hirai, Miho; Yamamoto, Masahiro; Uematsu, Katsuyuki; Miyazaki, Junichi; Nunoura, Takuro; Takahashi, Yoshio; Takai, Ken

    2016-01-01

    ABSTRACT It has been suggested that iron is one of the most important energy sources for photosynthesis-independent microbial ecosystems in the ocean crust. Iron-metabolizing chemolithoautotrophs play a key role as primary producers, but little is known about their distribution and diversity and their ecological role as submarine iron-metabolizing chemolithotrophs, particularly the iron oxidizers. In this study, we investigated the microbial communities in several iron-dominated flocculent mats found in deep-sea hydrothermal fields in the Mariana Volcanic Arc and Trough and the Okinawa Trough by culture-independent molecular techniques and X-ray mineralogical analyses. The abundance and composition of the 16S rRNA gene phylotypes demonstrated the ubiquity of zetaproteobacterial phylotypes in iron-dominated mat communities affected by hydrothermal fluid input. Electron microscopy with energy-dispersive X-ray microanalysis and X-ray absorption fine structure (XAFS) analysis revealed the chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species and the potential contribution of Zetaproteobacteria to the in situ generation. These results suggest that putative iron-oxidizing chemolithoautotrophs play a significant ecological role in producing iron-dominated flocculent mats and that they are important for iron and carbon cycles in deep-sea low-temperature hydrothermal environments. IMPORTANCE We report novel aspects of microbiology from iron-dominated flocculent mats in various deep-sea environments. In this study, we examined the relationship between Zetaproteobacteria and iron oxides across several hydrothermally influenced sites in the deep sea. We analyzed iron-dominated mats using culture-independent molecular techniques and X-ray mineralogical analyses. The scanning electron microscopy–energy-dispersive X-ray spectroscopy SEM-EDS analysis and X-ray absorption fine structure (XAFS) analysis revealed chemical and mineralogical signatures of

  12. Comparative Analysis of Microbial Communities in Iron-Dominated Flocculent Mats in Deep-Sea Hydrothermal Environments.

    PubMed

    Makita, Hiroko; Kikuchi, Sakiko; Mitsunobu, Satoshi; Takaki, Yoshihiro; Yamanaka, Toshiro; Toki, Tomohiro; Noguchi, Takuroh; Nakamura, Kentaro; Abe, Mariko; Hirai, Miho; Yamamoto, Masahiro; Uematsu, Katsuyuki; Miyazaki, Junichi; Nunoura, Takuro; Takahashi, Yoshio; Takai, Ken

    2016-10-01

    It has been suggested that iron is one of the most important energy sources for photosynthesis-independent microbial ecosystems in the ocean crust. Iron-metabolizing chemolithoautotrophs play a key role as primary producers, but little is known about their distribution and diversity and their ecological role as submarine iron-metabolizing chemolithotrophs, particularly the iron oxidizers. In this study, we investigated the microbial communities in several iron-dominated flocculent mats found in deep-sea hydrothermal fields in the Mariana Volcanic Arc and Trough and the Okinawa Trough by culture-independent molecular techniques and X-ray mineralogical analyses. The abundance and composition of the 16S rRNA gene phylotypes demonstrated the ubiquity of zetaproteobacterial phylotypes in iron-dominated mat communities affected by hydrothermal fluid input. Electron microscopy with energy-dispersive X-ray microanalysis and X-ray absorption fine structure (XAFS) analysis revealed the chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species and the potential contribution of Zetaproteobacteria to the in situ generation. These results suggest that putative iron-oxidizing chemolithoautotrophs play a significant ecological role in producing iron-dominated flocculent mats and that they are important for iron and carbon cycles in deep-sea low-temperature hydrothermal environments. We report novel aspects of microbiology from iron-dominated flocculent mats in various deep-sea environments. In this study, we examined the relationship between Zetaproteobacteria and iron oxides across several hydrothermally influenced sites in the deep sea. We analyzed iron-dominated mats using culture-independent molecular techniques and X-ray mineralogical analyses. The scanning electron microscopy-energy-dispersive X-ray spectroscopy SEM-EDS analysis and X-ray absorption fine structure (XAFS) analysis revealed chemical and mineralogical signatures of biogenic Fe

  13. Lava Cave Microbial Communities Within Mats and Secondary Mineral Deposits: Implications for Life Detection on Other Planets

    PubMed Central

    Melim, L.A.; Spilde, M.N.; Hathaway, J.J.M.; Garcia, M.G.; Moya, M.; Stone, F.D.; Boston, P.J.; Dapkevicius, M.L.N.E.; Riquelme, C.

    2011-01-01

    Abstract Lava caves contain a wealth of yellow, white, pink, tan, and gold-colored microbial mats; but in addition to these clearly biological mats, there are many secondary mineral deposits that are nonbiological in appearance. Secondary mineral deposits examined include an amorphous copper-silicate deposit (Hawai‘i) that is blue-green in color and contains reticulated and fuzzy filament morphologies. In the Azores, lava tubes contain iron-oxide formations, a soft ooze-like coating, and pink hexagons on basaltic glass, while gold-colored deposits are found in lava caves in New Mexico and Hawai‘i. A combination of scanning electron microscopy (SEM) and molecular techniques was used to analyze these communities. Molecular analyses of the microbial mats and secondary mineral deposits revealed a community that contains 14 phyla of bacteria across three locations: the Azores, New Mexico, and Hawai‘i. Similarities exist between bacterial phyla found in microbial mats and secondary minerals, but marked differences also occur, such as the lack of Actinobacteria in two-thirds of the secondary mineral deposits. The discovery that such deposits contain abundant life can help guide our detection of life on extraterrestrial bodies. Key Words: Biosignatures—Astrobiology—Bacteria—Caves—Life detection—Microbial mats. Astrobiology 11, 601–618. PMID:21879833

