Science.gov

Sample records for actual hanford high-level

  1. Modeling of Boehmite Leaching from Actual Hanford High-Level Waste Samples

    SciTech Connect

    Peterson, Reid A.; Lumetta, Gregg J.; Rapko, Brian M.; Poloski, Adam P.

    2007-06-27

    The Department of Energy plans to vitrify approximately 60,000 metric tons of high level waste sludge from underground storage tanks at the Hanford Nuclear Reservation. To reduce the volume of high level waste requiring treatment, a goal has been set to remove about 90 percent of the aluminum, which comprises nearly 70 percent of the sludge. Aluminum in the form of gibbsite and sodium aluminate can be easily dissolved by washing the waste stream with caustic, but boehmite, which comprises nearly half of the total aluminum, is more resistant to caustic dissolution and requires higher treatment temperatures and hydroxide concentrations. In this work, the dissolution kinetics of aluminum species during caustic leaching of actual Hanford high level waste samples is examined. The experimental results are used to develop a shrinking core model that provides a basis for prediction of dissolution dynamics from known process temperature and hydroxide concentration. This model is further developed to include the effects of particle size polydispersity, which is found to strongly influence the rate of dissolution.

  2. Modeling of Boehmite Leaching from Actual Hanford High-Level Waste Samples

    SciTech Connect

    Snow, L.A.; Rapko, B.M.; Poloski, A.P.; Peterson, R.A.

    2007-07-01

    The U.S. Department of Energy plans to vitrify approximately 60,000 metric tons of high-level waste (HLW) sludge from underground storage tanks at the Hanford Site in Southwest Washington State. To reduce the volume of HLW requiring treatment, a goal has been set to remove a significant quantity of the aluminum, which comprises nearly 70 percent of the sludge. Aluminum is found in the form of gibbsite and sodium aluminate, which can be easily dissolved by washing the waste stream with caustic, and boehmite, which comprises nearly half of the total aluminum, but is more resistant to caustic dissolution and requires higher treatment temperatures and hydroxide concentrations. Chromium, which makes up a much smaller amount ({approx}3%) of the sludge, must also be removed because there is a low tolerance for chromium in the HLW immobilization process. In this work, the coupled dissolution kinetics of aluminum and chromium species during caustic leaching of actual Hanford HLW samples is examined. The experimental results are used to develop a model that provides a basis for predicting dissolution dynamics from known process temperature and hydroxide concentration. (authors)

  3. High Level Waste Feed Certification in Hanford Double Shell Tanks

    SciTech Connect

    Thien, Micheal G.; Wells, Beric E.; Adamson, Duane J.

    2010-03-01

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE’s River Protection Project (RPP) mission modeling and WTP facility modeling assume that individual 3785 cubic meter (1 million gallon) HLW feed tanks are homogenously mixed, representatively sampled, and consistently delivered to the WTP. It has been demonstrated that homogenous mixing of HLW sludge in Hanford DSTs is not likely achievable with the baseline design thereby causing representative sampling and consistent feed delivery to be more difficult. Inconsistent feed to the WTP could cause additional batch to batch operational adjustments that reduces operating efficiency and has the potential to increase the overall mission length. The Hanford mixing and sampling demonstration program will identify DST mixing performance capability, will evaluate representative sampling techniques, and will estimate feed batch consistency. An evaluation of demonstration program results will identify potential mission improvement considerations that will help ensure successful mission completion. This paper will discuss the history, progress, and future activities that will define and mitigate the mission risk.

  4. Hanford Site River Protection Project (RPP) High Level Waste Storage

    SciTech Connect

    KRISTOFZSKI, J.G.

    2000-01-31

    The CH2M HILL Hanford Group (CHG) conducts business to achieve the goals of the U.S. Department of Energy's (DOE) Office of River Protection at the Hanford Site. The CHG is organized to manage and perform work to safely store, retrieve, etc.

  5. Separation of strontium-90 from Hanford high-level radioactive waste

    SciTech Connect

    Lumetta, G.J.; Wagner, M.J.; Jones, E.O.

    1993-10-01

    Current guidelines for disposing of high-level radioactive wastes stored in underground tanks at the US Department of Energy`s Hanford Site call for vitrifying high-level waste (HLW) in borosilicate glass and disposing the glass canisters in a deep geologic repository. Disposition of the low-level waste (LLW) is yet to be determined, but it will likely be immobilized in a glass matrix and disposed of on site. To lower the radiological risk associated with the LLW form, methods are being developed to separate {sup 90}Sr from the bulk waste material so this isotope can be routed to the HLW stream. A solvent extraction method is being investigated to separate {sup 90}Sr from acid-dissolved Hanford tank wastes. Results of experiments with actual tank waste indicate that this method can be used to achieve separation of {sup 90}Sr from the bulk waste components. Greater than 99% of the {sup 90}Sr was removed from an acidic dissolved sludge solution by extraction with di-tbutylcyclohexano-18-crown-6 in 1-octanol (the SREX process). The major sludge components were not extracted.

  6. Hanford high-level waste evaporator/crystallizer corrosion evaluation

    SciTech Connect

    Ohl, P.C.; Carlos, W.C.

    1993-10-01

    The US Department of Energy, Hanford Site nuclear reservation, located in Southeastern Washington State, is currently home to 61 Mgal of radioactive waste stored in 177 large underground storage tanks. As an intermediate waste volume reduction, the 242-A Evaporator/Crystallizer processes waste solutions from most of the operating laboratories and plants on the Hanford Site. The waste solutions are concentrated in the Evaporator/Crystallizer to a slurry of liquid and crystallized salts. This concentrated slurry is returned to Hanford Site waste tanks at a significantly reduced volume. The Washington State Department of Ecology Dangerous Waste Regulations, WAC 173-393 require that a tank system integrity assessment be completed and maintained on file at the facility for all dangerous waste tank systems. This corrosion evaluation was performed in support of the 242-A Evaporator/Crystallizer Tank System Integrity Assessment Report. This corrosion evaluation provided a comprehensive compatibility study of the component materials and corrosive environments. Materials used for the Evaporator components and piping include austenitic stainless steels (SS) (primarily ASTM A240, Type 304L) and low alloy carbon steels (CS) (primarily ASTM A53 and A106) with polymeric or asbestos gaskets at flanged connections. Building structure and secondary containment is made from ACI 301-72 Structural Concrete for Buildings and coated with a chemically resistant acrylic coating system.

  7. Determination of total cyanide in Hanford Site high-level wastes

    SciTech Connect

    Winters, W.I.; Pool, K.H.

    1994-05-01

    Nickel ferrocyanide compounds (Na{sub 2-x}Cs{sub x}NiFe (CN){sub 6}) were produced in a scavenging process to remove {sup 137}Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described.

  8. Hanford Site River Protection Project High-Level Waste Safe Storage and Retrieval

    SciTech Connect

    Aromi, E. S.; Raymond, R. E.; Allen, D. I.; Payne, M. A.; DeFigh-Price, C.; Kristofzski, J. G.; Wiegman, S. A.

    2002-02-25

    This paper provides an update from last year and describes project successes and issues associated with the management and work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of mixed and high-level waste currently in aging tanks at the Hanford Site. The Hanford Site is a 560 square-mile area in southeastern Washington State near Richland, Washington.

  9. Structural integrity and potential failure modes of hanford high-level waste tanks

    SciTech Connect

    Han, F.C.

    1996-09-30

    Structural Integrity of the Hanford High-Level Waste Tanks were evaluated based on the existing Design and Analysis Documents. All tank structures were found adequate for the normal operating and seismic loads. Potential failure modes of the tanks were assessed by engineering interpretation and extrapolation of the existing engineering documents.

  10. STUDIES RELATED TO CHEMICAL MECHANISMS OF GAS FORMATION IN HANFORD HIGH-LEVEL WASTES

    EPA Science Inventory

    The objective of this work is to develop a more detailed mechanistic understanding of the thermal reactions that lead to gas production in certain high-level waste storage tanks at the Hanford, Washington site. Prediction of the combustion hazard for these wastes and engineering ...

  11. Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing

    SciTech Connect

    Kelly, Steven E.

    2013-11-11

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok's accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol.

  12. DELPHI expert panel evaluation of Hanford high level waste tank failure modes and release quantities

    SciTech Connect

    Dunford, G.L.; Han, F.C.

    1996-09-30

    The Failure Modes and Release Quantities of the Hanford High Level Waste Tanks due to postulated accident loads were established by a DELPHI Expert Panel consisting of both on-site and off-site experts in the field of Structure and Release. The Report presents the evaluation process, accident loads, tank structural failure conclusion reached by the panel during the two-day meeting.

  13. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    SciTech Connect

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  14. Corrosion Management of the Hanford High-Level Nuclear Waste Tanks

    NASA Astrophysics Data System (ADS)

    Beavers, John A.; Sridhar, Narasi; Boomer, Kayle D.

    2014-03-01

    The Hanford site is located in southeastern Washington State and stores more than 200,000 m3 (55 million gallons) of high-level radioactive waste resulting from the production and processing of plutonium. The waste is stored in large carbon steel tanks that were constructed between 1943 and 1986. The leak and structurally integrity of the more recently constructed double-shell tanks must be maintained until the waste can be removed from the tanks and encapsulated in glass logs for final disposal in a repository. There are a number of corrosion-related threats to the waste tanks, including stress-corrosion cracking, pitting corrosion, and corrosion at the liquid-air interface and in the vapor space. This article summarizes the corrosion management program at Hanford to mitigate these threats.

  15. Collaboration, Automation, and Information Management at Hanford High Level Radioactive Waste (HLW) Tank Farms

    SciTech Connect

    Aurah, Mirwaise Y.; Roberts, Mark A.

    2013-12-12

    Washington River Protection Solutions (WRPS), operator of High Level Radioactive Waste (HLW) Tank Farms at the Hanford Site, is taking an over 20-year leap in technology, replacing systems that were monitored with clipboards and obsolete computer systems, as well as solving major operations and maintenance hurdles in the area of process automation and information management. While WRPS is fully compliant with procedures and regulations, the current systems are not integrated and do not share data efficiently, hampering how information is obtained and managed.

  16. Strontium and Actinide Separations from High Level Nuclear Waste Solutions using Monosodium Titanate - Actual Waste Testing

    SciTech Connect

    Peters, T.B.; Barnes, M.J.; Hobbs,D.T.; Walker, D.D.; Fondeur, F.F.; Norato, M.A.; Pulmano, R.L.; Fink, S.D.

    2005-11-01

    Pretreatment processes at the Savannah River Site will separate {sup 90}Sr, alpha-emitting and radionuclides (i.e., actinides) and {sup 137}Cs prior to disposal of the high-level nuclear waste. Separation of {sup 90}Sr and alpha-emitting radionuclides occurs by ion exchange/adsorption using an inorganic material, monosodium titanate (MST). Previously reported testing with simulants indicates that the MST exhibits high selectivity for strontium and actinides in high ionic strength and strongly alkaline salt solutions. This paper provides a summary of data acquired to measure the performance of MST to remove strontium and actinides from actual waste solutions. These tests evaluated the effects of ionic strength, mixing, elevated alpha activities, and multiple contacts of the waste with MST. Tests also provided confirmation that MST performs well at much larger laboratory scales (300-700 times larger) and exhibits little affinity for desorption of strontium and plutonium during washing.

  17. HIGH-LEVEL WASTE FEED CERTIFICATION IN HANFORD DOUBLE-SHELL TANKS

    SciTech Connect

    THIEN MG; WELLS BE; ADAMSON DJ

    2010-01-14

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's River Protection Project (RPP) mission modeling and WTP facility modeling assume that individual 3785 cubic meter (l million gallon) HLW feed tanks are homogenously mixed, representatively sampled, and consistently delivered to the WTP. It has been demonstrated that homogenous mixing ofHLW sludge in Hanford DSTs is not likely achievable with the baseline design thereby causing representative sampling and consistent feed delivery to be more difficult. Inconsistent feed to the WTP could cause additional batch-to-batch operational adjustments that reduce operating efficiency and have the potential to increase the overall mission length. The Hanford mixing and sampling demonstration program will identify DST mixing performance capability, will evaluate representative sampling techniques, and will estimate feed batch consistency. An evaluation of demonstration program results will identify potential mission improvement considerations that will help ensure successful mission completion. This paper will discuss the history, progress, and future activities that will define and mitigate the mission risk.

  18. High-performance gamma spectroscopy for equipment retrieval from Hanford high-level nuclear waste tanks

    NASA Astrophysics Data System (ADS)

    Troyer, Gary L.; Hillesand, K. E.; Goodwin, S. G.; Kessler, S. F.; Killian, E. W.; Legare, D.; Nelson, Joseph V., Jr.; Richard, R. F.; Nordquist, E. M.

    1999-01-01

    The cleanup of high level defense nuclear waste at the Hanford site presents several progressive challenges. Among these is the removal and disposal of various components from buried active waste tanks to allow new equipment insertion or hazards mitigation. A unique automated retrieval system at the tank provides for retrieval, high pressure washing, inventory measurement, and containment for disposal. Key to the inventory measurement is a three detector HPGe high performance gamma spectroscopy system capable of recovering data at up to ninety per cent saturation (200,000 counts per second). Data recovery is based on a unique embedded electronic pulser and specialized software to report the inventory. Each of the detectors have different shielding specified through Monte Carlo simulation with the MCNP program. This shielding provides performance over a dynamic range of eight orders of magnitude. System description, calibration issues and operational experiences are discussed.

  19. Overview of Hanford Site High-Level Waste Tank Gas and Vapor Dynamics

    SciTech Connect

    Huckaby, James L.; Mahoney, Lenna A.; Droppo, James G.; Meacham, Joseph E.

    2004-08-31

    Hanford Site processes associated with the chemical separation of plutonium from uranium and other fission products produced a variety of volatile, semivolatile, and nonvolatile organic and inorganic waste chemicals that were sent to high-level waste tanks. These chemicals have undergone and continue to undergo radiolytic and thermal reactions in the tanks to produce a wide variety of degradation reaction products. The origins of the organic wastes, the chemical reactions they undergo, and their reaction products have recently been examined by Stock (2004). Stock gives particular attention to explaining the presence of various types of volatile and semivolatile organic species identified in headspace air samples. This report complements the Stock report by examining the storage of volatile and semivolatile species in the waste, their transport through any overburden of waste to the tank headspaces, the physical phenomena affecting their concentrations in the headspaces, and their eventual release into the atmosphere above the tanks.

  20. Characterization and Delivery of Hanford High-Level Radioactive Waste Slurry

    SciTech Connect

    Thien, Michael G.; Denslow, Kayte M.; Lee, K. P.

    2014-11-15

    Two primary challenges to characterizing Hanford’s high-level radioactive waste slurry prior to transfer to a treatment facility are the ability to representatively sample million-gallon tanks and to estimate the critical velocity of the complex slurry. Washington River Protection Solutions has successfully demonstrated a sampling concept that minimizes sample errors by collecting multiple sample increments from a sample loop where the mixed tank contents are recirculated. Pacific Northwest National Laboratory has developed and demonstrated an ultrasonic-based Pulse-Echo detection device that is capable of detecting a stationary settled bed of solids in a pipe with flowing slurry. These two concepts are essential elements of a feed delivery strategy that drives the Hanford clean-up mission.

  1. Thermal and Radiolytic Gas Generation in Hanford High-Level Waste

    SciTech Connect

    Bryan, Samuel A.; Pederson, Larry R.; King, C. M.

    2000-01-31

    The Hanford Site has 177 underground storage tanks containing radioactive wastes that are complex mixes of radioactive and chemical products. Some of these wastes are known to generate and retain large quantities of flammable gases consisting of hydrogen, nitrous oxide, nitrogen, and ammonia. Because these gases are flammable and have the potential for rapid release, the gas generation rate for each tank must be determined to establish the flammability hazard (Johnson et al. 1997). An understanding of gas generation is important to operation of the waste tanks for several reasons. First, knowledge of the overall rate of generation is needed to verify that any given tank has sufficient ventilation to ensure that flammable gases are maintained at a safe level within the dome space. Understanding the mechanisms for production of the various gases is important so that future waste operations do not create conditions that promote the production of hydrogen, ammonia, and nitrous oxide. Studying the generation of gases also provides important data for the composition of the gas mixture, which in turn is needed to assess the flammability characteristics. Finally, information about generation of gases, including the influence of various chemical constituents, temperature, and dose, would aid in assessing the future behavior of the waste during interim storage, implementation of controls, and final waste treatment. This paper summarizes the current knowledge of gas generation pathways and discusses models used in predicting gas generation rates from actual Hanford radioactive wastes. A comparison is made between measured gas generation rates and rates by the predictive models.

  2. HIGH ALUMINUM HLW (HIGH LEVEL WASTE ) GLASSES FOR HANFORDS WTP (WASTE TREATMENT PROJECT)

    SciTech Connect

    KRUGER AA; BOWAN BW; JOSEPH I; GAN H; KOT WK; MATLACK KS; PEGG IL

    2010-01-04

    This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m{sup 2} and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m{sup 2}. The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al{sub 2}O{sub 3} concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m{sup 2}.day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m{sup 2}.day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m{sup 2}.day).

  3. Chemical evolution of leaked high-level liquid wastes in Hanford soils

    SciTech Connect

    NYMAN,MAY D.; KRUMHANSL,JAMES L.; ZHANG,PENGCHU; ANDERSON,HOWARD L.; NENOFF,TINA M.

    2000-05-19

    A number of Hanford tanks have leaked high level radioactive wastes (HLW) into the surrounding unconsolidated sediments. The disequilibrium between atmospheric C0{sub 2} or silica-rich soils and the highly caustic (pH > 13) fluids is a driving force for numerous reactions. Hazardous dissolved components such as {sup 133}Cs, {sup 79}Se, {sup 99}Tc may be adsorbed or sequestered by alteration phases, or released in the vadose zone for further transport by surface water. Additionally, it is likely that precipitation and alteration reactions will change the soil permeability and consequently the fluid flow path in the sediments. In order to ascertain the location and mobility/immobility of the radionuclides from leaked solutions within the vadose zone, the authors are currently studying the chemical reactions between: (1) tank simulant solutions and Hanford soil fill minerals; and (2) tank simulant solutions and C0{sub 2}. The authors are investigating soil-solution reactions at: (1) elevated temperatures (60--200 C) to simulate reactions which occur immediately adjacent a radiogenically heated tank; and (2) ambient temperature (25 C) to simulate reactions which take place further from the tanks. The authors studies show that reactions at elevated temperature result in dissolution of silicate minerals and precipitation of zeolitic phases. At 25 C, silicate dissolution is not significant except where smectite clays are involved. However, at this temperature CO{sub 2} uptake by the solution results in precipitation of Al(OH){sub 3} (bayerite). In these studies, radionuclide analogues (Cs, Se and Re--for Tc) were partially removed from the test solutions both during high-temperature fluid-soil interactions and during room temperature bayerite precipitation. Altered soils would permanently retain a fraction of the Cs but essentially all of the Se and Re would be released once the plume was past and normal groundwater came in contact with the contaminated soil. Bayerite

  4. A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests - 13342

    SciTech Connect

    Thien, Mike G.; Barnes, Steve M.

    2013-07-01

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described. (authors)

  5. A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests

    SciTech Connect

    Thien, Mike G.; Barnes, Steve M.

    2013-01-17

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described.

  6. Studies Related to Chemical Mechanisms of Gas Formation in Hanford High-Level Nuclear Wastes

    SciTech Connect

    E. Kent Barefield; Charles L. Liotta; Henry M. Neumann

    2002-04-08

    The objective of this work is to develop a more detailed mechanistic understanding of the thermal reactions that lead to gas production in certain high-level waste storage tanks at the Hanford, Washington site. Prediction of the combustion hazard for these wastes and engineering parameters for waste processing depend upon both a knowledge of the composition of stored wastes and the changes that they undergo as a result of thermal and radiolytic decomposition. Since 1980 when Delagard first demonstrated that gas production (H2and N2O initially, later N2 and NH3)in the affected tanks was related to oxidative degradation of metal complexants present in the waste, periodic attempts have been made to develop detailed mechanisms by which the gases were formed. These studies have resulted in the postulation of a series of reactions that account for many of the observed products, but which involve several reactions for which there is limited, or no, precedent. For example, Al(OH)4 has been postulated to function as a Lewis acid to catalyze the reaction of nitrite ion with the metal complexants, NO is proposed as an intermediate, and the ratios of gaseous products may be a result of the partitioning of NO between two or more reactions. These reactions and intermediates have been the focus of this project since its inception in 1996.

  7. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    SciTech Connect

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

  8. Evidence for dawsonite in Hanford high-level nuclear waste tanks.

    PubMed

    Reynolds, Jacob G; Cooke, Gary A; Herting, Daniel L; Warrant, R Wade

    2012-03-30

    Gibbsite [Al(OH)(3)] and boehmite (AlOOH) have long been assumed to be the most prevalent aluminum-bearing minerals in Hanford high-level nuclear waste sludge. The present study shows that dawsonite [NaAl(OH)(2)CO(3)] is also a common aluminum-bearing phase in tanks containing high total inorganic carbon (TIC) concentrations and (relatively) low dissolved free hydroxide concentrations. Tank samples were probed for dawsonite by X-ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive Spectrometry (SEM-EDS) and Polarized Light Optical Microscopy. Dawsonite was conclusively identified in four of six tanks studied. In a fifth tank (AN-102), the dawsonite identification was less conclusive because it was only observed as a Na-Al bearing phase with SEM-EDS. Four of the five tank samples with dawsonite also had solid phase Na(2)CO(3) · H(2)O. The one tank without observable dawsonite (Tank C-103) had the lowest TIC content of any of the six tanks. The amount of TIC in Tank C-103 was insufficient to convert most of the aluminum to dawsonite (Al:TIC mol ratio of 20:1). The rest of the tank samples had much lower Al:TIC ratios (between 2:1 and 0.5:1) than Tank C-103. One tank (AZ-102) initially had dawsonite, but dawsonite was not observed in samples taken 15 months after NaOH was added to the tank surface. When NaOH was added to a laboratory sample of waste from Tank AZ-102, the ratio of aluminum to TIC in solution was consistent with the dissolution of dawsonite. The presence of dawsonite in these tanks is of significance because of the large amount of OH(-) consumed by dawsonite dissolution, an effect confirmed with AZ-102 samples. PMID:22326826

  9. Production of a High-Level Waste Glass from Hanford Waste Samples

    SciTech Connect

    Crawford, C.L.; Farrara, D.M.; Ha, B.C.; Bibler, N.E.

