Sample records for actual crop evapotranspiration

  1. Determination of actual crop evapotranspiration (ETc) and dual crop coefficients (Kc) for cotton, wheat and maize in Fergana Valley: integration of the FAO-56 approach and BUDGET

    NASA Astrophysics Data System (ADS)

    Kenjabaev, Shavkat; Dernedde, Yvonne; Frede, Hans-Georg; Stulina, Galina

    2014-05-01

    Determination of the actual crop evapotranspiration (ETc) during the growing period is important for accurate irrigation scheduling in arid and semi-arid regions. Development of a crop coefficient (Kc) can enhance ETc estimations in relation to specific crop phenological development. This research was conducted to determine daily and growth-stage-specific Kc and ETc values for cotton (Gossypium hirsutum L.), winter wheat (Triticum aestivum L.) and maize (Zea mays L.) for silage at fields in Fergana Valley (Uzbekistan). The soil water balance model - Budget with integration of the dual crop procedure of the FAO-56 was used to estimate the ETc and separate it into evaporation (Ec) and transpiration (Tc) components. An empirical equation was developed to determine the daily Kc values based on the estimated Ec and Tc. The ETc, Kc determination and comparison to existing FAO Kc values were performed based on 10, 5 and 6 study cases for cotton, wheat and maize, respectively. Mean seasonal amounts of crop water consumption in terms of ETc were 560±50, 509±27 and 243±39 mm for cotton, wheat and maize, respectively. The growth-stage-specific Kc for cotton, wheat and maize was 0.15, 0.27 and 0.11 at initial; 1.15, 1.03 and 0.56 at mid; and 0.45, 0.89 and 0.53 at late season stages. These values correspond to those reported by the FAO-56. Development of site specific Kc helps tremendously in irrigation management and furthermore provides precise water applications in the region. The developed simple approach to estimate daily Kc for the three main crops grown in the Fergana region was a first attempt to meet this issue. Keywords: Actual crop evapotranspiration, evaporation and transpiration, crop coefficient, model BUDGET, Fergana Valley.

  2. Bulk canopy resistance: Modeling for the estimation of actual evapotranspiration of maize

    NASA Astrophysics Data System (ADS)

    Gharsallah, O.; Corbari, C.; Mancini, M.; Rana, G.

    2009-04-01

    Due to the scarcity of water resources, the correct evaluation of water losses by the crops as evapotranspiration (ET) is very important in irrigation management. This work presents a model for estimating actual evapotranspiration on hourly and daily scales of maize crop grown in well water condition in the Lombardia Region (North Italy). The maize is a difficult crop to model from the soil-canopy-atmosphere point of view, due to its very complex architecture and big height. The present ET model is based on the Penman-Monteith equation using Katerji and Perrier approach for modelling the variable canopy resistance value (rc). In fact rc is a primary factor in the evapotranspiration process and needs to be accurately estimated. Furthermore, ET also has an aerodynamic component, hence it depends on multiple factors such as meteorological variables and crop water condition. The proposed approach appears through a linear model in which rc depends on climate variables and aerodynamic resistance [rc/ra = f(r*/ra)] where ra is the aerodynamic resistance, function of wind speed and crop height, and r* is called "critical" or "climatic" resistance. Here, under humid climate, the model has been applied with good results at both hourly and daily scales. In this study, the reached good accuracy shows that the model worked well and are clearly more accurate than those obtained by using the more diffuse and known standard FAO 56 method for well watered and stressed crops.

  3. Comment on 'Shang S. 2012. Calculating actual crop evapotranspiration under soil water stress conditions with appropriate numerical methods and time step. Hydrological Processes 26: 3338-3343. DOI: 10.1002/hyp.8405'

    NASA Technical Reports Server (NTRS)

    Yatheendradas, Soni; Narapusetty, Balachandrudu; Peters-Lidard, Christa; Funk, Christopher; Verdin, James

    2014-01-01

    A previous study analyzed errors in the numerical calculation of actual crop evapotranspiration (ET(sub a)) under soil water stress. Assuming no irrigation or precipitation, it constructed equations for ET(sub a) over limited soil-water ranges in a root zone drying out due to evapotranspiration. It then used a single crop-soil composite to provide recommendations about the appropriate usage of numerical methods under different values of the time step and the maximum crop evapotranspiration (ET(sub c)). This comment reformulates those ET(sub a) equations for applicability over the full range of soil water values, revealing a dependence of the relative error in numerical ET(sub a) on the initial soil water that was not seen in the previous study. It is shown that the recommendations based on a single crop-soil composite can be invalid for other crop-soil composites. Finally, a consideration of the numerical error in the time-cumulative value of ET(sub a) is discussed besides the existing consideration of that error over individual time steps as done in the previous study. This cumulative ET(sub a) is more relevant to the final crop yield.

  4. Actual evapotranspiration for a reference crop within measured and future changing climate periods in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Katerji, Nader; Rana, Gianfranco; Ferrara, Rossana Monica

    2017-08-01

    The study compares two formulas for calculating the daily evapotranspiration ET0 for a reference crop. The first formula was proposed by Allen et al. (AL), while the second one was proposed by Katerji and Perrier with the addition of the carbon dioxide (CO2) effect on evapotranspiration (KP). The study analyses the impact of the calculation by the two formulas on the irrigation requirement (IR). Both formulas are based on the Penman-Monteith equation but adopt different approaches for parameterising the canopy resistance r c . In the AL formula, r c is assumed constant and not sensitive to climate change, whereas in the KP formula, r c is first parameterised as a function of climatic variables, then ET0 is corrected for the air CO2 concentration. The two formulas were compared in two periods. The first period involves data from two sites in the Mediterranean region within a measured climate change period (1981-2006) when all the input climatic variables were measured. The second period (2070-2100) involves data from a future climate change period at one site when the input climatic variables were forecasted for two future climate scenarios (A2 and B2). The annual cumulated values of ET0 calculated by the AL formula are systematically lower than those determined by the KP formula. The differences between the ET0 estimation with the AL and KP formulas have a strong impact on the determination of the IR for the reference crop. In fact, for the two periods, the annual values of IR when ET0 is calculated by the AL formula are systematically lower than those calculated by the KP formula. For the actual measured climate change period, this reduction varied from 26 to 28 %, while for the future climate change period, it varied based on the scenario from 16 % (A2) to 20 % (B2).

  5. Encounter risk analysis of rainfall and reference crop evapotranspiration in the irrigation district

    NASA Astrophysics Data System (ADS)

    Zhang, Jinping; Lin, Xiaomin; Zhao, Yong; Hong, Yang

    2017-09-01

    Rainfall and reference crop evapotranspiration are random but mutually affected variables in the irrigation district, and their encounter situation can determine water shortage risks under the contexts of natural water supply and demand. However, in reality, the rainfall and reference crop evapotranspiration may have different marginal distributions and their relations are nonlinear. In this study, based on the annual rainfall and reference crop evapotranspiration data series from 1970 to 2013 in the Luhun irrigation district of China, the joint probability distribution of rainfall and reference crop evapotranspiration are developed with the Frank copula function. Using the joint probability distribution, the synchronous-asynchronous encounter risk, conditional joint probability, and conditional return period of different combinations of rainfall and reference crop evapotranspiration are analyzed. The results show that the copula-based joint probability distributions of rainfall and reference crop evapotranspiration are reasonable. The asynchronous encounter probability of rainfall and reference crop evapotranspiration is greater than their synchronous encounter probability, and the water shortage risk associated with meteorological drought (i.e. rainfall variability) is more prone to appear. Compared with other states, there are higher conditional joint probability and lower conditional return period in either low rainfall or high reference crop evapotranspiration. For a specifically high reference crop evapotranspiration with a certain frequency, the encounter risk of low rainfall and high reference crop evapotranspiration is increased with the decrease in frequency. For a specifically low rainfall with a certain frequency, the encounter risk of low rainfall and high reference crop evapotranspiration is decreased with the decrease in frequency. When either the high reference crop evapotranspiration exceeds a certain frequency or low rainfall does not exceed a

  6. Methods to estimate irrigated reference crop evapotranspiration - a review.

    PubMed

    Kumar, R; Jat, M K; Shankar, V

    2012-01-01

    Efficient water management of crops requires accurate irrigation scheduling which, in turn, requires the accurate measurement of crop water requirement. Irrigation is applied to replenish depleted moisture for optimum plant growth. Reference evapotranspiration plays an important role for the determination of water requirements for crops and irrigation scheduling. Various models/approaches varying from empirical to physically base distributed are available for the estimation of reference evapotranspiration. Mathematical models are useful tools to estimate the evapotranspiration and water requirement of crops, which is essential information required to design or choose best water management practices. In this paper the most commonly used models/approaches, which are suitable for the estimation of daily water requirement for agricultural crops grown in different agro-climatic regions, are reviewed. Further, an effort has been made to compare the accuracy of various widely used methods under different climatic conditions.

  7. Drought impacts and resilience on crops via evapotranspiration estimations

    NASA Astrophysics Data System (ADS)

    Timmermans, Joris; Asadollahi Dolatabad, Saeid

    2015-04-01

    Currently, the global needs for food and water is at a critical level. It has been estimated that 12.5 % of the global population suffers from malnutrition and 768 million people still do not have access to clean drinking water. This need is increasing because of population growth but also by climate change. Changes in precipitation patterns will result either in flooding or droughts. Consequently availability, usability and affordability of water is becoming challenge and efficient use of water and water management is becoming more important, particularly during severe drought events. Drought monitoring for agricultural purposes is very hard. While meteorological drought can accurately be monitored using precipitation only, estimating agricultural drought is more difficult. This is because agricultural drought is dependent on the meteorological drought, the impacts on the vegetation, and the resilience of the crops. As such not only precipitation estimates are required but also evapotranspiration at plant/plot scale. Evapotranspiration (ET) describes the amount of water evaporated from soil and vegetation. As 65% of precipitation is lost by ET, drought severity is highly linked with this variable. In drought research, the precise quantification of ET and its spatio-temporal variability is therefore essential. In this view, remote sensing based models to estimate ET, such as SEBAL and SEBS, are of high value. However the resolution of current evapotranspiration products are not good enough for monitoring the impact of the droughts on the specific crops. This limitation originates because plot scales are in general smaller than the resolution of the available satellite ET products. As such remote sensing estimates of evapotranspiration are always a combination of different land surface types and cannot be used for plant health and drought resilience studies. The goal of this research is therefore to enable adequate resolutions of daily evapotranspiration estimates

  8. Educational Software for Illustration of Drainage, Evapotranspiration, and Crop Yield.

    ERIC Educational Resources Information Center

    Khan, A. H.; And Others

    1996-01-01

    Describes a study that developed a software package for illustrating drainage, evapotranspiration, and crop yield as influenced by water conditions. The software is a tool for depicting water's influence on crop production in western Kansas. (DDR)

  9. Microclimate and actual evapotranspiration in a humid coastal-plain environment

    USGS Publications Warehouse

    Dennehy, K.F.; McMahon, P.B.

    1987-01-01

    Continuous hourly measurements of twelve meteorologic variables recorded during 1983 and 1984 were used to examine the microclimate and actual evapotranspiration at a low-level radioactive-waste burial site near Barnwell, South Carolina. The study area is in the Atlantic Coastal Plain of southwestern South Carolina. Monthly, daily, and hourly trends in net radiation, incoming and reflected short-wave radiation, incoming and emitted long-wave radiation, soil-heat flux, dry- and wet-bulb temperatures, soil temperatures, wind direction and speed, and precipitation were used to characterize the microclimate. Average daily air temperatures ranged from -9 to 32?? Celsius during the period of study. Net radiation varied from about -27 to 251 watts m-2 and was dominated by incoming short-wave radiation throughout the year. The peak net radiation during a summer day generally occurred 2-3h before the peak vapor pressure deficit. In the winter, these peaks occurred at about the same time of day. Monthly precipitation varied from 15 to 241 mm. The Bowen ratio method was used to estimate hourly evapotranspiration, which was summed to also give daily and monthly evapotranspiration. Actual evapotranspiration varied from 0.0 to 0.7 mm h-1, 0.8-5 mm d-1, and 20-140 mm month-1 during 1983 and 1984. The maximum rate of evapotranspiration generally occurred at the same time of day as maximum net radiation, suggesting net radiation was the main driving force for evapotranspiration. Precipitation exceeded evapotranspiration during 14 months of the 2yr study period. Late fall, winter, and early spring contained the majority of these months. The maximum excess precipitation was 115 mm in February 1983. ?? 1987.

  10. Estimation of Actual Evapotranspiration by Remote Sensing: Application in Thessaly Plain, Greece

    PubMed Central

    Tsouni, Alexia; Kontoes, Charalabos; Koutsoyiannis, Demetris; Elias, Panagiotis; Mamassis, Nikos

    2008-01-01

    Remote sensing can assist in improving the estimation of the geographical distribution of evapotranspiration, and consequently water demand in large cultivated areas for irrigation purposes and sustainable water resources management. In the direction of these objectives, the daily actual evapotranspiration was calculated in this study during the summer season of 2001 over the Thessaly plain in Greece, a wide irrigated area of great agricultural importance. Three different methods were adapted and applied: the remote-sensing methods by Granger (2000) and Carlson and Buffum (1989) that use satellite data in conjunction with ground meteorological measurements and an adapted FAO (Food and Agriculture Organisation) Penman-Monteith method (Allen at al. 1998), which was selected to be the reference method. The satellite data were used in conjunction with ground data collected on the three closest meteorological stations. All three methods, exploit visible channels 1 and 2 and infrared channels 4 and 5 of NOAA-AVHRR (National Oceanic and Atmospheric Administration - Advanced Very High Resolution Radiometer) sensor images to calculate albedo and NDVI (Normalised Difference Vegetation Index), as well as surface temperatures. The FAO Penman-Monteith and the Granger method have used exclusively NOAA-15 satellite images to obtain mean surface temperatures. For the Carlson-Buffum method a combination of NOAA-14 and NOAA-15 satellite images was used, since the average rate of surface temperature rise during the morning was required. The resulting estimations show that both the Carlson-Buffum and Granger methods follow in general the variations of the reference FAO Penman-Monteith method. Both methods have potential for estimating the spatial distribution of evapotranspiration, whereby the degree of the relative agreement with the reference FAO Penman-Monteith method depends on the crop growth stage. In particular, the Carlson-Buffum method performed better during the first half

  11. Estimation of Actual Evapotranspiration by Remote Sensing: Application in Thessaly Plain, Greece.

    PubMed

    Tsouni, Alexia; Kontoes, Charalabos; Koutsoyiannis, Demetris; Elias, Panagiotis; Mamassis, Nikos

    2008-06-01

    Remote sensing can assist in improving the estimation of the geographical distribution of evapotranspiration, and consequently water demand in large cultivated areas for irrigation purposes and sustainable water resources management. In the direction of these objectives, the daily actual evapotranspiration was calculated in this study during the summer season of 2001 over the Thessaly plain in Greece, a wide irrigated area of great agricultural importance. Three different methods were adapted and applied: the remotesensing methods by Granger (2000) and Carlson and Buffum (1989) that use satellite data in conjunction with ground meteorological measurements and an adapted FAO (Food and Agriculture Organisation) Penman-Monteith method (Allen at al. 1998), which was selected to be the reference method. The satellite data were used in conjunction with ground data collected on the three closest meteorological stations. All three methods, exploit visible channels 1 and 2 and infrared channels 4 and 5 of NOAA-AVHRR (National Oceanic and Atmospheric Administration - Advanced Very High Resolution Radiometer) sensor images to calculate albedo and NDVI (Normalised Difference Vegetation Index), as well as surface temperatures. The FAO Penman-Monteith and the Granger method have used exclusively NOAA-15 satellite images to obtain mean surface temperatures. For the Carlson-Buffum method a combination of NOAA-14 and ΝΟΑΑ-15 satellite images was used, since the average rate of surface temperature rise during the morning was required. The resulting estimations show that both the Carlson-Buffum and Granger methods follow in general the variations of the reference FAO Penman-Monteith method. Both methods have potential for estimating the spatial distribution of evapotranspiration, whereby the degree of the relative agreement with the reference FAO Penman-Monteith method depends on the crop growth stage. In particular, the Carlson- Buffum method performed better during the first

  12. Evaluating gridded crop model simulations of evapotranspiration and irrigation using survey and remotely sensed data

    NASA Astrophysics Data System (ADS)

    Lopez Bobeda, J. R.

    2017-12-01

    The increasing use of groundwater for irrigation of crops has exacerbated groundwater sustainability issues faced by water limited regions. Gridded, process-based crop models have the potential to help farmers and policymakers asses the effects water shortages on yield and devise new strategies for sustainable water use. Gridded crop models are typically calibrated and evaluated using county-level survey data of yield, planting dates, and maturity dates. However, little is known about the ability of these models to reproduce observed crop evapotranspiration and water use at regional scales. The aim of this work is to evaluate a gridded version of the Decision Support System for Agrotechnology Transfer (DSSAT) crop model over the continental United States. We evaluated crop seasonal evapotranspiration over 5 arc-minute grids, and irrigation water use at the county level. Evapotranspiration was assessed only for rainfed agriculture to test the model evapotranspiration equations separate from the irrigation algorithm. Model evapotranspiration was evaluated against the Atmospheric Land Exchange Inverse (ALEXI) modeling product. Using a combination of the USDA crop land data layer (CDL) and the USGS Moderate Resolution Imaging Spectroradiometer Irrigated Agriculture Dataset for the United States (MIrAD-US), we selected only grids with more than 60% of their area planted with the simulated crops (corn, cotton, and soybean), and less than 20% of their area irrigated. Irrigation water use was compared against the USGS county level irrigated agriculture water use survey data. Simulated gridded data were aggregated to county level using USDA CDL and USGS MIrAD-US. Only counties where 70% or more of the irrigated land was corn, cotton, or soybean were selected for the evaluation. Our results suggest that gridded crop models can reasonably reproduce crop evapotranspiration at the country scale (RRMSE = 10%).

  13. Estimating actual evapotranspiration for forested sites: modifications to the Thornthwaite Model

    Treesearch

    Randall K. Kolka; Ann T. Wolf

    1998-01-01

    A previously coded version of the Thornthwaite water balance model was used to estimate annual actual evapotranspiration (AET) for 29 forested sites between 1900 and 1993 in the Upper Great Lakes area. Approximately 8 percent of the data sets calculated AET in error. Errors were detected in months when estimated AET was greater than potential evapotranspiration. Annual...

  14. Estimating crop yields and crop evapotranspiration distributions from remote sensing and geospatial agricultural data

    NASA Astrophysics Data System (ADS)

    Smith, T.; McLaughlin, D.

    2017-12-01

    Growing more crops to provide a secure food supply to an increasing global population will further stress land and water resources that have already been significantly altered by agriculture. The connection between production and resource use depends on crop yields and unit evapotranspiration (UET) rates that vary greatly, over both time and space. For regional and global analyses of food security it is appropriate to treat yield and UET as uncertain variables conditioned on climatic and soil properties. This study describes how probability distributions of these variables can be estimated by combining remotely sensed land use and evapotranspiration data with in situ agronomic and soils data, all available at different resolutions and coverages. The results reveal the influence of water and temperature stress on crop yield at large spatial scales. They also provide a basis for stochastic modeling and optimization procedures that explicitly account for uncertainty in the environmental factors that affect food production.

  15. Determination of the actual evapotranspiration by using remote sensing methods

    NASA Astrophysics Data System (ADS)

    Bora, Eser

    2017-10-01

    Evapotranspiration is so crucial for determining amount of the irrigation and the effective water management planning. Moreover, it is vital for determining agricultural drought management and determination the actual evapotranspiration ın a region is critical for early drought warning systems. The main object of this study was to assess accuracy of the remote sensing method (METRIC) by calibrating with the bowen ratio observations at the same time. The research was carried out in the west of Marmara Region, Turkey. Landsat 5 images was used to determine the metric algorithm. By using this algorithms are found. Landsat 5 images file were used to determine actual evapotranspiration and the image's date was June 11 in 2010. This date was used for calibration with available terrestrial observation by using bowen ratio in that time. Landsat images obtained from the web site, earthexplorer.usgs.gov, and results of bowen ratio taken from micrometeorology station. As a result, energy balance parameters that are net radiation, soil heat flux and latent heat flux were compared both metric algorithm and the bowen ration in the images time. The results are found so close to each other.

  16. Estimating riparian and agricultural evapotranspiration by reference crop evapotranspiration and MODIS Enhanced Vegetation Index

    USGS Publications Warehouse

    Nagler, Pamela L.; Glenn, Edward P.; Nguyen, Uyen; Scott, Russell; Doody, Tania

    2013-01-01

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa) based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer (MODIS) sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo). The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI) − c], where the term (1 − e−bEVI) is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73). It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89) difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  17. Application of an energy balance method for estimating evapotranspiration in cropping systems

    USDA-ARS?s Scientific Manuscript database

    Accurate quantification of evapotranspiration (ET, consumptive water use) from planting through harvest is critical for managing the limited water resources for crop irrigation. Our objective was to develop and apply an improved land-crop surface residual energy balance (EB) method for quantifying E...

  18. Crop biomass and evapotranspiration estimation using SPOT and Formosat-2 Data

    NASA Astrophysics Data System (ADS)

    Veloso, Amanda; Demarez, Valérie; Ceschia, Eric; Claverie, Martin

    2013-04-01

    The use of crop models allows simulating plant development, growth and yield under different environmental and management conditions. When combined with high spatial and temporal resolution remote sensing data, these models provide new perspectives for crop monitoring at regional scale. We propose here an approach to estimate time courses of dry aboveground biomass, yield and evapotranspiration (ETR) for summer (maize, sunflower) and winter crops (wheat) by assimilating Green Area Index (GAI) data, obtained from satellite observations, into a simple crop model. Only high spatial resolution and gap-free satellite time series can provide enough information for efficient crop monitoring applications. The potential of remote sensing data is often limited by cloud cover and/or gaps in observation. Data from different sensor systems need then to be combined. For this work, we employed a unique set of Formosat-2 and SPOT images (164 images) and in-situ measurements, acquired from 2006 to 2010 in southwest France. Among the several land surface biophysical variables accessible from satellite observations, the GAI is the one that has a key role in soil-plant-atmosphere interactions and in biomass accumulation process. Many methods have been developed to relate GAI to optical remote sensing signal. Here, seasonal dynamics of remotely sensed GAI were estimated by applying a method based on the inversion of a radiative transfer model using artificial neural networks. The modelling approach is based on the Simple Algorithm for Yield and Evapotranspiration estimate (SAFYE) model, which couples the FAO-56 model with an agro-meteorological model, based on Monteith's light-use efficiency theory. The SAFYE model is a daily time step crop model that simulates time series of GAI, dry aboveground biomass, grain yield and ETR. Crop and soil model parameters were determined using both in-situ measurements and values found in the literature. Phenological parameters were calibrated by the

  19. Using eddy covariance and flux partitioning to assess basal, soil, and stress coefficients for crop evapotranspiration models

    USDA-ARS?s Scientific Manuscript database

    Current approaches to scheduling crop irrigation using reference evapotranspiration (ET0) recommend using a dual-coefficient approach using basal (Kcb) and soil (Ke) coefficients along with a stress coefficient (Ks) to model crop evapotranspiration (ETc), [e.g. ETc=(Ks*Kcb+Ke)*ET0]. However, indepe...

  20. Alternate corrections for estimating actual wetland evapotranspiration from potential evapotranspiration

    USGS Publications Warehouse

    Shoemaker, W. Barclay; Sumner, D.M.

    2006-01-01

    Corrections can be used to estimate actual wetland evapotranspiration (AET) from potential evapotranspiration (PET) as a means to define the hydrology of wetland areas. Many alternate parameterizations for correction coefficients for three PET equations are presented, covering a wide range of possible data-availability scenarios. At nine sites in the wetland Everglades of south Florida, USA, the relatively complex PET Penman equation was corrected to daily total AET with smaller standard errors than the PET simple and Priestley-Taylor equations. The simpler equations, however, required less data (and thus less funding for instrumentation), with the possibility of being corrected to AET with slightly larger, comparable, or even smaller standard errors. Air temperature generally corrected PET simple most effectively to wetland AET, while wetland stage and humidity generally corrected PET Priestley-Taylor and Penman most effectively to wetland AET. Stage was identified for PET Priestley-Taylor and Penman as the data type with the most correction ability at sites that are dry part of each year or dry part of some years. Finally, although surface water generally was readily available at each monitoring site, AET was not occurring at potential rates, as conceptually expected under well-watered conditions. Apparently, factors other than water availability, such as atmospheric and stomata resistances to vapor transport, also were limiting the PET rate. ?? 2006, The Society of Wetland Scientists.

  1. [Variation characteristics and influencing factors of actual evapotranspiration under various vegetation types: A case study in the Huaihe River Basin, China.

    PubMed

    Wu, Rong Jun; Xing, Xiao Yong

    2016-06-01

    The actual evapotranspiration was modelled utilizing the boreal ecosystem productivity simulator (BEPS) in Huaihe River Basin from 2001 to 2012. In the meantime, the quantitative analyses of the spatial-temporal variations of actual evapotranspiration characteristics and its influencing factors under different vegetation types were conducted. The results showed that annual evapotranspiration gradually decreased from southeast to northwest, tended to increase annually, and the monthly change for the average annual evapotranspiration was double-peak curve. The differences of evapotranspiration among vegetation types showed that the farmland was the largest contributor for the evapotranspiration of Huaihe Basin. The annual actual evapotranspiration of the mixed forest per unit area was the largest, and that of the bare ground per unit area was the smallest. The changed average annual evapotranspiration per unit area for various vegetation types indicated an increased tendency other than the bare ground, with a most significant increase trend for the evergreen broadleaf forest. The thermodynamic factors (such as average temperature) were the dominant factors affecting the actual evapotranspiration in the Huaihe Basin, followed by radiation and moisture factors.

  2. Combining Remote Sensing imagery of both fine and coarse spatial resolution to Estimate Crop Evapotranspiration and quantifying its Influence on Crop Growth Monitoring.

    NASA Astrophysics Data System (ADS)

    Sepulcre-Cantó, Guadalupe; Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Duveiller, Gregory; Piccard, Isabelle; de Wit, Allard; Tychon, Bernard; Bakary, Djaby; Defourny, Pierre

    2010-05-01

    This study has been carried out in the framework of the GLOBAM -Global Agricultural Monitoring system by integration of earth observation and modeling techniques- project whose objective is to fill the methodological gap between the state of the art of local crop monitoring and the operational requirements of the global monitoring system programs. To achieve this goal, the research aims to develop an integrated approach using remote sensing and crop growth modeling. Evapotranspiration (ET) is a valuable parameter in the crop monitoring context since it provides information on the plant water stress status, which strongly influences crop development and, by extension, crop yield. To assess crop evapotranspiration over the GLOBAM study areas (300x300 km sites in Northern Europe and Central Ethiopia), a Soil-Vegetation-Atmosphere Transfer (SVAT) model forced with remote sensing and numerical weather prediction data has been used. This model runs at pre-operational level in the framework of the EUMETSAT LSA-SAF (Land Surface Analysis Satellite Application Facility) using SEVIRI and ECMWF data, as well as the ECOCLIMAP database to characterize the vegetation. The model generates ET images at the Meteosat Second Generation (MSG) spatial resolution (3 km at subsatellite point),with a temporal resolution of 30 min and monitors the entire MSG disk which covers Europe, Africa and part of Sud America . The SVAT model was run for 2007 using two approaches. The first approach is at the standard pre-operational mode. The second incorporates remote sensing information at various spatial resolutions going from LANDSAT (30m) to SEVIRI (3-5 km) passing by AWIFS (56m) and MODIS (250m). Fine spatial resolution data consists of crop type classification which enable to identify areas where pure crop specific MODIS time series can be compiled and used to derive Leaf Area Index estimations for the most important crops (wheat and maize). The use of this information allowed to characterize

  3. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.

    PubMed

    Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P

    2015-01-01

    Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1) and summer maize (scenario 2) by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China.

  4. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China

    PubMed Central

    Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P.

    2015-01-01

    Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1) and summer maize (scenario 2) by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China. PMID:26439928

  5. Effective crop evapotranspiration measurement using time-domain reflectometry technique in a sub-humid region

    NASA Astrophysics Data System (ADS)

    Srivastava, R. K.; Panda, R. K.; Halder, Debjani

    2017-08-01

    The primary objective of this study was to evaluate the performance of the time-domain reflectometry (TDR) technique for daily evapotranspiration estimation of peanut and maize crop in a sub-humid region. Four independent methods were used to estimate crop evapotranspiration (ETc), namely, soil water balance budgeting approach, energy balance approach—(Bowen ratio), empirical methods approach, and Pan evaporation method. The soil water balance budgeting approach utilized the soil moisture measurement by gravimetric and TDR method. The empirical evapotranspiration methods such as combination approach (FAO-56 Penman-Monteith and Penman), temperature-based approach (Hargreaves-Samani), and radiation-based approach (Priestley-Taylor, Turc, Abetw) were used to estimate the reference evapotranspiration (ET0). The daily ETc determined by the FAO-56 Penman-Monteith, Priestley-Taylor, Turc, Pan evaporation, and Bowen ratio were found to be at par with the ET values derived from the soil water balance budget; while the methods Abetw, Penman, and Hargreaves-Samani were not found to be ideal for the determination of ETc. The study illustrates the in situ applicability of the TDR method in order to make it possible for a user to choose the best way for the optimum water consumption for a given crop in a sub-humid region. The study suggests that the FAO-56 Penman-Monteith, Turc, and Priestley-Taylor can be used for the determination of crop ETc using TDR in comparison to soil water balance budget.

  6. [Applicability of established drought index in Huang-Huai-Hai region based on actual evapotranspiration.

    PubMed

    Wang, Ying; Wu, Rong Jun; Guo, Zhao Bing

    2016-05-01

    Based on the modeled products of actual evapotranspiration with NOAH land surface model, the temporal and spatial variations of actual evapotranspiration were analyzed for the Huang-Huai-Hai region in 2002-2010. In the meantime, the agricultural drought index, namely, drought severity index (DSI) was constructed, incorporated with products of MOD17 potential evapotranspiration and MOD13 NDVI. Furthermore, the applicability of established DSI in this region in the whole year of 2002 was investigated based on the Palmer drought severity index (PDSI), the yield reduction rate of winter wheat, and drought severity data. The results showed that the annual average actual evapotranspiration within the survey region increased from the northwest to the southeast, with the maximum of 800-900 mm in the southeast and the minimum less than 300 mm in the northwest. The DSI and PDSI had positive correlation (R 2 =0.61) and high concordance in change trend. They all got the low point (-0.61 and -1.33) in 2002 and reached the peak (0.81 and 0.92) in 2003. The correlation between DSI and yield reduction rate of winter wheat (R 2 =0.43) was more significant than that between PDSI and yield reduction rate of winter wheat (R 2 =0.06). So, the DSI reflected a high spatial resolution of drought pattern and could reflect the region agricultural drought severity and intensity more accurately.

  7. Predicting water suppy and actual evapotranspiration of street trees

    NASA Astrophysics Data System (ADS)

    Wessolek, Gerd; Heiner, Moreen; Trinks, Steffen

    2017-04-01

    It's well known that street trees cool air temperature in summer-time by transpiration and shading and also reduce runoff. However, it's difficult to analyse if trees have water shortage or not. This contribution focus on predicting water supply, actual evapotranspiration, and runoff by using easily available climate data (precipiation, potential evapotranspiration) and site characteristics (water retention, space, sealing degree, groundwater depth). These parameter were used as input data for Hydro-Pedotransfer-Functions (HPTFs) allowing the estimation of the annual water budget. Results give statements on water supply of trees, drought stress, and additional water demand by irrigation. Procedure also analyse, to which extent the surrounding partly sealed surfaces deliver water to the trees. Four representative street canyons of Berlin City were analysed and evaluated within in training program for M.A. students of „Urban Eco-system Science" at the Technische Universität Berlin.

  8. [Spatiotemporal variation characteristics and related affecting factors of actual evapotranspiration in the Hun-Taizi River Basin, Northeast China].

    PubMed

    Feng, Xue; Cai, Yan-Cong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Wu, Jia-Bing; Yuan, Feng-Hui

    2014-10-01

    Based on the meteorological and hydrological data from 1970 to 2006, the advection-aridity (AA) model with calibrated parameters was used to calculate evapotranspiration in the Hun-Taizi River Basin in Northeast China. The original parameter of the AA model was tuned according to the water balance method and then four subbasins were selected to validate. Spatiotemporal variation characteristics of evapotranspiration and related affecting factors were analyzed using the methods of linear trend analysis, moving average, kriging interpolation and sensitivity analysis. The results showed that the empirical parameter value of 0.75 of AA model was suitable for the Hun-Taizi River Basin with an error of 11.4%. In the Hun-Taizi River Basin, the average annual actual evapotranspiration was 347.4 mm, which had a slightly upward trend with a rate of 1.58 mm · (10 a(-1)), but did not change significantly. It also indicated that the annual actual evapotranspiration presented a single-peaked pattern and its peak value occurred in July; the evapotranspiration in summer was higher than in spring and autumn, and it was the smallest in winter. The annual average evapotranspiration showed a decreasing trend from the northwest to the southeast in the Hun-Taizi River Basin from 1970 to 2006 with minor differences. Net radiation was largely responsible for the change of actual evapotranspiration in the Hun-Taizi River Basin.

  9. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems

    USGS Publications Warehouse

    Glenn, E.P.; Neale, C. M. U.; Hunsaker, D.J.; Nagler, P.L.

    2011-01-01

    Crop coefficients were developed to determine crop water needs based on the evapotranspiration (ET) of a reference crop under a given set of meteorological conditions. Starting in the 1980s, crop coefficients developed through lysimeter studies or set by expert opinion began to be supplemented by remotely sensed vegetation indices (VI) that measured the actual status of the crop on a field-by-field basis. VIs measure the density of green foliage based on the reflectance of visible and near infrared (NIR) light from the canopy, and are highly correlated with plant physiological processes that depend on light absorption by a canopy such as ET and photosynthesis. Reflectance-based crop coefficients have now been developed for numerous individual crops, including corn, wheat, alfalfa, cotton, potato, sugar beet, vegetables, grapes and orchard crops. Other research has shown that VIs can be used to predict ET over fields of mixed crops, allowing them to be used to monitor ET over entire irrigation districts. VI-based crop coefficients can help reduce agricultural water use by matching irrigation rates to the actual water needs of a crop as it grows instead of to a modeled crop growing under optimal conditions. Recently, the concept has been applied to natural ecosystems at the local, regional and continental scales of measurement, using time-series satellite data from the MODIS sensors on the Terra satellite. VIs or other visible-NIR band algorithms are combined with meteorological data to predict ET in numerous biome types, from deserts, to arctic tundra, to tropical rainforests. These methods often closely match ET measured on the ground at the global FluxNet array of eddy covariance moisture and carbon flux towers. The primary advantage of VI methods for estimating ET is that transpiration is closely related to radiation absorbed by the plant canopy, which is closely related to VIs. The primary disadvantage is that they cannot capture stress effects or soil

  10. Remote sensing applications for estimating changes on crop evapotranspiration of the most water intensive crops, due to climate change in Cyprus

    NASA Astrophysics Data System (ADS)

    Papadavid, G.; Neocleous, D.; Stylianou, A.; Markou, M.; Kountios, G.; Hadjimitsis, D.

    2016-08-01

    Water allocation to crops, and especially to the most water intensive ones, has always been of great importance in agricultural process. Deficit or excess water irrigation quantities could create either crop health related problems or water over-consumption situation which lead to stored water reduction and toxic material depletion to deeper ground layers, respectively. In this context, and under the current conditions, where Cyprus is facing effects of climate changes, purpose of this study is basically to estimate the needed crop water requirements of the past (1995-2004) and the corresponding ones of the present (2005-2015) in order to test if there were any significant changes regarding the crop water requirements of the most water intensive trees in Cyprus. Mediterranean region has been identified as the region that will suffer the most from climate change. Thus the paper refers to effects of climate changes on crop evapotranspiration (ETc) using remotely sensed data from Landsat TM/ ETM+ / OLI employing a sound methodology used worldwide, the Surface Energy Balance Algorithm for Land (SEBAL). Though the general feeling is that of changes on climate will consequently affect ETc, the results have indicated that there is no significant effect of climate change on crop evapotranspiration, despite the fact that some climatic factors have changed. Applying Student's T-test, the mean values for the most water intensive trees in Cyprus of the 1994-2004 decade have shown no statistical difference from the mean values of 2005-2015 decade's for all the cases, concluding that the climate change taking place the last decades in Cyprus have either not affected the crop evapotranspiration or the crops have manage to adapt into the new environmental conditions through time.

  11. Testing two temporal upscaling schemes for the estimation of the time variability of the actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Maltese, A.; Capodici, F.; Ciraolo, G.; La Loggia, G.

    2015-10-01

    Temporal availability of grapes actual evapotranspiration is an emerging issue since vineyards farms are more and more converted from rainfed to irrigated agricultural systems. The manuscript aims to verify the accuracy of the actual evapotranspiration retrieval coupling a single source energy balance approach and two different temporal upscaling schemes. The first scheme tests the temporal upscaling of the main input variables, namely the NDVI, albedo and LST; the second scheme tests the temporal upscaling of the energy balance output, the actual evapotranspiration. The temporal upscaling schemes were implemented on: i) airborne remote sensing data acquired monthly during a whole irrigation season over a Sicilian vineyard; ii) low resolution MODIS products released daily or weekly; iii) meteorological data acquired by standard gauge stations. Daily MODIS LST products (MOD11A1) were disaggregated using the DisTrad model, 8-days black and white sky albedo products (MCD43A) allowed modeling the total albedo, and 8-days NDVI products (MOD13Q1) were modeled using the Fisher approach. Results were validated both in time and space. The temporal validation was carried out using the actual evapotranspiration measured in situ using data collected by a flux tower through the eddy covariance technique. The spatial validation involved airborne images acquired at different times from June to September 2008. Results aim to test whether the upscaling of the energy balance input or output data performed better.

  12. Use of Satellite-based Remote Sensing to inform Evapotranspiration parameters in Cropping System Models

    NASA Astrophysics Data System (ADS)

    Dhungel, S.; Barber, M. E.

    2016-12-01

    The objectives of this paper are to use an automated satellite-based remote sensing evapotranspiration (ET) model to assist in parameterization of a cropping system model (CropSyst) and to examine the variability of consumptive water use of various crops across the watershed. The remote sensing model is a modified version of the Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC™) energy balance model. We present the application of an automated python-based implementation of METRIC to estimate ET as consumptive water use for agricultural areas in three watersheds in Eastern Washington - Walla Walla, Lower Yakima and Okanogan. We used these ET maps with USDA crop data to identify the variability of crop growth and water use for the major crops in these three watersheds. Some crops, such as grapes and alfalfa, showed high variability in water use in the watershed while others, such as corn, had comparatively less variability. The results helped us to estimate the range and variability of various crop parameters that are used in CropSyst. The paper also presents a systematic approach to estimate parameters of CropSyst for a crop in a watershed using METRIC results. Our initial application of this approach was used to estimate irrigation application rate for CropSyst for a selected farm in Walla Walla and was validated by comparing crop growth (as Leaf Area Index - LAI) and consumptive water use (ET) from METRIC and CropSyst. This coupling of METRIC with CropSyst will allow for more robust parameters in CropSyst and will enable accurate predictions of changes in irrigation practices and crop rotation, which are a challenge in many cropping system models.

  13. Operational Retrievals of Evapotranspiration: Are we there yet?

    NASA Astrophysics Data System (ADS)

    Neale, C. M. U.; Anderson, M. C.; Hain, C.; Schull, M.; Isidro, C., Sr.; Goncalves, I. Z.

    2017-12-01

    Remote sensing based retrievals of evapotranspiration (ET) have progressed significantly over the last two decades with the improvement of methods and algorithms and the availability of multiple satellite sensors with shortwave and thermal infrared bands on polar orbiting platforms. The modeling approaches include simpler vegetation index (VI) based methods such as the reflectance-based crop coefficient approach coupled with surface reference evapotranspiration estimates to derive actual evapotranspiration of crops or, direct inputs to the Penman-Monteith equation through VI relationships with certain input variables. Methods that are more complex include one-layer or two-layer energy balance approaches that make use of both shortwave and longwave spectral band information to estimate different inputs to the energy balance equation. These models mostly differ in the estimation of sensible heat fluxes. For continental and global scale applications, other satellite-based products such as solar radiation, vegetation leaf area and cover are used as inputs, along with gridded re-analysis weather information. This presentation will review the state-of-the-art in satellite-based evapotranspiration estimation, giving examples of existing efforts to obtain operational ET retrievals over continental and global scales and discussing difficulties and challenges.

  14. Crop evapotranspiration estimation using remote sensing and the existing network of meteorological stations in Cyprus

    NASA Astrophysics Data System (ADS)

    Papadavid, G.; Hadjimitsis, D.; Michaelides, S.; Nisantzi, A.

    2011-05-01

    Cyprus is frequently confronted with severe droughts and the need for accurate and systematic data on crop evapotranspiration (ETc) is essential for decision making, regarding water irrigation management and scheduling. The aim of this paper is to highlight how data from meteorological stations in Cyprus can be used for monitoring and determining the country's irrigation demands. This paper shows how daily ETc can be estimated using FAO Penman-Monteith method adapted to satellite data and auxiliary meteorological parameters. This method is widely used in many countries for estimating crop evapotranspiration using auxiliary meteorological data (maximum and minimum temperatures, relative humidity, wind speed) as inputs. Two case studies were selected in order to determine evapotranspiration using meteorological and low resolution satellite data (MODIS - TERRA) and to compare it with the results of the reference method (FAO-56) which estimates the reference evapotranspiration (ETo) by using only meteorological data. The first approach corresponds to the FAO Penman-Monteith method adapted for using both meteorological and remotely sensed data. Furthermore, main automatic meteorological stations in Cyprus were mapped using Geographical Information System (GIS). All the agricultural areas of the island were categorized according to the nearest meteorological station which is considered as "representative" of the area. Thiessen polygons methodology was used for this purpose. The intended goal was to illustrate what can happen to a crop, in terms of water requirements, if meteorological data are retrieved from other than the representative stations. The use of inaccurate data can result in low yields or excessive irrigation which both lead to profit reduction. The results have shown that if inappropriate meteorological data are utilized, then deviations from correct ETc might be obtained, leading to water losses or crop water stress.

  15. A coupled remote sensing and the Surface Energy Balance based algorithms to estimate actual evapotranspiration over the western and southern regions of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Mahmoud, Shereif H.; Alazba, A. A.

    2016-07-01

    In countries with absolute water scarcity such as the Kingdom of Saudi Arabia (KSA), large-scale actual evapotranspiration estimation is of great concern in water use practices. Herein, spatial and temporal distribution of actual evapotranspiration (AET) in the western and southern regions of KSA during 1992-2014 was estimated using the SEBAL model with field observations. Zonal statistics for each land use-cover type were also identified, in order to understand their effects on water consumption. In addition, daily and seasonal water consumption for major crops was computed. Results revealed a gradual increase in monthly AET values from January to April and subsequent decline from May to December. The maximum monthly AET values were observed for irrigated cropland in southwestern, central, and southeastern regions of Asir Province, central and southwestern regions of Al-Baha Province, central and the plains region of Jazan Province, southern portion of Makkah Province, and limited areas in the northern regions of Madinah Province. The annual AET ranged from 418.8 to 3442.3 mm yr-1. The normal distribution of mean annual AET values ranged from 717 to 1020 mm yr-1. Forty-two percent of the study area had an annual AET that ranged from 717 to 1020 mm yr-1. The second highest range of frequencies was concentrated around 1020-1322 mm yr-1, representing the majority of agricultural land. The consumptive water use of the different land cover types in study area indicated that irrigated cropland which occupied 14.6% of the study area had AET rates much higher than other land uses. Water bodies are the next highest, with forest and shrubland and sparse vegetation slightly lower, and very low AET rates from bare soil. Daily and seasonal water consumption of major cropping systems varied spatially depending on cropping practices and climatic conditions.

  16. Actual Evapotranspiration (AET) and tree species richness in the eastern U.S.A.

    Treesearch

    Weihong Fan; Richard H. Waring

    2009-01-01

    Although many studies confirm that competition and disturbance play important roles in determining tree diversity locally, climatic constraints become increasingly important at broader geographic scales. We evaluate the extent that annual actual evapotranspiration (AET) might account for observed variation in tree diversity across the entire eastern U.S. and within 24...

  17. Assessment of actual transpiration rate in olive tree field combining sap-flow, leaf area index and scintillometer measurements

    NASA Astrophysics Data System (ADS)

    Agnese, C.; Cammalleri, C.; Ciraolo, G.; Minacapilli, M.; Provenzano, G.; Rallo, G.; de Bruin, H. A. R.

    2009-09-01

    Models to estimate the actual evapotranspiration (ET) in sparse vegetation area can be fundamental for agricultural water managements, especially when water availability is a limiting factor. Models validation must be carried out by considering in situ measurements referred to the field scale, which is the relevant scale of the modelled variables. Moreover, a particular relevance assumes to consider separately the components of plant transpiration (T) and soil evaporation (E), because only the first is actually related to the crop stress conditions. Objective of the paper was to assess a procedure aimed to estimate olive trees actual transpiration by combining sap flow measurements with the scintillometer technique at field scale. The study area, located in Western Sicily (Italy), is mainly cultivated with olive crop and is characterized by typical Mediterranean semi-arid climate. Measurements of sap flow and crop actual evapotranspiration rate were carried out during 2008 irrigation season. Crop transpiration fluxes, measured on some plants by means of sap flow sensors, were upscaled considering the leaf area index (LAI). The comparison between evapotranspiration values, derived by displaced-beam small-aperture scintillometer (DBSAS-SLS20, Scintec AG), with the transpiration fluxes obtained by the sap flow sensors, also allowed to evaluate the contribute of soil evaporation in an area characterized by low vegetation coverage.

  18. A comparison of operational remote sensing-based models for estimating crop evapotranspiration

    USDA-ARS?s Scientific Manuscript database

    The integration of remotely sensed data into models of actual evapotranspiration has allowed for the estimation of water consumption across agricultural regions. Two modeling approaches have been successfully applied. The first approach computes a surface energy balance using the radiometric surface...

  19. Partitioning evapotranspiration via continuous sampling of water vapor isotopes over common row crops and candidate biofuel crops.

    NASA Astrophysics Data System (ADS)

    Miller, J. N.; Black, C. K.; Bernacchi, C.

    2014-12-01

    Global demand for renewable energy is accelerating land conversion from common row crops such as maize and soybean to cellulosic biofuel crops such as miscanthus and switchgrass. This land conversion is expected to alter ecohydrology via changes in evapotranspiration (ET). However, the direction in which evapotranspiration will shift, either partitioning more moisture through soil evaporation (E) or through plant transpiration (T) is uncertain. To investigate how land conversion from maize to miscanthus affects ET partitioning we measured the isotopic composition of water vapor via continuous air sampling. We obtained continuous diurnal measurements of δ2H and δ18O for miscanthus and maize on multiple days over the course of the growing season. Water vapor isotopes drawn from two heights were measured at 2 Hz using a cavity ringdown spectrometer and partitioned into components of E and T using a simple mixing equation. A second approach to partitioning was accomplished by subtracting transpiration measurements, obtained through sap flow sensors, from total ET, measured via eddy covariance. Preliminary results reveal that both methods compare favorably and that transpiration dominates variations in ET in miscanthus fields more so than in fields of maize.

  20. Evaluation of reference crop evapotranspiration methods in arid, semi-arid and humid regions

    USDA-ARS?s Scientific Manuscript database

    It is necessary to find a simpler method in different climatic regions to calculate reference crop evapotranspiration (ETo) since the application of the FAO-56 Penman-Monteith method is often restricted due to unavailability of a full weather data set. Seven ETo methods, the de facto standard FAO-56...

  1. Evapotranspiration and crop coefficient of oil palm (Elaeis guineensis Jacq.) on the main nursery in a greenhouse

    NASA Astrophysics Data System (ADS)

    Sigalingging, R.; Sumono; Rahmansyah, N.

    2018-02-01

    The estimation of crop water requirement is an important part of oil palm plantation because fruit yield of oil palm can be affected by water stress. Evapotranspiration and crop coefficient of oil palm using Tenera variety at 7-12 months old was determined. Soil texture was sandy loam with 73.8 % sand, 10.8 % silt, 15.77 % clay and 1.41 % organic matter. The results showed that the oil palm getting older decreased significantly in bulk density, particle density and porosity of soil caused the root of oil palm enlarged (19.42 g to 53.37 g). This was indicated by increased the dry root weight. On the other hand, the value of evapotranspiration and crop coefficient increased significantly, that was 1.85 to 2.00 mm/day and 0.8 to 0.87 respectively.

  2. Feedback Loop of Data Infilling Using Model Result of Actual Evapotranspiration from Satellites and Hydrological Model

    NASA Astrophysics Data System (ADS)

    Murdi Hartanto, Isnaeni; Alexandridis, Thomas K.; van Andel, Schalk Jan; Solomatine, Dimitri

    2014-05-01

    Using satellite data in a hydrological model has long been occurring in modelling of hydrological processes, as a source of low cost regular data. The methods range from using satellite products as direct input, model validation, and data assimilation. However, the satellite data frequently face the missing value problem, whether due to the cloud cover or the limited temporal coverage. The problem could seriously affect its usefulness in hydrological model, especially if the model uses it as direct input, so data infilling becomes one of the important parts in the whole modelling exercise. In this research, actual evapotranspiration product from satellite is directly used as input into a spatially distributed hydrological model, and validated by comparing the catchment's end discharge with measured data. The instantaneous actual evapotranspiration is estimated from MODIS satellite images using a variation of the energy balance model for land (SEBAL). The eight-day cumulative actual evapotranspiration is then obtained by a temporal integration that uses the reference evapotranspiration calculated from meteorological data [1]. However, the above method cannot fill in a cell if the cell is constantly having no-data value during the eight-day periods. The hydrological model requires full set of data without no-data cells, hence, the no-data cells in the satellite's evapotranspiration map need to be filled in. In order to fills the no-data cells, an output of hydrological model is used. The hydrological model is firstly run with reference evapotranspiration as input to calculate discharge and actual evapotranspiration. The no-data cells in the eight-day cumulative map from the satellite are then filled in with the output of the first run of hydrological model. The final data is then used as input in a hydrological model to calculate discharge, thus creating a loop. The method is applied in the case study of Rijnland, the Netherlands where in the winter, cloud cover is

  3. Drone based estimation of actual evapotranspiration over different forest types

    NASA Astrophysics Data System (ADS)

    Marzahn, Philip; Gampe, David; Castro, Saulo; Vega-Araya, Mauricio; Sanchez-Azofeifa, Arturo; Ludwig, Ralf

    2017-04-01

    Actual evapotranspiration (Eta) plays an important role in surface-atmosphere interactions. Traditionally, Eta is measured by means of lysimeters, eddy-covariance systems or fiber optics, providing estimates which are spatially restricted to a footprint from a few square meters up to several hectares . In the past, several methods have been developed to derive Eta by means of multi-spectral remote sensing data using thermal and VIS/NIR satellite imagery of the land surface. As such approaches do have their justification on coarser scales, they do not provide Eta information on the fine resolution plant level over large areas which is mandatory for the detection of water stress or tree mortality. In this study, we present a comparison of a drone based assessment of Eta with eddy-covariance measurements over two different forest types - a deciduous forest in Alberta, Canada and a tropical dry forest in Costa Rica. Drone based estimates of Eta were calculated applying the Triangle-Method proposed by Jiang and Islam (1999). The Triangle-Method estimates actual evapotranspiration (Eta) by means of the Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST) provided by two camera systems (MicaSense RedEdge, FLIR TAU2 640) flown simultaneously on an octocopter. . Results indicate a high transferability of the original approach from Jiang and Islam (1999) developed for coarse to medium resolution satellite imagery tothe high resolution drone data, leading to a deviation in Eta estimates of 10% compared to the eddy-covariance measurements. In addition, the spatial footprint of the eddy-covariance measurement can be detected with this approach, by showing the spatial heterogeneities of Eta due to the spatial distribution of different trees and understory vegetation.

  4. Evaluating Evapotranspiration of a crop mosaic using microwave scintillometry

    NASA Astrophysics Data System (ADS)

    Cohard, J. M.; Barral, H.; Coulaud, C.; Mercier, B.; Cappelaere, B.; Demarty, J.; Arpin-Pont, F.; Bradford, J.

    2017-12-01

    Evapotranspiration (ET) remains particularly difficult to quantify, especially on complex and heterogeneous landscapes. Since the 1990s, scintillometry has been recognized as an accurate method to estimate turbulent fluxes at km² scales compatible with a satellite pixel or a hydrological model mesh. If optic scintillometry is today considered to be an accomplished technique to measure spatially integrated sensible heat fluxes and to indirectly derive ET through the energy budget equation, very few results have been published using microwave (MW) scintillometry to derive ET more directly at km² scales for lack of reliable instruments. The recent development of new sensors operating in the microwave (MW) range and the formalization of new algorithms for the treatment of turbulent correlations revive dreams of reliable and continuous measurements of the evapotranspiration at the landscape scale. This study presents a long term evapotranspiration series measured over a crop mosaic with the combination of two scintillometers (Two-wavelength method) operating, one in the near infra-red (BLS2000, Scintec) and the other in radiofrequencies (94GHz) developed in collaboration with the Rutherford Appleton Laboratory (UK). These instruments have been installed in the Critical Zone observatory Oracle, located east of Paris in the Seine Catchment, and have run continuously since May 2016. This first ET series shows the robustness of both the MW scintillometer and the two wavelength method in this context. Scintillation ET will be presented and compared with Eddy Covariance measurements carried out on different landcover types within the scintillometer footprint, with regard to the energy balance closure.

  5. Assessing actual evapotranspiration via surface energy balance aiming to optimize water and energy consumption in large scale pressurized irrigation systems

    NASA Astrophysics Data System (ADS)

    Awada, H.; Ciraolo, G.; Maltese, A.; Moreno Hidalgo, M. A.; Provenzano, G.; Còrcoles, J. I.

    2017-10-01

    Satellite imagery provides a dependable basis for computational models that aimed to determine actual evapotranspiration (ET) by surface energy balance. Satellite-based models enables quantifying ET over large areas for a wide range of applications, such as monitoring water distribution, managing irrigation and assessing irrigation systems' performance. With the aim to evaluate the energy and water consumption of a large scale on-turn pressurized irrigation system in the district of Aguas Nuevas, Albacete, Spain, the satellite-based image-processing model SEBAL was used for calculating actual ET. The model has been applied to quantify instantaneous, daily, and seasonal actual ET over high- resolution Landsat images for the peak water demand season (May to September) and for the years 2006 - 2008. The model provided a direct estimation of the distribution of main energy fluxes, at the instant when the satellite overpassed over each field of the district. The image acquisition day Evapotranspiration (ET24) was obtained from instantaneous values by assuming a constant evaporative fraction (Λ) for the entire day of acquisition; then, monthly and seasonal ET were estimated from the daily evapotranspiration (ETdaily) assuming that ET24 varies in proportion to reference ET (ETr) at the meteorological station, thus accounting for day to day variation in meteorological forcing. The comparison between the hydrants water consumption and the actual evapotranspiration, considering an irrigation efficiency of 85%, showed that a considerable amount of water and energy can be saved at district level.

  6. Calibration of mass transfer-based models to predict reference crop evapotranspiration

    NASA Astrophysics Data System (ADS)

    Valipour, Mohammad

    2017-05-01

    The present study aims to compare mass transfer-based models to determine the best model under different weather conditions. The results showed that the Penman model estimates reference crop evapotranspiration better than other models in most provinces of Iran (15 provinces). However, the values of R 2 were less than 0.90 for 24 provinces of Iran. Therefore, the models were calibrated, and precision of estimation was increased (the values of R 2 were less than 0.90 for only ten provinces in the modified models). The mass transfer-based models estimated reference crop evapotranspiration in the northern (near the Caspian Sea) and southern (near the Persian Gulf) Iran (annual relative humidity more than 65 %) better than other provinces. The best values of R 2 were 0.96 and 0.98 for the Trabert and Rohwer models in Ardabil (AR) and Mazandaran (MZ) provinces before and after calibration, respectively. Finally, a list of the best performances of each model was presented to use other regions and next studies according to values of mean, maximum, and minimum temperature, relative humidity, and wind speed. The best weather conditions to use mass transfer-based equations are 8-18 °C (with the exception of Ivanov), <25.5 °C, <15 °C, >55 % for mean, maximum, and minimum temperature, and relative humidity, respectively.

  7. Simple models to predict grassland ecosystem C exchange and actual evapotranspiration using NDVI and environmental variables

    USDA-ARS?s Scientific Manuscript database

    Semiarid grasslands contribute significantly to net terrestrial carbon flux as plant productivity and heterotrophic respiration in these moisture-limited systems are correlated with metrics related to water availability (e.g., precipitation, Actual EvapoTranspiration or AET). These variables are als...

  8. A one-layer satellite surface energy balance for estimating evapotranspiration rates and crop water stress indexes.

    PubMed

    Barbagallo, Salvatore; Consoli, Simona; Russo, Alfonso

    2009-01-01

    Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern Sicily, Italy) were evaluated using remotely sensed data from Landsat Thematic Mapper TM5 images. A one-source parameterization of the surface sensible heat flux exchange using satellite surface temperature has been used. The transfer of sensible and latent heat is described by aerodynamic resistance and surface resistance. Required model inputs are brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, roughness lengths, net radiation, air temperature, air humidity and wind speed. The aerodynamic resistance (r(ah)) is formulated on the basis of the Monin-Obukhov surface layer similarity theory and the surface resistance (r(s)) is evaluated from the energy balance equation. The instantaneous surface flux values were converted into evaporative fraction (EF) over the heterogeneous land surface to derive daily evapotranspiration values. Remote sensing-based assessments of crop water stress (CWSI) were also made in order to identify local irrigation requirements. Evapotranspiration data and crop coefficient values obtained from the approach were compared with: (i) data from the semi-empirical approach "K(c) reflectance-based", which integrates satellite data in the visible and NIR regions of the electromagnetic spectrum with ground-based measurements and (ii) surface energy flux measurements collected from a micrometeorological tower located in the experiment area. The expected variability associated with ET flux measurements suggests that the approach-derived surface fluxes were in acceptable agreement with the observations.

  9. Exploring the use of multi-sensor data fusion for daily evapotranspiration mapping at field scale

    USDA-ARS?s Scientific Manuscript database

    Modern practices of water management in agriculture can significantly benefit from accurate mapping of crop water consumption at field scale. Assuming that actual evapotranspiration (ET) is the main water loss in land hydrological balance, remote sensing data represent an invaluable tool for water u...

  10. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements

    Treesearch

    Chunwei Liu; Ge Sun; Steve McNulty; Asko Noormets; Yuan Fang

    2017-01-01

    The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient (Kc) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, Kc has been widely used as a parameter to estimate crop water demand by water managers but has...

  11. Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: paradoxical or complementary?

    Treesearch

    Michael T. Hobbins; Jorge A. Ramirez; Thomas C. Brown

    2004-01-01

    Pan evaporation (ETpan) has decreased at 64% of pans in the conterminous U.S. over the past half-century. Comparing trends in ETpan and water budget-derived actual evapotranspiration (ET*a), we observe the so-called ‘‘Pan Evaporation Paradox,’’ which we confirm is no more than a...

  12. Comparison of two recent models for estimating actual evapotranspiration using only regularly recorded data

    NASA Astrophysics Data System (ADS)

    Ali, M. F.; Mawdsley, J. A.

    1987-09-01

    An advection-aridity model for estimating actual evapotranspiration ET is tested with over 700 days of lysimeter evapotranspiration and meteorological data from barley, turf and rye-grass from three sites in the U.K. The performance of the model is also compared with the API model . It is observed from the test that the advection-aridity model overestimates nonpotential ET and tends to underestimate potential ET, but when tested with potential and nonpotential data together, the tendencies appear to cancel each other. On a daily basis the performance level of this model is found to be of the same order as the API model: correlation coefficients were obtained between the model estimates and lysimeter data of 0.62 and 0.68 respectively. For periods greater than one day, generally the performance of the models are improved. Proposed by Mawdsley and Ali (1979)

  13. Evapotranspiration and crop coefficients for a super intensive olive orchard. An application of SIMDualKc and METRIC models using ground and satellite observations

    NASA Astrophysics Data System (ADS)

    Paço, Teresa A.; Pôças, Isabel; Cunha, Mário; Silvestre, José C.; Santos, Francisco L.; Paredes, Paula; Pereira, Luís S.

    2014-11-01

    The estimation of crop evapotranspiration (ETc) from the reference evapotranspiration (ETo) and a standard crop coefficient (Kc) in olive orchards requires that the latter be adjusted to planting density and height. The use of the dual Kc approach may be the best solution because the basal crop coefficient Kcb represents plant transpiration and the evaporation coefficient reproduces the soil coverage conditions and the frequency of wettings. To support related computations for a super intensive olive orchard, the model SIMDualKc was adopted because it uses the dual Kc approach. Alternatively, to consider the physical characteristics of the vegetation, the satellite-based surface energy balance model METRIC™ - Mapping EvapoTranspiration at high Resolution using Internalized Calibration - was used to estimate ETc and to derive crop coefficients. Both approaches were compared in this study. SIMDualKc model was calibrated and validated using sap-flow measurements of the transpiration for 2011 and 2012. In addition, eddy covariance estimation of ETc was also used. In the current study, METRIC™ was applied to Landsat images from 2011 to 2012. Adaptations for incomplete cover woody crops were required to parameterize METRIC. It was observed that ETc obtained from both approaches was similar and that crop coefficients derived from both models showed similar patterns throughout the year. Although the two models use distinct approaches, their results are comparable and they are complementary in spatial and temporal scales.

  14. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields

    USGS Publications Warehouse

    Senay, G.B.; Budde, Michael; Verdin, J.P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  15. A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields

    PubMed Central

    Senay, Gabriel B.; Budde, Michael; Verdin, James P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250-m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  16. Evapotranspiration of annual and perennial biofuel crops in a variable climate

    DOE PAGES

    Abraha, Michael; Chen, Jiquan; Chu, Housen; ...

    2015-02-06

    Eddy covariance measurements were made in seven fields in the Midwest USA over 4 years (including the 2012 drought year) to estimate evapotranspiration (ET) of newly established rain-fed cellulosic and grain biofuel crops. Four of the converted fields had been managed as grasslands under the USDA’s Conservation Reserve Program (CRP) for 22 years, and three had been in conventional agriculture (AGR) soybean/corn rotation prior to conversion. In 2009, all sites were planted to no-till soybean except one CRP grassland that was left unchanged as a reference site; in 2010, three of the former CRP sites and the three former AGRmore » sites were planted to annual (corn) and perennial (switchgrass and mixed-prairie) grasslands. The annual ET over the 4 years ranged from 45% to 77% (mean = 60%) of the annual precipitation (848–1063 mm; November–October), with the unconverted CRP grassland having the highest ET (622–706 mm). In the fields converted to annual and perennial crops, the annual ET ranged between 480 and 639 mm despite the large variations in growing-season precipitation and in soil water contents, which had strong effects on regional crop yields. Results suggest that in this humid temperate climate, which represents the US Corn Belt, water use by annual and perennial crops is not greatly different across years with highly variable precipitation and soil water availability. Thus, large-scale conversion of row crops to perennial biofuel cropping systems may not strongly alter terrestrial water balances.« less

  17. Evapotranspiration of annual and perennial biofuel crops in a variable climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraha, Michael; Chen, Jiquan; Chu, Housen

    Eddy covariance measurements were made in seven fields in the Midwest USA over 4 years (including the 2012 drought year) to estimate evapotranspiration (ET) of newly established rain-fed cellulosic and grain biofuel crops. Four of the converted fields had been managed as grasslands under the USDA’s Conservation Reserve Program (CRP) for 22 years, and three had been in conventional agriculture (AGR) soybean/corn rotation prior to conversion. In 2009, all sites were planted to no-till soybean except one CRP grassland that was left unchanged as a reference site; in 2010, three of the former CRP sites and the three former AGRmore » sites were planted to annual (corn) and perennial (switchgrass and mixed-prairie) grasslands. The annual ET over the 4 years ranged from 45% to 77% (mean = 60%) of the annual precipitation (848–1063 mm; November–October), with the unconverted CRP grassland having the highest ET (622–706 mm). In the fields converted to annual and perennial crops, the annual ET ranged between 480 and 639 mm despite the large variations in growing-season precipitation and in soil water contents, which had strong effects on regional crop yields. Results suggest that in this humid temperate climate, which represents the US Corn Belt, water use by annual and perennial crops is not greatly different across years with highly variable precipitation and soil water availability. Thus, large-scale conversion of row crops to perennial biofuel cropping systems may not strongly alter terrestrial water balances.« less

  18. Water Footprint of a Super-intensive Olive Grove Under Mediterranean Climate using Ground-based Evapotranspiration Measurements and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Nogueira, A. M.; Paço, T. A.; Silvestre, J. C.; Gonzalez, L. F.; Santos, F. L.; Pereira, L. S.

    2012-04-01

    measurements were used to calculate water footprint instead of the common procedure (using evapotranspiration estimates), this might have also introduced some differences. The potential of using remote sensing techniques for the assessment of water footprint of crops has been discussed in recent literature. It can provide estimates of actual evapotranspiration, of precipitation, of surface runoff and of irrigation needs when associated with modelling. In this study we further compare the water footprint estimates using in situ evapotranspiration measurements and water footprint estimates using remote sensing techniques. A comparison with the irrigation records for this particular olive orchard will be used to validate the approaches.

  19. Remote sensing based crop type mapping and evapotranspiration estimates at the farm level in arid regions of the globe

    NASA Astrophysics Data System (ADS)

    Ozdogan, M.; Serrat-Capdevila, A.; Anderson, M. C.

    2017-12-01

    Despite increasing scarcity of freshwater resources, there is dearth of spatially explicit information on irrigation water consumption through evapotranspiration, particularly in semi-arid and arid geographies. Remote sensing, either alone or in combination with ground surveys, is increasingly being used for irrigation water management by quantifying evaporative losses at the farm level. Increased availability of observations, sophisticated algorithms, and access to cloud-based computing is also helping this effort. This presentation will focus on crop-specific evapotranspiration estimates at the farm level derived from remote sensing in a number of water-scarce regions of the world. The work is part of a larger effort to quantify irrigation water use and improve use efficiencies associated with several World Bank projects. Examples will be drawn from India, where groundwater based irrigation withdrawals are monitored with the help of crop type mapping and evapotranspiration estimates from remote sensing. Another example will be provided from a northern irrigation district in Mexico, where remote sensing is used for detailed water accounting at the farm level. These locations exemplify the success stories in irrigation water management with the help of remote sensing with the hope that spatially disaggregated information on evapotranspiration can be used as inputs for various water management decisions as well as for better water allocation strategies in many other water scarce regions.

  20. Estimation of actual evapotranspiration in the Nagqu river basin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zou, Mijun; Zhong, Lei; Ma, Yaoming; Hu, Yuanyuan; Feng, Lu

    2018-05-01

    As a critical component of the energy and water cycle, terrestrial actual evapotranspiration (ET) can be influenced by many factors. This study was mainly devoted to providing accurate and continuous estimations of actual ET for the Tibetan Plateau (TP) and analyzing the effects of its impact factors. In this study, summer observational data from the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet) for 2003 to 2004 was selected to determine actual ET and investigate its relationship with energy, hydrological, and dynamical parameters. Multiple-layer air temperature, relative humidity, net radiation flux, wind speed, precipitation, and soil moisture were used to estimate actual ET. The regression model simulation results were validated with independent data retrieved using the combinatory method. The results suggested that significant correlations exist between actual ET and hydro-meteorological parameters in the surface layer of the Nagqu river basin, among which the most important factors are energy-related elements (net radiation flux and air temperature). The results also suggested that how ET is eventually affected by precipitation and two-layer wind speed difference depends on whether their positive or negative feedback processes have a more important role. The multivariate linear regression method provided reliable estimations of actual ET; thus, 6-parameter simplified schemes and 14-parameter regular schemes were established.

  1. Daily reference crop evapotranspiration with reduced data sets in the humid environments of Azores islands using estimates of actual vapor pressure, solar radiation, and wind speed

    NASA Astrophysics Data System (ADS)

    Paredes, P.; Fontes, J. C.; Azevedo, E. B.; Pereira, L. S.

    2017-11-01

    Reference crop evapotranspiration (ETo) estimations using the FAO Penman-Monteith equation (PM-ETo) require a set of weather data including maximum and minimum air temperatures (T max, T min), actual vapor pressure (e a), solar radiation (R s), and wind speed (u 2). However, those data are often not available, or data sets are incomplete due to missing values. A set of procedures were proposed in FAO56 (Allen et al. 1998) to overcome these limitations, and which accuracy for estimating daily ETo in the humid climate of Azores islands is assessed in this study. Results show that after locally and seasonally calibrating the temperature adjustment factor a d used for dew point temperature (T dew) computation from mean temperature, ETo estimations shown small bias and small RMSE ranging from 0.15 to 0.53 mm day-1. When R s data are missing, their estimation from the temperature difference (T max-T min), using a locally and seasonal calibrated radiation adjustment coefficient (k Rs), yielded highly accurate ETo estimates, with RMSE averaging 0.41 mm day-1 and ranging from 0.33 to 0.58 mm day-1. If wind speed observations are missing, the use of the default u 2 = 2 m s-1, or 3 m s-1 in case of weather measurements over clipped grass in airports, revealed appropriated even for the windy locations (u 2 > 4 m s-1), with RMSE < 0.36 mm day-1. The appropriateness of procedure to estimating the missing values of e a, R s, and u 2 was confirmed.

  2. Temporal Downscaling of Crop Coefficient and Crop Water Requirement from Growing Stage to Substage Scales

    PubMed Central

    Shang, Songhao

    2012-01-01

    Crop water requirement is essential for agricultural water management, which is usually available for crop growing stages. However, crop water requirement values of monthly or weekly scales are more useful for water management. A method was proposed to downscale crop coefficient and water requirement from growing stage to substage scales, which is based on the interpolation of accumulated crop and reference evapotranspiration calculated from their values in growing stages. The proposed method was compared with two straightforward methods, that is, direct interpolation of crop evapotranspiration and crop coefficient by assuming that stage average values occurred in the middle of the stage. These methods were tested with a simulated daily crop evapotranspiration series. Results indicate that the proposed method is more reliable, showing that the downscaled crop evapotranspiration series is very close to the simulated ones. PMID:22619572

  3. Decadal changes of reference crop evapotranspiration attribution: Spatial and temporal variability over China 1960-2011

    NASA Astrophysics Data System (ADS)

    Fan, Ze-Xin; Thomas, Axel

    2018-05-01

    Atmospheric evaporative demand can be used as a measure of the hydrological cycle and the global energy balance. Its long-term variation and the role of driving climatic factors have received increasingly attention in climate change studies. FAO-Penman-Monteith reference crop evapotranspiration rates were estimated for 644 meteorological stations over China for the period 1960-2011 to analyze spatial and temporal attribution variability. Attribution of climatic variables to reference crop evapotranspiration rates was not stable over the study period. While for all of China the contribution of sunshine duration remained relatively stable, the importance of relative humidity increased considerably during the last two decades, particularly in winter. Spatially distributed attribution analysis shows that the position of the center of maximum contribution of sunshine duration has shifted from Southeast to Northeast China while in West China the contribution of wind speed has decreased dramatically. In contrast relative humidity has become an important factor in most parts of China. Changes in the Asian Monsoon circulation may be responsible for altered patterns of cloudiness and a general decrease of wind speeds over China. The continuously low importance of temperature confirms that global warming does not necessarily lead to rising atmospheric evaporative demand.

  4. Modeling landscape evapotranspiration by integrating land surface phenology and a water balance algorithm

    USGS Publications Warehouse

    Senay, Gabriel B.

    2008-01-01

    The main objective of this study is to present an improved modeling technique called Vegetation ET (VegET) that integrates commonly used water balance algorithms with remotely sensed Land Surface Phenology (LSP) parameter to conduct operational vegetation water balance modeling of rainfed systems at the LSP’s spatial scale using readily available global data sets. Evaluation of the VegET model was conducted using Flux Tower data and two-year simulation for the conterminous US. The VegET model is capable of estimating actual evapotranspiration (ETa) of rainfed crops and other vegetation types at the spatial resolution of the LSP on a daily basis, replacing the need to estimate crop- and region-specific crop coefficients.

  5. Comparison of Satellite-based Basal and Adjusted Evapotranspiration for Several California Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Lund, C.; Melton, F. S.

    2013-12-01

    There is a continuing need to develop new sources of information on agricultural crop water consumption in the arid Western U.S. Pursuant to the California Water Conservation Act of 2009, for instance, the stakeholder community has developed a set of quantitative indicators involving measurement of evapotranspiration (ET) or crop consumptive use (Calif. Dept. Water Resources, 2012). Fraction of reference ET (or, crop coefficients) can be estimated from a biophysical description of the crop canopy involving green fractional cover (Fc) and height as per the FAO-56 practice standard of Allen et al. (1998). The current study involved 19 fields in California's San Joaquin Valley and Central Coast during 2011-12, growing a variety of specialty and commodity crops: lettuce, raisin, tomato, almond, melon, winegrape, garlic, peach, orange, cotton, corn and wheat. Most crops were on surface or subsurface drip, though micro-jet, sprinkler and flood were represented as well. Fc was retrospectively estimated every 8-16 days by optical satellite data and interpolated to a daily timestep. Crop height was derived as a capped linear function of Fc using published guideline maxima. These variables were used to generate daily basal crop coefficients (Kcb) per field through most or all of each respective growth cycle by the density coefficient approach of Allen & Pereira (2009). A soil water balance model for both topsoil and root zone, based on FAO-56 and using on-site measurements of applied irrigation and precipitation, was used to develop daily soil evaporation and crop water stress coefficients (Ke, Ks). Key meteorological variables (wind speed, relative humidity) were extracted from the California Irrigation Management Information System (CIMIS) for climate correction. Basal crop ET (ETcb) was then derived from Kcb using CIMIS reference ET. Adjusted crop ET (ETc_adj) was estimated by the dual coefficient approach involving Kcb, Ke, and incorporating Ks. Cumulative ETc

  6. Operational actual wetland evapotranspiration estimation for the Everglades using MODIS imagery

    NASA Astrophysics Data System (ADS)

    Melesse, Assefa; Cereon, Cristobal

    2014-05-01

    Wetlands are one of the most important ecosystems with varied functions and structures. Humans have drained wetlands and altered the structure and functions of wetlands for various uses. Wetland restoration efforts require assessment of the level of ecohydrological restoration for the intended functions. Among the various indicators of success in wetland restoration, achieving the desired water level (hydrology) is the most important, faster to achieve and easier to monitor than the establishment of the hydric soils and wetland vegetation. Monitoring wetland hydrology using remote sensing based evapotranspiration (ET) is a useful tool and approach since point measurements for understanding the temporal (before and after restoration) and spatial (impacted and restored) parts of the wetland are not effective for large areas. Evapotranspiration accounts over 80% of the water budget of the wetlands necessitating the need for spatiotemporal monitoring of ET flux. A study employing remotely sensed data from Moderate Resolution Imaging Spectroradiometer (MODIS) and modeling tools was conducted for a weekly spatial estimation of Everglades ET. Weekly surface temperature data were generated from the MODIS thermal band and evaporative fraction was estimated using the simplified surface energy balance (SSEB) approach. Based on the Simple Method, potential ET (PET) was estimated. Actual weekly wetland ET was computed as the (product of the PET and evaporative fraction). The ET product will be useful information for environmental restoration and wetland hydrology managers. The on-going restoration and monitoring work in the Everglades will benefit from this product and assist in evaluating progress and success in the restoration.