  14. The effects of Mat Pilates and Reformer Pilates in patients with Multiple Sclerosis: A randomized controlled study.

    PubMed

    Bulguroglu, I; Guclu-Gunduz, A; Yazici, G; Ozkul, C; Irkec, C; Nazliel, B; Batur-Caglayan, H Z

    2017-01-01

    Pilates is an exercise method which increases strength and endurance of core muscles and improves flexibility, dynamic postural control and balance. To analyze and compare the effects of Mat and Reformer Pilates methods in Patients with Multiple Sclerosis (MS). Thirty-eight patients with MS were included in the study. Participants were randomly divided into 3 groups as Mat Pilates, Reformer Pilates and control groups. The subjects in the Pilates groups did Mat or Reformer Pilates for 8 weeks, 2 days a week. The control group did breathing and relaxation exercises at home. Balance, functional mobility, core stability, fatigue severity and quality of life were evaluated. Balance, functional mobility, core stability, fatigue severity and quality of life improved after Pilates in Mat and Reformer Pilates groups (p < 0.05). On the other hand, we could not find any changing in the control group (p > 0.05). When the gain obtained in the Pilates groups is compared, it has been observed that progress has been more in trunk flexor muscle strength in the Reformer Pilates group (p < 0.05) and that the gain has been similar in the other parameters (p > 0.05). As a result, patients with MS have seen similar benefits in Reformer Pilates and Mat Pilates methods.

  15. Context, Biogeochemistry, and Morphology of Diverse and Spatially Extensive Microbial Mats, Little Ambergris Cay, Turks and Caicos Islands, B.W.I.

    NASA Astrophysics Data System (ADS)

    Present, T. M.; Trower, L.; Stein, N.; Alleon, J.; Bahniuk, A.; Gomes, M. L.; Lingappa, U.; Metcalfe, K.; Orzechowski, E. A.; Riedman, L. A.; Sanders, C. B.; Morris, D. K.; O'Reilly, S.; Sibert, E. C.; Thorpe, M.; Tarika, M.; Fischer, W. W.; Knoll, A. H.; Grotzinger, J. P.

    2017-12-01

    Little Ambergris Cay (21.3° N, 71.7° W) was the site of an integrated geobiological study conducted in July 2016 and August 2017. The cay ( 6 km x 1.6 km) is developed on a broad bank influenced by strong easterly trade winds (avg. 7.5 m/s), where convergent ooid shoals culminate in a linear shoal extending almost 25 km westward from the cay. Lithified upper shoreface to eolian ooid grainstones form a 2 m high bedrock rim that protects an extensive interior tidal marsh with well-developed microbial mats. Local breaches in the rim allow tidal flows to inundate interior bays floored by microbial mats. Three mat types were observed based on texture: dark toned "blister mat" that flanks the bays where they intersect with the bedrock rim; light-toned "polygonal mat" that covers broad tracts of the bay and is exposed at low tide; and lighter-toned "EPS mat" that is generally submerged even at low tide. The millimeter-to decimeter-thick layered mats overlie laterally extensive ooid sands, generally unlithified except for a few hardgrounds. The mats and underlying sediments were sampled by vibracoring, push coring, and piezometers. Biogeochemical analyses include groundwater salinity, pH, DIC, alkalinity, cation composition, DNA content, photosynthetic efficiency, C and S isotope composition, lipid biomarkers, and taphonomic state. Groundwater and interstitial water chemical analyses were integrated with hydrologic observations of tidal channels' level and flow. Visible light UAV images from 350 m standoff distance were processed to generate a 15 cm/pixel mosaic of the island that was used in combination with a DGPS survey, multispectral Landsat images (m-scale resolution) and Worldview satellite images (30 cm resolution) to map the island's topography, mats, and sedimentologic facies. A UAV-based VNIR hyperspectral camera was used to quantify pigment concentrations in the mats at cm-resolution over decameter scales. Sub-cm-scale bed textures, including those expressed

  16. Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene

    NASA Astrophysics Data System (ADS)

    Hidalgo-Salazar, Miguel A.; Correa, Juan P.

    2018-03-01

    In this work Linear Low Density Polyethylene-nonwoven industrial Fique fiber mat (LLDPE-Fique) and Epoxy Resin-nonwoven industrial Fique fiber mat (EP-Fique) biocomposites were prepared using thermocompression and resin film infusion processes. Neat polymeric matrices and its biocomposites were tested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also, thermal behavior of these materials has been studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Tensile and flexural test revealed that nonwoven Fique reinforced composites exhibited higher modulus and strength but lower deformation capability as compared with LLDPE and EP neat matrices. TG thermograms showed that nonwoven Fique fibers incorporation has an effect on the thermal stability of the composites. On the other hand, Fique fibers did not change the crystallization and melting processes of the LLDPE matrix but restricts the motion of EP macromolecules chains thus increases the Tg of the EP-Fique composite. Finally, this work opens the possibility of considering non-woven Fique fibers as a reinforcement material with a high potential for the manufacture of biocomposites for automotive applications. In addition to the processing test specimens, it was also possible to manufacture a part of LLDPE-Fique, and one part of EP-Fique.