    1998-09-01

    The HLW glass was produced from a HLW sludge slurry (Envelope D Waste), eluate waste streams containing high levels of Cs-137 and Tc-99, solids containing both Sr-90 and transuranics (TRU), and glass-forming chemicals. The eluates and Sr-90/TRU solids were obtained from ion-exchange and precipitation pretreatments, respectively, of other Hanford supernate samples (Envelopes A, B and C Waste). The glass was vitrified by mixing the different waste streams with glass-forming chemicals in platinum/gold crucibles and heating the mixture to 1150 degree C. Resulting glass analyses indicated that the HLW glass waste form composition was close to the target composition. The targeted waste loading of Envelope D sludge solids in the HLW glass was 30.7 wt percent, exclusive of Na and Si oxides. Condensate samples from the off-gas condenser and off-gas dry-ice trap indicated that very little of the radionuclides were volatilized during vitrification. Microstructure analysis of the HLW glass using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Analysis (EDAX) showed what appeared to be iron spinel in the HLW glass. Further X-Ray Diffraction (XRD) analysis confirmed the presence of nickel spinel trevorite (NiFe2O4). These crystals did not degrade the leaching characteristics of the glass. The HLW glass waste form passed leach tests that included a standard 90 degree C Product Consistency Test (PCT) and a modified version of the United States Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP).

  10. Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

    SciTech Connect

    Kim, Dong-Sang

    2015-03-02

    The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification process control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.

  11. Vacuum Drying of Actual Transuranic Waste from Hanford Tanks

    SciTech Connect

    Tingey, Joel M.

    2004-05-20

    Composites of sludge from Tanks 241-B-203, 241-T-203, 241 T 204, and 241-T-110 at the Hanford Site were prepared at the Hanford 222-S Laboratory from core samples retrieved from these tanks. These tank composites may not be representative of the entire contents of the tank but provide some indication of the properties of the waste within these underground storage tanks. The composite samples were diluted with water at the Radiochemical Processing Laboratory at Pacific Northwest National Laboratory to represent the slurries that are expected to be received from tank retrieval operations and processed to produce a final waste stream. The dilutions were vacuum dried at 60 C and 26 in. of mercury ({approx} 100 torr). Semi-quantitative measurements of stickiness and cohesive strength were made on these dilutions as a function of drying time. Mass loss as a function of drying time and total solids concentration of the initial dilution and at the conclusion of drying were also measured. Visual observations of the sludge were recorded throughout the drying process.

  12. Corrosion considerations for life management of Hanford high-level waste tanks

    SciTech Connect

    Ohl, P.C.; Vollert, F.R.; Thomson, J.D.

    1993-10-01

    The potential for corrosion-related aging mechanisms to be active in the Hanford Site waste tanks is frequently questioned and there are related uncertainties. This paper considers surveillance and analyses for evaluating the potential influence of corrosion processes such as stress corrosion cracking, pitting, crevice corrosion of the reinforced concrete steel on the useful life of Hanford radioactive waste tanks. There are two types of Hanford Site underground reinforced concrete, carbon steel lined waste tank structures. They primarily store caustic nitrate wastes, some at elevated temperatures, from defense reprocessing of spent nuclear fuels. Some of the Hanford waste tanks have leaked radioactive liquid waste to the soil. These leaks are possibly due to nitrate-induced stress corrosion cracking. Major efforts prescribed to avoid nitrate-induced stress corrosion cracking in newer tank designs appear successful. A potential for pitting and crevice corrosion cracking in the carbon steel liners exists. There has been no evidence of significant uniform corrosion of the carbon steel liners and there has been no evidence of waste tank degradation caused by corrosion of the concrete reinforcing steel. A waste tank life management program is being developed to qualify the Hanford waste tanks for continued safe storage of these wastes. Corrosion evaluations, structural analyses, and surveillance are required to qualify the tanks and to promptly detect evidence of possible distress.

  13. Vitrification and testing of a Hanford high-level waste sample. Part 1: Glass fabrication, and chemical and radiochemical analysis

    SciTech Connect

    Hrma, Pavel R.; Crum, Jarrod V.; Bates, Derrick J.; Bredt, Paul; Greenwood, Lawrence R.; Smith, H D.

    2005-10-01

    The Hanford radioactive tank waste will be separated into low-activity waste and high-level waste that will both be vitrified into borosilicate glasses. To demonstrate the feasibility of vitrification and the durability of the high-level waste glass, a high-level waste sample from Tank AZ-101 was processed to glass in a hot cell and analyzed with respect to chemical composition, radionuclide content, waste loading, and the presence of crystalline phases and then tested for leachability. The glass was analyzed with inductively coupled plasma-atomic emission spectroscopy, inductively coupled plasma-mass spectrometry, γ energy spectrometry, α spectrometry, and liquid scintillation counting. The WISE Uranium Project calculator was used to calculate the main sources of radioactivity to the year 3115. The observed crystallinity and the results of leachability testing of the glass will be reported in Part 2 of this paper.

  14. Vitrification and testing of a Hanford high-level waste sample. Part 1: Glass fabrication, and chemical and radiochemical analysis

    NASA Astrophysics Data System (ADS)

    Hrma, P.; Crum, J. V.; Bates, D. J.; Bredt, P. R.; Greenwood, L. R.; Smith, H. D.

    2005-10-01

    The Hanford radioactive tank waste will be separated into low-activity waste and high-level waste that will both be vitrified into borosilicate glasses. To demonstrate the feasibility of vitrification and the durability of the high-level waste glass, a high-level waste sample from Tank AZ-101 was processed to glass, analyzed with respect to chemical composition, radionuclide content, waste loading, and the presence of crystalline phases and then tested for leachability. The glass was analyzed with inductively coupled plasma-atomic emission spectroscopy, inductively coupled plasma-mass spectrometry, γ-energy spectrometry, α-spectrometry, and liquid scintillation counting. The WISE Uranium Project calculator was used to calculate the main sources of radioactivity to the year 3115. The observed crystallinity and the results of leachability testing of the glass will be reported in Part 2 of this paper.

  15. Probabilistic safety assessment for high-level waste tanks at Hanford

    SciTech Connect

    Sullivan, L.H.; MacFarlane, D.R.; Stack, D.W.

    1996-12-31

    Los Alamos National Laboratory has performed a comprehensive probabilistic safety assessment (PSA), including consideration of external events, for the 18 tank farms at the Hanford Tank Farm (HTF). This work was sponsored by the Department of Energy/Environmental Restoration and Waste Management Division (DOE/EM).

  16. STUDIES RELATED TO CHEMICAL MECHANISMS OF GAS FORMATION IN HANFORD HIGH-LEVEL NUCLEAR WASTES

    EPA Science Inventory

    The research has its origin in studies at Georgia Tech into the chemical (as opposed to radiolytic) mechanisms of gas formation (H2, N2O, N2, and NH3) in nuclear waste storage tanks at Hanford, Washington, which has been supported since 1991 under DOE's comprehensive Flammable Ga...

  17. Assessment of chemical vulnerabilities in the Hanford high-level waste tanks

    SciTech Connect

    Meacham, J.E.

    1996-02-15

    The purpose of this report is to summarize results of relevant data (tank farm and laboratory) and analysis related to potential chemical vulnerabilities of the Hanford Site waste tanks. Potential chemical safety vulnerabilities examined include spontaneous runaway reactions, condensed phase waste combustibility, and tank headspace flammability. The major conclusions of the report are the following: Spontaneous runaway reactions are not credible; condensed phase combustion is not likely; and periodic releases of flammable gas can be mitigated by interim stabilization.

  18. The apparent solubility of aluminum (III) in Hanford high-level waste.

    PubMed

    Reynolds, Jacob G

    2012-01-01

    The solubility of aluminum in Hanford nuclear waste impacts on the processability of the waste by a number of proposed treatment options. For many years, Hanford staff has anecdotally noted that aluminum appears to be considerably more soluble in Hanford waste than the simpler electrolyte solutions used as analogues. There has been minimal scientific study to confirm these anecdotal observations, however. The present study determines the apparent solubility product for gibbsite in 50 tank samples. The ratio of hydroxide to aluminum in the liquid phase for the samples is calculated and plotted as a function of total sodium molarity. Total sodium molarity is used as a surrogate for ionic strength, because the relative ratios of mono-, di- and trivalent anions are not available for all of the samples. These results were compared to the simple NaOH-NaAl(OH)(4)-H(2)O system, and the NaOH-NaAl(OH)(4)-NaCl-H(2)O system data retrieved from the literature. The results show that gibbsite is apparently more soluble in the samples than in the simple systems whenever the sodium molarity is greater than 2M. This apparent enhanced solubility cannot be explained solely by differences in ionic strength. The change in solubility with ionic strength in simple systems is small compared to the difference between aluminum solubility in Hanford waste and the simple systems. The reason for the apparent enhanced solubility is unknown, but could include kinetic or thermodynamic factors that are not present in the simple electrolyte systems. Any kinetic explanation would have to explain why the samples are always supersaturated whenever the sodium molarity is above 2M. Real waste characterization data should not be used to validate thermodynamic solubility models until it can be confirmed that the apparent enhanced gibbsite solubility is a thermodynamic effect and not a kinetic effect. PMID:22934992

  19. The apparent solubility of aluminum (III) in Hanford high-level waste

    SciTech Connect

    Reynolds, Jacob G.

    2012-12-01

    The solubility of aluminum in Hanford nuclear waste impacts on the process ability of the waste by a number of proposed treatment options. For many years, Hanford staff has anecdotally noted that aluminum appears to be considerably more soluble in Hanford waste than the simpler electrolyte solutions used as analogues. There has been minimal scientific study to confirm these anecdotal observations, however. The present study determines the apparent solubility product for gibbsite in 50 tank samples. The ratio of hydroxide to aluminum in the liquid phase for the samples is calculated and plotted as a function of total sodium molarity. Total sodium molarity is used as a surrogate for ionic strength, because the relative ratios of mono, di and trivalent anions are not available for all of the samples. These results were compared to the simple NaOH-NaAl(OH{sub 4})H{sub 2}O system, and the NaOH-NaAl(OH{sub 4})NaCl-H{sub 2}O system data retrieved from the literature. The results show that gibbsite is apparently more soluble in the samples than in the simple systems whenever the sodium molarity is greater than two. This apparent enhanced solubility cannot be explained solely by differences in ionic strength. The change in solubility with ionic strength in simple systems is small compared to the difference between aluminum solubility in Hanford waste and the simple systems. The reason for the apparent enhanced solubility is unknown, but could include. kinetic or thermodynamic factors that are not present in the simple electrolyte systems. Any kinetic explanation would have to explain why the samples are always supersaturated whenever the sodium molarity is above two. Real waste characterization data should not be used to validate thermodynamic solubility models until it can be confirmed that the apparent enhanced gibbsite solubility is a thermodynamic effect and not a kinetic effect.

  20. Probabilistic safety assessment for Hanford high-level waste tank 241-SY-101

    SciTech Connect

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W.; Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J.

    1994-05-01

    Los Alamos National Laboratory (Los Alamos) is performing a comprehensive probabilistic safety assessment (PSA), which will include consideration of external events for the 18 tank farms at the Hanford Site. This effort is sponsored by the Department of Energy (DOE/EM, EM-36). Even though the methodology described herein will be applied to the entire tank farm, this report focuses only on the risk from the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases ({open_quotes}burps{close_quotes}) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed first because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is being conducted in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. At the Hanford Site there are 177 underground tanks in 18 separate tank farms containing accumulated liquid/sludge/salt cake radioactive wastes from 50 yr of weapons materials production activities. The total waste volume is about 60 million gal., which contains approximately 120 million Ci of radioactivity.

  1. Probability, consequences, and mitigation for lightning strikes to Hanford site high-level waste tanks

    SciTech Connect

    Zach, J.J.

    1996-08-01

    The purpose of this report is to summarize selected lightning issues concerning the Hanford Waste Tanks. These issues include the probability of lightning discharge striking the area immediately adjacent to a tank including a riser, the consequences of significant energy deposition from a lightning strike in a tank, and mitigating actions that have been or are being taken. The major conclusion of this report is that the probability of a lightning strike depositing sufficient energy in a tank to cause an effect on employees or the public is unlikely;but there are insufficient, quantitative data on the tanks and waste to prove that. Protection, such as grounding of risers and air terminals on existing light poles, is recommended.

  2. Probability, consequences, and mitigation for lightning strikes of Hanford high level waste tanks

    SciTech Connect

    Zach, J.J.

    1996-06-05

    The purpose of this report is to summarize selected lightning issues concerning the Hanford Waste Tanks. These issues include the probability of a lightning discharge striking the area immediately adjacent to a tank including a riser, the consequences of significant energy deposition from a lightning strike in a tank, and mitigating actions that have been or are being taken. The major conclusion of this report is that the probability of a lightning strike deposition sufficient energy in a tank to cause an effect on employees or the public is unlikely;but there are insufficient, quantitative data on the tanks and waste to prove that. Protection, such as grounding of risers and air terminals on existing light poles, is recommended.

  3. Crystallization in simulated glasses from Hanford high-level nuclear waste composition range

    SciTech Connect

    Kim, Dong-Sang; Hrma, P.; Smith, D.E.; Schweiger, M.J.

    1993-04-01

    Glass crystallization was investigated as part of a property-composition relationship study of Hanford waste glasses. Non-radioactive glass samples were heated in a gradient furnace over a wide range of temperatures. The liquidus temperature was measured, and primary crystalline phases were determined using optical microscopy and Scanning Electron Microscopy with Energy Dispersive Spectrometry (SEM/EDS). Samples have also been heat treated according to a simulated canister centerline cooling curve. The crystalline phases in these samples have been identified by optical microscopy, SEM/EDS, and X-ray diffraction (XRD). Major components of the borosilicate glasses that were melted at approximately 1150{degrees}C were SiO{sub 2}, B{sub 2}O{sub 3}, Na{sub 2}O, Li{sub 2}O, CaO, MgO, Fe{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, ZrO{sub 2}, and ``Others`` (sum of minor components). The major crystalline phases identified in this study were zircon, nepheline, calcium silicate, lithium silicate, and a range of solid solutions from clinopyroxenes, orthopyroxenes, olivines, and spiners.

  4. Resolution of safety issues associated with the storage of high-level radioactive waste at the Hanford Site

    SciTech Connect

    Mellinger, G.B. ); Tseng, J.C. )

    1992-08-01

    A number of high-level radioactive waste (HLW) safety issues have been identified at the Hanford Site in southeastern Washington State. Resolution of these issues is one of the Highest Priorities of the US Department of Energy. The most urgent issues are the potential for explosions in certain tanks (due to periodic venting of large quantities of flammable gases, or the presence of substantial quantities of ferrocyanide and/or organic compounds in combination with nitrates-nitrites). Other safety issues have been identified as well, such as the requirement for periodic water additions to one tank to control its temperature and the release of noxious vapors from a number of tanks. Substantial progress has been made toward safety issue resolution. Potential mechanisms have been identified for the generation, retention and periodic venting of flammable gas mixtures; potential methods for controlling the periodic release behavior have been identified and in-tank testing will be initiated in 1992. Research is being conducted to determine the initiation temperatures, energetics, reaction sequences and effects of catalysts and initiators on ferrocyanide-nitrate/nitrite reactions; waste characterization on a tank-by-tank basis will be required to identify whether ferrocyanide-containing wastes are safe to store as-is or will require further treatment to eliminate safety concerns. Resolution of all of the Hanford Site HLW safety issues will be accomplished as an integral part of the Hanford Tank Waste Remediation System, that has been established to manage the storage of these wastes and their preparation for disposal.

  5. Vitrification and testing of a Hanford high-level waste sample. Part 2: Phase identification and waste form leachability

    NASA Astrophysics Data System (ADS)

    Hrma, P.; Crum, J. V.; Bredt, P. R.; Greenwood, L. R.; Arey, B. W.; Smith, H. D.

    2005-10-01

    A sample of Hanford high-level radioactive waste from Tank AZ-101 was vitrified into borosilicate glass and tested to demonstrate its compliance with regulatory requirements. Compositional aspects of this study were reported in Part 1 of this paper. This second and last part presents results of crystallinity and leachability testing. Crystallinity was quantified in a glass sample heat treated according to the calculated cooling curve of glass at the centerline of a Hanford Waste Treatment Plant canister. By quantitative X-ray diffraction analysis and image analysis applied to scanning electron microscopy micrographs, the sample contained 7 mass% of spinel, a solid solution of franklinite, trevorite, and other minor spinels. Glass leachability was measured with the product consistency test and the toxicity characteristic leaching procedure. Measured data and model estimates were in reasonable agreement. Leachability results were close to those obtained for the non-radioactive simulant. Models were used to elucidate the effects of glass composition of spinel formation and to estimate effects of spinel formation on glass leachability.

  6. Corrosion data from Hanford high-level waste tank 241-AN-107

    SciTech Connect

    Edgemon, G.L.; Nelson, J.L.; Bell, G.E.C.

    1999-07-01

    In an effort to improve corrosion monitoring and control at the Hanford Site, an eight-channel electrochemical noise (EN) based corrosion monitoring system was designed, fabricated and installed into double-shell tank 241-AN-107 in September 1997. This system is a larger scale version of a prototype system installed in double-shell tank 241-AZ-101 in August 1996 and monitors eight three-electrode channels positioned at different elevations in the tank. The system is capable of detecting the onset of pitting and stress corrosion cracking should tank waste conditions change to allow these mechanisms to occur. No finding was provided for troubleshooting and data analysis for nearly a year following installation. When these activities were finally permitted, it was found that most of the data collected was corrupted to some degree by an unknown source of electrical interference. The source of this disturbance has not yet been located. Data collected between 10/97 and 1/98 do not appear to have been affected by the disturbances and signal interference that plague much of the rest of the data. Both summary statistical data and raw data collected during this time period indicate that uniform corrosion is the dominant active corrosion mechanism in tank 241-AN-107. Uniform corrosion rates were calculated from EN data. Despite correction for differences in surface area uniform corrosion rates calculated from noise data collected on small pin-type electrodes do not agree well with rates measured on larger C-ring type electrodes. Between 10/97 and 1/98, C-rings in the supernate showed an average uniform corrosion rate of approximately 7 roils per year (mpy). Pin electrodes in the supernate over the same time period showed a uniform corrosion rate of less than 1 mpy. Which value is correct and the source of the difference have not yet been determined.

  7. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    SciTech Connect

    Bardal, M.A.; Darwen, N.J.

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification. Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance

  8. APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD

    SciTech Connect

    TEDESCHI AR; WILSON RA

    2010-01-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  9. Topical report on release scenario analysis of long-term management of high-level defense waste at the Hanford Site

    SciTech Connect

    Wallace, R.W.; Landstrom, D.K.; Blair, S.C.; Howes, B.W.; Robkin, M.A.; Benson, G.L.; Reisenauer, A.E.; Walters, W.H.; Zimmerman, M.G.

    1980-11-01

    Potential release scenarios for the defense high-level waste (HLW) on the Hanford Site are presented. Presented in this report are the three components necessary for evaluating the various alternatives under consideration for long-term management of Hanford defense HLW: identification of scenarios and events which might directly or indirectly disrupt radionuclide containment barriers; geotransport calculations of waste migration through the site media; and consequence (dose) analyses based on groundwater and air pathways calculations. The scenarios described in this report provide the necessary parameters for radionuclide transport and consequence analysis. Scenarios are categorized as either bounding or nonbounding. Bounding scenarios consider worst case or what if situations where an actual and significant release of waste material to the environment would happen if the scenario were to occur. Bounding scenarios include both near-term and long-term scenarios. Near-term scenarios are events which occur at 100 years from 1990. Long term scenarios are potential events considered to occur at 1000 and 10,000 years from 1990. Nonbounding scenarios consider events which result in insignificant releases or no release at all to the environment. Three release mechanisms are described in this report: (1) direct exposure of waste to the biosphere by a defined sequence of events (scenario) such as human intrusion by drilling; (2) radionuclides contacting an unconfined aquifer through downward percolation of groundwater or a rising water table; and (3) cataclysmic or explosive release of radionuclides by such mechanisms as meteorite impact, fire and explosion, criticality, or seismic events. Scenarios in this report present ways in which these release mechanisms could occur at a waste management facility. The scenarios are applied to the two in-tank waste management alternatives: in-situ disposal and continued present action.

  10. TESTING OF THE SPINTEK ROTARY MICROFILTER USING ACTUAL HANFORD WASTE SAMPLES

    SciTech Connect

    HUBER HJ

    2010-04-13

    The SpinTek rotary microfilter was tested on actual Hanford tank waste. The samples were a composite of archived Tank 241-AN-105 material and a sample representing single-shell tanks (SST). Simulants of the two samples have been used in non-rad test runs at the 222-S laboratory and at Savannah River National Laboratory (SRNL). The results of these studies are compared in this report. Two different nominal pore sizes for the sintered steel rotating disk filter were chosen: 0.5 and 0.1 {micro}m. The results suggest that the 0.5-{micro}m disk is preferable for Hanford tank waste for the following reasons: (1) The filtrate clarity is within the same range (<<4 ntu for both disks); (2) The filtrate flux is in general higher for the 0.5-{micro}m disk; and (3) The 0.1-{micro}m disk showed a higher likelihood of fouling. The filtrate flux of the actual tank samples is generally in the range of 20-30% compared to the equivalent non-rad tests. The AN-105 slurries performed at about twice the filtrate flux of the SST slurries. The reason for this difference has not been identified. Particle size distributions in both cases are very similar; comparison of the chemical composition is not conclusive. The sole hint towards what material was stuck in the filter pore holes came from the analysis of the dried flakes from the surface of the fouled 0.1-{micro}m disk. A cleaning approach developed by SRNL personnel to deal with fouled disks has been found adaptable when using actual Hanford samples. The use of 1 M nitric acid improved the filtrate flux by approximately two times; using the same simulants as in the non-rad test runs showed that the filtrate flux was restored to 1/2 of its original amount.

  11. Grout Placement and Property Evaluation for Closing Hanford High-Level Waste Tanks - Scale-Up Testing

    SciTech Connect

    LANGTON, CHRISTINE

    2003-12-15

    Hanford has 149 single-shell high level waste (HLW) tanks that were constructed between 1943 and 1964. Many of these tanks have leaked or are suspected of leaking HLW into the soil above the ground water. Consequently, a major effort is ongoing to transfer the liquid portion of the waste to the 28 newer, double-shell tanks. Savannah River National Laboratory (SRNL) was tasked to develop grout formulations for the three-layer closure concept selected by CH2M HILL for closing Tank C-106. These grout formulations were also evaluated for use as fill materials in the next six tanks scheduled to be closed. The overall scope consisted of both bench-scale testing to confirm mix designs and scale-up testing to confirm placement properties. This report provides results of the scale-up testing for the three-phase tank closure strategy. It also contains information on grouts for equipment and riser filling. The three-phase fill strategy is summarized as follows: Phase I fill encapsulates and minimizes dispersion of the residual waste in the tank. This fill is referred to as the Stabilization Layer and consists of the Stabilization Grout. The Phase II fill provides structural stability to the tank system and prevents subsidence. It is referred to as the Structural Layer and consists of the Structural Grout. A final Phase III fill consists of a grout designed to provide protection against intrusion and is referred to as the Capping Layer or Capping Grout.

  12. Geomicrobiology of High-Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State

    PubMed Central

    Fredrickson, James K.; Zachara, John M.; Balkwill, David L.; Kennedy, David; Li, Shu-mei W.; Kostandarithes, Heather M.; Daly, Michael J.; Romine, Margaret F.; Brockman, Fred J.