  7. Effects of changing climate on reference crop evapotranspiration over 1961-2013 in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Yao, Ning; Li, Yi; Sun, Changfeng

    2018-01-01

    To know the importance of different climate variables on reference crop evapotranspiration ( ET o), a step-by-step sensitivity analysis of ET o to single, two, and multi-climate variables ( C) was conducted. ET o in north, south, and entire Xinjiang Province, China, over 1961-2013 was estimated using the Penman-Monteith equation. Trends in the involved six Cs (i.e., minimum temperature— T min, average temperature— T ave, maximum temperature— T max, wind speed at 2 m— U 2, sunshine hour— n, and relative humidity— RH) were detected by the modified Mann-Kendall test. Nineteen scenarios of changed Cs were preset to obtain recalculated ET o values considering the actual trend in each C and the Pearson's correlation relationship between ET o and Cs. The results showed that ET o was mostly sensitive to T max, U 2, and n. Sensitivity of ET o to the two overlapped changes of T min and T max caused larger increases in ET o than T max and T ave, T ave and T max, T max and (- n), T max and RH, T max and (- U 2), and T min and T ave, but the overlapped changes (- U 2) and (- n) caused larger decreases in ET o than the other two C scenarios. The simultaneously increased T max, T min, T ave, and RH plus decreased U 2 and n had caused the actual decreases in ET o in Xinjiang. In general, the effects of decreased U 2 and n on decreasing ET o compensated the effects of increased T max on decreasing ET o in Xinjiang.

  8. On the downscaling of actual evapotranspiration maps based on combination of MODIS and landsat-based actual evapotranspiration estimates

    USGS Publications Warehouse

    Singh, Ramesh K.; Senay, Gabriel B.; Velpuri, Naga Manohar; Bohms, Stefanie; Verdin, James P.

    2014-01-01

     Downscaling is one of the important ways of utilizing the combined benefits of the high temporal resolution of Moderate Resolution Imaging Spectroradiometer (MODIS) images and fine spatial resolution of Landsat images. We have evaluated the output regression with intercept method and developed the Linear with Zero Intercept (LinZI) method for downscaling MODIS-based monthly actual evapotranspiration (AET) maps to the Landsat-scale monthly AET maps for the Colorado River Basin for 2010. We used the 8-day MODIS land surface temperature product (MOD11A2) and 328 cloud-free Landsat images for computing AET maps and downscaling. The regression with intercept method does have limitations in downscaling if the slope and intercept are computed over a large area. A good agreement was obtained between downscaled monthly AET using the LinZI method and the eddy covariance measurements from seven flux sites within the Colorado River Basin. The mean bias ranged from −16 mm (underestimation) to 22 mm (overestimation) per month, and the coefficient of determination varied from 0.52 to 0.88. Some discrepancies between measured and downscaled monthly AET at two flux sites were found to be due to the prevailing flux footprint. A reasonable comparison was also obtained between downscaled monthly AET using LinZI method and the gridded FLUXNET dataset. The downscaled monthly AET nicely captured the temporal variation in sampled land cover classes. The proposed LinZI method can be used at finer temporal resolution (such as 8 days) with further evaluation. The proposed downscaling method will be very useful in advancing the application of remotely sensed images in water resources planning and management.

  9. Estimation of Regional-Scale Actual Evapotranspiration in Okayama prefecture in Japan using Complementary Relationship

    NASA Astrophysics Data System (ADS)

    Moroizumi, T.; Yamamoto, M.; Miura, T.

    2008-12-01

    It is important to estimate accurately a water balance in watershed for proposing a reuse of water resources and a proper settlement of water utilization. Evapotranspiration (ET) is an important factor of water balance. Therefore, it is needed to estimate accurately the actual ET. The objective of this study is to estimate accurately monthly actual ET in Yoshii, Asahi, and Takahashi River watersheds in Okayama prefecture from 1999 to 2000. The monthly actual ET was calculated by a Morton and a modified Brutsaert and Stricker (B&S) method, using Automated Meteorological Data Acquisition Systems (AMeDAS) in the basin. The actual ET was estimated using land covers which were classified in 11 categories. The land covers includes the effects of albedo. The actual ET was related to the elevation at each AMeDAS station. Using this relationship, the actual ET at the 1 or 5 km grid-interval mesh in the basin was calculated, and finally, the distribution of actual ET was mapped. The monthly ET estimated by the modified B&S method were smaller than that by Morton method which showed a same tendency as the Penman potential ET (PET). The annual values of Morton"fs ET, modified B&S"fs ET, and PET were estimated as 796, 645, and 800 mm, respectively. The ET by the modified B&S was larger in hilly and mountainous areas than in settlement or city. In general, it was a reasonable result because city or settlement areas were covered with concrete and asphalt and the ET was controlled.

  10. Crop evapotranspiration-based irrigation management during the growing season in the arid region of northwestern China.

    PubMed

    Chang, Xuexiang; Zhao, Wenzhi; Zeng, Fanjiang

    2015-11-01

    In arid northwestern China, water shortages have triggered recent regulations affecting irrigation water use in desert-oasis agricultural systems. In order to determine the actual water demand of various crops and to develop standards for the rational use of water resources, we analyzed meteorological data from the Fukang desert ecosystem observation and experiment station (FKD), the Cele desert-grassland ecosystem observation and research station (CLD), and the Linze Inland River Basin Comprehensive Research Station (LZD), which all belong to the Chinese Ecosystem Research Network. We researched crop evapotranspiration (ETc) using the water balance method, the FAO-56 Penman-Monteith method, the Priestley-Taylor method, and the Hargreaves method, during the growing seasons of 2005 through 2009. Results indicate substantial differences in ETc, depending on the method used. At the CLD, the ETc from the soil water balance, FAO-56 Penman-Monteith, Priestley-Taylor, and Hargreaves methods were 1150.3±380.8, 783.7±33.6, 1018.3±22.1, and 611.2±23.3 mm, respectively; at the FKD, the corresponding results were 861.0±67.0, 834.2±83.9, 1453.5±47.1, and 1061.0±38.2 mm, respectively; and at the LZD, 823.4±110.4, 726.0±0.4, 722.3±29.4, and 1208.6±79.1 mm, respectively. The FAO-56 Penman-Monteith method provided a fairly good estimation of E Tc compared with the Priestley-Taylor and Hargreaves methods.

  11. Impacts of phenology on estimation of actual evapotranspiration with VegET model

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.

    2009-12-01

    The VegET model provides spatially explicit estimation of actual evapotranspiration (AET). Currently, it uses a climatology based on AVHRR NDVI image time series to modulate fluxes during growing seasons (Senay 2008). This step simplifies the model formulation, but it also introduces errors by ignoring the interannual variation in phenology. We report on a study to evaluate the effects of using an NDVI climatology in VegET rather than current season values. Using flux tower data from three sites across the US Corn Belt, we found that currently the model overestimates the duration of season. With the standard deviation of more than one week, the model results in an additional 50 to 70 mm of AET per season, which can account for about 10% of seasonal AET in drier western sites. The model showed only modest sensitivity to variation in growing season weather. This lack of sensitivity greatly decreased model accuracy during drought years: Pearson correlation coefficients between model estimates and observed values dropped from about 0.7 to 0.5, depending on vegetation type. We also evaluated an alternative approach to drive the canopy component of evapotranspiration, the Event Driven Phenology Model (EDPM). The parameterization of VegET with EDPM-simulated canopy dynamics improved the correlation by 0.1 or more and reduced the RMSE on daily AET estimates by 0.3 mm. By accounting for the progress of phenology during a particular growing season, the EDPM improves AET estimation over an NDVI climatology.

  12. Penman-Monteith approaches for estimating crop evapotranspiration in screenhouses--a case study with table-grape.

    PubMed

    Pirkner, Moran; Dicken, Uri; Tanny, Josef

    2014-07-01

    In arid and semi-arid regions many crops are grown under screens or in screenhouses to protect them from excessive radiation, strong winds, hailstorms and insects, and to reduce crop water requirements. Screens modify the crop microclimate, which means that it is necessary to accurately estimate crop water use under screens in order to improve the irrigation management and thereby increase water-use efficiency. The goal of the present study was to develop a set of calibrated relationships between inside and outside climatic variables, which would enable growers to predict crop water use under screens, based on standard external meteorological measurements and evapotranspiration (ET) models. Experiments were carried out in the Jordan Valley region of eastern Israel in a table-grape vineyard that was covered with a transparent screen providing 10% shading. An eddy covariance system was deployed in the middle of the vineyard and meteorological variables were measured inside and outside the screenhouse. Two ET models were evaluated: a classical Penman-Monteith model (PM) and a Penman-Monteith model modified for screenhouse conditions by the inclusion of an additional boundary-layer resistance (PMsc). Energy-balance closure analysis, presented as a linear relation between half-hourly values of available and consumed energy (1,344 data points), yielded the regression Y=1.05X-9.93 (W m(-2)), in which Y=sum of latent and sensible heat fluxes, and X=net radiation minus soil heat flux, with R2=0.81. To compensate for overestimation of the eddy fluxes, ET was corrected by forcing the energy balance closure. Average daily ET under the screen was 5.4±0.54 mm day(-1), in general agreement with the model estimates and the applied irrigation. The results showed that measured ET under the screen was, on average, 34% lower than that estimated outside, indicating significant potential water saving through screening irrigated vineyards. The PM model was somewhat more accurate than

  13. Modeling Actual Evapotranspiration From Forested Watersheds Across the Southeastern United States

    Treesearch

    Jianbiao Lu; Ge Sun; Steven G. McNulty; Devendra M. Amatya

    2003-01-01

    About 50 to 80 percent of precipitation in the southeastern United States returns to the atmosphere by evapotranspiration. As evapotranspiration is a major component in the forest water balances, accurately quantifying it is critical to predicting the effects of forest management and global change on water, sediment, and nutrient yield from forested watersheds. However...

  14. Temporal downscaling of crop coefficients for winter wheat in the North China Plain: A case study at the Gucheng ecological-meteorological experimental station

    USDA-ARS?s Scientific Manuscript database

    The crop coefficient (Kc) method is widely used for operational estimation of actual evapotranspiration (ETa) and crop water requirements. The standard method for obtaining Kc is via a lookup table from FAO-56 (Food and Agriculture Organization of the United Nations Irrigation and Drainage Paper No....

  15. Estimating Field Scale Crop Evapotranspiration using Landsat and MODIS Satellite Observations

    NASA Astrophysics Data System (ADS)

    Wong, A.; Jin, Y.; Snyder, R. L.; Daniele, Z.; Gao, F.

    2016-12-01

    Irrigation accounts for 80% of human freshwater consumption, and most of it return to the atmosphere through Evapotranspiration (ET). Given the challenges of already-stressed water resources and ground water regulation in California, a cost-effective, timely, and consistent spatial estimate of crop ET, from the farm to watershed level, is becoming increasingly important. The Priestley-Taylor (PT) approach, calibrated with field data and driven by satellite observations, shows great promise for accurate ET estimates across diverse ecosystems. We here aim to improve the robustness of the PT approach in agricultural lands, to enable growers and farm managers to tailor irrigation management based on in-field spatial variability and in-season variation. We optimized the PT coefficients for each crop type with available ET measurements from eddy covariance towers and/or surface renewal stations at six crop fields (Alfalfa, Almond, Citrus, Corn, Pistachio and Rice) in California. Good agreement was found between satellite-based estimates and field measurements of net radiation, with a RMSE of less than 36 W m-2. The crop type specific optimization performed well, with a RMSE of 30 W m-2 and a correlation of 0.81 for predicted daily latent heat flux. The calibrated algorithm was used to estimate ET at 30 m resolution over the Sacramento-San Joaquin Delta region for 2015 water year. It captures well the seasonal dynamics and spatial distribution of ET in Sacramento-San Joaquin Delta. A continuous monitoring of the dynamics and spatial heterogeneity of canopy and consumptive water use at a field scale, will help the growers to be well prepared and informed to adaptively manage water, canopy, and grove density to maximize the yield with the least amount of water.

  16. Optimal Interpolation scheme to generate reference crop evapotranspiration

    NASA Astrophysics Data System (ADS)

    Tomas-Burguera, Miquel; Beguería, Santiago; Vicente-Serrano, Sergio; Maneta, Marco

    2018-05-01

    We used an Optimal Interpolation (OI) scheme to generate a reference crop evapotranspiration (ETo) grid, forcing meteorological variables, and their respective error variance in the Iberian Peninsula for the period 1989-2011. To perform the OI we used observational data from the Spanish Meteorological Agency (AEMET) and outputs from a physically-based climate model. To compute ETo we used five OI schemes to generate grids for the five observed climate variables necessary to compute ETo using the FAO-recommended form of the Penman-Monteith equation (FAO-PM). The granularity of the resulting grids are less sensitive to variations in the density and distribution of the observational network than those generated by other interpolation methods. This is because our implementation of the OI method uses a physically-based climate model as prior background information about the spatial distribution of the climatic variables, which is critical for under-observed regions. This provides temporal consistency in the spatial variability of the climatic fields. We also show that increases in the density and improvements in the distribution of the observational network reduces substantially the uncertainty of the climatic and ETo estimates. Finally, a sensitivity analysis of observational uncertainties and network densification suggests the existence of a trade-off between quantity and quality of observations.

  17. Evaporation from irrigated crops: Its measurement, modeling and estimation from remotely sensed data

    NASA Astrophysics Data System (ADS)

    Garatuza-Payan, Jaime

    The research described in this dissertation is predicated on the hypothesis that remotely sensed information from climatological satellites can be used to estimate the actual evapotranspiration from agricultural crops to improve irrigation scheduling and water use efficiency. The goal of the enabling research program described here was to facilitate and demonstrate the potential use of satellite data for the rapid and routine estimation of water use by irrigated crops in the Yaqui Valley irrigation scheme, an extensive irrigated area in Sonora, Mexico. The approach taken was first, to measure and model the evapotranspiration and crop factors for wheat and cotton, the most common irrigated crops in the Yaqui Valley scheme. Second, to develop and test a high-resolution (4 km x 4 km) method for determining cloud cover and solar radiation from GOES satellite data. Then third, to demonstrate the application of satellite data to calculate the actual evaporation for sample crops in the Yaqui Valley scheme by combining estimates of potential rate with relevant crop factors and information on crop management. Results show that it is feasible to provide routine estimates of evaporation for the most common crops in the Yaqui Valley irrigation scheme from satellite data. Accordingly, a system to provide such estimates has been established and the Water Users Association, the entity responsible for water distribution in Yaqui Valley, can now use them to decide whether specific fields need irrigation. A Web site (teka-pucem.itson.mx) is also being created which will allow individual farmers to have direct access to the evaporation estimates via the Internet.

  18. A global sensitivity analysis of crop virtual water content

    NASA Astrophysics Data System (ADS)

    Tamea, S.; Tuninetti, M.; D'Odorico, P.; Laio, F.; Ridolfi, L.

    2015-12-01

    The concepts of virtual water and water footprint are becoming widely used in the scientific literature and they are proving their usefulness in a number of multidisciplinary contexts. With such growing interest a measure of data reliability (and uncertainty) is becoming pressing but, as of today, assessments of data sensitivity to model parameters, performed at the global scale, are not known. This contribution aims at filling this gap. Starting point of this study is the evaluation of the green and blue virtual water content (VWC) of four staple crops (i.e. wheat, rice, maize, and soybean) at a global high resolution scale. In each grid cell, the crop VWC is given by the ratio between the total crop evapotranspiration over the growing season and the crop actual yield, where evapotranspiration is determined with a detailed daily soil water balance and actual yield is estimated using country-based data, adjusted to account for spatial variability. The model provides estimates of the VWC at a 5x5 arc minutes and it improves on previous works by using the newest available data and including multi-cropping practices in the evaluation. The model is then used as the basis for a sensitivity analysis, in order to evaluate the role of model parameters in affecting the VWC and to understand how uncertainties in input data propagate and impact the VWC accounting. In each cell, small changes are exerted to one parameter at a time, and a sensitivity index is determined as the ratio between the relative change of VWC and the relative change of the input parameter with respect to its reference value. At the global scale, VWC is found to be most sensitive to the planting date, with a positive (direct) or negative (inverse) sensitivity index depending on the typical season of crop planting date. VWC is also markedly dependent on the length of the growing period, with an increase in length always producing an increase of VWC, but with higher spatial variability for rice than for

  19. Actual evapotranspiration estimation in a Mediterranean mountain region by means of Landsat-5 TM and TERRA/AQUA MODIS imagery and Sap Flow measurements in Pinus sylvestris forest stands.

    NASA Astrophysics Data System (ADS)

    Cristóbal, J.; Poyatos, R.; Ninyerola, M.; Pons, X.; Llorens, P.

    2009-04-01

    Evapotranspiration monitoring has important implications on global and regional climate modelling, as well as in the knowledge of the hydrological cycle and in the assessment of environmental stress that affects forest and agricultural ecosystems. An increase of evapotranspiration while precipitation remains constant, or is reduced, could decrease water availability for natural and agricultural systems and human needs. Consequently, water balance methods, as the evapotranspiration modelling, have been widely used to estimate crop and forest water needs, as well as the global change effects. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute evapotranspiration at regional scales in a feasible way. Currently, the 38% of Catalonia (NE of the Iberian Peninsula) is covered by forests, and one of the most important forest species is Scots Pine (Pinus sylvestris) which represents the 18.4% of the area occupied by forests. The aim of this work is to model actual evapotranspiration in Pinus sylvestris forest stands, in a Mediterranean mountain region, using remote sensing data, and compare it with stand-scale sap flow measurements measured in the Vallcebre research area (42° 12' N, 1° 49' E), in the Eastern Pyrenees. To perform this study a set of 30 cloud-free TERRA-MODIS images and 10 Landsat-5 TM images of path 198 and rows 31 and 32 from June 2003 to January 2005 have been selected to perform evapotranspiration modelling in Pinus sylvestris forest stands. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected two different types of products which contain the remote sensing data we have used to model daily evapotranspiration, daily LST product and daily calibrated reflectances product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital

  20. Prediction of County-Level Corn Yields Using an Energy-Crop Growth Index.

    NASA Astrophysics Data System (ADS)

    Andresen, Jeffrey A.; Dale, Robert F.; Fletcher, Jerald J.; Preckel, Paul V.

    1989-01-01

    Weather conditions significantly affect corn yields. while weather remains as the major uncontrolled variable in crop production, an understanding of the influence of weather on yields can aid in early and accurate assessment of the impact of weather and climate on crop yields and allow for timely agricultural extension advisories to help reduce farm management costs and improve marketing, decisions. Based on data for four representative countries in Indiana from 1960 to 1984 (excluding 1970 because of the disastrous southern corn leaf blight), a model was developed to estimate corn (Zea mays L.) yields as a function of several composite soil-crop-weather variables and a technology-trend marker, applied nitrogen fertilizer (N). The model was tested by predicting corn yields for 15 other counties. A daily energy-crop growth (ECG) variable in which different weights were used for the three crop-weather variables which make up the daily ECG-solar radiation intercepted by the canopy, a temperature function, and the ratio of actual to potential evapotranspiration-performed better than when the ECG components were weighted equally. The summation of the weighted daily ECG over a relatively short period (36 days spanning silk) was found to provide the best index for predicting county average corn yield. Numerical estimation results indicate that the ratio of actual to potential evapotranspiration (ET/PET) is much more important than the other two ECG factors in estimating county average corn yield in Indiana.

  1. Evapotranspiration-based irrigation scheduling of lettuce and broccoli

    USDA-ARS?s Scientific Manuscript database

    Estimation of crop evapotranspiration supports efficient irrigation water management, which in turn supports water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality maintenance. Past research in California has revealed strong relationships between fract...

  2. Development of daily temperature scenarios and their impact on paddy crop evapotranspiration in Kangsabati command area

    NASA Astrophysics Data System (ADS)

    Dhage, P. M.; Raghuwanshi, N. S.; Singh, R.; Mishra, A.

    2017-05-01

    Production of the principal paddy crop in West Bengal state of India is vulnerable to climate change due to limited water resources and strong dependence on surface irrigation. Therefore, assessment of impact of temperature scenarios on crop evapotranspiration (ETc) is essential for irrigation management in Kangsabati command (West Bengal). In the present study, impact of the projected temperatures on ETc was studied under climate change scenarios. Further, the performance of the bias correction and spatial downscaling (BCSD) technique was compared with the two well-known downscaling techniques, namely, multiple linear regression (MLR) and Kernel regression (KR), for the projections of daily maximum and minimum air temperatures for four stations, namely, Purulia, Bankura, Jhargram, and Kharagpur. In National Centers for Environmental Prediction (NCEP) and General Circulation Model (GCM), 14 predictors were used in MLR and KR techniques, whereas maximum and minimum surface air temperature predictor of CanESM2 GCM was used in BCSD technique. The comparison results indicated that the performance of the BCSD technique was better than the MLR and KR techniques. Therefore, the BCSD technique was used to project the future temperatures of study locations with three Representative Concentration Pathway (RCP) scenarios for the period of 2006-2100. The warming tendencies of maximum and minimum temperatures over the Kangsabati command area were projected as 0.013 and 0.014 °C/year under RCP 2.6, 0.015 and 0.023 °C/year under RCP 4.5, and 0.056 and 0.061 °C/year under RCP 8.5 for 2011-2100 period, respectively. As a result, kharif (monsoon) crop evapotranspiration demand of Kangsabati reservoir command (project area) will increase by approximately 10, 8, and 18 % over historical demand under RCP 2.6, 4.5, and 8.5 scenarios, respectively.

  3. Calculation of evapotranspiration: Recursive and explicit methods

    USDA-ARS?s Scientific Manuscript database

    Crop yield is proportional to crop evapotranspiration (ETc) and it is important to calculate ETc correctly. Methods to calculate ETc have combined empirical and theoretical approaches. The combination method was used to calculate potential ETp. It is a combination method because it combined the ener...

  4. Spatial Trends in Evapotranspiration Components over Africa between 1979 and 2012 and Their Relative Influence on Crop Water Use

    NASA Astrophysics Data System (ADS)

    Estes, L. D.; Chaney, N.; Herrera-Estrada, J.; Caylor, K. K.; Sheffield, J.; Wood, E. F.

    2013-12-01

    Understanding how climate change will affect crop water use (evapotranspiration) is fundamental to understanding food security. This is particularly true in sub-Saharan Africa, where crops are largely grown in dryland systems, and agricultural production is expected to expand dramatically this century. Yet analyzing how climate change has impacted crop evapotranspiration (ET) has been hampered by the lack of long-term and spatially continuous meteorological data. Here we use a newly developed, spatio-temporally corrected meteorological dataset to 1) identify trends in individual ET components [rainfall (RF), temperature (T), specific humidity (SH), windspeed (WS), long- and shortwave radiation (LWR, SWR)] in Africa since 1979 and 2) determine the impact of these trends on crop water use. The meteorological data was developed from the Princeton University global meteorological dataset (PGF), which merges gridded station data, satellite retrievals and reanalysis to create a 1.0° resolution, 3-hourly weather dataset for the years 1948-2012. The PGF was downscaled to 0.25° resolution using bilinear interpolation, correcting T, SH, and LWR for elevation, and then merged (using state-space estimation) with meteorological station data (~1000, obtained from the Global Summary of Day database) and corrected for temporal inhomogeneities (due to instrument changes, etc) and gap-filled for missing days. This resulted in a bias-corrected gridded set of daily observations for the variables of interest over southern, East, and West Africa (Central Africa was excluded because of insufficient station observations) for the period 1979-2012, focusing on the satellite period. Using Kendall-Theil Robust line and Mann-Kendall tests, we identify and map significant (p<0.05) trends in ET components in each 0.25° cell over the time period. To estimate the crop water use impact of significant changes in ET components, we undertook a series of crop modeling experiments to isolate the

  5. Satellite-based monitoring of cotton evapotranspiration

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Dercas, Nicholas; Tarquis, Ana Maria

    2016-04-01

    Water for agricultural use represents the largest share among all water uses. Vulnerability in agriculture is influenced, among others, by extended periods of water shortage in regions exposed to droughts. Advanced technological approaches and methodologies, including remote sensing, are increasingly incorporated for the assessment of irrigation water requirements. In this paper, remote sensing techniques are integrated for the estimation and monitoring of crop evapotranspiration ETc. The study area is Thessaly central Greece, which is a drought-prone agricultural region. Cotton fields in a small agricultural sub-catchment in Thessaly are used as an experimental site. Daily meteorological data and weekly field data are recorded throughout seven (2004-2010) growing seasons for the computation of reference evapotranspiration ETo, crop coefficient Kc and cotton crop ETc based on conventional data. Satellite data (Landsat TM) for the corresponding period are processed to estimate cotton crop coefficient Kc and cotton crop ETc and delineate its spatiotemporal variability. The methodology is applied for monitoring Kc and ETc during the growing season in the selected sub-catchment. Several error statistics are used showing very good agreement with ground-truth observations.

  6. A review of surface energy balance models for estimating actual evapotranspiration with remote sensing at high spatiotemporal resolution over large extents

    Treesearch

    Ryan R. McShane; Katelyn P. Driscoll; Roy Sando

    2017-01-01

    Many approaches have been developed for measuring or estimating actual evapotranspiration (ETa), and research over many years has led to the development of remote sensing methods that are reliably reproducible and effective in estimating ETa. Several remote sensing methods can be used to estimate ETa at the high spatial resolution of agricultural fields and the large...

  7. [Modeling evapotranspiration of greenhouse tomato under different water conditions based on the dual crop coefficient method].

    PubMed

    Gong, Xue Wen; Liu, Hao; Sun, Jing Sheng; Ma, Xiao Jian; Wang, Wan Ning; Cui, Yong Sheng

    2017-04-18

    An experiment was conducted to investigate soil evaporation (E), crop transpiration (T), evapotranspiration (ET) and the ratio of evaporation to evapotranspiration (E/ET) of drip-irrigated tomato, which was planted in a typical solar greenhouse in the North China, under different water conditions [irrigation amount was determined based on accumulated pan evaporation (E p ) of 20 cm pan evaporation, and two treatments were designed with full irrigation (0.9E p ) and deficit irrigation (0.5E p )] at different growth stages in 2015 and 2016 at Xinxiang Comprehensive Experimental Station, Chinese Academy of Agricultural Sciences. Effects of deficit irrigation on crop coefficient (K c ) and variation of water stress coefficient (K s ) throughout the growing season were also discussed. E, T and ET of tomato were calculated with a dual crop coefficient approach, and compared with the measured data. Results indicated that E in the full irrigation was 21.5% and 20.4% higher than that in the deficit irrigation in 2015 and 2016, respectively, accounting for 24.0% and 25.0% of ET in the whole growing season. The maximum E/ET was measured in the initial stage of tomato, while the minimum obtained in the middle stage. The K c the full irrigation was 0.45, 0.89, 1.06 and 0.93 in the initial, development, middle, and late stage of tomato, and 0.45, 0.89, 0.87 and 0.41 the deficit irrigation. The K s the deficit irrigation was 0.98, 0.93, 0.78 and 0.39 in the initial, development, middle, and late stage, respectively. The dual crop coefficient method could accurately estimate ET of greenhouse tomato under different water conditions in 2015 and 2016 seasons with the mean absolute error (MAE) of 0.36-0.48 mm·d -1 , root mean square error (RMSE) of 0.44-0.65 mm·d -1 . The method also estimated E and T accurately with MAE of 0.15-0.19 and 0.26-0.56 mm·d -1 , and with RMSE of 0.20-0.24 and 0.33-0.72 mm·d -1 , respectively.

  8. Field-scale and Regional Variability in Evapotranspiration over Crops in California using Eddy Covariance and Surface Renewal

    NASA Astrophysics Data System (ADS)

    Kent, E. R.; Clay, J. M.; Leinfelder-Miles, M.; Lambert, J. J.; Little, C.; Monteiro, R. O. C.; Monteiro, P. F. C.; Shapiro, K.; Rice, S.; Snyder, R. L.; Daniele, Z.; Paw U, K. T.

    2016-12-01

    Evapotranspiration (ET) estimated using a single crop coefficient and a grass reference largely ignores variability due to heterogeneity in microclimate, soils, and crop management. We employ a relatively low cost energy balance residual method using surface renewal and eddy covariance measurements to continuously estimate half-hourly and daily ET across more than 15 fields and orchards spanning four crops and two regions of California. In the Sacramento-San Joaquin River Delta, measurements were taken in corn, pasture, and alfalfa fields, with 4-5 stations in each crop type spread across the region. In the Southern San Joaquin Valley, measurements were taken in three different pistachio orchards, with one orchard having six stations instrumented to examine salinity-induced heterogeneity. We analyze field-scale and regional variability in ET and measured surface energy balance components. Cross comparisons between the eddy covariance and the surface renewal measurements confirm the robustness of the surface renewal method. A hybrid approach in which remotely sensed net radiation is combined with in situ measurements of sensible heat flux is also investigated. This work will provide ground-truth data for satellite and aerial-based ET estimates and will inform water management at the field and regional scales.

  9. Validating HYLARSMET: a Hydrologically Consistent Land Surface Model for Soil Moisture and Evapotranspiration Modelling over Southern Africa using Remote Sensing and Meteorological Data

    NASA Astrophysics Data System (ADS)

    Sinclair, Scott; Pegram, Geoff; Mengitsu, Michael; Everson, Colin

    2015-04-01

    Timeous knowledge of the spatial distribution of soil moisture and evapotranspiration over a large region in fine detail has great value for coping with two weather extremes: flash floods and droughts, since the state of the wetness of the land surface has a major impact on runoff response. Also, the ability to monitor the wetness of the soil and the actual evapotranspiration over large regions, without having to laboriously take expensive samples, is a bonus for agricultural managers who need to predict crop yields. We present samples of the daily national Soil Moisture and Evapotranspiration estimates on a grid of 7300 locations centred in 12 km squares, then move on to the results of a validation study for soil moisture and evapotranspiration estimated using the PyTOPKAPI hydrological model in Land Surface Modelling mode, a system called HYLARSMET. The HYLARSMET estimates are compared with detailed evapotranspiration and soil moisture measurements made at the Baynesfield experimental farm in the KwaZulu-Natal province of South Africa, run by the University of KZN. The HYLARSMET evapotranspiration estimates compared very well with the measured estimates for the two chosen crop types, in spite of the fact that the HYLARSMET estimates were not designed to explicitly account for the crop types at each site. The same seasonality effects were evident in all 3 estimates, and there was a stronger ET relationship between HYLARSMET and the Soybean site (Pearson r = 0.81) than for Maize, (r = 0.59). The soil moisture relationship was stronger between the two in situ measured estimates (r = 0.98 at 0.5 m depth) than it was between HYLARSMET and the field estimates (r about 0.52 in both cases). Overall there was a reasonably good relationship between HYLARSMET and the in situ measurements of ET and SM at each site, indicating the value of the modelling procedure.

  10. Time Series Analysis of Remote Sensing Observations for Citrus Crop Growth Stage and Evapotranspiration Estimation

    NASA Astrophysics Data System (ADS)

    Sawant, S. A.; Chakraborty, M.; Suradhaniwar, S.; Adinarayana, J.; Durbha, S. S.

    2016-06-01

    Satellite based earth observation (EO) platforms have proved capability to spatio-temporally monitor changes on the earth's surface. Long term satellite missions have provided huge repository of optical remote sensing datasets, and United States Geological Survey (USGS) Landsat program is one of the oldest sources of optical EO datasets. This historical and near real time EO archive is a rich source of information to understand the seasonal changes in the horticultural crops. Citrus (Mandarin / Nagpur Orange) is one of the major horticultural crops cultivated in central India. Erratic behaviour of rainfall and dependency on groundwater for irrigation has wide impact on the citrus crop yield. Also, wide variations are reported in temperature and relative humidity causing early fruit onset and increase in crop water requirement. Therefore, there is need to study the crop growth stages and crop evapotranspiration at spatio-temporal scale for managing the scarce resources. In this study, an attempt has been made to understand the citrus crop growth stages using Normalized Difference Time Series (NDVI) time series data obtained from Landsat archives (http://earthexplorer.usgs.gov/). Total 388 Landsat 4, 5, 7 and 8 scenes (from year 1990 to Aug. 2015) for Worldwide Reference System (WRS) 2, path 145 and row 45 were selected to understand seasonal variations in citrus crop growth. Considering Landsat 30 meter spatial resolution to obtain homogeneous pixels with crop cover orchards larger than 2 hectare area was selected. To consider change in wavelength bandwidth (radiometric resolution) with Landsat sensors (i.e. 4, 5, 7 and 8) NDVI has been selected to obtain continuous sensor independent time series. The obtained crop growth stage information has been used to estimate citrus basal crop coefficient information (Kcb). Satellite based Kcb estimates were used with proximal agrometeorological sensing system

  11. Using water vapor isotopes to examine evapotranspiration dynamics in corn and miscanthus reveals challenges to the technique as well as seasonal differences between crops.

    NASA Astrophysics Data System (ADS)

    Miller, J. N.; Bernacchi, C.

    2016-12-01

    Second-generation biofuel crops are being planted at an increasing extent around the globe. Changing land use from common field crops to perennial biofuel crops such as miscanthus or switchgrass is expected to alter ecohydrology via changes in evapotranspiration (ET). However, the direction in which evapotranspiration will shift, either partitioning more moisture through soil evaporation (E) or through plant transpiration (T) is uncertain. To investigate how land conversion from maize to miscanthus affects ET partitioning we measured the isotopic composition of water vapor via continuous air sampling. We obtained continuous diurnal measurements of δ2H and δ18O for miscanthus and maize on multiple days over the course of the growing season. Water vapor isotopes drawn from two heights were measured at 2 Hz using a cavity ringdown spectrometer and partitioned into components of E and T using a simple mixing equation. Partitioning was also accomplished with a combination of sap flow sensors and soil lysimeters. Preliminary results reveal that while daily transpiration fraction can be strongly influenced by meteorological events, the whole season transpiration fraction dominates variations in ET in miscanthus fields more so than in fields of maize.

  12. Airborne and ground-based remote sensing for the estimation of evapotranspiration and yield of bean, potato, and sugar beet crops

    NASA Astrophysics Data System (ADS)

    Jayanthi, Harikishan

    The focus of this research was two-fold: (1) extend the reflectance-based crop coefficient approach to non-grain (potato and sugar beet), and vegetable crops (bean), and (2) develop vegetation index (VI)-yield statistical models for potato and sugar beet crops using high-resolution aerial multispectral imagery. Extensive crop biophysical sampling (leaf area index and aboveground dry biomass sampling) and canopy reflectance measurements formed the backbone of developing of canopy reflectance-based crop coefficients for bean, potato, and sugar beet crops in this study. Reflectance-based crop coefficient equations were developed for the study crops cultivated in Kimberly, Idaho, and subsequently used in water availability simulations in the plant root zone during 1998 and 1999 seasons. The simulated soil water profiles were compared with independent measurements of actual soil water profiles in the crop root zone in selected fields. It is concluded that the canopy reflectance-based crop coefficient technique can be successfully extended to non-grain crops as well. While the traditional basal crop coefficients generally expect uniform growth in a region the reflectance-based crop coefficients represent the actual crop growth pattern (in less than ideal water availability conditions) in individual fields. Literature on crop canopy interactions with sunlight states that there is a definite correspondence between leaf area index progression in the season and the final yield. In case of crops like potato and sugar beet, the yield is influenced not only on how early and how quickly the crop establishes its canopy but also on how long the plant stands on the ground in a healthy state. The integrated area under the crop growth curve has shown excellent correlations with hand-dug samples of potato and sugar beet crops in this research. Soil adjusted vegetation index-yield models were developed, and validated using multispectral aerial imagery. Estimated yield images were

  13. The Role of Evapotranspiration on Soil Moisture Depletion in a Small Alaskan Subarctic Farm

    NASA Astrophysics Data System (ADS)

    Ruairuen, W.; Fochesatto, G. J.; Sparrow, E. B.; Schnabel, W.; Zhang, M.

    2013-12-01

    At high latitudes the period for agriculture production is very short (110 frost-free days) and strongly depends on the availability of soil water content for vegetables to grow. In this context the evapotranspiration (ET) cycle is key variable underpinning mass and energy balance modulating therefore moisture gradients and soil dryness. Evapotranspiration (ET) from field-grown crops water stress is virtually unknown in the subarctic region. Understanding ET cycles in high latitude agricultural ecosystem is essential in terms of water management and sustainability and projection of agricultural activity. To investigate the ET cycle in farming soils a field experiment was conducted in the summer of 2012 and 2013 at the University of Alaska Fairbanks Agricultural and Forestry Experiment Station combining micrometeorological and hydrological measurements. In this case experimental plots of lettuce (Lactuca sativa) plants were grown. The experiment evaluated several components of the ET cycle such as actual evapotranspiration, reference evaporation, pan evaporation as well as soil water content and temperature profiles to link them to the vegetable growing functions. We investigated the relationship of soil moisture content and crop water use across the growing season as a function of the ET cycle. Soil water depletion was compared to daily estimates of water loss by ET during dry and wet periods. We also investigated the dependence of ET on the atmospheric boundary layer flow patterns set by the synoptic large scale weather patterns.

  14. Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia

    USGS Publications Warehouse

    Tadesse, Tsegaye; Senay, Gabriel B.; Berhan, Getachew; Regassa, Teshome; Beyene, Shimelis

    2015-01-01

    Satellite-derived evapotranspiration anomalies and normalized difference vegetation index (NDVI) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data are currently used for African agricultural drought monitoring and food security status assessment. In this study, a process to evaluate satellite-derived evapotranspiration (ETa) products with a geospatial statistical exploratory technique that uses NDVI, satellite-derived rainfall estimate (RFE), and crop yield data has been developed. The main goal of this study was to evaluate the ETa using the NDVI and RFE, and identify a relationship between the ETa and Ethiopia’s cereal crop (i.e., teff, sorghum, corn/maize, barley, and wheat) yields during the main rainy season. Since crop production is one of the main factors affecting food security, the evaluation of remote sensing-based seasonal ETa was done to identify the appropriateness of this tool as a proxy for monitoring vegetation condition in drought vulnerable and food insecure areas to support decision makers. The results of this study showed that the comparison between seasonal ETa and RFE produced strong correlation (R2 > 0.99) for all 41 crop growing zones in Ethiopia. The results of the spatial regression analyses of seasonal ETa and NDVI using Ordinary Least Squares and Geographically Weighted Regression showed relatively weak yearly spatial relationships (R2 < 0.7) for all cropping zones. However, for each individual crop zones, the correlation between NDVI and ETa ranged between 0.3 and 0.84 for about 44% of the cropping zones. Similarly, for each individual crop zones, the correlation (R2) between the seasonal ETa anomaly and de-trended cereal crop yield was between 0.4 and 0.82 for 76% (31 out of 41) of the crop growing zones. The preliminary results indicated that the ETa products have a good predictive potential for these 31 identified zones in Ethiopia. Decision makers may potentially use ETa products for monitoring cereal

  15. Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia

    NASA Astrophysics Data System (ADS)

    Tadesse, Tsegaye; Senay, Gabriel B.; Berhan, Getachew; Regassa, Teshome; Beyene, Shimelis

    2015-08-01

    Satellite-derived evapotranspiration anomalies and normalized difference vegetation index (NDVI) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data are currently used for African agricultural drought monitoring and food security status assessment. In this study, a process to evaluate satellite-derived evapotranspiration (ETa) products with a geospatial statistical exploratory technique that uses NDVI, satellite-derived rainfall estimate (RFE), and crop yield data has been developed. The main goal of this study was to evaluate the ETa using the NDVI and RFE, and identify a relationship between the ETa and Ethiopia's cereal crop (i.e., teff, sorghum, corn/maize, barley, and wheat) yields during the main rainy season. Since crop production is one of the main factors affecting food security, the evaluation of remote sensing-based seasonal ETa was done to identify the appropriateness of this tool as a proxy for monitoring vegetation condition in drought vulnerable and food insecure areas to support decision makers. The results of this study showed that the comparison between seasonal ETa and RFE produced strong correlation (R2 > 0.99) for all 41 crop growing zones in Ethiopia. The results of the spatial regression analyses of seasonal ETa and NDVI using Ordinary Least Squares and Geographically Weighted Regression showed relatively weak yearly spatial relationships (R2 < 0.7) for all cropping zones. However, for each individual crop zones, the correlation between NDVI and ETa ranged between 0.3 and 0.84 for about 44% of the cropping zones. Similarly, for each individual crop zones, the correlation (R2) between the seasonal ETa anomaly and de-trended cereal crop yield was between 0.4 and 0.82 for 76% (31 out of 41) of the crop growing zones. The preliminary results indicated that the ETa products have a good predictive potential for these 31 identified zones in Ethiopia. Decision makers may potentially use ETa products for monitoring cereal crop

  16. Application of a CROPWAT Model to Analyze Crop Yields in Nicaragua

    NASA Astrophysics Data System (ADS)

    Doria, R.; Byrne, J. M.

    2013-12-01

    ABSTRACT Changes in climate are likely to influence crop yields due to varying evapotranspiration and precipitation over agricultural regions. In Nicaragua, agriculture is extensive, with new areas of land brought into production as the population increases. Nicaraguan staple food items (maize and beans) are produced mostly by small scale farmers with less than 10 hectares, but they are critical for income generation and food security for rural communities. Given that the majority of these farmers are dependent on rain for crop irrigation, and that maize and beans are sensitive to variations in temperature and rainfall patterns, the present study was undertaken to assess the impact of climate change on these crop yields. Climate data were generated per municipio representing the three major climatic zones of the country: the wet Pacific lowland, the cooler Central highland, and the Caribbean lowland. Historical normal climate data from 1970-2000 (baseline period) were used as input to CROPWAT model to analyze the potential and actual evapotranspiration (ETo and ETa, respectively) that affects crop yields. Further, generated local climatic data of future years (2030-2099) under various scenarios were inputted to the CROPWAT to determine changes in ETo and ETa from the baseline period. Spatial variability maps of both ETo and ETa as well as crop yields were created. Results indicated significant variation in seasonal rainfall depth during the baseline period and predicted decreasing trend in the future years that eventually affects yields. These maps enable us to generate appropriate adaptation measures and best management practices for small scale farmers under future climate change scenarios. KEY WORDS: Climate change, evapotranspiration, CROPWAT, yield, Nicaragua

  17. Measuring Evapotranspiration in Urban Irrigated Lawns in Two Kansas Cities

    NASA Astrophysics Data System (ADS)

    Shonkwiler, K. B.; Bremer, D.; Ham, J. M.

    2011-12-01

    Conservation of water is becoming increasingly critical in many metropolitan areas. The use of automated irrigation systems for the maintenance of lawns and landscapes is rising and these systems are typically maladjusted to apply more water than necessary, resulting in water wastage. Provision of accurate estimates of actual lawn water use may assist urbanites in conserving water through better adjustment of automatic irrigation systems. Micrometeorological methods may help determine actual lawn water use by measuring evapotranspiration (ET) from urban lawns. From April - August of 2011, four small tripod-mounted weather stations (tripods, five total) were deployed in twelve residential landscapes in the Kansas cities of Manhattan (MHK) and Wichita (ICT) in the USA (six properties in each city). Each tripod was instrumented to estimate reference crop evapotranspiration (ETo) via the FAO-56 method. During tripod deployment in residential lawns, actual evapotranspiration (ETactual) was measured nearby using a stationary, trailer-mounted eddy covariance (EC) station. The EC station sampled well-watered turf at the K-State Rocky Ford Turfgrass Center within 5 km of the study properties in MHK, and was also deployed at a commercial sod farm 15 - 40 km from the study residences in the greater ICT metro area. The fifth tripod was deployed in the source area of the EC station to estimate ETo in conjunction with tripods in the lawns (i.e., to serve as a reference). Data from EC allowed for computation of a so-called lawn coefficient (Kc) by determining the ratio of ETo from the tripods in residential lawns to ETo from the EC station (ETo,EC); hence, Kc = ETo,tripod / ETo,EC. Using this method, ETactual can be estimated for individual tripods within a lawn. Data suggests that it may be more accurate to quantify ET within individual lawns by microclimate (i.e., determine coefficients for "shaded" and "open/unshaded" portions of a lawn). By finding microclimate coefficients

  18. Evapotranspiration from selected fallowed agricultural fields on the Tule Lake National Wildlife Refuge, California, during May to October 2000

    USGS Publications Warehouse

    Bidlake, W.R.

    2002-01-01

    An investigation of evapotranspiration, vegetation quantity and composition, and depth to the water table below the land surface was made at three sites in two fallowed agricultural lots on the 15,800-hectare Tule Lake National Wildlife Refuge in northern California during the 2000 growing season. All three sites had been farmed during 1999, but were not irrigated since the 1999 growing season. Vegetation at the lot C1B and lot 6 stubble sites included weedy species and small grain plants. The lot 6 cover crop site supported a crop of cereal rye that had been planted during the previous winter. Percentage of coverage by live vegetation ranged from 0 to 43.2 percent at the lot C1B site, from approximately 0 to 63.2 percent at the lot 6 stubble site, and it was estimated to range from 0 to greater than 90 percent at the lot 6 cover crop site. Evapotranspiration was measured using the Bowen ratio energy balance technique and it was estimated using a model that was based on the Priestley-Taylor equation and a model that was based on reference evapotranspiration with grass as the reference crop. Total evapotranspiration during May to October varied little among the three evapotranspiration measurement sites, although the timing of evapotranspiration losses did vary among the sites. Total evapotranspiration from the lot C1B site was 426 millimeters, total evapotranspiration from the lot 6 stubble site was 444 millimeters, and total evapotranspiration from the lot 6 cover crop site was 435 millimeters. The months of May to July accounted for approximately 78 percent of the total evapotranspiration from the lot C1B site, approximately 63 percent of the evapotranspiration from the lot 6 stubble site, and approximately 86 percent of the total evapotranspiration from the lot 6 cover crop site. Estimated growing season precipitation accounted for 16 percent of the growing-season evapotranspiration at the lot C1B site and for 17 percent of the growing-season evapotranspiration

  19. Stable isotope measurements of evapotranspiration partitioning in a maize field

    NASA Astrophysics Data System (ADS)

    Hogan, Patrick; Parajka, Juraj; Oismüller, Markus; Strauss, Peter; Heng, Lee; Blöschl, Günter

    2017-04-01

    Evapotranspiration (ET) is one of the most important processes in describing land surface - atmosphere interactions as it connects the energy and water balances. Furthermore knowledge of the individual components of evapotranspiration is important for ecohydrological modelling and agriculture, particularly for irrigation efficiency and crop productivity. In this study, we tested the application of the stable isotope method for evapotranspiration partitioning to a maize crop during the vegetative stage, using sap flow sensors as a comparison technique. Field scale ET was measured using an eddy covariance device and then partitioned using high frequency in-situ measurements of the isotopic signal of the canopy water vapor. The fraction of transpiration (Ft) calculated with the stable isotope method showed good agreement with the sap flow method. High correlation coefficient values were found between the two techniques, indicating the stable isotope method can successfully be applied in maize. The results show the changes in transpiration as a fraction of evapotranspiration after rain events and during the subsequent drying conditions as well as the relationship between transpiration and solar radiation and vapor pressure deficit.

  20. Spatial and temporal variation in evapotranspiration

    USDA-ARS?s Scientific Manuscript database

    Spatial and temporal variation in evapotranspiration occurs at multiple scales as the result of several different spatial and temporal patterns in precipitation, soil water holding capacity, cloudiness (available energy), types of crops, and residue and tillage management practices. We have often as...

  1. Effects of water salinity on the correlation scale of Root density and Evapotranspiration fluxes

    NASA Astrophysics Data System (ADS)

    Ajeel, Ali; Saeed, Ali; Dragonetti, Giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Spatial pattern and the correlation of different soil and plant parameters were examined in a green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari, Italy. The experiment aimed to evaluate the role of local processes of salt accumulation and transport which mainly influences the evapotranspiration (and thus the root uptake) processes under different water salinity levels. The experiment consisted of three transects of 30m length and 4.2 m width, irrigated with three different salinity levels (1dSm-1, 3dSm-1, 6dSm-1). Soil measurements (electrical conductivity and soil water content) were monitored along transects in 24 sites, 1 m apart by using TDR probes and Diviner 2000. Water storage measured by TDR and Diviner sensor were coupled for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Leaf Water Potential (LWP), and Root length Density (RlD). Soil and plant properties were analyzed by classical statistics, geostatistics methods and spectral analysis. Results indicated moderate to large spatial variability across the field for soil and plant parameters under all salinity treatments. Furthermore, cross-semivariograms exhibited a strong positive spatial interdependence between electrical conductivity of soil solution ECw with ET and RlD in transect treated with 3dSm-1 as well as with LAI in transect treated with 6dSm-1 at all 24 monitoring sites. Spectral analysis enabled to identify the observation window to sample the soil salinity information responsible for a given plant response (ET, OP, RlD). It is also allowed a clear identification of the spatial scale at which the soil water salinity level and distribution and the crop response in terms of actual evapotranspiration ET, RlD and OP, are actually correlated. Additionally

  2. Comparison of estimates of evapotranspiration and consumptive use in Palo Verde Valley, California

    USGS Publications Warehouse

    Raymond, Lee H.; Owen-Joyce, Sandra J.

    1987-01-01

    Estimates of evapotranspiration and consumptive use by vegetation in Palo Verde Valley, California, were compared for calendar years 1981 to 1984. Vegetation types were classified, and the areas covered by each type were computed from Landsat satellite digital-image analysis. Evapotranspiration was calculated by multiplying the area of each vegetation type by a corresponding water use rate adjusted for year-to-year variations in climate. The vegetation classification slightly underestimates the total vegetated area when compared to crop reports, because not all multiple cropping could be identified. The accuracy of evapotranspiration calculated from vegetation classification depends primarily on the correct classification of alfalfa and cotton because alfalfa and cotton have larger acreages and use more water/acre than the other crops in the valley. Consumptive use was calculated using a water budget for each of the 4 years. Estimates of evapotranspiration and consumptive use by vegetation, respectively, were: (1) 439,400 and 483,500 acre-ft in 1981, (2) 430,700 and 452,700 acre-ft in 1982, (3) 402,000 and 364,400 acre-ft in 1983, and (4) 406,700 and 373,800 acre-ft in 1984. Evapotranspiration estimates were lower than consumptive use estimates in 1981 and 1982 and higher in 1983 and 1984. Both estimates were lower in 1983 and 1984 than in 1981 and 1982. Yearly differences in estimates correspond most closely to significant changes in stage of the lower Colorado River caused by flood control releases in 1983 and 1984 and to changes in cropping practices. (Author 's abstract)

  3. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations.

    PubMed

    Corbari, Chiara; Ravazzani, Giovanni; Galvagno, Marta; Cremonese, Edoardo; Mancini, Marco

    2017-11-18

    The Food and Agricultural Organization (FAO) method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.

  4. Comparing SEBAL and METRIC: Evapotranspiration Models Applied to Paramount Farms Almond Orchards

    NASA Astrophysics Data System (ADS)

    Furey, B. J.; Kefauver, S. C.

    2011-12-01

    Two evapotranspiration models were applied to almond and pistachio orchards in California. The SEBAL model, developed by W.G.M. Bastiaanssen, was programmed in MatLab for direct comparison to the METRIC model, developed by R.G. Allen and the IDWR. Remote sensing data from the NASA SARP 2011 Airborne Research Program was used in the application of these models. An evaluation of the models showed that they both followed the same pattern in evapotranspiration (ET) rates for different types of ground cover. The models exhibited a slightly different range of values and appeared to be related (non-linearly). The models both underestimated the actual ET at the CIMIS weather station. However, SEBAL overestimated the ET of the almond orchards by 0.16 mm/hr when applying its crop coefficient to the reference ET. This is compared to METRIC, which underestimated the ET of the almond orchards by only 0.10 mm/hr. Other types of ground cover were similarly compared. Temporal variability in ET rates between the morning and afternoon were also observed.

  5. An Updated Decision Support Interface: A Tool for Remote Monitoring of Crop Growing Conditions

    NASA Astrophysics Data System (ADS)

    Husak, G. J.; Budde, M. E.; Rowland, J.; Verdin, J. P.; Funk, C. C.; Landsfeld, M. F.

    2014-12-01

    Remote sensing of agroclimatological variables to monitor food production conditions is a critical component of the Famine Early Warning Systems Network portfolio of tools for assessing food security in the developing world. The Decision Support Interface (DSI) seeks to integrate a number of remotely sensed and modeled variables to create a single, simplified portal for analysis of crop growing conditions. The DSI has been reformulated to incorporate more variables and give the user more freedom in exploring the available data. This refinement seeks to transition the DSI from a "first glance" agroclimatic indicator to one better suited for the differentiation of drought events. The DSI performs analysis of variables over primary agricultural zones at the first sub-national administrative level. It uses the spatially averaged rainfall, normalized difference vegetation index (NDVI), water requirement satisfaction index (WRSI), and actual evapotranspiration (ETa) to identify potential hazards to food security. Presenting this information in a web-based client gives food security analysts and decision makers a lightweight portal for information on crop growing conditions in the region. The crop zones used for the aggregation contain timing information which is critical to the DSI presentation. Rainfall and ETa are accumulated from different points in the crop phenology to identify season-long deficits in rainfall or transpiration that adversely affect the crop-growing conditions. Furthermore, the NDVI and WRSI serve as their own seasonal accumulated measures of growing conditions by capturing vegetation vigor or actual evapotranspiration deficits. The DSI is currently active for major growing regions of sub-Saharan Africa, with intention of expanding to other areas over the coming years.

  6. An automated multi-model based evapotranspiration estimation framework for understanding crop-climate interactions in India

    NASA Astrophysics Data System (ADS)

    Bhattarai, N.; Jain, M.; Mallick, K.

    2017-12-01

    A remote sensing based multi-model evapotranspiration (ET) estimation framework is developed using MODIS and NASA Merra-2 reanalysis data for data poor regions, and we apply this framework to the Indian subcontinent. The framework eliminates the need for in-situ calibration data and hence estimates ET completely from space and is replicable across all regions in the world. Currently, six surface energy balance models ranging from widely-used SEBAL, METRIC, and SEBS to moderately-used S-SEBI, SSEBop, and a relatively new model, STIC1.2 are being integrated and validated. Preliminary analysis suggests good predictability of the models for estimating near- real time ET under clear sky conditions from various crop types in India with coefficient of determination 0.32-0.55 and percent bias -15%-28%, when compared against Bowen Ratio based ET estimates. The results are particularly encouraging given that no direct ground input data were used in the analysis. The framework is currently being extended to estimate seasonal ET across the Indian subcontinent using a model-ensemble approach that uses all available MODIS 8-day datasets since 2000. These ET products are being used to monitor inter-seasonal and inter-annual dynamics of ET and crop water use across different crop and irrigation practices in India. Particularly, the potential impacts of changes in precipitation patterns and extreme heat (e.g., extreme degree days) on seasonal crop water consumption is being studied. Our ET products are able to locate the water stress hotspots that need to be targeted with water saving interventions to maintain agricultural production in the face of climate variability and change.

  7. Estimation of land surface evapotranspiration with A satellite remote sensing procedure

    USGS Publications Warehouse

    Irmak, A.; Ratcliffe, I.; Ranade, P.; Hubbard, K.G.; Singh, Ramesh K.; Kamble, B.; Kjaersgaard, J.

    2011-01-01

    There are various methods available for estimating magnitude and trends of evapotranspiration. Bowen ratio energy balance system and eddy correlation techniques offer powerful alternatives for measuring land surface evapotranspiration. In spite of the elegance, high accuracy, and theoretical attractions of these techniques for measuring evapotranspiration, their practical use over large areas can be limited due to the number of sites needed and the related expense. Application of evapotranspiration mapping from satellite measurements can overcome the limitations. The objective of this study was to utilize the METRICTM (Mapping Evapotranspiration at High Resolution using Internalized Calibration) model in Great Plains environmental settings to understand water use in managed ecosystems on a regional scale. We investigated spatiotemporal distribution of a fraction of reference evapotranspiration (ETrF) using eight Landsat 5 images during the 2005 and 2006 growing season for path 29, row 32. The ETrF maps generated by METRICTM allowed us to follow the magnitude and trend in ETrF for major land-use classes during the growing season. The ETrF was lower early in the growing season for agricultural crops and gradually increased as the normalized difference vegetation index of crops increased, thus presenting more surface area over which water could transpire toward the midseason. Comparison of predictions with Bowen ratio energy balance system measurements at Clay Center, NE, showed that METRICTM performed well at the field scale for predicting evapotranspiration from a cornfield. If calibrated properly, the model could be a viable tool to estimate water use in managed ecosystems in subhumid climates at a large scale.

  8. Past and future spatiotemporal changes in evapotranspiration and effective moisture on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yin, Yunhe; Wu, Shaohong; Zhao, Dongsheng

    2013-10-01

    evaporative demand has decreased worldwide during the past several decades. This trend is also noted on the Tibetan Plateau, a region that is particularly sensitive to climate change. However, patterns and trends of evapotranspiration and their relationship to drought stress on the Tibetan Plateau are complex and poorly understood. Here, we analyze spatiotemporal changes in evapotranspiration and effective moisture (defined as the ratio of actual evapotranspiration (ETa) to reference crop evapotranspiration (ETo)) based on the modified Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ). Climate data from 80 meteorological stations on the Tibetan Plateau were compiled for the period 1981-2010 and future climate projections were generated by a regional climate model through the 21st century. The results show regional trends towards decreasing ETo and statistically significant increases in ETa (p < 0.05) and effective moisture during the period 1981-2010 (p < 0.001). A transition from significant negative to positive ETo occurred in 1997. Additionally, a pronounced increase in effective moisture occurred during the period 1981-1997 because of significant decreased ETo before 1997. In the future, regional ETo and ETa are projected to increase, thus reducing drought stress, because of generally increased effective moisture. Future regional differences are most pronounced in terms of effective moisture, which shows notable increases in the northwestern plateau and decreases in the southeastern plateau. Moreover, the reduced magnitude of effective moisture is likely to intensify in the long term, due mainly to increased evaporative demand.

  9. Timescales of Land Surface Evapotranspiration Response

    NASA Technical Reports Server (NTRS)

    Scott, Russell; Entekhabi, Dara; Koster, Randal; Suarez, Max

    1997-01-01

    Soil and vegetation exert strong control over the evapotranspiration rate, which couples the land surface water and energy balances. A method is presented to quantify the timescale of this surface control using daily general circulation model (GCM) simulation values of evapotranspiration and precipitation. By equating the time history of evaporation efficiency (ratio of actual to potential evapotranspiration) to the convolution of precipitation and a unit kernel (temporal weighting function), response functions are generated that can be used to characterize the timescales of evapotranspiration response for the land surface model (LSM) component of GCMS. The technique is applied to the output of two multiyear simulations of a GCM, one using a Surface-Vegetation-Atmosphere-Transfer (SVAT) scheme and the other a Bucket LSM. The derived response functions show that the Bucket LSM's response is significantly slower than that of the SVAT across the globe. The analysis also shows how the timescales of interception reservoir evaporation, bare soil evaporation, and vegetation transpiration differ within the SVAT LSM.

  10. Assessing FAO-56 dual crop coefficients using eddy covariance flux partitioning

    USDA-ARS?s Scientific Manuscript database

    Current approaches to scheduling crop irrigation using reference evapotranspiration (ET0) recommend using a dual-coefficient approach using basal (Kcb) and soil (Ke) coefficients along with a stress coefficient (Ks) to model crop evapotranspiration (ETc), [e.g. ETc=(Ks*Kcb+Ke)*ET0]. However, determi...

  11. Drought assessment by evapotranspiration mapping in Twente

    NASA Astrophysics Data System (ADS)

    Eden, U.; Timmermans, J.; van der Velde, R.; Su, Z.

    2012-04-01

    Drought is a reoccurring worldwide problem with impacts ranging from food production to infrastructure. Droughts are different from other natural hazards (floods, hurricanes, and earthquakes) because the effects can only be witnessed slowly and with a time delay. Effects of droughts are diverse, like famine and migration of people. Droughts are caused by natural causes but also by interaction between the natural events and water demand. Not only typical dry regions, like the Horn of Africa, are affected, but even semi-humid environments, like Europe. Temperature rise and precipitation deficit in the summers of 2003 and 2006 caused substantial crop losses in the agricultural sector in the Netherlands. In addition increased river water temperatures and low water levels caused cooling problems for power plants. Heat waves and prolonged absence of precipitation is expected to increase due to climate change. Therefore assessing and monitoring drought in the Netherlands is thus very important. Various drought indices are available to assess the severity, duration and spatial extend of the drought. Some of the commonly indices used are Standardized precipitation index (SPI) and the Palmer Drought Severity Index (PDSI). However each of these indices do not take into account the actual state of the land surface in respect to the dryness. By analysing drought through actual evapotranspiration (ET) estimations from remote sensing this can be circumvented. The severity of the droughts was quantified by ET-mapping from 2003-2010. The assessment was based on the spatial and temporal distribution of ET using the Evapotranspiration Deficit Index (ETDI) drought index. Surface energy fluxes, like ET, were estimated using WACMOS methodology. The input data consisted of remote sensing products like land surface temperature, LAI, and albedo from MODIS; and meteorological data like air-temperature, humidity and wind speed from the European Centre for Medium weather forecast (ECMWF

  12. Integrating satellite actual evapotranspiration patterns into distributed model parametrization and evaluation for a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.

    2016-12-01

    Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.

  13. A Fast Track approach to deal with the temporal dimension of crop water footprint

    NASA Astrophysics Data System (ADS)

    Tuninetti, Marta; Tamea, Stefania; Laio, Francesco; Ridolfi, Luca

    2017-07-01

    Population growth, socio-economic development and climate changes are placing increasing pressure on water resources. Crop water footprint is a key indicator in the quantification of such pressure. It is determined by crop evapotranspiration and crop yield, which can be highly variable in space and time. While the spatial variability of crop water footprint has been the objective of several investigations, the temporal variability remains poorly studied. In particular, some studies approached this issue by associating the time variability of crop water footprint only to yield changes, while considering evapotranspiration patterns as marginal. Validation of this Fast Track approach has yet to be provided. In this Letter we demonstrate its feasibility through a comprehensive validation, an assessment of its uncertainty, and an example of application. Our results show that the water footprint changes are mainly driven by yield trends, while evapotranspiration plays a minor role. The error due to considering constant evapotranspiration is three times smaller than the uncertainty of the model used to compute the crop water footprint. These results confirm the suitability of the Fast Track approach and enable a simple, yet appropriate, evaluation of time-varying crop water footprint.

  14. Evaluating four gap-filling methods for eddy covariance measurements of evapotranspiration over hilly crop fields

    NASA Astrophysics Data System (ADS)

    Boudhina, Nissaf; Zitouna-Chebbi, Rim; Mekki, Insaf; Jacob, Frédéric; Ben Mechlia, Nétij; Masmoudi, Moncef; Prévot, Laurent

    2018-06-01

    Estimating evapotranspiration in hilly watersheds is paramount for managing water resources, especially in semiarid/subhumid regions. The eddy covariance (EC) technique allows continuous measurements of latent heat flux (LE). However, time series of EC measurements often experience large portions of missing data because of instrumental malfunctions or quality filtering. Existing gap-filling methods are questionable over hilly crop fields because of changes in airflow inclination and subsequent aerodynamic properties. We evaluated the performances of different gap-filling methods before and after tailoring to conditions of hilly crop fields. The tailoring consisted of splitting the LE time series beforehand on the basis of upslope and downslope winds. The experiment was setup within an agricultural hilly watershed in northeastern Tunisia. EC measurements were collected throughout the growth cycle of three wheat crops, two of them located in adjacent fields on opposite hillslopes, and the third one located in a flat field. We considered four gap-filling methods: the REddyProc method, the linear regression between LE and net radiation (Rn), the multi-linear regression of LE against the other energy fluxes, and the use of evaporative fraction (EF). Regardless of the method, the splitting of the LE time series did not impact the gap-filling rate, and it might improve the accuracies on LE retrievals in some cases. Regardless of the method, the obtained accuracies on LE estimates after gap filling were close to instrumental accuracies, and they were comparable to those reported in previous studies over flat and mountainous terrains. Overall, REddyProc was the most appropriate method, for both gap-filling rate and retrieval accuracy. Thus, it seems possible to conduct gap filling for LE time series collected over hilly crop fields, provided the LE time series are split beforehand on the basis of upslope-downslope winds. Future works should address consecutive vegetation

  15. The Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX)-a synopsis

    USDA-ARS?s Scientific Manuscript database

    Considering California’s recent multi-year drought as well as the severe droughts recently in Italy and South Africa, there is a critical need for accurate and timely evapotranspiration (ET) and crop stress information to ensure long-term sustainability of high-value value perennial crops (vineyards...

  16. Evaluation of Precipitation Indices for Global Crop Modeling and Definition of Drought Response Function to Yields

    NASA Astrophysics Data System (ADS)

    Kaneko, D.

    2017-12-01

    Climate change initiates abnormal meteorological disasters. Drought causes climate instability, thus producing poor harvests because of low rates of photosynthesis and sterile pollination. This research evaluates drought indices regarding precipitation and includes this data in global geophysical crop models that concern with evaporation, stomata opening, advection-effects from sea surface temperature anomalies, photosynthesis, carbon partitioning, crop yields, and crop production. Standard precipitation index (SPI) is a useful tool because of related variable not used in the stomata model. However, SPI is not an adequate tool for drought in irrigated fields. Contrary to expectations, the global comparisons of spatial characteristics between stomata opening/evapotranspiration and SPI for monitoring continental crop extremes produced serious defects and obvious differences between evapotranspiration and the small stomata-opening phenomena. The reason for this is that SPI does not include surface air temperature in its analysis. The Penman equation (Epen) describes potential evaporation better than SPI for recent hot droughts caused by climate change. However, the distribution of precipitation is a necessary condition for crop monitoring because it affirms the trend of the dry results computed by crop models. Consequently, the author uses global precipitation data observed by microwave passive sensors on TRMM and GCOM-W satellites. This remote sensing data conveniently supplies spatial distributions of global and seasonal precipitation. The author has designed a model to measure the effects of drought on crop yield and the degree of stomata closure related to the photosynthesis rate. To determine yield effects, the drought injury function is defined by integrating stomata closure during the two seasons from flowering to pollination. The stomata, defined by ratio between Epen and Eac, reflect the effects of drought and irrigation. Stomata-closure model includes the

  17. Interannual covariability between actual evapotranspiration and PAL and GIMMS NDVIs of northern Asia

    USGS Publications Warehouse

    Suzuki, Rikie; Masuda, Kooiti; Dye, Dennis G.

    2007-01-01

    This study examined the covariability between interannual changes in the normalized difference vegetation index (NDVI) and actual evapotranspiration (ET). To reduce possible uncertainty in the NDVI time series, two NDVI datasets derived from Pathfinder AVHRR Land (PAL) data and the Global Inventory Monitoring and Modeling Studies (GIMMS) group were used. Analyses were conducted using data over northern Asia from 1982 to 2000. Interannual changes over 19 years in the PAL-NDVI and GIMMS-NDVI were compared with interannual changes in ET estimated from model-assimilated atmospheric data and gridded precipitation data. For both NDVI datasets, the annual maximum correlation with ET occurred in June, which is the beginning of the vegetation growing season. The PAL and GIMMS datasets showed a significant, positive correlation between interannual changes in the NDVI and ET over most of the vegetated land area in June. These results suggest that interannual changes in vegetation activity predominantly control interannual changes in ET in June. Based on analyses of interannual changes in temperature, precipitation, and the NDVI in June, the study area can be roughly divided into two regions, the warmth-dominated northernmost region and the wetness-dominated southern region, indicating that interannual changes in vegetation and the resultant interannual changes in ET are controlled by warmth and wetness in these two regions, respectively.

  18. Evaluating the crop coefficient using spectral reflectance

    USGS Publications Warehouse

    Heilman, J. L.; Heilman, W. E.; Moore, Donald G.

    1982-01-01

    Significant linear relationships were found between PVI and percent cover (r2 = 0.911), and between Kc and percent cover (r2 = 0.815). In addition, the position of the PVl intersection on the soil background line changed as a result of soil moisture increases following irrigation, even at high percent cover. Thus, once experimental relationships between Kc and crop growth are established, a mean Kc can be determined from spectral estimates of stage of development and the soil background component of PVI can be used to adjust the mean K, for increased evaporation following irrigation because the ratio of actual to potential evapotranspiration will approach 1 when the soil surface is wet.

  19. Quantifying the contribution of groundwater on water consumption in arid crop land with shallow groundwater

    NASA Astrophysics Data System (ADS)

    Huo, Z.; Liu, Z.; Wang, X.; Qu, Z.

    2016-12-01

    Groundwater from the shallow aquifers can supply substantial water for evapotranspiration of crops. However, it is difficult to quantify to the contribution of groundwater on crop's water consumption. In present study, regional scale evapotranspiration and the groundwater contribution to evapotranspiration were estimated by the soil water balance equation in Hetao irrigation distric with shallow aquifers, China. Estimates used an 8-year (2006-2013) hydrological dataset including soil moisture, the depth to water table, irrigation amounts, rainfall data, and drainage water flow. The 8-year mean evapotranspiration was estimated to be 664 mm. The mean groundwater supported evapotranspiration (ETg) was estimated to be 228 mm, with variation from 145 mm to 412 mm during the crop growth period. Analysis of the positive correlation between evapotranspiration and the sum of irrigation and rainfall, and the analysis of the negative correlation between ETg/ET and the sum of irrigation and rainfall, reflect the need of groundwater to meet the evapotranspiration demand. Approximately 20% to 40% of the evapotranspiration is from the shallow aquifers in the study area. Furthermore, a new method estimating daily ETg during the crop growing season was developed. The effects of crop growth stage, climate condition, groundwater depth and soil moisture are considered in the model. The method was tested with controlled lysimeter experiments of winter wheat including five controlled water table depths and four soil profiles of different textures. The simulated ETg is a good agreement with the measured data for four soil profiles and different depths to groundwater table. These results could be useful for the government to understand the significant role of the groundwater and make reasonable water use policy in the semiarid agricultural regions.

  20. Interannual variability of crop water footprint

    NASA Astrophysics Data System (ADS)

    Tuninetti, M.; Tamea, S.; Laio, F.; Ridolfi, L.

    2016-12-01

    The crop water footprint, CWF, is a useful tool to investigate the water-food nexus, since it measures the water requirement for crop production. Heterogeneous spatial patterns of climatic conditions and agricultural practices have inspired a flourishing literature on the geographic assessment of CWF, mostly referred to a fixed (time-averaged) period. However, given that both climatic conditions and crop yield may vary substantially over time, also the CWF temporal dynamics need to be addressed. As other studies have done, we base the CWF variability on yield, while keeping the crop evapotranspiration constant over time. As a new contribution, we prove the feasibility of this approach by comparing these CWF estimates with the results obtained with a full model considering variations of crop evapotranspiration: overall, the estimates compare well showing high coefficients of determination that read 0.98 for wheat, 0.97 for rice, 0.97 for maize, and 0.91 for soybean. From this comparison, we derive also the precision of the method, which is around ±10% that is higher than the precision of the model used to evaluate the crop evapotranspiration (i.e., ±30%). Over the period between 1961 and 2013, the CWF of the most cultivated grains has sharply decreased on a global basis (i.e., -68% for wheat, -62% for rice, -66% for maize, and -52% for soybean), mainly driven by enhanced yield values. The higher water use efficiency in crop production implies a reduced virtual displacement of embedded water per ton of traded crop and as a result, the temporal variability of virtual water trade is different if considering constant or time-varying CWF. The proposed yield-based approach to estimate the CWF variability implies low computational costs and requires limited input data, thus, it represents a promising tool for time-dependent water footprint assessments.

  1. Evapotranspiration measurement and modeling in Mid-South irrigated rice

    USDA-ARS?s Scientific Manuscript database

    Nearly 75% of US rice is grown in the humid mid-South. Rice requires more water to produce than other crops (corn, soybean, and cotton). The identification of rice evapotranspiration and irrigation demand is paramount to understand regional water use and water allocation. Drill-seeded, commercial si...

  2. Evapotranspiration rates and crop coefficients for a restored marsh in the Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Anderson, Frank E.; Snyder, Richard L.

    2008-01-01

    The surface renewal method was used to estimate evapotranspiration (ET) for a restored marsh on Twitchell Island in the Sacramento–San Joaquin Delta, California, USA. ET estimates for the marsh, together with reference ET measurements from a nearby climate station, were used to determine crop coefficients over a 3‐year period during the growing season. The mean ET rate for the study period was 6 mm day−1, which is high compared with other marshes with similar vegetation. High ET rates at the marsh may be due to the windy, semi‐arid Mediterranean climate of the region, and the permanently flooded nature of the marsh, which results in very low surface resistance of the vegetation. Crop coefficient (Kc) values for the marsh ranged from 0·73 to 1·18. The mean Kc value over the entire study period was 0·95. The daily Kc values for any given month varied from year to year, and the standard deviation of daily Kc values varied between months. Although several climate variables were undoubtedly responsible for this variation, our analysis revealed that wind direction and the temperature of standing water in the wetland were of particular importance in determining ET rates and Kc values. 

  3. Time series analysis of reference crop evapotranspiration using soft computing techniques for Ganjam District, Odisha, India

    NASA Astrophysics Data System (ADS)

    Patra, S. R.

    2017-12-01

    Evapotranspiration (ET0) influences water resources and it is considered as a vital process in aridic hydrologic frameworks. It is one of the most important measure in finding the drought condition. Therefore, time series forecasting of evapotranspiration is very important in order to help the decision makers and water system mangers build up proper systems to sustain and manage water resources. Time series considers that -history repeats itself, hence by analysing the past values, better choices, or forecasts, can be carried out for the future. Ten years of ET0 data was used as a part of this study to make sure a satisfactory forecast of monthly values. In this study, three models: (ARIMA) mathematical model, artificial neural network model, support vector machine model are presented. These three models are used for forecasting monthly reference crop evapotranspiration based on ten years of past historical records (1991-2001) of measured evaporation at Ganjam region, Odisha, India without considering the climate data. The developed models will allow water resource managers to predict up to 12 months, making these predictions very useful to optimize the resources needed for effective water resources management. In this study multistep-ahead prediction is performed which is more complex and troublesome than onestep ahead. Our investigation proposed that nonlinear relationships may exist among the monthly indices, so that the ARIMA model might not be able to effectively extract the full relationship hidden in the historical data. Support vector machines are potentially helpful time series forecasting strategies on account of their strong nonlinear mapping capability and resistance to complexity in forecasting data. SVMs have great learning capability in time series modelling compared to ANN. For instance, the SVMs execute the structural risk minimization principle, which allows in better generalization as compared to neural networks that use the empirical risk

  4. Online irrigation service for fruit und vegetable crops at farmers site

    NASA Astrophysics Data System (ADS)

    Janssen, W.