  17. The molecular dimension of microbial species: 1. Ecological distinctions among, and homogeneity within, putative ecotypes of Synechococcus inhabiting the cyanobacterial mat of Mushroom Spring, Yellowstone National Park

    PubMed Central

    Becraft, Eric D.; Wood, Jason M.; Rusch, Douglas B.; Kühl, Michael; Jensen, Sheila I.; Bryant, Donald A.; Roberts, David W.; Cohan, Frederick M.; Ward, David M.

    2015-01-01

    Based on the Stable Ecotype Model, evolution leads to the divergence of ecologically distinct populations (e.g., with different niches and/or behaviors) of ecologically interchangeable membership. In this study, pyrosequencing was used to provide deep sequence coverage of Synechococcus psaA genes and transcripts over a large number of habitat types in the Mushroom Spring microbial mat. Putative ecological species [putative ecotypes (PEs)], which were predicted by an evolutionary simulation based on the Stable Ecotype Model (Ecotype Simulation), exhibited distinct distributions relative to temperature-defined positions in the effluent channel and vertical position in the upper 1 mm-thick mat layer. Importantly, in most cases variants predicted to belong to the same PE formed unique clusters relative to temperature and depth in the mat in canonical correspondence analysis, supporting the hypothesis that while the PEs are ecologically distinct, the members of each ecotype are ecologically homogeneous. PEs responded differently to experimental perturbations of temperature and light, but the genetic variation within each PE was maintained as the relative abundances of PEs changed, further indicating that each population responded as a set of ecologically interchangeable individuals. Compared to PEs that predominate deeper within the mat photic zone, the timing of transcript abundances for selected genes differed for PEs that predominate in microenvironments closer to upper surface of the mat with spatiotemporal differences in light and O2 concentration. All of these findings are consistent with the hypotheses that Synechococcus species in hot spring mats are sets of ecologically interchangeable individuals that are differently adapted, that these adaptations control their distributions, and that the resulting distributions constrain the activities of the species in space and time. PMID:26157420

  18. Constitutive modelling of creep in a long fiber random glass mat thermoplastic composite

    NASA Astrophysics Data System (ADS)

    Dasappa, Prasad

    The primary objective of this proposed research is to characterize and model the creep behaviour of Glass Mat Thermoplastic (GMT) composites under thermo-mechanical loads. In addition, tensile testing has been performed to study the variability in mechanical properties. The thermo-physical properties of the polypropylene matrix including crystallinity level, transitions and the variation of the stiffness with temperature have also been determined. In this work, the creep of a long fibre GMT composite has been investigated for a relatively wide range of stresses from 5 to 80 MPa and temperatures from 25 to 90°C. The higher limit for stress is approximately 90% of the nominal tensile strength of the material. A Design of Experiments (ANOVA) statistical method was applied to determine the effects of stress and temperature in the random mat material which is known for wild experimental scatter. Two sets of creep tests were conducted. First, preliminary short-term creep tests consisting of 30 minutes creep followed by recovery were carried out over a wide range of stresses and temperatures. These tests were carried out to determine the linear viscoelastic region of the material. From these tests, the material was found to be linear viscoelastic up-to 20 MPa at room temperature and considerable non-linearities were observed with both stress and temperature. Using Time-Temperature superposition (TTS) a long term master curve for creep compliance for up-to 185 years at room temperature has been obtained. Further, viscoplastic strains were developed in these tests indicating the need for a non-linear viscoelastic viscoplastic constitutive model. The second set of creep tests was performed to develop a general non-linear viscoelastic viscoplastic constitutive model. Long term creep-recovery tests consisting of 1 day creep followed by recovery has been conducted over the stress range between 20 and 70 MPa at four temperatures: 25°C, 40°C, 60°C and 80°C. Findley's model

  19. Detail of the underground wire net mat and cable at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of the underground wire net mat and cable at the base of a 94' low-band reflector screen pole, view facing north - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI

  20. Commander Mattingly prepares meal on middeck

    NASA Image and Video Library

    1982-07-04

    STS004-28-312 (27 June-4 July 1982) --- Astronaut Thomas K. Mattingly II, STS-4 crew commander, prepares a meal in the middeck area of space shuttle Columbia. He uses scissors to open a drink container. Various packages of food and meal accessories are attached to locker doors. At far left edge of the frame is the tall payload called continuous flow electrophoresis experiment (CFES) system-designed to separate biological materials according to their surface electrical charges as they pass through an electrical field. Astronaut Henry W. Hartsfield Jr. exposed this frame with a 35mm camera. Photo credit: NASA

  1. MatLab program for precision calibration of optical tweezers

    NASA Astrophysics Data System (ADS)