    2004-01-01

    Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), 137Cs, and 99Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to ∼104 CFU g−1, but viable microorganisms were recovered from 11 of 16 samples, including several of the most radioactive ones (e.g., >10 μCi of 137Cs/g). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples, but other phyla high in G+C content were also represented, including Rhodococcus and Nocardia. Two isolates from the second-most radioactive sample (>20 μCi of 137Cs g−1) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20 kGy. Many of the gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that gram-positive bacteria, predominantly from phyla high in G+C content, are indigenous to Hanford vadose sediments and that some are effective at surviving the extreme physical and chemical stress associated with radioactive waste. PMID:15240306

  13. Laboratory Demonstration of the Pretreatment Process with Caustic and Oxidative Leaching Using Actual Hanford Tank Waste

    SciTech Connect

    Fiskum, Sandra K.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.

    2009-01-01

    This report describes the bench-scale pretreatment processing of actual tank waste materials through the entire baseline WTP pretreatment flowsheet in an effort to demonstrate the efficacy of the defined leaching processes on actual Hanford tank waste sludge and the potential impacts on downstream pretreatment processing. The test material was a combination of reduction oxidation (REDOX) tank waste composited materials containing aluminum primarily in the form of boehmite and dissolved S saltcake containing Cr(III)-rich entrained solids. The pretreatment processing steps tested included • caustic leaching for Al removal • solids crossflow filtration through the cell unit filter (CUF) • stepwise solids washing using decreasing concentrations of sodium hydroxide with filtration through the CUF • oxidative leaching using sodium permanganate for removing Cr • solids filtration with the CUF • follow-on solids washing and filtration through the CUF • ion exchange processing for Cs removal • evaporation processing of waste stream recycle for volume reduction • combination of the evaporated product with dissolved saltcake. The effectiveness of each process step was evaluated by following the mass balance of key components (such as Al, B, Cd, Cr, Pu, Ni, Mn, and Fe), demonstrating component (Al, Cr, Cs) removal, demonstrating filterability by evaluating filter flux rates under various processing conditions (transmembrane pressure, crossflow velocities, wt% undissolved solids, and PSD) and filter fouling, and identifying potential issues for WTP. The filterability was reported separately (Shimskey et al. 2008) and is not repeated herein.

  14. Ion exchange removal of cesium from simulated and actual supernate from Hanford tanks 241-SY-101 and 241-SY-103

    SciTech Connect

    Brown, G.N.; Bontha, J.R.; Carlson, C.D.

    1995-09-01

    Pacific Northwest Laboratory (PNL), in conjunction with the Process Chemistry and Statistics Section of Westinghouse Hanford Company (WHC), conducted this study as part of the Supernatant Treatment Development Task for the Initial Pretreatment Module (IPM) Applied Engineering Project. The study assesses the performance of the CS-100 ion exchange material for removing cesium from simulated and actual alkaline supernate from Hanford tanks 241-SY-101 and 241-SY-103. The objective of these experiments is to compare the cesium ion exchange loading and elution profiles of actual and simulated wastes. Specific experimental objectives include (1) demonstration of decontamination factors (DF) for cesium removal, 92) verification of simulant performance, (3) investigation of waste/exchanger chemistry, and (4) determination of the radionuclide content of the regenerated CS-100 resin prior to disposal.

  15. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    SciTech Connect

    TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

  16. CHARACTERIZATION OF DEFENSE NUCLEAR WASTE USING HAZARDOUS WASTE GUIDANCE. APPLICATIONS TO HANFORD SITE ACCELERATED HIGH-LEVEL WASTE TREATMENT AND DISPOSAL MISSION0

    SciTech Connect

    Hamel, William; Huffman, Lori; Lerchen, Megan; Wiemers, Karyn

    2003-02-27

    Federal hazardous waste regulations were developed for management of industrial waste. These same regulations are also applicable for much of the nation's defense nuclear wastes. At the U.S. Department of Energy's (DOE) Hanford Site in southeast Washington State, one of the nation's largest inventories of nuclear waste remains in storage in large underground tanks. The waste's regulatory designation and its composition and form constrain acceptable treatment and disposal options. Obtaining detailed knowledge of the tank waste composition presents a significant portion of the many challenges in meeting the regulatory-driven treatment and disposal requirements for this waste. Key in applying the hazardous waste regulations to defense nuclear wastes is defining the appropriate and achievable quality for waste feed characterization data and the supporting evidence demonstrating that applicable requirements have been met at the time of disposal. Application of a performance-based approach to demonstrating achievable quality standards will be discussed in the context of the accelerated high-level waste treatment and disposal mission at the Hanford Site.

  17. Physical Property and Rheological Testing of Actual Transuranic Waste from Hanford Single-Shell Tanks

    SciTech Connect

    Tingey, Joel M. ); Gao, Johnway ); Delegard, Calvin H. ); Bagaasen, Larry M. ); Wells, Beric E. )

    2003-08-25

    Composites of sludge from Hanford tanks 241-B-203 (B-203), 241-T-203 (T-203), 241-T-204 (T-204), and 241-T-110 (T-110) were prepared at the Hanford 222-S Laboratory and transferred to the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory (PNNL) for measurement of the composites' physical properties. These tank composites were prepared from core samples retieved from these tanks. These core samples may not be representative of the entire contents of the tank but provide some indication of the properties of the waste in these underground storage tanks. Dilutions in water were prepared from the composite samples. The measurements included paint filter tests, viscosity, shear strength, settling and centrifuging behavior, a qualitative test of stickiness, total solids concentration, and extrusion tests to estimate shear strength.

  18. Property/composition relationships for Hanford high-level waste glasses melting at 115{degrees}C volume 1: Chapters 1-11

    SciTech Connect

    Hrma, P.R.; Piepel, G.F.

    1994-12-01

    A Composition Variation study (CVS) is being performed within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) project in support of a future high-level nuclear waste vitrification plant at the Hanford site in Washington. From 1989 to 1994, over 120 nonradioactive glasses were melted and properties measured in five statistically-designed experimental phases. Glass composition is represented by the 10 components SiO{sub 2}, B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, ZrO{sub 2}, Na{sub 2}O, Li{sub 2}O, CaO, MgO, and Others (all remaining components). The properties measured include viscosity ({eta}), electrical conductivity ({epsilon}), glass transition temperature (T{sub g} ), thermal expansion of solid glass ({alpha}{sub s}) and molten glass ({alpha}{sub m}), crystallinity (quenched and canister centerline cooled glasses), liquidus temperature (T{sub L}), durability based on normalized elemental releases from the Materials Characterization Center-1 28-day dissolution test (MCC-1, r{sub mi}) and the 7-day Product Consistency Test (PCT, r{sub pi}), and solution pHs from MCC-1 and PCT. Amorphous phase separation was also evaluated. Empirical first- and second-order mixture models were fit using the CVS data to relate the various properties to glass composition. Equations for calculating the uncertainty associated with property values predicted by the models were also developed. The models were validated using both internal and external data. Other modeling approaches (e.g., non-bridging oxygen, free energy of hydration, phase-equilibria T{sub L}) were investigated for specific properties. A preliminary Qualified Composition Region was developed to identify glass compositions with high confidence of being processable in a melter and meeting waste form acceptance criteria.

  19. Property/composition relationships for Hanford high-level waste glasses melting at 1150{degrees}C volume 2: Chapters 12-16 and appendices A-K

    SciTech Connect

    Hrma, P.R.; Piepel, G.F.

    1994-12-01

    A Composition Variation Study (CVS) is being performed within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) project in support of a future high-level nuclear waste vitrification plant at the Hanford site in Washington. From 1989 to 1994, over 120 nonradioactive glasses were melted and properties measured in five statistically-designed experimental phases. Glass composition is represented by the 10 components SiO{sub 2}, B{sub 2}O{sub 3}, ZrO{sub 2}, Na{sub 2}O, Li{sub 2}O, CaO, MgO, and Others (all remaining components). The properties measured include viscosity ({eta}), electrical conductivity ({epsilon}), glass transition temperature (T{sub g}), thermal expansion of solid glass ({alpha}{sub s}) and molten glass ({alpha}{sub m}), crystallinity (quenched and canister centerline cooled glasses), liquidus temperature (T{sub L}), durability based on normalized elemental releases from the Materials Characterization Center-1 28-day dissolution test (MCC-1, r{sub mi}) and the 7-day Product Consistency Test (PCT, r{sub pi}), and solution pHs from MCC-1 and PCT. Amorphous phase separation was also evaluated. Empirical first- and second-order mixture models were fit using the CVS data to relate the various properties to glass composition. Equations for calculating the uncertainty associated with property values predicted by the models were also developed. The models were validated using both internal and external data. Other modeling approaches (e.g., non-bridging oxygen, free energy of hydration, phase-equilibria T{sub L}) were investigated for specific properties. A preliminary Qualified Composition Region was developed to identify glass compositions with high confidence of being processable in a melter and meeting waste form acceptance criteria.

  20. Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste

    SciTech Connect

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1996-09-01

    Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

  1. High level nuclear waste

    SciTech Connect

    Crandall, J L

    1980-01-01

    The DOE Division of Waste Products through a lead office at Savannah River is developing a program to immobilize all US high-level nuclear waste for terminal disposal. DOE high-level wastes include those at the Hanford Plant, the Idaho Chemical Processing Plant, and the Savannah River Plant. Commercial high-level wastes, for which DOE is also developing immobilization technology, include those at the Nuclear Fuel Services Plant and any future commercial fuels reprocessing plants. The first immobilization plant is to be the Defense Waste Processing Facility at Savannah River, scheduled for 1983 project submission to Congress and 1989 operation. Waste forms are still being selected for this plant. Borosilicate glass is currently the reference form, but alternate candidates include concretes, calcines, other glasses, ceramics, and matrix forms.

  2. Work plan for the identification of techniques for in-situ sensing of layering/interfaces of Hanford high level waste tank

    SciTech Connect

    Vargo, G.F. Jr.

    1995-06-16

    The purpose of this work scope is to identify a specific potential technology/device/instrument/ideas that would provide the tank waste data. A method is needed for identifying layering and physical state within the large waste tanks at the Hanford site in Washington State. These interfaces and state changes can adversely impact sampling and characterization activities.

  3. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  4. Separation and Purification and Beta Liquid Scintillation Analysis of Sm-151 in Savannah River Site and Hanford Site DOE High Level Waste

    SciTech Connect

    Dewberry, R.A.

    2001-02-13

    This paper describes development work to obtain a product phase of Sm-151 pure of any other radioactive species so that it can be determined in US Department of Energy high level liquid waste and low level solid waste by liquid scintillation {beta}-spectroscopy. The technique provides separation from {mu}Ci/ml levels of Cs-137, Pu alpha and Pu-241 {beta}-decay activity, and Sr-90/Y-90 activity. The separation technique is also demonstrated to be useful for the determination of Pm-147.

  5. Measurement of unsaturated hydraulic properties of salt cake simulant relevant to hanford and SRS high-level waste tanks using a pilot-scale setup

    SciTech Connect

    Tachiev, G.; Yaari, G.; Long, S.; Srivastava, R.; Roelant, D.

    2007-07-01

    Closure of the remaining tanks and final disposition of the radioactive waste is a high priority task at both Savannah River Site (SRS) and Hanford. The radioactive waste in the tanks are generally found in layers: supernate (on top) containing soluble fission products, and salt-cake and sludge (on the bottom of the tank) containing insoluble actinides. One strategy for minimizing the waste volume is to segregate the low curie salt waste from the high curie salt supernate by draining the supernate and interstitial salt solution from the salt-cake. The retrieval of the interstitial fluid will require knowledge of relevant properties of salt-cake waste including drainage parameters, more specifically, its hydraulic properties. The hydraulic parameters of the salt-cake have significance with respect to: 1) Kinetics of the retrieval process; and 2) Equilibrium conditions of the drainage. While the saturated hydraulic properties of the salt waste (hydraulic conductivity in the vertical and horizontal direction) can be used to determine the kinetics of the flow through the salt waste, the unsaturated properties are needed in order to assess not only the time frame of tank drainage but also the equilibrium conditions. How much and how fast fluid can be drained at given initial and boundary conditions (atmospheric pressure and temperature) can be analyzed. A series of dissolution and drainage experiments was conducted using S-112, S-109 and Tank 41 simulants in a pilot-scale column (1' diameter, 10' high). The major goal of these experiments was to determine the hydraulic parameters of flow through the column and the dissolution patterns upon addition of fresh water. The hydraulic experiments were conducted using interstitial fluid as well as fresh water. A series of one-step outflow experiments were used to evaluate the drainage patterns for salt-bed heights ranging from 1' to 8'. Measured data include bulk densities and saturated hydraulic conductivities as a function of

  6. High-Level Waste Melter Study Report

    SciTech Connect

    Perez Jr, Joseph M; Bickford, Dennis F; Day, Delbert E; Kim, Dong-Sang; Lambert, Steven L; Marra, Sharon L; Peeler, David K; Strachan, Denis M; Triplett, Mark B; Vienna, John D; Wittman, Richard S

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  7. Ultrafilter Conditions for High Level Waste Sludge Processing

    SciTech Connect

    Geeting, John GH; Hallen, Richard T.; Peterson, Reid A.

    2006-08-28

    An evaluation of the optimal filtration conditions was performed based on test data obtained from filtration of a High Level Waste Sludge sample from the Hanford tank farms. This evaluation was performed using the anticipated configuration for the Waste Treatment Plant at the Hanford site. Testing was performed to identify the optimal pressure drop and cross flow velocity for filtration at both high and low solids loading. However, this analysis indicates that the actual filtration rate achieved is relatively insensitive to these conditions under anticipated operating conditions. The maximum filter flux was obtained by adjusting the system control valve pressure from 400 to 650 kPa while the filter feed concentration increased from 5 to 20 wt%. However, operating the system with a constant control valve pressure drop of 500 kPa resulted in a less than 1% reduction in the average filter flux. Also note that allowing the control valve pressure to swing as much as +/- 20% resulted in less than a 5% decrease in filter flux.

  8. Separating and Stabilizing Phosphate from High-Level Radioactive Waste: Process Development and Spectroscopic Monitoring

    SciTech Connect

    Lumetta, Gregg J.; Braley, Jenifer C.; Peterson, James M.; Bryan, Samuel A.; Levitskaia, Tatiana G.

    2012-05-09

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  9. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    PubMed

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-01

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams. PMID:22571620

  10. Corrosion and failure processes in high-level waste tanks

    SciTech Connect

    Mahidhara, R.K.; Elleman, T.S.; Murty, K.L.

    1992-11-01

    A large amount of radioactive waste has been stored safely at the Savannah River and Hanford sites over the past 46 years. The aim of this report is to review the experimental corrosion studies at Savannah River and Hanford with the intention of identifying the types and rates of corrosion encountered and indicate how these data contribute to tank failure predictions. The compositions of the High-Level Wastes, mild steels used in the construction of the waste tanks and degradation-modes particularly stress corrosion cracking and pitting are discussed. Current concerns at the Hanford Site are highlighted.

  11. Estimate of Hanford Waste Rheology and Settling Behavior

    SciTech Connect

    Poloski, Adam P.; Wells, Beric E.; Tingey, Joel M.; Mahoney, Lenna A.; Hall, Mark N.; Thomson, Scott L.; Smith, Gary Lynn; Johnson, Michael E.; Meacham, Joseph E.; Knight, Mark A.; Thien, Michael G.; Davis, Jim J.; Onishi, Yasuo

    2007-10-26

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment and Immobilization Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. Piping, pumps, and mixing vessels have been selected to transport, store, and mix the high-level waste slurries in the WTP. This report addresses the analyses performed by the Rheology Working Group (RWG) and Risk Assessment Working Group composed of Pacific Northwest National Laboratory (PNNL), Bechtel National Inc. (BNI), CH2M HILL, DOE Office of River Protection (ORP) and Yasuo Onishi Consulting, LLC staff on data obtained from documented Hanford waste analyses to determine a best-estimate of the rheology of the Hanford tank wastes and their settling behavior. The actual testing activities were performed and reported separately in referenced documentation. Because of this, many of the required topics below do not apply and are so noted.

  12. PSA results for Hanford high level waste Tank 101-SY

    SciTech Connect

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W.; Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J.

    1993-10-01

    Los Alamos National Laboratory has performed a comprehensive probabilistic safety assessment (PSA) that includes consideration of external events for the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases (``burps``) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is underway in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. This PSA for Tank 101-SY, which did not consider the pump experiment or future tank-remediation activities, involved three distinct tasks. First, the accident sequence analysis identified and quantified those potential accidents whose consequences result in tank material release. Second, characteristics and release paths for the airborne and liquid radioactive source terms were determined. Finally, the consequences, primarily onsite and offsite potential health effects resulting from radionuclide release, were estimated, and overall risk curves were constructed. An overview of each of these tasks and a summary of the overall results of the analysis are presented in the following sections.

  13. Technetium Chemistry in High-Level Waste

    SciTech Connect

    Hess, Nancy J.

    2006-06-01

    Tc contamination is found within the DOE complex at those sites whose mission involved extraction of plutonium from irradiated uranium fuel or isotopic enrichment of uranium. At the Hanford Site, chemical separations and extraction processes generated large amounts of high level and transuranic wastes that are currently stored in underground tanks. The waste from these extraction processes is currently stored in underground High Level Waste (HLW) tanks. However, the chemistry of the HLW in any given tank is greatly complicated by repeated efforts to reduce volume and recover isotopes. These processes ultimately resulted in mixing of waste streams from different processes. As a result, the chemistry and the fate of Tc in HLW tanks are not well understood. This lack of understanding has been made evident in the failed efforts to leach Tc from sludge and to remove Tc from supernatants prior to immobilization. Although recent interest in Tc chemistry has shifted from pretreatment chemistry to waste residuals, both needs are served by a fundamental understanding of Tc chemistry.

  14. Management of data quality of high level waste characterization

    SciTech Connect

    Winters, W.I., Westinghouse Hanford

    1996-06-12

    Over the past 10 years, the Hanford Site has been transitioning from nuclear materials production to Site cleanup operations. High-level waste characterization at the Hanford Site provides data to support present waste processing operations, tank safety programs, and future waste disposal programs. Quality elements in the high-level waste characterization program will be presented by following a sample through the data quality objective, sampling, laboratory analysis and data review process. Transition from production to cleanup has resulted in changes in quality systems and program; the changes, as well as other issues in these quality programs, will be described. Laboratory assessment through quality control and performance evaluation programs will be described, and data assessments in the laboratory and final reporting in the tank characterization reports will be discussed.

  15. High-level-waste immobilization

    SciTech Connect

    Crandall, J L

    1982-01-01

    Analysis of risks, environmental effects, process feasibility, and costs for disposal of immobilized high-level wastes in geologic repositories indicates that the disposal system safety has a low sensitivity to the choice of the waste disposal form.

  16. Blue Ribbon Commission Tour of Hanford Site

    ScienceCinema

    Paul Saueressig

    2010-09-01

    The Blue Ribbon Commission on America's Nuclear Future toured the Department of Energy's Hanford Site on July 14, 2010. Commission members, invited guests, and members of the public visited facilities that store high-level, radioactive waste.

  17. High level intelligent control of telerobotics systems

    NASA Technical Reports Server (NTRS)

    Mckee, James

    1988-01-01

    A high level robot command language is proposed for the autonomous mode of an advanced telerobotics system and a predictive display mechanism for the teleoperational model. It is believed that any such system will involve some mixture of these two modes, since, although artificial intelligence can facilitate significant autonomy, a system that can resort to teleoperation will always have the advantage. The high level command language will allow humans to give the robot instructions in a very natural manner. The robot will then analyze these instructions to infer meaning so that is can translate the task into lower level executable primitives. If, however, the robot is unable to perform the task autonomously, it will switch to the teleoperational mode. The time delay between control movement and actual robot movement has always been a problem in teleoperations. The remote operator may not actually see (via a monitor) the results of high actions for several seconds. A computer generated predictive display system is proposed whereby the operator can see a real-time model of the robot's environment and the delayed video picture on the monitor at the same time.

  18. High-Level Radioactive Waste.

    ERIC Educational Resources Information Center

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  19. Hanford site waste tank characterization

    SciTech Connect

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order.

  20. Hanford wells

    SciTech Connect

    McGhan, V.L.; Mitchell, P.J.; Argo, R.S.

    1985-02-01

    The report is comprised of a list of wells located on or near the Hanford Site. Information on location, construction and completion dates has been updated on wells existing from the days before construction of the Hanford Works to the present. 4 refs. (ACR)

  1. The CMS high level trigger

    NASA Astrophysics Data System (ADS)

    Gori, Valentina

    2014-05-01

    The CMS experiment has been designed with a 2-level trigger system: the Level 1 Trigger, implemented on custom-designed electronics, and the High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a tradeoff between the complexity of the algorithms running on the available computing power, the sustainable output rate, and the selection efficiency. Here we will present the performance of the main triggers used during the 2012 data taking, ranging from simpler single-object selections to more complex algorithms combining different objects, and applying analysis-level reconstruction and selection. We will discuss the optimisation of the triggers and the specific techniques to cope with the increasing LHC pile-up, reducing its impact on the physics performance.

  2. The CMS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Trocino, Daniele

    2014-06-01

    The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger, implemented in custom-designed electronics, and the High-Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a tradeoff between the complexity of the algorithms running with the available computing power, the sustainable output rate, and the selection efficiency. We present the performance of the main triggers used during the 2012 data taking, ranging from simple single-object selections to more complex algorithms combining different objects, and applying analysis-level reconstruction and selection. We discuss the optimisation of the trigger and the specific techniques to cope with the increasing LHC pile-up, reducing its impact on the physics performance.

  3. Precipitation of nitrate-cancrinite in Hanford Tank Sludge.

    PubMed

    Buck, E C; McNamara, B K

    2004-08-15

    The chemistry of underground storage tanks containing high-level waste at the Hanford Site in Washington State is an area of continued research interest. Thermodynamic models have predicted the formation of analcime and clinoptilolite in Hanford tanks, rather than cancrinite; however, these predictions were based on carbonate-cancrinite. We report the first observation of a nitrate-cancrinite [possibly Na8(K,Cs)(AlSiO4)6(NO3)2 x nH2O] extracted from a Hanford tank 241-AP-101 sample that was evaporated to 6, 8, and 10 M NaOH concentrations. The nitrate-cancrinite phase formed spherical aggregates (4 microm in diameter) that consisted of platy hexagonal crystals (approximately 0.2 microm thick). Cesium-137 was concentrated in these aluminosilicate structures. These phases possessed a morphology identical to that of nitrate-cancrinite synthesized using simulant tests of nonradioactive tank waste, supporting the contention that it is possible to develop nonradioactive artificial sludges. This investigation points to the continued importance of understanding the solubility of NO3-cancrinite and related phases. Knowledge of the detailed structure of actual phases in the tank waste helps with thermodynamic modeling of tank conditions and waste processing. PMID:15382874

  4. Multipurpose optimization models for high level waste vitrification

    SciTech Connect

    Hoza, M.