    2009-09-01

    Online irrigation service for fruit und vegetable crops at farmers site by W. Janssen, German Weather Service, 63067 Offenbach Agrowetter irrigation advice is a product which calculates the present soil moisture as well as the soil moisture to be expected over the next 5 days for over 30 different crops. It's based on a water balance model and provides targeted recommendations for irrigation. Irrigation inputs according to the soil in order to avoid infiltration and, as a consequence thereof, the undesired movement of nitrate and plant protectants into the groundwater. This interactive 'online system' takes into account the user's individual circumstances such as crop and soil characteristics and the precipitation and irrigation amounts at the user's site. Each user may calculate up to 16 different enquiries simultaneously (different crops or different emergence dates). The user can calculate the individual soil moistures for his fields with a maximum effort of 5 minutes per week only. The sources of water are precipitation and irrigation whereas water losses occur due to evapotranspiration and infiltration of water into the ground. The evapotranspiration is calculated by multiplying a reference evapotranspiration (maximum evapotranspiration over grass) with the so-called crop coefficients (kc values) that have been developed by the Geisenheim Research Centre, Vegetable Crops Branch. Kc values depending on the crop and the individual plant development stage. The reference evapotranspiration is calculated from a base weather station user has chosen (out of around 500 weather stations) using Penman method based on daily values. After chosen a crop and soil type the user must manually enter the precipitation data measured at the site, the irrigation water inputs and the dates for a few phenological stages. Economical aspects can be considered by changing the values of soil moisture from which recommendations for irrigation start from optimal to necessary plant supply

  5. Determining Crop Soil Water Deficit with an UAS

    USDA-ARS?s Scientific Manuscript database

    Remote sensing (RS) techniques have been used to identify crops grown during different seasons and to estimate crop bio-physical characteristics and water use. Images from satellites such as Landsat 5, 7, and 8 have been used extensively to map crop evapotranspiration rates (ET) using a suite of alg...

  6. Ecosystem evapotranspiration: challenges in measurements, estimates, and modeling

    Treesearch

    Devendra Amatya; S. Irmak; P. Gowda; Ge Sun; J.E. Nettles; K.R. Douglas-Mankin

    2016-01-01

    Evapotranspiration (ET) processes at the leaf to landscape scales in multiple land uses have important controls and feedbacks for local, regional, and global climate and water resource systems. Innovative methods, tools, and technologies for improved understanding and quantification of ET and crop water use are critical for adapting more effective management strategies...

  7. Estimation of crop water requirements using remote sensing for operational water resources management

    NASA Astrophysics Data System (ADS)

    Vasiliades, Lampros; Spiliotopoulos, Marios; Tzabiras, John; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-06-01

    An integrated modeling system, developed in the framework of "Hydromentor" research project, is applied to evaluate crop water requirements for operational water resources management at Lake Karla watershed, Greece. The framework includes coupled components for operation of hydrotechnical projects (reservoir operation and irrigation works) and estimation of agricultural water demands at several spatial scales using remote sensing. The study area was sub-divided into irrigation zones based on land use maps derived from Landsat 5 TM images for the year 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used to derive actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat TM imagery. Agricultural water needs were estimated using the FAO method for each zone and each control node of the system for a number of water resources management strategies. Two operational strategies of hydro-technical project development (present situation without operation of the reservoir and future situation with the operation of the reservoir) are coupled with three water demand strategies. In total, eight (8) water management strategies are evaluated and compared. The results show that, under the existing operational water resources management strategies, the crop water requirements are quite large. However, the operation of the proposed hydro-technical projects in Lake Karla watershed coupled with water demand management measures, like improvement of existing water distribution systems, change of irrigation methods, and changes of crop cultivation could alleviate the problem and lead to sustainable and ecological use of water resources in the study area.

  8. A data fusion approach for mapping daily evapotranspiration at field scale

    USDA-ARS?s Scientific Manuscript database

    The capability for mapping water consumption over cropped landscapes on a daily and seasonal basis is increasingly relevant given forecasted scenarios of reduced water availability. Prognostic modeling of water losses to the atmosphere, or evapotranspiration (ET), at field or finer scales in agricul...

  9. Comparison of evapotranspiration rates for flatwoods and ridge citrus

    USGS Publications Warehouse

    Jia, X.; Swancar, A.; Jacobs, J.M.; Dukes, M.D.; Morgan, K.

    2007-01-01

    Florida citrus groves are typically grown in two regions of the state: flatwoods and ridge. The southern flatwoods citrus area has poorly drained fine textured sands with low organic matter in the shallow root zone. Ridge citrus is located in the northern ridge citrus zone and has fine to coarse textured sands with low water-holding capacity. Two commercial citrus groves, selected from each region, were studied from 15 July 2004 to 14 July 2005. The flatwoods citrus (FC) grove had a grass cover and used drainage ditches to remove excess water from the root zone. The ridge citrus (RC) grove had a bare soil surface with weeds periodically eliminated by tillage. Citrus crop evapotranspiration (ETc) rates at the two citrus groves were measured by the eddy correlation method, and components in the energy balance were also examined and compared. The study period had higher than average rainfall, and as a result, the two locations had similar annual ETc rates (1069 and 1044 mm for RC and FC, respectively). The ETc rates were 59% (RC) and 47% (FC) of the rainfall amounts during the study period. The annual reference crop evapotranspiration (ETo) rates were 1180 mm for RC and 1419 mm for FC, estimated using the standardized reference evapotranspiration equation. The citrus crop coefficients (Kc, ratio of ETc to ET o) were different between the two locations because of differences in latitude, ground cover, and rainfall amounts. The Kc values ranged from 0.70 between December and March to 1.05 between July and November for RC, and from 0.65 between November and May to 0.85 between June and October for FC. The results are consistent with other Kc values reported from field studies on citrus in both Florida and elsewhere using these and alternate methods.

  10. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation

    NASA Astrophysics Data System (ADS)

    Siebert, Stefan; Döll, Petra

    2010-04-01

    SummaryCrop production requires large amounts of green and blue water. We developed the new global crop water model GCWM to compute consumptive water use (evapotranspiration) and virtual water content (evapotranspiration per harvested biomass) of crops at a spatial resolution of 5' by 5', distinguishing 26 crop classes, and blue versus green water. GCWM is based on the global land use data set MIRCA2000 that provides monthly growing areas for 26 crop classes under rainfed and irrigated conditions for the period 1998-2002 and represents multi-cropping. By computing daily soil water balances, GCWM determines evapotranspiration of blue and green water for each crop and grid cell. Cell-specific crop production under both rainfed and irrigated conditions is computed by downscaling average crop yields reported for 402 national and sub-national statistical units, relating rainfed and irrigated crop yields reported in census statistics to simulated ratios of actual to potential crop evapotranspiration for rainfed crops. By restricting water use of irrigated crops to green water only, the potential production loss without any irrigation was computed. For the period 1998-2002, the global value of total crop water use was 6685 km 3 yr -1, of which blue water use was 1180 km 3 yr -1, green water use of irrigated crops was 919 km 3 yr -1 and green water use of rainfed crops was 4586 km 3 yr -1. Total crop water use was largest for rice (941 km 3 yr -1), wheat (858 km 3 yr -1) and maize (722 km 3 yr -1). The largest amounts of blue water were used for rice (307 km 3 yr -1) and wheat (208 km 3 yr -1). Blue water use as percentage of total crop water use was highest for date palms (85%), cotton (39%), citrus fruits (33%), rice (33%) and sugar beets (32%), while for cassava, oil palm and cocoa, almost no blue water was used. Average crop yield of irrigated cereals was 442 Mg km -2 while average yield of rainfed cereals was only 266 Mg km -2. Average virtual water content of cereal

  11. Using ISBA model for partitioning evapotranspiration into soil evaporation and plant transpiration of irrigated crops under semi-arid climate

    NASA Astrophysics Data System (ADS)

    Aouade, Ghizlane; Jarlan, Lionel; Ezzahar, Jamal; Er-raki, Salah; Napoly, Adrien; Benkaddour, Abdelfettah; Khabba, Said; Boulet, Gilles; Chehbouni, Abdelghani; Boone, Aaron

    2016-04-01

    The Haouz region, typical of southern Mediterranean basins, is characterized by a semi-arid climate, with average annual rainfall of 250, whilst evaporative demand is about 1600 mm per year. Under these conditions, crop irrigation is inevitable for growth and development. Irrigated agriculture currently consumes the majority of total available water (up to 85%), making it critical for more efficient water use. Flood irrigation is widely practiced by the majority of the farmers (more than 85 %) with an efficiency which does not exceed 50%. In this context, a good knowledge of the partitioning of evapotranspiration (ET) into soil evaporation and plant transpiration is of crucial need for improving the irrigation scheduling and thus water use efficiency. In this study, the ISBA (Interactions Soil-Biosphere-Atmosphere) model was used for estimating ET and its partition over an olive orchard and a wheat field located near to the Marrakech City (Centre of Morocco). Two versions were evaluated: standard version which simulates a single energy balance for the soil and vegetation and the recently developed multiple energy balance (MEB) version which solves a separate energy balance for each of the two sources. Eddy covariance system, which provides the sensible and latent heat fluxes and meteorological instruments were operated during years 2003-2004 for the Olive Orchard and during years 2013 for wheat. The transpiration component was measured using a Sap flow system during summer over the wheat crop and stable isotope samples were gathered over wheat. The comparison between ET estimated by ISBA model and that measured by the Eddy covariance system showed that MEB version yielded a remarkable improvement compared to the standard version. The root mean square error (RMSE) and the correlation coefficient (R²) were about 45wm-2 and 0.8 for MEB version. By contrast, for the standard version, the RMSE and R² were about 60wm-2 and 0.7, respectively. The result also showed that

  12. Unmanned airborne thermal and mutilspectral imagery for estimating evapotranspiration in irrigated vineyards

    USDA-ARS?s Scientific Manuscript database

    Thermal-infrared remote sensing of land surface temperature (LST) provides valuable information for quantifying rootzone water availability, evapotranspiration (ET) and crop condition. This paper describes the most recent modifications applied to the robust but relatively simple LST-based energy bal...

  13. Analysis of Numerical Weather Predictions of Reference Evapotranspiration and Precipitation

    NASA Astrophysics Data System (ADS)

    Bughici, Theodor; Lazarovitch, Naftali; Fredj, Erick; Tas, Eran

    2017-04-01

    This study attempts to improve the forecast skill of the evapotranspiration (ET0) and Precipitation for the purpose of crop irrigation management over Israel using the Weather Research and Forecasting (WRF) Model. Optimized crop irrigation, in term of timing and quantities, decreases water and agrochemicals demand. Crop water demands depend on evapotranspiration and precipitation. The common method for computing reference evapotranspiration, for agricultural needs, ET0, is according to the FAO Penman-Monteith equation. The weather variables required for ET0 calculation (air temperature, relative humidity, wind speed and solar irradiance) are estimated by the WRF model. The WRF Model with two-way interacting domains at horizontal resolutions of 27, 9 and 3 km is used in the study. The model prediction was performed in an hourly time resolution and a 3 km spatial resolution, with forecast lead-time of up to four days. The WRF prediction of these variables have been compared against measurements from 29 meteorological stations across Israel for the year 2013. The studied area is small but with strong climatic gradient, diverse topography and variety of synoptic conditions. The forecast skill that was used for forecast validation takes into account the prediction bias, mean absolute error and root mean squared error. The forecast skill of the variables was almost robust to lead time, except for precipitation. The forecast skill was tested across stations with respect to topography and geographic location and for all stations with respect to seasonality and synoptic weather system determined by employing a semi-objective synoptic systems classification to the forecasted days. It was noticeable that forecast skill of some of the variables was deteriorated by seasonality and topography. However, larger impacts in the ET0 skill scores on the forecasted day are achieved by a synoptic based forecast. These results set the basis for increasing the robustness of ET0 to

  14. A comparison of six potential evapotranspiration methods for regional use in the Southeastern United States

    Treesearch

    Jianbiao Lu; Ge Sun; Steven G. McNulty; Devendra Amatya

    2005-01-01

    Potential evapotranspiration (PET) is an important index of hydrologic budgets at different spatial scales and is a critical variable for understanding regional biological processes. It is often an important variable in estimating actual evapotranspiration (AET) in rainfall-runoff and ecosystem modeling. However, PET is defined in different ways in the literature and...

  15. Accuracy assessment of NOAA gridded daily reference evapotranspiration for the Texas High Plains

    USGS Publications Warehouse

    Moorhead, Jerry; Gowda, Prasanna H.; Hobbins, Michael; Senay, Gabriel; Paul, George; Marek, Thomas; Porter, Dana

    2015-01-01

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large-scale spatial representation of ETref, which is essential for regional scale water resources management. Data used in the development of NOAA daily ETref maps are derived from observations over surfaces that are different from short (grass — ETos) or tall (alfalfa — ETrs) reference crops, often in nonagricultural settings, which carries an unknown discrepancy between assumed and actual conditions. In this study, NOAA daily ETos and ETrs maps were evaluated for accuracy, using observed data from the Texas High Plains Evapotranspiration (TXHPET) network. Daily ETos, ETrs and the climatic data (air temperature, wind speed, and solar radiation) used for calculating ETref were extracted from the NOAA maps for TXHPET locations and compared against ground measurements on reference grass surfaces. NOAA ETrefmaps generally overestimated the TXHPET observations (1.4 and 2.2 mm/day ETos and ETrs, respectively), which may be attributed to errors in the NLDAS modeled air temperature and wind speed, to which reference ETref is most sensitive. Therefore, a bias correction to NLDAS modeled air temperature and wind speed data, or adjustment to the resulting NOAA ETref, may be needed to improve the accuracy of NOAA ETref maps.

  16. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The APH...

  17. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The APH...

  18. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The APH...

  19. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The APH...

  20. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The APH...

  1. Scaling up stomatal conductance from leaf to canopy using a dual-leaf model for estimating crop evapotranspiration.

    PubMed

    Ding, Risheng; Kang, Shaozhong; Du, Taisheng; Hao, Xinmei; Zhang, Yanqun

    2014-01-01

    The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET). Canopy stomatal conductance (Gsc), an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1) the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2) leaf area for the sunlit and shaded fractions; and (3) a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98), with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL) agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and partitioning λET.

  2. Scaling Up Stomatal Conductance from Leaf to Canopy Using a Dual-Leaf Model for Estimating Crop Evapotranspiration

    PubMed Central

    Ding, Risheng; Kang, Shaozhong; Du, Taisheng; Hao, Xinmei; Zhang, Yanqun

    2014-01-01

    The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET). Canopy stomatal conductance (Gsc), an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called “big-leaf” model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1) the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2) leaf area for the sunlit and shaded fractions; and (3) a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98), with RMSE of 0.6120 mm s−1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL) agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and

  3. Method for automatic determination of soybean actual evapotranspiration under open top chambers (OTC) subjected to effects of water stress and air ozone concentration.

    PubMed

    Rana, Gianfranco; Katerji, Nader; Mastrorilli, Marcello

    2012-10-01

    The present study describes an operational method, based on the Katerji et al. (Eur J Agron 33:218-230, 2010) model, for determining the daily evapotranspiration (ET) for soybean inside open top chambers (OTCs). It includes two functions, calculated day par day, making it possible to separately take into account the effects of concentrations of air ozone and plant water stress. This last function was calibrated in function of the daily values of actual water reserve in the soil. The input variables of the method are (a) the diurnal values of global radiation and temperature, usually measured routinely in a standard weather station; (b) the daily values of the AOT40 index accumulated (accumulated ozone over a threshold of 40 ppb during daylight hours, when global radiation exceeds 50 Wm(-2)) determined inside the OTC; and (c) the actual water reserve in the soil, at the beginning of the trial. The ensemble of these input variables can be automatable; thus, the proposed method could be applied in routine. The ability of the method to take into account contrasting conditions of ozone air concentration and water stress was evaluated over three successive years, for 513 days, in ten crop growth cycles, excluding the days employed to calibrate the method. Tests were carried out in several chambers for each year and take into account the intra- and inter-year variability of ET measured inside the OTCs. On the daily scale, the slope of the linear regression between the ET measured by the soil water balance and that calculated by the proposed method, under different water conditions, are 0.98 and 1.05 for the filtered and unfiltered (or enriched) OTCs with root mean square error (RMSE) equal to 0.77 and 1.07 mm, respectively. On the seasonal scale, the mean difference between measured and calculated ET is equal to +5% and +11% for the filtered and unfiltered OTCs, respectively. The ability of the proposed method to estimate the daily and seasonal ET inside the OTCs is

  4. Influence of feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    NASA Astrophysics Data System (ADS)

    van Walsum, P. E. V.

    2011-11-01

    Climate change impact modelling of hydrologic responses is hampered by climate-dependent model parameterizations. Reducing this dependency was one of the goals of extending the regional hydrologic modelling system SIMGRO with a two-way coupling to the crop growth simulation model WOFOST. The coupling includes feedbacks to the hydrologic model in terms of the root zone depth, soil cover, leaf area index, interception storage capacity, crop height and crop factor. For investigating whether such feedbacks lead to significantly different simulation results, two versions of the model coupling were set up for a test region: one with exogenous vegetation parameters, the "static" model, and one with endogenous simulation of the crop growth, the "dynamic" model WOFOST. The used parameterization methods of the static/dynamic vegetation models ensure that for the current climate the simulated long-term average of the actual evapotranspiration is the same for both models. Simulations were made for two climate scenarios. Owing to the higher temperatures in combination with a higher CO2-concentration of the atmosphere, a forward time shift of the crop development is simulated in the dynamic model; the used arable land crop, potatoes, also shows a shortening of the growing season. For this crop, a significant reduction of the potential transpiration is simulated compared to the static model, in the example by 15% in a warm, dry year. In consequence, the simulated crop water stress (the unit minus the relative transpiration) is lower when the dynamic model is used; also the simulated increase of crop water stress due to climate change is lower; in the example, the simulated increase is 15 percentage points less (of 55) than when a static model is used. The static/dynamic models also simulate different absolute values of the transpiration. The difference is most pronounced for potatoes at locations with ample moisture supply; this supply can either come from storage release of a

  5. Sensitivity of grass and alfalfa reference evapotranspiration to weather station sensor accuracy

    USDA-ARS?s Scientific Manuscript database

    A sensitivity analysis was conducted to determine the relative effects of measurement errors in climate data input parameters on the accuracy of calculated reference crop evapotranspiration (ET) using the ASCE-EWRI Standardized Reference ET Equation. Data for the period of 1991 to 2008 from an autom...

  6. Evaluation of remotely sensed actual evapotranspiration data for modeling small scale irrigation in Ethiopia.

    NASA Astrophysics Data System (ADS)

    Taddele, Y. D.; Ayana, E.; Worqlul, A. W.; Srinivasan, R.; Gerik, T.; Clarke, N.

    2017-12-01

    The research presented in this paper is conducted in Ethiopia, which is located in the horn of Africa. Ethiopian economy largely depends on rainfed agriculture, which employs 80% of the labor force. The rainfed agriculture is frequently affected by droughts and dry spells. Small scale irrigation is considered as the lifeline for the livelihoods of smallholder farmers in Ethiopia. Biophysical models are highly used to determine the agricultural production, environmental sustainability, and socio-economic outcomes of small scale irrigation in Ethiopia. However, detailed spatially explicit data is not adequately available to calibrate and validate simulations from biophysical models. The Soil and Water Assessment Tool (SWAT) model was setup using finer resolution spatial and temporal data. The actual evapotranspiration (AET) estimation from the SWAT model was compared with two remotely sensed data, namely the Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectrometer (MODIS). The performance of the monthly satellite data was evaluated with correlation coefficient (R2) over the different land use groups. The result indicated that over the long term and monthly the AVHRR AET captures the pattern of SWAT simulated AET reasonably well, especially on agricultural dominated landscapes. A comparison between SWAT simulated AET and AVHRR AET provided mixed results on grassland dominated landscapes and poor agreement on forest dominated landscapes. Results showed that the AVHRR AET products showed superior agreement with the SWAT simulated AET than MODIS AET. This suggests that remotely sensed products can be used as valuable tool in properly modeling small scale irrigation.

  7. Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Wang, D.; Tirado-Corbalá, R.; Zhang, H.; Ayars, J. E.

    2015-01-01

    Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in tropical environments. We measured ET (ETEC) using eddy covariance (EC) towers at two irrigated sugarcane fields on the leeward (dry) side of Maui, Hawaii, USA in contrasting climates. We calculated reference ET at the fields using the short (ET0) and tall (ETr) vegetation versions of the American Society for Civil Engineers (ASCE) equation. The ASCE equations were compared to the Priestley-Taylor ET (ETPT) and ETEC. Reference ET from the ASCE approaches exceeded ETEC during the mid-period (when vegetation coefficients suggest ETEC should exceed reference ET). At the windier tower site, cumulative ETr exceeded ETEC by 854 mm over the course of the mid-period (267 days). At the less windy site, mid-period ETr still exceeded ETEC, but the difference was smaller (443 mm). At both sites, ETPT approximated mid-period ETEC more closely than the ASCE equations ((ETPT-ETEC) < 170 mm). Analysis of applied water and precipitation, soil moisture, leaf stomatal resistance, and canopy cover suggest that the lower observed ETEC was not the result of water stress or reduced vegetation cover. Use of a custom-calibrated bulk canopy resistance improved the reference ET estimate and reduced seasonal ET discrepancy relative to ETPT and ETEC in the less windy field and had mixed performance in the windier field. These divergences suggest that modifications to reference ET equations may be warranted in some tropical regions.

  8. A Thermal-based Two-Source Energy Balance Model for Estimating Evapotranspiration over Complex Canopies

    USDA-ARS?s Scientific Manuscript database

    Land surface temperature (LST) provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition as well as providing useful information for constraining prognostic land surface models. This presentation describes a robust but relatively simple LS...

  9. Understanding the relationship between actual and potential evapotranspirations from long- term water balance analysis and flux observation

    NASA Astrophysics Data System (ADS)

    Yang, D.; Yang, H.; Sun, F.

    2007-12-01

    potential evaporations are plotted against the time (year) during the same period. This means that complementary idea cannot provide universally correct predictions on the trend of actual evaporation only from the potential one. In this research, we examine the coupled water-energy balance based on Budyko hypothesis and proposed a conceptual model for predicting the inter-annual variability of annual water balance, and the change trends of water balances due to climate changes. The wet environment evaporation was defined as the boundary condition in the Bouchet hypothesis and introduced into complementary relationship (CR), which combined the actual evaporation with potential evaporation in an equation. However, the CR was derived in a closed system where no horizontal energy advection existed. The effect of the horizontal advection on the CR in a real open system was also analyzed in this study. Using the long-term water balance analysis in the 108 study catchments and flux observation at 7 sites in Asia monsoon region, the regional and seasonal variability of the complementary relationship was examined. Key Words: climate change, evapotranspiration, water balance, flux observation, Budyko hypothesis, Bouchet hypothesis

  10. Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales

    USGS Publications Warehouse

    Stephenson, N.L.

    1998-01-01

    Correlative approaches to understanding the climatic controls of vegetation distribution have exhibited at least two important weaknesses: they have been conceptually divorced across spatial scales, and their climatic parameters have not necessarily represented aspects of climate of broad physiological importance to plants. Using examples from the literature and from the Sierra Nevada of California, I argue that two water balance parameters-actual evapotranspiration (AET) and deficit (D)-are biologically meaningful, are well correlated with the distribution of vegetation types, and exhibit these qualities over several orders of magnitude of spatial scale (continental to local). I reach four additional conclusions. (1) Some pairs of climatic parameters presently in use are functionally similar to AET and D; however, AET and D may be easier to interpret biologically. (2) Several well-known climatic parameters are biologically less meaningful or less important than AET and D, and consequently are poorer correlates of the distribution of vegetation types. Of particular interest, AET is a much better correlate of the distributions of coniferous and deciduous forests than minimum temperature. (3) The effects of evaporative demand and water availability on a site's water balance are intrinsically different. For example, the 'dry' experienced by plants on sunward slopes (high evaporative demand) is not comparable to the 'dry' experienced by plants on soils with low water-holding capacities (low water availability), and these differences are reflected in vegetation patterns. (4) Many traditional topographic moisture scalars-those that additively combine measures related to evaporative demand and water availability are not necessarily meaningful for describing site conditions as sensed by plants; the same holds for measured soil moisture. However, using AET and D in place of moisture scalars and measured soil moisture can solve these problems.

  11. Potential evapotranspiration and continental drying

    USGS Publications Warehouse

    Milly, Paul C.D.; Dunne, Krista A.

    2016-01-01

    By various measures (drought area and intensity, climatic aridity index, and climatic water deficits), some observational analyses have suggested that much of the Earth’s land has been drying during recent decades, but such drying seems inconsistent with observations of dryland greening and decreasing pan evaporation. ‘Offline’ analyses of climate-model outputs from anthropogenic climate change (ACC) experiments portend continuation of putative drying through the twenty-first century, despite an expected increase in global land precipitation. A ubiquitous increase in estimates of potential evapotranspiration (PET), driven by atmospheric warming, underlies the drying trends, but may be a methodological artefact. Here we show that the PET estimator commonly used (the Penman–Monteith PET for either an open-water surface or a reference crop) severely overpredicts the changes in non-water-stressed evapotranspiration computed in the climate models themselves in ACC experiments. This overprediction is partially due to neglect of stomatal conductance reductions commonly induced by increasing atmospheric CO2 concentrations in climate models. Our findings imply that historical and future tendencies towards continental drying, as characterized by offline-computed runoff, as well as other PET-dependent metrics, may be considerably weaker and less extensive than previously thought.

  12. Evaluation of reference evapotranspiration methods in arid, semiarid, and humid regions

    Treesearch

    Fei Gao; Gary Feng; Ying Ouyang; Huixiao Wang; Daniel Fisher; Ardeshir Adeli; Johnie Jenkins

    2017-01-01

    It is often necessary to find a simpler method in different climatic regions to calculate reference crop evapotranspiration (ETo) since the application of the FAO-56 Penman-Monteith method is often restricted due to the unavailability of a comprehensive weather dataset. Seven ETo methods, namely the standard FAO-56 Penman-Monteith, the FAO-24 Radiation, FAO-24 Blaney...

  13. Evaluating the complementary relationship of evapotranspiration in an arid shrublands, Heihe river basin

    NASA Astrophysics Data System (ADS)

    Yu, Zhongbo; Xu, Shiqin; Ji, Xibin; Sudicky, Edward A.

    2018-06-01

    Accurate estimates of evapotranspiration and its components are essential for quantifying the water and energy fluxes and water resources management in arid regions. To this end, daily actual evapotranspiration (ETa), pan evaporation, and concurrent microclimate from an arid shrublands were measured over two growing seasons (2014-2015) to determine water budgets and to test the validity of the complementary relationship (CR) at this temporal scale. The average ETa is 229.32 ± 45.86 mm during two growing seasons, while canopy transpiration, soil evaporation, and interception accounted for 68.1 ± 16.5%, 29.1 ± 2.5% and 2.8 ± 0.6%, respectively. Actual evapotranspiration and Penman potential evapotranspiration, or pan evaporation exhibit complementary behavior, where the complementary relationship is asymmetric. Daily ETa rates are significantly overestimated by the symmetric Advection-Aridity (AA) model. Employing the modified AA model, where parameters are calibrated locally and wet environment evapotranspiration is evaluated at wet environment air temperature as opposed to the measured air temperature, the prediction accuracy of ETa is dramatically improved. With calibrated parameters, the E601B sunken pan can satisfactorily describe the dynamics of daily ETa, while the D20 aboveground pan underestimates it to some extent. Moreover, the modified AA model is able to capture the dynamics of groundwater usage by vegetation during dry summer. These findings gain our new knowledge on the capability of CR theory to resolve special issue occurred in phreatophytic shrublands, and can also provide beneficial reference to water resource and eco-environment management in arid regions.

  14. Using Remote Sensing to Estimate Crop Water Use to Improve Irrigation Water Management

    NASA Astrophysics Data System (ADS)

    Reyes-Gonzalez, Arturo

    Irrigation water is scarce. Hence, accurate estimation of crop water use is necessary for proper irrigation managements and water conservation. Satellite-based remote sensing is a tool that can estimate crop water use efficiently. Several models have been developed to estimate crop water requirement or actual evapotranspiration (ETa) using remote sensing. One of them is the Mapping EvapoTranspiration at High Resolution using Internalized Calibration (METRIC) model. This model has been compared with other methods for ET estimations including weighing lysimeters, pan evaporation, Bowen Ratio Energy Balance System (BREBS), Eddy Covariance (EC), and sap flow. However, comparison of METRIC model outputs to an atmometer for ETa estimation has not yet been attempted in eastern South Dakota. The results showed a good relationship between ETa estimated by the METRIC model and estimated with atmometer (r2 = 0.87 and RMSE = 0.65 mm day-1). However, ETa values from atmometer were consistently lower than ET a values from METRIC. The verification of remotely sensed estimates of surface variables is essential for any remote-sensing study. The relationships between LAI, Ts, and ETa estimated using the remote sensing-based METRIC model and in-situ measurements were established. The results showed good agreement between the variables measured in situ and estimated by the METRIC model. LAI showed r2 = 0.76, and RMSE = 0.59 m2 m -2, Ts had r2 = 0.87 and RMSE 1.24 °C and ETa presented r2= 0.89 and RMSE = 0.71 mm day -1. Estimation of ETa using energy balance method can be challenging and time consuming. Thus, there is a need to develop a simple and fast method to estimate ETa using minimum input parameters. Two methods were used, namely 1) an energy balance method (EB method) that used input parameters of the Landsat image, weather data, a digital elevation map, and a land cover map and 2) a Kc-NDVI method that use two input parameters: the Landsat image and weather data. A strong

  15. Assessing the suitability of American National Aeronautics and Space Administration (NASA) agro-climatology archive to predict daily meteorological variables and reference evapotranspiration in Sicily, Italy

    USDA-ARS?s Scientific Manuscript database

    For decades, the importance of evapotranspiration processes has been recognized in many disciplines, including hydrologic and drainage studies, irrigation systems design and management. A wide number of equations have been proposed to estimate crop reference evapotranspiration, ET0, based on the var...

  16. Can the complementary relationship between actual and potential evaporation be used to quantify heatwaves?

    NASA Astrophysics Data System (ADS)

    Aminzadeh, Milad; Or, Dani

    2017-04-01

    Extreme climate events such as heatwaves with prolonged periods of high air temperatures have large environmental, social, and economic impacts ranging from crop failure to health and desiccation damages. Periods of low precipitation with high temperatures decrease soil moisture storage and thus affect surface energy partitioning. The heuristic concepts in the basis of the Complementary Relationship (CR) suggest that a fraction of radiative energy not used for evaporation contributes to increased sensible heat flux thus heats near-surface atmosphere. We have recently generalized the CR framework for spatially heterogeneous landscapes thereby enable prediction of actual evapotranspiration (ET) from routine atmospheric measurements. Capitalizing on the coupling between moisture availability, actual ET and sensible heat flux we propose using the CR to predict conditions conducive to rapid increase in regional sensible heat flux associated with the onset of extreme heatwaves. The proposed framework is evaluated using satellite surface temperature and FLUXNET data with newly derived metrics for the onset of heatwaves. The concepts could be extended to obtain new insights into the dynamics of more persistent climate extremes such as regional droughts.

  17. Spatial modelling of evapotranspiration in the Luquillo experimental forest of Puerto Rico using remotely-sensed data.

    Treesearch

    Wei Wu; Charles A.S. Hall; Frederick N. Scatena; Lindi J. Quackenbush

    2006-01-01

    Summary Actual evapotranspiration (aET) and related processes in tropical forests can explain 70% of the lateral global energy transport through latent heat, and therefore are very important in the redistribution of water on the Earth’s surface [Mauser, M., Scha¨dlich, S., 1998. Modelling the spatial distribution of evapotranspiration on different scales using remote...

  18. Long-term potential and actual evapotranspiration of two different forests on the Atlantic Coastal Plain

    Treesearch

    Devendra Amatya; S. Tian; Z. Dai; Ge Sun

    2016-01-01

    A reliable estimate of potential evapotranspiration (PET) for a forest ecosystem is critical in ecohydrologic modeling related with water supply, vegetation dynamics, and climate change and yet is a challenging task due to its complexity. Based on long-term on-site measured hydro-climatic data and predictions from earlier validated hydrologic modeling studies...

  19. A thermal-based remote sensing modeling system for estimating evapotranspiration from field to global scales

    USDA-ARS?s Scientific Manuscript database

    Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. This paper describes a robust but relatively simple thermal-based energy balance model that parameterizes the key soil/s...

  20. The best alternative for estimating reference crop evapotranspiration in different sub-regions of mainland China.

    PubMed

    Peng, Lingling; Li, Yi; Feng, Hao

    2017-07-14

    Reference crop evapotranspiration (ET o ) is a critically important parameter for climatological, hydrological and agricultural management. The FAO56 Penman-Monteith (PM) equation has been recommended as the standardized ET o (ET o,s ) equation, but it has a high requirements of climatic data. There is a practical need for finding a best alternative method to estimate ET o in the regions where full climatic data are lacking. A comprehensive comparison for the spatiotemporal variations, relative errors, standard deviations and Nash-Sutcliffe efficacy coefficients of monthly or annual ET o,s and ET o,i (i = 1, 2, …, 10) values estimated by 10 selected methods (i.e., Irmak et al., Makkink, Priestley-Taylor, Hargreaves-Samani, Droogers-Allen, Berti et al., Doorenbos-Pruitt, Wright and Valiantzas, respectively) using data at 552 sites over 1961-2013 in mainland China. The method proposed by Berti et al. (2014) was selected as the best alternative of FAO56-PM because it was simple in computation process, only utilized temperature data, had generally good accuracy in describing spatiotemporal characteristics of ET o,s in different sub-regions and mainland China, and correlated linearly to the FAO56-PM method very well. The parameters of the linear correlations between ET o of the two methods are calibrated for each site with the smallest determination of coefficient being 0.87.

  1. Ecohydrology of Graciosa semi-natural grasslands: water use and evapotranspiration partition

    NASA Astrophysics Data System (ADS)

    Paço, Teresa A.; Paredes, Paula; Azevedo, Eduardo B.; Madruga, João S.; Pereira, Luís S.

    2016-04-01

    Semi-natural grasslands are a main landscape of Graciosa and other Islands of Azores. The present study aims at calibrate and validate the soil water balance model SIMDualKc for those grasslands aiming at assessing the dynamics of soil water and evapotranspiration. This objective relates with the need to improve knowledge on the ecohydrology of grasslands established in (volcanic) Andosols. This model adopts the dual crop coefficient approach to compute daily crop evapotranspiration (ETc) and to perform its partition into transpiration (T) and soil evaporation (Es). The application refers to a semi-natural grassland sporadically sowed with ryegrass (Lolium multiflorum Lam.). Model calibration and validation were performed comparing simulated against observed grassland evapotranspiration throughout two periods in consecutive years. Daily ET values were derived from eddy covariance data collected at the Eastern North Atlantic (ENA) facility of the ARM programme (established and supported by the U.S. Department of Energy with the collaboration of the local government and University of the Azores), at Graciosa, Azores (Portugal). Various statistical performance indicators were used to assess model accuracy and results show a good adequacy of the model for predicting vegetation ET in such conditions. Surface flux energy balance was also evaluated throughout the observation period (2014-2016). The ratio Es/ET shows that soil evaporation is much small than T/ET due to high soil cover by vegetation. The model was then applied to contrasting climatic conditions (dry vs. wet years) to assess related impacts on water balance components and grassland transpiration.

  2. Evaluation of a simple method for crop evapotranspiration partitioning and comparison of different water use efficiency approaches

    NASA Astrophysics Data System (ADS)

    Tallec, T.; Rivalland, V.; Jarosz, N.; Boulet, G.; Gentine, P.; Ceschia, E.

    2012-04-01

    In the current context of climate change, intra- and inter-annual variability of precipitation can lead to major modifications of water budgets and water use efficiencies (WUE). Obtaining greater insight into how climatic variability and agricultural practices affect water budgets and their components in croplands is, thus, important for adapting crop management and limiting water losses. The principal aims of this study were 1) to assess the contribution of different components to the agro-ecosystem water budget and 2) to analyze and compare the WUE calculated from ecophysiological (WUEplt), environmental (WUEeco) and agronomical (WUEagro) points of view for various crops during the growing season and for the annual time scale. Eddy covariance (EC) measurements of CO2 and water flux were performed on winter wheat, maize and sunflower crops at two sites in southwest France: Auradé and Lamasquère. To infer WUEplt, an estimation of plant transpiration (TR) is needed. We then tested a new method for partitioning evapotranspiration (ETR), measured by means of the EC method, into soil evaporation (E) and plant transpiration (TR) based on marginal distribution sampling (MDS). We compared these estimations with calibrated simulations of the ICARE-SVAT double source mechanistic model. The two partitioning methods showed good agreement, demonstrating that MDS is a convenient, simple and robust tool for estimating E with reasonable associated uncertainties. During the growing season, the proportion of E in ETR was approximately one-third and varied mainly with crop leaf area. When calculated on an annual time scale, the proportion of E in ETR reached more than 50%, depending on crop leaf area and the duration and distribution of bare soil within the year. WUEplt values ranged between -4.1 and -5.6 g C kg-1 H2O for maize and winter wheat, respectively, and were strongly dependent on meteorological conditions at the half-hourly, daily and seasonal time scales. When

  3. A thermal-based remote sensing modeling system for estimating daily evapotranspiration from field to global scales

    USDA-ARS?s Scientific Manuscript database

    Thermal-infrared (TIR) remote sensing of land surface temperature (LST) provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition as well as providing useful information for constraining prognostic land surface models. This presentation d...

  4. Actual evapotranspiration modeling using the operational Simplified Surface Energy Balance (SSEBop) approach

    USGS Publications Warehouse

    Savoca, Mark E.; Senay, Gabriel B.; Maupin, Molly A.; Kenny, Joan F.; Perry, Charles A.

    2013-01-01

    Remote-sensing technology and surface-energy-balance methods can provide accurate and repeatable estimates of actual evapotranspiration (ETa) when used in combination with local weather datasets over irrigated lands. Estimates of ETa may be used to provide a consistent, accurate, and efficient approach for estimating regional water withdrawals for irrigation and associated consumptive use (CU), especially in arid cropland areas that require supplemental water due to insufficient natural supplies from rainfall, soil moisture, or groundwater. ETa in these areas is considered equivalent to CU, and represents the part of applied irrigation water that is evaporated and/or transpired, and is not available for immediate reuse. A recent U.S. Geological Survey study demonstrated the application of the remote-sensing-based Simplified Surface Energy Balance (SSEB) model to estimate 10-year average ETa at 1-kilometer resolution on national and regional scales, and compared those ETa values to the U.S. Geological Survey’s National Water-Use Information Program’s 1995 county estimates of CU. The operational version of the operational SSEB (SSEBop) method is now used to construct monthly, county-level ETa maps of the conterminous United States for the years 2000, 2005, and 2010. The performance of the SSEBop was evaluated using eddy covariance flux tower datasets compiled from 2005 datasets, and the results showed a strong linear relationship in different land cover types across diverse ecosystems in the conterminous United States (correlation coefficient [r] ranging from 0.75 to 0.95). For example, r for woody savannas (0.75), grassland (0.75), forest (0.82), cropland (0.84), shrub land (0.89), and urban (0.95). A comparison of the remote-sensing SSEBop method for estimating ETa and the Hamon temperature method for estimating potential ET (ETp) also was conducted, using regressions of all available county averages of ETa for 2005 and 2010, and yielded correlations of r = 0

  5. Sensitivity analysis of monthly reference crop evapotranspiration trends in Iran: a qualitative approach

    NASA Astrophysics Data System (ADS)

    Mosaedi, Abolfazl; Ghabaei Sough, Mohammad; Sadeghi, Sayed-Hossein; Mooshakhian, Yousof; Bannayan, Mohammad

    2017-05-01

    The main objective of this study was to analyze the sensitivity of the monthly reference crop evapotranspiration (ETo) trends to key climatic factors (minimum and maximum air temperature ( T max and T min), relative humidity (RH), sunshine hours ( t sun), and wind speed ( U 2)) in Iran by applying a qualitative detrended method, rather than the historical mathematical approach. Meteorological data for the period of 1963-2007 from five synoptic stations with different climatic characteristics, including Mashhad (mountains), Tabriz (mountains), Tehran (semi-desert), Anzali (coastal wet), and Shiraz (semi-mountains) were used to address this objective. The Mann-Kendall test was employed to assess the trends of ETo and the climatic variables. The results indicated a significant increasing trend of the monthly ETo for Mashhad and Tabriz for most part of the year while the opposite conclusion was drawn for Tehran, Anzali, and Shiraz. Based on the detrended method, RH and U 2 were the two main variables enhancing the negative ETo trends in Tehran and Anzali stations whereas U 2 and temperature were responsible for this observation in Shiraz. On the other hand, the main meteorological variables affecting the significant positive trend of ETo were RH and t sun in Tabriz and T min, RH, and U 2 in Mashhad. Although a relative agreement was observed in terms of identifying one of the first two key climatic variables affecting the ETo trend, the qualitative and the quantitative sensitivity analysis solutions did never coincide. Further research is needed to evaluate this interesting finding for other geographic locations, and also to search for the major causes of this discrepancy.

  6. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolin; Chen, Yuanquan; Pacenka, Steven; Gao, Wangsheng; Ma, Li; Wang, Guangya; Yan, Peng; Sui, Peng; Steenhuis, Tammo S.

    2015-03-01

    Water shortage is the major bottleneck that limits sustainable yield of agriculture in the North China Plain. Due to the over-exploitation of groundwater for irrigating the winter wheat-summer maize double cropping systems, a groundwater crisis is becoming increasingly serious. To help identify more efficient and sustainable utilization of the limited water resources, the water consumption and water use efficiency of five irrigated cropping systems were calculated and the effect of cropping systems on groundwater table changes was estimated based on a long term field experiment from 2003 to 2013 in the North China Plain interpreted using a soil-water-balance model. The five cropping systems included sweet potato → cotton → sweet potato → winter wheat-summer maize (SpCSpWS, 4-year cycle), ryegrass-cotton → peanuts → winter wheat-summer maize (RCPWS, 3-year cycle), peanuts → winter wheat-summer maize (PWS, 2-year cycle), winter wheat-summer maize (WS, 1-year cycle), and continuous cotton (Cont C). The five cropping systems had a wide range of annual average actual evapotranspiration (ETa): Cont C (533 mm/year) < SpCSpWS (556 mm/year) < PWS (615 mm/year) < RCPWS (650 mm/year) < WS rotation (734 mm/year). The sequence of the simulated annual average groundwater decline due to the five cropping systems was WS (1.1 m/year) > RCPWS (0.7 m/year) > PWS (0.6 m/year) > SPCSPWS and Cont C (0.4 m/year). The annual average economic output water use efficiency (WUEe) increased in the order SpCSpWS (11.6 yuan ¥ m-3) > RCPWS (9.0 ¥ m-3) > PWS (7.3 ¥ m-3) > WS (6.8 ¥ m-3) > Cont C (5.6 ¥ m-3) from 2003 to 2013. Results strongly suggest that diversifying crop rotations could play a critically important role in mitigating the over-exploitation of the groundwater, while ensuring the food security or boosting the income of farmers in the North China Plain.

  7. Influence of ecohydrologic feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    NASA Astrophysics Data System (ADS)

    van Walsum, P. E. V.; Supit, I.

    2012-06-01

    Hydrologic climate change modelling is hampered by climate-dependent model parameterizations. To reduce this dependency, we extended the regional hydrologic modelling framework SIMGRO to host a two-way coupling between the soil moisture model MetaSWAP and the crop growth simulation model WOFOST, accounting for ecohydrologic feedbacks in terms of radiation fraction that reaches the soil, crop coefficient, interception fraction of rainfall, interception storage capacity, and root zone depth. Except for the last, these feedbacks are dependent on the leaf area index (LAI). The influence of regional groundwater on crop growth is included via a coupling to MODFLOW. Two versions of the MetaSWAP-WOFOST coupling were set up: one with exogenous vegetation parameters, the "static" model, and one with endogenous crop growth simulation, the "dynamic" model. Parameterization of the static and dynamic models ensured that for the current climate the simulated long-term averages of actual evapotranspiration are the same for both models. Simulations were made for two climate scenarios and two crops: grass and potato. In the dynamic model, higher temperatures in a warm year under the current climate resulted in accelerated crop development, and in the case of potato a shorter growing season, thus partly avoiding the late summer heat. The static model has a higher potential transpiration; depending on the available soil moisture, this translates to a higher actual transpiration. This difference between static and dynamic models is enlarged by climate change in combination with higher CO2 concentrations. Including the dynamic crop simulation gives for potato (and other annual arable land crops) systematically higher effects on the predicted recharge change due to climate change. Crop yields from soils with poor water retention capacities strongly depend on capillary rise if moisture supply from other sources is limited. Thus, including a crop simulation model in an integrated

  8. Recommended documentation of evapotranspiration measurements and associated weather data and a review of requirements for accuracy

    USDA-ARS?s Scientific Manuscript database

    More and more evapotranspiration (ET) models, ET crop coefficients, and associated measurements of ET are reported in the literature. These measurements base from a range of measurement systems including lysimeters, eddy covariance, Bowen ratio, water balance (gravimetric, neutron meter, other soil ...

  9. Modeling actual evapotranspiration with routine meteorological variables in the data-scarce region of the Tibetan Plateau: Comparisons and implications

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Zhang, Yinsheng; Xu, Chong-Yu; Szilagyi, Jozsef

    2015-08-01

    Quantitative estimation of actual evapotranspiration (ETa) by in situ measurements and mathematical modeling is a fundamental task for physical understanding of ETa as well as the feedback mechanisms between land and the ambient atmosphere. However, the ETa information in the Tibetan Plateau (TP) has been greatly impeded by the extremely sparse ground observation network in the region. Approaches for estimating ETa solely from routine meteorological variables are therefore important for investigating spatiotemporal variations of ETa in the data-scarce region of the TP. Motivated by this need, the complementary relationship (CR) and Penman-Monteith approaches were evaluated against in situ measurements of ETa on a daily basis in an alpine steppe region of the TP. The former includes the Nonlinear Complementary Relationship (Nonlinear-CR) as well as the Complementary Relationship Areal Evapotranspiration (CRAE) models, while the latter involves the Katerji-Perrier and the Todorovic models. Results indicate that the Nonlinear-CR, CRAE, and Katerji-Perrier models are all capable of efficiently simulating daily ETa, provided their parameter values were appropriately calibrated. The Katerji-Perrier model performed best since its site-specific parameters take the soil water status into account. The Nonlinear-CR model also performed well with the advantage of not requiring the user to choose between a symmetric and asymmetric CR. The CRAE model, even with a relatively low Nash-Sutcliffe efficiency (NSE) value, is also an acceptable approach in this data-scarce region as it does not need information of wind speed and ground surface conditions. In contrast, application of the Todorovic model was found to be inappropriate in the dry regions of the TP due to its significant overestimation of ETa as it neglects the effect of water stress on the bulk surface resistance. Sensitivity analysis of the parameter values demonstrated the relative importance of each parameter in the

  10. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration

    PubMed Central

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G.; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-01-01

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12–23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51–98 vs. 7–8 mm yr−1). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake. PMID:26074373

  11. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.

    PubMed

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-06-15

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.

  12. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions. [south Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J. (Principal Investigator)

    1981-01-01

    Emissive and reflective data for 10 days, and IR data for 6 nights in south Texas scenes were analyzed after procedures were developed for removing cloud-affected data. HCMM radiometric temperatures were: within 2 C of dewpoint temperatures on nights when air temperature approached dewpoint temperatures; significantly correlated with variables important in evapotranspiration; and, related to freeze severity and planting depth soil temperatures. Vegetation greenness indexes calculated from visible and reflective IR bands of NOAA-6 to -9 meteorological satellites will be useful in the AgRISTARS program for seasonal crop development, crop condition, and drought applications.

  13. Impact of water use efficiency parameterization on partitioning evapotranspiration with the eddy covariance flux variance method

    USDA-ARS?s Scientific Manuscript database

    Partitioned observations of evapotranspiration (ET) into its constituent components of soil and canopy evaporation (E) and plant transpiration (T) are needed to validate many agricultural water use models. E and T observations are also useful for assessing management practices to reduce crop water ...

  14. Comparison of prognostic and diagnostic approached to modeling evapotranspiration in the Nile river basin

    USDA-ARS?s Scientific Manuscript database

    Actual evapotranspiration (ET) can be estimated using both prognostic and diagnostic modeling approaches, providing independent yet complementary information for hydrologic applications. Both approaches have advantages and disadvantages. When provided with temporally continuous atmospheric forcing d...

  15. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion.

    PubMed

    Bernacchi, Carl J; Leakey, Andrew D B; Kimball, Bruce A; Ort, Donald R

    2011-06-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O₃]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O₃] on crop ecosystem energy fluxes and water use. Elevated [O₃] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 °C. Published by Elsevier Ltd.

  16. Drought trends indicated by evapotranspiration deficit over the contiguous United States during 1896-2013

    NASA Astrophysics Data System (ADS)

    Kim, Daeha; Rhee, Jinyoung

    2016-04-01

    Evapotranspiration (ET) has received a great attention in drought assessment as it is closely related to atmospheric water demand. The hypothetical potential ET (ETp) has been predominantly used, nonetheless it does not actually exist in the hydrologic cycle. In this work, we used a complementary method for ET estimation to obtain wet-environment ET (ETw) and actual ET (ETa) from routinely observed climatic data. By combining ET deficits (ETw minus ETa) and the structure of the Standardized Precipitation-Evapotranspiration Index (SPEI), we proposed a novel ET-based drought index, the Standardized Evapotranspiration Deficit Index (SEDI). We carried out historical drought identification for the contiguous United States using temperature datasets of the PRISM Climate Group. SEDI presented spatial distributions of drought areas similar to the Palmer Drought Severity Index (PDSI) and Standardized Precipitation Index (SPI) for major drought events. It indicates that SEDI can be used for validating other drought indices. Using the non-parametric Mann-Kendall test, we found a significant decreasing trend of SEDI (increasing drought risk) similar to PDSI and SPI in the western United States. This study suggests a potential of ET-based indices for drought quantification even with no involvement of precipitation data.

  17. High-resolution global grids of revised Priestley-Taylor and Hargreaves-Samani coefficients for assessing ASCE-standardized reference crop evapotranspiration and solar radiation

    NASA Astrophysics Data System (ADS)

    Aschonitis, Vassilis G.; Papamichail, Dimitris; Demertzi, Kleoniki; Colombani, Nicolo; Mastrocicco, Micol; Ghirardini, Andrea; Castaldelli, Giuseppe; Fano, Elisa-Anna

    2017-08-01

    The objective of the study is to provide global grids (0.5°) of revised annual coefficients for the Priestley-Taylor (P-T) and Hargreaves-Samani (H-S) evapotranspiration methods after calibration based on the ASCE (American Society of Civil Engineers)-standardized Penman-Monteith method (the ASCE method includes two reference crops: short-clipped grass and tall alfalfa). The analysis also includes the development of a global grid of revised annual coefficients for solar radiation (Rs) estimations using the respective Rs formula of H-S. The analysis was based on global gridded climatic data of the period 1950-2000. The method for deriving annual coefficients of the P-T and H-S methods was based on partial weighted averages (PWAs) of their mean monthly values. This method estimates the annual values considering the amplitude of the parameter under investigation (ETo and Rs) giving more weight to the monthly coefficients of the months with higher ETo values (or Rs values for the case of the H-S radiation formula). The method also eliminates the effect of unreasonably high or low monthly coefficients that may occur during periods where ETo and Rs fall below a specific threshold. The new coefficients were validated based on data from 140 stations located in various climatic zones of the USA and Australia with expanded observations up to 2016. The validation procedure for ETo estimations of the short reference crop showed that the P-T and H-S methods with the new revised coefficients outperformed the standard methods reducing the estimated root mean square error (RMSE) in ETo values by 40 and 25 %, respectively. The estimations of Rs using the H-S formula with revised coefficients reduced the RMSE by 28 % in comparison to the standard H-S formula. Finally, a raster database was built consisting of (a) global maps for the mean monthly ETo values estimated by ASCE-standardized method for both reference crops, (b) global maps for the revised annual coefficients of the P

  18. Daily reference crop evapotranspiration in the humid environments of Azores islands using reduced data sets: accuracy of FAO-PM temperature and Hargreaves-Samani methods

    NASA Astrophysics Data System (ADS)

    Paredes, P.; Fontes, J. C.; Azevedo, E. B.; Pereira, L. S.

    2017-11-01

    Reference crop evapotranspiration (ETo) estimations using the FAO Penman-Monteith equation (PM-ETo) require several weather variables that are often not available. Then, ETo may be computed with procedures proposed in FAO56, either using the PM-ETo equation with temperature estimates of actual vapor pressure (e a) and solar radiation (R s), and default wind speed values (u 2), the PMT method, or using the Hargreaves-Samani equation (HS). The accuracy of estimates of daily e a, R s, and u 2 is provided in a companion paper (Paredes et al. 2017) applied to data of 20 locations distributed through eight islands of Azores, thus focusing on humid environments. Both estimation procedures using the PMT method (ETo PMT) and the HS equation (ETo HS) were assessed by statistically comparing their results with those obtained for the PM-ETo with data of the same 20 locations. Results show that both approaches provide for accurate ETo estimations, with RMSE for PMT ranging 0.48-0.73 mm day-1 and for HS varying 0.47-0.86 mm day-1. It was observed that ETo PMT is linearly related with PM-ETo, while non-linearity was observed for ETo HS in weather stations located at high elevation. Impacts of wind were not important for HS but required proper adjustments in the case of PMT. Results show that the PMT approach is more accurate than HS. Moreover, PMT allows the use of observed variables together with estimators of the missing ones, which improves the accuracy of the PMT approach. The preference for the PMT method, fully based upon the PM-ETo equation, is therefore obvious.

  19. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements

    NASA Astrophysics Data System (ADS)

    Liu, Chunwei; Sun, Ge; McNulty, Steven G.; Noormets, Asko; Fang, Yuan

    2017-01-01

    The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient (Kc) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, Kc has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. This study aimed at deriving monthly Kc for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly Kc data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), Kc values had large seasonal variation across all land covers. The spatial variability of Kc was well explained by latitude, suggesting site factors are a major control on Kc. Seasonally, Kc increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly Kc in all land covers, except in EBF. During the peak growing season, forests had the highest Kc values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for Kc by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. The Kc models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed

  20. Assessing cover crop management under actual and climate change conditions.

    PubMed

    Alonso-Ayuso, María; Quemada, Miguel; Vanclooster, Marnik; Ruiz-Ramos, Margarita; Rodriguez, Alfredo; Gabriel, José Luis

    2018-04-15

    The termination date is recognized as a key management factor to enhance cover crops for multiple benefits and to avoid competition with the following cash crop. However, the optimum date depends on annual meteorological conditions, and climate variability induces uncertainty in a decision that needs to be taken every year. One of the most important cover crop benefits is reducing nitrate leaching, a major concern for irrigated agricultural systems and highly affected by the termination date. This study aimed to determine the effects of cover crops and their termination date on the water and N balances of an irrigated Mediterranean agroecosystem under present and future climate conditions. For that purpose, two field experiments were used for inverse calibration and validation of the WAVE model (Water and Agrochemicals in the soil and Vadose Environment), based on continuous soil water content data, soil nitrogen content and crop measurements. The calibrated and validated model was subsequently used in advanced scenario analysis under present and climate change conditions. Under present conditions, a late termination date increased cover crop biomass and subsequently soil water and N depletion. Hence, preemptive competition risk with the main crop was enhanced, but a reduction of nitrate leaching also occurred. The hypothetical planting date of the following cash crop was also an important tool to reduce preemptive competition. Under climate change conditions, the simulations showed that the termination date will be even more important to reduce preemptive competition and nitrate leaching. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  1. Estimating wheat and maize daily evapotranspiration using artificial neural network

    NASA Astrophysics Data System (ADS)

    Abrishami, Nazanin; Sepaskhah, Ali Reza; Shahrokhnia, Mohammad Hossein

    2018-02-01

    In this research, artificial neural network (ANN) is used for estimating wheat and maize daily standard evapotranspiration. Ten ANN models with different structures were designed for each crop. Daily climatic data [maximum temperature (T max), minimum temperature (T min), average temperature (T ave), maximum relative humidity (RHmax), minimum relative humidity (RHmin), average relative humidity (RHave), wind speed (U 2), sunshine hours (n), net radiation (Rn)], leaf area index (LAI), and plant height (h) were used as inputs. For five structures of ten, the evapotranspiration (ETC) values calculated by ETC = ET0 × K C equation (ET0 from Penman-Monteith equation and K C from FAO-56, ANNC) were used as outputs, and for the other five structures, the ETC values measured by weighing lysimeter (ANNM) were used as outputs. In all structures, a feed forward multiple-layer network with one or two hidden layers and sigmoid transfer function and BR or LM training algorithm was used. Favorite network was selected based on various statistical criteria. The results showed the suitable capability and acceptable accuracy of ANNs, particularly those having two hidden layers in their structure in estimating the daily evapotranspiration. Best model for estimation of maize daily evapotranspiration is «M»ANN1 C (8-4-2-1), with T max, T min, RHmax, RHmin, U 2, n, LAI, and h as input data and LM training rule and its statistical parameters (NRMSE, d, and R2) are 0.178, 0.980, and 0.982, respectively. Best model for estimation of wheat daily evapotranspiration is «W»ANN5 C (5-2-3-1), with T max, T min, Rn, LAI, and h as input data and LM training rule, its statistical parameters (NRMSE, d, and R 2) are 0.108, 0.987, and 0.981 respectively. In addition, if the calculated ETC used as the output of the network for both wheat and maize, higher accurate estimation was obtained. Therefore, ANN is suitable method for estimating evapotranspiration of wheat and maize.

  2. AgRISTARS: Early warning and crop condition assessment. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator); Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J.

    1981-01-01

    Emissive (10.5 to 12.5 microns) and reflective (0.55 to 1.1 microns) data for ten day scenes and infrared data for six night scenes of southern Texas were analyzed for plant cover, soil temperature, freeze, water stress, and evapotranspiration. Heat capacity mapping mission radiometric temperatures were: within 2 C of dewpoint temperatures, significantly correlated with variables important in evapotranspiration, and related to freeze severity and planting depth soil temperatures.

  3. An investigation of spectral change as influenced by irrigation and evapotranspiration volume estimation in western Nebraska

    USGS Publications Warehouse

    Seevers, P.M.; Sadowski, F.C.; Lauer, D.T.

    1990-01-01

    Retrospective satellite image data were evaluated for their ability to demonstrate the influence of center-pivot irrigation development in western Nebraska on spectral change and climate-related factors for the region. Periodic images of an albedo index and a normalized difference vegetation index (NDVI) were generated from calibrated Landsat multispectral scanner (MSS) data and used to monitor spectral changes associated with irrigation development from 1972 through 1986. The albedo index was not useful for monitoring irrigation development. For the NDVI, it was found that proportions of counties in irrigated agriculture, as discriminated by a threshold, were more highly correlated with reported ground estimates of irrigated agriculture than were county mean greenness values. A similar result was achieved when using coarse resolution Advanced Very High Resolution Radiometer (AVHRR) image data for estimating irrigated agriculture. The NDVI images were used to evaluate a procedure for making areal estimates of actual evapotranspiration (ET) volumes. Estimates of ET volumes for test counties, using reported ground acreages and corresponding standard crop coefficients, were correlated with the estimates of ET volume using crop coefficients scaled to NDVI values and pixel counts of crop areas. These county estimates were made under the assumption that soil water availability was unlimited. For nonirrigated vegetation, this may result in over-estimation of ET volumes. Ground information regarding crop types and acreages are required to derive the NDVI scaling factor. Potential ET, estimated with the Jensen-Haise model, is common to both methods. These results, achieved with both MSS and AVHRR data, show promise for providing climatologically important land surface information for regional and global climate models. ?? 1990 Kluwer Academic Publishers.

  4. Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients

    USDA-ARS?s Scientific Manuscript database

    Remotely sensed data such as spectral reflectance and infrared canopy temperature can be used to quantify crop canopy cover and/or crop water stress, often through the use of vegetation indices calculated from the near-infrared and red bands, and stress indices calculated from the thermal wavelength...

  5. An energy balance approach for mapping crop waterstress and yield impacts over the Czech Republic

    USDA-ARS?s Scientific Manuscript database

    There is a growing demand for timely, spatially distributed information regarding crop condition and water use to inform agricultural decision making and yield forecasting efforts. Remote sensing of land-surface temperature has proven valuable for mapping evapotranspiration (ET) and crop stress from...

  6. Remote sensing in precision farming: real-time monitoring of water and fertilizer requirements of agricultural crops

    NASA Astrophysics Data System (ADS)

    Zilberman, Arkadi; Ben Asher, Jiftah; Kopeika, Norman S.

    2016-10-01

    The advancements in remote sensing in combination with sensor technology (both passive and active) enable growers to analyze an entire crop field as well as its local features. In particular, changes of actual evapo-transpiration (ET) as a function of water availability can be measured remotely with infrared radiometers. Detection of crop water stress and ET and combining it with the soil water flow model enable rational irrigation timing and application amounts. Nutrient deficiency, and in particular nitrogen deficiency, causes substantial crop losses. This deficiency needs to be identified immediately. A faster the detection and correction, a lesser the damage to the crop yield. In the present work, to retrieve ET a novel deterministic approach was used which is based on the remote sensing data. The algorithm can automatically provide timely valuable information on plant and soil water status, which can improve the management of irrigated crops. The solution is capable of bridging between Penman-Monteith ET model and Richards soil water flow model. This bridging can serve as a preliminary tool for expert irrigation system. To support decisions regarding fertilizers the greenness of plant canopies is assessed and quantified by using the spectral reflectance sensors and digital color imaging. Fertilization management can be provided on the basis of sampling and monitoring of crop nitrogen conditions using RS technique and translating measured N concentration in crop to kg/ha N application in the field.

  7. A Novel Approach for Forecasting Crop Production and Yield Using Remotely Sensed Satellite Images

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Budde, M. E.; Senay, G. B.; Rowland, J.

    2017-12-01

    Forecasting crop production in advance of crop harvest plays a significant role in drought impact management, improved food security, stabilizing food grain market prices, and poverty reduction. This becomes essential, particularly in Sub-Saharan Africa, where agriculture is a critical source of livelihoods, but lacks good quality agricultural statistical data. With increasing availability of low cost satellite data, faster computing power, and development of modeling algorithms, remotely sensed images are becoming a common source for deriving information for agricultural, drought, and water management. Many researchers have shown that the Normalized Difference Vegetation Index (NDVI), based on red and near-infrared reflectance, can be effectively used for estimating crop production and yield. Similarly, crop production and yield have been closely related to evapotranspiration (ET) also as there are strong linkages between production/yield and transpiration based on plant physiology. Thus, we combined NDVI and ET information from remotely sensed images for estimating total production and crop yield prior to crop harvest for Niger and Burkina Faso in West Africa. We identified the optimum time (dekads 23-29) for cumulating NDVI and ET and developed a new algorithm for estimating crop production and yield. We used the crop data from 2003 to 2008 to calibrate our model and the data from 2009 to 2013 for validation. Our results showed that total crop production can be estimated within 5% of actual production (R2 = 0.98) about 30-45 days before end of the harvest season. This novel approach can be operationalized to provide a valuable tool to decision makers for better drought impact management in drought-prone regions of the world.

  8. Influence of potential evapotranspiration on the water balance of sugarcane fields in Maui, Hawaii

    USDA-ARS?s Scientific Manuscript database

    The year-long warm temperatures and other climatic characteristics of the Pacific Ocean Islands have made Hawaii an optimum place for growing sugarcane; however, irrigation is essential to satisfy the large water demand of sugarcane. Under the Hawaiian tropical weather, actual evapotranspiration (A...

  9. Trend analysis and forecast of precipitation, reference evapotranspiration and rainfall deficit in the Blackland Prairie of eastern Mississippi

    USDA-ARS?s Scientific Manuscript database

    Trend analysis and estimation of monthly and annual precipitation, reference evapotranspiration (ETo) and rainfall deficit are essential for water resources management and cropping system design. Rainfall, ETo, and water deficit patterns and trends in eastern Mississippi USA for a 120-year period (1...

  10. Evapotranspiration Calculations for an Alpine Marsh Meadow Site in Three-river Headwater Region

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Xiao, H.

    2016-12-01

    Daily radiation and meteorological data were collected at an alpine marsh meadow site in the Three-river Headwater Region(THR). Use them to assess radiation models determined after comparing the performance between Zuo model and the model recommend by FAO56P-M.Four methods, FAO56P-M, Priestley-Taylor, Hargreaves, and Makkink methods were applied to determine daily reference evapotranspiration( ETr) for the growing season and built the empirical models for estimating daily actual evapotranspiration ETa between ETr derived from the four methods and evapotranspiration derived from Bowen Ratio method on alpine marsh meadow in this region. After comparing the performance of four empirical models by RMSE, MAE and AI, it showed these models all can get the better estimated daily ETaon alpine marsh meadow in this region, and the best performance of the FAO56 P-M, Makkink empirical model were better than Priestley-Taylor and Hargreaves model.

  11. Blaney-Morin-Nigeria evapotranspiration model

    NASA Astrophysics Data System (ADS)

    Duru, J. Obiukwu

    1984-02-01

    An evapotranspiration model which parallels that proposed earlier by Blaney and Morin has been developed for application in Nigeria. The model, designated as the Blaney-Morin-Nigeria evapotranspiration model, predicts potential evapotranspiration with accuracy and consistency that are better than the Penman model, under Nigerian conditions. It is suggested that the Blaney-Morin evapotranspiration concept may have similar potential elsewhere when given specific form with appropriate constants derived to reflect climatic peculiarities.

  12. Partitioning Evapotranspiration into Green and Blue Water Sources: Understanding Temporal Dynamics (2001-2015) and Spatial Variability in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Velpuri, N. M.; Senay, G. B.

    2017-12-01

    Information on how much of direct rain water (green water) and/or non-rain water (blue water) are being productively used by the crops/vegetation is critical for efficient water resources management. In this study, we developed a simple but robust methodology to partition actual evapotranspiration (ET) into green (rainfall-based) and blue (surface water/groundwater) sources. We combined two 1 km MODIS-based actual evapotranspiration datasets, one obtained from a root zone water balance model and another from an energy balance model, to partition annual ET into green water ET (GWET) and blue water ET (BWET). Time series maps of GWET and BWET were produced for the conterminous United States (CONUS) over 2001-2015 and spatial variability and dynamics of blue and green water ET were analyzed. Our results indicate that average green and blue water sources for all land cover types in CONUS account for nearly 70% and 30% of the total ET, respectively. The ET in the eastern US arises mostly from green water, and in the western US, it is mostly from blue water sources. Analysis of the BWET in the 16 selected irrigated areas in CONUS revealed interesting results. While the magnitude of the BWET showed a gradual decline from west to east, the increase in coefficient of variation from west to east confirmed greater use of supplemental irrigation in the central and eastern US. We also established relationships between hydro-climatic regions and their blue water requirements. This study provides insights into the relative contributions and the spatiotemporal dynamics of GWET and BWET, which could lead to improved water resources management.

  13. Groundwater Modelling For Recharge Estimation Using Satellite Based Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Soheili, Mahmoud; (Tom) Rientjes, T. H. M.; (Christiaan) van der Tol, C.

    2017-04-01

    Groundwater movement is influenced by several factors and processes in the hydrological cycle, from which, recharge is of high relevance. Since the amount of aquifer extractable water directly relates to the recharge amount, estimation of recharge is a perquisite of groundwater resources management. Recharge is highly affected by water loss mechanisms the major of which is actual evapotranspiration (ETa). It is, therefore, essential to have detailed assessment of ETa impact on groundwater recharge. The objective of this study was to evaluate how recharge was affected when satellite-based evapotranspiration was used instead of in-situ based ETa in the Salland area, the Netherlands. The Methodology for Interactive Planning for Water Management (MIPWA) model setup which includes a groundwater model for the northern part of the Netherlands was used for recharge estimation. The Surface Energy Balance Algorithm for Land (SEBAL) based actual evapotranspiration maps from Waterschap Groot Salland were also used. Comparison of SEBAL based ETa estimates with in-situ abased estimates in the Netherlands showed that these SEBAL estimates were not reliable. As such results could not serve for calibrating root zone parameters in the CAPSIM model. The annual cumulative ETa map produced by the model showed that the maximum amount of evapotranspiration occurs in mixed forest areas in the northeast and a portion of central parts. Estimates ranged from 579 mm to a minimum of 0 mm in the highest elevated areas with woody vegetation in the southeast of the region. Variations in mean seasonal hydraulic head and groundwater level for each layer showed that the hydraulic gradient follows elevation in the Salland area from southeast (maximum) to northwest (minimum) of the region which depicts the groundwater flow direction. The mean seasonal water balance in CAPSIM part was evaluated to represent recharge estimation in the first layer. The highest recharge estimated flux was for autumn

  14. Assessing reference evapotranspiration in a subhumid climate in NE Austria

    NASA Astrophysics Data System (ADS)

    Nolz, Reinhard; Eitzinger, Josef; Cepuder, Peter

    2015-04-01

    Computing reference evapotranspiration and multiplying it with a specific crop coefficient as recommended by the Food and Agriculture Organization of the United Nations (FAO) is the most widely accepted approach to estimate plant water requirements. The standardized form of the well-known FAO Penman-Monteith equation, published by the Environmental and Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI), is recommended as a standard procedure for calculating reference evapotranspiration. Applied and validated under different climatic conditions it generally achieved good results compared to other methods. However, several studies documented deviations between measured and calculated reference evapotranspiration depending on local environmental conditions. Consequently, it seems advisable to evaluate the model under local environmental conditions. Evapotranspiration was determined at a subhumid site in Austria (48°12'N, 16°34'E; 157 m asl) using a large weighing lysimeter operated at (limited) reference conditions and compared with calculations according to ASCE-EWRI. The lysimeter had an inner diameter of 1.9 m and a hemispherical bottom with a maximum depth of 2.5 m. Seepage water was measured at a free draining outlet using a tipping bucket. Lysimeter mass changes were sensed by a weighing facility with an accuracy of ±0.1 mm. Both rainfall and evapotranspiration were determined directly from lysimeter data using a simple water balance equation. Meteorological data for the ASCE-EWRI model were obtained from a weather station of the Central Institute for Meteorology and Geodynamics, Austria (ZAMG). The study period was from 2005 to 2010, analyses were based upon daily time steps. Daily calculated reference evapotranspiration was generally overestimated at small values, whereas it was rather underestimated when evapotranspiration was large, which is supported also by other studies. In the given case, advection of sensible heat proved

  15. Evapotranspiration Calculator Desktop Tool

    EPA Pesticide Factsheets

    The Evapotranspiration Calculator estimates evapotranspiration time series data for hydrological and water quality models for the Hydrologic Simulation Program - Fortran (HSPF) and the Stormwater Management Model (SWMM).

  16. Evapotranspiration under advective conditions.

    PubMed

    Figuerola, Patricia I; Berliner, Pedro R

    2005-07-01

    Arid and semi-arid regions are heterogeneous landscapes in which irrigated fields are surrounded by arid areas. The advection of sensible heat flux from dry surfaces is a significant source of energy that has to be taken into consideration when evaluating the evaporation from crops growing in these areas. The basic requirement of most of the common methods for estimating evapotranspiration [Bowen ratio, aerodynamic and Penman-Monteith (PM) equation] is that the horizontal fluxes of sensible and latent heat are negligible when compared to the corresponding vertical fluxes. We carried out measurements above an irrigated tomato field in a desert area. Latent and sensible heat fluxes were measured using a four-level Bowen machine with aspirated psychrometers. Our results indicate that under advective conditions only measurements carried out in the lowest layer are satisfactory for the estimation of latent heat fluxes and that the use of the PM equation with an appropriately parameterized canopy resistance may be preferable.

  17. Measuring Evapotranspiration of five Alley Cropping systems in Germany using the Eddy-Covariance- and Bowen-Ratio Energy-Balance methods

    NASA Astrophysics Data System (ADS)

    Markwitz, Christian; Knohl, Alexander; Siebicke, Lukas

    2017-04-01

    The inclusion of trees into the agricultural landscape of Europe is gaining popularity as a source for energy production. Fast growing tree species such as poplar or willow are included as short rotation coppice or alley cropping systems, which consist of tree alleys interleaved by annual rotating crops or perennial grasslands. Estimating turbulent fluxes of those systems using the eddy-covariance- (ECEB) and bowen-ratio energy-balance (BREB) method is challenging due to the methods limitation to horizontally homogeneous terrain and steady state conditions. As the conditions are not fulfilled for those systems the energy-balance is commonly not fully closed, with the non-closure being site specific. An underestimation of measured heat fluxes leads to an overestimation of the latent heat fluxes inferred from the ECEB method. The aim of our study is to 1) quantify the site specific non-closure of the energy-balance and 2) characterize the performance of both methods, compared to direct eddy-covariance measurements using a high frequency infra-red gas analyzer (LI-7200, Licor Inc.). To assess continuous evapotranspiration (ET) rates on a 30-minute time scale we installed a combined ECEB and BREB system at five alley cropping and five agricultural reference sites across Germany. For time periods of four weeks we performed direct eddy covariance flux measurements for H2O and CO2 over one crop- and one grassland alley cropping- and their respective reference systems during the growing season of 2016. We found a non-closure between 21 and 26 % for all sites, considering all day- and night-time data. The residual energy was highest during the morning and lowest in the afternoon. Related to that the energy-balance ratio (EBR), i.e. the ratio between the turbulent heat fluxes and available energy, was below one in the morning hours and increased slightly during the day up to 1.8, until the EBR decreased sharply after sunset. The EBR correlated to the daily cycle of solar

  18. Impact of climate, vegetation, soil and crop management variables on multi-year ISBA-A-gs simulations of evapotranspiration over a Mediterranean crop site

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Carrer, D.; Decharme, B.; Calvet, J.-C.; Martin, E.; Moulin, S.; Marloie, O.

    2015-10-01

    Generic land surface models are generally driven by large-scale data sets to describe the climate, the soil properties, the vegetation dynamic and the cropland management (irrigation). This paper investigates the uncertainties in these drivers and their impacts on the evapotranspiration (ET) simulated from the Interactions between Soil, Biosphere, and Atmosphere (ISBA-A-gs) land surface model over a 12-year Mediterranean crop succession. We evaluate the forcing data sets used in the standard implementation of ISBA over France where the model is driven by the SAFRAN (Système d'Analyse Fournissant des Renseignements Adaptés à la Nivologie) high spatial resolution atmospheric reanalysis, the leaf area index (LAI) time courses derived from the ECOCLIMAP-II land surface parameter database and the soil texture derived from the French soil database. For climate, we focus on the radiations and rainfall variables and we test additional data sets which include the ERA-Interim (ERA-I) low spatial resolution reanalysis, the Global Precipitation Climatology Centre data set (GPCC) and the MeteoSat Second Generation (MSG) satellite estimate of downwelling shortwave radiations. The evaluation of the drivers indicates very low bias in daily downwelling shortwave radiation for ERA-I (2.5 W m-2) compared to the negative biases found for SAFRAN (-10 W m-2) and the MSG satellite (-12 W m-2). Both SAFRAN and ERA-I underestimate downwelling longwave radiations by -12 and -16 W m-2, respectively. The SAFRAN and ERA-I/GPCC rainfall are slightly biased at daily and longer timescales (1 and 0.5 % of the mean rainfall measurement). The SAFRAN rainfall is more precise than the ERA-I/GPCC estimate which shows larger inter-annual variability in yearly rainfall error (up to 100 mm). The ECOCLIMAP-II LAI climatology does not properly resolve Mediterranean crop phenology and underestimates the bare soil period which leads to an overall overestimation of LAI over the crop succession. The

  19. Estimating seasonal evapotranspiration from temporal satellite images

    USGS Publications Warehouse

    Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.