    Tolić-Nørrelykke, Iva Marija; Berg-Sørensen, Kirstine; Flyvbjerg, Henrik

    2004-06-01

    Optical tweezers are used as force transducers in many types of experiments. The force they exert in a given experiment is known only after a calibration. Computer codes that calibrate optical tweezers with high precision and reliability in the ( x, y)-plane orthogonal to the laser beam axis were written in MatLab (MathWorks Inc.) and are presented here. The calibration is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is achieved by accounting for a number of factors that affect this power spectrum. First, cross-talk between channels in 2D position measurements is tested for, and eliminated if detected. Then, the Lorentzian power spectrum that results from the Einstein-Ornstein-Uhlenbeck theory, is fitted to the low-frequency part of the experimental spectrum in order to obtain an initial guess for parameters to be fitted. Finally, a more complete theory is fitted, a theory that optionally accounts for the frequency dependence of the hydrodynamic drag force and hydrodynamic interaction with a nearby cover slip, for effects of finite sampling frequency (aliasing), for effects of anti-aliasing filters in the data acquisition electronics, and for unintended "virtual" filtering caused by the position detection system. Each of these effects can be left out or included as the user prefers, with user-defined parameters. Several tests are applied to the experimental data during calibration to ensure that the data comply with the theory used for their interpretation: Independence of x- and y-coordinates, Hooke's law, exponential distribution of power spectral values, uncorrelated Gaussian scatter of residual values. Results are given with statistical errors and covariance matrix. Program summaryTitle of program: tweezercalib Catalogue identifier: ADTV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland. Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV Computer for

  2. Interactions in the Geo-Biosphere: Processes of Carbonate Precipitation in Microbial Mats

    NASA Astrophysics Data System (ADS)

    Dupraz, C.; Visscher, P. T.

    2009-12-01

    Microbial communities are situated at the interface between the biosphere, the lithosphere and the hydrosphere. These microbes are key players in the global carbon cycle, where they influence the balance between the organic and inorganic carbon reservoirs. Microbial populations can be organized in microbial mats, which can be defined as organosedimentary biofilms that are dominated by cyanobacteria, and exhibit tight coupling of element cycles. Complex interactions between mat microbes and their surrounding environment can result in the precipitation of carbonate minerals. This process refers as ‘organomineralization sensu lato' (Dupraz et al. in press), which differs from ‘biomineralization’ (e.g., in shells and bones) by lacking genetic control on the mineral product. Organomineralization can be: (1) active, when microbial metabolic reactions are responsible for the precipitation (“biologically-induced” mineralization) or (2) passive, when mineralization within a microbial organic matrix is environmentally driven (e.g., through degassing or desiccation) (“biologically-influenced” mineralization). Studying microbe-mineral interactions is essential to many emerging fields of the biogeoscience, such as the study of life in extreme environments (e.g, deep biosphere), the origin of life, the search for traces of extraterrestrial life or the seek of new carbon sink. This research approach combines sedimentology, biogeochemistry and microbiology. Two tightly coupled components that control carbonate organomineralization s.l.: (1) the alkalinity engine and (2) the extracellular organic matter (EOM), which is ultimately the location of mineral nucleation. Carbonate alkalinity can be altered both by microbial metabolism and environmental factors. In microbial mats, the net accumulation of carbonate minerals often reflect the balance between metabolic activities that consume/produce CO2 and/or organic acids. For example, photosynthesis and sulfate reduction

  3. Algal Species and Light Microenvironment in a Low-pH, Geothermal Microbial Mat Community

    PubMed Central

    Ferris, M. J.; Sheehan, K. B.; Kühl, M.; Cooksey, K.; Wigglesworth-Cooksey, B.; Harvey, R.; Henson, J. M.

    2005-01-01

    Unicellular algae are the predominant microbial mat-forming phototrophs in the extreme environments of acidic geothermal springs. The ecology of these algae is not well known because concepts of species composition are inferred from cultivated isolates and microscopic observations, methods known to provide incomplete and inaccurate assessments of species in situ. We used sequence analysis of 18S rRNA genes PCR amplified from mat samples from different seasons and different temperatures along a thermal gradient to identify algae in an often-studied acidic (pH 2.7) geothermal creek in Yellowstone National Park. Fiber-optic microprobes were used to show that light for algal photosynthesis is attenuated to <1% over the 1-mm surface interval of the mat. Three algal sequences were detected, and each was present year-round. A Cyanidioschyzon merolae sequence was predominant at temperatures of ≥49°C. A Chlorella protothecoides var. acidicola sequence and a Paradoxia multisita-like sequence were predominant at temperatures of ≤39°C. PMID:16269755

  4. [Analysis of MAT1A gene mutations in a child affected with simple hypermethioninemia].

    PubMed

    Sun, Yun; Ma, Dingyuan; Wang, Yanyun; Yang, Bin; Jiang, Tao

    2017-02-10

    To detect potential mutations of MAT1A gene in a child suspected with simple hypermethioninemia by MS/MS neonatal screening. Clinical data of the child was collected. Genomic DNA was extracted by a standard method and subjected to targeted sequencing using an Ion Ampliseq TM Inherited Disease Panel. Detected mutations were verified by Sanger sequencing. The child showed no clinical features except evaluated methionine. A novel compound mutation of the MAT1A gene, i.e., c.345delA and c.529C>T, was identified in the child. His father and mother were found to be heterozygous for the c.345delA mutation and c.529C>T mutation, respectively. The compound mutation c.345delA and c.529C>T of the MAT1A gene probably underlie the disease in the child. The semi-conductor sequencing has provided an important means for the diagnosis of hereditary diseases.