    1994-08-01

    Optimal Waste Loading (OWL) models have been developed as multipurpose tools for high-level waste studies for the Tank Waste Remediation Program at Hanford. Using nonlinear programming techniques, these models maximize the waste loading of the vitrified waste and optimize the glass formers composition such that the glass produced has the appropriate properties within the melter, and the resultant vitrified waste form meets the requirements for disposal. The OWL model can be used for a single waste stream or for blended streams. The models can determine optimal continuous blends or optimal discrete blends of a number of different wastes. The OWL models have been used to identify the most restrictive constraints, to evaluate prospective waste pretreatment methods, to formulate and evaluate blending strategies, and to determine the impacts of variability in the wastes. The OWL models will be used to aid in the design of frits and the maximize the waste in the glass for High-Level Waste (HLW) vitrification.

  5. Water washes and caustic leaches of sludge from Hanford Tank S-101 and water washes of sludge from Hanford Tank C-103

    SciTech Connect

    Hunt, R.D.; Collins, J.L.; Chase, C.W.

    1998-07-01

    In 1993, the Department of Energy (DOE) selected the enhanced sludge washing (ESW) process as the baseline for pretreatment of Hanford tank sludges. The ESW process uses a series of water washes and caustic leaches to separate nonradioactive components such as aluminum, chromium, and phosphate from the high-level waste sludges. If the ESW process is successful, the volume of immobilized high-level waste will be significantly reduced. The tests on the sludge from Hanford Tank S-101 focused on the effects of process variables such as sodium hydroxide concentration (1 and 3 M), temperature (70 and 95 C), and leaching time (5, 24, 72, and 168 h) on the efficacy of the ESW process with realistic liquid-to-solid ratios. Another goal of this study was to evaluate the effectiveness of water washes on a sludge sample from hanford Tank C-103. The final objective of this study was to test potential process control monitors during the water washes and caustic leaches with actual sludge. Both {sup 137}Cs activity and conductance were measured for each of the water washes and caustic leaches. Experimental procedures, a discussion of results, conclusions and recommendations are included in this report.

  6. Hanford tanks initiative plan

    SciTech Connect

    McKinney, K.E.

    1997-07-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy`s Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System`s tank waste retrieval Program.

  7. A comparison of high-level waste form characteristics

    SciTech Connect

    Salmon, R.; Notz, K.J.

    1991-01-01

    There are currently about 1055 million curies of high-level waste with a thermal output of about 2950 kilowatts (KW) at four sites in the United States: West Valley Demonstration Project (WVDP), Savannah River Site (SRS), Hanford Site (HANF), and Idaho National Engineering Laboratory (INEL). These quantities are expected to increase to about 1200 million curies and 3570 kw by the end of year 2020. Under the Nuclear Waste Policy Act, this high-level waste must ultimately be disposed of in a geologic repository. Accordingly, canisters of high-level waste immobilized in borosilicate glass or glass-ceramic mixtures are to be produced at the four sites and stored there until a repository becomes available. Data on the estimated production schedules and on the physical, chemical, and radiological characteristics of the canisters of immobilized high-level waste have been collected in OCRWM's Waste Characteristics Data Base, including recent updates an revisions. Comparisons of some of these data for the four sites are presented in this report. 14 refs., 3 tabs.

  8. FINAL REPORT. SETTLING OF SPINEL IN A HIGH-LEVEL WASTE GLASS MELTER

    EPA Science Inventory

    The research on spinel settling in the high-level waste (HLW) glass melter was conducted to assist HLW retrieval, glass formulation, feed preparation, and melter design and operation for minimum-risk and minimum-cost vitrification of HLW at Hanford and other DOE sites. The main r...

  9. PROGRESS REPORT. MECHANISMS AND KINETICS OF ORGANIC AGING IN HIGH-LEVEL WASTE

    EPA Science Inventory

    The objective is to develop predictive models of organic degradation in high-level wastes (HLW). We make this information available to facility operators on the Hanford Site to support decision-making processes regarding safety, retrieval, and treatment issues. Emphasis is placed...

  10. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    SciTech Connect

    Burgard, K.C.

    1998-06-02

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  11. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    SciTech Connect

    Burgard, K.C.

    1998-04-09

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  12. MECHANISMS AND KINETICS OF ORGANIC AGING IN HIGH-LEVEL NUCLEAR WASTES

    EPA Science Inventory

    Highly radioactive wastes stored at Hanford and Savannah River DOE sites have unresolved questions relating to safety of the stored waste, as well as needs for safe, effective, and efficient waste processing to minimize the volume of high-level waste (HLW) streams for disposal. ...

  13. MICROSTRUCTURAL PROPERTIES OF HIGH-LEVEL WASTE CONCENTRATES AND GELS WITH RAMAN AND INFRARED SPECTROSCOPIES

    EPA Science Inventory

    Nearly half of the high level radioactive waste stored at Hanford is composed of highly alkaline concentrates referred to as either salt cakes or Double-Shell Slurry (DSS), depending on their compositions and processing histories. The major components of these concentrates are wa...

  14. Optimizing High Level Waste Disposal

    SciTech Connect

    Dirk Gombert

    2005-09-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  15. Partition Coefficients of Selected Compounds Using Ion Exchange Separation of Cesium From High Level Waste

    SciTech Connect

    Toth, James J.; Blanchard, David L.; Arm, Stuart T.; Urie, Michael W.

    2004-04-24

    The removal of cesium radioisotope (137Cs) from the High Level Waste stored in underground storage tanks at the Hanford site is a formidable chemical separations challenge for the Waste Treatment Plant. An eluatable organic-based ion exchange resin was selected as the baseline technology (1). The baseline technology design employs a proprietary macrocyclic weak-acid ion exchange resin to adsorb the cesium (137Cs) during the process loading cycle in a fixed bed column design. Following loading, the cesium is eluted from the resin using a nitric acid eluant. Previous work provided limited understanding of the performance of the resin, processed with actual wastes, and under multiple load and elute conditions, which are required for the ion exchange technology to be underpinned sufficiently for resolution of all process-related design issues before flowsheet and construction drawings can be released. By performing multiple ion exchange column tests with waste feeds, and measuring the chemical and radionuclide compositions of the waste feeds, column effluents and column eluants, ion exchange stream composition information can be provided for supporting resolution of selected design issues.

  16. Final report on cermet high-level waste forms

    SciTech Connect

    Kobisk, E.H.; Quinby, T.C.; Aaron, W.S.

    1981-08-01

    Cermets are being developed as an alternate method for the fixation of defense and commercial high level radioactive waste in a terminal disposal form. Following initial feasibility assessments of this waste form, consisting of ceramic particles dispersed in an iron-nickel base alloy, significantly improved processing methods were developed. The characterization of cermets has continued through property determinations on samples prepared by various methods from a variety of simulated and actual high-level wastes. This report describes the status of development of the cermet waste form as it has evolved since 1977. 6 tables, 18 figures.

  17. Hanford wells

    SciTech Connect

    McGhan, V.L.

    1989-06-01

    The Site Characterization and Assessment Section of the Geosciences Department at Pacific Northwest Laboratory (PNL) has compiled a list of wells located on or near the Hanford Site. Information has been updated on wells existing from the days before construction of the Hanford Works to the present. This work was funded by the US Department of Energy (DOE). The list of wells will be used by DOE contractors who need condensed, tabular information on well location, construction, and completion dates. This report does not include data on lithologic logs and ground-water contamination. Moreover, the completeness of this list is limited because of new well construction and existing well modifications, which are continually under way. Despite these limitations, this list represents the most complete description possible of data pertaining to wells on or adjacent to the Hanford Site. 7 refs., 1 fig., 2 tabs.

  18. Hanford Dose Overview Program: standardized methods and data for Hanford environmental dose calculations. Rev. 1

    SciTech Connect

    McCormack, W.D.; Ramsdell, J.V.; Napier, B.A.

    1984-05-01

    This document serves as a guide to Hanford contractors for obtaining or performing Hanford-related environmental dose calculations. Because environmental dose estimation techniques are state-of-the-art and are continually evolving, the data and standard methods presented herein will require periodic revision. This document is scheduled to be updated annually, but actual changes to the program will be made more frequently if required. For this reason, PNL's Occupational and Environmental Protection Department should be contacted before any Hanford-related environmental dose calculation is performed. This revision of the Hanford Dose Overview Program Report primarily reflects changes made to the data and models used in calculating atmospheric dispersion of airborne effluents at Hanford. The modified data and models are described in detail. In addition, discussions of dose calculation methods and the review of calculation results have been expanded to provide more explicit guidance to the Hanford contractors. 19 references, 30 tables.

  19. Slurry growth and gas retention in synthetic Hanford waste

    SciTech Connect

    Bryan, S.A.; Pederson, L.R.; Scheele, R.D.

    1992-09-01

    This work seeks to establish chemical and physical processes responsible for the generation and retention of gases within waste from a particular high-level waste tank on the Hanford Site, Tank 101-SY, through the use of synthetic wastes on a laboratory scale. The goal of these activities is to support the development of mitigation/remediation strategies for Tank 101-SY. Laboratory studies of aged synthetic waste have shown that gas generation occurs thermally at a significant level at current tank temperatures. Gas compositions include the same gases produced in actual tank waste, primarily N{sub 2}, N{sub 2}O, and H{sub 2}. Gas stoichiometries have been shown to be greatly influenced by several organic and inorganic constituents within the synthetic waste. Retention of gases in the synthetic waste is in the form of bubble attachment to solid particles.

  20. Slurry growth and gas retention in synthetic Hanford waste

    SciTech Connect

    Bryan, S.A.; Pederson, L.R.; Scheele, R.D.

    1992-09-01

    This work seeks to establish chemical and physical processes responsible for the generation and retention of gases within waste from a particular high-level waste tank on the Hanford Site, Tank 101-SY, through the use of synthetic wastes on a laboratory scale. The goal of these activities is to support the development of mitigation/remediation strategies for Tank 101-SY. Laboratory studies of aged synthetic waste have shown that gas generation occurs thermally at a significant level at current tank temperatures. Gas compositions include the same gases produced in actual tank waste, primarily N[sub 2], N[sub 2]O, and H[sub 2]. Gas stoichiometries have been shown to be greatly influenced by several organic and inorganic constituents within the synthetic waste. Retention of gases in the synthetic waste is in the form of bubble attachment to solid particles.

  1. Identification of potential transuranic waste tanks at the Hanford Site

    SciTech Connect

    Colburn, R.P.

    1995-05-05

    The purpose of this document is to identify potential transuranic (TRU) material among the Hanford Site tank wastes for possible disposal at the Waste Isolation Pilot Plant (WIPP) as an alternative to disposal in the high-level waste (HLW) repository. Identification of such material is the initial task in a trade study suggested in WHC-EP-0786, Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The scope of this document is limited to the identification of those tanks that might be segregated from the HLW for disposal as TRU, and the bases for that selection. It is assumed that the tank waste will be washed to remove soluble inert material for disposal as low-level waste (LLW), and the washed residual solids will be vitrified for disposal. The actual recommendation of a disposal strategy for these materials will require a detailed cost/benefit analysis and is beyond the scope of this document.

  2. Boehmite Actual Waste Dissolutions Studies

    SciTech Connect

    Snow, Lanee A.; Lumetta, Gregg J.; Fiskum, Sandra K.; Peterson, Reid A.

    2008-07-15

    The U.S. Department of Energy plans to vitrify approximately 60,000 metric tons of high-level waste (HLW) sludge from underground storage tanks at the Hanford Nuclear Reservation. To reduce the volume of HLW requiring treatment, a goal has been set to remove a significant quantity of the aluminum, which comprises nearly 70 percent of the sludge. Aluminum is found in the form of gibbsite, sodium aluminate and boehmite. Gibbsite and sodium aluminate can be easily dissolved by washing the waste stream with caustic. Boehmite, which comprises nearly half of the total aluminum, is more resistant to caustic dissolution and requires higher treatment temperatures and hydroxide concentrations. Samples were taken from four Hanford tanks and homogenized in order to give a sample that is representative of REDOX (Reduction Oxidation process for Pu recovery) sludge solids. Bench scale testing was performed on the homogenized waste to study the dissolution of boehmite. Dissolution was studied at three different hydroxide concentrations, with each concentration being run at three different temperatures. Samples were taken periodically over the 170 hour runs in order to determine leaching kinetics. Results of the dissolution studies and implications for the proposed processing of these wastes will be discussed.

  3. 4.5 Meter high level waste canister study

    SciTech Connect

    Calmus, R. B.

    1997-10-01

    The Tank Waste Remediation System (TWRS) Storage and Disposal Project has established the Immobilized High-Level Waste (IBLW) Storage Sub-Project to provide the capability to store Phase I and II BLW products generated by private vendors. A design/construction project, Project W-464, was established under the Sub-Project to provide the Phase I capability. Project W-464 will retrofit the Hanford Site Canister Storage Building (CSB) to accommodate the Phase I I-ILW products. Project W-464 conceptual design is currently being performed to interim store 3.0 m-long BLW stainless steel canisters with a 0.61 in diameter, DOE is considering using a 4.5 in canister of the same diameter to reduce permanent disposal costs. This study was performed to assess the impact of replacing the 3.0 in canister with the 4.5 in canister. The summary cost and schedule impacts are described.

  4. Hanford recycling

    SciTech Connect

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  5. High level waste interim storge architecture selection - decision report

    SciTech Connect

    Calmus, R.B.

    1996-09-27

    The U.S. Department of Energy (DOE) has embarked upon a course to acquire Hanford Site tank waste treatment and immobilization services using privatized facilities (RL 1996a). This plan contains a two-phased approach. Phase I is a proof-of-principle/connnercial demonstration- scale effort and Phase II is a fiill-scale production effort. In accordance with the planned approach, interim storage and disposal of various products from privatized facilities are to be DOE fumished. The high-level waste (BLW) interim storage options, or alternative architectures, were identified and evaluated to provide the framework from which to select the most viable method of Phase I BLW interim storage (Calmus 1996). This evaluation, hereafter referred to as the Alternative Architecture Evaluation, was performed to established performance and risk criteria (technical merit, cost, schedule, etc.). Based on evaluation results, preliminary architectures and path forward reconunendations were provided for consideration in the architecture decision- maldng process. The decision-making process used for selection of a Phase I solidified BLW interim storage architecture was conducted in accordance with an approved Decision Plan (see the attachment). This decision process was based on TSEP-07,Decision Management Procedure (WHC 1995). The established decision process entailed a Decision Board, consisting of Westinghouse Hanford Company (VY`HC) management staff, and included appointment of a VTHC Decision Maker. The Alternative Architecture Evaluation results and preliminary recommendations were presented to the Decision Board members for their consideration in the decision-making process. The Alternative Architecture Evaluation was prepared and issued before issuance of @C-IP- 123 1, Alternatives Generation and Analysis Procedure (WI-IC 1996a), but was deemed by the Board to fully meet the intent of WHC-IP-1231. The Decision Board members concurred with the bulk of the Alternative Architecture

  6. Evaluation of high-level waste vitrification feed preparation chemistry for an NCAW simulant, FY 1994: Alternate flowsheets (DRAFT)

    SciTech Connect

    Smith, H.D.; Merz, M.D.; Wiemers, K.D.; Smith, G.L.

    1996-02-01

    High-level radioactive waste stored in tanks at the U.S. Department of Energy`s (DOE`s) Hanford Site will be pretreated to concentrate radioactive constituents and fed to the vitrification plant A flowsheet for feed preparation within the vitrification plant (based on the Hanford Waste Vitrification Plant (HWVP) design) called for HCOOH addition during the feed preparation step to adjust rheology and glass redox conditions. However, the potential for generating H{sub 2} and NH{sub 3} during treatment of high-level waste (HLW) with HCOOH was identified at Pacific Northwest Laboratory (PNL). Studies at the University of Georgia, under contract with Savannah River Technology Center (SRTC) and PNL, have verified the catalytic role of noble metals (Pd, Rh, Ru), present in the waste, in the generation of H{sub 2} and NH{sub 3}. Both laboratory-scale and pilot-scale studies at SRTC have documented the H{sub 2} and NH{sub 3} generation phenomenal Because H{sub 2} and NH{sub 3} may create hazardous conditions in the vessel vapor space and offgas system of a vitrification plant, reducing the H{sub 2} generation rate and the NH{sub 3} generation to the lowest possible levels consistent with desired melter feed characteristics is important. The Fiscal Year 1993 and 1994 studies were conducted with simulated (non-radioactive), pre-treated neutralized current acid waste (NCAW). Neutralized current acid waste is a high-level waste originating from the plutonium/uranium extraction (PUREX) plant that has been partially denitrated with sugar, neutralized with NaOH, and is presently stored in double-shell tanks. The non-radioactive simulant used for the present study includes all of the trace components found in the waste, or substitutes a chemically similar element for radioactive or very toxic species. The composition and simulant preparation steps were chosen to best simulate the chemical processing characteristics of the actual waste.

  7. Effects of aqueous-soluble organic compounds on the removal of selected radionuclides from high-level waste part I: Distribution of Sr, Cs, and Tc onto 18 absorbers from an irradiated, organic-containing leachate simulant for Hanford Tank 101-SY

    SciTech Connect

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1995-01-01

    Many of the radioactive waste storage tanks at U.S. Department of Energy facilities contain organic compounds that have been degraded by radiolysis and chemical reactions. In this investigation, we measured the effect of some aqueous-soluble organic compounds on the sorption of strontium, cesium, and technetium onto 18 absorbers that offer high sorption of strontium from organic-free solutions. For our test solution we used a leachate from a simulated slurry for Hanford Tank 101-SY that initially contained ethylenediaminetetraacetic acid (EDTA) and then was gamma-irradiated to 34 Mrads. We measured distribution coefficients (Kds) for each element/absorber combination for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. To facilitate comparisons, we include Kd values for these same element/absorber combinations from three organic-free simulant solutions. The Kd values for strontium sorption from the simulant that contained the degraded organics usually decreased by large factors, whereas the Kd values for cesium and technetium sorption were relatively unaffected.

  8. Effects of soluble organic complexants and their degradation products on the removal of selected radionuclides from high-level waste. Part II: Distributions of Sr, Cs, Tc, and Am onto 32 absorbers from four variations of Hanford tank 101-SY simulant solution

    SciTech Connect

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1995-04-01

    Many of the radioactive waste storage tanks at U.S. Department of Energy facilities contain organic compounds that have been degraded by radiolysis and chemical reactions during decades of storage. In this second part of our three-part investigation of the effects of soluble organic complexants and their degradation products, we measured the sorption of strontium, cesium, technetium, and americium onto 32 absorbers that offer high sorption of these elements in the absence of organic complexants. The four solutions tested were (1) a simulant for a 3:1 dilution of Hanford Tank 101-SY contents that initially contained ethylenediaminetetraacetic acid (EDTA), (2) this simulant after gamma-irradiation to 34 Mrads, (3) the unirradiated simulant after treatment with a hydrothermal organic-destruction process, and (4) the irradiated simulant after hydrothermal processing. For each of 512 element/absorber/solution combinations, we measured distribution coefficients (Kds) twice for each period for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of our 3,072 measured Kd values, the sorption of strontium and americium is significantly decreased by the organic components of the simulant solutions, whereas the sorption of cesium and technetium appears unaffected by the organic components of the simulant solutions.

  9. Fluor Hanford Project Focused Progress at Hanford

    SciTech Connect

    HANSON, R.D.

    2000-02-01

    Fluor Hanford is making significant progress in accelerating cleanup at the Hanford site. This progress consistently aligns with a new strategic vision established by the U.S. Department of Energy's Richland Operations Office (RL).

  10. Women and the Hanford Site

    NASA Astrophysics Data System (ADS)

    Gerber, Michele

    2014-03-01

    When we study the technical and scientific history of the Manhattan Project, women's history is sometimes left out. At Hanford, a Site whose past is rich with hard science and heavy construction, it is doubly easy to leave out women's history. After all, at the World War II Hanford Engineer Works - the earliest name for the Hanford Site - only nine percent of the employees were women. None of them were involved in construction, and only one woman was actually involved in the physics and operations of a major facility - Dr. Leona Woods Marshall. She was a physicist present at the startup of B-Reactor, the world's first full-scale nuclear reactor - now a National Historic Landmark. Because her presence was so unique, a special bathroom had to be built for her in B-Reactor. At World War II Hanford, only two women were listed among the nearly 200 members of the top supervisory staff of the prime contractor, and only one regularly attended the staff meetings of the Site commander, Colonel Franklin Matthias. Overall, women comprised less than one percent of the managerial and supervisory staff of the Hanford Engineer Works, most of them were in nursing or on the Recreation Office staff. Almost all of the professional women at Hanford were nurses, and most of the other women of the Hanford Engineer Works were secretaries, clerks, food-service workers, laboratory technicians, messengers, barracks workers, and other support service employees. The one World War II recruiting film made to attract women workers to the Site, that has survived in Site archives, is entitled ``A Day in the Life of a Typical Hanford Girl.'' These historical facts are not mentioned to criticize the past - for it is never wise to apply the standards of one era to another. The Hanford Engineer Works was a 1940s organization, and it functioned by the standards of the 1940s. Just as we cannot criticize the use of asbestos in constructing Hanford (although we may wish they hadn't used so much of it), we

  11. Permitting plan for the high-level waste interim storage

    SciTech Connect

    Deffenbaugh, M.L.

    1997-04-23

    This document addresses the environmental permitting requirements for the transportation and interim storage of solidified high-level waste (HLW) produced during Phase 1 of the Hanford Site privatization effort. Solidified HLW consists of canisters containing vitrified HLW (glass) and containers that hold cesium separated during low-level waste pretreatment. The glass canisters and cesium containers will be transported to the Canister Storage Building (CSB) in a U.S. Department of Energy (DOE)-provided transportation cask via diesel-powered tractor trailer. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage of Tank Waste Remediation Systems (TWRS) immobilized HLW (IHLW) and other canistered high-level waste forms; and (2) interim storage and disposal of TWRS immobilized low-activity tank waste (ILAW). An environmental requirements checklist and narrative was developed to identify the permitting path forward for the HLW interim storage (HLWIS) project (See Appendix B). This permitting plan will follow the permitting logic developed in that checklist.

  12. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    SciTech Connect

    Williams, M

    2008-05-09

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  13. Analytical characterization of high-level mixed wastes using multiple sample preparation treatments

    SciTech Connect

    King, A.G.; Baldwin, D.L.; Urie, M.W.; McKinley, S.G.

    1994-09-01

    The Analytical Chemistry Laboratory at the Pacific Northwest Laboratory in Richland, Washington, is actively involved in performing analytical characterization of high-level mixed waste from Hanford`s single shell and double shell tank characterization programs. A full suite of analyses is typically performed on homogenized tank core samples. These analytical techniques include inductively-coupled plasma-atomic emission spectroscopy, total organic carbon methods and radiochemistry methods, as well as many others, all requiring some type of remote sample-preparation treatment to solubilize the tank sludge material for analysis. Most of these analytical methods typically use a single sample-preparation treatment, inherently providing elemental information only. To better understand and interpret tank chemistry and assist in identifying chemical compounds, selected analytical methods are performed using multiple sample-preparation treatments. The sample preparation treatments used at Pacific Northwest Laboratory for this work with high-level mixed waste include caustic fusion, acid digestion, and water leach. The type of information available by comparing results from different sample-prep treatments includes evidence for the presence of refractory compounds, acid-soluble compounds, or water-soluble compounds. Problems unique to the analysis of Hanford tank wastes are discussed. Selected results from the Hanford single shell ferrocyanide tank, 241-C-109, are presented, and the resulting conclusions are discussed.