    2012-01-01

    Estimating seasonal evapotranspiration (ET) has many applications in water resources planning and management, including hydrological and ecological modeling. Availability of satellite remote sensing images is limited due to repeat cycle of satellite or cloud cover. This study was conducted to determine the suitability of different methods namely cubic spline, fixed, and linear for estimating seasonal ET from temporal remotely sensed images. Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model in conjunction with the wet METRIC (wMETRIC), a modified version of the METRIC model, was used to estimate ET on the days of satellite overpass using eight Landsat images during the 2001 crop growing season in Midwest USA. The model-estimated daily ET was in good agreement (R2 = 0.91) with the eddy covariance tower-measured daily ET. The standard error of daily ET was 0.6 mm (20%) at three validation sites in Nebraska, USA. There was no statistically significant difference (P > 0.05) among the cubic spline, fixed, and linear methods for computing seasonal (July–December) ET from temporal ET estimates. Overall, the cubic spline resulted in the lowest standard error of 6 mm (1.67%) for seasonal ET. However, further testing of this method for multiple years is necessary to determine its suitability.

  20. Landsat based historical (1984-2014) crop water use estimates and trends in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Senay, G. B.; Schauer, M.; Friedrichs, M.; Velpuri, N. M.; Singh, R. K.

    2016-12-01

    Remote sensing-based field scale evapotranspiration (ET) maps are useful for characterizing water use patterns and assessing crop performance. Historical (1984-2014) Landsat-based ET maps were generated for major irrigation districts in the southwestern US. A total of 3,396 Landsat images were processed using the Operational Simplified Surface Energy balance (SSEBop) model that integrates weather and remotely sensed images to estimate monthly and annual ET within the study areas over the 31 years. Model output evaluation and validation using point-based eddy covariance flux tower, gridded-flux data and water balance ET approaches indicated relatively strong association between SSEBop ET and validation datasets. Historical trend analysis of seven agro-hydrologic variables using the Seasonal Mann-Kendall test showed interesting results. In a pair wise comparison, management influenced variables such as actual evapotranspiration (ETa), land surface temperature (Ts) and runoff (Q) were found to be more variable than their corresponding climate counterparts of atmospheric water demand (ETo), air temperature (Ta) and precipitation, responding to the impacts of management decisions. Our results indicated that only air temperature showed a consistent increase (up to 1.2 K) across all 9 irrigation sub-basins during the 31 years. District-wide ETa estimates were used to compute historical crop water use volumes and monetary savings for the Palo Verde Irrigation district (PVID). During the peak crop fallowing program in PVID, the water savings reached a maximum of 85,000 ac-ft per year which is equivalent to a dollar amount of $ 600 million. This study has many applications in planning water resource allocation, monitoring and assessing water usage and performance, and quantifying impacts of climate and land use/land cover changes on water resources. With increased computational efficiency and model development, similar studies can be conducted in other parts of the world.

  1. REDRAW-Based Evapotranspiration Estimation in Chongli, North China

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Wang, Z.

    2017-12-01

    Evapotranspiration (ET) is the key component of hydrological cycle and spatial estimates of ET are important elements of atmospheric circulation and hydrologic models. Quantifying the ET over large region is significant for water resources planning, hydrologic water balances, water rights management, and water division. In this study, Evapotranspiration (ET) was estimated using REDRAW model in the Chongli on 2014. REDRAW is a satellite-based balance algorithm with reference dry and wet limits model developed to estimate ET. Remote sensing data obtained from MODIS and meteorological data from China Meteorological Data Sharing Service System were used in ET model. In order to analyze the distribution and time variation of ET over the study region, daily, monthly and yearly ET were calculated for the study area, and ET of different land cover types were calculated. In terms of the monthly ET, the figure was low in winter and high in other seasons, and reaches the maximum value in August, showing a high monthly difference. The ET value of water body was the highest and that of barren or sparse vegetation were the lowest, which accorded with local actual condition. Evaluating spatial temporal distribution of actual ET could assist to understand the water consumption regularity in region and figure out the effect from different land cover, which helped to establish links between land use, water allocation, and water use planning in study region. Due to the groundwater recession in north China, the evaluation of regional total water resources become increasingly essential, and the result of this study can be used to plan the water use. As the Chongli will prepare the ski slopes for Winter Olympics on 2022, accuracy estimation of actual ET can efficiently resolve water conflict and relieve water scarcity.

  2. Quantitative Estimation of Land Surface Characteristic Parameters and Actual Evapotranspiration in the Nagqu River Basin over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Ma, Y.; Ma, W.; Zou, M.; Hu, Y.

    2016-12-01

    Actual evapotranspiration (ETa) is an important component of the water cycle in the Tibetan Plateau. It is controlled by many hydrological and meteorological factors. Therefore, it is of great significance to estimate ETa accurately and continuously. It is also drawing much attention of scientific community to understand land surface parameters and land-atmosphere water exchange processes in small watershed-scale areas. Based on in-situ meteorological data in the Nagqu river basin and surrounding regions, the main meteorological factors affecting the evaporation process were quantitatively analyzed and the point-scale ETa estimation models in the study area were successfully built. On the other hand, multi-source satellite data (such as SPOT, MODIS, FY-2C) were used to derive the surface characteristics in the river basin. A time series processing technique was applied to remove cloud cover and reconstruct data series. Then improved land surface albedo, improved downward shortwave radiation flux and reconstructed normalized difference vegetation index (NDVI) were coupled into the topographical enhanced surface energy balance system to estimate ETa. The model-estimated results were compared with those ETa values determined by combinatory method. The results indicated that the model-estimated ETa agreed well with in-situ measurements with correlation coefficient, mean bias error and root mean square error of 0.836, 0.087 and 0.140 mm/h respectively.

  3. A comparison of methods for determining field evapotranspiration: photosynthesis system, sap flow, and eddy covariance

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Tian, F.; Hu, H.; Yang, P.

    2014-03-01

    A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: a photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. To upscale the evapotranspiration from the leaf to plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. To upscale the evapotranspiration from the plant to field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationship between leaf areas and stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling was slightly higher (18%) than that obtained by sap flow. At the field scale, the estimates of transpiration derived from sap flow with upscaling and eddy covariance showed reasonable consistency during the cotton's open-boll growth stage, during which soil evaporation can be neglected. The results indicate that the proposed upscaling approaches are reasonable and valid. Based on the measurements and upscaling approaches, evapotranspiration components were analyzed for a cotton field under mulched drip irrigation. During the two analyzed sub-periods in July and August, evapotranspiration rates were 3.94 and 4.53 m day-1, respectively. The fraction of transpiration to evapotranspiration reached 87.1% before drip irrigation and 82.3% after irrigation. The high fraction of transpiration over evapotranspiration was principally due to the mulched film above the drip pipe, low soil water content in the inter-film zone, well-closed canopy, and high water requirement of the crop.

  4. A comparison of methods for determining field evapotranspiration: photosynthesis system, sap flow, and eddy covariance

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Tian, F.; Hu, H. C.; Hu, H. P.

    2013-11-01

    A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. To upscale the evapotranspiration from the leaf to the plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. To upscale the evapotranspiration from the plant to the field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationships between leaf area and stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling was slightly higher (18%) than that obtained by sap flow. At the field scale, the estimates of transpiration derived from sap flow with upscaling and eddy covariance shown reasonable consistency during the cotton open boll growth stage when soil evaporation can be neglected. The results indicate that the upscaling approaches are reasonable and valid. Based on the measurements and upscaling approaches, evapotranspiration components were analyzed under mulched drip irrigation. During the two analysis sub-periods in July and August, evapotranspiration rates were 3.94 and 4.53 mm day-1, respectively. The fraction of transpiration to evapotranspiration reached 87.1% before drip irrigation and 82.3% after irrigation. The high fraction of transpiration over evapotranspiration was principally due to the mulched film above drip pipe, low soil water content in the inter-film zone, well-closed canopy, and high water requirement of the crop.

  5. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chunwei; Sun, Ge; McNulty, Steven G.

    The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET

  6. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements

    DOE PAGES

    Liu, Chunwei; Sun, Ge; McNulty, Steven G.; ...

    2017-01-18

    The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET

  7. Drought in West Africa: How CHIRPS and Reference Evapotranspiration can be used for Index Insurance in a Non-Stationary Setting

    NASA Astrophysics Data System (ADS)

    Blakeley, S. L.; Husak, G. J.; Harrison, L.; Funk, C. C.; Osgood, D. E.; Peterson, P.

    2017-12-01

    Index insurance is increasingly used as a safety net and productivity tool in order to improve the resilience of small-holder farmers in developing countries. In West Africa, there are already index insurance projects in many countries, and various non-governmental organizations are eager to expand implementation of this risk management tool. Often, index insurance payouts rely on rainfall to determine drought years, but designation of years based on precipitation variations is particularly complex in places like West Africa where precipitation is subject to much natural variability across timescales [Giannini 2003, among others]. Furthermore, farmers must also rely on other weather factors for good crop yields, such as the availability of moisture for their plants to absorb and maximum daily temperatures staying within an acceptable range for the crops. In this presentation, the payouts of an index based on rainfall (as measured by the Climate Hazards Group Infrared Precipitation with Stations {CHIRPS} dataset) is compared to the payouts of an index using reference evapotranspiration data (using the ASCE's Penmen-Monteith formula and MERRA-2 drivers). The West African rainfall index exhibits a fair amount of long-term variability, reflective of the Atlantic Multidecadal Oscillation, but the reference evapotranspiration index shows different variability, through changes in radiative forcing and temperatures. Therefore, the use of rainfall for an index is appropriate for capturing rainfall deficits, but reference evapotranspiration may also be an appropriate addition to an index or as a stand-alone index for capturing crop stress. In summary, the results point to farmer input as an invaluable source of knowledge in determining the most appropriate dataset as an index for crop insurance. Alessandra Giannini, R Saravanan, and P Chang. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302(5647):1027-1030, 2003.

  8. Satellite-based mapping of field-scale stress indicators for crop yield forecasting: an application over Mead, NE

    USDA-ARS?s Scientific Manuscript database

    In global agricultural regions, water is one of the most widely limiting factors of crop performance and production. Evapotranspiration (ET) describes crop water use through transpiration and water lost through direct soil evaporation, which makes it a good indicator of soil moisture availability an...

  9. Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO2

    USDA-ARS?s Scientific Manuscript database

    Projected global warming and population growth will reduce water availability for agriculture, so it is essential to increase the effective use of water to ensure future crop productivity. Quantifying future crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Th...

  10. Using Satellite Imagery with ET Weather Station Networks to Map Crop Water Use for Irrigation Scheduling: TOPS-SIMS.

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration estimates for scheduling irrigation must be field specific and real time. Weather station networks provide daily reference ET values, but users need to select crop coefficients for their particular crop and field. A prototype system has been developed that combines satellite image...

  11. Evapotranspiration, biomass production and water productivity acquired from Landsat 8 images in the northwestern side of the São Paulo state, Brazil

    NASA Astrophysics Data System (ADS)

    de C. Teixeira, Antônio H.; Leivas, Janice F.; T. Hernandez, Fernando B.; Franco, Renato A. M.; Nuñez, Daniel N. C.

    2016-10-01

    In the northwestern side of the São Paulo state, Brazil, irrigated areas are expanding, because rainfall is not enough to supply the crop water requirements. Under the actual climate and land-use change scenarios, large-scale evapotranspiration (ET) and biomass production (BIO) acquirements are relevant. Eleven Landsat 8 images, from May 2013 to October 2014, were used together with a net of eight agrometeorological stations for modelling these water productivity (WP) parameters in the main agricultural growing irrigated areas inside three hydrological basins in this region. Some of these areas inside of each basin were highlighted for more in-depth WP analyses. The SAFER algorithm estimated the ratio of actual (ET) to reference (ET0) evapotranspiration and this ratio was used for both, to calculate ET and to include the soil moisture effects in the Monteith's Radiation Use Efficiency (RUE) model. The highlighted agricultural growing regions were Paranapuã, Populina and Santa Rita d'Oeste in the Turvo/Grande basin; Rubinéia, Santa Fé do Sul, Suzanópolis and Ilha Solteira, in the São José dos Dourados basin; and Pereira Barreto and Sud Mennucci, in the Baixo Tietê basin. The highest averages of both ET (1.7 +/- 0.9 mm d-1) and BIO (47 +/- 31 kg ha-1 d-1) were for Ilha Solteira, while the lowest ones happened in Sud Mennucci (1.3 +/- 0.7 mm d-1 and 40 +/- 27). These ET and BIO ranges returned WP values varying from 2.2 +/- 0.6 to 2.6 +/- 0.8 kg m-3, with the higher end of this range happening in the Turvo/Grande hydrological basin. Considering the annual time-scale, crops will consume around 770, 828 and 786 mm yr-1 with the corresponding BIO values of 27, 26 and 25 t ha-1 yr-1, respectively in Turvo/Grande, São José do Dourados and Baixo Tietê. It was concluded that increments in agricultural irrigated areas should be stimulated in the northwestern side of the state, mainly in the first basin, to retrieve good yield with less water use.

  12. Energy Balance and Evapotranspiration in a High Mountain Area during Summer.

    NASA Astrophysics Data System (ADS)

    Konzelmann, T.; Calanca, P.; Müller, G.; Menzel, L.; Lang, H.

    1997-07-01

    A meteorological experiment was carried out in summer 1995 at two representative sites above and below the timberline in the Dischma Valley, near Davos, Switzerland. The study aimed at investigating the characteristics of the surface energy balance and of the evapotranspiration in a high alpine environment during the vegetation period. At both sites, net radiation is the only energy source. It amounts to about 80 W m2 at the lower and 100 W m2 at the upper sites, respectively. Since the albedo and the longwave radiation budget do not differ significantly, net radiation was found to be linearly dependent on global radiation. The latent heat flux associated with evapotranspiration represents the most important energy sink, averaging to 70 W m2 at the lower and 63 W m2 at the upper locations. It is therefore of comparable magnitude, despite a larger energy availability at the upper site. This is due to a significantly larger Bowen ratio at this upper location. On the other hand, the diurnal course of the Bowen ratio is at both sites such that the latent heat flux can be expressed as a linear function of net or global radiation. For a better characterization, the actual evapotranspiration was compared to Penman's parameterization, which represents the potential limit for saturated surface conditions. The comparison shows that, even during wet periods, evapotranspiration is regulated by the moisture conditions in the soil and the physiological behavior of vegetation.

  13. Trend analysis and forecast of precipitation, reference evapotranspiration, and rainfall deficit in the Blackland Prairie of eastern Mississippi

    Treesearch

    Gary Feng; Stacy Cobb; Zaid Abdo; Daniel K. Fisher; Ying Ouyang; Ardeshir Adeli; Johnie N. Jenkins

    2016-01-01

    Trend analysis and estimation of monthly and annual precipitation, reference evapotranspiration ET, and rainfall deficit are essential for water-resources management and cropping-system design. Rainfall, ET, and water-deficit patterns and trends at Macon in eastern Mississippi for a 120-yr period (1894-2014) were analyzed for annual, seasonal, and monthly...

  14. A comprehensively quantitative method of evaluating the impact of drought on crop yield using daily multi-scale SPEI and crop growth process model.

    PubMed

    Wang, Qianfeng; Wu, Jianjun; Li, Xiaohan; Zhou, Hongkui; Yang, Jianhua; Geng, Guangpo; An, Xueli; Liu, Leizhen; Tang, Zhenghong

    2017-04-01

    The quantitative evaluation of the impact of drought on crop yield is one of the most important aspects in agricultural water resource management. To assess the impact of drought on wheat yield, the Environmental Policy Integrated Climate (EPIC) crop growth model and daily Standardized Precipitation Evapotranspiration Index (SPEI), which is based on daily meteorological data, are adopted in the Huang Huai Hai Plain. The winter wheat crop yields are estimated at 28 stations, after calibrating the cultivar coefficients based on the experimental site data, and SPEI data was taken 11 times across the growth season from 1981 to 2010. The relationship between estimated yield and multi-scale SPEI were analyzed. The optimum time scale SPEI to monitor drought during the crop growth period was determined. The reference yield was determined by averaging the yields from numerous non-drought years. From this data, we propose a comprehensive quantitative method which can be used to predict the impact of drought on wheat yields by combining the daily multi-scale SPEI and crop growth process model. This method was tested in the Huang Huai Hai Plain. The results suggested that estimation of calibrated EPIC was a good predictor of crop yield in the Huang Huai Hai Plain, with lower RMSE (15.4 %) between estimated yield and observed yield at six agrometeorological stations. The soil moisture at planting time was affected by the precipitation and evapotranspiration during the previous 90 days (about 3 months) in the Huang Huai Hai Plain. SPEI G90 was adopted as the optimum time scale SPEI to identify the drought and non-drought years, and identified a drought year in 2000. The water deficit in the year 2000 was significant, and the rate of crop yield reduction did not completely correspond with the volume of water deficit. Our proposed comprehensive method which quantitatively evaluates the impact of drought on crop yield is reliable. The results of this study further our

  15. Recent decline in crop water productivity in the United States: a call to grow "more crop per drop"

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.; Tu, K. P.; Thenkabail, P.; Brown, J. F.

    2016-12-01

    Irrigation for agriculture accounts for approximately 80 to 90% of U.S. consumptive water use. Recent declines in freshwater supply for irrigated agriculture in the western U.S. is particularly alarming, because climate change, water withdrawals from growing and competing sectors, and water pollution, are projected to put further strain on this vital sector. Innovative water management strategies are being proposed to combat this eminent water crisis and include: developing water markets, improving crop water productivity (CWP: "more crop per drop"), and coordinating the use of surface and groundwater supplies. The increase in CWP through crop type or variety selection is particularly lucrative, because it aims to increase the marketable yield of a crop, while reducing the cost of consumptive water use. Here we estimated CWP from 2000-2015 for the Contiguous United States over the primary growing season (mid May - late October) using a recently developed and validated light-use efficiency model for estimating crop yield and the transpiration component of the Priestley-Taylor Jet Propulsion Laboratory evapotranspiration model. The models were parameterized with daily DAYMET 1 km meteorological and 7-day EROS Moderate Resolution Imaging Spectroradiometer 250 m vegetation data. An analysis will be performed on CWP and its components to characterize the magnitude, direction, and persistence of trends. CWP estimates and trends will be overlaid with the U.S. Department of Agriculture's Cropland Data Layer to rank major crops by water use versus marketable yield and to characterize intervention hotspots, respectively. County-level data on surface and ground water withdrawals for irrigated agriculture available through the U.S. Geological Survey will be used to further scrutinize emerging patterns. It is anticipated that over much of the irrigated areas of the western U.S. that persistent and decreasing trends in CWP for major water users (e.g. alfalfa) due to temperature

  16. Bushland Evapotranspiration and Agricultural Remote Sensing System (BEARS) software

    NASA Astrophysics Data System (ADS)

    Gowda, P. H.; Moorhead, J.; Brauer, D. K.

    2017-12-01

    Evapotranspiration (ET) is a major component of the hydrologic cycle. ET data are used for a variety of water management and research purposes such as irrigation scheduling, water and crop modeling, streamflow, water availability, and many more. Remote sensing products have been widely used to create spatially representative ET data sets which provide important information from field to regional scales. As UAV capabilities increase, remote sensing use is likely to also increase. For that purpose, scientists at the USDA-ARS research laboratory in Bushland, TX developed the Bushland Evapotranspiration and Agricultural Remote Sensing System (BEARS) software. The BEARS software is a Java based software that allows users to process remote sensing data to generate ET outputs using predefined models, or enter custom equations and models. The capability to define new equations and build new models expands the applicability of the BEARS software beyond ET mapping to any remote sensing application. The software also includes an image viewing tool that allows users to visualize outputs, as well as draw an area of interest using various shapes. This software is freely available from the USDA-ARS Conservation and Production Research Laboratory website.

  17. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  18. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.

    PubMed

    Shimono, Hiroyuki; Nakamura, Hirofumi; Hasegawa, Toshihiro; Okada, Masumi

    2013-08-01

    An elevated atmospheric CO2 concentration ([CO2 ]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2 ] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open-air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2 ], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2 ] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor-pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m(2)  m(-2) , can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2 ]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2 ] and 1.17 at elevated [CO2 ]. This study provides the first direct measurement of the effects of elevated [CO2 ] on rice canopy evapotranspiration under open-air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields. © 2013 John Wiley & Sons Ltd.

  19. Soil water content effects on net ecosystem CO2 exchange and actual evapotranspiration in a Mediterranean semiarid savanna of Central Chile.

    PubMed

    Meza, Francisco J; Montes, Carlo; Bravo-Martínez, Felipe; Serrano-Ortiz, Penélope; Kowalski, Andrew S

    2018-06-05

    Biosphere-atmosphere water and carbon fluxes depend on ecosystem structure, and their magnitudes and seasonal behavior are driven by environmental and biological factors. We studied the seasonal behavior of net ecosystem CO 2 exchange (NEE), Gross Primary Productivity (GPP), Ecosystem Respiration (RE), and actual evapotranspiration (ETa) obtained by eddy covariance measurements during two years in a Mediterranean Acacia savanna ecosystem (Acacia caven) in Central Chile. The annual carbon balance was -53 g C m -2 in 2011 and -111 g C m -2 in 2012, showing that the ecosystem acts as a net sink of CO 2 , notwithstanding water limitations on photosynthesis observed in this particularly dry period. Total annual ETa was of 128 mm in 2011 and 139 mm in 2012. Both NEE and ETa exhibited strong seasonality with peak values recorded in the winter season (July to September), as a result of ecosystem phenology, soil water content and rainfall occurrence. Consequently, the maximum carbon assimilation rate occurred in wintertime. Results show that soil water content is a major driver of GPP and RE, defining their seasonal patterns and the annual carbon assimilation capacity of the ecosystem, and also modulating the effect that solar radiation and air temperature have on NEE components at shorter time scales.

  20. Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role.

    PubMed

    Ruairuen, Watcharee; Fochesatto, Gilberto J; Sparrow, Elena B; Schnabel, William; Zhang, Mingchu; Kim, Yongwon

    2015-01-01

    As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/Rnet (67%), G/Rnet (6%), H/Rnet (27%) where LE is latent heat flux, Rnet is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems.

  1. Improving evapotranspiration processes in distrubing hydrological models using Remote Sensing derived ET products.

    NASA Astrophysics Data System (ADS)

    Abitew, T. A.; van Griensven, A.; Bauwens, W.

    2015-12-01

    Evapotranspiration is the main process in hydrology (on average around 60%), though has not received as much attention in the evaluation and calibration of hydrological models. In this study, Remote Sensing (RS) derived Evapotranspiration (ET) is used to improve the spatially distributed processes of ET of SWAT model application in the upper Mara basin (Kenya) and the Blue Nile basin (Ethiopia). The RS derived ET data is obtained from recently compiled global datasets (continuously monthly data at 1 km resolution from MOD16NBI,SSEBop,ALEXI,CMRSET models) and from regionally applied Energy Balance Models (for several cloud free days). The RS-RT data is used in different forms: Method 1) to evaluate spatially distributed evapotransiration model resultsMethod 2) to calibrate the evotranspiration processes in hydrological modelMethod 3) to bias-correct the evapotranpiration in hydrological model during simulation after changing the SWAT codesAn inter-comparison of the RS-ET products shows that at present there is a significant bias, but at the same time an agreement on the spatial variability of ET. The ensemble mean of different ET products seems the most realistic estimation and was further used in this study.The results show that:Method 1) the spatially mapped evapotranspiration of hydrological models shows clear differences when compared to RS derived evapotranspiration (low correlations). Especially evapotranspiration in forested areas is strongly underestimated compared to other land covers.Method 2) Calibration allows to improve the correlations between the RS and hydrological model results to some extent.Method 3) Bias-corrections are efficient in producing (sesonal or annual) evapotranspiration maps from hydrological models which are very similar to the patterns obtained from RS data.Though the bias-correction is very efficient, it is advised to improve the model results by better representing the ET processes by improved plant/crop computations, improved

  2. Spatial Observation and Models for Crop Water Use in Australia (Invited)

    NASA Astrophysics Data System (ADS)

    Hafeez, M. M.; Chemin, Y.; Rabbani, U.

    2009-12-01

    Recent drought in Australia and concerns about climate change have highlighted the need to manage agricultural water resources more sustainably, especially in the Murray Darling Basin which accounts for more than 70% of water for crop production. For Australian continent, approximately 90% of the precipitation that falls on the land is returned back to the atmosphere through actual evapotranspiration (ET) process. However, despite its significance nationally, it is almost impossible to measure or observe it directly at a meaningful scale in space and time through traditional point-based methods. Since late 1990's, the optical-thermal remote sensing satellite data has been extensively used for mapping of actual ET from farm to catchment scales in Australia. Numerous ET algorithms have been developed to make use of remote sensing data acquired by optical-thermal sensors mounted on airborne and satellite platforms. This article concentrates on the Murrumbidgee catchment, where ground truth data has been collected on a fortnightly basis since 2007 using two Eddy Covariance Systems (ECS) and two Large Aperture Scintillometers (LAS). Their setup absorbed variability in the landscape to measure ET-related fluxes. The ground truthing measurement data includes leaf area index (LAI) from LICOR 2000, soil heat fluxes from HuskeFlux, crop reflectance data from CROPScan and from a thermal radiometer. UAV drone equipped with multispectral scanner and thermal imager was used to get very high spatial resolution NDVI and surface temperature maps over the selected farms. This large array of high technology instruments have been used to collect specific measurements within various micro-ecosystems available in our study area. This article starts by an overview of common ET estimation algorithms based on satellite remote sensing data. The algorithms are SEBAL, METRIC, Simplified Surface Energy Balance, Two Source Energy Balance and SEBS. They are used in Australia at both regional and

  3. Evapotranspiration Measurement and Crop Coefficient Estimation over a Spring Wheat Farmland Ecosystem in the Loess Plateau

    PubMed Central

    Yang, Fulin; Zhang, Qiang; Wang, Runyuan; Zhou, Jing

    2014-01-01

    Evapotranspiration (ET) is an important component of the surface energy balance and hydrological cycle. In this study, the eddy covariance technique was used to measure ET of the semi-arid farmland ecosystem in the Loess Plateau during 2010 growing season (April to September). The characteristics and environmental regulations of ET and crop coefficient (Kc) were investigated. The results showed that the diurnal variation of latent heat flux (LE) was similar to single-peak shape for each month, with the largest peak value of LE occurring in August (151.4 W m−2). The daily ET rate of the semi-arid farmland in the Loess Plateau also showed clear seasonal variation, with the maximum daily ET rate of 4.69 mm day−1. Cumulative ET during 2010 growing season was 252.4 mm, and lower than precipitation. Radiation was the main driver of farmland ET in the Loess Plateau, which explained 88% of the variances in daily ET (p<0.001). The farmland Kc values showed the obvious seasonal fluctuation, with the average of 0.46. The correlation analysis between daily Kc and its major environmental factors indicated that wind speed (Ws), relative humidity (RH), soil water content (SWC), and atmospheric vapor pressure deficit (VPD) were the major environmental regulations of daily Kc. The regression analysis results showed that Kc exponentially decreased with Ws increase, an exponentially increased with RH, SWC increase, and a linearly decreased with VPD increase. An experiential Kc model for the semi-arid farmland in the Loess Plateau, driven by Ws, RH, SWC and VPD, was developed, showing a good consistency between the simulated and the measured Kc values. PMID:24941017

  4. Evapotranspiration measurement and crop coefficient estimation over a spring wheat Farmland ecosystem in the Loess Plateau.

    PubMed

    Yang, Fulin; Zhang, Qiang; Wang, Runyuan; Zhou, Jing

    2014-01-01

    Evapotranspiration (ET) is an important component of the surface energy balance and hydrological cycle. In this study, the eddy covariance technique was used to measure ET of the semi-arid farmland ecosystem in the Loess Plateau during 2010 growing season (April to September). The characteristics and environmental regulations of ET and crop coefficient (Kc) were investigated. The results showed that the diurnal variation of latent heat flux (LE) was similar to single-peak shape for each month, with the largest peak value of LE occurring in August (151.4 W m(-2)). The daily ET rate of the semi-arid farmland in the Loess Plateau also showed clear seasonal variation, with the maximum daily ET rate of 4.69 mm day(-1). Cumulative ET during 2010 growing season was 252.4 mm, and lower than precipitation. Radiation was the main driver of farmland ET in the Loess Plateau, which explained 88% of the variances in daily ET (p<0.001). The farmland Kc values showed the obvious seasonal fluctuation, with the average of 0.46. The correlation analysis between daily Kc and its major environmental factors indicated that wind speed (Ws), relative humidity (RH), soil water content (SWC), and atmospheric vapor pressure deficit (VPD) were the major environmental regulations of daily Kc. The regression analysis results showed that Kc exponentially decreased with Ws increase, an exponentially increased with RH, SWC increase, and a linearly decreased with VPD increase. An experiential Kc model for the semi-arid farmland in the Loess Plateau, driven by Ws, RH, SWC and VPD, was developed, showing a good consistency between the simulated and the measured Kc values.

  5. Evapotranspiration and microclimate at a low-level radioactive-waste disposal site in northwestern Illinois

    USGS Publications Warehouse

    Healy, R.W.; DeVries, M.P.; Sturrock, Alex M.

    1989-01-01

    From July 1982 through June 1984, a study was made of the evapotranspiration and microclimate at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Vegetation at the site consists of mixed pasture grasses, primarily awnless brome (Bromus inermis) and red clover (Trifoleum pratense). Three methods were used to estimate evapotranspiration: (1) an energy budget with the Bowen ratio, (2) an aerodynamic profile, and (3) a soil-based water budget. For the aerodynamic-profile method, sensible-heat flux was estimated by a profile equation and evapotranspiration was then calculated as the residual in the energy-balance equation. Estimates by the energy-budget and aerodynamic-profile methods were computed from hourly data and then summed by days and months. Yearly estimates (for March through November) by these methods were in close agreement: 648 and 626 millimeters, respectively. Daily estimates reach a maximum of about 6 millimeters. The water-budget method produced only monthly estimates based on weekly or biweekly soil-moisture content measurements. The yearly evapotranspiration estimated by this method (which actually included only the months of April through October) was 655 millimeters. The March-through-November average for the three methods of 657 millimeters was equivalent to 70 percent of total precipitation. Continuous measurements were made of incoming and reflected shortwave radiation, incoming and emitted longwave radiation, net radiation, soil-heat flux, soil temperature, horizontal windspeed, and wet- and dry-bulb air temperature. Windspeed and air temperature were measured at heights of 0.5 and 2.0 meters (and also at 1.0 meter after September 1983). Soilmoisture content of the soil zone was measured with a gamma-attenuation gage. Annual precipitation (938 millimeters) and average temperature (10.8 degrees Celsius) at the Sheffield site were virtually identical to long-term averages from nearby National Weather Service

  6. Evaluation from 3-Years Time Serie of Daily Actual Evapotranspiration over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Faivre, R.; Menenti, M.

    2016-08-01

    The estimation of turbulent uxes is of primary interest for hydrological and climatological studies. Also the use of optical remote sensing data in the VNIR and TIR domain already proved to allow for the parameterization of surface energy balance, leading to many algorithms. Their use over arid high elevation areas require detailed characterisation of key surface physical properties and atmospheric statement at a reference level. Satellite products aquired over the Tibetan Plateau and simulations results delivered in the frame of the CEOP-AEGIS project provide incentives for a regular analysis at medium scale.This work aims at evaluating the use Feng-Yun 2 series and MODIS data (VNIR and TIR) for land surface evapotranspiration (ET) daily mapping based on SEBI algorithm, over the whole Tibetan Plateau (Faivre, 2014). An evaluation is performed over some reference sites set-up through the Tibetan Plateau.

  7. Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation)

    USGS Publications Warehouse

    Marshall, Michael T.; Thenkabail, Prasad S.; Biggs, Trent; Post, Kirk

    2016-01-01

    Evapotranspiration (ET) is an important component of micro- and macro-scale climatic processes. In agriculture, estimates of ET are frequently used to monitor droughts, schedule irrigation, and assess crop water productivity over large areas. Currently, in situ measurements of ET are difficult to scale up for regional applications, so remote sensing technology has been increasingly used to estimate crop ET. Ratio-based vegetation indices retrieved from optical remote sensing, like the Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index, and Enhanced Vegetation Index are critical components of these models, particularly for the partitioning of ET into transpiration and soil evaporation. These indices have their limitations, however, and can induce large model bias and error. In this study, micrometeorological and spectroradiometric data collected over two growing seasons in cotton, maize, and rice fields in the Central Valley of California were used to identify spectral wavelengths from 428 to 2295 nm that produced the highest correlation to and lowest error with ET, transpiration, and soil evaporation. The analysis was performed with hyperspectral narrowbands (HNBs) at 10 nm intervals and multispectral broadbands (MSBBs) commonly retrieved by Earth observation platforms. The study revealed that (1) HNB indices consistently explained more variability in ET (ΔR2 = 0.12), transpiration (ΔR2 = 0.17), and soil evaporation (ΔR2 = 0.14) than MSBB indices; (2) the relationship between transpiration using the ratio-based index most commonly used for ET modeling, NDVI, was strong (R2 = 0.51), but the hyperspectral equivalent was superior (R2 = 0.68); and (3) soil evaporation was not estimated well using ratio-based indices from the literature (highest R2 = 0.37), but could be after further evaluation, using ratio-based indices centered on 743 and 953 nm (R2 = 0.72) or 428 and 1518 nm (R2 = 0.69).

  8. Evaluation of Water Stress Coefficient Methods to Estimate Actual Corn Evapotranspiration in Colorado

    USDA-ARS?s Scientific Manuscript database

    Abstract for Kullberg Hydrology Days: Abstract. Increased competition for water resources is placing pressure on the agricultural sector to remain profitable while reducing water use. Remote sensing techniques have been developed to monitor crop water stress and produce information for evapotranspi...

  9. Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space

    NASA Astrophysics Data System (ADS)

    Jaramillo, Fernando; Cory, Neil; Arheimer, Berit; Laudon, Hjalmar; van der Velde, Ype; Hasper, Thomas B.; Teutschbein, Claudia; Uddling, Johan

    2018-01-01

    During the last 6 decades, forest biomass has increased in Sweden mainly due to forest management, with a possible increasing effect on evapotranspiration. However, increasing global CO2 concentrations may also trigger physiological water-saving responses in broadleaf tree species, and to a lesser degree in some needleleaf conifer species, inducing an opposite effect. Additionally, changes in other forest attributes may also affect evapotranspiration. In this study, we aimed to detect the dominating effect(s) of forest change on evapotranspiration by studying changes in the ratio of actual evapotranspiration to precipitation, known as the evaporative ratio, during the period 1961-2012. We first used the Budyko framework of water and energy availability at the basin scale to study the hydroclimatic movements in Budyko space of 65 temperate and boreal basins during this period. We found that movements in Budyko space could not be explained by climatic changes in precipitation and potential evapotranspiration in 60 % of these basins, suggesting the existence of other dominant drivers of hydroclimatic change. In both the temperate and boreal basin groups studied, a negative climatic effect on the evaporative ratio was counteracted by a positive residual effect. The positive residual effect occurred along with increasing standing forest biomass in the temperate and boreal basin groups, increasing forest cover in the temperate basin group and no apparent changes in forest species composition in any group. From the three forest attributes, standing forest biomass was the one that could explain most of the variance of the residual effect in both basin groups. These results further suggest that the water-saving response to increasing CO2 in these forests is either negligible or overridden by the opposite effect of the increasing forest biomass. Thus, we conclude that increasing standing forest biomass is the dominant driver of long-term and large-scale evapotranspiration

  10. Testing an Irrigation Decision Support Tool for California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Benzen, S.; Zaragoza, I.; Murphy, L.; Melton, F. S.; Martin, F.; Quackenbush, A.; Lockhart, T.

    2015-12-01

    Estimation of crop evapotranspiration supports efficiency of irrigation water management, which in turn can mitigate nitrate leaching, groundwater depletion, and provide energy savings. Past research in California and elsewhere has revealed strong relationships between photosynthetically active vegetation fraction (Fc) and crop evapotranspiration (ETc). Additional research has shown the potential of monitoring Fc by satellite remote sensing. The U.C. Cooperative Extension developed and operates CropManage (CM) as on-line database irrigation (and nitrogen) scheduling tool. CM accounts for the rapid growth and typically brief cycle of cool-season vegetables, where Fc and fraction of reference ET can change daily during canopy development. The model automates crop water requirement calculations based on reference ET data collected by California Dept. Water Resources. Empirically-derived equations are used to estimate daily Fc time-series for a given crop type primarily as a function of planting date and expected harvest date. An application programming interface (API) is under development to provide a check on modeled Fc of current crops and facilitate CM expansion to new crops. The API will enable CM to extract field scale Fc observations from NASA's Satellite Irrigation Management Support (SIMS). SIMS is mainly Landsat based and currently monitors Fc over about 8 million irrigation acres statewide, with potential for adding data from ESA/Sentinel for improved temporal resolution. In the current study, a replicated irrigation trial was performed on romaine lettuce at the USDA Agricultural Research Station in Salinas, CA. CropManage recommendations were used to guide water treatments by drip irrigation at 50%, 75%, 100% ETc replacement levels, with an added treatment at 150% ET representing grower standard practice. Experimental results indicate that yields from the 100% and 150% treatments were not significantly different and were in-line with industry average, while

  11. Effect of Climate Extremes, Seasonal Change, and Agronomic Practices on Measured Evapotranspiration and CO2 Exchange in Sacramento-San Joaquin River Delta Alfalfa Fields

    NASA Astrophysics Data System (ADS)

    Clay, J.; Kent, E. R.; Leinfelder-Miles, M.; Paw U, K. T.; Little, C.; Lambert, J. J.

    2017-12-01

    Evapotranspiration and CO2 exchange was measured in five alfalfa fields in the Sacramento-San Joaquin River Delta region from 2016 to 2017 using eddy covariance and surface renewal methods. Seasonal changes of evapotranspiration and CO2 fluxes were compared between 2016, a drought year, and 2017, a high rainfall year. Additionally, changes in evapotranspiration and CO2 flux were investigated across various agronomic considerations, such as irrigation methods (border-check flood and sub-surface), stand life, and herbicide programs. Components of the energy balance, including net radiation, latent heat, ground heat flux, and sensible heat, were evaluated considering correlations to wind speed measured by three sonic anemometers, irrigation frequency, and crop cutting cycle. Comparisons between two different types of radiometers were also carried out. Under drought conditions, we observed higher amounts of evapotranspiration in a field having a stand life of less than two years of age compared to older stands, and in a sub-surface irrigated field compared to flood irrigated fields.

  12. Evapotranspiration from the Lower Walker River Basin, West-Central Nevada, Water Years 2005-07

    USGS Publications Warehouse

    Allander, Kip K.; Smith, J. LaRue; Johnson, Michael J.

    2009-01-01

    evapotranspiration station in a saltcedar grove, measurements indicated a possible decrease in evapotranspiration of about 50 percent due to defoliation of the saltcedar by the saltcedar leaf beetle. Total evapotranspiration from the evapotranspiration units identified in the Lower Walker River basin was about 231,000 acre-feet per year (acre-ft/yr). Of this amount, about 45,000 acre-ft/yr originated from direct precipitation, resulting in net evapotranspiration of about 186,000 acre-ft/yr. More than 80 percent of net evapotranspiration in the Lower Walker River basin was through evaporation from Walker Lake. Total evaporation from Walker Lake was about 161,000 acre-ft/yr and net evaporation was about 149,000 acre-ft/yr. Some previous estimates of evaporation from Walker Lake based on water-budget analysis actually represent total evaporation minus ground-water inflow to the lake. Historical evaporation rates determined on the basis of water budget analysis were less than the evaporation rate measured directly during this study. The difference could represent ground-water inflow to Walker Lake of 16,000 to 26,000 acre-ft/yr or could indicate that ground-water inflow to Walker Lake is decreasing over time as the lake perimeter recedes.

  13. Concerning the relationship between evapotranspiration and soil moisture

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Chang, Jy-Tai

    1987-01-01

    The relationship between the evapotranspiration and soil moisture during the drying, supply-limited phase is studied. A second scaling parameter, based on the evapotranspirational supply and demand concept of Federer (1982), is defined; the parameter, referred to as the threshold evapotranspiration, occurs in vegetation-covered surfaces just before leaf stomata close and when surface tension restricts moisture release from bare soil pores. A simple model for evapotranspiration is proposed. The effects of natural soil heterogeneities on evapotranspiration computed from the model are investigated. It is observed that the natural variability in soil moisture, caused by the heterogeneities, alters the relationship between regional evapotranspiration and the area average soil moisture.

  14. Spatial and temporal evolution of climatic factors and its impacts on potential evapotranspiration in Loess Plateau of Northern Shaanxi, China.

    PubMed

    Li, C; Wu, P T; Li, X L; Zhou, T W; Sun, S K; Wang, Y B; Luan, X B; Yu, X

    2017-07-01

    Agriculture is very sensitive to climate change, and correct forecasting of climate change is a great help to accurate allocation of irrigation water. The use of irrigation water is influenced by crop water demand and precipitation. Potential evapotranspiration (ET 0 ) is a measure of the ability of the atmosphere to remove water from the surface through the processes of evaporation and transpiration, assuming no control on water supply. It plays an important role in assessing crop water requirements, regional dry-wet conditions, and other factors of water resource management. This study analyzed the spatial and temporal evolution processes and characteristics of major meteorological parameters at 10 stations in the Loess Plateau of northern Shaanxi (LPNS). By using the Mann-Kendall trend test with trend-free pre-whitening and the ArcGIS platform, the potential evapotranspiration of each station was quantified by using the Penman-Monteith equation, and the effects of climatic factors on potential evapotranspiration were assessed by analyzing the contribution rate and sensitivity of the climatic factors. The results showed that the climate in LPNS has become warmer and drier. In terms of the sensitivity of ET 0 to the variation of each climatic factor in LPNS, relative humidity (0.65) had the highest sensitivity, followed by daily maximum temperature, wind speed, sunshine hours, and daily minimum temperature (-0.05). In terms of the contribution rate of each factor to ET 0 , daily maximum temperature (5.16%) had the highest value, followed by daily minimum temperature, sunshine hours, relative humidity, and wind speed (1.14%). This study provides a reference for the management of agricultural water resources and for countermeasures to climate change. According to the climate change and the characteristics of the study area, farmers in the region should increase irrigation to guarantee crop water demand. Copyright © 2017. Published by Elsevier B.V.

  15. Soil water sensor-based and evapotranspiration-based irrigation scheduling for soybean production on a Blackland Prairie soil in humid climate

    USDA-ARS?s Scientific Manuscript database

    In east-central Mississippi, annual rainfall was 1307 mm and reference evapotranspiration (ETo) was 1210 mm for the 120-year period from 1894 to 2014. From May to October, when major crops are typically grown in this area, monthly rainfall ranged from 72 to 118 mm, and monthly ETo from 94 to 146 mm ...

  16. Estimating the actual ET from a pecan farm using the OPEC energy-balance and Penman- Monteith methods

    NASA Astrophysics Data System (ADS)

    Debele, B.; Bawazir, S. A.

    2006-12-01

    Accurate estimation of ET from field crops/orchards is the basis for better irrigation water management. In areas like Mesilla Valley, NM, where water is scarce, it is even more important to precisely determine the crop ET. An OPEC energy balance system was run for 117 days (June 22 October 14, 2001) in a matured pecan farm at Mesilla Valley, NM. The actual evapotranspiration (ET) from pecan orchards was determined from the surface energy balance as a residual, having measured the net radiation, soil heat flux, and sensible heat components using the OPEC method. Since pecans are large trees, we have also examined the effect of including thermal energies stored in the air (Ga) and plant canopy (Gc), on top of the commonly used thermal energy stored in the soil (Gs), on surface energy balance, and hence ET. The results indicate that incorporating thermal energies stored in the air and canopy has a significant effect on total energy storage for shorter temporal resolutions, such as 30-minutes and an hour. Conversely, for longer temporal resolutions (e.g., diurnal and monthly averages), the effect of including thermal energies stored in the air and vegetation on total thermal energy storage is negligible. Our results also showed that the bulk of the total thermal energy storage (G = Gs + Ga + Gc) in the surface energy balance was stored in the soil (Gs). In addition, we have also determined the crop coefficient (Kc) of pecan by combining the actual ET obtained from the OPEC method and potential ET (ET0) calculated using weather data in the surrounding area. Our average pecan Kc values were comparable with the ones reported by other researchers using different methods. We conclude that the OPEC energy balance method can be used to calculate Kc values for pecan whereby farmers and extension agents use the calculated Kc values in combination with ET0 to determine the consumptive use of pecan trees.

  17. Characteristics and Impact Factors of Parameter Alpha in the Nonlinear Advection-Aridity Method for Estimating Evapotranspiration at Interannual Scale in the Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Liu, W.; Ning, T.

    2017-12-01

    Land surface actual evapotranspiration plays a key role in the global water and energy cycles. Accurate estimation of evapotranspiration is crucial for understanding the interactions between the land surface and the atmosphere, as well as for managing water resources. The nonlinear advection-aridity approach was formulated by Brutsaert to estimate actual evapotranspiration in 2015. Subsequently, this approach has been verified, applied and developed by many scholars. The estimation, impact factors and correlation analysis of the parameter alpha (αe) of this approach has become important aspects of the research. According to the principle of this approach, the potential evapotranspiration (ETpo) (taking αe as 1) and the apparent potential evapotranspiration (ETpm) were calculated using the meteorological data of 123 sites of the Loess Plateau and its surrounding areas. Then the mean spatial values of precipitation (P), ETpm and ETpo for 13 catchments were obtained by a CoKriging interpolation algorithm. Based on the runoff data of the 13 catchments, actual evapotranspiration was calculated using the catchment water balance equation at the hydrological year scale (May to April of the following year) by ignoring the change of catchment water storage. Thus, the parameter was estimated, and its relationships with P, ETpm and aridity index (ETpm/P) were further analyzed. The results showed that the general range of annual parameter value was 0.385-1.085, with an average value of 0.751 and a standard deviation of 0.113. The mean annual parameter αe value showed different spatial characteristics, with lower values in northern and higher values in southern. The annual scale parameter linearly related with annual P (R2=0.89) and ETpm (R2=0.49), while it exhibited a power function relationship with the aridity index (R2=0.83). Considering the ETpm is a variable in the nonlinear advection-aridity approach in which its effect has been incorporated, the relationship of

  18. Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role

    PubMed Central

    Ruairuen, Watcharee

    2015-01-01

    As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/R net (67%), G/R net (6%), H/R net (27%) where LE is latent heat flux, R net is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems. PMID:26368123

  19. Comparison of Penman-Monteith, Shuttleworth-Wallace, and modified Priestley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland

    USGS Publications Warehouse

    Stannard, David I.

    1993-01-01

    Eddy correlation measurements of sensible and latent heat flux are used with measurements of net radiation, soil heat flux, and other micrometeorological variables to develop the Penman-Monteith, Shuttleworth-Wallace, and modified Priestley-Taylor evapotranspiration models for use in a sparsely vegetated, semiarid rangeland. The Penman-Monteith model, a one-component model designed for use with dense crops, is not sufficiently accurate (r2 = 0.56 for hourly data and r2 = 0.60 for daily data). The Shuttleworth-Wallace model, a two-component logical extension of the Penman-Monteith model for use with sparse crops, performs significantly better (r2 = 0.78 for hourly data and r2 = 0.85 for daily data). The modified Priestley-Taylor model, a one-component simplified form of the Penman potential evapotranspiration model, surprisingly performs as well as the Shuttle worth-Wallace model. The rigorous Shuttleworth-Wallace model predicts that about one quarter of the vapor flux to the atmosphere is from bare-soil evaporation. Further, during daylight hours, the small leaves are sinks for sensible heat produced at the hot soil surface.

  20. Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States.

    PubMed

    Le, Phong V V; Kumar, Praveen; Drewry, Darren T

    2011-09-13

    To meet emerging bioenergy demands, significant areas of the large-scale agricultural landscape of the Midwestern United States could be converted to second generation bioenergy crops such as miscanthus and switchgrass. The high biomass productivity of bioenergy crops in a longer growing season linked tightly to water use highlight the potential for significant impact on the hydrologic cycle in the region. This issue is further exacerbated by the uncertainty in the response of the vegetation under elevated CO(2) and temperature. We use a mechanistic multilayer canopy-root-soil model to (i) capture the eco-physiological acclimations of bioenergy crops under climate change, and (ii) predict how hydrologic fluxes are likely to be altered from their current magnitudes. Observed data and Monte Carlo simulations of weather for recent past and future scenarios are used to characterize the variability range of the predictions. Under present weather conditions, miscanthus and switchgrass utilized more water than maize for total seasonal evapotranspiration by approximately 58% and 36%, respectively. Projected higher concentrations of atmospheric CO(2) (550 ppm) is likely to decrease water used for evapotranspiration of miscanthus, switchgrass, and maize by 12%, 10%, and 11%, respectively. However, when climate change with projected increases in air temperature and reduced summer rainfall are also considered, there is a net increase in evapotranspiration for all crops, leading to significant reduction in soil-moisture storage and specific surface runoff. These results highlight the critical role of the warming climate in potentially altering the water cycle in the region under extensive conversion of existing maize cropping to support bioenergy demand.

  1. Utilizing on-farm best management practices: Managing Nitrate Leaching Using Evapotranspiration Based Irrigation Methods

    NASA Astrophysics Data System (ADS)

    Zaragosa, I.; Melton, F. S.; Dexter, J.; Post, K.; Haffa, A.; Kortman, S.; Spellenberg, R.; Cahn, M.

    2017-12-01

    In efforts to provide tools to allow farmers to optimize and quantify water usage and fertilizer applications, University of California Cooperative Extension (UCCE) developed the CropManage irrigation and nitrogen scheduling tool that provides real time evapotranspiration (ETc) based irrigation recommendations and fertilizer recommendations on a per field basis. CropManage incorporates satellite based estimates of fractional cover from web data services from the Satellite Irrigation Management Information Support (SIMS) system developed by NASA Ames Research Center in collaboration with California State University Monterey Bay (CSUMB). In this study, we conducted field trials to quantify the benefits of using these tools to support best management practices (BMPs) for irrigation and nutrient management in strawberries and lettuce in the Salinas Valley, California. We applied two different irrigation treatments based on full replacement (100%) of crop evapotranspiration (ETc), and irrigation at 130% of ETc replacement to approximate irrigation under business as usual irrigation management. Both field studies used a randomized block design with four replicates each. We used CropManage to calculate the 100% and 130% ETc replacement requirements prior to each irrigation event. We collected drainage volume and samples and analyzed them for 8500 to nitrate as (NO3-) concentrations. Experimental results for both strawberries and lettuce showed a significant decrease in the percentage of applied nitrogen leached for the 100% ETc replacement treatment against the 130% ETc replacement treatment. For strawberries, we observed that 24% of applied nitrogen was leached under the 100% ETc replacement treatment, versus 51% of applied nitrogen that was leached under the 130% ETc replacement treatment. For lettuce, we observe that 2% of the applied nitrogen leached bellow the soil profile, versus 6% of the applied nitrogen for the 130%ETc replacement treatment. In both experiments

  2. Evapotranspiration and microclimate at a low-level radioactive-waste disposal site in northwestern Illinois

    USGS Publications Warehouse

    Healy, R.W.; DeVries, M.P.; Sturrock, A.M.

    1987-01-01

    From July 1982 through June 1984, a study was made of the microclimate and evapotranspiration at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Vegetation at the site consists of mixed pasture grasses, primarily brome (Bromus inermis) and red clover (Trifoleum pratense). Three methods were used to estimate evapotranspiration: (1) an energy-budget with the Bowen ratio, (2) an aerodynamic-profile, and (3) a soil-based water-budget. For the aerodynamic-profile method, sensible-heat flux was estimated by a profile equation and evapotranspiration was then calculated as the residual in the energy-balance equation. Estimates by the energy-budget and aerodynamic-profile methods were computed from hourly data, then summed by days and months. Yearly estimates for March through November, by these methods, were quite close--648 and 626 millimeters, respectively. Daily estimates range up to a maximum of about 6 millimeters. The water-budget method produced only monthly estimates based on weekly or biweekly soil-moisture content measurements. The yearly evapotranspiration estimated by this method (which actually included only the months of April through October) was 655 millimeters. The March-through-November average for the three methods of 657 millimeters was equivalent to 70 percent of precipitation. Continuous measurements were made of incoming and reflected shortwave radiation, incoming and emitted longwave radiation, net radiation, soil-heat flux, soil temperature, horizontal windspeed, and wet- and dry-bulb air temperature. Windspeed and air temperature were measured at heights of 0.5 and 2.0 meters (and also at 1.0 meter after September 1983). Soil-moisture content of the soil zone was measured with a gamma-attenuation gage. Annual precipitation (938 millimeters) and average temperature (10.8 degrees Celsius) were virtually identical to long-term averages from nearby National Weather Service stations. Solar radiation averaged 65

  3. Measuring and modeling maize evapotranspiration under plastic film-mulching condition

    NASA Astrophysics Data System (ADS)

    Li, Sien; Kang, Shaozhong; Zhang, Lu; Ortega-Farias, Samuel; Li, Fusheng; Du, Taisheng; Tong, Ling; Wang, Sufen; Ingman, Mark; Guo, Weihua

    2013-10-01

    Plastic film-mulching techniques have been widely used over a variety of agricultural crops for saving water and improving yield. Accurate estimation of crop evapotranspiration (ET) under the film-mulching condition is critical for optimizing crop water management. After taking the mulching effect on soil evaporation (Es) into account, our study adjusted the original Shuttleworth-Wallace model (MSW) in estimating maize ET and Es under the film-mulching condition. Maize ET and Es respectively measured by eddy covariance and micro-lysimeter methods during 2007 and 2008 were used to validate the performance of the Penman-Monteith (PM), the original Shuttleworth-Wallace (SW) and the MSW models in arid northwest China. Results indicate that all three models significantly overestimated ET during the initial crop stage in the both years, which may be due to the underestimation of canopy resistance induced by the Jarvis model for the drought stress in the stage. For the entire experimental period, the SW model overestimated half-hourly maize ET by 17% compared with the eddy covariance method (ETEC) and overestimated daily Es by 241% compared with the micro-lysimeter measurements (EL), while the PM model only underestimated daily maize ET by 6%, and the MSW model only underestimated half-hourly maize ET by 2% and Es by 7% during the whole period. Thus the PM and MSW models significantly improved the accuracy against the original SW model and can be used to estimate ET and Es under the film-mulching condition.

  4. Modeling plant density and ponding water effects on flooded rice evapotranspiration and crop coefficients: critical discussion about the concepts used in current methods

    NASA Astrophysics Data System (ADS)

    Aschonitis, Vassilis; Diamantopoulou, Maria; Papamichail, Dimitris

    2018-05-01

    The aim of the study is to propose new modeling approaches for daily estimations of crop coefficient K c for flooded rice ( Oryza sativa L., ssp. indica) under various plant densities. Non-linear regression (NLR) and artificial neural networks (ANN) were used to predict K c based on leaf area index LAI, crop height, wind speed, water albedo, and ponding water depth. Two years of evapotranspiration ET c measurements from lysimeters located in a Mediterranean environment were used in this study. The NLR approach combines bootstrapping and Bayesian sensitivity analysis based on a semi-empirical formula. This approach provided significant information about the hidden role of the same predictor variables in the Levenberg-Marquardt ANN approach, which improved K c predictions. Relationships of production versus ET c were also built and verified by data obtained from Australia. The results of the study showed that the daily K c values, under extremely high plant densities (e.g., for LAI max > 10), can reach extremely high values ( K c > 3) during the reproductive stage. Justifications given in the discussion question both the K c values given by FAO and the energy budget approaches, which assume that ET c cannot exceed a specific threshold defined by the net radiation. These approaches can no longer explain the continuous increase of global rice yields (currently are more than double in comparison to the 1960s) due to the improvement of cultivars and agriculture intensification. The study suggests that the safest method to verify predefined or modeled K c values is through preconstructed relationships of production versus ET c using field measurements.

  5. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH...

  6. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH...

  7. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH...

  8. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH...

  9. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH...

  10. Crop modeling applications in agricultural water management

    USGS Publications Warehouse

    Kisekka, Isaya; DeJonge, Kendall C.; Ma, Liwang; Paz, Joel; Douglas-Mankin, Kyle R.

    2017-01-01

    This article introduces the fourteen articles that comprise the “Crop Modeling and Decision Support for Optimizing Use of Limited Water” collection. This collection was developed from a special session on crop modeling applications in agricultural water management held at the 2016 ASABE Annual International Meeting (AIM) in Orlando, Florida. In addition, other authors who were not able to attend the 2016 ASABE AIM were also invited to submit papers. The articles summarized in this introductory article demonstrate a wide array of applications in which crop models can be used to optimize agricultural water management. The following section titles indicate the topics covered in this collection: (1) evapotranspiration modeling (one article), (2) model development and parameterization (two articles), (3) application of crop models for irrigation scheduling (five articles), (4) coordinated water and nutrient management (one article), (5) soil water management (two articles), (6) risk assessment of water-limited irrigation management (one article), and (7) regional assessments of climate impact (two articles). Changing weather and climate, increasing population, and groundwater depletion will continue to stimulate innovations in agricultural water management, and crop models will play an important role in helping to optimize water use in agriculture.

  11. A Citizen's Guide to Evapotranspiration Covers

    EPA Pesticide Factsheets

    This guide explains Evapotranspiration Covers which are Evapotranspiration (ET) covers are a type of cap placed over contaminated material, such as soil, landfill waste, or mining tailings, to prevent water from reaching it.

  12. NOAA AVHRR and its uses for rainfall and evapotranspiration monitoring

    NASA Technical Reports Server (NTRS)

    Kerr, Yann H.; Imbernon, J.; Dedieu, G.; Hautecoeur, O.; Lagouarde, J. P.

    1989-01-01

    NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) Global Vegetation Indices (GVI) were used during the 1986 rainy season (June-September) over Senegal to monitor rainfall. The satellite data were used in conjunction with ground-based measurements so as to derive empirical relationships between rainfall and GVI. The regression obtained was then used to map the total rainfall corresponding to the growing season, yielding good results. Normalized Difference Vegetation Indices (NDVI) derived from High Resolution Picture Transmission (HRPT) data were also compared with actual evapotranspiration (ET) data and proved to be closely correlated with it with a time lapse of 20 days.

  13. Spatially distributed potential evapotranspiration modeling and climate projections.

    PubMed

    Gharbia, Salem S; Smullen, Trevor; Gill, Laurence; Johnston, Paul; Pilla, Francesco

    2018-08-15

    Evapotranspiration integrates energy and mass transfer between the Earth's surface and atmosphere and is the most active mechanism linking the atmosphere, hydrosphsophere, lithosphere and biosphere. This study focuses on the fine resolution modeling and projection of spatially distributed potential evapotranspiration on the large catchment scale as response to climate change. Six potential evapotranspiration designed algorithms, systematically selected based on a structured criteria and data availability, have been applied and then validated to long-term mean monthly data for the Shannon River catchment with a 50m 2 cell size. The best validated algorithm was therefore applied to evaluate the possible effect of future climate change on potential evapotranspiration rates. Spatially distributed potential evapotranspiration projections have been modeled based on climate change projections from multi-GCM ensembles for three future time intervals (2020, 2050 and 2080) using a range of different Representative Concentration Pathways producing four scenarios for each time interval. Finally, seasonal results have been compared to baseline results to evaluate the impact of climate change on the potential evapotranspiration and therefor on the catchment dynamical water balance. The results present evidence that the modeled climate change scenarios would have a significant impact on the future potential evapotranspiration rates. All the simulated scenarios predicted an increase in potential evapotranspiration for each modeled future time interval, which would significantly affect the dynamical catchment water balance. This study addresses the gap in the literature of using GIS-based algorithms to model fine-scale spatially distributed potential evapotranspiration on the large catchment systems based on climatological observations and simulations in different climatological zones. Providing fine-scale potential evapotranspiration data is very crucial to assess the dynamical

  14. Influences of removing linear and nonlinear trends from climatic variables on temporal variations of annual reference crop evapotranspiration in Xinjiang, China.

    PubMed

    Li, Yi; Yao, Ning; Chau, Henry Wai

    2017-08-15

    Reference crop evapotranspiration (ET o ) is a key parameter in field irrigation scheduling, drought assessment and climate change research. ET o uses key prescribed (or fixed or reference) land surface parameters for crops. The linear and nonlinear trends in different climatic variables (CVs) affect ET o change. This research aims to reveal how ET o responds after the related CVs were linearly and nonlinearly detrended over 1961-2013 in Xinjiang, China. The ET o -related CVs included minimum (T min ), average (T ave ), and maximum air temperatures (T max ), wind speed at 2m (U 2 ), relative humidity (RH) and sunshine hour (n). ET o was calculated using the Penman-Monteith equation. A total of 29 ET o scenarios, including the original scenario, 14 scenarios in Group I (ET o was recalculated after removing linear trends from single or more CVs) and 14 scenarios in Group II (ET o was recalculated after removing nonlinear trends from the CVs), were generated. The influence of U 2 was stronger than influences of the other CVs on ET o for both Groups I and II either in northern, southern or the entirety of Xinjiang. The weak influences of increased T min , T ave and T max on increasing ET o were masked by the strong effects of decreased U 2 &n and increased RH on decreasing ET o . The effects of the trends in CVs, especially U 2 , on changing ET o were clearly shown. Without the general decreases of U 2 , ET o would have increased in the past 53years. Due to the non-monotone variations of the CVs and ET o , the results of nonlinearly detrending CVs on changing ET o in Group II should be more plausible than the results of linearly detrending CVs in Group I. The decreasing ET o led to a general relief in drought, which was indicated by the recalculated aridity index. Therefore, there would be a slightly lower risk of water utilization in Xinjiang, China. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Continuous monitoring of evapotranspiration (ET) overview of LSA-SAF evapotranspiration products

    NASA Astrophysics Data System (ADS)

    Arboleda, A.; Ghilain, N.; Gellens-Meulenberghs, F.

    2017-10-01

    Evapotranspiration (ET) is the flux of water between the surface (vegetation, soil and water bodies) and the atmosphere. Monitoring this water loss may be of crucial importance for applications in hydrology, agriculture, water use efficiency studies and drought monitoring. We introduce one of the few satellite-based operational evapotranspiration products, generated continuously and in near real-time over Europe, Africa and part of South America. The ET products (30 minutes and daily) are generated at the EUMETSAT's Satellite Application Facility on Land Surface Analysis (LSA-SAF) operations centre (http://landsaf.ipma.pt). Following our commitments to our user's community, we are continuously looking for new ways to improve the product. To accomplish this, the feedback from users and potential users of the products is of great interest. In this contribution we present the ET products characteristics and recent improvements gained thanks to the inclusion in our ET algorithm of new variables derived from Earth observation by MSG SEVIRI. We show examples of the ET products and we highlight their potential in droughts detection and monitoring. Some examples of possible applications are presented to invite users and researchers to explore the possibilities offered by LSA-SAF evapotranspiration products.

  16. Parameter sensitivity analysis and optimization for a satellite-based evapotranspiration model across multiple sites using Moderate Resolution Imaging Spectroradiometer and flux data

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Ma, Jinzhu; Zhu, Gaofeng; Ma, Ting; Han, Tuo; Feng, Li Li

    2017-01-01

    Global and regional estimates of daily evapotranspiration are essential to our understanding of the hydrologic cycle and climate change. In this study, we selected the radiation-based Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) model and assessed it at a daily time scale by using 44 flux towers. These towers distributed in a wide range of ecological systems: croplands, deciduous broadleaf forest, evergreen broadleaf forest, evergreen needleleaf forest, grasslands, mixed forests, savannas, and shrublands. A regional land surface evapotranspiration model with a relatively simple structure, the PT-JPL model largely uses ecophysiologically-based formulation and parameters to relate potential evapotranspiration to actual evapotranspiration. The results using the original model indicate that the model always overestimates evapotranspiration in arid regions. This likely results from the misrepresentation of water limitation and energy partition in the model. By analyzing physiological processes and determining the sensitive parameters, we identified a series of parameter sets that can increase model performance. The model with optimized parameters showed better performance (R2 = 0.2-0.87; Nash-Sutcliffe efficiency (NSE) = 0.1-0.87) at each site than the original model (R2 = 0.19-0.87; NSE = -12.14-0.85). The results of the optimization indicated that the parameter β (water control of soil evaporation) was much lower in arid regions than in relatively humid regions. Furthermore, the optimized value of parameter m1 (plant control of canopy transpiration) was mostly between 1 to 1.3, slightly lower than the original value. Also, the optimized parameter Topt correlated well to the actual environmental temperature at each site. We suggest that using optimized parameters with the PT-JPL model could provide an efficient way to improve the model performance.

  17. Water Stress & Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2016-04-01

    Development of modern irrigation technologies are balanced between the need to maximize production and the need to minimize water use which provides harmonious interaction of irrigated systems with closely-spaced environment. Thus requires an understanding of complex interrelationships between landscape and underground of irrigated and adjacent areas in present and future conditions aiming to minimize development of negative scenarios. In this way in each irrigated areas a combination of specific factors and drivers must be recognized and evaluated. Much can be obtained by improving the efficiency use of water applied for irrigation. Modern RS monitoring technologies offers the opportunity to develop and implement an effective irrigation control program permitting today to increase efficiency of irrigation water use. These technologies provide parameters with both high temporal and adequate spatial needed to monitor agrohydrological parameters of irrigated agricultural crops. Combination of these parameters with meteorological and biophysical parameters can be used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. Aggregation of actual values of crop water stress with biomass (yield) data predicted by agrohydrological model based on weather forecasting and scenarios of irrigation water application may be used for indication of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be easily extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support tool for the authorities on the large perimeter irrigation management. This contribution aims to communicate an illustrative explanation about the practical application of a data combination of agrohydrological modeling and ground & space based monitoring. For this aim some

  18. Advances in the two-source energy balance model:Partioning of evaporation and transpiration for row crops

    USDA-ARS?s Scientific Manuscript database

    Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source energy balance (TSEB) model solves the energy balance of the soil-plant...

  19. Coupling Evapotranspiration and Watershed Storage to Assess the Impact of Forest Disturbance on Low Flows

    NASA Astrophysics Data System (ADS)

    Brena Naranjo, J.; Stahl, K.; Weiler, M.

    2009-05-01

    Low flows are important for water-supply planning and design, and maintenance of quantity and quality of water for irrigation, recreation, and fish and wildlife conservation. There have been concerns recently that climate warming and land cover changes due to an unprecedented pine beetle epidemic in British Columbia, Canada, may cause a deterioration of water quantity during low flow periods and at certain times may become a hazard to ecosystem and to water management schemes. A study to characterize the sensitivity of the low flow regimes was performed for several mainly forested catchments located within the Fraser River basin. Here, summer low flows are maintained through the release of water from groundwater and riparian storage, lakes and wetlands, but are reduced by high evapotranspiration rates in the catchments. Since evapotranspiration in British Columbia accounts around 40% of the precipitation, the first part of this work was focused on the assessment of the relationship between the potential evapotranspiration (PET) and the actual evapotranspiration (AET) for undisturbed and disturbed landscapes which is expected to influence the hydrological behavior during the low-flow season. Through its influence on evapotranspiration, forest age appears to play an important role in the water balance. The second part of the study implemented a forest age dependent calculation of AET into a parsimonious water balance model, which was applied to simulate the sensitivity of the flow regimes of 15 non regulated watersheds to changes after the beginning of the pine beetle epidemic at a large scale. The model input was derived from disaggregated gridded 30-year climate normals. Since the geologic and topographic properties are first order controls on water storage and release of the examined catchments a framework for regionalization of these properties into ungauged catchments was developed. Furthermore, the interaction between forest disturbance and evapotranspiration

  20. Prediction of the Reference Evapotranspiration Using a Chaotic Approach

    PubMed Central

    Wang, Wei-guang; Zou, Shan; Luo, Zhao-hui; Zhang, Wei; Kong, Jun

    2014-01-01

    Evapotranspiration is one of the most important hydrological variables in the context of water resources management. An attempt was made to understand and predict the dynamics of reference evapotranspiration from a nonlinear dynamical perspective in this study. The reference evapotranspiration data was calculated using the FAO Penman-Monteith equation with the observed daily meteorological data for the period 1966–2005 at four meteorological stations (i.e., Baotou, Zhangbei, Kaifeng, and Shaoguan) representing a wide range of climatic conditions of China. The correlation dimension method was employed to investigate the chaotic behavior of the reference evapotranspiration series. The existence of chaos in the reference evapotranspiration series at the four different locations was proved by the finite and low correlation dimension. A local approximation approach was employed to forecast the daily reference evapotranspiration series. Low root mean square error (RSME) and mean absolute error (MAE) (for all locations lower than 0.31 and 0.24, resp.), high correlation coefficient (CC), and modified coefficient of efficiency (for all locations larger than 0.97 and 0.8, resp.) indicate that the predicted reference evapotranspiration agrees well with the observed one. The encouraging results indicate the suitableness of chaotic approach for understanding and predicting the dynamics of the reference evapotranspiration. PMID:25133221

  1. Prediction of the reference evapotranspiration using a chaotic approach.

    PubMed

    Wang, Wei-guang; Zou, Shan; Luo, Zhao-hui; Zhang, Wei; Chen, Dan; Kong, Jun

    2014-01-01

    Evapotranspiration is one of the most important hydrological variables in the context of water resources management. An attempt was made to understand and predict the dynamics of reference evapotranspiration from a nonlinear dynamical perspective in this study. The reference evapotranspiration data was calculated using the FAO Penman-Monteith equation with the observed daily meteorological data for the period 1966-2005 at four meteorological stations (i.e., Baotou, Zhangbei, Kaifeng, and Shaoguan) representing a wide range of climatic conditions of China. The correlation dimension method was employed to investigate the chaotic behavior of the reference evapotranspiration series. The existence of chaos in the reference evapotranspiration series at the four different locations was proved by the finite and low correlation dimension. A local approximation approach was employed to forecast the daily reference evapotranspiration series. Low root mean square error (RSME) and mean absolute error (MAE) (for all locations lower than 0.31 and 0.24, resp.), high correlation coefficient (CC), and modified coefficient of efficiency (for all locations larger than 0.97 and 0.8, resp.) indicate that the predicted reference evapotranspiration agrees well with the observed one. The encouraging results indicate the suitableness of chaotic approach for understanding and predicting the dynamics of the reference evapotranspiration.

  2. Mitigating Groundwater Depletion in North China Plain with Cropping System that Alternate Deep and Shallow Rooted Crops

    PubMed Central

    Yang, Xiao-Lin; Chen, Yuan-Quan; Steenhuis, Tammo S.; Pacenka, Steven; Gao, Wang-Sheng; Ma, Li; Zhang, Min; Sui, Peng

    2017-01-01

    In the North China Plain, groundwater tables have been dropping at unsustainable rates of 1 m per year due to irrigation of a double cropping system of winter wheat and summer maize. To reverse the trend, we examined whether alternative crop rotations could save water. Moisture contents were measured weekly at 20 cm intervals in the top 180 cm of soil as part of a 12-year field experiment with four crop rotations: sweet potato→ cotton→ sweet potato→ winter wheat-summer maize (SpCSpWS, 4-year cycle); peanuts → winter wheat-summer maize (PWS, 2-year cycle); ryegrass–cotton→ peanuts→ winter wheat-summer maize (RCPWS, 3-year cycle); and winter wheat-summer maize (WS, each year). We found that, compared to WS, the SpCSpWS annual evapotranspiration was 28% lower, PWS was 19% lower and RCPWS was 14% lower. The yield per unit of water evaporated improved for wheat within any alternative rotation compared to WS, increasing up to 19%. Average soil moisture contents at the sowing date of wheat in the SpCSpWS, PWS, and RCPWS rotations were 7, 4, and 10% higher than WS, respectively. The advantage of alternative rotations was that a deep rooted crop of winter wheat reaching down to 180 cm followed shallow rooted crops (sweet potato and peanut drawing soil moisture from 0 to 120 cm). They benefited from the sequencing and vertical complementarity of soil moisture extraction. Thus, replacing the traditional crop rotation with cropping system that involves rotating with annual shallow rooted crops is promising for reducing groundwater depletion in the North China Plain. PMID:28642779

  3. [Evaluating the response of yield and evapotranspiration of winter wheat and the adaptation by adjusting crop variety to climate change in Huang-Huai-Hai Plain].

    PubMed

    Hu, Shi; Mo, Xing-guo; Lin, Zhong-hui

    2015-04-01

    Based on the multi-model datasets of three representative concentration pathway (RCP) emission scenarios from IPCC5, the response of yield and accumulative evapotranspiration (ET) of winter wheat to climate change in the future were assessed by VIP model. The results showed that if effects of CO2 enrichment were excluded, temperature rise would lead to a reduction in the length of the growing period for wheat under the three climate change scenarios, and the wheat yield and ET presented a decrease tendency. The positive effect of atmospheric CO2 enrichment could offset most negative effect introduced by temperature rising, indicating that atmospheric CO2 enrichment would be the prime reason of the wheat yield rising in future. In 2050s, wheat yield would increase 14.8% (decrease 2.5% without CO2 fertilization) , and ET would decrease 2.1% under RCP4.5. By adoption of new crop variety with enhanced requirement on accumulative temperature, the wheat yield would increase more significantly with CO2 fertilization, but the water consumption would also increase. Therefore, cultivar breeding new irrigation techniques and agronomical management should be explored under the challenges of climate change in the future.

  4. Evapotranspiration of rubber ( Hevea brasiliensis ) cultivated at two plantation sites in Southeast Asia: RUBBER EVAPOTRANSPIRATION IN SE ASIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giambelluca, Thomas W.; Mudd, Ryan G.; Liu, Wen

    The expansion of rubber (Hevea brasiliensis) cultivation to higher latitudes and higher elevations in southeast Asia is part of a dramatic shift in the direction of rural land cover change in the region toward more tree covered landscapes. To investigate the possible effects of increasing rubber cultivation in the region on ecosystem services including water cycling, eddy covariance towers were established to measure ecosystem fluxes within two rubber plantations, one each in Bueng Kan, northeastern Thailand, and Kampong Cham, central Cambodia. The results show that evapotranspiration (ET) at both sites is strongly related to variations in available energy and leafmore » area, and moderately controlled by soil moisture. Measured mean annual ET was 1128 and 1272 mm for the Thailand and Cambodia sites, respectively. After adjustment for energy closure, mean annual was estimated to be 1211 and 1459 mm yr at the Thailand and Cambodia sites, respectively. Based on these estimates and that of another site in Xishuangbanna, southwestern China, it appears that of rubber is higher than that of other tree dominated land covers in the region, including forest. While measurements by others in non rubber tropical ecosystems indicate that at high net radiation sites is at most only slightly higher than for sites with lower net radiation, mean annual rubber increases strongl with increasing net radiation across the three available rubber plantation observation sites. With the continued expansion of tree dominated land covers, including rubber cultivation, in southeast Asia, the possible association between commercially viable, fast growing tree crop species Giambelluca et al. Evapotranspiration of rubber (Havea brasiliensis) cultivated at two sites in southeast Asia and their relatively high water use raises concerns about potential effects on water and food security.« less

  5. Extreme temperature trends in major cropping systems and their relation to agricultural land use change

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Butler, E. E.; McKinnon, K. A.; Rhines, A. N.; Tingley, M.; Siebert, S.; Holbrook, N. M.; Huybers, P. J.