  5. Algal species and light microenvironment in a low-pH, geothermal microbial mat community.

    PubMed

    Ferris, M J; Sheehan, K B; Kühl, M; Cooksey, K; Wigglesworth-Cooksey, B; Harvey, R; Henson, J M

    2005-11-01

    Unicellular algae are the predominant microbial mat-forming phototrophs in the extreme environments of acidic geothermal springs. The ecology of these algae is not well known because concepts of species composition are inferred from cultivated isolates and microscopic observations, methods known to provide incomplete and inaccurate assessments of species in situ. We used sequence analysis of 18S rRNA genes PCR amplified from mat samples from different seasons and different temperatures along a thermal gradient to identify algae in an often-studied acidic (pH 2.7) geothermal creek in Yellowstone National Park. Fiber-optic microprobes were used to show that light for algal photosynthesis is attenuated to < 1% over the 1-mm surface interval of the mat. Three algal sequences were detected, and each was present year-round. A Cyanidioschyzon merolae sequence was predominant at temperatures of > or = 49 degrees C. A Chlorella protothecoides var. acidicola sequence and a Paradoxia multisita-like sequence were predominant at temperatures of < or = 39 degrees C.

  6. Fused Silica Surface Coating for a Flexible Silica Mat Insulation System

    NASA Technical Reports Server (NTRS)

    Rhodes, W. H.

    1973-01-01

    Fused silica insulation coatings have been developed for application to a flexible mat insulation system. Based on crystalline phase nucleation and growth kinetics, a 99+% SiO2 glass was selected as the base composition. A coating was developed that incorporated the high emissivity phase NiCr2O4 as a two phase coating with goals of high emittance and minimum change in thermal expansion. A second major coating classification has a plasma sprayed emittance coating over a sealed pure amorphous SiO2 layer. A third area of development centered on extremely thin amorphous SiO2 coatings deposited by chemical vapor deposition. The coating characterization studies presented are mechanical testing of thin specimens extracted from the coatings, cyclic arc exposures, and emittance measurements before and after arc exposures.

  7. The development of stromatolitic features from laminated microbial mats in the coastal sabkha of Abu Dhabi (UAE)

    NASA Astrophysics Data System (ADS)

    Paul, Andreas; Lessa Andrade, Luiza; Dutton, Kirsten E.; Sherry, Angela; Court, Wesley M.; Van der Land, Cees; Lokier, Stephen W.; Head, Ian M.

    2017-04-01

    Stromatolitic features are documented from both marine and terrestrial environments worldwide. These features form through a combination of trapping and binding of allochthonous grains, and through microbially mediated and/or controlled precipitation of carbonate minerals. The combined effects of these processes result in the continuous vertical and lateral growth of stromatolites. While the Abu Dhabi coastal sabkha is well known for a vast microbial mat belt that is dominated by continuous polygonal and internally-laminated microbial mats, no stromatolitic features have been reported from this area so far. In this study, we report evidence for stromatolitic features from the coastal sabkha of Abu Dhabi, based on observations in an intertidal but permanently submerged pool. This pool lies embedded within the laminated microbial mat zone, and is marked by the development of true laminated stromatolite at its margins and microbial build-ups at its centre. In order to characterise processes that lead to the formation of these stromatolitic features, and to develop a conceptual model that describes their development in the context of variations in sea level, tidal energy and other environmental factors, we employ a multitude of environmental, sedimentological, mineralogical and geochemical methods. These methods include the analysis of water data in terms of temporal variations in temperature, salinity, dissolved oxygen and water level, the analysis of petrographic thin sections of both lithified and unlithified features as well as an analysis of the stromatolites' mineralogical composition, and the amounts of incorporated organic carbon and calcium carbonate. Initial results suggest that the development of the observed stromatolitic features in the coastal sabkha of Abu Dhabi is the result of a complex interplay between simultaneous erosion of laminated microbial mat, and biotic/abiotic lithification processes. Initially, the location of this pool was characterised by

  8. tweezercalib 2.0: Faster version of MatLab package for precise calibration of optical tweezers

    NASA Astrophysics Data System (ADS)

    Hansen, Poul Martin; Tolić-Nørrelykke, Iva Marija; Flyvbjerg, Henrik; Berg-Sørensen, Kirstine

    2006-03-01

    We present a vectorized version of the MatLab (MathWorks Inc.) package tweezercalib for calibration of optical tweezers with precision. The calibration is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is achieved by accounting for a number of factors that affect this power spectrum, as described in vs. 1 of the package [I.M. Tolić-Nørrelykke, K. Berg-Sørensen, H. Flyvbjerg, Matlab program for precision calibration of optical tweezers, Comput. Phys. Comm. 159 (2004) 225-240]. The graphical user interface allows the user to include or leave out each of these factors. Several "health tests" are applied to the experimental data during calibration, and test results are displayed graphically. Thus, the user can easily see whether the data comply with the theory used for their interpretation. Final calibration results are given with statistical errors and covariance matrix. New version program summaryTitle of program: tweezercalib Catalogue identifier: ADTV_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV_v2_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Reference in CPC to previous version: I.M. Tolić-Nørrelykke, K. Berg-Sørensen, H. Flyvbjerg, Comput. Phys. Comm. 159 (2004) 225 Catalogue identifier of previous version: ADTV Does the new version supersede the original program: Yes Computer for which the program is designed and others on which it has been tested: General computer running MatLab (Mathworks Inc.) Operating systems under with the program has been tested: Windows2000, Windows-XP, Linux Programming language used: MatLab (Mathworks Inc.), standard license Memory required to execute with typical data: Of order four times the size of the data file High speed storage required: none No. of lines in distributed program, including test data, etc.: 135 989 No. of bytes in distributed program, including test data, etc.: 1 527 611 Distribution

  9. Physical properties and morphology of electrospun composite fiber mats of polyhydroxyalkanoate containing nanoclay and tricalcium phosphate additives

    NASA Astrophysics Data System (ADS)

    Tanadchangsaeng, N.; Boonyagul, S.