  14. Composite quarterly technical report long-term high-level-waste technology, October-December 1981

    SciTech Connect

    Cornman, W.R.

    1982-06-01

    This document summarizes work performed at participating sites on the immobilization of high-level wastes from the chemical reprocessing of reactor fuels. The plan is to develop waste form alternatives for each of the three DOE sites (SRP, ICPP, and Hanford). Progress is reported in the following areas: waste preparation; fixation in glass, concrete, tailored ceramics, and coated particles; process and equipment development; and final handling. 12 figures, 19 tables. (DLC)

  15. Impact of transporting defense high-level waste to a geologic repository

    SciTech Connect

    Joy, D.S.; Shappert, L.B.; Boyle, J.W.

    1984-08-01

    This transportation study assumes that defense high-level waste is stored in three locations (the Savannah River, Hanford, and Idaho Falls plants) and may be disposed of in (1) a commercial repository or (2) a defense-only repository, either of which could be located at one of the five candidate sites; also documented is a preliminary analysis of the costs and risks of transporting defense high-level waste from the three storage sites to the five potential candidate repository sites. 17 references, 4 figures, 27 tables.

  16. Hanford Site Environmental Surveillance Data Report for Calendar Year 2000

    SciTech Connect

    Bisping, Lynn E.

    2001-09-27

    This data report contains the actual raw data used to create tables and summaries in the Hanford Site Environmental Report 2000. This report also includes data from special sampling studies performed in 2000.

  17. Pollution Prevention Opportunity Assessment benchmarking: Recommendations for Hanford`s environmental restoration mission

    SciTech Connect

    Engel, J.A.

    1994-05-01

    Most people agree that Pollution Prevention Opportunity Assessments (P2OAs) are a critical first step in any pollution prevention activity. P2OAs are used to identify waste streams, examine the processes which generate waste, and discover ways to reduce this waste. Formerly called Process Waste Assessments (PWAs), P2OAs were originally developed by the Environmental Protection Agency for use by companies to examine their individual manufacturing processes, seeking process improvements which would reduce hazardous and material waste while saving money. The current status of the Hanford site makes traditional P2OAs/PWAs difficult. Hanford covers 1,450 square kilometers (560 square miles) of land with almost 200 hundred on and off-site waste generators and thousands of waste streams. Additionally, Hanford`s current mission of environmental restoration (ER) causes operations to be discontinuous and project oriented, unlike a production facility. Clearly, Hanford`s P2OA process must be able to handle and prioritize the number and uniqueness of D&D/ER waste streams in a manageable fashion. In order to determine an appropriate P2OA process, the Pollution Prevention group at Westinghouse Hanford Company benchmarked P2OA programs at other Department of Energy sites, reviewed guidelines from the Environmental Protection Agency, as well as examined a few facilities at Hanford already performing P2OAs. This process revealed that, although there has been significant discussion of the problem, very few organizations are actually conducting P2OAs on D&D/ER work. This paper presents the comparisons of the different programs that were found, details on the situation at Hanford, and makes recommendations for an efficient P2OA process for Hanford`s ER mission. These recommendations include: complete a P2OA process on the planned activity itself, keep the assessments simple, seek to overcome recycling barriers, and find a consistent way to show progress.

  18. Design and Testing of a Solid-Liquid Interface Monitor for High-Level Waste Tanks

    SciTech Connect

    McDaniel, D.; Awwad, A.; Roelant, D.; Srivastava, R.

    2008-07-01

    A high-level waste (HLW) monitor has been designed, fabricated and tested at full-scale for deployment inside a Hanford tank. The Solid-Liquid Interface Monitor (SLIM) integrates a commercial sonar system with a mechanical deployment system for deploying into an underground waste tank. The system has undergone several design modifications based upon changing requirements at Hanford. We will present the various designs of the monitor from first to last and will present performance data from the various prototype systems. We will also present modeling of stresses in the enclosure under 85 mph wind loading. The system must be able to function at winds up to 15 mph and must withstand a maximum loading of 85 mph. There will be several examples presented of engineering tradeoffs made as FIU analyzed new requirements and modified the design to accommodate. We will present our current plans for installing into the Cold Test Facility at Hanford and into a double-shelled tank at Hanford. Finally, we will present our vision for how this technology can be used at Hanford and Savannah River Site to improve the filling and emptying of high-level waste tanks. In conclusion: 1. The manually operated first-generation SLIM is a viable option on tanks where personnel are allowed to work on top of the tank. 2. The remote controlled second-generation SLIM can be utilized on tanks where personnel access is limited. 3. The totally enclosed fourth-generation SLIM, when the design is finalized, can be used when the possibility exists for wind dispersion of any HLW that maybe on the system. 4. The profiling sonar can be used effectively for real-time monitoring of the solid-liquid interface over a large area. (authors)

  19. Spent nuclear fuel project high-level information management plan

    SciTech Connect

    Main, G.C.

    1996-09-13

    This document presents the results of the Spent Nuclear Fuel Project (SNFP) Information Management Planning Project (IMPP), a short-term project that identified information management (IM) issues and opportunities within the SNFP and outlined a high-level plan to address them. This high-level plan for the SNMFP IM focuses on specific examples from within the SNFP. The plan`s recommendations can be characterized in several ways. Some recommendations address specific challenges that the SNFP faces. Others form the basis for making smooth transitions in several important IM areas. Still others identify areas where further study and planning are indicated. The team`s knowledge of developments in the IM industry and at the Hanford Site were crucial in deciding where to recommend that the SNFP act and where they should wait for Site plans to be made. Because of the fast pace of the SNFP and demands on SNFP staff, input and interaction were primarily between the IMPP team and members of the SNFP Information Management Steering Committee (IMSC). Key input to the IMPP came from a workshop where IMSC members and their delegates developed a set of draft IM principles. These principles, described in Section 2, became the foundation for the recommendations found in the transition plan outlined in Section 5. Availability of SNFP staff was limited, so project documents were used as a basis for much of the work. The team, realizing that the status of the project and the environment are continually changing, tried to keep abreast of major developments since those documents were generated. To the extent possible, the information contained in this document is current as of the end of fiscal year (FY) 1995. Programs and organizations on the Hanford Site as a whole are trying to maximize their return on IM investments. They are coordinating IM activities and trying to leverage existing capabilities. However, the SNFP cannot just rely on Sitewide activities to meet its IM requirements

  20. A Software Architecture for High Level Applications

    SciTech Connect

    Shen,G.

    2009-05-04

    A modular software platform for high level applications is under development at the National Synchrotron Light Source II project. This platform is based on client-server architecture, and the components of high level applications on this platform will be modular and distributed, and therefore reusable. An online model server is indispensable for model based control. Different accelerator facilities have different requirements for the online simulation. To supply various accelerator simulators, a set of narrow and general application programming interfaces is developed based on Tracy-3 and Elegant. This paper describes the system architecture for the modular high level applications, the design of narrow and general application programming interface for an online model server, and the prototype of online model server.

  1. High-level waste processing and disposal

    NASA Astrophysics Data System (ADS)

    Crandall, J. L.; Drause, H.; Sombret, C.; Uematsu, K.

    The national high level waste disposal plans for France, the Federal Republic of Germany, Japan, and the United States are covered. Three conclusions are reached. The first conclusion is that an excellent technology already exists for high level waste disposal. With appropriate packaging, spent fuel seems to be an acceptable waste form. Borosilicate glass reprocessing waste forms are well understood, in production in France, and scheduled for production in the next few years in a number of other countries. For final disposal, a number of candidate geological repository sites have been identified and several demonstration sites opened. The second conclusion is that adequate financing and a legal basis for waste disposal are in place in most countries. Costs of high level waste disposal will probably and about 5 to 10% to the costs of nuclear electric power. Third conclusion is less optimistic.

  2. High-Level Application Framework for LCLS

    SciTech Connect

    Chu, P; Chevtsov, S.; Fairley, D.; Larrieu, C.; Rock, J.; Rogind, D.; White, G.; Zalazny, M.; /SLAC

    2008-04-22

    A framework for high level accelerator application software is being developed for the Linac Coherent Light Source (LCLS). The framework is based on plug-in technology developed by an open source project, Eclipse. Many existing functionalities provided by Eclipse are available to high-level applications written within this framework. The framework also contains static data storage configuration and dynamic data connectivity. Because the framework is Eclipse-based, it is highly compatible with any other Eclipse plug-ins. The entire infrastructure of the software framework will be presented. Planned applications and plug-ins based on the framework are also presented.

  3. Visual high-level regions respond to high-level stimulus content in the absence of low-level confounds.

    PubMed

    Schindler, Andreas; Bartels, Andreas

    2016-05-15

    High-level regions of the ventral stream exhibit strong category selectivity to stimuli such as faces, houses, or objects. However, recent studies suggest that at least part of this selectivity stems from low-level differences inherent to images of the different categories. For example, visual outdoor and indoor scenes as well as houses differ in spatial frequency, rectilinearity and obliqueness when compared to face or object images. Correspondingly, scene responsive para-hippocampal place area (PPA) showed strong preference to low-level properties of visual scenes also in the absence of high-level scene content. This raises the question whether all high-level responses in PPA, the fusiform face area (FFA), or the object-responsive lateral occipital compex (LOC) may actually be explained by systematic differences in low-level features. In the present study we contrasted two classes of simple stimuli consisting of ten rectangles each. While both were matched in visual low-level features only one class of rectangle arrangements gave rise to a percept compatible with a high-level 3D layout such as a scene or an object. We found that areas PPA, transverse occipital sulcus (TOS, also referred to as occipital place area, OPA), as well as FFA and LOC showed robust responses to the visual scene class compared to the low-level matched control. Our results suggest that visual category responsive regions are not purely driven by low-level visual features but also by the high-level perceptual stimulus interpretation. PMID:26975552

  4. High-level waste program integration within the DOE complex

    SciTech Connect

    Valentine, J.H.; Davis, N.R.; Malone, K.; Schaus, P.S.

    1998-03-01

    Eleven major Department of Energy (DOE) site contractors were chartered by the Assistant Secretary to use a systems engineering approach to develop and evaluate technically defensible cost savings opportunities across the complex. Known as the complex-wide Environmental Management Integration (EMI), this process evaluated all the major DOE waste streams including high level waste (HLW). Across the DOE complex, this waste stream has the highest life cycle cost and is scheduled to take until at least 2035 before all HLW is processed for disposal. Technical contract experts from the four DOE sites that manage high level waste participated in the integration analysis: Hanford, Savannah River Site (SRS), Idaho National Engineering and Environmental Laboratory (INEEL), and West Valley Demonstration Project (WVDP). In addition, subject matter experts from the Yucca Mountain Project and the Tanks Focus Area participated in the analysis. Also, departmental representatives from the US Department of Energy Headquarters (DOE-HQ) monitored the analysis and results. Workouts were held throughout the year to develop recommendations to achieve a complex-wide integrated program. From this effort, the HLW Environmental Management (EM) Team identified a set of programmatic and technical opportunities that could result in potential cost savings and avoidance in excess of $18 billion and an accelerated completion of the HLW mission by seven years. The cost savings, schedule improvements, and volume reduction are attributed to a multifaceted HLW treatment disposal strategy which involves waste pretreatment, standardized waste matrices, risk-based retrieval, early development and deployment of a shipping system for glass canisters, and reasonable, low cost tank closure.

  5. High-level radioactive wastes. Supplement 1

    SciTech Connect

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  6. PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)

    SciTech Connect

    CERTA, P.J.

    2006-02-22

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

  7. DEVELOPMENT OF A KINETIC MODEL OF BOEHMITE DISSOLUTION IN CAUSTIC SOLUTIONS APPLIED TO OPTIMIZE HANFORD WASTE PROCESSING

    SciTech Connect

    DISSELKAMP RS

    2011-01-06

    Boehmite (e.g., aluminum oxyhydroxide) is a major non-radioactive component in Hanford and Savannah River nuclear tank waste sludge. Boehmite dissolution from sludge using caustic at elevated temperatures is being planned at Hanford to minimize the mass of material disposed of as high-level waste (HLW) during operation of the Waste Treatment Plant (WTP). To more thoroughly understand the chemistry of this dissolution process, we have developed an empirical kinetic model for aluminate production due to boehmite dissolution. Application of this model to Hanford tank wastes would allow predictability and optimization of the caustic leaching of aluminum solids, potentially yielding significant improvements to overall processing time, disposal cost, and schedule. This report presents an empirical kinetic model that can be used to estimate the aluminate production from the leaching of boehmite in Hanford waste as a function of the following parameters: (1) hydroxide concentration; (2) temperature; (3) specific surface area of boehmite; (4) initial soluble aluminate plus gibbsite present in waste; (5) concentration of boehmite in the waste; and (6) (pre-fit) Arrhenius kinetic parameters. The model was fit to laboratory, non-radioactive (e.g. 'simulant boehmite') leaching results, providing best-fit values of the Arrhenius A-factor, A, and apparent activation energy, E{sub A}, of A = 5.0 x 10{sup 12} hour{sup -1} and E{sub A} = 90 kJ/mole. These parameters were then used to predict boehmite leaching behavior observed in previously reported actual waste leaching studies. Acceptable aluminate versus leaching time profiles were predicted for waste leaching data from both Hanford and Savannah River site studies.

  8. Modeling and optimization of defense high level waste removal sequencing

    NASA Astrophysics Data System (ADS)

    Paul, Pran Krishna

    has been successfully implemented with this general scheme to sequence wastes from different waste tanks for precipitate production and provide optimized sequences to ProdMod for simulating the behavior of the SRS waste complex. Parametric studies using this optimization methodology demonstrate that the devised scheme is appropriate for the real life operations of the SRS waste complex. The computational planning tool based on the coupled simulation and optimization methodology developed in this work is in current use to help planners process the SRS's 34 million gallons of high level radioactive waste efficiently and economically all the way to clean up of all the tanks. This methodology can also be directly applicable to the Hanford Site and aid in the final design and operation of its facilities to process 55 million gallons of high level radioactive waste.

  9. RADIOLYTIC HYDROGEN GENERATION INSAVANNAH RIVER SITE (SRS) HIGH LEVEL WASTETANKS COMPARISON OF SRS AND HANFORDMODELING PREDICTIONS

    SciTech Connect

    Crawford, C; Ned Bibler, N

    2009-04-15

    the waste. The difference in the two models has led to the questions of how different are the results predicted by the two models and which model predicts the more conservative (larger) G values. More conservative G values would predict higher H{sub 2} generation rates that would require higher ventilation rates in the SRS tanks. This report compares predictions based on the two models at various nitrate and nitrite concentrations in the SRS HLW tanks for both beta/gamma and for alpha radiation. It also compares predicted G values with those determined by actually measuring the H{sub 2} production from four SRS HLW tanks (Tanks 32H, 35H, 39H, and 42H). Lastly, the H{sub 2} generation rates predicted by the two models are compared for the 47 active SRS high level waste tanks using the most recent tank nitrate and nitrite concentrations and the beta/gamma and alpha heat loads for each tank. The predictions of the models for total H{sub 2} generation rates from the 47 active SRS waste were, for the most part, similar. For example, the predictions for both models applied to 25 tanks agreed within {+-}10% of each other. For the remaining 22 tanks, the SRS prediction was more conservative for 9 tanks (maximum 29% higher) and the Hanford prediction was more conservative for 13 tanks (maximum 19% higher). When comparing G values predicted by the equations presuming only alpha radiation or only beta/gamma was present the results were somewhat different. The results of predictions for alpha radiation, at the 47 current nitrate and nitrite concentrations in the SRS tanks indicated that all the SRS predictions were higher (up to 30%) than the Hanford predictions and thus more conservative. For beta/gamma radiation the predictions for both models agreed to {+-}10% for 18 of the combinations, the Hanford model predicted higher values (11 up to 17%) for 25 of the concentrations considered, and the SRS model predicted higher G values for the remaining two combinations (12 and 17

  10. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    SciTech Connect

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  11. Development of polyphase ceramics for the immobilization of high-level Defense nuclear waste

    SciTech Connect

    Morgan, P.E.D.; Harker, A.B.; Clarke, D.R.; Flintoff, J.J.; Shaw, T.M.

    1983-02-25

    The report contains two major sections: Section I - An Improved Polyphase Ceramic for High-Level Defense Nucleation Waste reports the work conducted on titanium-silica based ceramics for immobilizing Savannah River Plant waste. Section II - Formulation and Processing of Alumina Based Ceramic Nuclear Waste Forms describes the work conducted on developing a generic alumina and alumina-silica based ceramic waste form capable of immobilizing any nuclear waste with a high aluminum content. Such wastes include the Savannah River Plant wastes, Hanford neutralized purex wastes, and Hanford N-Reactor acid wastes. The design approach and process technology in the two reports demonstrate how the generic high waste loaded ceramic form can be applied to a broad range of nuclear waste compositions. The individual sections are abstracted and indexed separately.

  12. Hanford Site Development Plan

    SciTech Connect

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1993-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP`s primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides an existing and future land use plan for the Hanford Site. The HSDP is updated annually in accordance with DOE Order 4320.1B, Site Development Planning, to reflect the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans.

  13. Status Report on Phase Identification in Hanford Tank Sludges

    SciTech Connect

    BM Rapko; GJ Lumetta

    2000-12-18

    The US Department of Energy plans to vitrify Hanford's tank wastes. The vitrified wastes will be divided into low-activity and high-level fractions. There is an effort to reduce the quantity of high-activity wastes by removing nonradioactive components because of the high costs involved in treating high-level waste. Pretreatment options, such as caustic leaching, to selectively remove nonradioactive components are being investigated. The effectiveness of these proposed processes for removing nonradioactive components depends on the chemical phases in the tank sludges. This review summarizes the chemical phases identified to date in Hanford tank sludges.

  14. Hanford External Dosimetry Program

    SciTech Connect

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs.

  15. Hanford Tank Waste – What is in it? Where is it going?

    SciTech Connect

    Peterson, Reid A.; Fiskum, Sandra K.; Snow, Lanee A.; Edwards, Matthew K.; Shimskey, Rick W.

    2010-11-30

    The Waste Treatment Plant currently under construction for treatment of High Level Waste at the Hanford Site will process High Level Waste (HLW) to reduce the quantity of HLW material that must be immobilized. Recently, an extensive testing program was undertaken to characterize the composition of some of the major sources of HLW in the Hanford tank farm system. This effort has led to an increased understanding of the chemical form and the underlying dissolution chemistry for much of the waste.

  16. EAP high-level product architecture

    NASA Astrophysics Data System (ADS)

    Gudlaugsson, T. V.; Mortensen, N. H.; Sarban, R.

    2013-04-01

    EAP technology has the potential to be used in a wide range of applications. This poses the challenge to the EAP component manufacturers to develop components for a wide variety of products. Danfoss Polypower A/S is developing an EAP technology platform, which can form the basis for a variety of EAP technology products while keeping complexity under control. High level product architecture has been developed for the mechanical part of EAP transducers, as the foundation for platform development. A generic description of an EAP transducer forms the core of the high level product architecture. This description breaks down the EAP transducer into organs that perform the functions that may be present in an EAP transducer. A physical instance of an EAP transducer contains a combination of the organs needed to fulfill the task of actuator, sensor, and generation. Alternative principles for each organ allow the function of the EAP transducers to be changed, by basing the EAP transducers on a different combination of organ alternatives. A model providing an overview of the high level product architecture has been developed to support daily development and cooperation across development teams. The platform approach has resulted in the first version of an EAP technology platform, on which multiple EAP products can be based. The contents of the platform have been the result of multi-disciplinary development work at Danfoss PolyPower, as well as collaboration with potential customers and research institutions. Initial results from applying the platform on demonstrator design for potential applications are promising. The scope of the article does not include technical details.

  17. Analysis of Spent SuperLig® 644 Resin Used for Cesium Removal from Hanford Tank Wastes

    SciTech Connect

    Fiskum, Sandra K.; Blanchard, David L.; Steele, Marilyn J.; Wagner, Jerome J.

    2005-01-01

    The U. S. Department of Energy is tasked with the disposition of high-level radioactive wastes stored at the Hanford Site. The liquid waste fraction, currently stored in underground storage tanks, is to be vitrified following specific pretreatment processing, separating the waste into a relatively small-volume high-activity waste fraction (Cs-rich), and a large-volume low-activity waste (LAW) fraction (Cs-depleted). Cesium removal will be conducted using ion exchange technology at the River Protection Project-Waste Treatment Plant (RPP-WTP). The current pretreatment flowsheet includes the use of SuperLig? 644 (SL-644) for Cs removal, which is a cesium-selective, elutable, organic ion exchange resin developed by IBC Advanced Technologies, Inc., American Fork, UT. Eight process test cycles were conducted on a small-scale dual-column ion exchange system containing the SL-644 resin with Hanford tank waste (one cycle with simulant waste and seven cycles with actual Hanford tank waste). After testing, the SL-644 was removed from the columns and analyzed for most metals and radionuclides pertinent to land disposal requirements (LDR) designation. The spent resin contained significant quantities of Resource Conservation Recovery Act (RCRA)-listed metals: Ag and Cr. One of the two resin beds exceeded the transuranic waste limit (100 nCi/g alpha) for LDR. The final Cs isotopic distribution in the spent resin was weighted heavily with residual stable Cs from the initial simulant processing test.

  18. The CMS High-Level Trigger

    SciTech Connect

    Covarelli, R.

    2009-12-17

    At the startup of the LHC, the CMS data acquisition is expected to be able to sustain an event readout rate of up to 100 kHz from the Level-1 trigger. These events will be read into a large processor farm which will run the 'High-Level Trigger'(HLT) selection algorithms and will output a rate of about 150 Hz for permanent data storage. In this report HLT performances are shown for selections based on muons, electrons, photons, jets, missing transverse energy, {tau} leptons and b quarks: expected efficiencies, background rates and CPU time consumption are reported as well as relaxation criteria foreseen for a LHC startup instantaneous luminosity.

  19. The effects of high level infrasound

    SciTech Connect

    Johnson, D.L.

    1980-02-01

    This paper will attempt to survey the current knowledge on the effects of relative high levels of infrasound on humans. While this conference is concerned mainly about hearing, some discussion of other physiological effects is appropriate. Such discussion also serves to highlight a basic question, 'Is hearing the main concern of infrasound and low frequency exposure, or is there a more sensitive mechanism'. It would be comforting to know that the focal point of this conference is indeed the most important concern. Therefore, besides hearing loss and auditory threshold of infrasonic and low frequency exposure, four other effects will be provided. These are performance, respiration, annoyance, and vibration.

  20. High-level waste qualification: Managing uncertainty

    SciTech Connect

    Pulsipher, B.A.