    2015-12-01

    High temperature extremes during the growing season can reduce agricultural production. At the same time, agricultural practices can modify temperatures by altering the surface energy budget. Here we investigate growing season climate trends in major cropping systems and their relationship with agricultural land use change. In the US Midwest, 100-year trends exhibit a transition towards more favorable conditions, with cooler summer temperature extremes and increased precipitation. Statistically significant correspondence is found between the cooling pattern and trends in cropland intensification, as well as with trends towards greater irrigated land over a small subset of the domain. Land conversion to cropland, often considered an important influence on historical temperatures, is not significantly associated with cooling. We suggest that cooling is primarily associated with agricultural intensification increasing the potential for evapotranspiration, consistent with our finding that cooling trends are greatest for the highest temperature percentiles, and that increased evapotranspiration generally leads to greater precipitation. Temperatures over rainfed croplands show no cooling trend during drought conditions, consistent with evapotranspiration requiring adequate soil moisture, and implying that modern drought events feature greater warming as baseline cooler temperatures revert to historically high extremes. Preliminary results indicate these relationships between temperature extremes, irrigation, and intensification are also observed in other major summer cropping systems, including northeast China, Argentina, and the Canadian Prairies.

  6. Land surface evapotranspiration modelling at the regional scale

    NASA Astrophysics Data System (ADS)

    Raffelli, Giulia; Ferraris, Stefano; Canone, Davide; Previati, Maurizio; Gisolo, Davide; Provenzale, Antonello

    2017-04-01

    Climate change has relevant implications for the environment, water resources and human life in general. The observed increment of mean air temperature, in addition to a more frequent occurrence of extreme events such as droughts, may have a severe effect on the hydrological cycle. Besides climate change, land use changes are assumed to be another relevant component of global change in terms of impacts on terrestrial ecosystems: socio-economic changes have led to conversions between meadows and pastures and in most cases to a complete abandonment of grasslands. Water is subject to different physical processes among which evapotranspiration (ET) is one of the most significant. In fact, ET plays a key role in estimating crop growth, water demand and irrigation water management, so estimating values of ET can be crucial for water resource planning, irrigation requirement and agricultural production. Potential evapotranspiration (PET) is the amount of evaporation that occurs when a sufficient water source is available. It can be estimated just knowing temperatures (mean, maximum and minimum) and solar radiation. Actual evapotranspiration (AET) is instead the real quantity of water which is consumed by soil and vegetation; it is obtained as a fraction of PET. The aim of this work was to apply a simplified hydrological model to calculate AET for the province of Turin (Italy) in order to assess the water content and estimate the groundwater recharge at a regional scale. The soil is seen as a bucket (FAO56 model, Allen et al., 1998) made of different layers, which interact with water and vegetation. The water balance is given by precipitations (both rain and snow) and dew as positive inputs, while AET, runoff and drainage represent the rate of water escaping from soil. The difference between inputs and outputs is the water stock. Model data inputs are: soil characteristics (percentage of clay, silt, sand, rocks and organic matter); soil depth; the wilting point (i.e. the

  7. Advances in the two-source energy balance model: Partioning of evaporation and transpiration for row crops for cotton

    USDA-ARS?s Scientific Manuscript database

    Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source energy balance (TSEB) model solves the energy balance of the soil-plant...

  8. Know your community: evapotranspiration measurement and modeling

    USDA-ARS?s Scientific Manuscript database

    This publication discusses the Evapotranspiration Measurement and Modeling Community in the Agronomy Society of America. The importance of Evapotranspiration (ET) for agricultural studies is discussed along with research tools and methodologies for measuring and modeling ET. We discuss the communi...

  9. A review of surface energy balance models for estimating actual evapotranspiration with remote sensing at high spatiotemporal resolution over large extents

    USGS Publications Warehouse

    McShane, Ryan R.; Driscoll, Katelyn P.; Sando, Roy

    2017-09-27

    Many approaches have been developed for measuring or estimating actual evapotranspiration (ETa), and research over many years has led to the development of remote sensing methods that are reliably reproducible and effective in estimating ETa. Several remote sensing methods can be used to estimate ETa at the high spatial resolution of agricultural fields and the large extent of river basins. More complex remote sensing methods apply an analytical approach to ETa estimation using physically based models of varied complexity that require a combination of ground-based and remote sensing data, and are grounded in the theory behind the surface energy balance model. This report, funded through cooperation with the International Joint Commission, provides an overview of selected remote sensing methods used for estimating water consumed through ETa and focuses on Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) and Operational Simplified Surface Energy Balance (SSEBop), two energy balance models for estimating ETa that are currently applied successfully in the United States. The METRIC model can produce maps of ETa at high spatial resolution (30 meters using Landsat data) for specific areas smaller than several hundred square kilometers in extent, an improvement in practice over methods used more generally at larger scales. Many studies validating METRIC estimates of ETa against measurements from lysimeters have shown model accuracies on daily to seasonal time scales ranging from 85 to 95 percent. The METRIC model is accurate, but the greater complexity of METRIC results in greater data requirements, and the internalized calibration of METRIC leads to greater skill required for implementation. In contrast, SSEBop is a simpler model, having reduced data requirements and greater ease of implementation without a substantial loss of accuracy in estimating ETa. The SSEBop model has been used to produce maps of ETa over very large extents (the

  10. Spatially distributed evapotranspiration and recharge estimation for sand regions of Hungary in the context of climate change

    NASA Astrophysics Data System (ADS)

    Csáki, Péter; Kalicz, Péter; Gribovszki, Zoltán

    2016-04-01

    Water balance of sand regions of Hungary was analysed using remote-sensing based evapotranspiration (ET) maps (1*1 km spatial resolution) by CREMAP model over the 2000-2008 period. The mean annual (2000-2008) net groundwater recharge (R) estimated as the difference in mean annual precipitation (P) and ET, taking advantage that for sand regions the surface runoff is commonly negligible. For the examined nine-year period (2000-2008) the ET and R were about 90 percent and 10 percent of the P. The mean annual ET and R were analysed in the context of land cover types. A Budyko-model was used in spatially-distributed mode for the climate change impact analysis. The parameters of the Budyko-model (α) was calculated for pixels without surplus water. For the extra-water affected pixels a linear model with β-parameters (actual evapotranspiration / pan-evapotranspiration) was used. These parameter maps can be used for evaluating future ET and R in spatially-distributed mode (1*1 km resolution). By using the two parameter maps (α and β) and data of regional climate models (mean annual temperature and precipitation) evapotranspiration and net groundwater recharge projections have been done for three future periods (2011-2040, 2041-2070, 2071-2100). The expected ET and R changes have been determined relative to a reference period (1981-2010). According to the projections, by the end of the 21th century, ET may increase while in case of R a heavy decrease can be detected for the sand regions of Hungary. This research has been supported by Agroclimate.2 VKSZ_12-1-2013-0034 project. Keywords: evapotranspiration, net groundwater recharge, climate change, Budyko-model

  11. Impact of Atmospheric Albedo on Amazon Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Lopes, A. V.; Thompson, S. E.; Dracup, J. A.

    2013-12-01

    The vulnerability of the Amazon region to climate and anthropogenic driven disturbances has been the subject of extensive research efforts, given its importance in the global and regional climate and ecologic systems. The evaluation of such vulnerabilities requires the proper understanding of physical mechanisms controlling water and energy balances and how the disturbances change them. Among those mechanisms, the effects of atmospheric albedo on evapotranspiration have not been fully explored yet and are explored in this study. Evapotranspiration in the Amazon is sustained at high levels across all seasons and represents a large fraction of water and energy surface budgets. In this study, statistical analysis of data from four flux towers installed at Amazon primary forest sites was employed to quantify the impact of atmospheric albedo, mostly resulted from cloudiness, on evapotranspiration and to compare it to the effect of water limitation. Firstly, the difference in eddy-flux derived evapotranspiration at the flux towers under rainy and non-rainy antecedent conditions was tested for significance. Secondly, the same statistical comparison was performed under cloudy and clear sky conditions at hourly and daily time scales, using the reduction in incoming solar radiation as an indicator of cloudiness. Finally, the sensitivity of seasonal evapotranspiration totals to atmospheric albedo resulted from rainfall patterns is evaluated. That was done by sampling daily evapotranspiration estimates from empirical probability distribution functions conditioned to rainfall occurrence and then varying the number of dry days in each season. It was found that light limitation is much more important than water limitation in the Amazon, resulting in up to 43% reduction in daily evapotranspiration. Also, this effect varies by location and by season, the largest impact being in wet season, from December do January. Moreover, seasonal evapotranspiration totals were found to be

  12. Measuring short-crop reference evapotranspiration in a humid region using electronic atmometers

    USDA-ARS?s Scientific Manuscript database

    The Crop Water Use phone app is a weather-based program developed by the Missouri Extension Service to help farmers with irrigation scheduling. A limitation of the program is that it only works on Missouri fields. The app is linked to the state agricultural weather station network, which supplies da...

  13. Actual evapotranspiration (water use) assessment of the Colorado River Basin at the Landsat resolution using the operational simplified surface energy balance model

    USGS Publications Warehouse

    Singh, Ramesh K.; Senay, Gabriel B.; Velpuri, Naga Manohar; Bohms, Stefanie; Russell L, Scott; Verdin, James P.

    2014-01-01

    Accurately estimating consumptive water use in the Colorado River Basin (CRB) is important for assessing and managing limited water resources in the basin. Increasing water demand from various sectors may threaten long-term sustainability of the water supply in the arid southwestern United States. We have developed a first-ever basin-wide actual evapotranspiration (ETa) map of the CRB at the Landsat scale for water use assessment at the field level. We used the operational Simplified Surface Energy Balance (SSEBop) model for estimating ETa using 328 cloud-free Landsat images acquired during 2010. Our results show that cropland had the highest ETa among all land cover classes except for water. Validation using eddy covariance measured ETa showed that the SSEBop model nicely captured the variability in annual ETa with an overall R2 of 0.78 and a mean bias error of about 10%. Comparison with water balance-based ETa showed good agreement (R2 = 0.85) at the sub-basin level. Though there was good correlation (R2 = 0.79) between Moderate Resolution Imaging Spectroradiometer (MODIS)-based ETa (1 km spatial resolution) and Landsat-based ETa (30 m spatial resolution), the spatial distribution of MODIS-based ETa was not suitable for water use assessment at the field level. In contrast, Landsat-based ETa has good potential to be used at the field level for water management. With further validation using multiple years and sites, our methodology can be applied for regular production of ETa maps of larger areas such as the conterminous United States.

  14. Spatial variability in sensitivity of reference crop ET to accuracy of climate data in the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    A detailed sensitivity analysis was conducted to determine the relative effects of measurement errors in climate data input parameters on the accuracy of calculated reference crop evapotranspiration (ET) using the ASCE-EWRI Standardized Reference ET Equation. Data for the period of 1995 to 2008, fro...

  15. A thermal-based remote sensing modelling system for estimating crop water use and stress from field to regional scales

    USDA-ARS?s Scientific Manuscript database

    Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. A thermal-based scheme, called the Two-Source Energy Balance (TSEB) model, solves for the soil/substrate and canopy temp...

  16. Heterogeneous terrain: a challenge to derive evapotranspiration with remote sensing and scintillometry

    NASA Astrophysics Data System (ADS)

    Thiem, Christina; Sun, Liya; Müller, Benjamin; Bernhardt, Matthias; Schulz, Karsten

    2014-05-01

    Despite the importance of evapotranspiration for Meteorology, Hydrology and Agronomy, obtaining area-averaged evapotranspiration estimates is cost as well as maintenance intensive: usually area-averaged evapotranspiration estimates are obtained by distributed sensor networks or remotely sensed with a scintillometer. A low cost alternative for evapotranspiration estimates are satellite images, as many of them are freely available. This approach has been proven to be worthwhile above homogeneous terrain, and typically evapotranspiration data obtained with scintillometry are applied for validation. We will extend this approach to heterogeneous terrain: evapotranspiration estimates from ASTER 2013 images will be compared to scintillometer derived evapotranspiration estimates. The goodness of the correlation will be presented as well as an uncertainty estimation for both the ASTER derived and the scintillometer derived evapotranspiration.

  17. Performance of STICS model to predict rainfed corn evapotranspiration and biomass evaluated for 6 years between 1995 and 2006 using daily aggregated eddy covariance fluxes and ancillary measurements.

    NASA Astrophysics Data System (ADS)

    Pattey, Elizabeth; Jégo, Guillaume; Bourgeois, Gaétan

    2010-05-01

    Verifying the performance of process-based crop growth models to predict evapotranspiration and crop biomass is a key component of the adaptation of agricultural crop production to climate variations. STICS, developed by INRA, was part of the models selected by Agriculture and Agri-Food Canada to be implemented for environmental assessment studies on climate variations, because of its built-in ability to assimilate biophysical descriptors such as LAI derived from satellite imagery and its open architecture. The model prediction of shoot biomass was calibrated using destructive biomass measurements over one season, by adjusting six cultivar parameters and three generic plant parameters to define two grain corn cultivars adapted to the 1000-km long Mixedwood Plains ecozone. Its performance was then evaluated using a database of 40 years-sites of corn destructive biomass and yield. In this study we evaluate the temporal response of STICS evapotranspiration and biomass accumulation predictions against estimates using daily aggregated eddy covariance fluxes. The flux tower was located in an experimental farm south of Ottawa and measurements carried out over corn fields in 1995, 1996, 1998, 2000, 2002 and 2006. Daytime and nighttime fluxes were QC/QA and gap-filled separately. Soil respiration was partitioned to calculate the corn net daily CO2 uptake, which was converted into dry biomass. Out of the six growing seasons, three (1995, 1998, 2002) had water stress periods during corn grain filling. Year 2000 was cool and wet, while 1996 had heat and rainfall distributed evenly over the season and 2006 had a wet spring. STICS can predict evapotranspiration using either crop coefficients, when wind speed and air moisture are not available, or resistance. The first approach provided higher prediction for all the years than the resistance approach and the flux measurements. The dynamic of evapotranspiration prediction of STICS was very good for the growing seasons without

  18. Two-source energy balance model to calculate row crop E.T. and ET:Advances at ARS, Bushland, TX 2010-2015

    USDA-ARS?s Scientific Manuscript database

    The two-source energy balance (TSEB) model has undergone several advances recently that improved its accuracy in calculating evaporation (E), transpiration (T), and evapotranspiration (ET) for row crops. These advances were tested using microlysimeter, sap flow, and large weighing lysimeter measurem...

  19. Remote sensing of evapotranspiration using automated calibration: Development and testing in the state of Florida

    NASA Astrophysics Data System (ADS)

    Evans, Aaron H.

    Thermal remote sensing is a powerful tool for measuring the spatial variability of evapotranspiration due to the cooling effect of vaporization. The residual method is a popular technique which calculates evapotranspiration by subtracting sensible heat from available energy. Estimating sensible heat requires aerodynamic surface temperature which is difficult to retrieve accurately. Methods such as SEBAL/METRIC correct for this problem by calibrating the relationship between sensible heat and retrieved surface temperature. Disadvantage of these calibrations are 1) user must manually identify extremely dry and wet pixels in image 2) each calibration is only applicable over limited spatial extent. Producing larger maps is operationally limited due to time required to manually calibrate multiple spatial extents over multiple days. This dissertation develops techniques which automatically detect dry and wet pixels. LANDSAT imagery is used because it resolves dry pixels. Calibrations using 1) only dry pixels and 2) including wet pixels are developed. Snapshots of retrieved evaporative fraction and actual evapotranspiration are compared to eddy covariance measurements for five study areas in Florida: 1) Big Cypress 2) Disney Wilderness 3) Everglades 4) near Gainesville, FL. 5) Kennedy Space Center. The sensitivity of evaporative fraction to temperature, available energy, roughness length and wind speed is tested. A technique for temporally interpolating evapotranspiration by fusing LANDSAT and MODIS is developed and tested. The automated algorithm is successful at detecting wet and dry pixels (if they exist). Including wet pixels in calibration and assuming constant atmospheric conductance significantly improved results for all but Big Cypress and Gainesville. Evaporative fraction is not very sensitive to instantaneous available energy but it is sensitive to temperature when wet pixels are included because temperature is required for estimating wet pixel

  20. Adverse weather impacts on arable cropping systems

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  1. Evapotranspiration from areas of native vegetation in west-central Florida

    USGS Publications Warehouse

    Bidlake, W.R.; Woodham, W.M.; Lopez, Miguel Angel

    1996-01-01

    The micrometeorological methods of energy-balance Bowen ratio and eddy correlation probably are suitable for determining evapotranspiration from unforested sites, but the aerodynamic effects of tall tree canopies need to be considered when the methods are used for forested sites. Potential evapotranspiration methods might not yield reliable estimates of evapotranspiration for all areas of native vegetation. Estimates of annual evapotranspiration ranged from 970 millimeters for a cypress swamp site to 1,060 millimeters for a pine flatwood site.

  2. [Spatiotemporal changes of potential evapotranspiration in Songnen Plain of Northeast China].

    PubMed

    Zhang, Yong-fang; Deng, Jun-li; Guan, De-xin; Jin, Chang-jie; Wang, An-zhi; Wu, Jia-bing; Yuan, Feng-hui

    2011-07-01

    Based on the daily meteorological data from 72 weather stations from 1961-2003, a quantitative analysis was conducted on the spatiotemporal changes of the potential evapotranspiration in the Plain. The Penman-Monteith model was applied to calculate the potential evapotranspiration; the Mann-Kendall test, accumulative departure curve, and climatic change rate were adopted to analyze the change trend of the evapotranspiration; and the spatial analysis function of ArcGIS was used to detect the spatial distribution of the evapotranspiration. In 1961-2003, the mean annual potential evapotranspiration in the Plain was 330 - 860 mm, and presented an overall decreasing trend, with the high value appeared in southwest region, low value in surrounding areas of southwest region, and a ring-belt increasing southwestward. The climatic change rate of the annual potential evapotranspiration was -0.21 mm x a(-1). The annual potential evapotranspiration was the highest in 1982, the lowest in 1995, and increased thereafter. Seasonally, the climatic change rate of the potential evapotranspiration in spring, summer, autumn, and winter was -0.19, 0.01, -0.05, and 0.03 mm x a(-1), respectively, suggesting that the potential evapotranspiration had a weak increase in winter and summer and a slight decrease in spring and autumn.

  3. Characteristics of precipitation recycling ratio with two evapotranspiration methods in Afro-Asian arid regions

    NASA Astrophysics Data System (ADS)

    Li, R.; Wang, C.

    2016-12-01

    The increasing precipitation in different arid regions has been observed in recent decades. While, the vapor sources, which can be classified into advective vapor and local vapor from evapotranspiration, are still uncertain in arid regions. To investigate the characteristics of local vapor in arid regions, precipitation recycling ratio (PRR) with two different evapotranspiration (ET) estimations, Penman-Monteith ET and a new approach which combined Penman-Monteith ET and surface soil moisture was calculated in arid regions of Afro-Asian continent, North Africa, West Asia and China-Mongolia, during 1980-2010. The results suggested that Penman-Monteith ET, which can be treated as regional potential ET, increased and showed an enhanced ET ability in arid regions. However, the ET calculated from the new approach, which can be treated as a reliable actual ET estimation, decreased, which means the local vapor has supplied less to total rainfall in target regions. Using the new approach ET data, PRR is calculated and analyzed. PRR in target regions ranges from 0.5% to 1.0%, which is less than the PRR calculated with Penman-Monteith ET, ranging from 3.7% to 5.6%. Meanwhile PRR decreased in China-Mongolia and North Africa while in West Asia increased in recent 30 years. Considering that a wetting trend existed in China-Mongolia and North Africa, and a drying trend occurred in West Asia, it can be concluded that PRR is a negative monitoring for Afro-Asian arid regions, where the decreasing PRR means that the more advective vapor enhanced the total precipitation, while the increasing PRR trend corresponds with less advective vapor and more local evapotranspiration contributes to increasing of total rainfall. Keywords: Afro-Asian Arid region, precipitation recycling, evapotranspiration, soil moisture.

  4. An Integrated Biogeochemical and Biophysical Analysis of Bioenergy Crops

    NASA Astrophysics Data System (ADS)

    Liang, M.; Song, Y.; Barman, R.; Jain, A. K.

    2010-12-01

    Bioenergy crops are becoming increasingly important with growing concerns about the energy demand and climate change and the need to replace fossil fuels with carbon-neutral renewable sources of energy. The transition to a biofuel-based energy supply raises many questions such as: how and where to grow energy crops, what will be the impacts of growing large scale biofuel crops on climate system, the hydrological cycle and soil biogeochemistry. We are developing and applying an integrated system modeling framework to investigate the biophysical, physiological, and biogeochemical systems governing important processes that regulate crop growth such as water, energy and nutrient cycles. The framework has a two-big-leaf canopy scheme for photosynthesis, stomatal conductance, leaf temperature and energy fluxes. The soil/snow hydrology consists of 10 layers for soil and up to 5 layers for snow. The biogeochemistry component explicitly accounts for coupled carbon and nitrogen dynamics. The feedstocks currently considered include corn stover, Miscanthus and switchgrass. The parameters used for simulation of each crop have been calibrated using field experimental data from the US. The use of this modeling capability will be demonstrated through its applications to study the environmental effects (through changes in albedo and evapotranspiration) of biofuel production as well as the effective management practice in the United States.

  5. Soil hydrology of agroforestry systems: Competition for water or positive tree-crops interactions?

    NASA Astrophysics Data System (ADS)

    Gerjets, Rowena; Richter, Falk; Jansen, Martin; Carminati, Andrea

    2017-04-01

    In dry periods during the growing season crops may suffer from severe water stress. The question arises whether the alternation of crop and tree strips might enhance and sustain soil water resources available for crops during drought events. Trees reduce wind exposure, decreasing the potential evapotranspiration of crops and soils; additionally hydraulic lift from the deep roots of trees to the drier top soil might provide additional water for shallow-rooted crops. To understand the above and belowground water relations of agroforestry systems, we measured soil moisture and soil water potential in crop strips as a function of distance to the trees at varying depth as well as meteorological parameters. At the agroforestry site Reiffenhausen, Lower Saxony, Germany, two different tree species are planted, each in one separated tree strip: willow breed Tordis ((Salix viminalis x Salix Schwerinii) x Salix viminalis) and poplar clone Max 1 (Populus nigra x Populus maximowiczii). In between the tree strips a crop strip of 24 m width was established with annual crop rotation, managed the same way as the reference site. During a drought period in May 2016 with less than 2 mm rain in four weeks, an overall positive effect on hydrological conditions of the agroforestry system was observed. The results show that trees shaded the soil surface, lowering the air temperature and further increasing the soil moisture in the crop strips compared to the reference site, which was located far from the trees. At the reference site the crops took up water in the upper soil (<20 cm depth); after the soil reached water potentials below -100 kPa, root water uptake moved to deeper soil layers (<40 cm). Because of the higher wind and solar radiation exposure the reference soil profile was severely dried out. Also in the crop strips of the agroforestry system, crops took up water in the upper soil. However, the lower soil layers remained wet for an extended period of time. The tree strips

  6. Quantifying agricultural drought impacts using soil moisture model and drought indices in South Korea

    NASA Astrophysics Data System (ADS)

    Nam, W. H.; Bang, N.; Hong, E. M.; Pachepsky, Y. A.; Han, K. H.; Cho, H.; Ok, J.; Hong, S. Y.

    2017-12-01

    Agricultural drought is defined as a combination of abnormal deficiency of precipitation, increased crop evapotranspiration demands from high-temperature anomalies, and soil moisture deficits during the crop growth period. Soil moisture variability and their spatio-temporal trends is a key component of the hydrological balance, which determines the crop production and drought stresses in the context of agriculture. In 2017, South Korea has identified the extreme drought event, the worst in one hundred years according to the South Korean government. The objective of this study is to quantify agricultural drought impacts using observed and simulated soil moisture, and various drought indices. A soil water balance model is used to simulate the soil water content in the crop root zone under rain-fed (no irrigation) conditions. The model used includes physical process using estimated effective rainfall, infiltration, redistribution in soil water zone, and plant water uptake in the form of actual crop evapotranspiration. Three widely used drought indices, including the Standardized Precipitation Index (SPI), the Standardized Precipitation Evapotranspiration Index (SPEI), and the Self-Calibrated Palmer Drought Severity Index (SC-PDSI) are compared with the observed and simulated soil moisture in the context of agricultural drought impacts. These results demonstrated that the soil moisture model could be an effective tool to provide improved spatial and temporal drought monitoring for drought policy.

  7. Evapotranspiration from areas of native vegetation in west-central Florida

    USGS Publications Warehouse

    Bidlake, W.R.; Woodham, W.M.; Lopez, M.A.

    1993-01-01

    A study was made to examine the suitability of three different micrometeorological methods for estimating evapotranspiration from selected areas of native vegetation in west-central Florida and to estimate annual evapotranspiration from those areas. Evapotranspiration was estimated using the energy- balance Bowen ratio and eddy correlation methods. Potential evapotranspiration was computed using the Penman equation. The energy-balance Bowen ratio method was used to estimate diurnal evapotrans- piration at unforested sites and yielded reasonable results; however, measurements indicated that the magnitudes of air temperature and vapor-pressure gradients above the forested sites were too small to obtain reliable evapotranspiration measurements with the energy balance Bowen ratio system. Analysis of the surface energy-balance indicated that sensible and latent heat fluxes computed using standard eddy correlation computation methods did not adequately account for available energy. Eddy correlation data were combined with the equation for the surface energy balance to yield two additional estimates of evapotranspiration. Daily potential evapotranspiration and evapotranspira- tion estimated using the energy-balance Bowen ratio method were not correlated at a unforested, dry prairie site, but they were correlated at a marsh site. Estimates of annual evapotranspiration for sites within the four vegetation types, which were based on energy-balance Bowen ratio and eddy correlation measurements, were 1,010 millimeters for dry prairie sites, 990 millimeters for marsh sites, 1,060 millimeters for pine flatwood sites, and 970 millimeters for a cypress swamp site.

  8. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... APH yield is calculated from a database containing a minimum of four yields and will be updated each subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may include... only occur in the database when there are less than four years of actual and/or assigned yields. (b...

  9. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... APH yield is calculated from a database containing a minimum of four yields and will be updated each subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may include... only occur in the database when there are less than four years of actual and/or assigned yields. (b...

  10. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... APH yield is calculated from a database containing a minimum of four yields and will be updated each subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may include... only occur in the database when there are less than four years of actual and/or assigned yields. (b...

  11. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... APH yield is calculated from a database containing a minimum of four yields and will be updated each subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may include... only occur in the database when there are less than four years of actual and/or assigned yields. (b...

  12. Temporal variability of green and blue water footprint worldwide

    NASA Astrophysics Data System (ADS)

    Tamea, Stefania; Lomurno, Marianna; Tuninetti, Marta; Laio, Francesco; Ridolfi, Luca

    2016-04-01

    Water footprint assessment is becoming widely used in the scientific literature and it is proving useful in a number of multidisciplinary contexts. Given this increasing popularity, measures of green and blue water footprint (or virtual water content, VWC) require evaluations of uncertainty and variability to quantify the reliability of proposed analyses. As of today, no studies are known to assess the temporal variability of crop VWC at the global scale; the present contribution aims at filling this gap. We use a global high-resolution distributed model to compute the VWC of staple crops (wheat and maize), basing on the soil water balance, forced by hydroclimatic imputs, and on the total crop evapotranspiration in multiple growing seasons. Crop actual yield is estimated using country-based yield data, adjusted to account for spatial variability, allowing for the analysis of the different role played by climatic and management factors in the definition of crop yield. The model is then run using hydroclimatic data, i.e., precipitation and potential evapotranspiration, for the period 1961-2013 as taken from the CRU database (CRU TS v. 3.23) and using the corresponding country-based yield data from FAOSTAT. Results provide the time series of total evapotranspiration, actual yield and VWC, with separation between green and blue VWC, and the overall volume of water used for crop production, both at the cell scale (5x5 arc-min) and aggregated at the country scale. Preliminary results indicate that total (green+blue) VWC is, in general, weekly dependent on hydroclimatic forcings if water for irrigation is unlimited, because irrigated agriculture allows to compensate temporary water shortage. Conversely, most part of the VWC variability is found to be determined by the temporal evolution of crop yield. At the country scale, the total water used by countries for agricultural production has seen a limited change in time, but the marked increase in the water-use efficiency

  13. Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying

    NASA Astrophysics Data System (ADS)

    Wang, Weiguang; Li, Jinxing; Yu, Zhongbo; Ding, Yimin; Xing, Wanqiu; Lu, Wenjun

    2018-04-01

    As the only connecting term between water balance and energy budget in the earth-atmospheric system, evapotranspiration (ET) is considered the most excellent indicator for the activity for the water and energy cycle. Under the background of global change, regional ET estimates, components partitioning as well as their spatial and temporal patterns recognition are of great importance in understanding the hydrological processes and improving water management practices. This is particularly true for the Tibetan Plateau (TP), one of most sensitive and vulnerable region in response to the environment change in the earth. In this study, with flux site observation data and monthly ET data from the monthly water balance method incorporating the terrestrial water storage changes from the Gravity Recovery and Climate Experiment satellite (GRACE) production as the multiple validations, the long-term daily ET in the TP was retrieved by a modified Penman-Monteith-Leuning (PML) model with considering evapotranspiration over snow covered area during 1982-2012. The spatial and temporal changes of partitioned three components of ET, i.e., soil evaporation (Es), transpiration through the stomata of plant (Ec) and canopy interception (Ei), were investigated in the TP. Meanwhile, how the ET components contribute to ET changes and respond to the change in environmental factors in the TP was revealed and discussed. The results indicate that Es dominates ET in most areas of the TP with the mean annual ratio of 65.7%, except southeastern regions where the vegetation coverage is high. Although regional average ET and three main components all present obvious increase trends during the past decades, high spatial heterogeneity for their trends are identified in the TP. Moreover, a mixed changing pattern can be apparently found for Es in southeastern area, Ec and Ei in northwestern and southeastern area. Spatially, the ET variation are mainly attributed to change in Es, followed by Ec and Ei

  14. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review.

    PubMed

    Maes, W H; Steppe, K

    2012-08-01

    As evaporation of water is an energy-demanding process, increasing evapotranspiration rates decrease the surface temperature (Ts) of leaves and plants. Based on this principle, ground-based thermal remote sensing has become one of the most important methods for estimating evapotranspiration and drought stress and for irrigation. This paper reviews its application in agriculture. The review consists of four parts. First, the basics of thermal remote sensing are briefly reviewed. Second, the theoretical relation between Ts and the sensible and latent heat flux is elaborated. A modelling approach was used to evaluate the effect of weather conditions and leaf or vegetation properties on leaf and canopy temperature. Ts increases with increasing air temperature and incoming radiation and with decreasing wind speed and relative humidity. At the leaf level, the leaf angle and leaf dimension have a large influence on Ts; at the vegetation level, Ts is strongly impacted by the roughness length; hence, by canopy height and structure. In the third part, an overview of the different ground-based thermal remote sensing techniques and approaches used to estimate drought stress or evapotranspiration in agriculture is provided. Among other methods, stress time, stress degree day, crop water stress index (CWSI), and stomatal conductance index are discussed. The theoretical models are used to evaluate the performance and sensitivity of the most important methods, corroborating the literature data. In the fourth and final part, a critical view on the future and remaining challenges of ground-based thermal remote sensing is presented.

  15. Catchments' hedging strategy on evapotranspiration for climatic variability

    NASA Astrophysics Data System (ADS)

    Ding, W.; Zhang, C.; Li, Y.; Tang, Y.; Wang, D.; Xu, B.

    2017-12-01

    Hydrologic responses to climate variability and change are important for human society. Here we test the hypothesis that natural catchments utilize hedging strategies for evapotranspiration and water storage carryover with uncertain future precipitation. The hedging strategy for evapotranspiration in catchments under different levels of water availability is analytically derived from the economic perspective. It is found that there exists hedging between evapotranspiration for current and future only with a portion of water availability. Observation data sets of 160 catchments in the United States covering the period from 1983 to 2003 demonstrate the existence of hedging in catchment hydrology and validate the proposed hedging strategies. We also find that more water is allocated to carryover storage for hedging against the future evapotranspiration risk in the catchments with larger aridity indexes or with larger uncertainty in future precipitation, i.e., long-term climate and precipitation variability control the degree of hedging.

  16. Driving Factors of Understory Evapotranspiration within a Siberian Larch Forest

    NASA Astrophysics Data System (ADS)

    Tobio, A.; Loranty, M. M.; Kropp, H.; Pena, H., III; Alexander, H. D.; Natali, S.; Kholodov, A. L.; Spawn, S.; Farmer, S.

    2017-12-01

    Amplified rates of climate change are causing alterations in vegetation productivity, hydrologic cycling, and wildfire severity and intensity in arctic ecosystems. Boreal larch forests in northeastern Siberia are a critical but understudied ecosystem that are affected by these modifications. These forests cover 2.5 million km2 with densities ranging from spare to thick. The current average canopy cover is at around 17% and is expected to increase with the observed increases in vegetation productivity and wildfire. These projected changes in forest density can alter the proportional contributions of over- and understory vegetation to whole ecosystem evapotranspiration. Low density boreal forests have much higher rates of understory evapotranspiration and can contribute as much as 80% to total ecosystem evapotranspiration, while the understory in high density forests is responsible for only around 15% of total ecosystem evapotranspiration. The objective of this research is to understand why there are changes in understory evapotranspiration with varying overstory density by looking at light levels, biomass, vegetation, and air and soil differences. To better learn about these differences in understory evapotranspiration in boreal larch forests the driving factors of evapotranspiration were measured within a burn scar with varying densities of high, medium, and low. Water fluxes were conducted using the static chamber technique under different environmental conditions. Furthermore, controlling factors of evapotranspiration such as photosynethically active radiation, vapor pressure deficit, soil moisture, moss cover, biomass, and leaf area index were measured or derived. In general, we found that low density areas have highest rates of evapotranspiration due to larger amount of biomass, and increased access to light, despite low levels of soil moisture. These results can help us understand how and why total ecosystem water exchange will change in boreal larch forests

  17. Field-scale mapping of evaporative stress indicators of crop yield: an application over Mead, Nebraska

    USDA-ARS?s Scientific Manuscript database

    The Evaporative Stress Index (ESI) quantifies temporal anomalies in a normalized evapotranspiration (ET) metric describing the ratio of actual-to-reference ET (fRET) as derived from satellite remote sensing. At coarse, regional scales (5-10 km resolution), the ESI has demonstrated capacity to captur...

  18. Evaluation of different methods to estimate daily reference evapotranspiration in ungauged basins in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Fontoura, Jessica; Allasia, Daniel; Herbstrith Froemming, Gabriel; Freitas Ferreira, Pedro; Tassi, Rutineia

    2016-04-01

    Evapotranspiration is a key process of hydrological cycle and a sole term that links land surface water balance and land surface energy balance. Due to the higher information requirements of the Penman-Monteith method and the existing data uncertainty, simplified empirical methods for calculating potential and actual evapotranspiration are widely used in hydrological models. This is especially important in Brazil, where the monitoring of meteorological data is precarious. In this study were compared different methods for estimating evapotranspiration for Rio Grande do Sul, the Southernmost State of Brazil, aiming to suggest alternatives to the recommended method (Penman-Monteith-FAO 56) for estimate daily reference evapotranspiration (ETo) when meteorological data is missing or not available. The input dataset included daily and hourly-observed data from conventional and automatic weather stations respectively maintained by the National Weather Institute of Brazil (INMET) from the period of 1 January 2007 to 31 January 2010. Dataset included maximum temperature (Tmax, °C), minimum temperature (Tmin, °C), mean relative humidity (%), wind speed at 2 m height (u2, m s-1), daily solar radiation (Rs, MJ m- 2) and atmospheric pressure (kPa) that were grouped at daily time-step. Was tested the Food and Agriculture Organization of the United Nations (FAO) Penman-Monteith method (PM) at its full form, against PM assuming missing several variables not normally available in Brazil in order to calculate daily reference ETo. Missing variables were estimated as suggested in FAO56 publication or from climatological means. Furthermore, PM was also compared against the following simplified empirical methods: Hargreaves-Samani, Priestley-Taylor, Mccloud, McGuiness-Bordne, Romanenko, Radiation-Temperature, Tanner-Pelton. The statistical analysis indicates that even if just Tmin and Tmax are available, it is better to use PM estimating missing variables from syntetic data than

  19. Evapotranspiration and remote sensing

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Gurney, R.

    1982-01-01

    There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration.

  20. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration

    USGS Publications Warehouse

    Sumner, D.M.; Jacobs, J.M.

    2005-01-01

    Actual evapotranspiration (ETa) was measured at 30-min resolution over a 19-month period (September 28, 2000-April 23, 2002) from a nonirrigated pasture site in Florida, USA, using eddy correlation methods. The relative magnitude of measured ETa (about 66% of long-term annual precipitation at the study site) indicates the importance of accurate ET a estimates for water resources planning. The time and cost associated with direct measurements of ETa and the rarity of historical measurements of ETa make the use of methods relying on more easily obtainable data desirable. Several such methods (Penman-Monteith (PM), modified Priestley-Taylor (PT), reference evapotranspiration (ET 0), and pan evaporation (Ep)) were related to measured ETa using regression methods to estimate PM bulk surface conductance, PT ??, ET0 vegetation coefficient, and Ep pan coefficient. The PT method, where the PT ?? is a function of green-leaf area index (LAI) and solar radiation, provided the best relation with ET a (standard error (SE) for daily ETa of 0.11 mm). The PM method, in which the bulk surface conductance was a function of net radiation and vapor-pressure deficit, was slightly less effective (SE=0.15 mm) than the PT method. Vegetation coefficients for the ET0 method (SE=0.29 mm) were found to be a simple function of LAI. Pan coefficients for the Ep method (SE=0.40 mm) were found to be a function of LAI and Ep. Historical or future meteorological, LAI, and pan evaporation data from the study site could be used, along with the relations developed within this study, to provide estimates of ETa in the absence of direct measurements of ETa. Additionally, relations among PM, PT, and ET0 methods and ETa can provide estimates of ETa in other, environmentally similar, pasture settings for which meteorological and LAI data can be obtained or estimated. ?? 2004 Elsevier B.V. All rights reserved.

  1. Evaluation of evapotranspiration on paddy rice using non-weighting lysimeters under the different air temperature

    NASA Astrophysics Data System (ADS)

    Oh, D.; Ryu, J. H.; Cho, J.

    2017-12-01

    Estimation of the crop evapotranspiration (ETc), as a representative of crop water needs, is important for not only high crop productivity, but also improving irrigation water management. In farm lands crop coefficient (Kc), the ratio of ETc to potential ET, is often used to simply estiamte ETc. However, the traits of Kc under the global warming condition will different with current one because plant transpiration and surface evaporaiton will be changed by the alternative crop growth and evaporative energy. In this study, Non-Weighting Lysimeter (NWL) was used to directly estimate ETc under the warmed condition, particularly for paddy riace which has one of lower water use efficiency. The different air t emperature (Ta) conditions for the NWL were provided by Temperature Gradient Chamber (TGC), which was formed gradually warmed conditions. The water body evporation and paddy rice evapotransipiration in the NWL were at the two places of ambient Ta (AT) and AT+3° in the TGC. In addition, we installed Infra-Red thermometer (IRT) to understand the surface energy balance. The result was shown that the different partitioning of evaporation and transpiration of paddy rice at the AT+3°, comparing at AT. Further, the water use efficiency, the ratio of yield to total ET, was also decreased in the warmed condition. These experiments for paddy rice ET in the warmed conditions during growth period will be useful to understand the effect of global warming on the hydrological cycle and manamge the irrigation schedule for more efficient water use.

  2. Partitioning Evapotranspiration over a Vineyard in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Alfieri, J. G.; Kustas, W. P.; Prueger, J. H.; Agam, N.

    2016-12-01

    The increasing demand for limited water resources due to the ongoing California drought hampers crop production and damages the state's economy. In order to ameliorate the negative consequences of drought and ensure the sustainability of California agriculture, policymakers, resource managers, and agricultural producers must maximize the effective use of the available water. In turn, achieving this goal is predicated on accurate information regarding crop water productivity, the fraction of the total evapotranspiration (ET) that contributes to crop yield expressed in terms of transpiration. However, while a number of approaches, such as isotope analysis and microlysimeter systems, have been developed to partition ET between soil evaporation (E) and transpiration (T), these approaches can be both costly and labor-intensive. Collecting reliable continuous measurements at field scales remains problematic. This study presents the application of a recently developed correlation-based technique that overcomes these difficulties by leveraging high frequency data measured via eddy covariance. Specifically, this scheme combines wavelet decomposition and the theoretical relationship between stomatal and non-stomatal moisture and carbon fluxes to separate E and T. The technique was evaluated over a drip-irrigated vineyard located in California's Central Valley using data collected during the 2015 growing season as a part of the GRAPEX (Grape Remote sensing and Atmospheric Profile Experiment) field campaign. The results indicate a clear diurnal pattern in the fraction of ET due to T with a mid-day peak averaging 80% during the growing season. Similarly, there is a strong seasonal trend with the fraction of ET due T increasing in proportion to the increasing vine biomass during the growing season; at its maximum T accounts for approximately 90% of the total moisture flux. These results are in agreement with those from microlysimeter and sapflow measurements collected at the

  3. Evapotranspiration management based on the application of SWAT for balancing water consumption: A case study in Guantao, China

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Gan, Hong

    2018-06-01

    Rapid social and economic development results in increased demand for water resources. This can lead to the unsustainable development and exploitation of water resources which in turn causes significant environmental problems. Conventional water resource management approaches, such as supply and demand management strategies, frequently fail to restore regional water balance. This paper introduces the concept of water consumption balance, the balance between actual evapotranspiration (ET) and target ET, and establishes a framework to realize regional water balance. The framework consists of three stages: (1) determination of target ET and actual ET; (2) quantification of the water-saving requirements for the region; and (3) reduction of actual ET by implementing various water saving management strategies. Using this framework, a case study was conducted for Guantao County, China. The SWAT model was utilized to aid in the selection of the best water saving management strategy by comparing the ET of different irrigation methods and crop pattern adjustments. Simulation results revealed that determination of SWAT model parameters using remote sensing ET is feasible and that the model is a valuable tool for ET management. Irrigation was found to have a greater influence on the ET of winter wheat as compared to that of maize, indicating that reduction in winter wheat cultivation is the most effective way to reduce regional ET. However, the effect of water-saving irrigation methods on the reduction of ET was not obvious. This indicates that it would be difficult to achieve regional ET reduction using water-saving irrigation methods only. Furthermore, selecting the best water saving management strategy by relying solely on the amount of reduced ET was insufficient, because it ignored the impact of water conservation measures on the livelihood of the agricultural community. Incorporating these considerations with our findings, we recommend changing the current irrigation

  4. Use of eddy-covariance methods to "calibrate" simple estimators of evapotranspiration

    USGS Publications Warehouse

    Sumner, David M.; Geurink, Jeffrey S.; Swancar, Amy

    2017-01-01

    Direct measurement of actual evapotranspiration (ET) provides quantification of this large component of the hydrologic budget, but typically requires long periods of record and large instrumentation and labor costs. Simple surrogate methods of estimating ET, if “calibrated” to direct measurements of ET, provide a reliable means to quantify ET. Eddy-covariance measurements of ET were made for 12 years (2004-2015) at an unimproved bahiagrass (Paspalum notatum) pasture in Florida. These measurements were compared to annual rainfall derived from rain gage data and monthly potential ET (PET) obtained from a long-term (since 1995) U.S. Geological Survey (USGS) statewide, 2-kilometer, daily PET product. The annual proportion of ET to rainfall indicates a strong correlation (r2=0.86) to annual rainfall; the ratio increases linearly with decreasing rainfall. Monthly ET rates correlated closely (r2=0.84) to the USGS PET product. The results indicate that simple surrogate methods of estimating actual ET show positive potential in the humid Florida climate given the ready availability of historical rainfall and PET.

  5. VIC-CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions

    NASA Astrophysics Data System (ADS)

    Malek, Keyvan; Stöckle, Claudio; Chinnayakanahalli, Kiran; Nelson, Roger; Liu, Mingliang; Rajagopalan, Kirti; Barik, Muhammad; Adam, Jennifer C.

    2017-08-01

    Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively). A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC) hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC-CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology), it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC-CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC-CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land-atmosphere interactions. The performance of VIC-CropSyst was evaluated on both regional (over the US Pacific Northwest) and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois). The agreement between recorded and simulated evapotranspiration (ET), applied irrigation water, soil moisture, leaf area index (LAI), and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  6. Regional ground-water evapotranspiration and ground-water budgets, Great Basin, Nevada

    USGS Publications Warehouse

    Nichols, William D.

    2000-01-01

    PART A: Ground-water evapotranspiration data from five sites in Nevada and seven sites in Owens Valley, California, were used to develop equations for estimating ground-water evapotranspiration as a function of phreatophyte plant cover or as a function of the depth to ground water. Equations are given for estimating mean daily seasonal and annual ground-water evapotranspiration. The equations that estimate ground-water evapotranspiration as a function of plant cover can be used to estimate regional-scale ground-water evapotranspiration using vegetation indices derived from satellite data for areas where the depth to ground water is poorly known. Equations that estimate ground-water evapotranspiration as a function of the depth to ground water can be used where the depth to ground water is known, but for which information on plant cover is lacking. PART B: Previous ground-water studies estimated groundwater evapotranspiration by phreatophytes and bare soil in Nevada on the basis of results of field studies published in 1912 and 1932. More recent studies of evapotranspiration by rangeland phreatophytes, using micrometeorological methods as discussed in Chapter A of this report, provide new data on which to base estimates of ground-water evapotranspiration. An approach correlating ground-water evapotranspiration with plant cover is used in conjunction with a modified soil-adjusted vegetation index derived from Landsat data to develop a method for estimating the magnitude and distribution of ground-water evapotranspiration at a regional scale. Large areas of phreatophytes near Duckwater and Lockes in Railroad Valley are believed to subsist on ground water discharged from nearby regional springs. Ground-water evapotranspiration by the Duckwater phreatophytes of about 11,500 acre-feet estimated by the method described in this report compares well with measured discharge of about 13,500 acre-feet from the springs near Duckwater. Measured discharge from springs near Lockes

  7. Basin Scale Estimates of Evapotranspiration Using GRACE and other Observations

    NASA Technical Reports Server (NTRS)

    Rodell, M.; Famiglietti, J. S.; Chen, J.; Seneviratne, S. I.; Viterbo, P.; Holl, S.; Wilson, C. R.

    2004-01-01

    Evapotranspiration is integral to studies of the Earth system, yet it is difficult to measure on regional scales. One estimation technique is a terrestrial water budget, i.e., total precipitation minus the sum of evapotranspiration and net runoff equals the change in water storage. Gravity Recovery and Climate Experiment (GRACE) satellite gravity observations are now enabling closure of this equation by providing the terrestrial water storage change. Equations are presented here for estimating evapotranspiration using observation based information, taking into account the unique nature of GRACE observations. GRACE water storage changes are first substantiated by comparing with results from a land surface model and a combined atmospheric-terrestrial water budget approach. Evapotranspiration is then estimated for 14 time periods over the Mississippi River basin and compared with output from three modeling systems. The GRACE estimates generally lay in the middle of the models and may provide skill in evaluating modeled evapotranspiration.

  8. Effects of spatial variability and scale on areal -average evapotranspiration

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    This paper explores the effect of spatial variability and scale on areally-averaged evapotranspiration. A spatially-distributed water and energy balance model is employed to determine the effect of explicit patterns of model parameters and atmospheric forcing on modeled areally-averaged evapotranspiration over a range of increasing spatial scales. The analysis is performed from the local scale to the catchment scale. The study area is King's Creek catchment, an 11.7 sq km watershed located on the native tallgrass prairie of Kansas. The dominant controls on the scaling behavior of catchment-average evapotranspiration are investigated by simulation, as is the existence of a threshold scale for evapotranspiration modeling, with implications for explicit versus statistical representation of important process controls. It appears that some of our findings are fairly general, and will therefore provide a framework for understanding the scaling behavior of areally-averaged evapotranspiration at the catchment and larger scales.

  9. Global daily reference evapotranspiration modeling and evaluation

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.P.; Lietzow, R.; Melesse, Assefa M.

    2008-01-01

    Accurate and reliable evapotranspiration (ET) datasets are crucial in regional water and energy balance studies. Due to the complex instrumentation requirements, actual ET values are generally estimated from reference ET values by adjustment factors using coefficients for water stress and vegetation conditions, commonly referred to as crop coefficients. Until recently, the modeling of reference ET has been solely based on important weather variables collected from weather stations that are generally located in selected agro-climatic locations. Since 2001, the National Oceanic and Atmospheric Administration’s Global Data Assimilation System (GDAS) has been producing six-hourly climate parameter datasets that are used to calculate daily reference ET for the whole globe at 1-degree spatial resolution. The U.S. Geological Survey Center for Earth Resources Observation and Science has been producing daily reference ET (ETo) since 2001, and it has been used on a variety of operational hydrological models for drought and streamflow monitoring all over the world. With the increasing availability of local station-based reference ET estimates, we evaluated the GDAS-based reference ET estimates using data from the California Irrigation Management Information System (CIMIS). Daily CIMIS reference ET estimates from 85 stations were compared with GDAS-based reference ET at different spatial and temporal scales using five-year daily data from 2002 through 2006. Despite the large difference in spatial scale (point vs. ∼100 km grid cell) between the two datasets, the correlations between station-based ET and GDAS-ET were very high, exceeding 0.97 on a daily basis to more than 0.99 on time scales of more than 10 days. Both the temporal and spatial correspondences in trend/pattern and magnitudes between the two datasets were satisfactory, suggesting the reliability of using GDAS parameter-based reference ET for regional water and energy balance studies in many parts of the world

  10. Investigation of Climate Change Impact on Water Resources for an Alpine Basin in Northern Italy: Implications for Evapotranspiration Modeling Complexity

    PubMed Central

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco

    2014-01-01

    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required beacause of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied. PMID:25285917

  11. Investigation of climate change impact on water resources for an Alpine basin in northern Italy: implications for evapotranspiration modeling complexity.

    PubMed

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco

    2014-01-01

    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required because of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied.

  12. Monitoring cropland evapotranspiration using MODIS products in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruhoff, Anderson; Aparecida Moreira, Adriana; de Arruda Souza, Vanessa; Roberti, Debora Regina

    2017-04-01

    Evapotranspiration (ET), including water loss from plant transpiration and land evaporation, is of vital importance for understanding hydrological processes and climate dynamics. In this context, remote sensing is considered as the most important tool for estimate ET over large areas. The Moderate Resolution Imaging Spectroradiometer (MODIS) offers an interesting opportunity to evaluate ET with spatial resolution of 1 km. The MODIS global evapotranspiration algorithm (MOD16) considers both surface energy fluxes and climatic constraints on ET (water or temperature stress) to estimate plant transpiration and soil evaporation based on Penman-Monteith equation. The algorithm is driven by remotely sensed and reanalysis meteorological data. In this study, MOD16 algorithm was applied to the State of Rio Grande do Sul (in Southern Brazil) to analyse cropland and natural vegetation evapotranspiration and its impacts during drought events. We validated MOD16 estimations using eddy correlation measurements and water balance closure at monthly and annual time scales. We used observed discharge data from three large rivers in Southern Brazil (Jacuí, Taquari and Ibicuí), precipitation data from TRMM Multi-satellite Precipitation Analysis (3B43 version 7) and terrestrial water storage estimations from the Gravity Recovery and climate Experiment (GRACE). MOD16 algorithm detected evapotranspiration in different land use and land cover conditions. In cropland areas, the average evapotranspiration was 705 mm/y, while in pasture/grassland was 750 mm/y and in forest areas was 1099 mm/y. Compared to the annual water balance, evapotranspiration was underestimated, with mean relative errors between 8 and 30% and coefficients of correlation between 0.42 to 0.53. The water storage change (dS/dt) computed from the water balance closure at monthly time scales showed a significant correlation with the terrestrial water storage obtained from GRACE data, with a coefficient of correlation of 0

  13. Estimation of Actual Crop ET of Paddy Using the Energy Balance Model SMARET and Validation with Field Water Balance Measurements and a Crop Growth Model (ORYZA)

    NASA Astrophysics Data System (ADS)

    Nallasamy, N. D.; Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.

    2014-12-01

    Sustainable management of water resources requires reliable estimates of actual evapotranspiration (ET) at fine spatial and temporal resolution. This is significant in the case of rice based irrigation systems, one of the major consumers of surface water resources and where ET forms a major component of water consumption. However huge tradeoff in the spatial and temporal resolution of satellite images coupled with lack of adequate number of cloud free images within a growing season act as major constraints in deriving ET at fine spatial and temporal resolution using remote sensing based energy balance models. The scale at which ET is determined is decided by the spatial and temporal scale of Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI), which form inputs to energy balance models. In this context, the current study employed disaggregation algorithms (NL-DisTrad and DisNDVI) to generate time series of LST and NDVI images at fine resolution. The disaggregation algorithms aimed at generating LST and NDVI at finer scale by integrating temporal information from concurrent coarse resolution data and spatial information from a single fine resolution image. The temporal frequency of the disaggregated images is further improved by employing composite images of NDVI and LST in the spatio-temporal disaggregation method. The study further employed half-hourly incoming surface insolation and outgoing long wave radiation obtained from the Indian geostationary satellite (Kalpana-1) to convert the instantaneous ET into daily ET and subsequently to the seasonal ET, thereby improving the accuracy of ET estimates. The estimates of ET were validated with field based water balance measurements carried out in Gadana, a subbasin predominated by rice paddy fields, located in Tamil Nadu, India.

  14. Analysis of climate signals in the crop yield record of sub-Saharan Africa.

    PubMed

    Hoffman, Alexis L; Kemanian, Armen R; Forest, Chris E

    2018-01-01

    Food security and agriculture productivity assessments in sub-Saharan Africa (SSA) require a better understanding of how climate and other drivers influence regional crop yields. In this paper, our objective was to identify the climate signal in the realized yields of maize, sorghum, and groundnut in SSA. We explored the relation between crop yields and scale-compatible climate data for the 1962-2014 period using Random Forest, a diagnostic machine learning technique. We found that improved agricultural technology and country fixed effects are three times more important than climate variables for explaining changes in crop yields in SSA. We also found that increasing temperatures reduced yields for all three crops in the temperature range observed in SSA, while precipitation increased yields up to a level roughly matching crop evapotranspiration. Crop yields exhibited both linear and nonlinear responses to temperature and precipitation, respectively. For maize, technology steadily increased yields by about 1% (13 kg/ha) per year while increasing temperatures decreased yields by 0.8% (10 kg/ha) per °C. This study demonstrates that although we should expect increases in future crop yields due to improving technology, the potential yields could be progressively reduced due to warmer and drier climates. © 2017 John Wiley & Sons Ltd.

  15. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China.

    PubMed

    Wang, Y B; Wu, P T; Engel, B A; Sun, S K

    2014-11-01

    Water shortages are detrimental to China's grain production while food production consumes a great deal of water causing water crises and ecological impacts. Increasing crop water productivity (CWP) is critical, so China is devoting significant resources to develop water-saving agricultural systems based on crop planning and agricultural water conservation planning. A comprehensive CWP index is necessary for such planning. Existing indices such as water use efficiency (WUE) and irrigation efficiency (IE) have limitations and are not suitable for the comprehensive evaluation of CWP. The water footprint (WF) index, calculated using effective precipitation and local water use, has advantages for CWP evaluation. Due to regional differences in crop patterns making the CWP difficult to compare directly across different regions, a unified virtual crop pattern is needed to calculate the WF. This project calculated and compared the WF of each grain crop and the integrated WFs of grain products with actual and virtual crop patterns in different regions of China for 2010. The results showed that there were significant differences for the WF among different crops in the same area or among different areas for the same crop. Rice had the highest WF at 1.39 m(3)/kg, while corn had the lowest at 0.91 m(3)/kg among the main grain crops. The WF of grain products was 1.25 m(3)/kg in China. Crop patterns had an important impact on WF of grain products because significant differences in WF were found between actual and virtual crop patterns in each region. The CWP level can be determined based on the WF of a virtual crop pattern, thereby helping optimize spatial distribution of crops and develop agricultural water savings to increase CWP. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Adequacy of selected evapotranspiration approximations for hydrologic simulation

    USGS Publications Warehouse

    Sumner, D.M.

    2006-01-01

    Evapotranspiration (ET) approximations, usually based on computed potential ET (PET) and diverse PET-to-ET conceptualizations, are routinely used in hydrologic analyses. This study presents an approach to incorporate measured (actual) ET data, increasingly available using micrometeorological methods, to define the adequacy of ET approximations for hydrologic simulation. The approach is demonstrated at a site where eddy correlation-measured ET values were available. A baseline hydrologic model incorporating measured ET values was used to evaluate the sensitivity of simulated water levels, subsurface recharge, and surface runoff to error in four ET approximations. An annually invariant pattern of mean monthly vegetation coefficients was shown to be most effective, despite the substantial year-to-year variation in measured vegetation coefficients. The temporal variability of available water (precipitation minus ET) at the humid, subtropical site was largely controlled by the relatively high temporal variability of precipitation, benefiting the effectiveness of coarse ET approximations, a result that is likely to prevail at other humid sites.

  17. Satellite-based mapping of field-scale stress indicators for crop yield forecasting: an application over Mead, NE

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Anderson, M. C.; Gao, F.; Wardlow, B.; Hain, C.; Otkin, J.; Sun, L.; Dulaney, W.

    2017-12-01

    In agricultural regions, water is one of the most widely limiting factors of crop performance and production. Evapotranspiration (ET) describes crop water use through transpiration and water lost through direct soil evaporation, which makes it a good indicator of soil moisture availability and vegetation health and thus has been an integral part of many yield estimation efforts. The Evaporative Stress Index (ESI) describes temporal anomalies in a normalized evapotranspiration metric (fRET) as derived from satellite remote sensing and has demonstrated capacity to explain regional yield variability in water limited crop growing regions. However, its performance in some regions where the vegetation cycle is intensively managed appears to be degraded. In this study we generated maps of ET, fRET, and ESI at high spatiotemporal resolution (30-m pixels, daily timesteps) using a multi-sensor data fusion method, integrating information from satellite platforms with good temporal coverage and other platforms that provide field-scale spatial detail. The study was conducted over the period 2010-2014, covering a region around Mead, Nebraska that includes both rainfed and irrigated crops. Correlations between ESI and measurements of corn yield are investigated at both the field and county level to assess the value of ESI as a yield forecasting tool. To examine the role of phenology in ESI-yield correlations, annual input fRET timeseries were aligned by both calendar day and by biophysically relevant dates (e.g. days since planting or emergence). Results demonstrate that mapping of fRET and ESI at 30-m has the advantage of being able to resolve different crop types with varying phenology. The study also suggests that incorporating phenological information significantly improves yield-correlations by accounting for effects of phenology such as variable planting date and emergence date. The yield-ESI relationship in this study well captures the inter-annual variability of yields

  18. Examining the sensitivity of modelled evapotranspiration to vegetation structural characteristics within boreal peatlands, riparian ecosystems and upland mixedwood forest

    NASA Astrophysics Data System (ADS)

    Petrone, R. M.; Chasmer, L. E.; Brown, S. M.; Mendoza, C. A.; Diiwu, J.; Quinton, W. L.; Hopkinson, C.; Devito, K. J.

    2010-12-01

    The Western Boreal Plain (WBP) of northern Alberta is comprised of a complex mosaic of small ponds, riparian buffer zones, and upland aspen dominated mixedwood forests surrounded by low-lying peatlands. The hydrology of the WBP is strongly influenced by climatic drivers and geology, whereby water budgets are often controlled by vertical fluxes. During most years, potential evapotranspiration (PET) exceeds precipitation (P), and changes in P as a result of climatic change will likely alter actual evapotranspiration (AET) and regional water balances. In recent years, the WBP has also undergone intense anthropogenic disturbance via oil and gas exploration and extraction, and silvicultural and forest harvesting activities. The extent to which changes in land cover types/characteristics affect estimates of PET and AET is currently unknown. This study examines the sensitivity of PET using a simple estimate of equilibrium ET (Priestley-Taylor) and AET (Penman-Monteith variant) to variability in canopy structural and ground surface characteristics at 12 sites throughout the 2008 growing season (June, July, August). Energy balance meteorological stations are deployed within four peatland ecosystems, four riparian buffer zones, two regenerating upland mixedwood forests and two mature upland mixedwood forests. Airborne Light Detection and Ranging (LiDAR) is used to derive metrics of canopy height, leaf area index (LAI), uplands and lowlands, elevation, zero plane displacement, roughness length governing momentum, roughness length governing heat and vapour, and understory vegetation characteristics. LiDAR land surface metrics and energy balance measurements are used to model evapotranspiration for classified land cover types throughout the larger basin. Sensitivity of potential and actual estimates to changes in land cover characteristics within each of the three land cover types (peatland, riparian and upland) is quantified.

  19. An improved SVAT model framework for crop water relations and microclimate as a basis for agrometeorological forecasts and projections

    NASA Astrophysics Data System (ADS)

    Herbst, M.; Wittich, K. P.; Meinert, T.; Namyslo, J.; Frühauf, C.; Falge, E.

    2017-12-01

    The agrometeorological soil and crop water model developed by the German Meteorological Service a few decades ago and has recently been updated and refined in order to serve as a tool to assess the future options, risks and opportunities for agriculture in a changing climate. The core of the model consists of a SVAT scheme that calculates the different evaporation components of agricultural ecosystems, their energy balance and canopy microclimate and the water storage in several soil layers. In contrast to the widely used FAO schemes to calculate the crop water relations, the new model distinguishes between the productive and unproductive fractions of evapotranspiration and thus produces a more realistic account of water stress and irrigation demand. Furthermore, the model represents the water relations of the root zone in greater detail and accounts specifically for the water extraction from various depths. Infiltration rate and capillary rise are simulated, too, as well as leaf wetness duration following rain, irrigation or dewfall, and temperature and humidity within the canopy and the soil. As a consequence of these additional features, the model serves also as a robust basis for more specific predictions of, e.g., soil trafficability or phytopathological aspects. Here we present an overview about the model and show some examples where we test its suitability for forecasts of irrigation demands, for predictions of actual evaporation rates and soil water status of specific crops using various climate projections and for a coupling to biogeochemical models describing e.g. ammonia emissions, nitrate losses, crop yield etc. Challenges and opportunities for an extended application of the model are discussed and perspectives for its use as a decision support tool developed, particularly with respect to risk assessments of potential agricultural yield reductions due to drought, heat, frost, stagnant moisture and other environmental stress factors.

  20. METRIC model for the estimation and mapping of evapotranspiration in a super intensive olive orchard in Southern Portugal

    NASA Astrophysics Data System (ADS)

    Pôças, Isabel; Nogueira, António; Paço, Teresa A.; Sousa, Adélia; Valente, Fernanda; Silvestre, José; Andrade, José A.; Santos, Francisco L.; Pereira, Luís S.; Allen, Richard G.

    2013-04-01

    Satellite-based surface energy balance models have been successfully applied to estimate and map evapotranspiration (ET). The METRICtm model, Mapping EvapoTranspiration at high Resolution using Internalized Calibration, is one of such models. METRIC has been widely used over an extensive range of vegetation types and applications, mostly focusing annual crops. In the current study, the single-layer-blended METRIC model was applied to Landsat5 TM and Landsat7 ETM+ images to produce estimates of evapotranspiration (ET) in a super intensive olive orchard in Southern Portugal. In sparse woody canopies as in olive orchards, some adjustments in METRIC application related to the estimation of vegetation temperature and of momentum roughness length and sensible heat flux (H) for tall vegetation must be considered. To minimize biases in H estimates due to uncertainties in the definition of momentum roughness length, the Perrier function based on leaf area index and tree canopy architecture, associated with an adjusted estimation of crop height, was used to obtain momentum roughness length estimates. Additionally, to minimize the biases in surface temperature simulations, due to soil and shadow effects, the computation of radiometric temperature considered a three-source condition, where Ts=fcTc+fshadowTshadow+fsunlitTsunlit. As such, the surface temperature (Ts), derived from the thermal band of the Landsat images, integrates the temperature of the canopy (Tc), the temperature of the shaded ground surface (Tshadow), and the temperature of the sunlit ground surface (Tsunlit), according to the relative fraction of vegetation (fc), shadow (fshadow) and sunlit (fsunlit) ground surface, respectively. As the sunlit canopies are the primary source of energy exchange, the effective temperature for the canopy was estimated by solving the three-source condition equation for Tc. To evaluate METRIC performance to estimate ET over the olive grove, several parameters derived from the

  1. A stochastic ensemble-based model to predict crop water requirements from numerical weather forecasts and VIS-NIR high resolution satellite images in Southern Italy

    NASA Astrophysics Data System (ADS)

    Pelosi, Anna; Falanga Bolognesi, Salvatore; De Michele, Carlo; Medina Gonzalez, Hanoi; Villani, Paolo; D'Urso, Guido; Battista Chirico, Giovanni

    2015-04-01

    Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Ensemble numerical weather predictions can be valuable data for developing operational advisory irrigation services. We propose a stochastic ensemble-based model providing spatial and temporal estimates of crop water requirements, implemented within an advisory service offering detailed maps of irrigation water requirements and crop water consumption estimates, to be used by water irrigation managers and farmers. The stochastic model combines estimates of crop potential evapotranspiration retrieved from ensemble numerical weather forecasts (COSMO-LEPS, 16 members, 7 km resolution) and canopy parameters (LAI, albedo, fractional vegetation cover) derived from high resolution satellite images in the visible and near infrared wavelengths. The service provides users with daily estimates of crop water requirements for lead times up to five days. The temporal evolution of the crop potential evapotranspiration is simulated with autoregressive models. An ensemble Kalman filter is employed for updating model states by assimilating both ground based meteorological variables (where available) and numerical weather forecasts. The model has been applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. This work presents the results of the system performance for one year of experimental service. The results suggest that the proposed model can be an effective support for a sustainable use and management of irrigation water, under conditions of water scarcity and drought. Since the evapotranspiration term represents a staple

  2. Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 1: Measurement of Evapotranspiration at the Environmental Research Center and Determination of Priestley-taylor Parameter

    NASA Technical Reports Server (NTRS)

    Kotada, K.; Nakagawa, S.; Kai, K.; Yoshino, M. M.; Takeda, K.; Seki, K.

    1985-01-01

    In order to study the distribution of evapotranspiration in the humid region using remote sensing technology, the parameter (alpha) in the Priestley-Taylor model was determined. The daily means of the parameter alpha = 1.14 can be available from summer to autumn and alpha = to approximately 2.0 in winter. The results of the satellite and the airborne sensing done on 21st and 22nd January, 1983, are described. Using the vegetation distribution in the Tsukuba Academic New Town, as well as the radiation temperature obtained by remote sensing and the radiation data observed at the ground surface, the evapotranspiration was calculated for each vegetation type by the Priestley-Taylor method. The daily mean evapotranspiration on 22nd January, 1983, was approximately 0.4 mm/day. The differences in evapotranspiration between the vegetation types were not detectable, because the magnitude of evapotranspiration is very little in winter.

  3. Applying ECOSTRESS Diurnal Cycle Land Surface Temperature and Evapotranspiration to Agricultural Soil and Water Management

    NASA Astrophysics Data System (ADS)

    Pestana, S. J.; Halverson, G. H.; Barker, M.; Cooley, S.

    2016-12-01

    Increased demand for agricultural products and limited water supplies in Guanacaste, Costa Rica have encouraged the improvement of water management practices to increase resource use efficiency. Remotely sensed evapotranspiration (ET) data can contribute by providing insights into variables like crop health and water loss, as well as better inform the use of various irrigation techniques. EARTH University currently collects data in the region that are limited to costly and time-intensive in situ observations and will greatly benefit from the expanded spatial and temporal resolution of remote sensing measurements from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS). In this project, Moderate Resolution Imaging Spectroradiometer (MODIS) Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) data, with a resolution of 5 km per pixel, was used to demonstrate to our partners at EARTH University the application of remotely sensed ET measurements. An experimental design was developed to provide a method of applying future ECOSTRESS data, at the higher resolution of 70 m per pixel, to research in managing and implementing sustainable farm practices. Our investigation of the diurnal cycle of land surface temperature, net radiation, and evapotranspiration will advance the model science for ECOSTRESS, which will be launched in 2018 and installed on the International Space Station.

  4. Drought analysis and water resource availability using standardised precipitation evapotranspiration index

    NASA Astrophysics Data System (ADS)

    Hui-Mean, Foo; Yusop, Zulkifli; Yusof, Fadhilah

    2018-03-01

    Trend analysis for potential evapotranspiration (PET) and climatic water balance (CWB) is critical in identifying the wetness or dryness episodes with respect to the water surplus or deficit. The PET is computed based on the monthly average temperature for the entire Peninsular Malaysia using Thornthwaite parameterization. The trends and slope's magnitude for the PET and CWB were then investigated using Mann-Kendall, Spearman's rho tests and Thiel-Sen estimator. The 1-, 3-, 6- and 12-month standardised precipitation evapotranspiration index (SPEI) is applied to determine the drought episodes and the average recurrence interval are calculated based on the SPEI. The results indicate that most of the stations show an upward trend in annual and monthly PET while majority of the regions show an upward trend in annual CWB except for the Pahang state. The increasing trends detected in the CWB describe water is in excess especially during the northeast monsoons while the decreasing trends imply water insufficiency. The excess water is observed mostly in January especially in the west coast, east coast and southwest regions that suggest more water is available for crop requirement. The average recurrence interval for drought episodes is almost the same for the smaller severity with various time scale of SPEI and high probability of drought occurrence is observed for some regions. The findings are useful for policymakers and practitioners to improve water resources planning and management, in particular to minimise drought effects in the future. Future research shall address the influence of topography on drought behaviour using more meteorological stations and to include east Malaysia in the analysis.

  5. Mapping Evapotranspiration in the Sacramento San Joaquin Delta using simulated ECOSTRESS Thermal Data: Validation and Inter-comparison

    NASA Astrophysics Data System (ADS)

    Wong, A.; Jin, Y.; He, R.; Hulley, G.; Fisher, J.; Lee, C. M.; Rivera, G.; Hook, S. J.; Medellin-Azuara, J.; Kent, E. R.; Paw U, K. T.; Gao, F.; Lund, J. R.

    2017-12-01

    Irrigation accounts for 80% of human freshwater consumption, and most of it return to the atmosphere through evapotranspiration (ET). In California, where our water resources are limited and heavily utilized, the need for a cost-effective, timely, and consistent spatial estimate of crop ET, from the farm to watershed level, is becoming increasingly important. The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), to be launched in mid-2018, will provide the most detailed and accurate temperature measurements ever acquired from space and thus unique opportunities for estimating ET at the farm scale. We simulated the ECOSTRESS thermal data at a 70 m resolution using VIIRS thermal observations and ASTER emissivity data in the Sacramento-San Joaquin Delta region for the 2016 water year. Three remote sensing based ET methods were then applied to estimate ET using simulated ECOSTRESS data and optical data from Landsat and VIIRS, including Priestley-Taylor approaches developed by the Jet Propulsion Laboratory (PT-JPL) and by UC Davis (PT-UCD), and the Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model. We compared these three sets of ET estimates with field measurements at sixteen sites over five crop types (Alfalfa, Corn, Pasture, Tomato, and Beardless Wheat). Good agreement was found between satellite-based estimates and field measurements. Our results demonstrate that thermal data from the upcoming ECOSTRESS mission will reduce the uncertainty in ET estimates. A continuous monitoring of the dynamics and spatial heterogeneity of consumptive water use at a field scale will help prepare and inform to adaptively manage water, canopy, and planting density to maximize yield with least amount of water.

  6. Spatial and temporal trends of reference crop evapotranspiration and its influential variables in Yangtze River Delta, eastern China

    NASA Astrophysics Data System (ADS)

    Xu, Yu; Xu, Youpeng; Wang, Yuefeng; Wu, Lei; Li, Guang; Song, Song

    2017-11-01

    Reference crop evapotranspiration (ETo) is one of the most important links in hydrologic circulation and greatly affects regional agricultural production and water resource management. Its variation has drawn more and more attention in the context of global warming. We used the Penman-Monteith method of the Food and Agriculture Organization, based on meteorological factors such as air temperature, sunshine duration, wind speed, and relative humidity to calculate the ETo over 46 meteorological stations located in the Yangtze River Delta, eastern China, from 1957 to 2014. The spatial distributions and temporal trends in ETo were analyzed based on the modified Mann-Kendall trend test and linear regression method, while ArcGIS software was employed to produce the distribution maps. The multiple stepwise regression method was applied in the analysis of the meteorological variable time series to identify the causes of any observed trends in ETo. The results indicated that annual ETo showed an obvious spatial pattern of higher values in the north than in the south. Annual increasing trends were found at 34 meteorological stations (73.91 % of the total), which were mainly located in the southeast. Among them, 12 (26.09 % of the total) stations showed significant trends. We saw a dominance of increasing trends in the monthly ETo except for January, February, and August. The high value zone of monthly ETo appeared in the northwest from February to June, mid-south area from July to August, and southeast coastal area from September to January. The research period was divided into two stages—stage I (1957-1989) and stage II (1990-2014)—to investigate the long-term temporal ETo variation. In stage I, almost 85 % of the total stations experienced decreasing trends, while more than half of the meteorological stations showed significant increasing trends in annual ETo during stage II except in February and September. Relative humidity, wind speed, and sunshine duration were

  7. Observed and modelled solar radiation components in sugarcane crop grown under tropical conditions

    NASA Astrophysics Data System (ADS)

    Santos, Marcos A. dos; Souza, José L. de; Lyra, Gustavo B.; Teodoro, Iêdo; Ferreira, Ricardo A.; Santos Almeida, Alexsandro C. dos; Lyra, Guilherme B.; Souza, Renan C. de; Lemes, Marco A. Maringolo

    2017-04-01

    The net radiation over vegetated surfaces is one of the major input variables in many models of soil evaporation, evapotranspiration as well as leaf wetness duration. In the literature there are relatively few studies on net radiation over sugarcane crop in tropical climates. The main objective of the present study was to assess the solar radiation components measured and modelled for two crop stages of a sugarcane crop in the region of Rio Largo, Alagoas, North-eastern Brazil. The measurements of the radiation components were made with a net radiometer during the dry and rainy seasons and two models were used to estimate net radiation: the Ortega-Farias model and the Monteith and Unsworth model. The highest values of net radiation were observed at the crop development stage, due mainly to the high indices of incoming solar radiation. The daily average albedos of sugarcane at the crop development and mid-season stages were 0.16 and 0.20, respectively. Both models showed a better fit for the crop development stage than for the mid-season stage. When they were inter-compared, Monteith and Unsworth model was more efficient than Ortega-Farias model, despite the dispersion of their simulated radiation components which was similar.