    2018-05-01

    Recently, nanofiber research has gained substantial attention from scientists. In this study, the main component of the nanofiber sheet is polyhydroxyalkanoate (PHA) polymer, which is strong, ductile, flexible and adhesive to human skin. Two major additives of nanofiber sheet that we applied are nanoclay and tricalcium phosphate. The additives are generally synthetic substances that can be chemically synthesized and compatible with tissues body. Nanoclay has a low density, strong, durable to compressive strength and humidity. While, tricalcium phosphate is a calcium phosphate ceramic that is biocompatible to human tissue. From the reasons above, we proposed to choose both nanoclay and tricalcium phosphate for adding into PHA nanofibers for film formation. Thus, this study aims to investigate the morphological and mechanical properties of the fiber mat by using PHA added with various amount of nanoclay and tricalcium phosphate at 0.1%, 1% and 10% by weight, and fabricate nanofiber samples by electrospinning technique. The tested results of scanning electron microscope (SEM) morphology show that the fibers have a uniformed pattern. The PHA containing nanoclay of all additive contents exhibited micrometer diameter distributions, while PHA loaded with 1% tricalcium phosphate still had the nano-scale diameter range, and might be the optimum additive load for further nanometer medical applications. A tensile test was performed to determine the effect of nanoclay and tricalcium phosphate contents on the mechanical properties of the electrospun PHA films, and reflect the level of modularity. With nanoclay components being integrated into the polymer matrix, subsequent reduction in fiber crystallinity was occurred after addition of nanoclay with an increase of modulus value. The results confirmed that PHA fiber mat containing 1% nanoclay may have a potential for using as a rigid scaffold which bearing force loading in human organ system. Whereas, it can be indicated that

  10. Spatial and Temporal Variations of Microbial Biodiversity at Hypersaline Microbial Mats

    NASA Astrophysics Data System (ADS)

    Gulecal, Y.; Unsal, N.; Temel, M.

    2014-12-01

    Hypersaline environments, such as hypersaline lakes are interesting sources with considerable potential for the isolation of extremophile microorganisms adapted to severe conditions. Biodiversity in such lakes (Dead Sea, the Great Salt Lake, the Solar Lake, the Soda Lake) varies due to differences in environmental conditions and specific lake characteristics such as local climate, lake size, water depth and lake water salt composition (Kamekura 1998; Sorokin et al. 2004). In this study area, Acigol Lake is an alkaline (pH:9), hypersaline lake located at Southwest Anatolia in Turkey. The aim of study was to determine the Archaea and Bacteria in microbial mats of hypersaline lacustrine environments. In conclusion, diagnostic biosignatures for methanogens and other archaeal groups within hypersaline microbial mats were identified through genomic DNA and lipid analyses.

  11. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, Mark; Romine, Margaret F.; Jennings, Ryan

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicate that the replicate assemblies represent a newmore » phylum-level lineage referred to here as 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I CO dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogues active in YNP today.« less

  12. Ecology and life history of an amoebomastigote, Paratetramitus jugosus, from a microbial mat: new evidence for multiple fission

    NASA Technical Reports Server (NTRS)

    Enzien, M.; McKhann, H. I.; Margulis, L.

    1989-01-01

    Five microbial habitats (gypsum crust, gypsum photosynthetic community, Microcoleus mat, Thiocapsa scum, and black mud) were sampled for the presence of the euryhaline, rapidly growing amoebomastigote, Paratetramitus jugosus. Field investigations of microbial mats from Baja California Norte, Mexico, and Salina Bido near Matanzas, Cuba, reveal that P. jugosus is most frequently found in the Thiocapsa layer of microbial mats. Various stages of the life history were studied using phase-contrast, differential-interference, and transmission electron microscopy. Mastigote stages were induced and studied by electron microscopy; mastigotes that actively feed on bacteria bear two or more undulipodia. A three-dimensional drawing of the kinetid ("basal apparatus") based on electron micrographs is presented. Although promitoses were occasionally observed, it is unlikely that they can account for the rapid growth of P. jugosus populations on culture media. Dense, refractile, spherical, and irregular-shaped bodies were seen at all times in all cultures along with small mononucleate (approximately 2-7 micrometers diameter) amoebae. Cytochemical studies employing two different fluorescent stains for DNA (DAPI, mithramycin) verified the presence of DNA in these small bodies. Chromatin-like material seen in electron micrographs within the cytoplasm and blebbing off nuclei were interpreted to the chromatin bodies. Our interpretation, consistent with the data but not proven, is that propagation by multiple fission of released chromatin bodies that become small amoebae may occur in Paratetramitus jugosus. These observations are consistent with descriptions of amoeba propagules in the early literature (Hogue, 1914).