    1993-09-01

    A vitrification facility is being developed by the U.S. Department of Energy (DOE) at the West Valley Demonstration Plant (WVDP) near Buffalo, New York, where approximately 300 canisters of high-level nuclear waste glass will be produced. To assure that the produced waste form is acceptable, uncertainty must be managed. Statistical issues arise due to sampling, waste variations, processing uncertainties, and analytical variations. This paper presents elements of a strategy to characterize and manage the uncertainties associated with demonstrating that an acceptable waste form product is achieved. Specific examples are provided within the context of statistical work performed by Pacific Northwest Laboratory (PNL).

  1. Service Oriented Architecture for High Level Applications

    SciTech Connect

    Chu, Chungming; Chevtsov, Sergei; Wu, Juhao; Shen, Guobao; /Brookhaven

    2012-06-28

    Standalone high level applications often suffer from poor performance and reliability due to lengthy initialization, heavy computation and rapid graphical update. Service-oriented architecture (SOA) is trying to separate the initialization and computation from applications and to distribute such work to various service providers. Heavy computation such as beam tracking will be done periodically on a dedicated server and data will be available to client applications at all time. Industrial standard service architecture can help to improve the performance, reliability and maintainability of the service. Robustness will also be improved by reducing the complexity of individual client applications.

  2. Advanced High-Level Waste Glass Research and Development Plan

    SciTech Connect

    Peeler, David K.; Vienna, John D.; Schweiger, Michael J.; Fox, Kevin M.

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced

  3. Linearization of the Fermilab recycler high level RF

    SciTech Connect

    Joseph E Dey; Tom Kubicki; John Reid

    2003-05-28

    In studying the Recycler high level RF, it was found that at 89 kHz, the lowest frequency required by the system, some nonlinearities in magnitude and phase were discovered. The visible evidence of this was that beam injected in a barrier bucket had a definite slope at the top. Using a network analyzer, the S-parameter S{sub 21} was realized for the overall system and from mathematical modeling a second order numerator and denominator transfer function was found. The inverse of this transfer function gives their linearization transfer function. The linearization transfer function was realized in hardware by summing a high pass, band pass and low pass filter together. The resulting magnitude and phase plots, along with actual beam response will be shown.

  4. High level language-based robotic control system

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Inventor); Kruetz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)

    1994-01-01

    This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.

  5. High level language-based robotic control system

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Inventor); Kreutz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)

    1996-01-01

    This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.

  6. Development of a High Level Waste Tank Inspection System

    SciTech Connect

    Appel, D.K.; Loibl, M.W.; Meese, D.C.

    1995-03-21

    The Westinghouse Savannah River Technology Center was requested by it`s sister site, West Valley Nuclear Service (WVNS), to develop a remote inspection system to gather wall thickness readings of their High Level Waste Tanks. WVNS management chose to take a proactive approach to gain current information on two tanks t hat had been in service since the early 70`s. The tanks contain high level waste, are buried underground, and have only two access ports to an annular space between the tank and the secondary concrete vault. A specialized remote system was proposed to provide both a visual surveillance and ultrasonic thickness measurements of the tank walls. A magnetic wheeled crawler was the basis for the remote delivery system integrated with an off-the-shelf Ultrasonic Data Acquisition System. A development program was initiated for Savannah River Technology Center (SRTC) to design, fabricate, and test a remote system based on the Crawler. The system was completed and involved three crawlers to perform the needed tasks, an Ultrasonic Crawler, a Camera Crawler, and a Surface Prep Crawler. The crawlers were computer controlled so that their operation could be done remotely and their position on the wall could be tracked. The Ultrasonic Crawler controls were interfaced with ABB Amdata`s I-PC, Ultrasonic Data Acquisition System so that thickness mapping of the wall could be obtained. A second system was requested by Westinghouse Savannah River Company (WSRC), to perform just ultrasonic mapping on their similar Waste Storage Tanks; however, the system needed to be interfaced with the P-scan Ultrasonic Data Acquisition System. Both remote inspection systems were completed 9/94. Qualifications tests were conducted by WVNS prior to implementation on the actual tank and tank development was achieved 10/94. The second inspection system was deployed at WSRC 11/94 with success, and the system is now in continuous service inspecting the remaining high level waste tanks at WSRC.

  7. Electrochemical reduction removal of technetium-99 from Hanford tank wastes

    SciTech Connect

    Lawrence, W.E.; Blanchard, D.L. Jr.; Kurath, D.E.

    1997-09-01

    The removal of technetium ({sup 99}Tc) from Hanford tank waste supernatant liquids has been demonstrated using an electrochemical-based separation process. A potential cleanup strategy is to retrieve the waste and separate components into high-level and low-level waste fractions. However, some of the tanks contain technetium-99 ({sup 99}Tc) at concentrations deemed to be unacceptable for ultimate processing and disposal. Conventional extraction processes have been shown to be inefficient at removal of {sup 99}Tc due to the presence of nonpertechnetate species. Electrochemical processing, has been shown to oxidize the nonextractable species and subsequently separate the {sup 99}Tc by electrodeposition. The data obtained were used to support a comparison of ion exchange and electrochemical processing as removal methods. The electrochemical process has the flexibility to serve as a stand-alone process or to support conventional processes as a pretreatment step for the oxidation of nonextractable {sup 99}Tc and/or organic decomplexation. A separation procedure developed by AEA Technologies (AEAT) for simulated Hanford tank supernatant liquids was adapted for the actual waste studies conducted at Pacific Northwest National Laboratory (PNNTL). Prior to electroreduction separation of {sup 99}Tc from the supernatant liquid, an electrochemical oxidation was carried out in which nonpertechnetate or nonextractable {sup 99}Tc was oxidized to more readily extractable species such as pertechnetate, and the organic content was decreased. After oxidation, an electroreduction was performed to remove the {sup 99}Tc from the supernatant liquid as Tc or CO{sub 2} deposited on the cathode.

  8. Stability of High-Level Radioactive Waste Forms

    SciTech Connect

    Besmann, T.M.

    2001-06-22

    High-level waste (HLW) glass compositions, processing schemes, limits on waste content, and corrosion/dissolution release models are dependent on an accurate knowledge of melting temperatures and thermochemical values. Unfortunately, existing models for predicting these temperatures are empirically-based, depending on extrapolations of experimental information. In addition, present models of leaching behavior of glass waste forms use simplistic assumptions or experimentally measured values obtained under non-realistic conditions. There is thus a critical need for both more accurate and more widely applicable models for HLW glass behavior, which this project addressed. Significant progress was made in this project on modeling HLW glass. Borosilicate glass was accurately represented along with the additional important components that contain iron, lithium, potassium, magnesium, and calcium. The formation of crystalline inclusions in the glass, an issue in Hanford HLW formulations, was modeled and shown to be predictive. Thus the results of this work have already demonstrated practical benefits with the ability to map compositional regions where crystalline material forms, and therefore avoid that detrimental effect. With regard to a fundamental understanding, added insights on the behavior of the components of glass have been obtained, including the potential formation of molecular clusters. The EMSP project had very significant effects beyond the confines of Environmental Management. The models developed for glass have been used to solve a very costly problem in the corrosion of refractories for glass production. The effort resulted in another laboratory, Sandia National Laboratories-Livermore, to become conversant in the techniques and to apply those through a DOE Office of Industrial Technologies project joint with PPG Industries. The glass industry as a whole is now cognizant of these capabilities, and there is a Glass Manufacturer's Research Institute proposal

  9. Technical Note: Updated durability/composition relationships for Hanford high-level waste glasses

    SciTech Connect

    Piepel, G.F.; Hartley, S.A.; Redgate, P.E.

    1996-03-01

    This technical note presents empirical models developed in FYI 995 to predict durability as functions of glass composition. Models are presented for normalized releases of B, Li, Na, and Si from the 7-day Product Consistency Test (PCT) applied to quenched and canister centerline cooled (CCC) glasses as well as from the 28-day Materials Characterization Center-1 (MCC-1) test applied to quenched glasses. Models are presented for Composition Variation Study (CVS) data from low temperature melter (LTM) studies (Hrma, Piepel, et al. 1994) and high temperature melter (HTM) studies (Vienna et al. 1995). The data used for modeling in this technical note are listed in Appendix A.

  10. Alternative concepts for treatment and disposal of Hanford site high-level waste in tanks

    SciTech Connect

    Claghorn, R.D.; Powell, W.J.

    1994-12-01

    Some innovative approaches have recently been proposed that may have significant schedule, cost, or environmental advantages which could improve the current HLW program strategy. Three general categories of alternative concepts are now under consideration: (1) process/product alternatives, (2) facility layout options, and (3) contracting strategies. This report compares the alternate approaches to the current program baseline to illustrate their potential significance and to identify the risks associated with each approach.

  11. High-level connectionist models. Semiannual report

    SciTech Connect

    Pollack, J.B.

    1989-08-01

    The major achievement of this semiannum was the significant revision and extension of the Recursive Auto-Associative Memory (RAAM) work for publication in the journal Artificial Intelligence. Included as an appendix to this report, the article includes several new elements: (1) Background - The work was more clearly set into the area of recursive distributed representations, machine learning, and the adequacy of the connectionist approach for high-level cognitive modeling; (2) New Experiment - RAAM was applied to finding compact representations for sequences of letters; (3) Analysis - The developed representations were analyzed as features which range from categorical to distinctive. Categorical features distinguish between conceptual categories while distinctive features vary within categories and discriminate or label the members. The representations were also analyzed geometrically; and (4) Applications - Feasibility studies were performed and described on inference by association, and on using RAAM-generated patterns along with cascaded networks for natural language parsing. Both of these remain long-term goals of the project.

  12. Umbra's High Level Architecture (HLA) Interface

    SciTech Connect

    GOTTLIEB, ERIC JOSEPH; MCDONALD, MICHAEL J.; OPPEL III, FRED J.

    2002-04-01

    This report describes Umbra's High Level Architecture HLA library. This library serves as an interface to the Defense Simulation and Modeling Office's (DMSO) Run Time Infrastructure Next Generation Version 1.3 (RTI NG1.3) software library and enables Umbra-based models to be federated into HLA environments. The Umbra library was built to enable the modeling of robots for military and security system concept evaluation. A first application provides component technologies that ideally fit the US Army JPSD's Joint Virtual Battlespace (JVB) simulation framework for Objective Force concept analysis. In addition to describing the Umbra HLA library, the report describes general issues of integrating Umbra with RTI code and outlines ways of building models to support particular HLA simulation frameworks like the JVB.

  13. Airway injury during high-level exercise.

    PubMed

    Kippelen, Pascale; Anderson, Sandra D

    2012-05-01

    Airway epithelial cells act as a physical barrier against environmental toxins and injury, and modulate inflammation and the immune response. As such, maintenance of their integrity is critical. Evidence is accumulating to suggest that exercise can cause injury to the airway epithelium. This seems the case particularly for competitive athletes performing high-level exercise, or when exercise takes place in extreme environmental conditions such as in cold dry air or in polluted air. Dehydration of the small airways and increased forces exerted on to the airway surface during severe hyperpnoea are thought to be key factors in determining the occurrence of injury of the airway epithelium. The injury-repair process of the airway epithelium may contribute to the development of the bronchial hyper-responsiveness that is documented in many elite athletes. PMID:22247295

  14. The High Level Data Reduction Library

    NASA Astrophysics Data System (ADS)

    Ballester, P.; Gabasch, A.; Jung, Y.; Modigliani, A.; Taylor, J.; Coccato, L.; Freudling, W.; Neeser, M.; Marchetti, E.

    2015-09-01

    The European Southern Observatory (ESO) provides pipelines to reduce data for most of the instruments at its Very Large telescope (VLT). These pipelines are written as part of the development of VLT instruments, and are used both in the ESO's operational environment and by science users who receive VLT data. All the pipelines are highly specific geared toward instruments. However, experience showed that the independently developed pipelines include significant overlap, duplication and slight variations of similar algorithms. In order to reduce the cost of development, verification and maintenance of ESO pipelines, and at the same time improve the scientific quality of pipelines data products, ESO decided to develop a limited set of versatile high-level scientific functions that are to be used in all future pipelines. The routines are provided by the High-level Data Reduction Library (HDRL). To reach this goal, we first compare several candidate algorithms and verify them during a prototype phase using data sets from several instruments. Once the best algorithm and error model have been chosen, we start a design and implementation phase. The coding of HDRL is done in plain C and using the Common Pipeline Library (CPL) functionality. HDRL adopts consistent function naming conventions and a well defined API to minimise future maintenance costs, implements error propagation, uses pixel quality information, employs OpenMP to take advantage of multi-core processors, and is verified with extensive unit and regression tests. This poster describes the status of the project and the lesson learned during the development of reusable code implementing algorithms of high scientific quality.

  15. High-Level Waste Tank Lay-Up Assessment - Year-End Progress Report

    SciTech Connect

    Elmore, Monte R.; Henderson, Colin

    2002-06-21

    This report documents the preliminary needs assessment of high-level waste (HLW) tank lay-up requirements and considerations for the Hanford Site, Idaho Naitonal Engeineering and Environmental Lab (INEEL), Savannah River Site (SRS) and Oak Ridge Reservation (ORR). This assessment includes the development of a high-level requirements and considerations list that evolved from work done for the West Valley Demonstration Project (WVDP) earlier in fiscal year (FY) 2001, and is based on individual site conditions and tank retrieval/tank closure schedules. Because schedules are continually subject to change, this assessment is considered preliminary and needs review and validation by the individual sites. The lay-up decision methodology developed for WVDP was based on standard systems engineering principles, and provided a structured framework for producing an effective, technically-defensible lay-up strategy.

  16. Feasibility study for the processing of Hanford Site cesium and strontium isotopic sources in the Hanford Waste Vitrification Plant

    SciTech Connect

    Anantatmula, R.P.; Watrous, R.A.; Nelson, J.L.; Perez, J.M.; Peters, R.D.; Peterson, M.E.

    1991-09-01

    The final environmental impact statement for the disposal of defense-related wastes at the Hanford Site (Final Environmental Impact Statement: Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes [HDW-EIS] [DOE 1987]) states that the preferred alternative for disposal of cesium and strontium wastes at the Hanford Site will be to package and ship these wastes to the commercial high-level waste repository. The Record of Decision for this EIS states that before shipment to a geologic repository, these wastes will be packaged in accordance with repository waste acceptance criteria. However, the high cost per canister for repository disposal and uncertainty about the acceptability of overpacked capsules by the repository suggest that additional alternative means of disposal be considered. Vitrification of the cesium and strontium salts in the Hanford Waste Vitrification Plant (HWVP) has been identified as a possible alternative to overpacking. Subsequently, Westinghouse Hanford Company`s (Westinghouse Hanford) Projects Technical Support Office undertook a feasibility study to determine if any significant technical issues preclude the vitrification of the cesium and strontium salts. Based on the information presented in this report, it is considered technically feasible to blend the cesium chloride and strontium fluoride salts with neutralized current acid waste (NCAW) and/or complexant concentrate (CC) waste feedstreams, or to blend the salts with fresh frit and process the waste through the HWVP.

  17. Hanford Waste Vitrification Plant Project Plan. Revision 1

    SciTech Connect

    Brown, R.W.

    1993-06-01

    A major mission of the US DOE is the permanent disposal of Hanford defense wastes by safe, environmentally acceptable, and cost effective methods which meet applicable regulations. The Hanford Waste Vitrification Plant (HWVP) Project was initiated to immobilize the Hanford high-level waste (HLW) and provide interim storage. The HWVP will vitrify the pre-treated HLW into borosilicate glass, cast the glass into stainless steel canisters, and store the canisters on site until they are shipped to a federal geologic repository. The HWVP project objective is to design, construct, and operate a facility for immobilizing defense high-level waste for storage. Technical objectives include using the Defense Waste Processing Facility designed plants systems or elements, where practical, and the exchange and review of information on plants in foreign countries. More definitive objectives for quality, reliability, environmental, and safety are provided in the HWVP Project Management Plan.

  18. Environmental assessment overview, Reference repository location, Hanford site, Washington

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization. 3 figs.

  19. Resource book: Decommissioning of contaminated facilities at Hanford

    SciTech Connect

    Not Available

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 68 refs., 54 figs., 18 tabs.

  20. Performance of the CMS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Perrotta, Andrea

    2015-12-01

    The CMS experiment has been designed with a 2-level trigger system. The first level is implemented using custom-designed electronics. The second level is the so-called High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. For Run II of the Large Hadron Collider, the increases in center-of-mass energy and luminosity will raise the event rate to a level challenging for the HLT algorithms. The increase in the number of interactions per bunch crossing, on average 25 in 2012, and expected to be around 40 in Run II, will be an additional complication. We present here the expected performance of the main triggers that will be used during the 2015 data taking campaign, paying particular attention to the new approaches that have been developed to cope with the challenges of the new run. This includes improvements in HLT electron and photon reconstruction as well as better performing muon triggers. We will also present the performance of the improved tracking and vertexing algorithms, discussing their impact on the b-tagging performance as well as on the jet and missing energy reconstruction.

  1. CMS High Level Trigger Timing Measurements

    NASA Astrophysics Data System (ADS)

    Richardson, Clint

    2015-12-01

    The two-level trigger system employed by CMS consists of the Level 1 (L1) Trigger, which is implemented using custom-built electronics, and the High Level Trigger (HLT), a farm of commercial CPUs running a streamlined version of the offline CMS reconstruction software. The operational L1 output rate of 100 kHz, together with the number of CPUs in the HLT farm, imposes a fundamental constraint on the amount of time available for the HLT to process events. Exceeding this limit impacts the experiment's ability to collect data efficiently. Hence, there is a critical need to characterize the performance of the HLT farm as well as the algorithms run prior to start up in order to ensure optimal data taking. Additional complications arise from the fact that the HLT farm consists of multiple generations of hardware and there can be subtleties in machine performance. We present our methods of measuring the timing performance of the CMS HLT, including the challenges of making such measurements. Results for the performance of various Intel Xeon architectures from 2009-2014 and different data taking scenarios are also presented.

  2. HIGH LEVEL RF FOR THE SNS RING.

    SciTech Connect

    ZALTSMAN,A.; BLASKIEWICZ,M.; BRENNAN,J.; BRODOWSKI,J.; METH,M.; SPITZ,R.; SEVERINO,F.

    2002-06-03

    A high level RF system (HLRF) consisting of power amplifiers (PA's) and ferrite loaded cavities is being designed and built by Brookhaven National Laboratory (BNL) for the Spallation Neutron Source (SNS) project. It is a fixed frequency, two harmonic system whose main function is to maintain a gap for the kicker rise time. Three cavities running at the fundamental harmonic (h=l) will provide 40 kV and one cavity at the second harmonic (h=2) will provide 20 kV. Each cavity has two gaps with a design voltage of 10 kV per gap and will be driven by a power amplifier (PA) directly adjacent to it. The PA uses a 600kW tetrode to provide the necessary drive current. The anode of the tetrode is magnetically coupled to the downstream cell of the cavity. Drive to the PA will be provided by a wide band, solid state amplifier located remotely. A dynamic tuning scheme will be implemented to help compensate for the effect of beam loading.

  3. Decontamination of high-level waste canisters

    SciTech Connect

    Nesbitt, J.F.; Slate, S.C.; Fetrow, L.K.

    1980-12-01

    This report presents evaluations of several methods for the in-process decontamination of metallic canisters containing any one of a number of solidified high-level waste (HLW) forms. The use of steam-water, steam, abrasive blasting, electropolishing, liquid honing, vibratory finishing and soaking have been tested or evaluated as potential techniques to decontaminate the outer surfaces of HLW canisters. Either these techniques have been tested or available literature has been examined to assess their applicability to the decontamination of HLW canisters. Electropolishing has been found to be the most thorough method to remove radionuclides and other foreign material that may be deposited on or in the outer surface of a canister during any of the HLW processes. Steam or steam-water spraying techniques may be adequate for some applications but fail to remove all contaminated forms that could be present in some of the HLW processes. Liquid honing and abrasive blasting remove contamination and foreign material very quickly and effectively from small areas and components although these blasting techniques tend to disperse the material removed from the cleaned surfaces. Vibratory finishing is very capable of removing the bulk of contamination and foreign matter from a variety of materials. However, special vibratory finishing equipment would have to be designed and adapted for a remote process. Soaking techniques take long periods of time and may not remove all of the smearable contamination. If soaking involves pickling baths that use corrosive agents, these agents may cause erosion of grain boundaries that results in rough surfaces.

  4. The Self Actualized Reader.

    ERIC Educational Resources Information Center

    Marino, Michael; Moylan, Mary Elizabeth

    A study examined the commonalities that "voracious" readers share, and how their experiences can guide parents, teachers, and librarians in assisting children to become self-actualized readers. Subjects, 25 adults ranging in age from 20 to 67 years, completed a questionnaire concerning their reading histories and habits. Respondents varied in…

  5. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT

    SciTech Connect

    Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

    2012-01-12

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  6. ANNUAL REPORT. FIXATION MECHANISMS AND DESORPTION RATES OF SORBED CS IN HIGH-LEVEL WASTE CONTAMINATED SUBSURFACE SEDIMENTS: IMPLICATIONS TO FUTURE BEHAVIOR AND IN-GROUND STABILITY

    EPA Science Inventory

    Research is investigating mineralogic and geochemical factors controlling the desorption rate of 137Cs+ from subsurface sediments on the Hanford Site contaminated with different types of high-level waste. The project will develop kinetic data and models that describe the release ...

  7. RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN CHEMISTRY FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect

    Nash, C.; Duignan, M.

    2010-01-14

    A principal goal at the Savannah River Site is to safely dispose of the large volume of liquid nuclear waste held in many storage tanks. In-tank ion exchange technology is being considered for cesium removal using a polymer resin made of resorcinol formaldehyde that has been engineered into microspheres. The waste under study is generally lower in potassium and organic components than Hanford waste; therefore, the resin performance was evaluated with actual dissolved salt waste. The ion exchange performance and resin chemistry results are discussed.

  8. DEFENSE HIGH LEVEL WASTE GLASS DEGRADATION

    SciTech Connect

    W. Ebert

    2001-09-20

    The purpose of this Analysis/Model Report (AMR) is to document the analyses that were done to develop models for radionuclide release from high-level waste (HLW) glass dissolution that can be integrated into performance assessment (PA) calculations conducted to support site recommendation and license application for the Yucca Mountain site. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M&O 2000a). It specifically addresses the item, ''Defense High Level Waste Glass Degradation'', of the product technical work plan. The AP-3.15Q Attachment 1 screening criteria determines the importance for its intended use of the HLW glass model derived herein to be in the category ''Other Factors for the Postclosure Safety Case-Waste Form Performance'', and thus indicates that this factor does not contribute significantly to the postclosure safety strategy. Because the release of radionuclides from the glass will depend on the prior dissolution of the glass, the dissolution rate of the glass imposes an upper bound on the radionuclide release rate. The approach taken to provide a bound for the radionuclide release is to develop models that can be used to calculate the dissolution rate of waste glass when contacted by water in the disposal site. The release rate of a particular radionuclide can then be calculated by multiplying the glass dissolution rate by the mass fraction of that radionuclide in the glass and by the surface area of glass contacted by water. The scope includes consideration of the three modes by which water may contact waste glass in the disposal system: contact by humid air, dripping water, and immersion. The models for glass dissolution under these contact modes are all based on the rate expression for aqueous dissolution of borosilicate glasses. The mechanism and rate expression for aqueous dissolution are adequately understood; the analyses in this AMR were conducted to

  9. The high-level trigger of ALICE

    NASA Astrophysics Data System (ADS)

    Tilsner, H.; Alt, T.; Aurbakken, K.; Grastveit, G.; Helstrup, H.; Lindenstruth, V.; Loizides, C.; Nystrand, J.; Roehrich, D.; Skaali, B.; Steinbeck, T.; Ullaland, K.; Vestbo, A.; Vik, T.