  8. Assessment of actual evapotranspiration over a semiarid heterogeneous land surface by means of coupled low-resolution remote sensing data with an energy balance model: comparison to extra-large aperture scintillometer measurements

    NASA Astrophysics Data System (ADS)

    Saadi, Sameh; Boulet, Gilles; Bahir, Malik; Brut, Aurore; Delogu, Émilie; Fanise, Pascal; Mougenot, Bernard; Simonneaux, Vincent; Lili Chabaane, Zohra

    2018-04-01

    In semiarid areas, agricultural production is restricted by water availability; hence, efficient agricultural water management is a major issue. The design of tools providing regional estimates of evapotranspiration (ET), one of the most relevant water balance fluxes, may help the sustainable management of water resources. Remote sensing provides periodic data about actual vegetation temporal dynamics (through the normalized difference vegetation index, NDVI) and water availability under water stress (through the surface temperature Tsurf), which are crucial factors controlling ET. In this study, spatially distributed estimates of ET (or its energy equivalent, the latent heat flux LE) in the Kairouan plain (central Tunisia) were computed by applying the Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE) model fed by low-resolution remote sensing data (Terra and Aqua MODIS). The work's goal was to assess the operational use of the SPARSE model and the accuracy of the modeled (i) sensible heat flux (H) and (ii) daily ET over a heterogeneous semiarid landscape with complex land cover (i.e., trees, winter cereals, summer vegetables). SPARSE was run to compute instantaneous estimates of H and LE fluxes at the satellite overpass times. The good correspondence (R2 = 0.60 and 0.63 and RMSE = 57.89 and 53.85 W m-2 for Terra and Aqua, respectively) between instantaneous H estimates and large aperture scintillometer (XLAS) H measurements along a path length of 4 km over the study area showed that the SPARSE model presents satisfactory accuracy. Results showed that, despite the fairly large scatter, the instantaneous LE can be suitably estimated at large scales (RMSE = 47.20 and 43.20 W m-2 for Terra and Aqua, respectively, and R2 = 0.55 for both satellites). Additionally, water stress was investigated by comparing modeled (SPARSE) and observed (XLAS) water stress values; we found that most points were located within a 0.2 confidence interval, thus the

  9. Use of Unmanned Aerial Vehicles for Improving Farm Scale Agricultural Water Management in Agriculture at a Farm Scale. A case study for field crops in the California's Central Valley

    NASA Astrophysics Data System (ADS)

    Medellin-Azuara, J.; Morande, J. A.; Jin, Y.; Chen, Y.; Paw U, K. T.; Viers, J. H.

    2016-12-01

    Traditional methods for estimating consumptive water use as evapotranspiration (ET) for agriculture in areas with water limitations such as California have always been a challenge for farmers, water managers, researchers and government agencies. Direct measurement of evapotranspiration (ET) and crop water stress in agriculture can be a cumbersome and costly task. Furthermore, spatial variability of applied water and irrigation and stress level in crops, due to inherent heterogeneity in soil conditions, topography, management practices, and lack of uniformity in water applications may affect estimates water use efficiency and water balances. This situation difficult long-term management of agroecosystems. This paper presents a case study for various areas in California's Central Valley using Unmanned Aerial Vehicles (UAVs) for a late portion of the 2016 irrigation season These estimates are compared those obtained by direct measurement (from previously deployed stations), and energy balance approaches with remotely sensed data in a selection of field crop parcels. This research improves information on water use and site conditions in agriculture by enhancing remote sensing-based estimations through the use of higher resolution multi-spectral and thermal imagery captured by UAV. We assess whether more frequent information at higher spatial resolution from UAVs can improve estimations of overall ET through energy balance and imagery. Stress levels and ET are characterized spatially to examine irrigation practices and their performance to improve water use in the agroecosystem. Ground based data such as air and crop temperature and stem water potential is collected to validate UAV aerial measurements. Preliminary results show the potential of UAV technology to improve timing, resolution and accuracy in the ET estimation and assessment of crop stress at a farm scales. Side to side comparison with ground level stations employing surface renewal, eddy covariance and

  10. Crop responses to elevated CO2 and interactions with H2O, N, and temperature.

    PubMed

    Kimball, Bruce A

    2016-06-01

    About twenty-seven years ago, free-air CO2 enrichment (FACE) technology was developed that enabled the air above open-field plots to be enriched with CO2 for entire growing seasons. Since then, FACE experiments have been conducted on cotton, wheat, ryegrass, clover, potato, grape, rice, barley, sugar beet, soybean, cassava, rape, mustard, coffee (C3 crops), and sorghum and maize (C4 crops). Elevated CO2 (550ppm from an ambient concentration of about 353ppm in 1990) decreased evapotranspiration about 10% on average and increased canopy temperatures about 0.7°C. Biomass and yield were increased by FACE in all C3 species, but not in C4 species except when water was limiting. Yields of C3 grain crops were increased on average about 19%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Evapotranspiration from subsurface horizontal flow wetlands planted with Phragmites australis in sub-tropical Australia.

    PubMed

    Headley, T R; Davison, L; Huett, D O; Müller, R

    2012-02-01

    The balance between evapotranspiration (ET) loss and rainfall ingress in treatment wetlands (TWs) can affect their suitability for certain applications. The aim of this paper was to investigate the water balance and seasonal dynamics in ET of subsurface horizontal flow (HF) TWs in a sub-tropical climate. Monthly water balances were compiled for four pilot-scale HF TWs receiving horticultural runoff over a two year period (Sep. 1999-Aug. 2001) on the sub-tropical east-coast of Australia. The mean annual wetland ET rate increased from 7.0 mm/day in the first year to 10.6 mm/day in the second, in response to the development of the reed (Phragmites australis) population. Consequently, the annual crop coefficients (ratio of wetland ET to pan evaporation) increased from 1.9 in the first year to 2.6 in the second. The mean monthly ET rates were generally greater and more variable than the Class-A pan evaporation rates, indicating that transpiration is an important contributor to ET in HF TWs. Evapotranspiration rates were generally highest in the summer and autumn months, and corresponded with the times of peak standing biomass of P. australis. It is likely that ET from the relatively small 1 m wide by 4 m long HF TWs was enhanced by advection through so-called "clothesline" and "oasis" effects, which contributed to the high crop coefficients. For the second year, when the reed population was well established, the annual net loss to the atmosphere (taking into account rainfall inputs) accounted for 6.1-9.6 % of the influent hydraulic load, which is considered negligible. However, the net loss is likely to be higher in arid regions with lower rainfall. The Water Use Efficiency (WUE) of the wetlands in the second year of operation was 1.3 g of above-ground biomass produced per kilogram of water consumed, which is low compared to agricultural crops. It is proposed that system level WUE provides a useful metric for selecting wetland plant species and TW design alternatives to

  12. The green, blue and grey water footprint of crops and derived crop products

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-01-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment is global and improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc min grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the water footprint network. Considering the water footprints of primary crops, we see that global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals} (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51

  13. The green, blue and grey water footprint of crops and derived crop products

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-05-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1

  14. Simple analytical model of evapotranspiration in the presence of roots.

    PubMed

    Cejas, Cesare M; Hough, L A; Castaing, Jean-Christophe; Frétigny, Christian; Dreyfus, Rémi

    2014-10-01

    Evaporation of water out of a soil involves complicated and well-debated mechanisms. When plant roots are added into the soil, water transfer between the soil and the outside environment is even more complicated. Indeed, plants provide an additional process of water transfer. Water is pumped by the roots, channeled to the leaf surface, and released into the surrounding air by a process called transpiration. Prediction of the evapotranspiration of water over time in the presence of roots helps keep track of the amount of water that remains in the soil. Using a controlled visual setup of a two-dimensional model soil consisting of monodisperse glass beads, we perform experiments on actual roots grown under different relative humidity conditions. We record the total water mass loss in the medium and the position of the evaporating front that forms within the medium. We then develop a simple analytical model that predicts the position of the evaporating front as a function of time as well as the total amount of water that is lost from the medium due to the combined effects of evaporation and transpiration. The model is based on fundamental principles of evaporation fluxes and includes empirical assumptions on the quantity of open stomata in the leaves, where water transpiration occurs. Comparison between the model and experimental results shows excellent prediction of the position of the evaporating front as well as the total mass loss from evapotranspiration in the presence of roots. The model also provides a way to predict the lifetime of a plant.

  15. Uncertainty of Wheat Water Use: Simulated Patterns and Sensitivity to Temperature and CO2

    NASA Technical Reports Server (NTRS)

    Cammarano, Davide; Roetter, Reimund P.; Asseng, Senthold; Ewert, Frank; Wallach, Daniel; Martre, Pierre; Hatfield, Jerry L.; Jones, James W.; Rosenzweig, Cynthia E.; Ruane, Alex C.; hide

    2016-01-01

    Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (Teff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50 of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand.

  16. Testing an Energy Balance Model for Estimating Actual Evapotranspiration Using Remotely Sensed Data. [Hannover, West Germany barley and wheat fields

    NASA Technical Reports Server (NTRS)

    Gurney, R. J.; Camillo, P. J.

    1985-01-01

    An energy-balance model is used to estimate daily evapotranspiration for 3 days for a barley field and a wheat field near Hannover, Federal Republic of Germany. The model was calibrated using once-daily estimates of surface temperatures, which may be remotely sensed. The evaporation estimates were within the 95% error bounds of independent eddy correlation estimates for the daytime periods for all three days for both sites, but the energy-balance estimates are generally higher; it is unclear which estimate is biassed. Soil moisture in the top 2 cm of soil, which may be remotely sensed, may be used to improve these evaporation estimates under partial ground cover. Sensitivity studies indicate the amount of ground data required is not excessive.

  17. Low Evapotranspiration Enhances the Resilience of Peatland Carbon Stocks to Fire

    NASA Astrophysics Data System (ADS)

    Kettridge, N.; Lukenbach, M. C.; Hokanson, K. J.; Hopkinson, C.; Devito, K. J.; Petrone, R. M.; Mendoza, C. A.; Waddington, J. M.

    2017-09-01

    Boreal peatlands may be vulnerable to projected changes in the wildfire regime under future climates. Extreme drying during the sensitive postfire period may exceed peatland ecohydrological resilience, triggering long-term degradation of these globally significant carbon stocks. Despite these concerns, we show low peatland evapotranspiration at both the plot- and landscape-scale postfire, in water-limited peatlands dominated by feather moss that are ubiquitous across continental western Canada. Low postfire evapotranspiration enhances the resilience of carbon stocks in such peatlands to wildfire disturbance and reinforces their function as a regional source of water. Near-surface water repellency may provide an important, previously unexplored, regulator of peatland evapotranspiration that can induce low evapotranspiration in the initial postfire years by restricting the supply of water to the peat surface.

  18. Realization of daily evapotranspiration in arid ecosystems based on remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Bahrawi, Jarbou A.

    2017-03-01

    Daily evapotranspiration is a major component of water resources management plans. In arid ecosystems, the quest for an efficient water budget is always hard to achieve due to insufficient irrigational water and high evapotranspiration rates. Therefore, monitoring of daily evapotranspiration is a key practice for sustainable water resources management, especially in arid environments. Remote sensing techniques offered a great help to estimate the daily evapotranspiration on a regional scale. Existing open-source algorithms proved to estimate daily evapotranspiration comprehensively in arid environments. The only deficiency of these algorithms is the course scale of the used remote sensing data. Consequently, the adequate downscaling algorithm is a compulsory step to rationalize an effective water resources management plan. Daily evapotranspiration was estimated fairly well using an Advance Along-Track Scanner Radiometer (AATSR) in conjunction with (MEdium Resolution Imaging Spectrometer) MERIS data acquired in July 2013 with 1 km spatial resolution and 3 days of temporal resolution under a surface energy balance system (SEBS) model. Results were validated against reference evapotranspiration ground truth values using standardized Penman-Monteith method with R2 of 0.879. The findings of the current research successfully monitor turbulent heat fluxes values estimated from AATSR and MERIS data with a temporal resolution of 3 days only in conjunction with reliable meteorological data. Research verdicts are necessary inputs for a well-informed decision-making processes regarding sustainable water resource management.

  19. A comparison of methods for determining the cotton field evapotranspiration and its components under mulched drip irrigation conditions: photosynthesis system, sap flow, and eddy covariance

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Tian, F.; Hu, H.

    2013-12-01

    A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. For upscaling the evapotranspiration from the leaf to the plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. For upscaling the evapotranspiration from the plant to the field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationships between the leaf area and the stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling is slightly higher (18%) than that obtained by sap flow. At the field scale, the estimate of the transpiration obtained by upscaling the estimate based on sap flow measurements is also systematically higher (10%) compared to that obtained through eddy covariance during the cotton open boll growth stage when soil evaporation can be neglected. Nevertheless, the results derived from these three distinct methods show reasonable consistency at the field scale, which indicates that the upscaling approaches are reasonable and valid. Based on the measurements and the upscaling approaches, the evapotranspiration components were analyzed under mulched drip irrigation. During the cotton flower and bolling stages in July and August, the evapotranspiration are 3.94 and 4.53 mm day-1, respectively. The proportion of transpiration to evapotranspiration reaches 87.1% before drip irrigation and 82.3% after irrigation. The high water use efficiency is principally due to the mulched film above the drip pipe, the low soil water content in the inter

  20. 7 CFR 760.814 - Calculation of acreage for crop losses other than prevented planted.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of the crop, as applicable, or actual acreage of the crop planted for harvest. (b) In cases where... good farming practices; and (4) Could reach maturity if each planting was harvested or would have been harvested. (c) In cases where there is multiple-cropped acreage, each crop may be eligible for disaster...

  1. 7 CFR 760.814 - Calculation of acreage for crop losses other than prevented planted.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of the crop, as applicable, or actual acreage of the crop planted for harvest. (b) In cases where... good farming practices; and (4) Could reach maturity if each planting was harvested or would have been harvested. (c) In cases where there is multiple-cropped acreage, each crop may be eligible for disaster...

  2. Modeling soybean canopy resistance from micrometeorological and plant variables for estimating evapotranspiration using one-step Penman-Monteith approach

    NASA Astrophysics Data System (ADS)

    Irmak, Suat; Mutiibwa, Denis; Payero, Jose; Marek, Thomas; Porter, Dana

    2013-12-01

    Canopy resistance (rc) is one of the most important variables in evapotranspiration, agronomy, hydrology and climate change studies that link vegetation response to changing environmental and climatic variables. This study investigates the concept of generalized nonlinear/linear modeling approach of rc from micrometeorological and plant variables for soybean [Glycine max (L.) Merr.] canopy at different climatic zones in Nebraska, USA (Clay Center, Geneva, Holdrege and North Platte). Eight models estimating rc as a function of different combination of micrometeorological and plant variables are presented. The models integrated the linear and non-linear effects of regulating variables (net radiation, Rn; relative humidity, RH; wind speed, U3; air temperature, Ta; vapor pressure deficit, VPD; leaf area index, LAI; aerodynamic resistance, ra; and solar zenith angle, Za) to predict hourly rc. The most complex rc model has all regulating variables and the simplest model has only Rn, Ta and RH. The rc models were developed at Clay Center in the growing season of 2007 and applied to other independent sites and years. The predicted rc for the growing seasons at four locations were then used to estimate actual crop evapotranspiration (ETc) as a one-step process using the Penman-Monteith model and compared to the measured data at all locations. The models were able to account for 66-93% of the variability in measured hourly ETc across locations. Models without LAI generally underperformed and underestimated due to overestimation of rc, especially during full canopy cover stage. Using vapor pressure deficit or relative humidity in the models had similar effect on estimating rc. The root squared error (RSE) between measured and estimated ETc was about 0.07 mm h-1 for most of the models at Clay Center, Geneva and Holdrege. At North Platte, RSE was above 0.10 mm h-1. The results at different sites and different growing seasons demonstrate the robustness and consistency of the

  3. Irrigation management strategies to improve Water Use Efficiency of potatoes crop in Central Tunisia

    NASA Astrophysics Data System (ADS)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2015-04-01

    In Tunisia, the expansion of irrigated area and the semiarid climate make it compulsory to adopt strategies of water management to increase water use efficiency. Subsurface drip irrigation (SDI), providing the application of high frequency small irrigation volumes below the soil surface have been increasingly used to enhance irrigation efficiency. At the same time, deficit irrigation (DI) has shown successful results with a large number of crop in various countries. However, for some crops like potatoes, DI is difficult to manage due to the rapid effect of water stress on tuber yield. Irrigation frequency is a key factor to schedule subsurface drip irrigation because, even maintaining the total seasonal volume, soil wetting patterns can result different during the growth period, with consequence on crop yield. Despite the need to enhance water use efficiency, only a few studies related to deficit irrigation of horticultural crops have been made in Tunisia. Objective of the paper was to assess the effects of different on-farm irrigation strategies on water use efficiency of potatoes crop irrigated with subsurface drip irrigation in a semiarid area of central Tunisia. After validation, Hydrus-2D model was used to simulate soil water status in the root zone, to evaluate actual crop evapotranspiration and then to estimate indirectly water use efficiency (IWUE), defined as the ratio between crop yield and total amount of water supplied with irrigation. Field experiments, were carried out in Central Tunisia (10° 33' 47.0" E, 35° 58' 8.1° N, 19 m a.s.l) on a potatoes crop planted in a sandy loam soil, during the growing season 2014, from January 15 (plantation of tubers) to May 6 (harvesting). Soil water status was monitored in two plots (T1 and T2) maintained under the same management, but different irrigation volumes, provided by a SDI system. In particular, irrigation was scheduled according to the average water content measured in the root zone, with a total of 8

  4. Recent decline in the global land evapotranspiration trend due to limited moisture supply.

    PubMed

    Jung, Martin; Reichstein, Markus; Ciais, Philippe; Seneviratne, Sonia I; Sheffield, Justin; Goulden, Michael L; Bonan, Gordon; Cescatti, Alessandro; Chen, Jiquan; de Jeu, Richard; Dolman, A Johannes; Eugster, Werner; Gerten, Dieter; Gianelle, Damiano; Gobron, Nadine; Heinke, Jens; Kimball, John; Law, Beverly E; Montagnani, Leonardo; Mu, Qiaozhen; Mueller, Brigitte; Oleson, Keith; Papale, Dario; Richardson, Andrew D; Roupsard, Olivier; Running, Steve; Tomelleri, Enrico; Viovy, Nicolas; Weber, Ulrich; Williams, Christopher; Wood, Eric; Zaehle, Sönke; Zhang, Ke

    2010-10-21

    More than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land−a key diagnostic criterion of the effects of climate change and variability−remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network, meteorological and remote-sensing observations, and a machine-learning algorithm. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1 ± 1.0 millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Niño event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science.

  5. Satellite Estimation of Fractional Cover in Several California Specialty Crops

    NASA Technical Reports Server (NTRS)

    Johnson, Lee; Cahn, Michael; Rosevelt, Carolyn; Guzman, Alberto; Farrara, Barry; Melton, Forrest S.

    2016-01-01

    Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.

  6. Satellite Estimation of Fractional Cover in Several California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Rosevelt, C.; Guzman, A.; Lockhart, T.; Farrara, B.; Melton, F. S.

    2016-12-01

    Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.

  7. Evaluation of the Event Driven Phenology Model Coupled with the VegET Evapotranspiration Model Through Comparisons with Reference Datasets in a Spatially Explicit Manner

    NASA Technical Reports Server (NTRS)

    Kovalskyy, V.; Henebry, G. M.; Adusei, B.; Hansen, M.; Roy, D. P.; Senay, G.; Mocko, D. M.

    2011-01-01

    A new model coupling scheme with remote sensing data assimilation was developed for estimation of daily actual evapotranspiration (ET). The scheme represents a mix of the VegET, a physically based model to estimate ET from a water balance, and an event driven phenology model (EDPM), where the EDPM is an empirically derived crop specific model capable of producing seasonal trajectories of canopy attributes. In this experiment, the scheme was deployed in a spatially explicit manner within the croplands of the Northern Great Plains. The evaluation was carried out using 2007-2009 land surface forcing data from the North American Land Data Assimilation System (NLDAS) and crop maps derived from remotely sensed data of NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compared the canopy parameters produced by the phenology model with normalized difference vegetation index (NDVI) data derived from the MODIS nadir bi-directional reflectance distribution function (BRDF) adjusted reflectance (NBAR) product. The expectations of the EDPM performance in prognostic mode were met, producing determination coefficient (r2) of 0.8 +/-.0.15. Model estimates of NDVI yielded root mean square error (RMSE) of 0.1 +/-.0.035 for the entire study area. Retrospective correction of canopy dynamics with MODIS NDVI brought the errors down to just below 10% of observed data range. The ET estimates produced by the coupled scheme were compared with ones from the MODIS land product suite. The expected r2=0.7 +/-.15 and RMSE = 11.2 +/-.4 mm per 8 days were met and even exceeded by the coupling scheme0 functioning in both prognostic and retrospective modes. Minor setbacks of the EDPM and VegET performance (r2 about 0.5 and additional 30 % of RMSR) were found on the peripheries of the study area and attributed to the insufficient EDPM training and to spatially varying accuracy of crop maps. Overall the experiment provided sufficient evidence of soundness and robustness of the EDPM and

  8. Comparison of SPI and SPEI applicability for drought impact assessment on crop production in the Danubian Lowland and the East Slovakian Lowland

    NASA Astrophysics Data System (ADS)

    Labudová, L.; Labuda, M.; Takáč, J.

    2017-04-01

    Drought belongs among the main impact factors considering crop yields. Therefore, this paper is focused on the assessment of drought occurrence and intensity as well as on its impact on crop yields on the Danubian and the East Slovakian lowlands with the spatial resolution at district level. Yield data were the main limitation of the study, which resulted in the limited length of the assessed period (1996-2013). The standardized yields of ten crops (winter wheat, spring wheat, winter barley, spring barley, rye, maize, potatoes, oilseed rape, sunflower, and sugar beet) were correlated with monthly, 2-, and 3-monthly standardized precipitation index (SPI) and standardized precipitation and evapotranspiration index (SPEI). For this purpose, the common significance level of alpha = 0.05 was used. The temporal evolution of both indices and drought occurrence during the period 1961-2013 were assessed for each district. Most crops show a higher correlation with the SPEI than with the SPI in contrast to potatoes, which reached a higher significant correlation using the SPI. The correlation also increases with increasing number of months within a time step. The highest correlation can be seen between maize and the 3-monthly SPEI in August representing summer precipitation and potential evapotranspiration conditions. Furthermore, a very high correlation was recorded considering sugar beet, which is influenced mainly by summer precipitation, because the correlation coefficient between the sugar beet and the 3-monthly SPI is as high as using the 3-monthly SPEI. Crop yields in the East Slovakian Lowland do not seem to be influenced by wet/dry periods identified using the SPI and the SPEI as their correlation with both indices is quite low and insignificant.

  9. The Implications of Growing Bioenergy Crops on Water Resources, Carbon and Nitrogen Dynamics

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Song, Y.; Kheshgi, H. S.

    2016-12-01

    What is the potential for the crops Corn, Miscanthus and switchgrass to meet future energy demands in the U.S.A., and would they mitigate climate change by offsetting fossil fuel greenhouse gas (GHG) emissions? The large-scale cultivation of these bioenergy crops itself could also drive climate change through changes in albedo, evapotranspiration (ET), and GHG emissions. Whether these climate effects will mitigate or exacerbate climate change in the short- and long-term is uncertain. This uncertainty stems from our incomplete understanding of the effects of expanded bioenergy crop production on terrestrial water and energy balance, carbon and nitrogen dynamics, and their interactions. This study aims to understand the implications of growing large-scale bioenergy crops on water resources, carbon and nitrogen dynamics in the United States using a data-modeling framework (ISAM) that we developed. Our study indicates that both Miscanthus and Cave-in-Rock switchgrass can attain high and stable yield over parts of the Midwest, however, this high production is attained at the cost of increased soil water loss as compared to current natural vegetation. Alamo switchgrass can attain high and stable yield in the southern US without significant influence on soil water quantity.

  10. Crop monitoring & yield forecasting system based on Synthetic Aperture Radar (SAR) and process-based crop growth model: Development and validation in South and South East Asian Countries

    NASA Astrophysics Data System (ADS)

    Setiyono, T. D.

    2014-12-01

    Accurate and timely information on rice crop growth and yield helps governments and other stakeholders adapting their economic policies and enables relief organizations to better anticipate and coordinate relief efforts in the wake of a natural catastrophe. Such delivery of rice growth and yield information is made possible by regular earth observation using space-born Synthetic Aperture Radar (SAR) technology combined with crop modeling approach to estimate yield. Radar-based remote sensing is capable of observing rice vegetation growth irrespective of cloud coverage, an important feature given that in incidences of flooding the sky is often cloud-covered. The system allows rapid damage assessment over the area of interest. Rice yield monitoring is based on a crop growth simulation and SAR-derived key information, particularly start of season and leaf growth rate. Results from pilot study sites in South and South East Asian countries suggest that incorporation of SAR data into crop model improves yield estimation for actual yields. Remote-sensing data assimilation into crop model effectively capture responses of rice crops to environmental conditions over large spatial coverage, which otherwise is practically impossible to achieve. Such improvement of actual yield estimates offers practical application such as in a crop insurance program. Process-based crop simulation model is used in the system to ensure climate information is adequately captured and to enable mid-season yield forecast.

  11. TDR Technique for Estimating the Intensity of Evapotranspiration of Turfgrasses.

    PubMed

    Janik, Grzegorz; Wolski, Karol; Daniel, Anna; Albert, Małgorzata; Skierucha, Wojciech; Wilczek, Andrzej; Szyszkowski, Paweł; Walczak, Amadeusz

    2015-01-01

    The paper presents a method for precise estimation of evapotranspiration of selected turfgrass species. The evapotranspiration functions, whose domains are only two relatively easy to measure parameters, were developed separately for each of the grass species. Those parameters are the temperature and the volumetric moisture of soil at the depth of 2.5 cm. Evapotranspiration has the character of a modified logistic function with empirical parameters. It assumes the form ETR(θ (2.5 cm), T (2.5 cm)) = A/(1 + B · e (-C · (θ (2.5 cm) · T (2.5 cm)), where: ETR(θ (2.5 cm), T (2.5 cm)) is evapotranspiration [mm · h(-1)], θ (2.5 cm) is volumetric moisture of soil at the depth of 2.5 cm [m(3) · m(-3)], T (2.5 cm) is soil temperature at the depth of 2.5 cm [°C], and A, B, and C are empirical coefficients calculated individually for each of the grass species [mm · h(1)], and [-], [(m(3) · m(-3) · °C)(-1)]. The values of evapotranspiration calculated on the basis of the presented function can be used as input data for the design of systems for the automatic control of irrigation systems ensuring optimum moisture conditions in the active layer of lawn swards.

  12. Urban heat island-induced increases in evapotranspirative demand

    NASA Astrophysics Data System (ADS)

    Zipper, Samuel C.; Schatz, Jason; Kucharik, Christopher J.; Loheide, Steven P.

    2017-01-01

    Although the importance of vegetation in mitigating the urban heat island (UHI) is known, the impacts of UHI-induced changes in micrometeorological conditions on vegetation are not well understood. Here we show that plant water requirements are significantly higher in urban areas compared to rural areas surrounding Madison, WI, driven by increased air temperature with minimal effects of decreased air moisture content. Local increases in impervious cover are strongly associated with increased evapotranspirative demand in a consistent manner across years, with most increases caused by elevated temperatures during the growing season rather than changes in changes in growing season length. Potential evapotranspiration is up to 10% higher due to the UHI, potentially mitigating changes to the water and energy balances caused by urbanization. Our results indicate that local-scale land cover decisions (increases in impervious cover) can significantly impact evapotranspirative demand, with likely implications for water and carbon cycling in urban ecosystems.

  13. Non-discharging evapotranspiration bed system for wastewater disposal at Lincoln.

    PubMed

    Balley, P; Dakers, A J

    1996-10-01

    A non-discharging evapotranspiration bed system installed on a dairy farm at Lincoln University was studied to evaluate actual evapotranspiration rate, ET a , to develop and validate a water balance model for the system, and to assess the feasible application of the vaporative concept for wastewater disposal in the immediate geographic area. Observations, measurements, and calculations indicate that ET a was slightly higher than the meteorologically estimated Penman potential ET (ET p ) for the study period, and a ratio λ=ET a /ET p =1.21 was obtained. A water-balance equation of the system which can be used in different climatic conditions was obtained and can be written as ΔW=Q+PPTN-Et a ; where ΔW is the variation of storage water in the bed (in mm), Q is the effluent wastewater (in mm), and PPTN is the total precipitation. It was also observed that a truly non-discharging ET bed system's feasible application in the study location may be highly questionable. This is due to the fact that the precipitation rate for the location generally exceeds the ET p during critical Winter months. However, two possibilities of improving the performance of the system were found and suggested for further studies. The suggestions were (1) to design the system with its surface adequately crowned to shed large amounts of rain water falling on it, and (2) to design a winter-sheltered-non-discharging ET bed which would consist of an ET bed with a removable transparent plastic roof to shed the total amount of rain water and act as a 'green house'

  14. Application of remote sensing in estimating evapotranspiration in the Platte river basin

    NASA Technical Reports Server (NTRS)

    Blad, B. L.; Rosenberg, N. J.

    1976-01-01

    A 'resistance model' and a mass transport model for estimating evapotranspiration (ET) were tested on large fields of naturally subirrigated alfalfa. Both models make use of crop canopy temperature data. Temperature data were obtained with an IR thermometer and with leaf thermocouples. A Bowen ratio-energy balance (BREB) model, adjusted to account for underestimation of ET during periods of strong sensible heat advection, was used as the standard against which the resistance and mass transport models were compared. Daily estimates by the resistance model were within 10% of estimates made by the BREB model. Daily estimates by the mass transport model did not agree quite as well. Performance was good on clear and cloudy days and also during periods of non-advection and strong advection of sensible heat. The performance of the mass transport and resistance models was less satisfactory for estimation of fluxes of latent heat for short term periods. Both models tended to overestimate at low LE fluxes.

  15. Impact of tile drainage on evapotranspiration in South Dakota, USA, based on high spatiotemporal resolution evapotranspiration time series from a multi-satellite data fusion system

    USGS Publications Warehouse

    Yang, Yun; Anderson, Martha C.; Gao, Feng; Hain, Christopher; Kustas, William P.; Meyers, Tilden P.; Crow, Wade; Finocchiaro, Raymond G.; Otkin, Jason; Sun, Liang; Yang, Yang

    2017-01-01

    Soil drainage is a widely used agricultural practice in the midwest USA to remove excess soil water to potentially improve the crop yield. Research shows an increasing trend in baseflow and streamflow in the midwest over the last 60 years, which may be related to artificial drainage. Subsurface drainage (i.e., tile) in particular may have strongly contributed to the increase in these flows, because of its extensive use and recent gain in the popularity as a yield-enhancement practice. However, how evapotranspiration (ET) is impacted by tile drainage on a regional level is not well-documented. To explore spatial and temporal ET patterns and their relationship to tile drainage, we applied an energy balance-based multisensor data fusion method to estimate daily 30-m ET over an intensively tile-drained area in South Dakota, USA, from 2005 to 2013. Results suggest that tile drainage slightly decreases the annual cumulative ET, particularly during the early growing season. However, higher mid-season crop water use suppresses the extent of the decrease of the annual cumulative ET that might be anticipated from widespread drainage. The regional water balance analysis during the growing season demonstrates good closure, with the average residual from 2005 to 2012 as low as -3 mm. As an independent check of the simulated ET at the regional scale, the water balance analysis lends additional confidence to the study. The results of this study improve our understanding of the influence of agricultural drainage practices on regional ET, and can affect future decision making regarding tile drainage systems.

  16. Effects of climate change on evapotranspiration over the Okavango Delta water resources

    NASA Astrophysics Data System (ADS)

    Moses, Oliver; Hambira, Wame L.

    2018-06-01

    In semi-arid developing countries, most poor people depend on contaminated surface or groundwater resources since they do not have access to safe and centrally supplied water. These water resources are threatened by several factors that include high evapotranspiration rates. In the Okavango Delta region in the north-western Botswana, communities facing insufficient centrally supplied water rely mainly on the surface water resources of the Delta. The Delta loses about 98% of its water through evapotranspiration. However, the 2% remaining water rescues the communities facing insufficient water from the main stream water supply. To understand the effects of climate change on evapotranspiration over the Okavango Delta water resources, this study analysed trends in the main climatic parameters needed as input variables in evapotranspiration models. The Mann Kendall test was used in the analysis. Trend analysis is crucial since it reveals the direction of trends in the climatic parameters, which is helpful in determining the effects of climate change on evapotranspiration. The main climatic parameters required as input variables in evapotranspiration models that were of interest in this study were wind speeds, solar radiation and relative humidity. Very little research has been conducted on these climatic parameters in the Okavango Delta region. The conducted trend analysis was more on wind speeds, which had relatively longer data records than the other two climatic parameters of interest. Generally, statistically significant increasing trends have been found, which suggests that climate change is likely to further increase evapotranspiration over the Okavango Delta water resources.

  17. A new reference evapotranspiration surface for the National Water Census community

    NASA Astrophysics Data System (ADS)

    Verdin, J. P.; Hobbins, M. T.; Senay, G. B.

    2012-12-01

    To meet its congressional mandate to provide water managers with accurate, up-to-date, scientifically defensible reporting on the national water cycle—the National Water Census—the USGS has developed a framework for ongoing estimation of actual evapotranspiration (ET) combining both land-based and remotely sensed (R/S) drivers and is transferable to observation-scarce regions. To provide ET at Census-required resolutions (~100-1000 m), we combine (i) an operational, long-term, high-quality, scientific record of reference crop ET (ETrc), (ii) R/S land-surface temperature (LST) and reflectance at finer spatial scales but coarser temporal scales, and (iii) the USDA Annual Cropland Data Layer as a geographic mask for cropped surfaces. Our presentation motivates this new ET framework and describes its ETrc input. The ETrc is generated by the Penman-Monteith equation, driven by hourly, 0.125-degree (~12-km) NLDAS data, from Jan 1, 1979, to within five days of the present. This is the first consistently modeled, daily, continent-wide ETrc dataset that is both up-to-date and as temporally extensive. The R/S component relies on this input to provide an ETrc magnitude at coarse scale relative to the imagery. Remote sensing of LST and/or surface reflectance permits inference of ET as a fraction of ETrc. One such method used by the USGS is the Simplified Surface Energy Balance (SSEB) approach, which adapted the hot and cold pixel approach of SEBAL/METRIC; an operational version (SSEBop) calculates ET-fraction for a given pixel and combines it with ETrc to estimate and map ET on a routine basis with a high degree of consistency at multiple spatial scales. Though these imagery options have limited temporal coverage due to the time between satellite overpasses (1 to 8 days for MODIS, 16 days for Landsat), ET-fraction so derived is stable on such time scales. Thus, as ETrc varies significantly across the diurnal cycle and inter-overpass periods, it is used to track conditions

  18. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity

    NASA Astrophysics Data System (ADS)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Müller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; Khabarov, Nikolay; Olin, Stefan; Schaphoff, Sibyll; Schmid, Erwin; Yang, Hong; Rosenzweig, Cynthia

    2016-08-01

    Rising atmospheric CO2 concentrations ([CO2]) are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[047]%-27[737]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2] across crop and hydrological modelling communities.

  19. Regional Disparities in the Beneficial Effects of Rising CO2 Emissions on Crop Water Productivity

    NASA Technical Reports Server (NTRS)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Meuller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; hide

    2016-01-01

    Rising atmospheric carbon dioxide concentrations are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated carbon dioxide and associated climate change projected for a high-end greenhouse gas emissions scenario. We find carbon dioxide effects increase global CWP by 10[0;47]%-27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rain fed wheat). If realized in the fields, the effects of elevated carbon dioxide could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modeling the effects of rising carbon dioxide across crop and hydrological modeling communities.

  20. Drought monitoring over the Horn of Africa using remotely sensed evapotranspiration, soil moisture and vegetation parameters

    NASA Astrophysics Data System (ADS)

    Timmermans, J.; Gokmen, M.; Eden, U.; Abou Ali, M.; Vekerdy, Z.; Su, Z.

    2012-04-01

    The need to good drought monitoring and management for the Horn of Africa has never been greater. This ongoing drought is the largest in the past sixty years and is effecting the life of around 10 million people, according to the United Nations. The impact of drought is most apparent in food security and health. In addition secondary problems arise related to the drought such as large migration; more than 15000 Somalia have fled to neighboring countries to escape the problems caused by the drought. These problems will only grow in the future to larger areas due to increase in extreme weather patterns due to global climate change. Monitoring drought impact and managing the drought effects are therefore of critical importance. The impact of a drought is hard to characterize as drought depends on several parameters, like precipitation, land use, irrigation. Consequently the effects of the drought vary spatially and range from short-term to long-term. For this reason a drought event can be characterized into four categories: meteorological, agricultural, hydrological and socio-economical. In terms of food production the agricultural drought, or short term dryness near the surface layer, is most important. This drought is usually characterized by low soil moisture content in the root zone, decreased evapotranspiration, and changes in vegetation vigor. All of these parameters can be detected with good accuracy from space. The advantage of remote sensing in Drought monitoring is evident. Drought monitoring is usually performed using drought indices, like the Palmer Index (PDSI), Crop Moisture Index (CMI), Standard Precipitation Index (SPI). With the introduction of remote sensing several indices of these have shown great potential for large scale application. These indices however all incorporate precipitation as the main surface parameter neglecting the response of the surface to the dryness. More recently two agricultural drought indices, the EvapoTranspiration Deficit

  1. Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China

    NASA Astrophysics Data System (ADS)

    Zhao, Wenzhi; Liu, Bing; Chang, Xuexiang; Yang, Qiyue; Yang, Yuting; Liu, Zhiling; Cleverly, James; Eamus, Derek

    2016-07-01

    Partitioning evapotranspiration (ET) into its components reveals details of the processes that underlie ecosystem hydrologic budgets and their feedback to the water cycle. We measured rates of actual evapotranspiration (ETa), canopy transpiration (Tc), soil evaporation (Eg), canopy-intercepted precipitation (EI), and patterns of stomatal conductance of the desert shrub Calligonum mongolicum in northern China to determine the water balance of this ecosystem. The ETa was 251 ± 8 mm during the growing period, while EI, Tc, and Eg accounted for 3.2%, 63.9%, and 31.3%, respectively, of total water use (256 ± 4 mm) during the growing period. In this unique ecosystem, groundwater was the main water source for plant transpiration and soil evaporation, Tc and exceeded 60% of the total annual water used by desert plants. ET was not sensitive to air temperature in this unique desert ecosystem. Partitioning ET into its components improves our understanding of the mechanisms that underlie adaptation of desert shrubs, especially the role of stomatal regulation of Tc as a determinant of ecosystem water balance.

  2. New alternatives for reference evapotranspiration estimation in West Africa using limited weather data and ancillary data supply strategies.

    NASA Astrophysics Data System (ADS)

    Landeras, Gorka; Bekoe, Emmanuel; Ampofo, Joseph; Logah, Frederick; Diop, Mbaye; Cisse, Madiama; Shiri, Jalal

    2018-05-01

    Accurate estimation of reference evapotranspiration ( ET 0 ) is essential for the computation of crop water requirements, irrigation scheduling, and water resources management. In this context, having a battery of alternative local calibrated ET 0 estimation methods is of great interest for any irrigation advisory service. The development of irrigation advisory services will be a major breakthrough for West African agriculture. In the case of many West African countries, the high number of meteorological inputs required by the Penman-Monteith equation has been indicated as constraining. The present paper investigates for the first time in Ghana, the estimation ability of artificial intelligence-based models (Artificial Neural Networks (ANNs) and Gene Expression Programing (GEPs)), and ancillary/external approaches for modeling reference evapotranspiration ( ET 0 ) using limited weather data. According to the results of this study, GEPs have emerged as a very interesting alternative for ET 0 estimation at all the locations of Ghana which have been evaluated in this study under different scenarios of meteorological data availability. The adoption of ancillary/external approaches has been also successful, moreover in the southern locations. The interesting results obtained in this study using GEPs and some ancillary approaches could be a reference for future studies about ET 0 estimation in West Africa.

  3. Connecting Digital Repeat Photography to Ecosystem Fluxes in Inland Pacific Northwest, US Cropping Systems

    NASA Astrophysics Data System (ADS)

    Russell, E.; Chi, J.; Waldo, S.; Pressley, S. N.; Lamb, B. K.; Pan, W.

    2017-12-01

    Diurnal and seasonal gas fluxes vary by crop growth stage. Digital cameras are increasingly being used to monitor inter-annual changes in vegetation phenology in a variety of ecosystems. These cameras are not designed as scientific instruments but the information they gather can add value to established measurement techniques (i.e. eddy covariance). This work combined deconstructed digital images with eddy covariance data from five agricultural sites (1 fallow, 4 cropped) in the inland Pacific Northwest, USA. The data were broken down with respect to crop stage and management activities. The fallow field highlighted the camera response to changing net radiation, illumination, and rainfall. At the cropped sites, the net ecosystem exchange, gross primary production, and evapotranspiration were correlated with the greenness and redness values derived from the images over the growing season. However, the color values do not change quickly enough to respond to day-to-day variability in the flux exchange as the two measurement types are based on different processes. The management practices and changes in phenology through the growing season were not visible within the camera data though the camera did capture the general evolution of the ecosystem fluxes.

  4. TDR Technique for Estimating the Intensity of Evapotranspiration of Turfgrasses

    PubMed Central

    Janik, Grzegorz; Wolski, Karol; Daniel, Anna; Albert, Małgorzata; Wilczek, Andrzej; Szyszkowski, Paweł; Walczak, Amadeusz

    2015-01-01

    The paper presents a method for precise estimation of evapotranspiration of selected turfgrass species. The evapotranspiration functions, whose domains are only two relatively easy to measure parameters, were developed separately for each of the grass species. Those parameters are the temperature and the volumetric moisture of soil at the depth of 2.5 cm. Evapotranspiration has the character of a modified logistic function with empirical parameters. It assumes the form ETR(θ 2.5 cm, T 2.5 cm) = A/(1 + B · e −C·(θ2.5 cm · T2.5 cm)), where: ETR(θ 2.5 cm, T 2.5 cm) is evapotranspiration [mm·h−1], θ 2.5 cm is volumetric moisture of soil at the depth of 2.5 cm [m3·m−3], T 2.5 cm is soil temperature at the depth of 2.5 cm [°C], and A, B, and C are empirical coefficients calculated individually for each of the grass species [mm·h1], and [—], [(m3·m−3·°C)−1]. The values of evapotranspiration calculated on the basis of the presented function can be used as input data for the design of systems for the automatic control of irrigation systems ensuring optimum moisture conditions in the active layer of lawn swards. PMID:26448964

  5. Evapotranspiration information reporting: II. Recommended documentation

    USDA-ARS?s Scientific Manuscript database

    Researchers and journal authors, reviewers, and readers can benefit from more complete documentation of published evapotranspiration (ET) information, including a description of field procedures, instrumentation, data filtering, model parameterization, and site review. This information is important ...

  6. Remote Sensing of Snow and Evapotranspiration

    NASA Technical Reports Server (NTRS)

    Schmugge, T. (Editor)

    1985-01-01

    The use of snowmelt runoff models from both the U.S. and Japan for simulating discharge on basins in both countries is discussed as well as research in snowpack properties and evapotranspiration using remotely sensed data.

  7. Evapotranspiration response to multi-year dry periods in the semi-arid western United States

    NASA Astrophysics Data System (ADS)

    Rungee, J. P., II; Bales, R. C.

    2017-12-01

    Analysis of measured evapotranspiration shows multi-year regolith water storage can support evapotranspiration for years into a multi-year dry period. Measurements at 25 flux-tower sites in the semi-arid western United States, distributed across five primary land-cover types, show both resilience and vulnerability to multi-year dry periods. Average evapotranspiration ranged from about 700+200 mm per water year (October-September) in evergreen needleleaf forests to 350+150 mm per water year in grasslands and open shrublands. On average, in California's Mediterranean climate almost half of the water-year evapotranspiration is supported by seasonal and/or multi-year regolith water storage, compared to a characteristic 20 to 30 percent value of energy-limited and inland sites. Below 35oN latitude, water-year evapotranspiration exceeded estimated precipitation in over half of the years on record. For non-energy-limited sites, water-year evapotranspiration increased with precipitation up to a maximum water-year evapotranspiration value of about 900, 750, 600, 425 and 300 mm per water year for evergreen needleleaf forests, mixed forests, woody savannas, grasslands and open shrublands, respectively. There were 15 multi-year dry periods on record that exhibited either an attenuation in evapotranspiration, defined as an annual value below 80% of the wet-year average, or withdrawal from multi-year storage. A multi-year dry period was defined as three or more consecutive water years in which all water-year precipitation values and the mean period value were in the lower 50 and 35 percent of the historical record, respectively. For sites exhibiting evapotranspiration attenuation, resistance to multi-year dry periods ranged from 9 to 49 months, drafting as much as 444 mm of regolith storage. At some mountain sites regolith storage provided up to 678 mm, almost the equivalent of the average water-year evapotranspiration for these sites, over the extent of the multi-year dry

  8. RIP-ET: A riparian evapotranspiration package for MODFLOW-2005

    USGS Publications Warehouse

    Maddock, Thomas; Baird, Kathryn J.; Hanson, R.T.; Schmid, Wolfgang; Ajami, Hoori

    2012-01-01

    A new evapotranspiration package for the U.S. Geological Survey's groundwater-flow model, MODFLOW, is documented. The Riparian Evapotranspiration Package (RIP-ET) provides flexibility in simulating riparian and wetland transpiration not provided by the Evapotranspiration (EVT) or Segmented Function Evapotranspiration (ETS1) Packages for MODFLOW 2005. This report describes how the RIP-ET package was conceptualized and provides input instructions, listings and explanations of the source code, and an example. Traditional approaches to modeling evapotranspiration (ET) processes assume a piecewise linear relationship between ET flux and hydraulic head. The RIP-ET replaces this traditional relationship with a segmented, nonlinear dimensionless curve that reflects the eco-physiology of riparian and wetland ecosystems. Evapotranspiration losses from these ecosystems are dependent not only on hydraulic head, but on the plant types present. User-defined plant functional groups (PFGs) are used to elucidate the interaction between plant transpiration and groundwater conditions. Five generalized plant functional groups based on transpiration rates, plant rooting depth, and water tolerance ranges are presented: obligate wetland, shallow-rooted riparian, deep-rooted riparian, transitional riparian and bare ground/open water. Plant functional groups can be further divided into subgroups (PFSGs) based on plant size, density or other characteristics. The RIP-ET allows for partial habitat coverage and mixtures of plant functional subgroups to be present in a single model cell. RIP-ET also distinguishes between plant transpiration and bare-ground evaporation. Habitat areas are designated by polygons; each polygon can contain a mixture of PFSGs and bare ground, and is assigned a surface elevation. This process requires a determination of fractional coverage for each of the plant functional subgroups present in a polygon to account for the mixture of coverage types and resulting

  9. Towards a globally optimized crop distribution: Integrating water use, nutrition, and economic value

    NASA Astrophysics Data System (ADS)

    Davis, K. F.; Seveso, A.; Rulli, M. C.; D'Odorico, P.

    2016-12-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. In order for food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for `sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing sustainable production has not been considered to date. To this end, we ask: Is it possible to increase crop production and economic value while minimizing water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of yields and evapotranspiration for 14 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine the potential improvements in calorie (+12%) and protein (+51%) production, economic output (+41%) and water demand (-5%). This approach can also incorporate the impact of future climate on cropland suitability, and as such, be used to provide optimized cropping patterns under climate change. Thus, our study provides a novel tool towards achieving sustainable intensification that can be used to recommend optimal crop distributions in the face of a changing climate while simultaneously accounting for food security, freshwater resources, and livelihoods.

  10. Rainfall and evapotranspiration data for southwest Medina County, Texas, August 2006-December 2009

    USGS Publications Warehouse

    Slattery, Richard N.; Asquith, William H.; Ockerman, Darwin J.

    2011-01-01

    During August 2006-December 2009, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, Fort Worth District, collected rainfall and evapotranspiration data to help characterize the hydrology of the Nueces River Basin, Texas. The USGS installed and operated a station to collect continuous (30-minute interval) rainfall and evapotranspiration data in southwest Medina County approximately 14 miles southwest of D'Hanis, Texas, and 23 miles northwest of Pearsall, Texas. Rainfall data were collected by using an 8-inch tipping bucket raingage. Meteorological and surface-energy flux data used to calculate evapotranspiration were collected by using an extended Open Path Eddy Covariance system from Campbell Scientific, Inc. Data recorded by the system were used to calculate evapotranspiration by using the eddy covariance and Bowen ratio closure methods and to analyze the surface energy budget closure. During August 2006-December 2009 (excluding days of missing record), measured rainfall totaled 86.85 inches. In 2007, 2008, and 2009, annual rainfall totaled 40.98, 12.35, and 27.15 inches, respectively. The largest monthly rainfall total, 12.30 inches, occurred in July 2007. During August 2006-December 2009, evapotranspiration calculated by using the eddy covariance method totaled 69.91 inches. Annual evapotranspiration calculated by using the eddy covariance method totaled 34.62 inches in 2007, 15.24 inches in 2008, and 15.57 inches in 2009. During August 2006-December 2009, evapotranspiration calculated by using the Bowen ratio closure method (the more refined of the two datasets) totaled 68.33 inches. Annual evapotranspiration calculated by using the Bowen ratio closure method totaled 32.49, 15.54, and 15.80 inches in 2007, 2008, and 2009, respectively (excluding days of missing record).

  11. Changes in rainfed and irrigated crop yield response to climate in the western US

    NASA Astrophysics Data System (ADS)

    Li, X.; Troy, T. J.

    2018-06-01

    As the global population increases and the climate changes, ensuring a secure food supply is increasingly important. One strategy is irrigation, which allows for crops to be grown outside their optimal climate growing regions and which buffers against climate variability. Although irrigation is a positive climate adaptation mechanism for agriculture, it has a potentially negative effect on water resources as it can lead to groundwater depletion and diminished surface water supplies. This study quantifies how crop yields are affected by climate variability and extremes and the impact of irrigation on crop yield increases under various growing-season climate conditions. To do this, we use historical climate data and county-level rainfed and irrigated crop yields for maize, soybean, winter and spring wheat over the US to analyze the relationship between climate, crop yields, and irrigation. We find that there are optimal climates, specific to each crop, where irrigation provides a benefit and other conditions where irrigation proves to have marginal, if any, benefits. Furthermore, the relationship between crop yields and climate has changed over the last decades, with a changing sensitivity in the relationship of soybean and winter wheat yields to certain climate variables, like crop reference evapotranspiration. These two conclusions have important implications for agricultural and water resource system planning, as it implies there are more optimal climate conditions where irrigation is particularly productive and regions where irrigation should be reconsidered as there is not a significant agricultural benefit and the water could be used more productively.

  12. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S.

    2017-02-01

    Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m3. The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater.

  13. Predicting the Affects of Climate Change on Evapotranspiration and Agricultural Productivity of Semi-arid Basins

    NASA Astrophysics Data System (ADS)

    Peri, L.; Tyler, S. W.; Zheng, C.; Pohll, G. M.; Yao, Y.

    2013-12-01

    Many arid and semi-arid regions around the world are experiencing water shortages that have become increasingly problematic. Since the late 1800s, upstream diversions in Nevada's Walker River have delivered irrigation supply to the surrounding agricultural fields resulting in a dramatic water level decline of the terminal Walker Lake. Salinity has also increased because the only outflow from the lake is evaporation from the lake surface. The Heihe River basin of northwestern China, a similar semi-arid catchment, is also facing losses from evaporation of terminal locations, agricultural diversions and evapotranspiration (ET) of crops. Irrigated agriculture is now experiencing increased competition for use of diminishing water resources while a demand for ecological conservation continues to grow. It is important to understand how the existing agriculture in these regions will respond as climate changes. Predicting the affects of climate change on groundwater flow, surface water flow, ET and agricultural productivity of the Walker and Heihe River basins is essential for future conservation of water resources. ET estimates from remote sensing techniques can provide estimates of crop water consumption. By determining similarities of both hydrologic cycles, critical components missing in both systems can be determined and predictions of impacts of climate change and human management strategies can be assessed.

  14. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area

    PubMed Central

    Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S.

    2017-01-01

    Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m3. The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater. PMID:28220874

  15. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area.

    PubMed

    Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S

    2017-02-21

    Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m 3 . The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater.

  16. Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation

    PubMed Central

    Verstraeten, Willem W.; Veroustraete, Frank; Feyen, Jan

    2008-01-01

    The proper assessment of evapotranspiration and soil moisture content are fundamental in food security research, land management, pollution detection, nutrient flows, (wild-) fire detection, (desert) locust, carbon balance as well as hydrological modelling; etc. This paper takes an extensive, though not exhaustive sample of international scientific literature to discuss different approaches to estimate land surface and ecosystem related evapotranspiration and soil moisture content. This review presents: (i)a summary of the generally accepted cohesion theory of plant water uptake and transport including a shortlist of meteorological and plant factors influencing plant transpiration;(ii)a summary on evapotranspiration assessment at different scales of observation (sap-flow, porometer, lysimeter, field and catchment water balance, Bowen ratio, scintillometer, eddy correlation, Penman-Monteith and related approaches);(iii)a summary on data assimilation schemes conceived to estimate evapotranspiration using optical and thermal remote sensing; and(iv)for soil moisture content, a summary on soil moisture retrieval techniques at different spatial and temporal scales is presented. Concluding remarks on the best available approaches to assess evapotranspiration and soil moisture content with and emphasis on remote sensing data assimilation, are provided. PMID:27879697

  17. Analytical solutions of travel time to a pumping well with variable evapotranspiration.

    PubMed

    Chen, Tian-Fei; Wang, Xu-Sheng; Wan, Li; Li, Hailong

    2014-01-01

    Analytical solutions of groundwater travel time to a pumping well in an unconfined aquifer have been developed in previous studies, however, the change in evapotranspiration was not considered. Here, we develop a mathematical model of unconfined flow toward a discharge well with redistribution of groundwater evapotranspiration for travel time analysis. Dependency of groundwater evapotranspiration on the depth to water table is described using a linear formula with an extinction depth. Analytical solutions of groundwater level and travel time are obtained. For a typical hypothetical example, these solutions perfectly agree with the numerical simulation results based on MODFLOW and MODPATH. As indicated in a dimensionless framework, a lumped parameter which is proportional to the pumping rate controls the distributions of groundwater evapotranspiration rate and the travel time along the radial direction. © 2013, National Ground Water Association.

  18. Deriving Daily Time Series Evapotranspiration, Evaporation and Transpiration Maps With Landsat Data

    NASA Astrophysics Data System (ADS)

    Paul, G.; Gowda, P. H.; Marek, T.; Xiao, X.; Basara, J. B.

    2014-12-01

    Mapping high resolution evapotranspiration (ET) over large region at daily time step is complex and computationally intensive. Utility of high resolution daily ET maps are large ranging from crop water management to watershed management. The aim of this work is to generate daily time series (10 years) ET and its components vegetation transpiration (T) and soil water evaporation (E) maps using Landsat 5 satellite data for Southern Great Plains forage-rangeland-winter wheat production system in Oklahoma (OK). Framework for generating these products included the two source energy balance (TSEB) algorithm and other important features were: (a) atmospheric correction algorithm; (b) spatially interpolated weather inputs; (c) functions for varying Priestley-Taylor coefficient; and (d) ET, E and T extrapolating algorithm utilizing reference ET. An extensive network of 140 weather stations managed by Oklahoma Mesonet was utilized to generate spatially interpolated inputs of air temperature, relative humidity, wind speed, solar radiation, pressure, and reference ET. Validation of the ET maps were done against eddy covariance data from two grassland sites at El Reno, OK suggested good performance (Table 1). Figure 1 illustrates a daily ET map for a very small subset of 18thJuly 2006 ET map, where difference in ET among different land uses such as the irrigated cropland, vegetation along drainage, and grassland is very distinct. Results indicated that the proposed ET mapping framework is suitable for deriving high resolution time series daily ET maps at regional scale with Landsat Thematic Mapper data. . Table 1: Daily actual ET performance statistics for two grassland locations at El Reno OK for year 2005 . Management Type Mean (obs) (mm d-1) Mean (est) (mm d-1) MBE (mm d-1) % MBE (%) RMSE (mm d-1) RMSE (%) MAE (mm d-1) MAPD (%) NSE R2 Control 2.2 1.8 -0.43 -19.4 0.87 38.9 0.65 29.5 0.71 0.79 Burnt 2.0 1.8 -0.15 -7.7 0.80 39.8 0.62 30.7 0.73 0.77

  19. Historical effects of CO2 and climate trends on global crop water demand

    NASA Astrophysics Data System (ADS)

    Urban, Daniel W.; Sheffield, Justin; Lobell, David B.

    2017-12-01

    A critical question for agricultural production and food security is how water demand for staple crops will respond to climate and carbon dioxide (CO2) changes1, especially in light of the expected increases in extreme heat exposure2. To quantify the trade-offs between the effects of climate and CO2 on water demand, we use a `sink-strength' model of demand3,4 which relies on the vapour-pressure deficit (VPD), incident radiation and the efficiencies of canopy-radiation use and canopy transpiration; the latter two are both dependent on CO2. This model is applied to a global data set of gridded monthly weather data over the cropping regions of maize, soybean, wheat and rice during the years 1948-2013. We find that this approach agrees well with Penman-Monteith potential evapotranspiration (PM) for the C3 crops of soybean, wheat and rice, where the competing CO2 effects largely cancel each other out, but that water demand in maize is significantly overstated by a demand measure that does not include CO2, such as the PM. We find the largest changes in wheat, for which water demand has increased since 1981 over 86% of the global cropping area and by 2.3-3.6 percentage points per decade in different regions.

  20. Evapotranspiration from a cypress and pine forest subjected to natural fires, Volusia County, Florida, 1998-99

    USGS Publications Warehouse

    Sumner, D.M.

    2001-01-01

    Daily values of evapotranspiration from a watershed in Volusia County, Florida, were estimated for a 2-year period (January 1998 through December 1999) by using an energy-budget variant of the eddy correlation method and a Priestley-Taylor model. The watershed consisted primarily of pine flatwood uplands interspersed within cypress wetlands. A drought-induced fire in spring 1998 burned about 40 percent of the watershed, most of which was subsequently logged. The model reproduced the 449 measured values of evapotranspiration reasonably well (r2=0.90) over a wide range of seasonal and surface-cover conditions. Annual evapotranspiration from the watershed was estimated to be 916 millimeters (36 inches) for 1998 and 1,070 millimeters (42 inches) for 1999. Evapotranspiration declined from near potential rates in the wet conditions of January 1998 to less than 50 percent of potential evapotranspiration after the fire and at the peak of the drought in June 1998. After the drought ended in early July 1998 and water levels returned to near land-surface, evapotranspiration increased sharply; however, the evapotranspiration rate was only about 60 percent of the potential rate in the burned areas, compared to about 90 percent of the potential rate in the unburned areas. This discrepancy can be explained as a result of fire damage to vegetation. Beginning in spring 1999, evapotranspiration from burned areas increased sharply relative to unburned areas, sometimes exceeding unburned evapotranspiration by almost 100 percent. Possible explanations for the dramatic increase in evapotranspiration from burned areas could include phenological changes associated with maturation or seasonality of plants that emerged after the fire or successional changes in composition of plant community within burned areas. Variations in daily evapotranspiration are primarily the result of variations in surface cover, net radiation, photosynthetically active radiation, air temperature, and water

  1. Irrigation Trials for ET Estimation and Water Management in California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Martin, F.; Lund, C.; Melton, F. S.

    2012-12-01

    Accurate estimation of crop evapotranspiration (ETc) can support efficient irrigation water management, which in turn brings benefits including surface water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality assurance. Past research in California has revealed strong relationships between canopy fractional cover (Fc) and ETc of certain specialty crops, while additional research has shown the potential of monitoring Fc by satellite remote sensing. California's Central Coast is the leading region of cool season vegetable production in the U.S. Monterey County alone produces more than 80,000 ha of lettuce and broccoli (about half of U.S. production), valued at $1.5 billion in 2009. Under this study, we are conducting ongoing irrigation trials on these crops at the USDA Agricultural Research Station (Salinas) to compare irrigation scheduling via plant-based ETc approaches, by way of Fc, with current industry standard-practice. The following two monitoring approaches are being evaluated - 1) a remote sensing model employed by NASA's prototype Satellite Irrigation Management System, and 2) an online irrigation scheduling tool, CropManage, recently developed by U.C. Cooperative Extension. Both approaches utilize daily grass-reference ETo data as provided by the California Irrigation Management Irrigation System (CIMIS). A sensor network is deployed to monitor applied irrigation, volumetric soil water content, soil water potential, deep drainage, and standard meteorologic variables in order to derive ETc by a water balance approach. Evaluations of crop yield and crop quality are performed by the research team and by commercial growers. Initial results to-date indicate that applied water reductions based on Fc measurements are possible with little-to-no impact on yield of crisphead lettuce (Lactuca sativa). Additional results for both lettuce and broccoli trials, conducted during summer-fall 2012, are presented with respect to

  2. Estimating Agricultural Water Use using the Operational Simplified Surface Energy Balance Evapotranspiration Estimation Method

    NASA Astrophysics Data System (ADS)

    Forbes, B. T.

    2015-12-01

    Due to the predominantly arid climate in Arizona, access to adequate water supply is vital to the economic development and livelihood of the State. Water supply has become increasingly important during periods of prolonged drought, which has strained reservoir water levels in the Desert Southwest over past years. Arizona's water use is dominated by agriculture, consuming about seventy-five percent of the total annual water demand. Tracking current agricultural water use is important for managers and policy makers so that current water demand can be assessed and current information can be used to forecast future demands. However, many croplands in Arizona are irrigated outside of areas where water use reporting is mandatory. To estimate irrigation withdrawals on these lands, we use a combination of field verification, evapotranspiration (ET) estimation, and irrigation system qualification. ET is typically estimated in Arizona using the Modified Blaney-Criddle method which uses meteorological data to estimate annual crop water requirements. The Modified Blaney-Criddle method assumes crops are irrigated to their full potential over the entire growing season, which may or may not be realistic. We now use the Operational Simplified Surface Energy Balance (SSEBop) ET data in a remote-sensing and energy-balance framework to estimate cropland ET. SSEBop data are of sufficient resolution (30m by 30m) for estimation of field-scale cropland water use. We evaluate our SSEBop-based estimates using ground-truth information and irrigation system qualification obtained in the field. Our approach gives the end user an estimate of crop consumptive use as well as inefficiencies in irrigation system performance—both of which are needed by water managers for tracking irrigated water use in Arizona.

  3. An overview of the Central Queensland University self-contained evapotranspiration beds.

    PubMed

    Kele, B; Midmore, D J; Harrower, K; McKennariey, B J; Hood, B

    2005-01-01

    The Central Queensland University (CQU) has championed a self-contained concrete lined evapotranspiration channel. Any non-transpired effluent returns to a holding tank and is recirculated through the evapotranspiration channel until it is used. This paper examines the results from the Rockhampton trial site. Nutrient ions in the effluent were quantified over time and found not to accumulate in solution. Microbial analysis of the treated effluent was performed and was found to be within the ranges required by the relevant legislative codes. Citrus fruit grown in the evapotranspiration channel were sampled and no elevated levels of faecal coliforms were recorded. Macronutrients and micronutrients of the soil in the channels were measured over a 5-year period. No toxic accumulations or nutrient deficiencies in the soil occurred. Levels of salinity and sodicity in the evapotranspiration channel soil were quantified. Salinity rose slightly, as did sodium. Concentrations of salts and sodium did not reach unsustainable levels. The aim of the trial was to develop an on-site treatment and reuse system that is sustainable and protects public and environmental health.

  4. Evapotranspiration from two peatland watersheds

    Treesearch

    Roger R. Bay

    1968-01-01

    Measurements of precipitation, runoff, and bog water table levels have provided data for the calculation of evapotranspiration from two forested peatland watersheds near Grand Rapids, Minnesota (ca. 47? 32'N, 93? 28'W). Continuous hydrologie records were collected on one experimental bog for 6 years (1961-1966) and on the other for the past 2 years (1965-1966...

  5. Ecological restoration of groundwater-dependent vegetation in the arid Ejina Delta: evidences from satellite evapotranspiration

    NASA Astrophysics Data System (ADS)

    Kai, Lu; Garcia, Monica; Yu, Jingjie; Zhang, Yichi; Wang, Ping; Wang, Sheng; Liu, Xiao

    2017-04-01

    The ecological water conveyance project (EWCP) in the Ejina delta, a typical hyper-arid area of China, aimed to restore degraded phreatophytic ecosystems. We assessed the degree of ecosystem recovery using as an ecohydrological indicator a ratio between actual and potential evapotranspiration derived from MODIS since the beginning of the project in 2001. The selected indicator was the Temperature Vegetation Dryness Index (TVDI) which was validated with Eddy covariance (EC) data confirming its applicability to monitor groundwater dependent vegetation. The spatial analyses of the evapotranspiration ratio show drying trends (2000-2015) which are stronger and also cover larger extensions than the wetting trends. Thus, the condition of key riparian areas relying mostly on surface water improved since the project began. However, groundwater dependent ecosystems located in lower river Xihe reaches present drying trends. It seems that despite of the runoff supplemented by the EWCP project, there is nowadays more inequality in the access to water by groundwater dependent ecosystems in the Ejina Delta. The study shows that energy-evaporation indices, relying on radiometric satellite temperature like the TVDI, can detect degradation signals that otherwise might go undetected by NDVI analyses especially in arid regions, where vegetation indices are greatly affected by the soil background signals. Additionally, they can provide timely information to water managers on how much water to allocate for a sustainable restoration program.

  6. Emulation of recharge and evapotranspiration processes in shallow groundwater systems

    NASA Astrophysics Data System (ADS)

    Doble, Rebecca C.; Pickett, Trevor; Crosbie, Russell S.; Morgan, Leanne K.; Turnadge, Chris; Davies, Phil J.

    2017-12-01

    In shallow groundwater systems, recharge and evapotranspiration are highly sensitive to changes in the depth to water table. To effectively model these fluxes, complex functions that include soil and vegetation properties are often required. Model emulation (surrogate modelling or meta-modelling) can provide a means of incorporating detailed conceptualisation of recharge and evapotranspiration processes, while maintaining the numerical tractability and computational performance required for regional scale groundwater models and uncertainty analysis. A method for emulating recharge and evapotranspiration processes in groundwater flow models was developed, and applied to the South East region of South Australia and western Victoria, which is characterised by shallow groundwater, wetlands and coastal lakes. The soil-vegetation-atmosphere transfer (SVAT) model WAVES was used to generate relationships between net recharge (diffuse recharge minus evapotranspiration from groundwater) and depth to water table for different combinations of climate, soil and land cover types. These relationships, which mimicked previously described soil, vegetation and groundwater behaviour, were combined into a net recharge lookup table. The segmented evapotranspiration package in MODFLOW was adapted to select values of net recharge from the lookup table depending on groundwater depth, and the climate, soil and land use characteristics of each cell. The model was found to be numerically robust in steady state testing, had no major increase in run time, and would be more efficient than tightly-coupled modelling approaches. It made reasonable predictions of net recharge and groundwater head compared with remotely sensed estimates of net recharge and a standard MODFLOW comparison model. In particular, the method was better able to predict net recharge and groundwater head in areas with steep hydraulic gradients.

  7. Effects of daily precipitation and evapotranspiration patterns on flow and VOC transport to groundwater along a watershed flow path

    USGS Publications Warehouse

    Johnson, Richard L.; Thoms, R.B.; Zogorski, J.S.

    2003-01-01

    MTBE and other volatile organic compounds (VOCs) are widely observed in shallow groundwater in the United States, especially in urban areas. Previous studies suggest that the atmosphere and/or nonpoint surficial sources could be responsible for some of those VOCs, especially in areas where there is net recharge to groundwater. However, in semi-arid locations where annual potential evapotranspiration can exceed annual precipitation, VOC detections in groundwater can be frequent. VOC transport to groundwater under net discharge conditions has not previously been examined. A numerical model is used here to demonstrate that daily precipitation and evapotranspiration (ET) patterns can have a significant effect on recharge to groundwater, water table elevations, and VOC transport. Ten-year precipitation/ET scenarios from six sites in the United States are examined using both actual daily observed values and “average” pulsed precipitation. MTBE and tetrachloroethylene transport, including gas-phase diffusion, are considered. The effects of the precipitation/ET scenarios on net recharge and groundwater flow are significant and complicated, especially under low-precipitation conditions when pulsed precipitation can significantly underestimate transport to groundwater. In addition to precipitation and evapotranspiration effects, location of VOC entry into the subsurface within the watershed is important for transport in groundwater. This is caused by groundwater hydraulics at the watershed scale as well as variations in ET within the watershed. The model results indicate that it is important to consider both daily precipitation/ET patterns and location within the watershed in order to interpret VOC occurrence in groundwater, especially in low-precipitation settings.

  8. Comparing different methods for determining forest evapotranspiration and its components at multiple temporal scales.

    PubMed

    Tie, Qiang; Hu, Hongchang; Tian, Fuqiang; Holbrook, N Michele

    2018-08-15

    Accurately estimating forest evapotranspiration and its components is of great importance for hydrology, ecology, and meteorology. In this study, a comparison of methods for determining forest evapotranspiration and its components at annual, monthly, daily, and diurnal scales was conducted based on in situ measurements in the subhumid mountainous forest of North China. The goal of the study was to evaluate the accuracies and reliabilities of the different methods. The results indicate the following: (1) The sap flow upscaling procedure, taking into account diversities in forest types and tree species, produced component-based forest evapotranspiration estimate that agreed with eddy covariance-based estimate at the temporal scales of year, month, and day, while soil water budget-based forest evapotranspiration estimate was also qualitatively consistent with eddy covariance-based estimate at the daily scale; (2) At the annual scale, catchment water balance-based forest evapotranspiration estimate was significantly higher than eddy covariance-based estimate, which might probably result from non-negligible subsurface runoff caused by the widely distributed regolith and fractured bedrock under the ground; (3) At the sub-daily scale, the diurnal course of sap flow based-canopy transpiration estimate lagged significantly behind eddy covariance-based forest evapotranspiration estimate, which might physiologically be due to stem water storage and stem hydraulic conductivity. The results in this region may have much referential significance for forest evapotranspiration estimation and method evaluation in regions with similar environmental conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Estimating yield gaps at the cropping system level.

    PubMed

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  10. Impact Assessment of Salinization Affected Soil on Greenhouse Crops using SALTMED

    NASA Astrophysics Data System (ADS)

    Pappa, Polyxeni; Daliakopoulos, Ioannis; Tsanis, Ioannis; Varouchakis, Emmanouil

    2015-04-01

    Here we assess the effects of soil salinization on greenhouse crops and the potential benefits of rainwater harvesting as a soil amelioration technology. The study deals with the following scenarios: (a) variation of irrigation water salinity from 3,000 μS/cm to 500 μS/cm through mixing with rainwater, (b) crop substitution for increased tolerance and (c) climatic variability to account for the impact of climate change. In order to draw meaningful conclusions, a model that takes into account vegetation interaction, soil, irrigation water and climate variables is required. The SALTMED model is a reliable and tested physical process model that simulates evapotranspiration, plant water uptake, water and solute transport to estimate crop yield and biomass production under all irrigation systems. SALTMED is tested with the above scenarios in the RECARE FP7 Project Case Study of Timpaki, in the Island of Crete, Greece. Simulations are conducted for typical cultivations of Solanum lycopersicum, Capsicum anuumm and Solanum melongena. Preliminary results indicate the optimal combination from a set of solutions concerning the soil and water parameters can be beneficial against the salinization threat. Future research includes the validation of the results with field experiments. Keywords: salinization, greenhouse, tomato, SALTMED, rainwater, RECARE

  11. Effects of Land Use Change for Crops on Water and Carbon Budgets in the Midwest USA

    DOE PAGES

    Sun, Jian; Twine, Tracy; Hill, Jason; ...

    2017-02-07

    By increasing the demand for food and bioenergy, the global landscape has altered dramatically in recent years. Land use and land cover change affects the environmental system in many ways through biophysical and biogeochemical mechanisms. Here, we evaluate the impacts of land use and land cover change driven by recent crop expansion and conversion on the water budget, carbon exchange, and carbon storage in the Midwest USA. A dynamic global vegetation model was used to simulate and examine the impacts of landscape change in a historical case based on crop distribution data from the United States Department of Agriculture Nationalmore » Agricultural Statistics Services. Furthermore, the simulation results indicate that recent crop expansion not only decreased soil carbon sequestration (60 Tg less of soil organic carbon) and net carbon flux into ecosystems (3.7 Tg • year -1 less of net biome productivity), but also lessened water consumption through evapotranspiration (1.04 x 10 10 m 3 • year -1 less) over 12 states in the Midwest. More water yield at the land surface does not necessarily make more water available for vegetation. Crop residue removal might also exacerbate the soil carbon loss.« less

  12. Effects of Land Use Change for Crops on Water and Carbon Budgets in the Midwest USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jian; Twine, Tracy; Hill, Jason

    By increasing the demand for food and bioenergy, the global landscape has altered dramatically in recent years. Land use and land cover change affects the environmental system in many ways through biophysical and biogeochemical mechanisms. Here, we evaluate the impacts of land use and land cover change driven by recent crop expansion and conversion on the water budget, carbon exchange, and carbon storage in the Midwest USA. A dynamic global vegetation model was used to simulate and examine the impacts of landscape change in a historical case based on crop distribution data from the United States Department of Agriculture Nationalmore » Agricultural Statistics Services. Furthermore, the simulation results indicate that recent crop expansion not only decreased soil carbon sequestration (60 Tg less of soil organic carbon) and net carbon flux into ecosystems (3.7 Tg • year -1 less of net biome productivity), but also lessened water consumption through evapotranspiration (1.04 x 10 10 m 3 • year -1 less) over 12 states in the Midwest. More water yield at the land surface does not necessarily make more water available for vegetation. Crop residue removal might also exacerbate the soil carbon loss.« less

  13. Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 2: Application of Equilibrium Evaporation Model to Estimate Evapotranspiration by Remote Sensing Technique. [Japan

    NASA Technical Reports Server (NTRS)

    Kotoda, K.; Nakagawa, S.; Kai, K.; Yoshino, M. M.; Takeda, K.; Seki, K.

    1985-01-01

    In a humid region like Japan, it seems that the radiation term in the energy balance equation plays a more important role for evapotranspiration then does the vapor pressure difference between the surface and lower atmospheric boundary layer. A Priestley-Taylor type equation (equilibrium evaporation model) is used to estimate evapotranspiration. Net radiation, soil heat flux, and surface temperature data are obtained. Only temperature data obtained by remotely sensed techniques are used.