  13. Multi-locus DNA barcoding identifies matK as a suitable marker for species identification in Hibiscus L.

    PubMed

    Poovitha, Sundar; Stalin, Nithaniyal; Balaji, Raju; Parani, Madasamy

    2016-12-01

    The genus Hibiscus L. includes several taxa of medicinal value and species used for the extraction of natural dyes. These applications require the use of authentic plant materials. DNA barcoding is a molecular method for species identification, which helps in reliable authentication by using one or more DNA barcode marker. In this study, we have collected 44 accessions, representing 16 species of Hibiscus, distributed in the southern peninsular India, to evaluate the discriminatory power of the two core barcodes rbcLa and matK together with the suggested additional regions trnH-psbA and ITS2. No intraspecies divergence was observed among the accessions studied. Interspecies divergence was 0%-9.6% with individual markers, which increased to 0%-12.5% and 0.8%-20.3% when using two- and three-marker combinations, respectively. Differentiation of all the species of Hibiscus was possible with the matK DNA barcode marker. Also, in two-marker combinations, only those combinations with matK differentiated all the species. Though all the three-marker combinations showed 100% species differentiation, species resolution was consistently better when the matK marker formed part of the combination. These results clearly showed that matK is more suitable when compared to rbcLa, trnH-psbA, and ITS2 for species identification in Hibiscus.

  14. Development of a Twin-Spool Turbofan Engine Simulation Using the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS)

    NASA Technical Reports Server (NTRS)

    Zinnecker, Alicia M.; Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.

    2014-01-01

    The Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) is a tool that has been developed to allow a user to build custom models of systems governed by thermodynamic principles using a template to model each basic process. Validation of this tool in an engine model application was performed through reconstruction of the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) (v2) using the building blocks from the T-MATS (v1) library. In order to match the two engine models, it was necessary to address differences in several assumptions made in the two modeling approaches. After these modifications were made, validation of the engine model continued by integrating both a steady-state and dynamic iterative solver with the engine plant and comparing results from steady-state and transient simulation of the T-MATS and C-MAPSS models. The results show that the T-MATS engine model was accurate within 3% of the C-MAPSS model, with inaccuracy attributed to the increased dimension of the iterative solver solution space required by the engine model constructed using the T-MATS library. This demonstrates that, given an understanding of the modeling assumptions made in T-MATS and a baseline model, the T-MATS tool provides a viable option for constructing a computational model of a twin-spool turbofan engine that may be used in simulation studies.

  15. The Reverse Transcriptase/RNA Maturase Protein MatR Is Required for the Splicing of Various Group II Introns in Brassicaceae Mitochondria

    PubMed Central

    Sultan, Laure D.; Grewe, Felix; Rolle, Katarzyna; Abudraham, Sivan; Shevtsov, Sofia; Klipcan, Liron; Barciszewski, Jan; Dietrich, André

    2016-01-01

    Group II introns are large catalytic RNAs that are ancestrally related to nuclear spliceosomal introns. Sequences corresponding to group II RNAs are found in many prokaryotes and are particularly prevalent within plants organellar genomes. Proteins encoded within the introns themselves (maturases) facilitate the splicing of their own host pre-RNAs. Mitochondrial introns in plants have diverged considerably in sequence and have lost their maturases. In angiosperms, only a single maturase has been retained in the mitochondrial DNA: the matR gene found within NADH dehydrogenase 1 (nad1) intron 4. Its conservation across land plants and RNA editing events, which restore conserved amino acids, indicates that matR encodes a functional protein. However, the biological role of MatR remains unclear. Here, we performed an in vivo investigation of the roles of MatR in Brassicaceae. Directed knockdown of matR expression via synthetically designed ribozymes altered the processing of various introns, including nad1 i4. Pull-down experiments further indicated that MatR is associated with nad1 i4 and several other intron-containing pre-mRNAs. MatR may thus represent an intermediate link in the gradual evolutionary transition from the intron-specific maturases in bacteria into their versatile spliceosomal descendants in the nucleus. The similarity between maturases and the core spliceosomal Prp8 protein further supports this intriguing theory. PMID:27760804

  16. Comparative evaluation of recombinant LigB protein and heat-killed antigen-based latex agglutination test with microscopic agglutination test for diagnosis of bovine leptospirosis.

    PubMed

    Nagalingam, Mohandoss; Thirumalesh, Sushma Rahim Assadi; Kalleshamurthy, Triveni; Niharika, Nakkala; Balamurugan, Vinayagamurthy; Shome, Rajeswari; Sengupta, Pinaki Prasad; Shome, Bibek Ranjan; Prabhudas, Krishnamsetty; Rahman, Habibur

    2015-10-01

    This study aimed to develop latex agglutination test (LAT) using recombinant leptospiral immunoglobulin-like protein (LigB) (rLigB) antigen and compare its diagnostic efficacy with LAT using conventional heat-killed leptospiral antigen and microscopic agglutination test (MAT) in diagnosing bovine leptospirosis. The PCR-amplified 1053-bp ligB gene sequences from Leptospira borgpetersenii Hardjo serovar were cloned in pET 32 (a) vector at EcoRI and NotI sites and expressed in BL21 E. coli cells as fusion protein with thioredoxin (-57 kDa) and characterized by SDS-PAGE and immunoblot. Out of 390 serum samples [cattle (n = 214), buffaloes (n = 176)] subjected to MAT, 115 samples showed reciprocal titre≥100 up to 1600 against one or more serovars. For recombinant LigB protein/antigen-based LAT, agglutination was observed in the positive sample, while no agglutination was observed in the negative sample. Similarly, heat-killed leptospiral antigen was prepared from and used in LAT for comparison with MAT. A two-sided contingency table was used for analysis of LAT using both the antigens separately against MAT for 390 serum samples. The sensitivity, specificity and positive and negative predictive values of recombinant LigB LAT were found to be 75.65, 91.27, 78.38 and 89.96 %, respectively, and that of heat-killed antigen-based LAT were 72.17, 89.82, 74.77 and 88.53 %, respectively, in comparison with MAT. This developed test will be an alternative/complementary to the existing battery of diagnostic assays/tests for specific detection of pathogenic Leptospira infection in bovine population.