    One of the main tracking detectors of the forthcoming ALICE Experiment at the LHC is a cylindrical Time Projection Chamber (TPC) with an expected data volume of about 75 MByte per event. This data volume, in combination with the presumed maximum bandwidth of 1.2 GByte/s to the mass storage system, would limit the maximum event rate to 20 Hz. In order to achieve higher event rates, online data processing has to be applied. This implies either the detection and read-out of only those events which contain interesting physical signatures or an efficient compression of the data by modeling techniques. In order to cope with the anticipated data rate, massive parallel computing power is required. It will be provided in form of a clustered farm of SMP-nodes, based on off-the-shelf PCs, which are connected with a high bandwidth low overhead network. This High-Level Trigger (HLT) will be able to process a data rate of 25 GByte/s online. The front-end electronics of the individual sub-detectors is connected to the HLT via an optical link and a custom PCI card which is mounted in the clustered PCs. The PCI card is equipped with an FPGA necessary for the implementation of the PCI-bus protocol. Therefore, this FPGA can also be used to assist the host processor with first-level processing. The first-level processing done on the FPGA includes conventional cluster-finding for low multiplicity events and local track finding based on the Hough Transformation of the raw data for high multiplicity events. PACS: 07.05.-t Computers in experimental physics - 07.05.Hd Data acquisition: hardware and software - 29.85.+c Computer data analysis

  10. SUMMARY PLAN FOR BENCH-SCALE REFORMER AND PRODUCT TESTING TREATABILITY STUDIES USING HANFORD TANK WASTE

    SciTech Connect

    DUNCAN JB

    2010-08-19

    This paper describes the sample selection, sample preparation, environmental, and regulatory considerations for shipment of Hanford radioactive waste samples for treatability studies of the FBSR process at the Savannah River National Laboratory and the Pacific Northwest National Laboratory. The U.S. Department of Energy (DOE) Hanford tank farms contain approximately 57 million gallons of wastes, most of which originated during the reprocessing of spent nuclear fuel to produce plutonium for defense purposes. DOE intends to pre-treat the tank waste to separate the waste into a high level fraction, that will be vitrified and disposed of in a national repository as high-level waste (HLW), and a low-activity waste (LAW) fraction that will be immobilized for on-site disposal at Hanford. The Hanford Waste Treatment and Immobilization Plant (WTP) is the focal point for the treatment of Hanford tank waste. However, the WTP lacks the capacity to process all of the LAW within the regulatory required timeframe. Consequently, a supplemental LAW immobilization process will be required to immobilize the remainder of the LAW. One promising supplemental technology is Fluidized Bed Steam Reforming (FBSR) to produce a sodium-alumino-silicate (NAS) waste form. The NAS waste form is primarily composed of nepheline (NaAlSiO{sub 4}), sodalite (Nas[AlSiO{sub 4}]{sub 6}Cl{sub 2}), and nosean (Na{sub 8}[AlSiO{sub 4}]{sub 6}SO{sub 4}). Semivolatile anions such as pertechnetate (TcO{sub 4}{sup -}) and volatiles such as iodine as iodide (I{sup -}) are expected to be entrapped within the mineral structures, thereby immobilizing them (Janzen 2008). Results from preliminary performance tests using surrogates, suggests that the release of semivolatile radionuclides {sup 99}Tc and volatile {sup 129}I from granular NAS waste form is limited by Nosean solubility. The predicted release of {sup 99}Tc from the NAS waste form at a 100 meters down gradient well from the Integrated Disposal Facility (IDF

  11. Bumblebee Pupae Contain High Levels of Aluminium

    PubMed Central

    Exley, Christopher; Rotheray, Ellen; Goulson, David

    2015-01-01

    The causes of declines in bees and other pollinators remains an on-going debate. While recent attention has focussed upon pesticides, other environmental pollutants have largely been ignored. Aluminium is the most significant environmental contaminant of recent times and we speculated that it could be a factor in pollinator decline. Herein we have measured the content of aluminium in bumblebee pupae taken from naturally foraging colonies in the UK. Individual pupae were acid-digested in a microwave oven and their aluminium content determined using transversely heated graphite furnace atomic absorption spectrometry. Pupae were heavily contaminated with aluminium giving values between 13.4 and 193.4 μg/g dry wt. and a mean (SD) value of 51.0 (33.0) μg/g dry wt. for the 72 pupae tested. Mean aluminium content was shown to be a significant negative predictor of average pupal weight in colonies. While no other statistically significant relationships were found relating aluminium to bee or colony health, the actual content of aluminium in pupae are extremely high and demonstrate significant exposure to aluminium. Bees rely heavily on cognitive function and aluminium is a known neurotoxin with links, for example, to Alzheimer’s disease in humans. The significant contamination of bumblebee pupae by aluminium raises the intriguing spectre of cognitive dysfunction playing a role in their population decline. PMID:26042788

  12. FLUOR HANFORD (FH) MAKES CLEANUP A REALITY IN NEARLY 11 YEARS AT HANFORD

    SciTech Connect

    GERBER, M.S.

    2007-05-24

    For nearly 11 years, Fluor Hanford has been busy cleaning up the legacy of nuclear weapons production at one of the Department of Energy's (DOE'S) major sites in the United States. As prime nuclear waste cleanup contractor at the vast Hanford Site in southeastern Washington state, Fluor Hanford has changed the face of cleanup. Fluor beginning on October 1, 1996, Hanford Site cleanup was primarily a ''paper exercise.'' The Tri-Party Agreement, officially called the Hanford Federal Facility Agreement and Consent Order - the edict governing cleanup among the DOE, U.S. Environmental Protection Agency (EPA) and Washington state - was just seven years old. Milestones mandated in the agreement up until then had required mainly waste characterization, reporting, and planning, with actual waste remediation activities off in the future. Real work, accessing waste ''in the field'' - or more literally in huge underground tanks, decaying spent fuel POO{approx}{approx}S, groundwater, hundreds of contaminated facilities, solid waste burial grounds, and liquid waste disposal sites -began in earnest under Fluor Hanford. The fruits of labors initiated, completed and/or underway by Fluor Hanford can today be seen across the site. Spent nuclear fuel is buttoned up in secure, dry containers stored away from regional water resources, reactive plutonium scraps are packaged in approved containers, transuranic (TRU) solid waste is being retrieved from burial trenches and shipped offsite for permanent disposal, contaminated facilities are being demolished, contaminated groundwater is being pumped out of aquifers at record rates, and many other inventive solutions are being applied to Hanford's most intransigent nuclear wastes. (TRU) waste contains more than 100 nanocuries per gram, and contains isotopes higher than uranium on the Periodic Table of the Elements. (A nanocurie is one-billionth of a curie.) At the same time, Fluor Hanford has dramatically improved safety records, and cost

  13. HANFORD REGULATORY EXPERIENCE REGULATION AT HANFORD A CASE STUDY

    SciTech Connect

    HAWKINS AR

    2007-09-24

    Hanford has played a pivotal role in the United States' defense for more than 60 years, beginning with the Manhattan Project in the 1940s. During its history, the Hanford Site has had nine reactors producing plutonium for the United States' nuclear weapons program. All the reactors were located next to the Columbia River and all had associated low-level radioactive and hazardous waste releases. Site cleanup, which formally began in 1989 with the signing of the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement, involves more than 1,600 waste sites and burial grounds, and the demolition of more than 1,500buildings and structures, Cleanup is scheduled to be complete by 2035. Regulatory oversight of the cleanup is being performed by the U.S. Environmental Protection Agency (EPA) and the Washington State Department of Ecology(Ecology) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Revised Code of Washington, 'Hazardous Waste Management.' Cleanup of the waste sites and demolition of the many buildings and structures generates large volumes of contaminated soil, equipment, demolition debris, and other wastes that must be disposed of in a secure manner to prevent further environmental degradation. From a risk perspective, it is essential the cleanup waste be moved to a disposal facility located well away from the Columbia River. The solution was to construct very large engineered landfill that meets all technical regulatory requirements, on the Hanford Site Central Plateau approximately 10kilometers from the river and 100metersabovegroundwater. This landfill, called the Environmental Restoration Disposal Facility or ERDF is a series of cells, each 150x 300 meters wide at the bottom and 20 meters deep. This paper looks at the substantive environmental regulations applied to ERDF, and how the facility is designed to protect the environment and meet regulatory requirements. The paper

  14. Hanford Site Development Plan

    SciTech Connect

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. ); Yancey, E.F. )

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  15. Hanford`s innovations for science education

    SciTech Connect

    Carter, D.

    1996-12-31

    In recognition of declining science literacy in the United States and a projected shortfall of scientists, engineers and technologists to address environmental problems nationally and internationally during the 21st century, Westinghouse Hanford Company has launched several innovative science education projects at the US Department of Energy Hanford Site. The Hanford Site is very rich in resources that can be brought to bear on the problem: world-class technical experts, state of the art facilities and equipment, and the largest environmental laboratory in the world. During the past two years, several innovative science education initiatives have been conceived and pursued at the secondary education level including the International Academy for the Environment (residential high school with an environmental theme), Environmental BATTmobile Program (mobile middle school science education program), and Multicultural Experiences in Math and Science (education program based on cultural contributions to math and science). Hanford scientists, engineers and administrators have worked with the education community (K-12 and college-university) to develop innovative approaches to science education.

  16. Optimization of waste loading in high-level glass in the presence of uncertainty

    SciTech Connect

    Hoza, M.; Fann, G.I.; Hopkins, D.F.

    1995-02-01

    Hanford high-level liquid waste will be converted into a glass form for long-term storage. The glass must meet certain constraints on its composition and properties in order to have desired properties for processing (e.g., electrical conductivity, viscosity, and liquidus temperature) and acceptable durability for long-term storage. The Optimal Waste Loading (OWL) models, based on rigorous mathematical optimization techniques, have been developed to minimize the number of glass logs required and determine glass-former compositions that will produce a glass meeting all relevant constraints. There is considerable uncertainty in many of the models and data relevant to the formulation of high-level glass. In this paper, we discuss how we handle uncertainty in the glass property models and in the high-level waste composition to the vitrification process. Glass property constraints used in optimization are inequalities that relate glass property models obtained by regression analysis of experimental data to numerical limits on property values. Therefore, these constraints are subject to uncertainty. The sampling distributions of the regression models are used to describe the uncertainties associated with the constraints. The optimization then accounts for these uncertainties by requiring the constraints to be satisfied within specified confidence limits. The uncertainty in waste composition is handled using stochastic optimization. Given means and standard deviations of component masses in the high-level waste stream, distributions of possible values for each component are generated. A series of optimization runs is performed; the distribution of each waste component is sampled for each run. The resultant distribution of solutions is then statistically summarized. The ability of OWL models to handle these forms of uncertainty make them very useful tools in designing and evaluating high-level waste glasses formulations.

  17. Hanford Emergency Response Plan

    SciTech Connect

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures.

  18. Hanford cultural resources laboratory

    SciTech Connect

    Wright, M.K.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act.

  19. TWRS retrieval and disposal mission, immobilized high-level waste storage plan

    SciTech Connect

    Calmus, R.B.

    1998-01-07

    This project plan has a two fold purpose. First, it provides a plan specific to the Hanford Tank Waste Remediation System (TWRS) Immobilized High-Level Waste (EMW) Storage Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestone M-90-01 (Ecology et al. 1996) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan. Second, it provides an upper tier document that can be used as the basis for future subproject line item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 (DOE 1992a) and 430.1 (DOE 1995)). The format and content of this project plan are designed to accommodate the plan`s dual purpose. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.

  20. Moisture measurement for high-level-waste tanks using copper activation probe in cone penetrometer

    SciTech Connect

    Reeder, P.L.; Stromswold, D.C.; Brodzinski, R.L.; Reeves, J.H.; Wilson, W.E.

    1995-10-01

    Laboratory tests have established the feasibility of using neutron activation of copper as a means for measuring the moisture in Hanford`s high-level radioactive waste tanks. The performance of the neutron activation technique to measure moisture is equivalent to the neutron moisture gauges or neutron logs commonly used in commercial well-logging. The principle difference is that the activation of {sup 64}Cu (t{sub 1/2} = 12.7 h) replaces the neutron counters used in moisture gauges or neutron logs. For application to highly radioactive waste tanks, the Cu activation technique has the advantage that it is insensitive to very strong gamma radiation fields or high temperatures. In addition, this technique can be deployed through tortuous paths or in confined spaces such as within the bore of a cone penetrometer. However, the results are not available in ``real-time``. The copper probe`s sensitivity to moisture was measured using simulated tank waste of known moisture content. This report describes the preparation of the simulated waste mixtures and the experiments performed to demonstrate the capabilities of the neutron activation technique. These experiments included determination of the calibration curve of count rate versus moisture content using a single copper probe, measurement of the calibration curve based on ``near-field `` to ``far-field`` counting ratios using a multiple probe technique, and profiling the activity of the copper probe as a function of the vertical height within a simulated waste barrel.

  1. C-106 High-Level Waste Solids: Washing/Leaching and Solubility Versus Temperature Studies

    SciTech Connect

    GJ Lumetta; DJ Bates; PK Berry; JP Bramson; LP Darnell; OT Farmer III; LR Greenwood; FV Hoopes; RC Lettau; GF Piepel; CZ Soderquist; MJ Steele; RT Steele; MW Urie; JJ Wagner

    2000-01-26

    This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the Hanford tank C-106 high-level waste (HLW) solids. The objective of this work was to determine the composition of the C-106 solids remaining after washing with 0.01M NaOH or leaching with 3M NaOH. Another objective of this test was to determine the solubility of various C-106 components as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8,Rev. 0, Determination of the Solubility of HLW Sludge Solids. The test went according to plan, with only minor deviations from the test plan. The deviations from the test plan are discussed in the experimental section.

  2. Phase chemistry and radionuclide retention of high level radioactive waste tank sludges

    SciTech Connect

    KRUMHANSL,JAMES L.; BRADY,PATRICK V.; ZHANG,PENGCHU; ARTHUR,SARA E.; HUTCHERSON,SHEILA K.; LIU,J.; QIAN,M.; ANDERSON,HOWARD L.

    2000-05-19

    The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate groundwaters with radionuclides and RCRA metals. Experimentation on such sludges is both dangerous and prohibitively expensive so there is a great advantage to developing artificial sludges. The US DOE Environmental Management Science Program (EMSP) has funded a program to investigate the feasibility of developing such materials. The following text reports on the success of this program, and suggests that much of the radioisotope inventory left in a tank will not move out into the surrounding environment. Ultimately, such studies may play a significant role in developing safe and cost effective tank closure strategies.

  3. HANFORD GROUNDWATER REMEDIATION

    SciTech Connect

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70E + 12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and geographically dispersed community is

  4. Hanford Groundwater Remediation

    SciTech Connect

    Charboneau, B.; Thompson, K. M.; Wilde, R.; Ford, B.; Gerber, M.

    2006-07-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70 E+12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and geographically dispersed community is

  5. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    SciTech Connect

    Fox, K. M.

    2014-02-27

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides a review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been

  6. Implementation of seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    SciTech Connect

    Conrads, T.J.

    1993-06-01

    In the fall of 1992, a draft of the Seismic Design and Evaluation Guidelines for the Department of Energy (DOE) High-level Waste Storage Tanks and Appurtenances was issued. The guidelines were prepared by the Tanks Seismic Experts Panel (TSEP) and this task was sponsored by DOE, Environmental Management. The TSEP is comprised of a number of consultants known for their knowledge of seismic ground motion and expertise in the analysis of structures, systems and components subjected to seismic loads. The development of these guidelines was managed by staff from Brookhaven National Laboratory, Engineering Research and Applications Division, Department of Nuclear Energy. This paper describes the process used to incorporate the Seismic Design and Evaluation Guidelines for the DOE High-Level Waste Storage Tanks and Appurtenances into the design criteria for the Multi-Function Waste Tank Project at the Hanford Site. This project will design and construct six new high-level waste tanks in the 200 Areas at the Hanford Site. This paper also discusses the vehicles used to ensure compliance to these guidelines throughout Title 1 and Title 2 design phases of the project as well as the strategy used to ensure consistent and cost-effective application of the guidelines by the structural analysts. The paper includes lessons learned and provides recommendations for other tank design projects which might employ the TSEP guidelines.

  7. Recommended environmental dose calculation methods and Hanford-specific parameters

    SciTech Connect

    Schreckhise, R.G.; Rhoads, K.; Napier, B.A.; Ramsdell, J.V. ); Davis, J.S. )

    1993-03-01

    This document was developed to support the Hanford Environmental Dose overview Panel (HEDOP). The Panel is responsible for reviewing all assessments of potential doses received by humans and other biota resulting from the actual or possible environmental releases of radioactive and other hazardous materials from facilities and/or operations belonging to the US Department of Energy on the Hanford Site in south-central Washington. This document serves as a guide to be used for developing estimates of potential radiation doses, or other measures of risk or health impacts, to people and other biota in the environs on and around the Hanford Site. It provides information to develop technically sound estimates of exposure (i.e., potential or actual) to humans or other biotic receptors that could result from the environmental transport of potentially harmful materials that have been, or could be, released from Hanford operations or facilities. Parameter values and information that are specific to the Hanford environs as well as other supporting material are included in this document.

  8. Hanford Site environmental surveillance data report for calendar year 1996

    SciTech Connect

    Bisping, L.E.

    1997-09-01

    Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River water and sediment. In addition, Hanford Site wildlife samples were also collected for metals analysis. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1996 describes the site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1996 by PNNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from river monitoring and sediment data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data.

  9. Review Of Rheology Modifiers For Hanford Waste

    SciTech Connect

    Pareizs, J. M.

    2013-09-30

    As part of Savannah River National Laboratory (SRNL)'s strategic development scope for the Department of Energy - Office of River Protection (DOE-ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste feed acceptance and product qualification scope, the SRNL has been requested to recommend candidate rheology modifiers to be evaluated to adjust slurry properties in the Hanford Tank Farm. SRNL has performed extensive testing of rheology modifiers for use with Defense Waste Processing Facility (DWPF) simulated melter feed - a high undissolved solids (UDS) mixture of simulated Savannah River Site (SRS) Tank Farm sludge, nitric and formic acids, and glass frit. A much smaller set of evaluations with Hanford simulated waste have also been completed. This report summarizes past work and recommends modifiers for further evaluation with Hanford simulated wastes followed by verification with actual waste samples. Based on the review of available data, a few compounds/systems appear to hold the most promise. For all types of evaluated simulated wastes (caustic Handford tank waste and DWPF processing samples with pH ranging from slightly acidic to slightly caustic), polyacrylic acid had positive impacts on rheology. Citric acid also showed improvement in yield stress on a wide variety of samples. It is recommended that both polyacrylic acid and citric acid be further evaluated as rheology modifiers for Hanford waste. These materials are weak organic acids with the following potential issues: The acidic nature of the modifiers may impact waste pH, if added in very large doses. If pH is significantly reduced by the modifier addition, dissolution of UDS and increased corrosion of tanks, piping, pumps, and other process equipment could occur. Smaller shifts in pH could reduce aluminum solubility, which would be expected to increase the yield stress of the sludge. Therefore, it is expected that use of an acidic modifier would be limited to concentrations that do not

  10. Characteristics of potential repository wastes. Volume 3, Appendix 3A, ORIGEN2 decay tables for immobilized high-level waste; Appendix 3B, Interim high-level waste forms

    SciTech Connect

    Not Available

    1992-07-01

    This appendix presents the results of decay calculations using the ORIGEN2 code to determine the radiological properties of canisters of immobilized high-level waste as a function of decay time for decay times up to one million years. These calculations were made for the four HLW sites (West Valley Demonstration Project, Savannah River Site, Hanford Site, and Idaho National Engineering Laboratory) using the composition data discussed in the HLW section of this report. Calculated ({alpha},n) neutron production rates are also shown.

  11. Effects of soluble organic complexants and their degradation products on the removal of selected radionuclides from high-level waste. Part 3, Distributions of Sr, Cs, Tc, Pu, and Am onto 33 absorbers from four variations of a 3:1 dilution of Hanford complexant concentrate (CC) simulant: Part 4, The effects of varying dilution ratios on the distributions of Sr, Cs, Tc, Pu, and Am onto 12 absorbers

    SciTech Connect

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1995-09-01

    Many of the radioactive waste storage tanks at USDOE facilities contain organic compounds that have been degraded by radiolysis and chemical reactions during decades of storage. Objective of this study was to measure effects of soluble organic complexants and their degradation products on sorption of Sr, Cs, Tc, Pu and Am onto 33 absorbers that in the absence of these organic compounds offer high sorption of these elements. The elements were in a generic simulant for Hanford complexant concentrate supernate that initially contained six organic complexants: EDTA, HEDTA, NTA, citrate, gluconate, and iminodiacetate. This simulant was tested as prepared and after gamma-irradiation to approximately 34 Mrads. Two other variations consisted of the unirradiated and irradiated simulants after treatment at 450C and 15,000 psi in a hydrothermal organic-destruction process. These experiments were conducted with a 3:1 water-to-simulant dilution of each of the four simulant variations. To determine effects of varying dilution ratios on the sorption of these five elements from the unirradiated and gamma-irradiated simulants that were not treated with the hydrothermal process, we measured their distribution from a 1:1 dilution, using 1 M NaOH as the diluent, onto the 12 best-performing absorbers. We then measured the sorption of these five elements from solutions having diluent-simulant ratios of 0, 0.5, 2.0, and 3.0 onto the three absorbers that performed best for sorbing Sr, Pu and Am from the 1:1 dilution. For each of 900 element/absorber/solution combinations, we measured distribution coefficients (Kd values) twice for each period for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about absorber stability and sorption kinetics. The 5400 measured Kd values indicate that the sorption of Sr, Pu, and Am is significantly decreased by the organic complexants in these simulant solutions, whereas the sorption of Cs and Tc is much less affected.

  12. Boehmite Dissolution Studies Supporting High Level Waste Pretreatment - 9383

    SciTech Connect

    Peterson, Reid A.; Russell, Renee L.; Snow, Lanee A.