  14. Investigation on the Reference Evapotranspiration Distribution at Regional Scale By Alternative Methods to Compute the FAO Penman-Monteith Equation

    NASA Astrophysics Data System (ADS)

    Snyder, R. L.; Mancosu, N.; Spano, D.

    2014-12-01

    This study derived the summer (June-August) reference evapotranspiration distribution map for Sardinia (Italy) based on weather station data and use of the geographic information system (GIS). A modified daily Penman-Monteith equation from the Food and Agriculture Organization of the United Nations (UN-FAO) and the American Society of Civil Engineers Environmental and Water Resources Institute (ASCE-EWRI) was used to calculate the Standardized Reference Evapotranspiration (ETos) for all weather stations having a "full" set of required data for the calculations. For stations having only temperature data (partial stations), the Hargreaves-Samani equation was used to estimate the reference evapotranspiration for a grass surface (ETo). The ETos and ETo results were different depending on the local climate, so two methods to estimate ETos from the ETo were tested. Substitution of missing solar radiation, wind speed, and humidity data from a nearby station within a similar microclimate was found to give better results than using a calibration factor that related ETos and ETo. Therefore, the substitution method was used to estimate ETos at "partial" stations having only temperature data. The combination of 63 full and partial stations was sufficient to use GIS to map ETos for Sardinia. Three interpolation methods were studied, and the ordinary kriging model fitted the observed data better than a radial basis function or the inverse distance weighting method. Using station data points to create a regional map simplified the zonation of ETos when large scale computations were needed. Making a distinction based on ETos classes allows the simulation of crop water requirements for large areas and it can potentially lead to improved irrigation management and water savings. It also provides a baseline to investigate possible impact of climate change.

  15. Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California; with a section on estimating evapotranspiration using the energy-budget eddy-correlation technique

    USGS Publications Warehouse

    Czarnecki, John B.; Stannard, David I.

    1997-01-01

    Franklin Lake playa is one of the principal discharge areas of the ground-water-flow system associated with Yucca Mountain, Nevada, the potential site of a high-level nuclear-waste repository. By using the energy-budget eddy-correlation technique, measurements made between June 1983 and April 1984 to estimate evapotranspiration were found to range from 0.1 centimeter per day during winter months to about 0.3 centimeter per day during summer months; the annual average was 0.16 centimeter per day. These estimates were compared with evapotranspiration estimates calculated from six other methods.

  16. Energy crops on landfills: functional, environmental, and costs analysis of different landfill configurations.

    PubMed

    Pivato, Alberto; Garbo, Francesco; Moretto, Marco; Lavagnolo, Maria Cristina

    2018-02-09

    The cultivation of energy crops on landfills represents an important challenge for the near future, as the possibility to use devalued sites for energy production is very attractive. In this study, four scenarios have been assessed and compared with respect to a reference case defined for northern Italy. The scenarios were defined taking into consideration current energy crops issues. In particular, the first three scenarios were based on energy maximisation, phytotreatment ability, and environmental impact, respectively. The fourth scenario was a combination of these characteristics emphasised by the previous scenarios. A multi-criteria analysis, based on economic, energetic, and environmental aspects, was performed. From the analysis, the best scenario resulted to be the fourth, with its ability to pursue several objectives simultaneously and obtain the best score relatively to both environmental and energetic criteria. On the contrary, the economic criterion emerges as weak, as all the considered scenarios showed some limits from this point of view. Important indications for future designs can be derived. The decrease of leachate production due to the presence of energy crops on the top cover, which enhances evapotranspiration, represents a favourable but critical aspect in the definition of the results.

  17. [Effects of marshland reclamation on evapotranspiration in the Sanjiang Plain].

    PubMed

    Jia, Zhi-jun; Zhang, Wen; Huang, Yao; Zhao, Xiao-song; Song, Chang-chun

    2010-04-01

    Extensive reclamation of marshland into cropland has had tremendous effects on the ecological environment in the Sanjiang Plain. Observations over marshland, rice paddy and soybean field were made with eddy covariance measuring systems from May to October in 2005, 2006 and 2007. The objective of this study was to identify the effects of the conversion of marshland to cropland on evapotranspiration in the Sanjiang Plain. The results showed that the diurnal variation curves of latent heat flux were single peaked in marshland, rice paddy and soybean field. The daily maximum latent heat flux increased by 14%-130% in rice paddy in the three measuring years, however, in soybean field, it increased by 3%-77% in 2006 but decreased by 25%-40% in 2005 and 2007 by comparison with that in marshland. This difference was due to the change of leaf area index when marshland was reclaimed into cropland. Seasonal change of latent heat flux was identical for the three land use types. Daily averaged latent heat flux of rice paddy, from May to October, showed 38%-53% increase compared with that of marshland, which resulted from the increase in net radiation and leaf area index. When marshland was reclaimed into soybean field, the variation of daily averaged latent heat flux depended primarily on precipitation. Precipitation was the main factor that controlled evapotranspiration over soybean field which was usually in condition of soil water deficit. Drought caused 11%-17% decrease of daily averaged latent heat flux over soybean field in 2005 and 2007, while sufficient precipitation caused 22% increase in 2006, comparing to marshland. Similarly, during the growing season from June to September, total evapotranspiration of rice paddy increased by 24%-51% compared with that of marshland, and the total evapotranspiration of soybean field decreased by 19%-23% in 2005 and 2007 and increased by 19% in 2006. It is concluded that the evapotranspiration changes significantly when the marshland

  18. Investigation of Water Dynamics and the Effect of Evapotranspiration on Grain Yield of Rainfed Wheat and Barley under a Mediterranean Environment: A Modelling Approach

    PubMed Central

    Zhang, Kefeng; Bosch-Serra, Angela D.; Boixadera, Jaume; Thompson, Andrew J.

    2015-01-01

    Agro-hydrological models have increasingly become useful and powerful tools in optimizing water and fertilizer application, and in studying the environmental consequences. Accurate prediction of water dynamics in such models is essential for models to produce reasonable results. In this study, detailed simulations were performed for water dynamics of rainfed winter wheat and barley grown under a Mediterranean climate over a 10-year period. The model employed (Yang et al., 2009. J. Hydrol., 370, 177-190) uses easily available agronomic data, and takes into consideration of all key soil and plant processes in controlling water dynamics in the soil-crop system, including the dynamics of root growth. The water requirement for crop growth was calculated according to the FAO56, and the soil hydraulic properties were estimated using peto-transfer functions (PTFs) based on soil physical properties and soil organic matter content. Results show that the simulated values of soil water content at the depths of 15, 45 and 75 cm agreed with the measurements well with the root of the mean squared errors of 0.027 cm3 cm-3 and the model agreement index of 0.875. The simulated seasonal evapotranspiration (ET) ranged from 208 to 388 mm, and grain yield was found to correlate with the simulated seasonal ET in a linear manner within the studied ET range. The simulated rates of grain yield increase were 17.3 and 23.7 kg ha-l for every mm of water evapotranspired for wheat and barley, respectively. The good agreement of soil water content between measurement and simulation and the simulated relationships between grain yield and seasonal ET supported by the data in the literature indicates that the model performed well in modelling water dynamics for the studied soil-crop system, and therefore has the potential to be applied reliably and widely in precision agriculture. Finally, a two-staged approach using inverse modelling techniques to further improve model performance was discussed

  19. Investigation of Water Dynamics and the Effect of Evapotranspiration on Grain Yield of Rainfed Wheat and Barley under a Mediterranean Environment: A Modelling Approach.

    PubMed

    Zhang, Kefeng; Bosch-Serra, Angela D; Boixadera, Jaume; Thompson, Andrew J

    2015-01-01

    Agro-hydrological models have increasingly become useful and powerful tools in optimizing water and fertilizer application, and in studying the environmental consequences. Accurate prediction of water dynamics in such models is essential for models to produce reasonable results. In this study, detailed simulations were performed for water dynamics of rainfed winter wheat and barley grown under a Mediterranean climate over a 10-year period. The model employed (Yang et al., 2009. J. Hydrol., 370, 177-190) uses easily available agronomic data, and takes into consideration of all key soil and plant processes in controlling water dynamics in the soil-crop system, including the dynamics of root growth. The water requirement for crop growth was calculated according to the FAO56, and the soil hydraulic properties were estimated using peto-transfer functions (PTFs) based on soil physical properties and soil organic matter content. Results show that the simulated values of soil water content at the depths of 15, 45 and 75 cm agreed with the measurements well with the root of the mean squared errors of 0.027 cm(3) cm(-3) and the model agreement index of 0.875. The simulated seasonal evapotranspiration (ET) ranged from 208 to 388 mm, and grain yield was found to correlate with the simulated seasonal ET in a linear manner within the studied ET range. The simulated rates of grain yield increase were 17.3 and 23.7 kg ha(-l) for every mm of water evapotranspired for wheat and barley, respectively. The good agreement of soil water content between measurement and simulation and the simulated relationships between grain yield and seasonal ET supported by the data in the literature indicates that the model performed well in modelling water dynamics for the studied soil-crop system, and therefore has the potential to be applied reliably and widely in precision agriculture. Finally, a two-staged approach using inverse modelling techniques to further improve model performance was

  20. Using long-term lysimeter data to analyze hydrological trends

    NASA Astrophysics Data System (ADS)

    Puetz, Thomas; Hendricks-Franssen, Harrie-Jan; Roesseler, Anne-Kathrin; Vereecken, Harry

    2014-05-01

    Evapotranspiration (ET) is a major component of the terrestrial water cycle. Recent studies based on analysis of experimental and observations-based data have shown that over the last decades the magnitude of evapotranspiration (both potential and actual) has been affected by global climate change although the sign and size of the change in ET differ strongly between regions around the globe, as well as between datasets (e.g. Teuling et al. 2009, Jung et al. 2010, Sheffield et al. 2012). Basically, there are two approaches that are available to measure actual evapotranspiration in situ (e.g. Seneviratne et al. 2010): the measurement from micrometeorological approaches (in particular the Eddy Covariance method) and the determination of evapotranspiration by measuring the components of the soil water balance. Evett et al. (2012) showed that Eddy Covariance measurements of actual evapotranspiration obtained in irrigated cotton fields was 31 to 45% lower than estimates obtained from soil water balance measurements using lysimeters. Forcing the closure of the energy balance with more data than typically available at EC stations, the difference was still about 17%. Despite the fact that lysimeter systems, especially the weighing based systems, are ideal tools to determine actual evapotranspiration no global assessment has been made of available data at present that might be valuable to assess the impact of climate change on actual evapotranspiration. A screening of literature showed that many data are either not reported or made available through research reports rather than peer reviewed literature. Typically lysimeter studies have been used for well-designed experimental studies for the assessment of flow and transport processes in cropped systems that were limited in time. Still at present, we have lysimeter systems operational that have long term time series available on soil hydrological fluxes. Recently, a few studies were reported that analyzed long term series of

  1. Sub-canopy evapotranspiration from floating vegetation and open water in a swamp forest

    USDA-ARS?s Scientific Manuscript database

    Among previous studies, there are large discrepancies in the difference between evapotranspiration from wetland vegetation and evaporation from open water. In this study, we investigate evapotranspiration differences between water and vegetation in a scenario that has otherwise not been extensively ...

  2. Estimation of evapotranspiration rate in irrigated lands using stable isotopes

    NASA Astrophysics Data System (ADS)

    Umirzakov, Gulomjon; Windhorst, David; Forkutsa, Irina; Brauer, Lutz; Frede, Hans-Georg

    2013-04-01

    Agriculture in the Aral Sea basin is the main consumer of water resources and due to the current agricultural management practices inefficient water usage causes huge losses of freshwater resources. There is huge potential to save water resources in order to reach a more efficient water use in irrigated areas. Therefore, research is required to reveal the mechanisms of hydrological fluxes in irrigated areas. This paper focuses on estimation of evapotranspiration which is one of the crucial components in the water balance of irrigated lands. Our main objective is to estimate the rate of evapotranspiration on irrigated lands and partitioning of evaporation into transpiration using stable isotopes measurements. Experiments has done in 2 different soil types (sandy and sandy loam) irrigated areas in Ferghana Valley (Uzbekistan). Soil samples were collected during the vegetation period. The soil water from these samples was extracted via a cryogenic extraction method and analyzed for the isotopic ratio of the water isotopes (2H and 18O) based on a laser spectroscopy method (DLT 100, Los Gatos USA). Evapotranspiration rates were estimated with Isotope Mass Balance method. The results of evapotranspiration obtained using isotope mass balance method is compared with the results of Catchment Modeling Framework -1D model results which has done in the same area and the same time.

  3. Validating Remotely Sensed Land Surface Evapotranspiration Based on Multi-scale Field Measurements

    NASA Astrophysics Data System (ADS)

    Jia, Z.; Liu, S.; Ziwei, X.; Liang, S.

    2012-12-01

    The land surface evapotranspiration plays an important role in the surface energy balance and the water cycle. There have been significant technical and theoretical advances in our knowledge of evapotranspiration over the past two decades. Acquisition of the temporally and spatially continuous distribution of evapotranspiration using remote sensing technology has attracted the widespread attention of researchers and managers. However, remote sensing technology still has many uncertainties coming from model mechanism, model inputs, parameterization schemes, and scaling issue in the regional estimation. Achieving remotely sensed evapotranspiration (RS_ET) with confident certainty is required but difficult. As a result, it is indispensable to develop the validation methods to quantitatively assess the accuracy and error sources of the regional RS_ET estimations. This study proposes an innovative validation method based on multi-scale evapotranspiration acquired from field measurements, with the validation results including the accuracy assessment, error source analysis, and uncertainty analysis of the validation process. It is a potentially useful approach to evaluate the accuracy and analyze the spatio-temporal properties of RS_ET at both the basin and local scales, and is appropriate to validate RS_ET in diverse resolutions at different time-scales. An independent RS_ET validation using this method was presented over the Hai River Basin, China in 2002-2009 as a case study. Validation at the basin scale showed good agreements between the 1 km annual RS_ET and the validation data such as the water balanced evapotranspiration, MODIS evapotranspiration products, precipitation, and landuse types. Validation at the local scale also had good results for monthly, daily RS_ET at 30 m and 1 km resolutions, comparing to the multi-scale evapotranspiration measurements from the EC and LAS, respectively, with the footprint model over three typical landscapes. Although some

  4. Field demonstration of the combined effects of absorption and evapotranspiration on septic system drainfield capacity.

    PubMed

    Rainwater, Ken; Jackson, Andrew; Ingram, Wesley; Lee, Chang Yong; Thompson, David; Mollhagen, Tony; Ramsey, Heyward; Urban, Lloyd

    2005-01-01

    Drainfields for disposal of septic tank effluents are typically designed by considering the loss of water by either upward evapotranspiration into the atmosphere or lateral and downward absorption into the adjacent soil. While this approach is appropriate for evapotranspiration systems, absorption systems allow water loss by both mechanisms. It was proposed that, in areas where high evapotranspiration rates coincide with permeable soils, drainfield sizes could be substantially reduced by accounting for both mechanisms. A two-year field demonstration was conducted to determine appropriate design criteria for areas typical of the Texas High Plains. The study consisted of evaluating the long-term acceptance rates for three different drainfield configurations: evapotranspiration only, absorption only, and combined conditions. A second field demonstration repeated the experiments for additional observation of the combined evapotranspiration and absorption and achieved similar results as the first study. The field tests indicated that the current design loading criteria may be increased by at least a factor of two for the Texas High Plains region and other Texas areas with similar soil composition and evapotranspiration rates, while still retaining a factor of safety of two.

  5. Improving Evapotranspiration Estimates Using Multi-Platform Remote Sensing

    NASA Astrophysics Data System (ADS)

    Knipper, Kyle; Hogue, Terri; Franz, Kristie; Scott, Russell

    2016-04-01

    Understanding the linkages between energy and water cycles through evapotranspiration (ET) is uniquely challenging given its dependence on a range of climatological parameters and surface/atmospheric heterogeneity. A number of methods have been developed to estimate ET either from primarily remote-sensing observations, in-situ measurements, or a combination of the two. However, the scale of many of these methods may be too large to provide needed information about the spatial and temporal variability of ET that can occur over regions with acute or chronic land cover change and precipitation driven fluxes. The current study aims to improve the spatial and temporal variability of ET utilizing only satellite-based observations by incorporating a potential evapotranspiration (PET) methodology with satellite-based down-scaled soil moisture estimates in southern Arizona, USA. Initially, soil moisture estimates from AMSR2 and SMOS are downscaled to 1km through a triangular relationship between MODIS land surface temperature (MYD11A1), vegetation indices (MOD13Q1/MYD13Q1), and brightness temperature. Downscaled soil moisture values are then used to scale PET to actual ET (AET) at a daily, 1km resolution. Derived AET estimates are compared to observed flux tower estimates, the North American Land Data Assimilation System (NLDAS) model output (i.e. Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model, Mosiac Model, and Noah Model simulations), the Operational Simplified Surface Energy Balance Model (SSEBop), and a calibrated empirical ET model created specifically for the region. Preliminary results indicate a strong increase in correlation when incorporating the downscaling technique to original AMSR2 and SMOS soil moisture values, with the added benefit of being able to decipher small scale heterogeneity in soil moisture (riparian versus desert grassland). AET results show strong correlations with relatively low error and bias when compared to flux tower

  6. Modeling seasonal water balance based on catchments' hedging strategy on evapotranspiration for climate seasonality

    NASA Astrophysics Data System (ADS)

    Wu, S.; Zhao, J.; Wang, H.

    2017-12-01

    This paper develops a seasonal water balance model based on the hypothesis that natural catchments utilize hedging strategy on evapotranspiration for climate seasonality. According to the monthly aridity index, one year is split into wet season and dry season. A seasonal water balance model is developed by analogy to a two-stage reservoir operation model, in which seasonal rainfall infiltration, evapotranspiration and saturation-excess runoff is corresponding to the inflow, release and surplus of the catchment system. Then the optimal hedging between wet season and dry season evapotranspiration is analytically derived with marginal benefit principle. Water budget data sets of 320 catchments in the United States covering the period from 1980 to 2010 are used to evaluate the performance of this model. The Nash-Sutcliffe Efficiency coefficient for evapotranspiration is higher than 0.5 in 84% of the study catchments; while the runoff is 87%. This paper validates catchments' hedging strategy on evapotranspiration for climate seasonality and shows its potential application for seasonal water balance, which is valuable for water resources planning and management.

  7. Looking for a relevant potential evapotranspiration model at the watershed scale

    NASA Astrophysics Data System (ADS)

    Oudin, L.; Hervieu, F.; Michel, C.; Perrin, C.; Anctil, F.; Andréassian, V.

    2003-04-01

    In this paper, we try to identify the most relevant approach to calculate Potential Evapotranspiration (PET) for use in a daily watershed model, to try to bring an answer to the following question: "how can we use commonly available atmospheric parameters to represent the evaporative demand at the catchment scale?". Hydrologists generally see the Penman model as the ideal model regarding to its good adequacy with lysimeter measurements and its physically-based formulation. However, in real-world engineering situations, where meteorological stations are scarce, hydrologists are often constrained to use other PET formulae with less data requirements or/and long-term average of PET values (the rationale being that PET is an inherently conservative variable). We chose to test 28 commonly used PET models coupled with 4 different daily watershed models. For each test, we compare both PET input options: actual data and long-term average data. The comparison is made in terms of streamflow simulation efficiency, over a large sample of 308 watersheds. The watersheds are located in France, Australia and the United States of America and represent varied climates. Strikingly, we find no systematic improvements of the watershed model efficiencies when using actual PET series instead of long-term averages. This suggests either that watershed models may not conveniently use the climatic information contained in PET values or that formulae are only awkward indicators of the real PET which watershed models need.

  8. SEBAL Model Using to Estimate Irrigation Water Efficiency & Water Requirement of Alfalfa Crop

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2013-04-01

    The sustainability of irrigation is a complex and comprehensive undertaking, requiring an attention to much more than hydraulics, chemistry, and agronomy. A special combination of human, environmental, and economic factors exists in each irrigated region and must be recognized and evaluated. A way to evaluate the efficiency of irrigation water use for crop production is to consider the so-called crop-water production functions, which express the relation between the yield of a crop and the quantity of water applied to it or consumed by it. The term has been used in a somewhat ambiguous way. Some authors have defined the Crop-Water Production Functions between yield and the total amount of water applied, whereas others have defined it as a relation between yield and seasonal evapotranspiration (ET). In case of high efficiency of irrigation water use the volume of water applied is less than the potential evapotranspiration (PET), then - assuming no significant change of soil moisture storage from beginning of the growing season to its end-the volume of water may be roughly equal to ET. In other case of low efficiency of irrigation water use the volume of water applied exceeds PET, then the excess of volume of water applied over PET must go to either augmenting soil moisture storage (end-of-season moisture being greater than start-of-season soil moisture) or to runoff or/and deep percolation beyond the root zone. In presented contribution some results of a case study of estimation of biomass and leaf area index (LAI) for irrigated alfalfa by SEBAL algorithm will be discussed. The field study was conducted with aim to compare ground biomass of alfalfa at some irrigated fields (provided by agricultural farm) at Saratov and Volgograd Regions of Russia. The study was conducted during vegetation period of 2012 from April till September. All the operations from importing the data to calculation of the output data were carried by eLEAF company and uploaded in Fieldlook web

  9. Investigation of crop canopy temperature in apple study orchard

    NASA Astrophysics Data System (ADS)

    Tökei, L.; Dunkel, Z.

    2003-04-01

    The paper shows a sophisticated case study for the possible determination of transpiration of apple orchard. A 'Scheduler' type water stress instrument originally developed for crops was used in the study apple orchard of the university. The air and crop canopy temperatures, the relative humidity and the radiation were measured. The aim was to determine the influence of these factors at different level of the canopy, with various exposures of the tree crowns. The measurements were made on several trees in certain selected rows and on those planted in concentric rows in a round field. The relationship between crop canopy and sir temperatures appeared to depend primarily on illumination. This can be greatly affected by shading conditions, but air motion cannot be neglected, the effect of which increases when its direction is in agreement with the direction of the rows. Its efficiency also has a significant effect on air humidity conditions. The relative humidity and air temperature values were used to calculate the equivalent temperature, also considering latent heat flux, and finally the evapotranspiration of plantation. From differences in the equivalent and air temperatures, conclusions can be drawn on the intensity and daily course of transpiration. Using this method differences at given level could not be demonstrated in the relatively opera orchards studied. According to the results, transpiration is the strongest in the morning, after which it significantly decreases by the afternoon and becomes more intense again early at night.

  10. Downscaling Coarse Actual ET Data Using Land Surface Resistance

    NASA Astrophysics Data System (ADS)

    Shen, T.

    2017-12-01

    This study proposed a new approach of downscaling ETWATCH 1km actual evapotranspiration (ET) product to a spatial resolution of 30m using land surface resistance that simulated mainly from monthly Landsat8 data and Jarvis method, which combined the benefits of both high temporal resolution of ETWATCH product and fine spatial resolution of Landsat8. The driving factor, surface resistance (Rs), was chosen for the reason that could reflect the transfer ability of vapor flow over canopy. Combined resistance Rs both upon canopy conditions, atmospheric factors and available water content of soil, which remains stable inside one ETWATCH pixel (1km). In this research, we used ETWATCH 1km ten-day actual ET product from April to October in a total of twenty-one images and monthly 30 meters cloud-free NDVI of 2013 (two images from HJ as a substitute due to cloud contamination) combined meteorological indicators for downscaling. A good agreement and correlation were obtained between the downscaled data and three flux sites observation in the middle reach of Heihe basin. The downscaling results show good consistency with the original ETWATCH 1km data both temporal and spatial scale over different land cover types with R2 ranged from 0.8 to 0.98. Besides, downscaled result captured the progression of vegetation transpiration well. This study proved the practicability of new downscaling method in the water resource management.

  11. Soil moisture and evapotranspiration predictions using Skylab data

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Moore, D. G.; Horton, M. L.; Russell, M. J.

    1975-01-01

    The author has identified the following significant results. Multispectral reflectance and emittance data from the Skylab workshop were evaluated for prediction of evapotranspiration and soil moisture for an irrigated region of southern Texas. Wavelengths greater than 2.1 microns were required to spectrally distinguish between wet and dry fallow surfaces. Thermal data provided a better estimate of soil moisture than did data from the reflective bands. Thermal data were dependent on soil moisture but not on the type of agricultural land use. The emittance map, when used in conjunction with existing models, did provide an estimate of evapotranspiration rates. Surveys of areas of high soil moisture can be accomplished with space altitude thermal data. Thermal data will provide a reliable input into irrigation scheduling.

  12. Using a basin-scale hydrological model to estimate crop transpiration and soil evaporation

    NASA Astrophysics Data System (ADS)

    Kite, G.

    2000-03-01

    Increasing populations and expectations, declining crop yields and the resulting increased competition for water necesitate improvements in irrigation management and productivity. A key factor in defining agricultural productivity is to be able to simulate soil evaporation and crop transpiration. In agribusiness terms, crop transpiration is a useful process while soil and open-water evaporations are wasteful processes. In this study a distributed hydrological model was used to compute daily evaporation and transpiration for a variety of crops and other land covers within the 17,200 km 2 Gediz Basin in western Turkey. The model, SLURP, describes the complete hydrological cycle for each land cover within a series of sub-basins including all dams, reservoirs, regulators and irrigation schemes in the basin. The sub-basins and land covers are defined by analysing a digital elevation model and NOAA AVHRR satellite data. In this study, the model uses the FAO implementation of the Penman-Monteith equation to simulate soil evaporation and crop transpiration. The results of the model runs provide time series of data on streamflow at many points along the river system, abstractions and return flows from crops within the irrigation schemes and areally distributed soil evaporation and crop transpiration across the entire basin on each day of an 11 year period. The results show that evaporation and transpiration vary widely across the basin on any one day and over the irrigation season and can be used to evaluate the effectiveness of the various irrigation strategies used in the basin. The advantages of using such a model as compared to deriving evapotranspiration from satellite data are that the model obtains results for each day of an indefinitely long period, as opposed to occasional snapshots, and can also be used to simulate alternate scenarios.

  13. A scaling approach to Budyko's framework and the complementary relationship of evapotranspiration in humid environments: case study of the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Carmona, A. M.; Poveda, G.; Sivapalan, M.; Vallejo-Bernal, S. M.; Bustamante, E.

    2016-02-01

    This paper studies a 3-D state space representation of Budyko's framework designed to capture the mutual interdependence among long-term mean actual evapotranspiration (E), potential evapotranspiration (Ep) and precipitation (P). For this purpose we use three dimensionless and dependent quantities: Ψ = E ⁄ P, Φ = Ep ⁄ P and Ω = E ⁄ Ep. This 3-D space and its 2-D projections provide an interesting setting to test the physical soundness of Budyko's hypothesis. We demonstrate analytically that Budyko-type equations are unable to capture the physical limit of the relation between Ω and Φ in humid environments, owing to the unfeasibility of Ep ⁄ P = 0 when E ⁄ Ep → 1. Using data from 146 sub-catchments in the Amazon River basin we overcome this inconsistency by proposing a physically consistent power law: Ψ = kΦe, with k = 0.66, and e = 0.83 (R2 = 0.93). This power law is compared with two other Budyko-type equations. Taking into account the goodness of fits and the ability to comply with the physical limits of the 3-D space, our results show that the power law is better suited to model the coupled water and energy balances within the Amazon River basin. Moreover, k is found to be related to the partitioning of energy via evapotranspiration in terms of Ω. This suggests that our power law implicitly incorporates the complementary relationship of evapotranspiration into the Budyko curve, which is a consequence of the dependent nature of the studied variables within our 3-D space. This scaling approach is also consistent with the asymmetrical nature of the complementary relationship of evapotranspiration. Looking for a physical explanation for the parameters k and e, the inter-annual variability of individual catchments is studied. Evidence of space-time symmetry in Amazonia emerges, since both between-catchment and between-year variability follow the same Budyko curves. Finally, signs of co-evolution of catchments are explored by

  14. A scaling approach to Budyko's framework and the complementary relationship of evapotranspiration in humid environments: case study of the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Carmona, A. M.; Poveda, G.; Sivapalan, M.; Vallejo-Bernal, S. M.; Bustamante, E.

    2015-10-01

    This paper studies a 3-D generalization of Budyko's framework designed to capture the mutual interdependence among long-term mean actual evapotranspiration (E), potential evapotranspiration (Ep) and precipitation (P). For this purpose we use three dimensionless and dependent quantities: Ψ = E/P, Φ = Ep/P and Ω = E/Ep. This 3-D space and its 2-D projections provide an interesting setting to test the physical soundness of Budyko's hypothesis. We demonstrate analytically that Budyko-type equations are unable to capture the physical limit of the relation between Ω and Φ in humid environments, owing to the unfeasibility of Ep/P → 0 at E/Ep = 1. Using data from 146 sub-catchments in the Amazon River basin we overcome this inconsistency by proposing a physically consistent power law: Ψ = k Φe, with k = 0.66, and e = 0.83 (R2 = 0.93). This power law is compared with two other Budyko-type equations. Taking into account the goodness of fits and the ability to comply with the physical limits of the 3-D space, our results show that the power law is better suited to model the coupled water and energy balances within the Amazon River basin. Moreover, k is found to be related to the partitioning of energy via evapotranspiration in terms of Ω. This suggests that our power law implicitly incorporates the complementary relationship of evapotranspiration into the Budyko curve, which is a consequence of the dependent nature of the studied variables within our 3-D space. This scaling approach is also consistent with the asymmetrical nature of the complementary relationship of evapotranspiration. Looking for a physical explanation for the parameters k and e, the inter-annual variability of individual catchments is studied. Evidence of space-time symmetry in Amazonia emerges, since both between-catchment and between-year variability follow the same Budyko curves. Finally, signs of co-evolution of catchments are explored by linking spatial patterns of the power law parameters

  15. Estimation of Some Bio-Physical Indicators for Sustainable Crop Production in the Eastern Nile Basin of Sudan Using Landsat-8 Imagery and SEBAL Model

    NASA Astrophysics Data System (ADS)

    Guma Biro Turk, Khalid

    2016-07-01

    Crop production under modern irrigation systems require unique management at field level and hence better utilization of agricultural inputs and water resources. This study aims to make use of remote sensing (RS) data and the surface energy balance algorithm for land (SEBAL) to improve the on-farm management. The study area is located in the Eastern part of the Blue Nile River about 60 km south of Khartoum, Sudan. Landsat-8 data were used to estimate a number of bio-physical indicators during the growing season of the year 2014/2015. Accordingly, in-situ weather data and SEBAL model were applied to calculate: the reference (ET0), actual (ETa) and potential (ETp) evapotranspiration, soil moisture (SM), crop factor (kc), nitrogen (N), biomass production (BP) and crop water productivity (CWP). Results revealed that ET0 showed steady variation throughout the year, varying from 5 to 7 mm/day. However, ETa and ETp showed clear temporal variation attributed to frequent cutting of the alfalfa, almost monthly. The BP of the alfalfa was observed to be high when there is no cutting activates were made before the image acquisition date. Nevertheless the CWP trends are following the biomass production ones, low when there is no biomass and high when the biomass is high. The application of SEBAL model within the study area using the Landsat-8 imagery indicates that it's possible to produce field-based bio-physical indicators, which can be useful in monitoring and managing the field during the growing season. However, a cross-calibration with the in-situ data should be considered in order to maintain the spatial variability within the field. Keywords: Bio-physical Indicators; Remote Sensing; SEBAL; Landsat-8; Eastern Nile Basin

  16. Influence of land-surface evapotranspiration on the earth's climate

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Mintz, Y.

    1982-01-01

    Land-surface evapotranspiration is shown to strongly influence global fields of rainfall, temperature and motion by calculations using a numerical model of the atmosphere, confirming the general belief in the importance of evapotranspiration-producing surface vegetation for the earth's climate. The current version of the Goddard Laboratory atmospheric general circulation model is used in the present experiment, in which conservation equations for mass, momentum, moisture and energy are expressed in finite-difference form for a spherical grid to calculate (1) surface pressure field evolution, and (2) the wind, temperature, and water vapor fields at nine levels between the surface and a 20 km height.

  17. Impacts of changing cropping pattern on virtual water flows related to crops transfer: a case study for the Hetao irrigation district, China.

    PubMed

    Liu, Jing; Wu, Pute; Wang, Yubao; Zhao, Xining; Sun, Shikun; Cao, Xinchun

    2014-11-01

    Analysis of cropping patterns is a prerequisite for their optimisation, and evaluation of virtual water flows could shed new light on water resources management. This study is intended to explore the effects of cropping pattern changes between 1960 and 2008 on virtual water flows related to crops transfer in the Hetao irrigation district, China. (1) The sown area of crops increased at an average rate of 3.57 × 10(3) ha year(-1) while the proportion of sown grain crops decreased from 92.83% in the 1960s to 50.22% in the 2000s. (2) Virtual water content decreased during the study period while net virtual water exports increased since the 1980s. (3) Assuming that the cropping pattern was constant and was equal to the average 1960s value, accumulated net virtual water export in 1980-2008 would have been 4.76 × 10(9) m(3) greater than that in the actual cropping pattern scenario. Cropping pattern changes in the Hetao irrigation district could not only be seen as resulting from the pursuit for higher economic returns, but also as a feedback response to limited water resources. A systematic framework is still needed for future cropping pattern planning by taking food security, continued agricultural expansion and other constraints into consideration. © 2014 Society of Chemical Industry.

  18. Estimating actual evapotranspiration from remote sensing imagery using R: the package 'TriangleMethod'.

    NASA Astrophysics Data System (ADS)

    Gampe, David; Huber García, Verena; Marzahn, Philip; Ludwig, Ralf

    2017-04-01

    Actual evaporation (Eta) is an essential variable to assess water availability, drought risk and food security, among others. Measurements of Eta are however limited to a small footprint, hampering a spatially explicit analysis and application and are very often not available at all. To overcome the problem of data scarcity, Eta can be assessed by various remote sensing approaches such as the Triangle Method (Jiang & Islam, 1999). Here, Eta is estimated by using the Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST). In this study, the R-package 'TriangleMethod' was compiled to efficiently perform the calculations of NDVI and processing LST to finally derive Eta from the applied data set. The package contains all necessary calculation steps and allows easy processing of a large data base of remote sensing images. By default, the parameterization for the Landsat TM and ETM+ sensors are implemented, however, the algorithms can be easily extended to additional sensors. The auxiliary variables required to estimate Eta with this method, such as elevation, solar radiation and air temperature at the overpassing time, can be processed as gridded information to allow for a better representation of the study area. The package was successfully applied in various studies in Spain, Palestine, Costa Rica and Canada.

  19. Annual regression-based estimates of evapotranspiration for the contiguous United States based on climate, remote sensing, and stream gage data

    NASA Astrophysics Data System (ADS)

    Reitz, M. D.; Sanford, W. E.; Senay, G. B.; Cazenas, J.

    2015-12-01

    Evapotranspiration (ET) is a key quantity in the hydrologic cycle, accounting for ~70% of precipitation across the contiguous United States (CONUS). However, it is a challenge to estimate, due to difficulty in making direct measurements and gaps in our theoretical understanding. Here we present a new data-driven, ~1km2 resolution map of long-term average actual evapotranspiration rates across the CONUS. The new ET map is a function of the USGS Landsat-derived National Land Cover Database (NLCD), precipitation, temperature, and daily average temperature range (from the PRISM climate dataset), and is calibrated to long-term water balance data from 679 watersheds. It is unique from previously presented ET maps in that (1) it was co-developed with estimates of runoff and recharge; (2) the regression equation was chosen from among many tested, previously published and newly proposed functional forms for its optimal description of long-term water balance ET data; (3) it has values over open-water areas that are derived from separate mass-transfer and humidity equations; and (4) the data include additional precipitation representing amounts converted from 2005 USGS water-use census irrigation data. The regression equation is calibrated using data from 2000-2013, but can also be applied to individual years with their corresponding input datasets. Comparisons among this new map, the more detailed remote-sensing-based estimates of MOD16 and SSEBop, and AmeriFlux ET tower measurements shows encouraging consistency, and indicates that the empirical ET estimate approach presented here produces closer agreement with independent flux tower data for annual average actual ET than other more complex remote sensing approaches.

  20. The Pattern Across the Continental United States of Evapotranspiration Variability Associated with Water Availability

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Salvucci, Guido D.; Rigden, Angela J.; Jung, Martin; Collatz, G. James; Schubert, Siegfried D.

    2015-01-01

    The spatial pattern across the continental United States of the interannual variance of warm season water-dependent evapotranspiration, a pattern of relevance to land-atmosphere feedback, cannot be measured directly. Alternative and indirect approaches to estimating the pattern, however, do exist, and given the uncertainty of each, we use several such approaches here. We first quantify the water dependent evapotranspiration variance pattern inherent in two derived evapotranspiration datasets available from the literature. We then search for the pattern in proxy geophysical variables (air temperature, stream flow, and NDVI) known to have strong ties to evapotranspiration. The variances inherent in all of the different (and mostly independent) data sources show some differences but are generally strongly consistent they all show a large variance signal down the center of the U.S., with lower variances toward the east and (for the most part) toward the west. The robustness of the pattern across the datasets suggests that it indeed represents the pattern operating in nature. Using Budykos hydroclimatic framework, we show that the pattern can largely be explained by the relative strength of water and energy controls on evapotranspiration across the continent.

  1. Spatially Distributed Assimilation of Remotely Sensed Leaf Area Index and Potential Evapotranspiration for Hydrologic Modeling in Wetland Landscapes

    NASA Astrophysics Data System (ADS)

    Rajib, A.; Evenson, G. R.; Golden, H. E.; Lane, C.

    2017-12-01

    Evapotranspiration (ET), a highly dynamic flux in wetland landscapes, regulates the accuracy of surface/sub-surface runoff simulation in a hydrologic model. Accordingly, considerable uncertainty in simulating ET-related processes remains, including our limited ability to incorporate realistic ground conditions, particularly those involved with complex land-atmosphere feedbacks, vegetation growth, and energy balances. Uncertainty persists despite using high resolution topography and/or detailed land use data. Thus, a good hydrologic model can produce right answers for wrong reasons. In this study, we develop an efficient approach for multi-variable assimilation of remotely sensed earth observations (EOs) into a hydrologic model and apply it in the 1700 km2 Pipestem Creek watershed in the Prairie Pothole Region of North Dakota, USA. Our goal is to employ EOs, specifically Leaf Area Index (LAI) and Potential Evapotranspiration (PET), as surrogates for the aforementioned processes without overruling the model's built-in physical/semi-empirical process conceptualizations. To do this, we modified the source code of an already-improved version of the Soil and Water Assessment Tool (SWAT) for wetland hydrology (Evenson et al. 2016 HP 30(22):4168) to directly assimilate remotely-sensed LAI and PET (obtained from the 500 m and 1 km Moderate Resolution Imaging Spectroradiometer (MODIS) gridded products, respectively) into each model Hydrologic Response Unit (HRU). Two configurations of the model, one with and one without EO assimilation, are calibrated against streamflow observations at the watershed outlet. Spatio-temporal changes in the HRU-level water balance, based on calibrated outputs, are evaluated using MODIS Actual Evapotranspiration (AET) as a reference. It is expected that the model configuration having remotely sensed LAI and PET, will simulate more realistic land-atmosphere feedbacks, vegetation growth and energy balance. As a result, this will decrease simulated

  2. Quantifying climatic impacts on peatland in the Zoige basin, China

    NASA Astrophysics Data System (ADS)

    Gao, P.; Li, Z.; Hu, X.

    2017-12-01

    Actual evapotranspiration (ET) of the Zoige basin in the Yellow River source region of China is a critical parameter for understanding water balance of peatland in the Zoige basin and hence the cause of the changing land cover. Using daily meteorological data sets of Zoige, Hongyuan, and Maqu stations from 1967 to 2011, the well-known FAO56 Penman-Monteith (P-M) formula was selected to calculate the reference crop evapotranspiration (ET0) in combination with the crop coefficient method in which the crop coefficient Kc is modified in terms of local climatic conditions. By classifying land cover of the Zoige basin in to swamp, grassland, water surface, and desert, the actual ET cover time for each type was obtained. Since late 1990s, the ET0 increased along with the increased air temperature. Different from previous studies, the ET of the swamp was slightly lower than that of water surface, but was slightly larger than the difference between annual precipitation and runoff in the Zoige basin. The increase of ET in the past 45 years was small in comparison with the change of the annual precipitation. More specifically, the annual precipitation, which was about 560-860 mm, slightly decreased between 1967 and 1997, and increased 2.23% in the 1998-2011 period. These results allowed us to conclude that though the slightly increased ET might be a factor leading to the long-term swamp dewatering, it cannot be the primary cause of the degraded peatland swamp and grassland in the Zoige basin.

  3. Assimilation of LAI time-series in crop production models

    NASA Astrophysics Data System (ADS)

    Kooistra, Lammert; Rijk, Bert; Nannes, Louis

    2014-05-01

    Agriculture is worldwide a large consumer of freshwater, nutrients and land. Spatial explicit agricultural management activities (e.g., fertilization, irrigation) could significantly improve efficiency in resource use. In previous studies and operational applications, remote sensing has shown to be a powerful method for spatio-temporal monitoring of actual crop status. As a next step, yield forecasting by assimilating remote sensing based plant variables in crop production models would improve agricultural decision support both at the farm and field level. In this study we investigated the potential of remote sensing based Leaf Area Index (LAI) time-series assimilated in the crop production model LINTUL to improve yield forecasting at field level. The effect of assimilation method and amount of assimilated observations was evaluated. The LINTUL-3 crop production model was calibrated and validated for a potato crop on two experimental fields in the south of the Netherlands. A range of data sources (e.g., in-situ soil moisture and weather sensors, destructive crop measurements) was used for calibration of the model for the experimental field in 2010. LAI from cropscan field radiometer measurements and actual LAI measured with the LAI-2000 instrument were used as input for the LAI time-series. The LAI time-series were assimilated in the LINTUL model and validated for a second experimental field on which potatoes were grown in 2011. Yield in 2011 was simulated with an R2 of 0.82 when compared with field measured yield. Furthermore, we analysed the potential of assimilation of LAI into the LINTUL-3 model through the 'updating' assimilation technique. The deviation between measured and simulated yield decreased from 9371 kg/ha to 8729 kg/ha when assimilating weekly LAI measurements in the LINTUL model over the season of 2011. LINTUL-3 furthermore shows the main growth reducing factors, which are useful for farm decision support. The combination of crop models and sensor

  4. Carbon and water cycling in flooded and rainfed rice (Oryza Sativa) ecosystem: Disentangling agronomical and ecological aspects of water use efficiency

    NASA Astrophysics Data System (ADS)

    Nay-Htoon, Bhone; Xue, Wei; Dubbert, Maren; Lindner, Steve; Cuntz, Matthias; Ko, Jonghan; Tenhunen, John; Werner, Christiane

    2015-04-01

    Agricultural crops play an important role in the global carbon and water cycling process and there is intense research to understand and predict carbon and water fluxes, productivity and water use of cultivated crops under climate change. Mechanistic understanding of the trade of between ecosystem water use efficiency and agronomic water use efficiency to maintain higher crop yield and productive water loss is necessary for the ecosystem sustainability. . We compared water and carbon fluxes of paddy and rainfed rice by canopy scale gas exchange measurements, crop growth, and daily evapotranspiration, transpiration and carbon flux modeling. According to our findings, evaporation contributed strongly (maximum 100% to minimum 45%) to paddy rice evapotranspiration while transpiration of rainfed is almost 50 % of daily evapotranspiration. Water use efficiency (WUE) was higher in rainfed rice both from an agronomic (WUEagro, i.e. grain yield per evapotranspiration) and ecosystem (WUEeco, i.e. gross primary production per evapotranspiration) perspective. However, rainfed rice showed also high ecosystem respiration losses and a slightly lower crop yield, demonstrating that higher WUE in rainfed rice comes at the expense of higher respiration losses of assimilated carbon and lower plant production, compared to paddy rice. Our results highlighted the need to partition water and carbon fluxes to improve our mechanistic understanding of water use efficiency and environmental impact of different agricultural practices. Keywords: Rainfed rice, Paddy rice, water use efficiency, Transpiration/Evapotranspiration, ecosystem WUE, agronomic WUE, Evapotranspiration

  5. Measuring forest evapotranspiration--theory and problems

    Treesearch

    Anthony C. Federer; Anthony C. Federer

    1970-01-01

    A satisfactory general method of measuring forest evapotranspiration has yet to be developed. Many procedures have been tried, but only the soil-water budget method and the micrometeorological methods offer any degree of success. This paper is a discussion of these procedures and the problems that arise in applying them. It is designed as a reference for scientists and...

  6. A review of approaches for evapotranspiration partitioning

    USDA-ARS?s Scientific Manuscript database

    Partitioning of evapotranspiration (ET) into evaporation from the soil surface (E) and transpiration (T) is challenging but important in order to assess biomass production and the allocation of increasingly scarce water resources. Generally T is the desired component with the water being used to enh...

  7. Evapotranspiration and canopy resistance at an undeveloped prairie in a humid subtropical climate

    USGS Publications Warehouse

    Bidlake, W.R.

    2002-01-01

    Reliable estimates of evapotranspiration from areas of wildland vegetation are needed for many types of water-resource investigations. However, little is known about surface fluxes from many areally important vegetation types, and relatively few comparisons have been made to examine how well evapotranspiration models can predict evapotranspiration for soil-, climate-, or vegetation-types that differ from those under which the models have been calibrated. In this investigation at a prairie site in west-central Florida, latent heat flux (??E) computed from the energy balance and alternatively by eddy covariance during a 15-month period differed by 4 percent and 7 percent on hourly and daily time scales, respectively. Annual evapotranspiration computed from the energy balance and by eddy covariance were 978 and 944 mm, respectively. An hourly Penman-Monteith (PM) evapotranspiration model with stomatal control predicated on water-vapor-pressure deficit at canopy level, incoming solar radiation intensity, and soil water deficit was developed and calibrated using surface fluxes from eddy covariance. Model-predicted ??E agreed closely with ??E computed from the energy balance except when moisture from dew or precipitation covered vegetation surfaces. Finally, an hourly PM model developed for an Amazonian pasture predicted ??E for the Florida prairie with unexpected reliability. Additional comparisons of PM-type models that have been developed for differing types of short vegetation could aid in assessing interchangeability of such models.

  8. A parabolic function to modify Thornthwaite estimates of potential evapotranspiration for the eastern United States

    USGS Publications Warehouse

    McCabe, G.J.

    1989-01-01

    Errors of the Thornthwaite model can be analyzed using adjusted pan evaporation as an index of potential evapotranspiration. An examination of ratios of adjusted pan evaporation to Thornthwaite potential evapotranspiration indicates that the ratios are highest in the winter and lowest during summer months. This trend suggests a parabolic pattern. In this study a parabolic function is used to adjust Thornthwaite estimates of potential evapotranspiration. Forty locations east of the Rocky Mountains are analyzed. -from Author

  9. California's Effort to Improve Almond Orchard Crop Coefficients

    NASA Astrophysics Data System (ADS)

    Sanden, B. L.; Fulton, A. E.; Munk, D. S.; Ewert, S.; Little, C.; Anderson, F.; Connell, J. H.; Rivera, M.; Orang, M. N.; Snyder, R. L.

    2012-04-01

    Almonds are a major agricultural commodity in California and optimal irrigation management is important for production, protecting the environment, and long term water resources planning. While evapotranspiration (ET) estimates are widely used for water resource planning, it is used less for "realtime" irrigation management for several reasons. One problem is the lack of confidence in the crop coefficient (Kc) values that are used with reference ET (ETo) to estimate well-watered crop ET (ETc). This is especially true for orchard crops. Until recently, the Kc values used to estimate the ETc of most orchard crops in California were derived using measurements of applied water, runoff, and soil water content depletion with the assumption that the trees were transpiring at a rate that was not restricted by water availability. For decades, a typical midseason Kc value used for clean-cultivated almond orchards was 0.90. Recently, a study was conducted by the University of California and the California Department of Water Resources to improve the Kc estimates for almond orchards; helping growers improve their on-farm water management for better production and less adverse impacts on the environment. Field experiments were conducted in four locations (Butte, Fresno, Kern, and Tehama Counties) spanning 1000 km north to south within the Central Valley of California over somewhat different climates. California Irrigation Management Information System (CIMIS) weather stations were used with the ASCE-EWRI standardized reference evapotranspiration equation for short canopies to determine ETo. Latent heat flux (LE), in all four orchards, was estimated using the residual of the energy balance equation: LE=Rn-G-H from measured net radiation (Rn), ground heat flux (G), and sensible heat flux (H) using surface renewal and eddy covariance measurements. The LE was divided by the latent heat of vaporization (L) to determine ETc. In three years of measurements in Kern County, the data

  10. Variability in understory evapotranspiration with overstory density in Siberian larch forests

    NASA Astrophysics Data System (ADS)

    Tobio, A.; Loranty, M. M.; Kropp, H.; Pena, H., III; Alexander, H. D.; Natali, S.; Kholodov, A. L.

    2016-12-01

    Arctic ecosystems are changing rapidly in response to amplified rates of climate change. Increased vegetation productivity, altered ecosystem carbon and hydrologic cycling, and increased wildfire severity are among the key responses to changing permafrost and climate conditions. Boreal larch forests in northeastern Siberia are a critical but understudied ecosystem affected by these modifications. Understory vegetation in these ecosystems, which typically have low canopy cover, may account for half of all water fluxes. Despite the potential importance of the understory for ecosystem water exchange, there has been relatively little research examining variability in understory evapotranspiration in boreal larch forests. In particular, the water balance of understory shrubs and mosses is largely undefined and could provide insight on how understory vegetation and our changing climate interact. This is especially important because both observed increases in vegetation productivity and wildfire severity could lead to increases in forests density, altering the proportional contributions of over- and understory vegetation to whole ecosystem evapotranspiration. In order to better understand variability in understory evapotranspiration we measured in larch forests with differing overstory density and permafrost conditions that likely vary as a consequence of fire severity. We used the static chamber technique to measure fluxes across a range of understory vegetation types and environmental conditions. In general, we found that the understory vegetation in low density stands transpires more than that in high density stands. This tends to be correlated with a larger amount of aboveground biomass in the low density stands, and an increase in solar radiation, due to less shading by overstory trees. These results will help us to better understand water balances, evapotranspiration variability, and productivity changes associated with climate on understory vegetation. Additionally

  11. Modelling crop yield in Iberia under drought conditions

    NASA Astrophysics Data System (ADS)

    Ribeiro, Andreia; Páscoa, Patrícia; Russo, Ana; Gouveia, Célia

    2017-04-01

    The improved assessment of the cereal yield and crop loss under drought conditions are essential to meet the increasing economy demands. The growing frequency and severity of the extreme drought conditions in the Iberian Peninsula (IP) has been likely responsible for negative impacts on agriculture, namely on crop yield losses. Therefore, a continuous monitoring of vegetation activity and a reliable estimation of drought impacts is crucial to contribute for the agricultural drought management and development of suitable information tools. This works aims to assess the influence of drought conditions in agricultural yields over the IP, considering cereal yields from mainly rainfed agriculture for the provinces with higher productivity. The main target is to develop a strategy to model drought risk on agriculture for wheat yield at a province level. In order to achieve this goal a combined assessment was made using a drought indicator (Standardized Precipitation Evapotranspiration Index, SPEI) to evaluate drought conditions together with a widely used vegetation index (Normalized Difference Vegetation Index, NDVI) to monitor vegetation activity. A correlation analysis between detrended wheat yield and SPEI was performed in order to assess the vegetation response to each time scale of drought occurrence and also identify the moment of the vegetative cycle when the crop yields are more vulnerable to drought conditions. The time scales and months of SPEI, together with the months of NDVI, better related with wheat yield were chosen to perform a multivariate regression analysis to simulate crop yield. Model results are satisfactory and highlighted the usefulness of such analysis in the framework of developing a drought risk model for crop yields. In terms of an operational point of view, the results aim to contribute to an improved understanding of crop yield management under dry conditions, particularly adding substantial information on the advantages of combining

  12. Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature

    NASA Technical Reports Server (NTRS)

    Mintz, Y.; Walker, G. K.

    1993-01-01

    The global fields of normal monthly soil moisture and land surface evapotranspiration are derived with a simple water budget model that has precipitation and potential evapotranspiration as inputs. The precipitation is observed and the potential evapotranspiration is derived from the observed surface air temperature with the empirical regression equation of Thornthwaite (1954). It is shown that at locations where the net surface radiation flux has been measured, the potential evapotranspiration given by the Thornthwaite equation is in good agreement with those obtained with the radiation-based formulations of Priestley and Taylor (1972), Penman (1948), and Budyko (1956-1974), and this provides the justification for the use of the Thornthwaite equation. After deriving the global fields of soil moisture and evapotranspiration, the assumption is made that the potential evapotranspiration given by the Thornthwaite equation and by the Priestley-Taylor equation will everywhere be about the same; the inverse of the Priestley-Taylor equation is used to obtain the normal monthly global fields of net surface radiation flux minus ground heat storage. This and the derived evapotranspiration are then used in the equation for energy conservation at the surface of the earth to obtain the global fields of normal monthly sensible heat flux from the land surface to the atmosphere.

  13. Evapotranspiration and water balance in a hot pepper (Capsicum frutescens L.) field during a dry season in the tropics

    NASA Astrophysics Data System (ADS)

    Laban, S.; Oue, H.; Rampisela, D. A.

    2018-05-01

    Evapotranspiration and water balance in a hot pepper (Capsicum frutescens L.) field during the 2nd dry season were analyzed in this study. Actual evapotranspiration (ET) was estimated by Bowen Ratio Energy Budget (BREB) method, potential evaporation (EP) was calculated by Penman method, and irrigation volume of water was measured manually. Meteorological instruments were installed in the experimental field during hot pepper cultivation. Leaf area index increased during the growing stages where the highest LAI of 1.65 in the generative stage. The daily average of ET was 1.94 and EP was 6.71 mm resulting in low Kc. The Kc values were significantly different between stage to stage under T-test analysis (α = 0.05). Moreover, Kc in every stage could be related to soil water content (SWC) in logarithmic function. Totally, ET during hot pepper cultivation was 179.19 mm, while rainfall was 180.0 mm and irrigation water was 27.42 mm. However, there was a water shortages during vegetative and generative stages. This study suggested that consumptive water of hot pepper was complimented by soil and groundwater under the condition of water shortages in the vegetative and generative stages during the 2nd dry season.

  14. Evapotranspiration from pilot-scale constructed wetlands planted with Phragmites australis in a Mediterranean environment.

    PubMed

    Milani, Mirco; Toscano, Attilio

    2013-01-01

    This article reports the results of evapotranspiration (ET) experiments carried out in Southern Italy (Sicily) in a pilot-scale constructed wetland (CW) made of a combination of vegetated (Phragmites australis) and unvegetated sub-surface flow beds. Domestic wastewater from a conventional wastewater treatment plant was used to fill the beds. Microclimate data was gathered from an automatic weather station close to the experimental plant. From June to November 2009 and from April to November 2010, ET values were measured as the amount of water needed to restore the initial volume in the beds after a certain period. Cumulative reference evapotranspiration (ET(0)) was similar to the cumulative ET measured in the beds without vegetation (ET(con)), while the Phragmites ET (ET (phr) ) was significantly higher underlining the effect of the vegetation. The plant coefficient of P. australis (K(p)) was very high (up to 8.5 in August 2009) compared to the typical K(c) for agricultural crops suggesting that the wetland environment was subjected to strong "clothesline" and "oasis" effects. According to the FAO 56 approach, K(p) shows different patterns and values in relation to growth stages correlating significantly to stem density, plant height and total leaves. The mean Water Use Efficiency (WUE) value of P. australis was quite low, about 2.27 g L(-1), probably due to the unlimited water availability and the lack of the plant's physiological adaptations to water conservation. The results provide useful and valid information for estimating ET rates in small-scale constructed wetlands since ET is a relevant issue in arid and semiarid regions. In these areas CW feasibility for wastewater treatment and reuse should also be carefully evaluated for macrophytes in relation to their WUE values.

  15. Amazon river basin evapotranspiration and its influence on the rainfall in southern Brazil

    NASA Astrophysics Data System (ADS)

    Folegatti, M. V.; Wolff, W.

    2017-12-01

    Amazon river basin (ARB) presents a positive water balance, i.e. the precipitation is higher than evapotranspiration. Regarding the regional circulation, ARB evapotranspiration represents an important source of humidity for the South of Brazil. Thus, the aim of this work is to answer the question: how much is the correlation between ARB evapotranspiration and rainfall in South of Brazil? The shapefiles data of ARB and countries/states boundary were obtained through the Oak Ridge National Laboratory (ORNL) and Instituto Brasileiro de Geografia e Estatística (IBGE), respectively. According to rasters data, the precipitation was obtained from study of Numerical Terradynamic Simulation Group (NTSG) for images of Moderate Resolution Imaging Spectroradiometer (MODIS), under code MOD16A2, whereas rasters data for evapotranspiration were obtained from National Aeronautics and Space Administration (NASA) by Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA), under code 3B43_V7. The products MOD16A2 and 3B43_V7 have a respective spatial resolution of 0.5º and 0.25º, and a monthly temporal resolution from January/2000 to December/2014. For ARB and South region of Brazil was calculated the mean evapotranspiration and mean precipitation through the pixels within of the respective polygons. To answer the question of this work was performed the cross-correlation analysis between these time series. We observed the highest value for the lag that corresponds the begin of spring (October), being 0.3 approximately. As a result, the mean precipitation on South region of Brazil during spring and summer was in the order of 15% to 30 %, explained by ARB evapotranspiration. For this reason, the maintenance of ARB is extremely important for water resource grant in South of Brazil.

  16. Overview and highlights of Early Warning and Crop Condition Assessment project

    NASA Technical Reports Server (NTRS)

    Boatwright, G. O.; Whitehead, V. S.

    1985-01-01

    Work of the Early Warning and Crop Condition Assessment (EW/CCA) project, one of eight projects in the Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing (AgRISTARS), is reviewed. Its mission, to develop and test remote sensing techniques that enhance operational methodologies for crop condition assessment, was in response to initiatives issued by the Secretary of Agriculture. Meteorologically driven crop stress indicator models have been developed or modified for wheat, maize, grain sorghum, and soybeans. These models provide early warning alerts of potential or actual crop stresses due to water deficits, adverse temperatures, and water excess that could delay planting or harvesting operations. Recommendations are given for future research involving vegetative index numbers and the NOAA and Landsat satellites.

  17. Hydrological Responses of Weather Conditions and Crop Change of Agricultural Area in the Rincon Valley, New Mexico

    NASA Astrophysics Data System (ADS)

    Ahn, S.; Sheng, Z.; Abudu, S.

    2017-12-01

    Hydrologic cycle of agricultural area has been changing due to the impacts of climate and land use changes (crop coverage changes) in an arid region of Rincon Valley, New Mexico. This study is to evaluate the impacts of weather condition and crop coverage change on hydrologic behavior of agricultural area in Rincon Valley (2,466km2) for agricultural watershed management using a watershed-scale hydrologic model, SWAT (Soil and Water Assessment Tool). The SWAT model was developed to incorporate irrigation of different crops using auto irrigation function. For the weather condition and crop coverage change evaluation, three spatial crop coverages including a normal (2008), wet (2009), and dry (2011) years were prepared using USDA crop data layer (CDL) for fourteen different crops. The SWAT model was calibrated for the period of 2001-2003 and validated for the period of 2004-2006 using daily-observed streamflow data. Scenario analysis was performed for wet and dry years based on the unique combinations of crop coverages and releases from Caballo Reservoir. The SWAT model simulated the present vertical water budget and horizontal water transfer considering irrigation practices in the Rincon Valley. Simulation results indicated the temporal and spatial variability for irrigation and non-irrigation seasons of hydrologic cycle in agricultural area in terms of surface runoff, evapotranspiration, infiltration, percolation, baseflow, soil moisture, and groundwater recharge. The water supply of the dry year could not fully cover whole irrigation period due to dry weather conditions, resulting in reduction of crop acreage. For extreme weather conditions, the temporal variation of water budget became robust, which requires careful irrigation management of the agricultural area. The results could provide guidelines for farmers to decide crop patterns in response to different weather conditions and water availability.

  18. Harmonizing multiple methods for reconstructing historical potential and reference evapotranspiration

    USGS Publications Warehouse

    Belaineh, Getachew; Sumner, David; Carter, Edward; Clapp, David

    2013-01-01

    Potential evapotranspiration (PET) and reference evapotranspiration (RET) data are usually critical components of hydrologic analysis. Many different equations are available to estimate PET and RET. Most of these equations, such as the Priestley-Taylor and Penman- Monteith methods, rely on detailed meteorological data collected at ground-based weather stations. Few weather stations collect enough data to estimate PET or RET using one of the more complex evapotranspiration equations. Currently, satellite data integrated with ground meteorological data are used with one of these evapotranspiration equations to accurately estimate PET and RET. However, earlier than the last few decades, historical reconstructions of PET and RET needed for many hydrologic analyses are limited by the paucity of satellite data and of some types of ground data. Air temperature stands out as the most generally available meteorological ground data type over the last century. Temperature-based approaches used with readily available historical temperature data offer the potential for long period-of-record PET and RET historical reconstructions. A challenge is the inconsistency between the more accurate, but more data intensive, methods appropriate for more recent periods and the less accurate, but less data intensive, methods appropriate to the more distant past. In this study, multiple methods are harmonized in a seamless reconstruction of historical PET and RET by quantifying and eliminating the biases of the simple Hargreaves-Samani method relative to the more complex and accurate Priestley-Taylor and Penman-Monteith methods. This harmonization process is used to generate long-term, internally consistent, spatiotemporal databases of PET and RET.

  19. [Energy balance and evapotranspiration in broad-leaved Korean pine forest in Changbai Mountains].

    PubMed

    Zhang, Xin-jian; Yuan, Feng-hui; Chen, Ni-na; Deng, Jun-li; Yu, Xiao-zhou; Sheng, Xue-jiao

    2011-03-01

    Based on the continuous measurements of an open-path eddy covariance system, this paper analyzed the characteristics of energy balance components and evapotranspiration in a broad-leaved Korean pine forest in Changbai Mountains in 2008, as well as the differences of energy balance components and evapotranspiration between growth season and dormant season. For the test forest, the year-round energy balance closure was 72%, being at a medium level, compared to the other studies in the Fluxnet community. The energy balance components had significant differences in their diurnal and seasonal variations. In growth season, turbulent energy exchange was dominated by upward latent heat flux, accounting for 66% of available energy; while in dormant season, the turbulent energy exchange was dominated by upward sensible heat flux, accounting for 63% of available energy. The accumulated annual evapotranspiration in the study site in 2008 was 484.7 mm, occupying 87% of the precipitation at the same time period (558.9 mm), which demonstrated that evapotranspiration was the main water loss item in temperate forests of northern China.

  20. Evaluation of Daily Evapotranspiration Over Orchards Using METRIC Approach and Landsat Satellite Observations

    NASA Astrophysics Data System (ADS)

    He, R.; Jin, Y.; Daniele, Z.; Kandelous, M. M.; Kent, E. R.

    2016-12-01

    The pistachio and almond acreage in California has been rapidly growing in the past 10 years, raising concerns about competition for limited water resources in California. A robust and cost-effective mapping of crop water use, mostly evapotranspiration (ET), by orchards, is needed for improved farm-level irrigation management and regional water planning. METRIC™, a satellite-based surface energy balance approach, has been widely used to map field-scale crop ET, mostly over row crops. We here aim to apply METRIC with Landsat satellite observations over California's orchards and evaluate the ET estimates by comparing with field measurements in South San Joaquin Valley, California. Reference ET of grass (ETo) from California Irrigation Management Information system (CIMIS) stations was used to estimate daily ET of commercial almond and pistachio orchards. Our comparisons showed that METRIC-Landsat ET daily estimates agreed well with ET measured by the eddy covariance and surface renewal stations, with a RMSE of 1.25 and a correlation coefficient of 0.84 for the pistachio orchard. A slight high bias of satellite based ET estimates was found for both pistachio and almond orchards. We also found time series of NDVI was highly correlated with ET temporal dynamics within each field, but the correlation was reduced to 0.56 when all fields were pooled together. Net radiation, however, remained highly correlated with ET across all the fields. The METRIC ET was able to distinguish the differences in ET among salt- and non-salt affected pistachio orchards, e.g., mean daily ET during growing season in salt-affected orchards was lower than that of non-salt affected one by 0.87 mm/day. The remote sensing based ET estimate will support a variety of state and local interests in water use and management, for both planning and regulatory/compliance purposes, and provide the farmers observation-based guidance for site-specific and time-sensitive irrigation management.

  1. Evaluating the SSEBop approach for evapotranspiration mapping with landsat data using lysimetric observations in the semi-arid Texas High Plains

    USGS Publications Warehouse

    Senay, Gabriel; Gowda, Prasanna H.; Bohms, Stefanie; Howell, T.A.; Friedrichs, Mackenzie; Marek, T.H.; Verdin, James

    2014-01-01

    The operational Simplified Surface Energy Balance (SSEBop) approach was applied on 14 Landsat 5 thermal infrared images for mapping daily actual evapotranspiration (ETa) fluxes during the spring and summer seasons (March–October) in 2006 and 2007. Data from four large lysimeters, managed by the USDA-ARS Conservation and Production Research Laboratory were used for evaluating the SSEBop estimated ETa. Lysimeter fields are arranged in a 2 × 2 block pattern with two fields each managed under irrigated and dryland cropping systems. The modeled and observed daily ETa values were grouped as "irrigated" and "dryland" at four different aggregation periods (1-day, 2-day, 3 day and "seasonal") for evaluation. There was a strong linear relationship between observed and modeled ETa with R2 values ranging from 0.87 to 0.97. The root mean square error (RMSE), as percent of their respective mean values, were reduced progressively with 28, 24, 16 and 12% at 1-day, 2-day, 3-day, and seasonal aggregation periods, respectively. With a further correction of the underestimation bias (−11%), the seasonal RMSE reduced from 12 to 6%. The random error contribution to the total error was reduced from 86 to 20% while the bias' contribution increased from 14 to 80% when aggregated from daily to seasonal scale, respectively. This study shows the reliable performance of the SSEBop approach on the Landsat data stream with a transferable approach for use with the recently launched LDCM (Landsat Data Continuity Mission) Thermal InfraRed Sensor (TIRS) data. Thus, SSEBop can produce quick, reliable and useful ET estimations at various time scales with higher seasonal accuracy for use in regional water management decisions.

  2. Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin

    NASA Astrophysics Data System (ADS)

    Zhuo, L.; Mekonnen, M. M.; Hoekstra, A. Y.

    2014-06-01

    Water Footprint Assessment is a fast-growing field of research, but as yet little attention has been paid to the uncertainties involved. This study investigates the sensitivity of and uncertainty in crop water footprint (in m3 t-1) estimates related to uncertainties in important input variables. The study focuses on the green (from rainfall) and blue (from irrigation) water footprint of producing maize, soybean, rice, and wheat at the scale of the Yellow River basin in the period 1996-2005. A grid-based daily water balance model at a 5 by 5 arcmin resolution was applied to compute green and blue water footprints of the four crops in the Yellow River basin in the period considered. The one-at-a-time method was carried out to analyse the sensitivity of the crop water footprint to fractional changes of seven individual input variables and parameters: precipitation (PR), reference evapotranspiration (ET0), crop coefficient (Kc), crop calendar (planting date with constant growing degree days), soil water content at field capacity (Smax), yield response factor (Ky) and maximum yield (Ym). Uncertainties in crop water footprint estimates related to uncertainties in four key input variables: PR, ET0, Kc, and crop calendar were quantified through Monte Carlo simulations. The results show that the sensitivities and uncertainties differ across crop types. In general, the water footprint of crops is most sensitive to ET0 and Kc, followed by the crop calendar. Blue water footprints were more sensitive to input variability than green water footprints. The smaller the annual blue water footprint is, the higher its sensitivity to changes in PR, ET0, and Kc. The uncertainties in the total water footprint of a crop due to combined uncertainties in climatic inputs (PR and ET0) were about ±20% (at 95% confidence interval). The effect of uncertainties in ET0was dominant compared to that of PR. The uncertainties in the total water footprint of a crop as a result of combined key input

  3. FIELD EVALUATION OF EVAPO-TRANSPIRATION (ET) CAPS

    EPA Science Inventory

    A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid W...

  4. The complementary relationship in estimation of regional evapotranspiration: An enhanced Advection-Aridity model

    Treesearch

    Michael T. Hobbins; Jorge A. Ramirez; Thomas C. Brown

    2001-01-01

    Long-term monthly evapotranspiration estimates from Brutsaert and Stricker’s Advection-Aridity model were compared with independent estimates of evapotranspiration derived from long-term water balances for 139 undisturbed basins across the conterminous United States. On an average annual basis for the period 1962-1988 the original model, which uses a Penman wind...

  5. Evaluation of Sensible Heat Flux and Evapotranspiration Estimates Using a Surface Layer Scintillometer and a Large Weighing Lysimeter

    PubMed Central

    Moorhead, Jerry E.; Marek, Gary W.; Colaizzi, Paul D.; Gowda, Prasanna H.; Evett, Steven R.; Brauer, David K.; Marek, Thomas H.; Porter, Dana O.

    2017-01-01

    Accurate estimates of actual crop evapotranspiration (ET) are important for optimal irrigation water management, especially in arid and semi-arid regions. Common ET sensing methods include Bowen Ratio, Eddy Covariance (EC), and scintillometers. Large weighing lysimeters are considered the ultimate standard for measurement of ET, however, they are expensive to install and maintain. Although EC and scintillometers are less costly and relatively portable, EC has known energy balance closure discrepancies. Previous scintillometer studies used EC for ground-truthing, but no studies considered weighing lysimeters. In this study, a Surface Layer Scintillometer (SLS) was evaluated for accuracy in determining ET as well as sensible and latent heat fluxes, as compared to a large weighing lysimeter in Bushland, TX. The SLS was installed over irrigated grain sorghum (Sorghum bicolor (L.) Moench) for the period 29 July–17 August 2015 and over grain corn (Zea mays L.) for the period 23 June–2 October 2016. Results showed poor correlation for sensible heat flux, but much better correlation with ET, with r2 values of 0.83 and 0.87 for hourly and daily ET, respectively. The accuracy of the SLS was comparable to other ET sensing instruments with an RMSE of 0.13 mm·h−1 (31%) for hourly ET; however, summing hourly values to a daily time step reduced the ET error to 14% (0.75 mm·d−1). This level of accuracy indicates that potential exists for the SLS to be used in some water management applications. As few studies have been conducted to evaluate the SLS for ET estimation, or in combination with lysimetric data, further evaluations would be beneficial to investigate the applicability of the SLS in water resources management. PMID:29036926

  6. Evaluation of Sensible Heat Flux and Evapotranspiration Estimates Using a Surface Layer Scintillometer and a Large Weighing Lysimeter.

    PubMed

    Moorhead, Jerry E; Marek, Gary W; Colaizzi, Paul D; Gowda, Prasanna H; Evett, Steven R; Brauer, David K; Marek, Thomas H; Porter, Dana O

    2017-10-14

    Accurate estimates of actual crop evapotranspiration (ET) are important for optimal irrigation water management, especially in arid and semi-arid regions. Common ET sensing methods include Bowen Ratio, Eddy Covariance (EC), and scintillometers. Large weighing lysimeters are considered the ultimate standard for measurement of ET, however, they are expensive to install and maintain. Although EC and scintillometers are less costly and relatively portable, EC has known energy balance closure discrepancies. Previous scintillometer studies used EC for ground-truthing, but no studies considered weighing lysimeters. In this study, a Surface Layer Scintillometer (SLS) was evaluated for accuracy in determining ET as well as sensible and latent heat fluxes, as compared to a large weighing lysimeter in Bushland, TX. The SLS was installed over irrigated grain sorghum ( Sorghum bicolor (L.) Moench) for the period 29 July-17 August 2015 and over grain corn ( Zea mays L.) for the period 23 June-2 October 2016. Results showed poor correlation for sensible heat flux, but much better correlation with ET, with r² values of 0.83 and 0.87 for hourly and daily ET, respectively. The accuracy of the SLS was comparable to other ET sensing instruments with an RMSE of 0.13 mm·h -1 (31%) for hourly ET; however, summing hourly values to a daily time step reduced the ET error to 14% (0.75 mm·d -1 ). This level of accuracy indicates that potential exists for the SLS to be used in some water management applications. As few studies have been conducted to evaluate the SLS for ET estimation, or in combination with lysimetric data, further evaluations would be beneficial to investigate the applicability of the SLS in water resources management.

  7. Groundwater recharge in irrigated semi-arid areas: quantitative hydrological modelling and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Jiménez-Martínez, Joaquín; Candela, Lucila; Molinero, Jorge; Tamoh, Karim

    2010-12-01

    For semi-arid regions, methods of assessing aquifer recharge usually consider the potential evapotranspiration. Actual evapotranspiration rates can be below potential rates for long periods of time, even in irrigated systems. Accurate estimations of aquifer recharge in semi-arid areas under irrigated agriculture are essential for sustainable water-resources management. A method to estimate aquifer recharge from irrigated farmland has been tested. The water-balance-modelling approach was based on VisualBALAN v. 2.0, a computer code that simulates water balance in the soil, vadose zone and aquifer. The study was carried out in the Campo de Cartagena (SE Spain) in the period 1999-2008 for three different groups of crops: annual row crops (lettuce and melon), perennial vegetables (artichoke) and fruit trees (citrus). Computed mean-annual-recharge values (from irrigation+precipitation) during the study period were 397 mm for annual row crops, 201 mm for perennial vegetables and 194 mm for fruit trees: 31.4, 20.7 and 20.5% of the total applied water, respectively. The effects of rainfall events on the final recharge were clearly observed, due to the continuously high water content in soil which facilitated the infiltration process. A sensitivity analysis to assess the reliability and uncertainty of recharge estimations was carried out.

  8. Effects of different on-farm management on yield and water use efficiency of Potato crop cultivated in semiarid environments under subsurface drip irrigation

    NASA Astrophysics Data System (ADS)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2016-04-01

    In Tunisia the amount of water for irrigated agriculture is higher than about 80% of the total resource.The increasing population and the rising food demand, associated to the negative effects of climate change,make it crucial to adopt strategies aiming to improve water use efficiency (WUE). Moreover, the absence of an effective public policy for water management amplifies the imbalance between water supply and its demand. Despite improved irrigation technologies can enhance the efficiency of water distribution systems, to achieve environmental goals it is also necessaryto identify on-farm management strategies accounting for actual crop water requirement. The main objective of the paper was to assess the effects of different on-farm managementstrategies (irrigation scheduling and planting date) on yield and water use efficiency of Potato crop (Solanumtuberosum L.) irrigated with a subsurface drip system, under the semi-arid climate of central Tunisia. Experiments were carried out during three growing seasons (2012, 2014 and 2015) at the High Agronomic Institute of ChottMariem in Sousse, by considering different planting dates and irrigation depths, the latter scheduled according to the climate observed during the season. All the considered treatments received the same pesticide and fertilizer management. Experiments evidenced that the climatic variability characterizing the examined seasons (photoperiod, solar radiation and average temperature) affects considerably the crop phenological stages, and the late sowing shortens the crop cycle.It has also been demonstrated that Leaf Area Index (LAI) and crop yield resulted relatively higher for those treatments receiving larger amounts of seasonal water. Crop yield varied between 16.3 t/ha and 39.1 t/ha, with a trend linearly related to the ratio between the seasonal amount of water supplied (Irrigation, I and Precipitation, P) and the maximum crop evapotranspiration (ETm). The maximum crop yield was in particular

  9. Water Use and Quality Footprints of Biofuel Crops in Florida

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Hendricks, G.; Helsel, Z.; Knowles, J.