  17. Implications of a 3.472-3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth.

    PubMed

    Westall, Frances; de Ronde, Cornel E J; Southam, Gordon; Grassineau, Nathalie; Colas, Maggy; Cockell, Charles; Lammer, Helmut

    2006-10-29

    Modelling suggests that the UV radiation environment of the early Earth, with DNA weighted irradiances of about three orders of magnitude greater than those at present, was hostile to life forms at the surface, unless they lived in specific protected habitats. However, we present empirical evidence that challenges this commonly held view. We describe a well-developed microbial mat that formed on the surface of volcanic littoral sediments in an evaporitic environment in a 3.5-3.3Ga-old formation from the Barberton greenstone belt. Using a multiscale, multidisciplinary approach designed to strongly test the biogenicity of potential microbial structures, we show that the mat was constructed under flowing water by 0.25 microm filaments that produced copious quantities of extracellular polymeric substances, representing probably anoxygenic photosynthesizers. Associated with the mat is a small colony of rods-vibroids that probably represent sulphur-reducing bacteria. An embedded suite of evaporite minerals and desiccation cracks in the surface of the mat demonstrates that it was periodically exposed to the air in an evaporitic environment. We conclude that DNA-damaging UV radiation fluxes at the surface of the Earth at this period must either have been low (absorbed by CO2, H2O, a thin organic haze from photo-dissociated CH4, or SO2 from volcanic outgassing; scattered by volcanic, and periodically, meteorite dust, as well as by the upper layers of the microbial mat) and/or that the micro-organisms exhibited efficient gene repair/survival strategies.

  18. Coconut matting bezoar identified by a combined analytical approach.

    PubMed Central

    Levison, D A; Crocker, P R; Boxall, T A; Randall, K J

    1986-01-01

    A rare type of bezoar composed of coconut matting was found in the stomach of a caucasian man. The exact identity of the fibres was established by scanning electron microscopy, x-ray energy spectroscopy, and microscopic infrared spectroscopy. This report illustrates the importance of these techniques for identifying the nature of foreign material. Images PMID:3950038

  19. Measured and predicted structural behavior of the HiMAT tailored composite wing

    NASA Technical Reports Server (NTRS)

    Nelson, Lawrence H.

    1987-01-01

    A series of load tests was conducted on the HiMAT tailored composite wing. Coupon tests were also run on a series of unbalanced laminates, including the ply configuration of the wing, the purpose of which was to compare the measured and predicted behavior of unbalanced laminates, including - in the case of the wing - a comparison between the behavior of the full scale structure and coupon tests. Both linear and nonlinear finite element (NASTRAN) analyses were carried out on the wing. Both linear and nonlinear point-stress analyses were performed on the coupons. All test articles were instrumented with strain gages, and wing deflections measured. The leading and trailing edges were found to have no effect on the response of the wing to applied loads. A decrease in the stiffness of the wing box was evident over the 27-test program. The measured load-strain behavior of the wing was found to be linear, in contrast to coupon tests of the same laminate, which were nonlinear. A linear NASTRAN analysis of the wing generally correlated more favorably with measurements than did a nonlinear analysis. An examination of the predicted deflections in the wing root region revealed an anomalous behavior of the structural model that cannot be explained. Both hysteresis and creep appear to be less significant in the wing tests than in the corresponding laminate coupon tests.

  20. Self-Healing Nanofiber-Reinforced Polymer Composites. 1. Tensile Testing and Recovery of Mechanical Properties.

    PubMed

    Lee, Min Wook; An, Seongpil; Jo, Hong Seok; Yoon, Sam S; Yarin, Alexander L

    2015-09-09

    The present work aims at development of self-healing materials capable of partially restoring their mechanical properties under the conditions of prolonged periodic loading and unloading, which is characteristic, for example, of aerospace applications. Composite materials used in these and many other applications frequently reveal multiple defects stemming from their original inhomogeneity, which facilitates microcracking and delamination at ply interfaces. Self-healing nanofiber mats may effectively prevent such damage without compromising material integrity. Two types of core-shell nanofibers were simultaneously electrospun onto the same substrate in order to form a mutually entangled mat. The first type of core-shell fibers consisted of resin monomer (dimethylsiloxane) within the core and polyacrylonitrile within the shell. The second type of core-shell nanofibers consisted of cure (dimethyl-methyl hydrogen-siloxane) within the core and polyacrylonitrile within the shell. These mutually entangled nanofiber mats were used for tensile testing, and they were also encased in polydimethylsiloxane to form composites that were also subsequently subjected to tensile testing. During tensile tests, the nanofibers can be damaged in stretching up to the plastic regime of deformation. Then, the resin monomer and cure was released from the cores and the polydimethylsiloxane resin was polymerized, which might be expected to result in the self-healing properties of these materials. To reveal and evaluate the self-healing properties of the polyacrylonitrile-resin-cure nanofiber mats and their composites, the results were compared to the tensile test results of the monolithic polyacrylonitrile nanofiber mats or composites formed by encasing polyacrylonitrile nanofibers in a polydimethylsiloxane matrix. The latter do not possess self-healing properties, and indeed, do not recover their mechanical characteristics, in contrast to the polyacrylonitrile-resin-cure nanofiber mats and