    2013-12-01

    The use of biofuel crops for future energy needs will require considerable amounts of water inputs. Favorable growing conditions for large scale biofuel production exist in the sub-tropical environment of South Florida. However, large-scale land use change associated with biofuel crops is likely to affect the quantity and quality of water within the region. South Florida's surface and ground water resources are already stressed by current allocations. Limited data exists to allocate water for growing the energy crops as well as evaluate the accompanying hydrologic and water quality impacts of large-scale land use changes. A three-year study was conducted to evaluate the water supply and quality impacts of three energy crops: sugarcane, switchgrass, and sweet sorghum (with a winter crop). Six lysimeters were used to collect the data needed to quantify crop evapotranspiration (ETc), and nitrogen (N) and phosphorus (P) levels in groundwater and discharge (drainage and runoff). Each lysimeter (4.85 x 3.65 x 1.35 m) was equipped to measure water input, output, and storage. The irrigation, runoff, and drainage volumes were measured using flow meters. Groundwater samples were collected bi-weekly and drainage/runoff sampling was event based; samples were analyzed for nitrogen (N) and phosphorous (P) species. Data collected over the three years revealed that the average annual ETc was highest for sugarcane (1464 mm) followed by switchgrass and sweet sorghum. Sweet sorghum had the highest total N (TN) concentration (7.6 mg/L) in groundwater and TN load (36 kg/ha) in discharge. However, sweet sorghum had the lowest total P (TP) concentration (1.2 mg/L) in groundwater and TP load (9 kg/ha) in discharge. Water use footprint for ethanol (liter of water used per liter of ethanol produced) was lowest for sugarcane and highest for switchgrass. Switchgrass had the highest P-load footprint for ethanol. No differences were observed for the TN load footprint for ethanol. This is the

  10. Assessment of spatially distributed values of Kc using vegetation indices derived from medium resolution satellite data

    NASA Astrophysics Data System (ADS)

    Greco, M.; Simoniello, T.; Lanfredi, M.; Russo, A. L.

    2010-09-01

    In the last years, the theme of suitable assessment of irrigation water supply has been raised relevant interest for both general principles of sustainable development and optimization of water resources techniques and management. About 99% of the water used in agriculture is lost by crops as evapotranspiration (ET). Thus, it becomes crucial to drive direct or indirect measurement in order to perform a suitable evaluation of water loss by evapotranspiration (i.e. actual evapotranspiration) as well as crop water status and its effect on the production. The main methods used to measure evapotranspiration are available only at field scale (Bowen ratio, eddy correlation system, soil water balance) confined to a small pilot area, generally due to expense and logistical constraints. This led over the last 50 years to the development of a large number of empirical methods to estimate evapotranspiration through different climatic and meteorological variables as well as combining models, based on aerodynamic theory and energy balance, taking into account both canopy properties and meteorological conditions. Among these, the Penman-Monteith equation seems to give the best results providing a robust and consistent method world wide accepted. Such conventional methods only provide accurate evapotranspiration assessment for a homogeneous region nearby the meteorological gauge station and cannot be extrapolated to other different sites; whereas remote sensing techniques allow for filling up such a gap. Some of these satellite techniques are based on the use of thermal band signals as inputs for energy balance equations. Another common approach is mainly based on the FAO method for estimating crop evapotranspiration, in which evapotranspiration data are multiplied by crop coefficients, Kc, derived from satellite multispectral vegetation indices obtained. The rationale behind such a link considers that Kc and vegetation indices are sensitive to both leaf area index and fractional

  11. Quantifying Crop Specific Blue and Green Water Footprints and the Spatial Allocation of Virtual Water in China

    NASA Astrophysics Data System (ADS)

    Pan, J.; Smith, T.; McLaughlin, D.

    2016-12-01

    China, which had a population of 1.38 billion in 2013, is expected to peak at about 1.45 billion around 2030, with per capita food demand likely to increase significantly. The population growth and diet change make prospects of future available water and food worrisome for China. Quantitative estimates of crop specific blue and green water footprints provide useful insight about the roles of different water sources and give guidance for agricultural and water resource planning. This study uses reanalysis methods to merge diverse datasets, including information on water fluxes and land use, to estimate crop-specific green and blue water consumption at 0.5 degree spatial resolution. The estimates incorporate, through constraints in the reanalysis procedure, important physical connections between the water and land resources that support agriculture. These connections are important since land use affects evapotranspiration and runoff while water availability and crop area affect crop production and virtual water content. The results show that green water accounts for 86% and blue water accounts for 14% of the total national agricultural water footprint, respectively. The water footprints of cereals (wheat, maize and rice) and soybeans account for 51% of the total agricultural water footprint. Cereals and soybeans together account for 85% of the total blue water footprint.

  12. Understanding the climate-included variations in the seasonal water demands of irrigated crops in Northern India

    NASA Astrophysics Data System (ADS)

    Bhattarai, N.; Jain, M.

    2016-12-01

    Expected changes in temperature and precipitation patterns in the rice-wheat belt of Northern India have implications for balancing crop water demand and available water resources. Because the impacts of water scarcity and reduced crop production are realized at a local scale, water-saving interventions are most effective when implemented locally. However, a paucity of fine-scale studies on the relationship between variations in climate and crop water demand has limited our ability to effectively implement such interventions. In an effort to better understand the responses of irrigated crops to changing climate in Northern India at finer-scales, we propose a remote sensing based semi-empirical approach. First, we employ a multi-model surface energy balance (SEB) approach to map seasonal evapotranspiration (ET)/water use (1995-2015) at 30 to 100 m resolution from space and investigate how seasonal and inter-annual variations in temperature and precipitation are associated with regional surface-energy budgets. Second, using remote estimates of ET and other biophysical variables, such as vegetation indices, land surface temperature, and albedo, we will explain the possible relationships between climate change and seasonal water demands of crops. Our estimates of high/moderate resolution (30 to 100 m) seasonal ET maps can make clear distinctions between impacts of climate variations on crop water demand at field, plot, and regional scales in Northern India. Finally, by improving our ability to identify targeted area for water-saving interventions, this study supports agricultural resiliency of Northern India in the face of climate change.

  13. Simple process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture

    NASA Astrophysics Data System (ADS)

    Davis, Tyler W.; Prentice, I. Colin; Stocker, Benjamin D.; Thomas, Rebecca T.; Whitley, Rhys J.; Wang, Han; Evans, Bradley J.; Gallego-Sala, Angela V.; Sykes, Martin T.; Cramer, Wolfgang

    2017-02-01

    Bioclimatic indices for use in studies of ecosystem function, species distribution, and vegetation dynamics under changing climate scenarios depend on estimates of surface fluxes and other quantities, such as radiation, evapotranspiration and soil moisture, for which direct observations are sparse. These quantities can be derived indirectly from meteorological variables, such as near-surface air temperature, precipitation and cloudiness. Here we present a consolidated set of simple process-led algorithms for simulating habitats (SPLASH) allowing robust approximations of key quantities at ecologically relevant timescales. We specify equations, derivations, simplifications, and assumptions for the estimation of daily and monthly quantities of top-of-the-atmosphere solar radiation, net surface radiation, photosynthetic photon flux density, evapotranspiration (potential, equilibrium, and actual), condensation, soil moisture, and runoff, based on analysis of their relationship to fundamental climatic drivers. The climatic drivers include a minimum of three meteorological inputs: precipitation, air temperature, and fraction of bright sunshine hours. Indices, such as the moisture index, the climatic water deficit, and the Priestley-Taylor coefficient, are also defined. The SPLASH code is transcribed in C++, FORTRAN, Python, and R. A total of 1 year of results are presented at the local and global scales to exemplify the spatiotemporal patterns of daily and monthly model outputs along with comparisons to other model results.

  14. RIPGIS-NET: a GIS tool for riparian groundwater evapotranspiration in MODFLOW.

    PubMed

    Ajami, Hoori; Maddock, Thomas; Meixner, Thomas; Hogan, James F; Guertin, D Phillip

    2012-01-01

    RIPGIS-NET, an Environmental System Research Institute (ESRI's) ArcGIS 9.2/9.3 custom application, was developed to derive parameters and visualize results of spatially explicit riparian groundwater evapotranspiration (ETg), evapotranspiration from saturated zone, in groundwater flow models for ecohydrology, riparian ecosystem management, and stream restoration. Specifically RIPGIS-NET works with riparian evapotranspiration (RIP-ET), a modeling package that works with the MODFLOW groundwater flow model. RIP-ET improves ETg simulations by using a set of eco-physiologically based ETg curves for plant functional subgroups (PFSGs), and separates ground evaporation and plant transpiration processes from the water table. The RIPGIS-NET program was developed in Visual Basic 2005, .NET framework 2.0, and runs in ArcMap 9.2 and 9.3 applications. RIPGIS-NET, a pre- and post-processor for RIP-ET, incorporates spatial variability of riparian vegetation and land surface elevation into ETg estimation in MODFLOW groundwater models. RIPGIS-NET derives RIP-ET input parameters including PFSG evapotranspiration curve parameters, fractional coverage areas of each PFSG in a MODFLOW cell, and average surface elevation per riparian vegetation polygon using a digital elevation model. RIPGIS-NET also provides visualization tools for modelers to create head maps, depth to water table (DTWT) maps, and plot DTWT for a PFSG in a polygon in the Geographic Information System based on MODFLOW simulation results. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  15. Sustainability of irrigated crops under future climate: the interplay of irrigation strategies and cultivar responses

    NASA Astrophysics Data System (ADS)

    De Lorenzi, F.; Bonfante, A.; Alfieri, S.; Patanè, C.; Basile, A.; Di Tommasi, P.; Monaco, E.; Menenti, M.

    2012-04-01

    Climate evolution will cause significant changes in the quality and availability of water resources, affecting many sectors including food production, where available water resources for irrigation play a crucial role. Strategies focused on managing and conserving water are one way to deal with the impact; moreover concurring adaptation measurements will be needed to cope with the foreseen decline of water resource. This work deals with i) the impacts of climate change on water requirements of an horticultural crop, determined in an irrigated district in Southern Italy, ii) the possible irrigation scheduling options and their sustainability in the future, iii) the adaptation measurements that can be undertaken to protect production, relying on intra-specific biodiversity of agricultural crops. Two climate scenarios were considered: present climate (1961-90) and future climate (2021-2050), the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data set consists of daily time series of maximum and minimum temperature, and rainfall on a grid with spatial resolution of 35 km. The analysis of climate scenarios showed that significant increases in summer maximum daily temperature could be expected in 2021-2050 period. Soil water regime was determined by means of a mechanistic model (SWAP) of water flow in the soil-plant-atmosphere system. Twenty? soil units were identified in the district (in Sele Plain, Campania Region) and simulations were performed accounting for hydro-pedological properties of different soil units. Parameters of a generic tomato crop, in a rotation typical of the area, were used in simulations. Soil water balance was simulated in the present and future climate, both with optimal water availability and under constrains that irrigation schemes will pose. Indicators of soil water availability were calculated, in terms of soil water or evapotranspiration deficit. For several tomato

  16. Benchmark levels for the consumptive water footprint of crop production for different environmental conditions: a case study for winter wheat in China

    NASA Astrophysics Data System (ADS)

    Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2016-11-01

    Meeting growing food demands while simultaneously shrinking the water footprint (WF) of agricultural production is one of the greatest societal challenges. Benchmarks for the WF of crop production can serve as a reference and be helpful in setting WF reduction targets. The consumptive WF of crops, the consumption of rainwater stored in the soil (green WF), and the consumption of irrigation water (blue WF) over the crop growing period varies spatially and temporally depending on environmental factors like climate and soil. The study explores which environmental factors should be distinguished when determining benchmark levels for the consumptive WF of crops. Hereto we determine benchmark levels for the consumptive WF of winter wheat production in China for all separate years in the period 1961-2008, for rain-fed vs. irrigated croplands, for wet vs. dry years, for warm vs. cold years, for four different soil classes, and for two different climate zones. We simulate consumptive WFs of winter wheat production with the crop water productivity model AquaCrop at a 5 by 5 arcmin resolution, accounting for water stress only. The results show that (i) benchmark levels determined for individual years for the country as a whole remain within a range of ±20 % around long-term mean levels over 1961-2008, (ii) the WF benchmarks for irrigated winter wheat are 8-10 % larger than those for rain-fed winter wheat, (iii) WF benchmarks for wet years are 1-3 % smaller than for dry years, (iv) WF benchmarks for warm years are 7-8 % smaller than for cold years, (v) WF benchmarks differ by about 10-12 % across different soil texture classes, and (vi) WF benchmarks for the humid zone are 26-31 % smaller than for the arid zone, which has relatively higher reference evapotranspiration in general and lower yields in rain-fed fields. We conclude that when determining benchmark levels for the consumptive WF of a crop, it is useful to primarily distinguish between different climate zones. If

  17. Linking precipitation, evapotranspiration and soil moisture content for the improvement of predictability over land

    NASA Astrophysics Data System (ADS)

    Catalano, Franco; Alessandri, Andrea; De Felice, Matteo

    2013-04-01

    Climate change scenarios are expected to show an intensification of the hydrological cycle together with modifications of evapotranspiration and soil moisture content. Evapotranspiration changes have been already evidenced for the end of the 20th century. The variance of evapotranspiration has been shown to be strongly related to the variance of precipitation over land. Nevertheless, the feedbacks between evapotranspiration, soil moisture and precipitation have not yet been completely understood at present-day. Furthermore, soil moisture reservoirs are associated to a memory and thus their proper initialization may have a strong influence on predictability. In particular, the linkage between precipitation and soil moisture is modulated by the effects on evapotranspiration. Therefore, the investigation of the coupling between these variables appear to be of primary importance for the improvement of predictability over the continents. The coupled manifold (CM) technique (Navarra and Tribbia 2005) is a method designed to separate the effects of the variability of two variables which are connected. This method has proved to be successful for the analysis of different climate fields, like precipitation, vegetation and sea surface temperature. In particular, the coupled variables reveal patterns that may be connected with specific phenomena, thus providing hints regarding potential predictability. In this study we applied the CM to recent observational datasets of precipitation (from CRU), evapotranspiration (from GIMMS and MODIS satellite-based estimates) and soil moisture content (from ESA) spanning a time period of 23 years (1984-2006) with a monthly frequency. Different data stratification (monthly, seasonal, summer JJA) have been employed to analyze the persistence of the patterns and their characteristical time scales and seasonality. The three variables considered show a significant coupling among each other. Interestingly, most of the signal of the

  18. Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability

    NASA Astrophysics Data System (ADS)

    Herman, Matthew R.; Nejadhashemi, A. Pouyan; Abouali, Mohammad; Hernandez-Suarez, Juan Sebastian; Daneshvar, Fariborz; Zhang, Zhen; Anderson, Martha C.; Sadeghi, Ali M.; Hain, Christopher R.; Sharifi, Amirreza

    2018-01-01

    As the global demands for the use of freshwater resources continues to rise, it has become increasingly important to insure the sustainability of this resources. This is accomplished through the use of management strategies that often utilize monitoring and the use of hydrological models. However, monitoring at large scales is not feasible and therefore model applications are becoming challenging, especially when spatially distributed datasets, such as evapotranspiration, are needed to understand the model performances. Due to these limitations, most of the hydrological models are only calibrated for data obtained from site/point observations, such as streamflow. Therefore, the main focus of this paper is to examine whether the incorporation of remotely sensed and spatially distributed datasets can improve the overall performance of the model. In this study, actual evapotranspiration (ETa) data was obtained from the two different sets of satellite based remote sensing data. One dataset estimates ETa based on the Simplified Surface Energy Balance (SSEBop) model while the other one estimates ETa based on the Atmosphere-Land Exchange Inverse (ALEXI) model. The hydrological model used in this study is the Soil and Water Assessment Tool (SWAT), which was calibrated against spatially distributed ETa and single point streamflow records for the Honeyoey Creek-Pine Creek Watershed, located in Michigan, USA. Two different techniques, multi-variable and genetic algorithm, were used to calibrate the SWAT model. Using the aforementioned datasets, the performance of the hydrological model in estimating ETa was improved using both calibration techniques by achieving Nash-Sutcliffe efficiency (NSE) values >0.5 (0.73-0.85), percent bias (PBIAS) values within ±25% (±21.73%), and root mean squared error - observations standard deviation ratio (RSR) values <0.7 (0.39-0.52). However, the genetic algorithm technique was more effective with the ETa calibration while significantly

  19. Estimation of Rice Crop Yields Using Random Forests in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C. F.; Lin, H. S.; Nguyen, S. T.; Chen, C. R.

    2017-12-01

    Rice is globally one of the most important food crops, directly feeding more people than any other crops. Rice is not only the most important commodity, but also plays a critical role in the economy of Taiwan because it provides employment and income for large rural populations. The rice harvested area and production are thus monitored yearly due to the government's initiatives. Agronomic planners need such information for more precise assessment of food production to tackle issues of national food security and policymaking. This study aimed to develop a machine-learning approach using physical parameters to estimate rice crop yields in Taiwan. We processed the data for 2014 cropping seasons, following three main steps: (1) data pre-processing to construct input layers, including soil types and weather parameters (e.g., maxima and minima air temperature, precipitation, and solar radiation) obtained from meteorological stations across the country; (2) crop yield estimation using the random forests owing to its merits as it can process thousands of variables, estimate missing data, maintain the accuracy level when a large proportion of the data is missing, overcome most of over-fitting problems, and run fast and efficiently when handling large datasets; and (3) error verification. To execute the model, we separated the datasets into two groups of pixels: group-1 (70% of pixels) for training the model and group-2 (30% of pixels) for testing the model. Once the model is trained to produce small and stable out-of-bag error (i.e., the mean squared error between predicted and actual values), it can be used for estimating rice yields of cropping seasons. The results obtained from the random forests-based regression were compared with the actual yield statistics indicated the values of root mean square error (RMSE) and mean absolute error (MAE) achieved for the first rice crop were respectively 6.2% and 2.7%, while those for the second rice crop were 5.3% and 2

  20. A coupled stochastic rainfall-evapotranspiration model for hydrological impact analysis

    NASA Astrophysics Data System (ADS)

    Pham, Minh Tu; Vernieuwe, Hilde; De Baets, Bernard; Verhoest, Niko E. C.

    2018-02-01

    A hydrological impact analysis concerns the study of the consequences of certain scenarios on one or more variables or fluxes in the hydrological cycle. In such an exercise, discharge is often considered, as floods originating from extremely high discharges often cause damage. Investigating the impact of extreme discharges generally requires long time series of precipitation and evapotranspiration to be used to force a rainfall-runoff model. However, such kinds of data may not be available and one should resort to stochastically generated time series, even though the impact of using such data on the overall discharge, and especially on the extreme discharge events, is not well studied. In this paper, stochastically generated rainfall and corresponding evapotranspiration time series, generated by means of vine copulas, are used to force a simple conceptual hydrological model. The results obtained are comparable to the modelled discharge using observed forcing data. Yet, uncertainties in the modelled discharge increase with an increasing number of stochastically generated time series used. Notwithstanding this finding, it can be concluded that using a coupled stochastic rainfall-evapotranspiration model has great potential for hydrological impact analysis.

  1. Ecosystem evapotranspiration: Challenges in measurements, estimates, and modeling

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) processes at the leaf-to-landscape scales in multiple land uses have important controls and feedbacks for the local, regional and global climate and water resource systems. Innovative methods, tools, and technologies for improved understanding and quantification of ET and cro...

  2. Causative impact of air pollution on evapotranspiration in the North China Plain.

    PubMed

    Yao, Ling

    2017-10-01

    Atmospheric dispersion conditions strongly impact air pollution under identical surface emissions. The degree of air pollution in the Jing-Jin-Ji region is so severe that it may impose feedback on local climate. Reference evapotranspiration (ET 0 ) plays a significant role in the estimation of crop water requirements, as well as in studies on climate variation and change. Since the traditional correlation analysis cannot capture the causality, we apply the convergent cross mapping method (CCM) in this study to observationally investigate whether the air pollution impacts ET 0 . The results indicate that southwest regions of Jing-Jin-Ji always suffer higher PM 2.5 concentration than north regions through the whole year, and correlation analysis suggests that PM 2.5 concentration has a significant negative effect on ET 0 in most cities. The causality detection with CCM quantitatively demonstrates the significantly causative influence of PM 2.5 concentration on ET 0 , higher PM 2.5 concentration decreasing ET 0 . However, CCM analysis suggests that PM 2.5 concentration has a relatively weak causal influence on ET 0 while the correlation analysis gives the near zero correlation coefficient in Zhangjiakou city, indicating that the causative influence of PM 2.5 concentration on ET 0 is better revealed with CCM method than the correlation analysis. Considering that ET 0 is strongly associated with crop water requirement, the amount of water for agricultural irrigation could be reduced at high PM 2.5 concentrations. These findings can be utilized to improve the efficiency of water resources utilization, and reduce the exploiting amount of groundwater in the Jing-Jin-Ji region, although PM 2.5 is detrimental to human health. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The role of evapotranspiration in the groundwater hydrochemistry of an arid coastal wetland (Península Valdés, Argentina).

    PubMed

    Alvarez, María Del Pilar; Carol, Eleonora; Dapeña, Cristina

    2015-02-15

    Coastal wetlands are complex hydrogeological systems, in which saline groundwater usually occurs. Salinity can be attributed to many origins, such as dissolution of minerals in the sediments, marine contribution and evapotranspiration, among others. The aim of this paper is to evaluate the processes that condition the hydrochemistry of an arid marsh, Playa Fracasso, located in Patagonia, Argentina. A study of the dynamics and geochemistry of the groundwater was carried out in each hydrogeomorphological unit, using major ion and isotope ((18)O and (2)H) data, soil profiles descriptions and measurements, and recording of water tables in relation to the tidal flow. Water balances and analytical models based on isotope data were used to quantify the evaporation processes and to define the role of evaporation in the chemical composition of water. The results obtained show that the groundwater salinity of the marsh comes mainly from the tidal inflow, to which the halite and gypsum dissolution is added. These mineral facies are the result of the total evaporation of the marine water flooding that occurs mostly at the spring high tides. The isotope relationships in the fan and bajada samples show the occurrence of evaporation processes. Such processes, however, are not mainly responsible for the saline content of groundwater, which is actually generated by the dissolution of the typical evaporite facies of the arid environment sediments. It is concluded that the evapotranspiration processes condition groundwater quality. This is not only due to the saline enrichment caused by the evapotranspiration of shallow water, but also because such processes are the main drivers of the formation of soluble salts, which are then incorporated into the water by groundwater or tidal flow. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Decreasing reference evapotranspiration in a warming climate - A case of Changjiang (Yangtze) River catchment during 1970-2000

    NASA Astrophysics Data System (ADS)

    Xu, C. Y.; Gong, L. B.; Tong, J.; Chen, D. L.

    2006-07-01

    This study deals with temporal trends in the Penman-Monteith reference evapotranspiration estimated from standard meteorological observations, observed pan evaporation, and four related meteorological variables during 1970-2000 in the Yangtze River catchment. Relative contributions of the four meteorological variables to changes in the reference evapotranspiration are quantified. The results show that both the reference evapotranspiration and the pan evaporation have significant. decreasing trends in the upper, the middle as well as in the whole Changjiang (Yangtze) River catchment at the 5% significance level, while the air temperature shows a significant increasing trend. The decreasing trend detected in the reference evapotranspiration can be attributed to the significant decreasing trends in the net radiation and the wind speed.

  5. Use of Land Surface Temperature Observations in a Two-Source Energy Balance Model Towards Improved Monitoring of Evapotranspiration and Drought

    NASA Astrophysics Data System (ADS)

    Hain, C.; Anderson, M. C.; Otkin, J.; Semmens, K. A.; Zhan, X.; Fang, L.; Li, Z.

    2014-12-01

    As the world's water resources come under increasing tension due to the dual stressors of climate change and population growth, accurate knowledge of water consumption through evapotranspiration (ET) over a range in spatial scales will be critical in developing adaptation strategies. However, direct validation of ET models is challenging due to lack of available observations that are sufficiently representative at the model grid scale (10-100 km). Prognostic land-surface models require accurate information about observed precipitation, soil moisture storage, groundwater, and artificial controls on water supply (e.g., irrigation, dams, etc.) to reliably link rainfall to evaporative fluxes. In contrast, diagnostic estimates of ET can be generated, with no prior knowledge of the surface moisture state, by energy balance models using thermal-infrared remote sensing of land-surface temperature (LST) as a boundary condition. One such method, the Atmosphere Land Exchange Inverse (ALEXI) model provides estimates of surface energy fluxes through the use of mid-morning change in LST and radiation inputs. The LST inputs carry valuable proxy information regarding soil moisture and its effect on soil evaporation and canopy transpiration. Additionally, the Evaporative Stress Index (ESI) representing anomalies in the ratio of actual-to-potential ET has shown to be a reliable indicator of drought. ESI maps over the continental US show good correspondence with standard drought metrics and with patterns of precipitation, but can be generated at significantly higher spatial resolution due to a limited reliance on ground observations. Furthermore, ESI is a measure of actual stress rather than potential for stress, and has physical relevance to projected crop development. Because precipitation is not used in construction of the ESI, it provides an independent assessment of drought conditions and has particular utility for real-time monitoring in regions with sparse rainfall data or

  6. Intercomparison and Uncertainty Assessment of Nine Evapotranspiration Estimates Over South America

    NASA Astrophysics Data System (ADS)

    Sörensson, Anna A.; Ruscica, Romina C.

    2018-04-01

    This study examines the uncertainties and the representations of anomalies of a set of evapotranspiration products over climatologically distinct regions of South America. The products, coming from land surface models, reanalysis, and remote sensing, are chosen from sources that are readily available to the community of users. The results show that the spatial patterns of maximum uncertainty differ among metrics, with dry regions showing maximum relative uncertainties of annual mean evapotranspiration, while energy-limited regions present maximum uncertainties in the representation of the annual cycle and monsoon regions in the representation of anomalous conditions. Furthermore, it is found that land surface models driven by observed atmospheric fields detect meteorological and agricultural droughts in dry regions unequivocally. The remote sensing products employed do not distinguish all agricultural droughts and this could be attributed to the forcing net radiation. The study also highlights important characteristics of individual data sets and recommends users to include assessments of sensitivity to evapotranspiration data sets in their studies, depending on region and nature of study to be conducted.

  7. Management Strategies to Sustain Irrigated Agriculture with Combination of Remote Sensing, Weather Monitoring & Forecasting and SWAP Modeling

    NASA Astrophysics Data System (ADS)

    Ermolaeva, Olga; Zeyliger, Anatoly

    2017-04-01

    Today world's water systems face formidable threats due to climate change and increasing water withdraw for agriculture, industry and domestic use. Projected in many parts of the earth increases in temperature, evaporation, and drought frequency shrunk water availability and magnify water scarcity. Declining irrigation water supplies threaten the sustainability of irrigated agricultural production which plays a critical role in meeting global food needs. In irrigated agriculture there is a strong call for deep efforts in order on the one hand to improve water efficiency use and on the other to maximize yields. The aim of this research is to provide tool to optimize water application with crop irrigation by sprinkling in order to sustain irrigated agriculture under limited water supply by increasing net returns per unit of water. For this aim some field experimental results of 2012 year growing season of alfalfa, corn and soya irrigated by sprinkling machines crops at left bank of Volga River at Saratov Region of Russia. Additionally a combination of data sets was used which includes MODIS images, local meteorological station and results of SWAP (Soil-Water-Atmosphere-Plant) modeling. This combination was used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. By this way it was determined the effect of applied irrigation scheduling and water application depths on evapotranspiration, crop productivity and water stress coefficient. Aggregation of actual values of crop water stress and biomass data predicted by SWAP agrohydrological model with weather forecasting and irrigation scheduling was used to indicate of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support

  8. Long-term patterns of air temperatures, daily temperature range, precipitation, grass-reference evapotranspiration and aridity index in the USA Great Plains: Part I. Spatial trends

    NASA Astrophysics Data System (ADS)

    Kukal, M.; Irmak, S.

    2016-11-01

    Due to their substantial spatio-temporal behavior, long-term quantification and analyses of important hydrological variables are essential for practical applications in water resources planning, evaluating the water use of agricultural crop production and quantifying crop evapotranspiration patterns and irrigation management vs. hydrologic balance relationships. Observed data at over 800 sites across the Great Plains of USA, comprising of 9 states and 2,307,410 km2 of surface area, which is about 30% of the terrestrial area of the USA, were used to quantify and map large-scale and long-term (1968-2013) spatial trends of air temperatures, daily temperature range (DTR), precipitation, grass-reference evapotranspiration (ETo) and aridity index (AI) at monthly, growing season and annual time steps. Air temperatures had a strong north to south increasing trend, with annual average varying from -1 to 24 °C, and growing season average temperature varying from 8 to 30 °C. DTR gradually decreased from western to eastern parts of the region, with a regional annual and growing season averages of 14.25 °C and 14.79 °C, respectively. Precipitation had a gradual shift towards higher magnitudes from west to east, with the average annual and growing season (May-September) precipitation ranging from 163 to 1486 mm and from 98 to 746 mm, respectively. ETo had a southwest-northeast decreasing trend, with regional annual and growing season averages of 1297 mm and 823 mm, respectively. AI increased from west to east, indicating higher humidity (less arid) towards the east, with regional annual and growing season averages of 0.49 and 0.44, respectively. The spatial datasets and maps for these important climate variables can serve as valuable background for climate change and hydrologic studies in the Great Plains region. Through identification of priority areas from the developed maps, efforts of the concerned personnel and agencies and resources can be diverted towards development

  9. Intercomparison of Evapotranspiration Over the Savannah Volta Basin in West Africa Using Remote Sensing Data

    PubMed Central

    Opoku-Duah, S.; Donoghue, D.N.M.; Burt, T. P.

    2008-01-01

    This paper compares evapotranspiration estimates from two complementary satellite sensors – NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and ESA's ENVISAT Advanced Along-Track Scanning Radiometer (AATSR) over the savannah area of the Volta basin in West Africa. This was achieved through solving for evapotranspiration on the basis of the regional energy balance equation, which was computationally-driven by the Surface Energy Balance Algorithm for Land algorithm (SEBAL). The results showed that both sensors are potentially good sources of evapotranspiration estimates over large heterogeneous landscapes. The MODIS sensor measured daily evapotranspiration reasonably well with a strong spatial correlation (R2=0.71) with Landsat ETM+ but underperformed with deviations up to ∼2.0 mm day-1, when compared with local eddy correlation observations and the Penman-Monteith method mainly because of scale mismatch. The AATSR sensor produced much poorer correlations (R2=0.13) with Landsat ETM+ and conventional ET methods also because of differences in atmospheric correction and sensor calibration over land. PMID:27879847

  10. Estimation of evapotranspiration in an arid region by remote sensing—A case study in the middle reaches of the Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Li, Xingmin; Lu, Ling; Yang, Wenfeng; Cheng, Guodong

    2012-07-01

    Estimating surface evapotranspiration is extremely important for the study of water resources in arid regions. Data from the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer (NOAA/AVHRR), meteorological observations and data obtained from the Watershed Allied Telemetry Experimental Research (WATER) project in 2008 are applied to the evaporative fraction model to estimate evapotranspiration over the Heihe River Basin. The calculation method for the parameters used in the model and the evapotranspiration estimation results are analyzed and evaluated. The results observed within the oasis and the banks of the river suggest that more evapotranspiration occurs in the inland river basin in the arid region from May to September. Evapotranspiration values for the oasis, where the land surface types and vegetations are highly variable, are relatively small and heterogeneous. In the Gobi desert and other deserts with little vegetation, evapotranspiration remains at its lowest level during this period. These results reinforce the conclusion that rational utilization of water resources in the oasis is essential to manage the water resources in the inland river basin. In the remote sensing-based evapotranspiration model, the accuracy of the parameter estimate directly affects the accuracy of the evapotranspiration results; more accurate parameter values yield more precise values for evapotranspiration. However, when using the evaporative fraction to estimate regional evapotranspiration, better calculation results can be achieved only if evaporative fraction is constant in the daytime.

  11. On estimating total daily evapotranspiration from remote surface temperature measurements

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.; Buffum, Martha J.

    1989-01-01

    A method for calculating daily evapotranspiration from the daily surface energy budget using remotely sensed surface temperature and several meteorological variables is presented. Vaules of the coefficients are determined from simulations with a one-dimensional boundary layer model with vegetation cover. Model constants are obtained for vegetation and bare soil at two air temperature and wind speed levels over a range of surface roughness and wind speeds. A different means of estimating the daily evapotranspiration based on the time rate of increase of surface temperature during the morning is also considered. Both the equations using our model-derived constants and field measurements are evaluated, and a discussion of sources of error in the use of the formulation is given.

  12. Sensitivity of the projected hydroclimatic environment of the Delaware River basin to formulation of potential evapotranspiration

    USGS Publications Warehouse

    Williamson, Tanja N.; Nystrom, Elizabeth A.; Milly, Paul C.D.

    2016-01-01

    The Delaware River Basin (DRB) encompasses approximately 0.4 % of the area of the United States (U.S.), but supplies water to 5 % of the population. We studied three forested tributaries to quantify the potential climate-driven change in hydrologic budget for two 25-year time periods centered on 2030 and 2060, focusing on sensitivity to the method of estimating potential evapotranspiration (PET) change. Hydrology was simulated using the Water Availability Tool for Environmental Resources (Williamson et al. 2015). Climate-change scenarios for four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) and two Representative Concentration Pathways (RCPs) were used to derive monthly change factors for temperature (T), precipitation (PPT), and PET according to the energy-based method of Priestley and Taylor (1972). Hydrologic simulations indicate a general increase in annual (especially winter) streamflow (Q) as early as 2030 across the DRB, with a larger increase by 2060. This increase in Q is the result of (1) higher winter PPT, which outweighs an annual actual evapotranspiration (AET) increase and (2) (for winter) a major shift away from storage of PPT as snow pack. However, when PET change is evaluated instead using the simpler T-based method of Hamon (1963), the increases in Q are small or even negative. In fact, the change of Q depends as much on PET method as on time period or RCP. This large sensitivity and associated uncertainty underscore the importance of exercising caution in the selection of a PET method for use in climate-change analyses.

  13. Should Bouchet's hypothesis be taken into account in rainfall-runoff modelling? An assessment over 308 catchments

    NASA Astrophysics Data System (ADS)

    Oudin, Ludovic; Michel, Claude; Andréassian, Vazken; Anctil, François; Loumagne, Cécile

    2005-12-01

    An implementation of the complementary relationship hypothesis (Bouchet's hypothesis) for estimating regional evapotranspiration within two rainfall-runoff models is proposed and evaluated in terms of streamflow simulation efficiency over a large sample of 308 catchments located in Australia, France and the USA. Complementary relationship models are attractive approaches to estimating actual evapotranspiration because they rely solely on climatic variables. They are even more interesting since they are supported by a conceptual description underlying the interactions between the evapotranspirating surface and the atmospheric boundary layer, which was highlighted by Bouchet (1963). However, these approaches appear to be in contradiction with the methods prevailing in rainfall-runoff models, which compute actual evapotranspiration using soil moisture accounting procedures. The approach adopted in this article is to introduce the estimation of actual evapotranspiration provided by complementary relationship models (complementary relationship for areal evapotranspiration and advection aridity) into two rainfall-runoff models. Results show that directly using the complementary relationship approach to estimate actual evapotranspiration does not give better results than the soil moisture accounting procedures. Finally, we discuss feedback mechanisms between potential evapotranspiration and soil water availability, and their possible impact on rainfall-runoff modelling. Copyright

  14. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Young, R. R.; Huth, N.

    2012-04-01

    The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr-1 rainfall, potential evapotranspiration >2000 mm yr-1) such as parts of Australia's Murray-Darling Basin (MDB). In this rare study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8-1.2 m depth under perennial vegetation and at 2.0-2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91-229 t ha-1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥ 10 m depth that was not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m-1 at 21 to 37 m depth (N = 5), whereas deeper groundwater was less saline (290 mS m-1) with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM) software package predicted deep drainage of 3.3-9.5 mm yr-1 (0.7-2.1% rainfall) based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent soil water content, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total), and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge appears to be negligible due to low rainfall and large potential evapotranspiration, transient hydrological conditions after changes in land use and a

  15. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    USGS Publications Warehouse

    Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, Pat; Williams, C.; Ardö, J.; Marie, B.; Cappelaere, B.; Grandcourt, A.; Nickless, A.; Noubellon, Y.; Scholes, R.; Kutsch, W.

    2012-01-01

    Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET), a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH) wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  16. Assessing the ability of potential evapotranspiration models in capturing dynamics of evaporative demand across various biomes and climatic regimes with ChinaFLUX measurements

    NASA Astrophysics Data System (ADS)

    Zheng, Han; Yu, Guirui; Wang, Qiufeng; Zhu, Xianjin; Yan, Junhua; Wang, Huimin; Shi, Peili; Zhao, Fenghua; Li, Yingnian; Zhao, Liang; Zhang, Junhui; Wang, Yanfen

    2017-08-01

    Estimates of atmospheric evaporative demand have been widely required for a variety of hydrological analyses, with potential evapotranspiration (PET) being an important measure representing evaporative demand of actual vegetated surfaces under given metrological conditions. In this study, we assessed the ability of various PET models in capturing long-term (typically 2003-2011) dynamics of evaporative demand at eight ecosystems across various biomes and climatic regimes in China. Prior to assessing PET dynamics, we first examined the reasonability of fourteen PET models in representing the magnitudes of evaporative demand using eddy-covariance actual evapotranspiration (AET) as an indicator. Results showed that the robustness of the fourteen PET models differed somewhat across the sites, and only three PET models could produce reasonable magnitudes of evaporative demand (i.e., PET ≥ AET on average) for all eight sites, including the: (i) Penman; (ii) Priestly-Taylor and (iii) Linacre models. Then, we assessed the ability of these three PET models in capturing dynamics of evaporative demand by comparing the annual and seasonal trends in PET against the equivalent trends in AET and precipitation (P) for particular sites. Results indicated that nearly all the three PET models could faithfully reproduce the dynamics in evaporative demand for the energy-limited conditions at both annual and seasonal scales, while only the Penman and Linacre models could represent dynamics in evaporative demand for the water-limited conditions. However, the Linacre model was unable to reproduce the seasonal switches between water- and energy-limited states for some sites. Our findings demonstrated that the choice of PET models would be essential for the evaporative demand analyses and other related hydrological analyses at different temporal and spatial scales.

  17. Estimating Daily Evapotranspiration Based on A Model of Evapotranspiration Fraction (EF) for Mixed Pixels

    NASA Astrophysics Data System (ADS)

    Xin, X.; Li, F.; Peng, Z.; Qinhuo, L.

    2017-12-01

    Land surface heterogeneities significantly affect the reliability and accuracy of remotely sensed evapotranspiration (ET), and it gets worse for lower resolution data. At the same time, temporal scale extrapolation of the instantaneous latent heat flux (LE) at satellite overpass time to daily ET are crucial for applications of such remote sensing product. The purpose of this paper is to propose a simple but efficient model for estimating daytime evapotranspiration considering heterogeneity of mixed pixels. In order to do so, an equation to calculate evapotranspiration fraction (EF) of mixed pixels was derived based on two key assumptions. Assumption 1: the available energy (AE) of each sub-pixel equals approximately to that of any other sub-pixels in the same mixed pixel within acceptable margin of bias, and as same as the AE of the mixed pixel. It's only for a simpification of the equation, and its uncertainties and resulted errors in estimated ET are very small. Assumption 2: EF of each sub-pixel equals to the EF of the nearest pure pixel(s) of same land cover type. This equation is supposed to be capable of correcting the spatial scale error of the mixed pixels EF and can be used to calculated daily ET with daily AE data.The model was applied to an artificial oasis in the midstream of Heihe River. HJ-1B satellite data were used to estimate the lumped fluxes at the scale of 300 m after resampling the 30-m resolution datasets to 300 m resolution, which was used to carry on the key step of the model. The results before and after correction were compare to each other and validated using site data of eddy-correlation systems. Results indicated that the new model is capable of improving accuracy of daily ET estimation relative to the lumped method. Validations at 12 sites of eddy-correlation systems for 9 days of HJ-1B overpass showed that the R² increased to 0.82 from 0.62; the RMSE decreased to 1.60 MJ/m² from 2.47MJ/m²; the MBE decreased from 1.92 MJ/m² to 1

  18. Monitoring Seasonal Evapotranspiration in Vulnerable Agriculture using Time Series VHSR Satellite Data

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Spyropoulos, Nicos V.; Tarquis, Ana M.

    2015-04-01

    The research work stems from the hypothesis that it is possible to perform an estimation of seasonal water needs of olive tree farms under drought periods by cross correlating high spatial, spectral and temporal resolution (~monthly) of satellite data, acquired at well defined time intervals of the phenological cycle of crops, with ground-truth information simultaneously applied during the image acquisitions. The present research is for the first time, demonstrating the coordinated efforts of space engineers, satellite mission control planners, remote sensing scientists and ground teams to record at specific time intervals of the phenological cycle of trees from ground "zero" and from 770 km above the Earth's surface, the status of plants for subsequent cross correlation and analysis regarding the estimation of the seasonal evapotranspiration in vulnerable agricultural environment. The ETo and ETc derived by Penman-Montieth equation and reference Kc tables, compared with new ETd using the Kc extracted from the time series satellite data. Several vegetation indices were also used especially the RedEdge and the chlorophyll one based on WorldView-2 RedEdge and second NIR bands to relate the tree status with water and nutrition needs. Keywords: Evapotransipration, Very High Spatial Resolution - VHSR, time series, remote sensing, vulnerability, agriculture, vegetation indeces.

  19. Fact Sheet on Evapotranspiration Cover Systems for Waste Containment

    EPA Pesticide Factsheets

    This Fact Sheet updates the 2003 Fact Sheet on Evapotranspiration Covers and provides information on the regulatory setting for ET covers, general considerations in their design, performance, and monitoring, and status at the time of writing (2011).

  20. Identifying traits for genotypic adaptation using crop models.

    PubMed

    Ramirez-Villegas, Julian; Watson, James; Challinor, Andrew J

    2015-06-01

    Genotypic adaptation involves the incorporation of novel traits in crop varieties so as to enhance food productivity and stability and is expected to be one of the most important adaptation strategies to future climate change. Simulation modelling can provide the basis for evaluating the biophysical potential of crop traits for genotypic adaptation. This review focuses on the use of models for assessing the potential benefits of genotypic adaptation as a response strategy to projected climate change impacts. Some key crop responses to the environment, as well as the role of models and model ensembles for assessing impacts and adaptation, are first reviewed. Next, the review describes crop-climate models can help focus the development of future-adapted crop germplasm in breeding programmes. While recently published modelling studies have demonstrated the potential of genotypic adaptation strategies and ideotype design, it is argued that, for model-based studies of genotypic adaptation to be used in crop breeding, it is critical that modelled traits are better grounded in genetic and physiological knowledge. To this aim, two main goals need to be pursued in future studies: (i) a better understanding of plant processes that limit productivity under future climate change; and (ii) a coupling between genetic and crop growth models-perhaps at the expense of the number of traits analysed. Importantly, the latter may imply additional complexity (and likely uncertainty) in crop modelling studies. Hence, appropriately constraining processes and parameters in models and a shift from simply quantifying uncertainty to actually quantifying robustness towards modelling choices are two key aspects that need to be included into future crop model-based analyses of genotypic adaptation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Vulnerability of crops and native grasses to summer drying in the U.S. Southern Great Plains

    DOE PAGES

    Raz-Yaseef, Naama; Billesbach, Dave P.; Fischer, Marc L.; ...

    2015-08-31

    The Southern Great Plains are characterized by a fine-scale mixture of different land-cover types, predominantly winter-wheat and grazed pasture, with relatively small areas of other crops, native prairie, and switchgrass. Recent droughts and predictions of increased drought in the Southern Great Plains, especially during the summer months, raise concern for these ecosystems. We measured ecosystem carbon and water fluxes with eddy-covariance systems over cultivated cropland for 10 years, and over lightly grazed prairie and new switchgrass fields for 2 years each. Growing-season precipitation showed the strongest control over net carbon uptake for all ecosystems, but with a variable effect: grassesmore » (prairie and switchgrass) needed at least 350 mm of precipitation during the growing season to become net carbon sinks, while crops needed only 100 mm. In summer, high temperatures enhanced evaporation and led to higher likelihood of dry soil conditions. Therefore, summer-growing native prairie species and switchgrass experienced more seasonal droughts than spring-growing crops. For wheat, the net reduction in carbon uptake resulted mostly from a decrease in gross primary production rather than an increase in respiration. Flux measurements suggested that management practices for crops were effective in suppressing evapotranspiration and decomposition (by harvesting and removing secondary growth), and in increasing carbon uptake (by fertilizing and conserving summer soil water). In light of future projections for wetter springs and drier and warmer summers in the Southern Great Plains, our study indicates an increased vulnerability in native ecosystems and summer crops over time.« less

  2. Uncertainty Quantification of Evapotranspiration and Infiltration from Modeling and Historic Time Series at the Savannah River F-Area

    NASA Astrophysics Data System (ADS)

    Faybishenko, B.; Flach, G. P.

    2012-12-01

    The objectives of this presentation are: (a) to illustrate the application of Monte Carlo and fuzzy-probabilistic approaches for uncertainty quantification (UQ) in predictions of potential evapotranspiration (PET), actual evapotranspiration (ET), and infiltration (I), using uncertain hydrological or meteorological time series data, and (b) to compare the results of these calculations with those from field measurements at the U.S. Department of Energy Savannah River Site (SRS), near Aiken, South Carolina, USA. The UQ calculations include the evaluation of aleatory (parameter uncertainty) and epistemic (model) uncertainties. The effect of aleatory uncertainty is expressed by assigning the probability distributions of input parameters, using historical monthly averaged data from the meteorological station at the SRS. The combined effect of aleatory and epistemic uncertainties on the UQ of PET, ET, and Iis then expressed by aggregating the results of calculations from multiple models using a p-box and fuzzy numbers. The uncertainty in PETis calculated using the Bair-Robertson, Blaney-Criddle, Caprio, Hargreaves-Samani, Hamon, Jensen-Haise, Linacre, Makkink, Priestly-Taylor, Penman, Penman-Monteith, Thornthwaite, and Turc models. Then, ET is calculated from the modified Budyko model, followed by calculations of I from the water balance equation. We show that probabilistic and fuzzy-probabilistic calculations using multiple models generate the PET, ET, and Idistributions, which are well within the range of field measurements. We also show that a selection of a subset of models can be used to constrain the uncertainty quantification of PET, ET, and I.

  3. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers.

    PubMed

    Tribouillois, Hélène; Constantin, Julie; Justes, Eric

    2018-06-01

    Cover crops provide ecosystem services such as storing atmospheric carbon in soils after incorporation of their residues. Cover crops also influence soil water balance, which can be an issue in temperate climates with dry summers as for example in southern France and Europe. As a consequence, it is necessary to understand cover crops' long-term influence on greenhouse gases (GHG) and water balances to assess their potential to mitigate climate change in arable cropping systems. We used the previously calibrated and validated soil-crop model STICS to simulate scenarios of cover crop introduction to assess their influence on rainfed and irrigated cropping systems and crop rotations distributed among five contrasted sites in southern France from 2007 to 2052. Our results showed that cover crops can improve mean direct GHG balance by 315 kg CO 2 e ha -1  year -1 in the long term compared to that of bare soil. This was due mainly to an increase in carbon storage in the soil despite a slight increase in N 2 O emissions which can be compensated by adapting fertilization. Cover crops also influence the water balance by reducing mean annual drainage by 20 mm/year but increasing mean annual evapotranspiration by 20 mm/year compared to those of bare soil. Using cover crops to improve the GHG balance may help to mitigate climate change by decreasing CO 2 e emitted in cropping systems which can represent a decrease from 4.5% to 9% of annual GHG emissions of the French agriculture and forestry sector. However, if not well managed, they also could create water management issues in watersheds with shallow groundwater. Relationships between cover crop biomass and its influence on several variables such as drainage, carbon sequestration, and GHG emissions could be used to extend our results to other conditions to assess the cover crops' influence in a wider range of areas. © 2018 John Wiley & Sons Ltd.

  4. Groundwater-supported evapotranspiration within glaciated watersheds under conditions of climate change

    NASA Astrophysics Data System (ADS)

    Cohen, Denis; Person, Mark; Daannen, Ronnie; Locke, Sharon; Dahlstrom, Dave; Zabielski, Victor; Winter, Thomas C.; Rosenberry, Donald O.; Wright, Herb; Ito, Emi; Nieber, John L.; Gutowski, William J.

    2006-04-01

    This paper analyzes the effects of geology and geomorphology on surface-water/-groundwater interactions, evapotranspiration, and recharge under conditions of long-term climatic change. Our analysis uses hydrologic data from the glaciated Crow Wing watershed in central Minnesota, USA, combined with a hydrologic model of transient coupled unsaturated/saturated flow (HYDRAT2D). Analysis of historical water-table (1970-1993) and lake-level (1924-2002) records indicates that larger amplitude and longer period fluctuations occur within the upland portions of watersheds due to the response of the aquifer system to relatively short-term climatic fluctuations. Under drought conditions, lake and water-table levels fell by as much as 2-4 m in the uplands but by 1 m in the lowlands. The same pattern can be seen on millennial time scales. Analysis of Holocene lake-core records indicates that Moody Lake, located near the outlet of the Crow Wing watershed, fell by as much as 4 m between about 4400 and 7000 yr BP. During the same time, water levels in Lake Mina, located near the upland watershed divide, fell by about 15 m. Reconstructed Holocene climate as represented by HYDRAT2D gives somewhat larger drops (6 and 24 m for Moody Lake and Lake Mina, respectively). The discrepancy is probably due to the effect of three-dimensional flow. A sensitivity analysis was also carried out to study how aquifer hydraulic conductivity and land-surface topography can influence water-table fluctuations, wetlands formation, and evapotranspiration. The models were run by recycling a wet year (1985, 87 cm annual precipitation) over a 10-year period followed by 20 years of drier and warmer climate (1976, 38 cm precipitation). Model results indicated that groundwater-supported evapotranspiration accounted for as much as 12% (10 cm) of evapotranspiration. The aquifers of highest hydraulic conductivity had the least amount of groundwater-supported evapotranspiration owing to a deep water table. Recharge

  5. Groundwater-supported evapotranspiration within glaciated watersheds under conditions of climate change

    USGS Publications Warehouse

    Cohen, D.; Person, M.; Daannen, R.; Locke, S.; Dahlstrom, D.; Zabielski, V.; Winter, T.C.; Rosenberry, D.O.; Wright, H.; Ito, E.; Nieber, J.L.; Gutowski, W.J.

    2006-01-01

    This paper analyzes the effects of geology and geomorphology on surface-water/-groundwater interactions, evapotranspiration, and recharge under conditions of long-term climatic change. Our analysis uses hydrologic data from the glaciated Crow Wing watershed in central Minnesota, USA, combined with a hydrologic model of transient coupled unsaturated/saturated flow (HYDRAT2D). Analysis of historical water-table (1970-1993) and lake-level (1924-2002) records indicates that larger amplitude and longer period fluctuations occur within the upland portions of watersheds due to the response of the aquifer system to relatively short-term climatic fluctuations. Under drought conditions, lake and water-table levels fell by as much as 2-4 m in the uplands but by 1 m in the lowlands. The same pattern can be seen on millennial time scales. Analysis of Holocene lake-core records indicates that Moody Lake, located near the outlet of the Crow Wing watershed, fell by as much as 4 m between about 4400 and 7000 yr BP. During the same time, water levels in Lake Mina, located near the upland watershed divide, fell by about 15 m. Reconstructed Holocene climate as represented by HYDRAT2D gives somewhat larger drops (6 and 24 m for Moody Lake and Lake Mina, respectively). The discrepancy is probably due to the effect of three-dimensional flow. A sensitivity analysis was also carried out to study how aquifer hydraulic conductivity and land-surface topography can influence water-table fluctuations, wetlands formation, and evapotranspiration. The models were run by recycling a wet year (1985, 87 cm annual precipitation) over a 10-year period followed by 20 years of drier and warmer climate (1976, 38 cm precipitation). Model results indicated that groundwater-supported evapotranspiration accounted for as much as 12% (10 cm) of evapotranspiration. The aquifers of highest hydraulic conductivity had the least amount of groundwater-supported evapotranspiration owing to a deep water table. Recharge

  6. Use of Drought Index and Crop Modelling for Drought Impacts Analysis on Maize (Zea mays L.) Yield Loss in Bandung District

    NASA Astrophysics Data System (ADS)

    Kurniasih, E.; Impron; Perdinan

    2017-03-01

    Drought impacts on crop yield loss depend on drought magnitude and duration and on plant genotype at every plant growth stages when droughts occur. This research aims to assess the difference calculation results of 2 drought index methods and to study the maize yield loss variability impacted by drought magnitude and duration during maize growth stages in Bandung district, province of West Java, Indonesia. Droughts were quantified by the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at 1- to 3-month lags for the January1986-December 2015 period data. Maize yield responses to droughts were simulated by AquaCrop for the January 1986-May 2016 period of growing season. The analysis showed that the SPI and SPEI methods provided similar results in quantifying drought event. Droughts during maize reproductive stages caused the highest maize yield loss.

  7. Evapotranspiration using a satellite-based surface energy balance with standardized ground control

    NASA Astrophysics Data System (ADS)

    Trezza, Ricardo

    This study evaluated the potential of using the S&barbelow;urface E&barbelow;nergy Ḇalance A&barbelow;lgorithm for Ḻand (SEBAL) as a means for estimating evapotranspiration (ET) for local and regional scales in Southern Idaho. The original SEBAL model was refined during this study to provide better estimation of ET in agricultural areas and to make more reliable estimates of ET from other surfaces as well, including mountainous terrain. The modified version of SEBAL used in this study, termed as SEBALID (ID stands for Idaho) includes standardization of the two SEBAL "anchor" pixels, the use of a water balance model to track top soil moisture, adaptation of components of SEBAL for better prediction of the surface energy balance in mountains and sloping terrain, and use of the ratio between actual ET and alfalfa reference evapotranspiration (ET r) as a means for obtaining the temporal integration of instantaneous ET to daily and seasonal values. Validation of the SEBALID model at a local scale was performed by comparing lysimeter ET measurements from the USDA-ARS facility at Kimberly, Idaho, with ET predictions by SEBAL using Landsat 5 TM imagery. Comparison of measured and predicted ET values was challenging due to the resolution of the Landsat thermal band (120m x 120m) and the relatively small size of the lysimeter fields. In the cases where thermal information was adequate, SEBALID predictions were close to the measured values of ET in the lysimeters. Application of SEBALID at a regional scale was performed using Landsat 7 ETM+ and Landsat 5 TM imagery for the Eastern Snake Plain Aquifer (ESPA) region in Idaho during 2000. The results indicated that SEBALID performed well for predicting daily and seasonal ET for agricultural areas. Some unreasonable results were obtained for desert and basalt areas, due to uncertainties of the prediction of surface parameters. In mountains, even though validation of results was not possible, the values of ET obtained

  8. Exploring the use of WRF-3DVar for Estimating reference evapotranspiration in semi arid regions

    NASA Astrophysics Data System (ADS)

    Bray, Michaela; Liu, Jia; Abdulhamza, Ali; Bocklemann-Evans, Bettina

    2013-04-01

    Evapotranspiration is an important process in hydrology and is central to the analysis of water balances and water resource management. Significant water losses can occur in large drainage basins under semi arid climate conditions, moreover with the lack of measured data, the exact losses are hard to quantify. Since direct measurements for evapotranspiration are difficult to obtain it is common to estimate the process by using evapotranspiration models such as the Priestley-Taylor model, Shuttleworth -Wallace model and the FAO Penmann-Monteith. However these models depend on several atmospheric variables such as atmospheric pressure, wind speed, air temperature, net radiation and relative humidity. Some of these variables are also difficult to acquire from in-situ measurements; in addition these measurements provide local information which need to be interpolated to cover larger catchment areas over long time scales. Mesoscale Numerical Weather Prediction (NWP) modelling has become more accessible to the hydrometeorological community in recent years and is frequently used for modelling precipitation at the catchment scale. However these NWPs can also provide the atmospheric variables needed for evapotranspiration estimation at finer resolutions than can be attained from in situ measurements, offering a practical water resource tool. Moreover there is evidence that assimilation of real time observations can help improve the accuracy of mesoscale weather modelling which in turn would improve the overall evapotranspiration estimate. This study explores the effect of data assimilation in the Weather Research and Forecasting (WRF) model to derive evapotranspiration estimates for the Tigris water basin, Iraq. Two types of traditional observations, SYNOP and SOUND are assimilated by WRF-3DVAR.which contain surface and upper-level measurements of pressure, temperature, humidity and wind. The downscaled weather variables are used to determine evapostranspiration estimates

  9. Net carbon balance of three full crop rotations at an agricultural site near Gebesee, Germany

    NASA Astrophysics Data System (ADS)

    Hurkuck, M.; Brümmer, C.; Kolle, O.; Kutsch, W. L.; Moffat, A. M.; Mukwashi, K.; Truckenbrodt, S. C.; Herbst, M.

    2015-12-01

    Continuous eddy-covariance (EC) measurements of biosphere-atmosphere CO2 and H2O exchange have been conducted since 2001 at an agricultural site near Gebesee, Germany, thus providing one of the longest EC time series of European croplands. During the experimental period, winter wheat and winter barley were alternately planted with potatoes, sugar beet, rape, and peppermint covering three full crop rotations (2001-2004, 2005-2009, and 2010-2014). In this study, data of 14 years of net ecosystem CO2 exchange (NEE) and evapotranspiration (E) were re-calculated. Based on these data, we present the net carbon (C) balance (net biome production, NBP) accounting for any additional C input by fertilization and C output by harvest. Further emphasis was placed on the sensitivity of water use efficiency (WUE) and E to climate and crop type. The main aim was to investigate the interannual variability in both NBP and WUE, thus disentangling the impacts of climatic conditions and land management on the net C balance as well as on WUE and E.

  10. Simulating changes in cropping practises in conventional and glyphosate-tolerant maize. I. Effects on weeds.

    PubMed

    Colbach, Nathalie; Fernier, Alice; Le Corre, Valérie; Messéan, Antoine; Darmency, Henri

    2017-04-01

    Herbicide-tolerant (HT) crops such as those tolerant to glyphosate simplify weed management and make it more efficient, at least at short-term. Overreliance on the same herbicide though leads to the spread of resistant weeds. Here, the objective was to evaluate, with simulations, the impact on the advent of glyphosate resistance in weeds of modifications in agricultural practises resulting from introducing HT maize into cropping systems. First, we included a single-gene herbicide resistance submodel in the existing multispecific FLORSYS model. Then, we (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, (2) compared these systems in terms of glyphosate resistance, (3) identified pertinent cultural practises influencing glyphosate resistance, and (4) investigated correlations between cultural practises and species traits, using RLQ analyses. The simulation study showed that, during the analysed 28 years, (1) glyphosate spraying only results in glyphosate resistance in weeds when combined with other cultural factors favouring weed infestation, particularly no till; (2) pre-sowing glyphosate applications select more for herbicide resistance than post-sowing applications on HT crops; and (3) glyphosate spraying selects more for species traits avoiding exposure to the herbicide (e.g. delayed early growth, small leaf area) or compensating for fitness costs (e.g. high harvest index) than for actual resistance to glyphosate, (4) actual resistance is most frequent in species that do not avoid glyphosate, either via plant size or timing, and/or in less competitive species, (5) in case of efficient weed control measures, actual resistance proliferates best in outcrossing species. An advice table was built, with the quantitative, synthetic ranking of the crop management effects in terms of glyphosate-resistance management, identifying the optimal choices for each management technique.

  11. Comparison of Bowen-ratio, eddy-correlation, and weighing-lysimeter evapotranspiration for two sparse-canopy sites in eastern Washington

    USGS Publications Warehouse

    Tomlinson, S.A.

    1996-01-01

    This report compares evapotranspiration estimated with the Bowen-ratio and eddy-correlation methods with evapotranspiration measured by weighing lysimeters for two sparse-canopy sites in eastern Washington. The sites are located in a grassland area (grass lysimeter site) and a sagbrush- covered area (sage lysimeter site) on the Arid Lands Ecology Reserve in Benton County, Washington. Lysimeter data were collected at the sites from August 1990 to November 1994. Bowen-ratio data were collected for varying periods from May 1993 to November 1994. Additional Bowen-ratio data without interchanging air- temperature and vapor-pressure sensors to remove sensor bias (fixed-sensor system) were collected from October 1993 to June 1994. Eddy-correlation data were collected at the grass lysimeter site from March to April 1994, and at the sage lysimeter site from April to May 1994. The comparisons of evapotranspiration determined by the various methods differed considerably, depending on the periods of record being compared and the sites being analyzed. The year 1993 was very wet, with about 50 percent more precipitation than average; 1994 was a very dry year, with only about half the average precipitation. The study showed that on an annual basis, at least in 1994, Bowen-ratio evapotranspiration closely matched lysimeter evapotranspiration. In 1993, Bowen-ratio and lysimeter evapotranspiration comparisons were variable. Evapotranspiration estimated with the Bowen-ratio method averaged 5 percent more than evapotranspiration measured by lysimeters at the grass lysimeter site from October 1993 to November 1994, and 3 percent less than lysimeters at the sage lysimeter site from November 1993 to October 1994. From March 24 to April 5, 1994, at the grass lysimeter site, the Bowen-ratio method estimated 11 percent less, the Bowen-ratio method utilizing the fixed sensor system about 7 percent more, and the eddy-correlation method about 28 percent less evapotranspiration than the

  12. Exploring evapotranspiration dynamics over Sub-Sahara Africa (2000-2014).

    PubMed

    Ndehedehe, Christopher E; Okwuashi, Onuwa; Ferreira, Vagner G; Agutu, Nathan O

    2018-06-14

    Monitoring changes in evapotranspiration (ET) is useful in the management of water resources in irrigated agricultural landscapes and in the assessment of crop stress and vegetation conditions of drought-vulnerable regions. Information on the impacts of climate variability on ET dynamics is profitable in developing water management adaptation strategies. Such impacts, however, are generally unreported and not conclusively determined in some regions. In this study, changes in MODIS (Moderate Resolution Imaging Spectroradiometer)-derived ET (2000-2014) over large proportions of Sub-Sahara Africa (SSA) are explored. The multivariate analyses of ET over SSA showed that four leading modes of observed dynamics in ET, accounting for about 90% of the total variability, emanated mostly from some sections of the Sudano-Sahel and Congo basin. Based on Man-Kendall's statistics, significant positive trends (α = 0.05) in ET over the Central African Republic and most parts of the Sahel region were observed. Over much of the Congo basin nonetheless, ET showed significant (α = 0.05) distributions of widespread negative trends. These trends in ET were rather found to be consistent with observed changes in model soil moisture but not in all locations, perhaps due to inconsistent trends in maximum rainfall and land surface temperature. However, the results of spatio-temporal drought analysis confirm that the extensive ET losses in the Congo basin were somewhat induced by soil moisture deficits. Amidst other prominent drivers of ET, the dynamics of ET over the terrestrial ecosystems of SSA appear to be a more complex phenomenon that may transcend natural climate variations.

  13. Combining eddy-covariance measurements and Penman-Monteith type models to estimate evapotranspiration of flooded and aerobic rice

    NASA Astrophysics Data System (ADS)

    Facchi, Arianna; Masseroni, Daniele; Gharsallah, Olfa; Gandolfi, Claudio

    2014-05-01

    Rice is of great importance both from a food supply point of view, since it represents the main food in the diet of over half the world's population, and from a water resources point of view, since it consumes almost 40% of the water amount used for irrigation. About 90% of global production takes place in Asia, while European production is quantitatively modest (about 3 million tons). However, Italy is the Europe's leading producer, with over half of total production, almost totally concentrated in a large traditional paddy rice area between the Lombardy and Piedmont regions, in the north-western part of the country. In this area, irrigation of rice is traditionally carried out by continuous flooding. The high water requirement of this irrigation regime encourages the introduction of water saving irrigation practices, as flood irrigation after sowing in dry soil and intermittent irrigation (aerobic rice). In the agricultural season 2013 an intense monitoring activity was conducted on three experimental fields located in the Padana plain (northern Italy) and characterized by different irrigation regimes (traditional flood irrigation, flood irrigation after sowing in dry soil, intermittent irrigation), with the aim of comparing the water balance terms for the three irrigation treatments. Actual evapotranspiration (ET) is one of the terms, but, unlike others water balance components, its field monitoring requires expensive instrumentation. This work explores the possibility of using only one eddy covariance system and Penman-Monteith (PM) type models for the determination of ET fluxes for the three irrigation regimes. An eddy covariance station was installed on the levee between the traditional flooded and the aerobic rice fields, to contemporaneously monitor the ET fluxes from this two treatments as a function of the wind direction. A detailed footprint analysis was conducted - through the application of three different analytical models - to determine the position

  14. Assessing Biofuel Crop Invasiveness: A Case Study

    PubMed Central

    Buddenhagen, Christopher Evan; Chimera, Charles; Clifford, Patti

    2009-01-01

    Background There is widespread interest in biofuel crops as a solution to the world's energy needs, particularly in light of concerns over greenhouse-gas emissions. Despite reservations about their adverse environmental impacts, no attempt has been made to quantify actual, relative or potential invasiveness of terrestrial biofuel crops at an appropriate regional or international scale, and their planting continues to be largely unregulated. Methodology/Principal Findings Using a widely accepted weed risk assessment system, we analyzed a comprehensive list of regionally suitable biofuel crops to show that seventy percent have a high risk of becoming invasive versus one-quarter of non-biofuel plant species and are two to four times more likely to establish wild populations locally or be invasive in Hawaii or in other locations with a similar climate. Conclusions/Significance Because of climatic and ecological similarities, predictions of biofuel crop invasiveness in Hawaii are applicable to other vulnerable island and subtropical ecosystems worldwide. We demonstrate the utility of an accessible and scientifically proven risk assessment protocol that allows users to predict if introduced species will become invasive in their region of interest. Other evidence supports the contention that propagule pressure created by extensive plantings will exacerbate invasions, a scenario expected with large-scale biofuel crop cultivation. Proactive measures, such as risk assessments, should be employed to predict invasion risks, which could then be mitigated via implementation of appropriate planting policies and adoption of the “polluter-pays” principle. PMID:19384412

  15. Estimating effectiveness of crop management for reduction of soil erosion and runoff

    NASA Astrophysics Data System (ADS)

    Hlavcova, K.; Studvova, Z.; Kohnova, S.; Szolgay, J.

    2017-10-01

    The paper focuses on erosion processes in the Svacenický Creek catchment which is a small sub-catchment of the Myjava River basin. To simulate soil loss and sediment transport the USLE/SDR and WaTEM/SEDEM models were applied. The models were validated by comparing the simulated results with the actual bathymetry of a polder at the catchment outlet. Methods of crop management based on rotation and strip cropping were applied for the reduction of soil loss and sediment transport. The comparison shows that the greatest intensities of soil loss were achieved by the bare soil without vegetation and from the planting of maize for corn. The lowest values were achieved from the planting of winter wheat. At the end the effectiveness of row crops and strip cropping for decreasing design floods from the catchment was estimated.

  16. Partitioning understory evapotranspiration in semi-arid ecosystems in Namibia using the isotopic composition of water vapour

    NASA Astrophysics Data System (ADS)

    de Blécourt, Marleen; Gaj, Marcel; Holtorf, Kim-Kirsten; Gröngröft, Alexander; Brokate, Ralph; Himmelsbach, Thomas; Eschenbach, Annette

    2016-04-01

    In dry environments with a sparse vegetation cover, understory evapotranspiration is a major component of the ecosystem water balance. Consequently, knowledge on the size of evapotranspiration fluxes and the driving factors is important for our understanding of the hydrological cycle. Understory evapotranspiration is made up of soil evaporation and plant transpiration. Soil evaporation can be measured directly from patches free of vegetation. However, when understory vegetation is present distinguishing between soil evaporation and plant transpiration is challenging. In this study, we aim to partition understory evapotranspiration based on an approach that combines the measurements of water-vapour fluxes using the closed chamber method with measurements of the isotopic composition of water vapour. The measurements were done in the framework of SASSCAL (Southern African Science Service Centre for Climate Change and Adaptive Land Management). The study sites were located in three different semi-arid ecosystems in Namibia: thornbush savanna, Baikiaea woodland and shrubland. At each site measurements were done under tree canopies as well as at unshaded areas between the canopies. We measured evaporation from the bare soil and evapotranspiration from patches covered with herbaceous species and shrubs using a transparent chamber connected with an infrared gas analyser (LI-8100A, LICOR Inc.). The stable isotope composition of water vapour inside the chamber and depth profiles of soil water stable isotopes were determined in-situ using a tuneable off-axis integrated cavity output spectroscope (OA-ICOS, Los Gatos Research, DLT 100). Xylem samples were extracted using the cryogenic vacuum extraction method and the isotopic composition of the extracted water was measured subsequently with a cavity-ring-down spectrometer (CRDS L2120-i, Picarro Inc.). We will present the quantified fluxes of understory evapotranspiration measured in the three different ecosystems, show the

  17. Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation.

    PubMed

    Verstraeten, Willem W; Veroustraete, Frank; Feyen, Jan

    2008-01-09

    The proper assessment of evapotranspiration and soil moisture content arefundamental in food security research, land management, pollution detection, nutrient flows,(wild-) fire detection, (desert) locust, carbon balance as well as hydrological modelling; etc.This paper takes an extensive, though not exhaustive sample of international scientificliterature to discuss different approaches to estimate land surface and ecosystem relatedevapotranspiration and soil moisture content. This review presents:(i) a summary of the generally accepted cohesion theory of plant water uptake andtransport including a shortlist of meteorological and plant factors influencing planttranspiration;(ii) a summary on evapotranspiration assessment at different scales of observation (sapflow,porometer, lysimeter, field and catchment water balance, Bowen ratio,scintillometer, eddy correlation, Penman-Monteith and related approaches);(iii) a summary on data assimilation schemes conceived to estimate evapotranspirationusing optical and thermal remote sensing; and(iv) for soil moisture content, a summary on soil moisture retrieval techniques atdifferent spatial and temporal scales is presented.Concluding remarks on the best available approaches to assess evapotranspiration and soilmoisture content with and emphasis on remote sensing data assimilation, are provided.

  18. Plant productivity and characterization of zeoponic substrates after three successive crops of radish

    NASA Technical Reports Server (NTRS)

    Gruener, J. E.; Ming, Doug; Galindo, C., Jr.; Henderson, K. E.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) has developed advanced life support (ALS) systems for long duration space missions that incorporate plants to regenerate the atmosphere (CO2 to O2), recycle water (via evapotranspiration), and produce food. NASA has also developed a zeolite-based synthetic substrate consisting of clinoptilolite and synthetic apatite to support plant growth for ALS systems (Ming et al., 1995). The substrate is called zeoponics and has been designed to slowly release all plant essential elements into "soil" solution. The substrate consists of K- and NH4-exchanged clinoptilolite and a synthetic hydroxyapatite that has Mg, S, and the plant-essential micronutrients incorporated into its structure in addition to Ca and P. Plant performance in zeoponic substrates has been improved by the addition of dolomite pH buffers, nitrifying bacteria, and other calcium-bearing minerals (Henderson et al., 2000; Gruener et al., 2003). Wheat was used as the test crop for all of these studies. The objectives of this study were to expand upon the previous studies to determine the growth and nutrient uptake of radish in zeoponic substrates and to determine the nutrient availability of the zeoponic substrate after three successive radish crops.

  19. Simulating the fate of water in field soil crop environment

    NASA Astrophysics Data System (ADS)

    Cameira, M. R.; Fernando, R. M.; Ahuja, L.; Pereira, L.

    2005-12-01

    This paper presents an evaluation of the Root Zone Water Quality Model(RZWQM) for assessing the fate of water in the soil-crop environment at the field scale under the particular conditions of a Mediterranean region. The RZWQM model is a one-dimensional dual porosity model that allows flow in macropores. It integrates the physical, biological and chemical processes occurring in the root zone, allowing the simulation of a wide spectrum of agricultural management practices. This study involved the evaluation of the soil, hydrologic and crop development sub-models within the RZWQM for two distinct agricultural systems, one consisting of a grain corn planted in a silty loam soil, irrigated by level basins and the other a forage corn planted in a sandy soil, irrigated by sprinklers. Evaluation was performed at two distinct levels. At the first level the model capability to fit the measured data was analyzed (calibration). At the second level the model's capability to extrapolate and predict the system behavior for conditions different than those used when fitting the model was assessed (validation). In a subsequent paper the same type of evaluation is presented for the nitrogen transformation and transport model. At the first level a change in the crop evapotranspiration (ETc) formulation was introduced, based upon the definition of the effective leaf area, resulting in a 51% decrease in the root mean square error of the ETc simulations. As a result the simulation of the root water uptake was greatly improved. A new bottom boundary condition was implemented to account for the presence of a shallow water table. This improved the simulation of the water table depths and consequently the soil water evolution within the root zone. The soil hydraulic parameters and the crop variety specific parameters were calibrated in order to minimize the simulation errors of soil water and crop development. At the second level crop yield was predicted with an error of 1.1 and 2.8% for

  20. Modeling water scarcity over south Asia: Incorporating crop growth and irrigation models into the Variable Infiltration Capacity (VIC) model

    NASA Astrophysics Data System (ADS)

    Troy, Tara J.; Ines, Amor V. M.; Lall, Upmanu; Robertson, Andrew W.

    2013-04-01

    Large-scale hydrologic models, such as the Variable Infiltration Capacity (VIC) model, are used for a variety of studies, from drought monitoring to projecting the potential impact of climate change on the hydrologic cycle decades in advance. The majority of these models simulates the natural hydrological cycle and neglects the effects of human activities such as irrigation, which can result in streamflow withdrawals and increased evapotranspiration. In some parts of the world, these activities do not significantly affect the hydrologic cycle, but this is not the case in south Asia where irrigated agriculture has a large water footprint. To address this gap, we incorporate a crop growth model and irrigation model into the VIC model in order to simulate the impacts of irrigated and rainfed agriculture on the hydrologic cycle over south Asia (Indus, Ganges, and Brahmaputra basin and peninsular India). The crop growth model responds to climate signals, including temperature and water stress, to simulate the growth of maize, wheat, rice, and millet. For the primarily rainfed maize crop, the crop growth model shows good correlation with observed All-India yields (0.7) with lower correlations for the irrigated wheat and rice crops (0.4). The difference in correlation is because irrigation provides a buffer against climate conditions, so that rainfed crop growth is more tied to climate than irrigated crop growth. The irrigation water demands induce hydrologic water stress in significant parts of the region, particularly in the Indus, with the streamflow unable to meet the irrigation demands. Although rainfall can vary significantly in south Asia, we find that water scarcity is largely chronic due to the irrigation demands rather than being intermittent due to climate variability.