    2009-03-01

    Boehmite is present in significant quantities in several of the Hanford waste tanks. It has been proposed that the boehmite will be dissolved through caustic leaching in the Hanford Waste Treatment Plant currently under construction. Therefore, it is important to fully understand the nature of this dissolution so that the process can be deployed. This research determined the impact of primary control parameters on the boehmite dissolution rate. The impact of aluminate ion on the dissolution kinetics was determined. In addition, other parameters that impact boehmite dissolution, such as free hydroxide concentration and reaction temperature, were also assessed and used to develop a semi-empirical model of the boehmite dissolution process. The understanding derived from this work will be used as the basis to evaluate and improve the planned performance of the Hanford Waste Treatment plant. This work is the first in a series of programs aimed at demonstrating the Waste Treatment Plant dissolution process. This work will be used to develop a simulant of the boehmite-containing Hanford waste. That simulant will then be used in laboratory- and pilot-scale testing to demonstrate the Waste Treatment Plant pretreatment process in an integrated fashion.

  13. Low-level awareness accompanies "unconscious" high-level processing during continuous flash suppression.

    PubMed

    Gelbard-Sagiv, Hagar; Faivre, Nathan; Mudrik, Liad; Koch, Christof

    2016-01-01

    The scope and limits of unconscious processing are a matter of ongoing debate. Lately, continuous flash suppression (CFS), a technique for suppressing visual stimuli, has been widely used to demonstrate surprisingly high-level processing of invisible stimuli. Yet, recent studies showed that CFS might actually allow low-level features of the stimulus to escape suppression and be consciously perceived. The influence of such low-level awareness on high-level processing might easily go unnoticed, as studies usually only probe the visibility of the feature of interest, and not that of lower-level features. For instance, face identity is held to be processed unconsciously since subjects who fail to judge the identity of suppressed faces still show identity priming effects. Here we challenge these results, showing that such high-level priming effects are indeed induced by faces whose identity is invisible, but critically, only when a lower-level feature, such as color or location, is visible. No evidence for identity processing was found when subjects had no conscious access to any feature of the suppressed face. These results suggest that high-level processing of an image might be enabled by-or co-occur with-conscious access to some of its low-level features, even when these features are not relevant to the processed dimension. Accordingly, they call for further investigation of lower-level awareness during CFS, and reevaluation of other unconscious high-level processing findings. PMID:26756173

  14. Hanford Waste Vitrification Plant technical manual

    SciTech Connect

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

  15. Hanford double shell tank corrosion monitoring instrument tree prototype

    SciTech Connect

    Nelson, J.L.; Edgemon, G.L.; Ohl, P.C.

    1995-11-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion.

  16. Hanford Area 2000 Population

    SciTech Connect

    Elliott, Douglas B.; Scott, Michael J.; Antonio, Ernest J.; Rhoads, Kathleen

    2004-05-28

    This report was prepared for the U.S. Department of Energy (DOE) Richland Operations Office, Surface Environmental Surveillance Project, to provide demographic data required for ongoing environmental assessments and safety analyses at the DOE Hanford Site near Richland, Washington. This document includes 2000 Census estimates for the resident population within an 80-kilometer (50-mile) radius of the Hanford Site. Population distributions are reported relative to five reference points centered on meteorological stations within major operating areas of the Hanford Site - the 100 F, 100 K, 200, 300, and 400 Areas. These data are presented in both graphical and tabular format, and are provided for total populations residing within 80 km (50 mi) of the reference points, as well as for Native American, Hispanic and Latino, total minority, and low-income populations.

  17. Description of a Multipurpose Processing and Storage Complex for the Hanford Site`s radioactive material

    SciTech Connect

    Nyman, D.H.; Wolfe, B.A.; Hoertkorn, T.R.

    1993-05-01

    The mission of the US Department of Energy`s (DOE) Hanford Site has changed from defense nuclear materials production to that of waste management/disposal and environmental restoration. ne Multipurpose Processing and Storage Complex (MPSC) is being designed to process discarded waste tank internal hardware contaminated with mixed wastes, failed melters from the vitrification plant, and other Hanford Site high-level solid waste. The MPSC also will provide interim storage of other radioactive materials (irradiated fuel, canisters of vitrified high-level waste [HLW], special nuclear material [SNM], and other designated radioactive materials).

  18. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from...

  19. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from...

  20. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true High-level radioactive waste. 227.30 Section 227.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from...

  1. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from...

  2. 46 CFR 182.530 - Bilge high level alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Bilge high level alarms. 182.530 Section 182.530... TONS) MACHINERY INSTALLATION Bilge and Ballast Systems § 182.530 Bilge high level alarms. (a) On a... operating station to indicate a high water level in each of the following normally unmanned spaces: (1)...

  3. 46 CFR 182.530 - Bilge high level alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Bilge high level alarms. 182.530 Section 182.530... TONS) MACHINERY INSTALLATION Bilge and Ballast Systems § 182.530 Bilge high level alarms. (a) On a... operating station to indicate a high water level in each of the following normally unmanned spaces: (1)...

  4. 46 CFR 119.530 - Bilge high level alarms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Bilge high level alarms. 119.530 Section 119.530... Bilge and Ballast Systems § 119.530 Bilge high level alarms. (a) Each vessel must be provided with a visual and audible alarm at the operating station to indicate a high water level in each of the...

  5. 46 CFR 119.530 - Bilge high level alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Bilge high level alarms. 119.530 Section 119.530... Bilge and Ballast Systems § 119.530 Bilge high level alarms. (a) Each vessel must be provided with a visual and audible alarm at the operating station to indicate a high water level in each of the...

  6. 46 CFR 182.530 - Bilge high level alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Bilge high level alarms. 182.530 Section 182.530... TONS) MACHINERY INSTALLATION Bilge and Ballast Systems § 182.530 Bilge high level alarms. (a) On a... operating station to indicate a high water level in each of the following normally unmanned spaces: (1)...

  7. 46 CFR 182.530 - Bilge high level alarms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Bilge high level alarms. 182.530 Section 182.530... TONS) MACHINERY INSTALLATION Bilge and Ballast Systems § 182.530 Bilge high level alarms. (a) On a... operating station to indicate a high water level in each of the following normally unmanned spaces: (1)...

  8. 46 CFR 119.530 - Bilge high level alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Bilge high level alarms. 119.530 Section 119.530... Bilge and Ballast Systems § 119.530 Bilge high level alarms. (a) Each vessel must be provided with a visual and audible alarm at the operating station to indicate a high water level in each of the...

  9. 46 CFR 119.530 - Bilge high level alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Bilge high level alarms. 119.530 Section 119.530... Bilge and Ballast Systems § 119.530 Bilge high level alarms. (a) Each vessel must be provided with a visual and audible alarm at the operating station to indicate a high water level in each of the...

  10. 46 CFR 119.530 - Bilge high level alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bilge high level alarms. 119.530 Section 119.530... Bilge and Ballast Systems § 119.530 Bilge high level alarms. (a) Each vessel must be provided with a visual and audible alarm at the operating station to indicate a high water level in each of the...

  11. Process for solidifying high-level nuclear waste

    DOEpatents

    Ross, Wayne A.

    1978-01-01

    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  12. 46 CFR 153.409 - High level alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false High level alarms. 153.409 Section 153.409 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Gauging Systems § 153.409 High level alarms. When Table...

  13. Investigations in Ceramicrete Stabilization of Hanford Tank Wastes

    SciTech Connect

    Wagh, A. S.; Antink, A.; Maloney, M. D.; Thomson, G. H.

    2003-02-26

    This paper provides a summary of investigations done on feasibility of using Ceramicrete technology to stabilize high level salt waste streams typical of Hanford and other sites. We used two non-radioactive simulants that covered the range of properties from low activity to high level liquids and sludges. One represented tank supernate, containing Cr, Pb, and Ag as the major hazardous metals, and Cs as the fission products; the other, a waste sludge, contained Cd, Cr, Ag, Ni, and Ba as the major hazardous contaminants, and Cs, and Tc as the fission products.

  14. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    SciTech Connect

    Christian, J. H.

    2015-08-18

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO4) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe, Cr)2O4), while not detrimental to glass durability, can cause an array of processing problems inside HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies. Higher waste loadings and more efficient processing strategies will reduce the overall HLW Hanford Tank Waste Treatment and Immobilization Plant (WTP) vitrification facilities mission life.

  15. Hanford Site Environmental Management Specification

    SciTech Connect

    DAILY, J.L.

    2001-05-25

    The US Department of Energy, Richland Operations Office (RL) has established a document hierarchy as part of its integrated management system. The Strategic Plan defines the vision, values, missions, strategic goals, high-level outcomes, and the basic strategies in achieving those outcomes. As shown in Figure 1-1, the Site Specification derives requirements from the Strategic Plan and documents the top-level mission technical requirements for the work involved in the RL Hanford Site cleanup and infrastructure activities under the responsibility of the U.S. Department of Energy, Office of Environmental Management (EM). It also provides the basis for all contract technical requirements. Since this is limited to the EM work, neither the Fast Flux Test Facility (FFTF) nor the Pacific Northwest National Laboratory (PNNL) non-EM science activities are included. Figure 1-1 also shows the relationship between this Site Specification and the other Site management and planning documents. Similarly, the documents, orders, and laws referenced in this document represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

  16. Particle Generation by Laser Ablation in Support of Chemical Analysis of High Level Mixed Waste from Plutonium Production Operations

    SciTech Connect

    J. Thomas Dickinson; Michael L. Alexander

    2001-11-30

    Investigate particles produced by laser irradiation and their analysis by Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA/ICP-MS), with a view towards optimizing particle production for analysis of high level waste materials and waste glass. LA/ICP-MS has considerable potential to increase the safety and speed of analysis required for the remediation of high level wastes from cold war plutonium production operations. In some sample types, notably the sodium nitrate-based wastes at Hanford and elsewhere, chemical analysis using typical laser conditions depends strongly on the details of sample history composition in a complex fashion, rendering the results of analysis uncertain. Conversely, waste glass materials appear to be better behaved and require different strategies to optimize analysis.

  17. JET MIXING ANALYSIS FOR SRS HIGH-LEVEL WASTE RECOVERY

    SciTech Connect

    Lee, S.

    2011-07-05

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four slurry pumps located within the tank liquid. The slurry pump may be fixed in position or they may rotate depending on the specific mixing requirements. The high-level waste in Tank 48 contains insoluble solids in the form of potassium tetraphenyl borate compounds (KTPB), monosodium titanate (MST), and sludge. Tank 48 is equipped with 4 slurry pumps, which are intended to suspend the insoluble solids prior to transfer of the waste to the Fluidized Bed Steam Reformer (FBSR) process. The FBSR process is being designed for a normal feed of 3.05 wt% insoluble solids. A chemical characterization study has shown the insoluble solids concentration is approximately 3.05 wt% when well-mixed. The project is requesting a Computational Fluid Dynamics (CFD) mixing study from SRNL to determine the solids behavior with 2, 3, and 4 slurry pumps in operation and an estimate of the insoluble solids concentration at the suction of the transfer pump to the FBSR process. The impact of cooling coils is not considered in the current work. The work consists of two principal objectives by taking a CFD approach: (1) To estimate insoluble solids concentration transferred from Tank 48 to the Waste Feed Tank in the FBSR process and (2) To assess the impact of different combinations of four slurry pumps on insoluble solids suspension and mixing in Tank 48. For this work, several different combinations of a maximum of four pumps are considered to determine the resulting flow patterns and local flow velocities which are thought to be associated with sludge particle mixing. Two different elevations of pump nozzles are used for an assessment of the flow patterns on the tank mixing. Pump design and operating parameters used for the analysis are summarized in Table 1. The baseline

  18. Tank waste remediation system high-level waste feed processability assessment report

    SciTech Connect

    Lambert, S.L.; Kim, D.S.

    1994-12-01

    This study evaluates the effect of feed composition on the performance of the high-level vitrification process. It is assumed in this study that the tank wastes are retrieved and blended by tank farms, producing 12 different blends from the single-shell tank farms, two blends of double-shell tank waste, and a separately defined all-tank blend. This blending scenario was chosen only for evaluating the impact of composition on the volume of high- level waste glass produced. Special glass compositions were formulated for each waste blend based on glass property models and the properties of similar glasses. These glasses were formulated to meet the applicable viscosity, electrical conductivity, and liquidus temperature constraints for the identified candidate melters. Candidate melters in this study include the low-temperature stirred melter, which operates at 1050{degrees}C; the reference Hanford Waste Vitrification Plant liquid-fed ceramic melter, which operates at 1150{degrees}C; and the high-temperature, joule-heated melter and the cold-crucible melter, which operate over a temperature range of 1150{degrees}C to 1400{degrees}C. In the most conservative case, it is estimated that 61,000 MT of glass will be produced if the Site`s high-level wastes are retrieved by tank farms and processed in the reference joule-heated melter. If an all-tank blend was processed under the same conditions, the reference melter would produce 21,250 MT of glass. If cross-tank blending were used, it is anticipated that $2.0 billion could be saved in repository disposal costs (based on an average disposal cost of $217,000 per canister) by blending the S, SX, B, and T Tank Farm wastes with other wastes prior to vitrification. General blending among all the tank farms is expected to produce great potential benefit.

  19. Reference commercial high-level waste glass and canister definition.

    SciTech Connect

    Slate, S.C.; Ross, W.A.; Partain, W.L.

    1981-09-01

    This report presents technical data and performance characteristics of a high-level waste glass and canister intended for use in the design of a complete waste encapsulation package suitable for disposal in a geologic repository. The borosilicate glass contained in the stainless steel canister represents the probable type of high-level waste product that will be produced in a commercial nuclear-fuel reprocessing plant. Development history is summarized for high-level liquid waste compositions, waste glass composition and characteristics, and canister design. The decay histories of the fission products and actinides (plus daughters) calculated by the ORIGEN-II code are presented.

  20. Comparison of simulants to actual neutralized current acid waste: Process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    SciTech Connect

    Morrey, E.V.; Tingey, J.M.

    1996-04-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs have been established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste is being performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  1. Comparison of simulants to actual neutralized current acid waste: process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    SciTech Connect

    Morrey, E.V.; Tingey, J.M.; Elliott, M.L.

    1996-10-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs were established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste was performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property ,models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  2. Environmental monitoring at Hanford for 1987: Surface and Columbia River data

    SciTech Connect

    Jaquish, R.E.

    1988-08-01

    Environmental monitoring at the Hanford Site, located in southeastern Washington State is conducted for the US Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor the status of chemicals on the site and in the Columbia River. This volume contains the actual raw data used to create the summaries in PNL--6464.

  3. Regulatory Off-Gas Analysis from the Evaporation of Hanford Simulated Waste Spiked with Organic Compounds

    SciTech Connect

    Saito, H.H.

    2001-03-28

    The purposes of this work were to: (1) develop preliminary operating data such as expected concentration endpoints for flow sheet development and evaporator design, and (2) examine the regulatory off-gas emission impacts from the evaporation of relatively organic-rich Hanford Tank 241-AN-107 Envelope C waste simulant containing 14 volatile, semi-volatile and pesticide organic compounds potentially present in actual Hanford RPP waste.

  4. Neptunium estimation in dissolver and high-level-waste solutions

    SciTech Connect

    Pathak, P.N.; Prabhu, D.R.; Kanekar, A.S.; Manchanda, V.K.

    2008-07-01

    This papers deals with the optimization of the experimental conditions for the estimation of {sup 237}Np in spent-fuel dissolver/high-level waste solutions using thenoyltrifluoroacetone as the extractant. (authors)

  5. HIGH-LEVEL OZONE DISINFECTION OF MUNICIPAL WASTEWATER EFFLUENTS

    EPA Science Inventory

    A 20 month operating experimental program was conducted at Marlborough, Massachusetts to evaluate the feasibility, engineering, and economic aspects of achieving high levels of effluent disinfection with ozone. The ozone research pilot facility was designed to operate at a consta...

  6. Removal of cesium from a high-level calcined waste by high temperature volatilization

    SciTech Connect

    Del Debbio, J.A.

    1994-11-01

    Pyrochemical methods are being evaluated for the separation of actinides and fission products from inert material in high-level waste calcine. Separation processes have the potential of reducing waste disposal costs by reducing the volume of high-level waste requiring final disposal in a repository. Tests were conducted to evaluate high temperature volatilization for removing {sup 137}Cs from four types of calcines. The results for pilot plant calcines indicate greater than 99% cesium removal for alumina and fluorinel/sodium calcines heated at 1000{degree}C and 99% removal for zirconia calcine heated at 1100{degree}C. Tests with actual calcine generated at the New Waste Calcining Facility (NWCF) from a blend of aluminium, sodium and zirconium/fluorinel wastes resulted in 96% cesium removal at 1000{degree}C and greater than 99% removal at 1170{degree}C.

  7. Decision Document for Heat Removal from High Level Waste Tanks

    SciTech Connect

    WILLIS, W.L.

    2000-07-31

    This document establishes the combination of design and operational configurations that will be used to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. The chosen method--to use the primary and annulus ventilation systems to remove heat from the high-level waste tanks--is documented herein.

  8. 46 CFR 182.530 - Bilge high level alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Bilge high level alarms. 182.530 Section 182.530 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) MACHINERY INSTALLATION Bilge and Ballast Systems § 182.530 Bilge high level alarms. (a) On a vessel of at least 7.9 meters (26 feet) in...

  9. High-Level Waste System Process Interface Description

    SciTech Connect

    d'Entremont, P.D.

    1999-01-14

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment.

  10. Hanford Site environmental surveillance data report for calendar year 1995

    SciTech Connect

    Bisping, L.E.

    1996-07-01

    Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River Water and Sediment. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1995 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1995 by PNNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface, river monitoring data, and chemical air data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data.

  11. Preliminary safety criteria for organic watch list tanks at the Hanford site

    SciTech Connect

    Webb, A.B.; Stewart, J.L.; Turner, O.A.; Plys, M.G.; Malinovic, B.; Grigsby, J.M.; Camaioni, D.M.; Heasler, P.G.; Samuels, W.O.; Toth, J.J.

    1995-11-01

    Condensed-phase, rapid reactions of organic salts with nitrates/nitrites in Hanford High Level Radioactive Waste single-shell tanks could lead to structural failure of the tanks resulting in significant releases of radionuclides and toxic materials. This report establishes appropriate preliminary safety criteria to ensure that tank wastes will be maintained safe. These criteria show that if actual dry wastes contain less than 1.2 MJ/kg of reactants reaction energy or less 4.5 wt % of total organic carbon, then the waste will be safe and will not propagate if ignited. Waste moisture helps to retard reactions; when waste moisture exceeds 20 wt %, rapid reactions are prevented, regardless of organic carbon concentrations. Aging and degradation of waste materials has been considered to predict the types and amounts to organic compounds present in the waste. Using measurements of 3 waste phases (liquid, salt cake, and sludge) obtained from tank waste samples analyzed in the laboratory, analysis of variance (ANOVA) models were used to estimate waste states for unmeasured tanks. The preliminary safety criteria are based upon calorimetry and propagation testing of likely organic compounds which represent actual tank wastes. These included sodium salts of citrate, formate, acetate and hydroxyethylethylenediaminetricetate (HEDTA). Hot cell tests of actual tank wastes are planned for the future to confirm propagation tests performed in the laboratory. The effects of draining liquids from the tanks which would remove liquids and moisture were considered because reactive waste which is too dry may propagate. Evaporation effects which could remove moisture from the tanks were also calculated. The various ways that the waste could be heated or ignited by equipment failures or tank operations activities were considered and appropriate monitoring and controls were recommended.

  12. Potential Application Of Radionuclide Scaling Factors To High Level Waste Characterization

    SciTech Connect

    Reboul, S. H.

    2013-09-30

    Production sources, radiological properties, relative solubilities in waste, and laboratory analysis techniques for the forty-five radionuclides identified in Hanford's Waste Treatment and Immobilization Plant (WTP) Feed Acceptance Data Quality Objectives (DQO) document are addressed in this report. Based on Savannah River Site (SRS) experience and waste characteristics, thirteen of the radionuclides are judged to be candidates for potential scaling in High Level Waste (HLW) based on the concentrations of other radionuclides as determined through laboratory measurements. The thirteen radionuclides conducive to potential scaling are: Ni-59, Zr-93, Nb-93m, Cd-113m, Sn-121m, Sn-126, Cs-135, Sm-151, Ra-226, Ra-228, Ac-227, Pa-231, and Th-229. The ability to scale radionuclides is useful from two primary perspectives: 1) it provides a means of checking the radionuclide concentrations that have been determined by laboratory analysis; and 2) it provides a means of estimating radionuclide concentrations in the absence of a laboratory analysis technique or when a complex laboratory analysis technique fails. Along with the rationale for identifying and applying the potential scaling factors, this report also provides examples of using the scaling factors to estimate concentrations of radionuclides in current SRS waste and into the future. Also included in the report are examples of independent laboratory analysis techniques that can be used to check results of key radionuclide analyses. Effective utilization of radionuclide scaling factors requires understanding of the applicable production sources and the chemistry of the waste. As such, the potential scaling approaches identified in this report should be assessed from the perspective of the Hanford waste before reaching a decision regarding WTP applicability.

  13. ROAD MAP FOR DEVELOPMENT OF CRYSTAL-TOLERANT HIGH LEVEL WASTE GLASSES

    SciTech Connect

    Fox, K.; Peeler, D.; Herman, C.

    2014-05-15

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. This road map guides the research and development for formulation and processing of crystaltolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will also be addressed in this road map. The planned research described in this road map is motivated by the potential for substantial economic benefits (significant reductions in glass volumes) that will be realized if the current constraints (T1% for WTP and TL for DWPF) are approached in an appropriate and technically defensible manner for defense waste and current melter designs. The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal-tolerant high-level waste (HLW) glasses targeting high waste loadings while still meeting process related limits and melter lifetime expectancies. The modeling effort will be an iterative process, where model form and a broader range of conditions, e.g., glass

  14. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    SciTech Connect

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24

    , fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  15. Hanford spent fuel inventory baseline

    SciTech Connect

    Bergsman, K.H.

    1994-07-15

    This document compiles technical data on irradiated fuel stored at the Hanford Site in support of the Hanford SNF Management Environmental Impact Statement. Fuel included is from the Defense Production Reactors (N Reactor and the single-pass reactors; B, C, D, DR, F, H, KE and KW), the Hanford Fast Flux Test Facility Reactor, the Shipping port Pressurized Water Reactor, and small amounts of miscellaneous fuel from several commercial, research, and experimental reactors.

  16. Hanford well custodians. Revision 1

    SciTech Connect

    Schatz, A.L.; Underwood, D.J.

    1995-02-02

    The Hanford Site Groundwater Protection Management Program recognized the need to integrate monitoring well activities in a centralized manner. A key factor to Hanford Site well integration was the need to clearly identify a responsible party for each of the wells. WHC was asked to identify all wells on site, the program(s) using each well, and the program ultimately responsible for the well. This report lists the custodian and user(s) for each Hanford well and supplies a comprehensive list of all decommissioned and orphaned wells on the Hanford Site. This is the first update to the original report released in December 1993.

  17. Technetium Inventory, Distribution, and Speciation in Hanford Tanks

    SciTech Connect

    Serne, R. Jeffrey; Rapko, Brian M.

    2014-05-02

    The purpose of this report is three fold: 1) assemble the available information regarding technetium (Tc) inventory, distribution between phases, and speciation in Hanford’s 177 storage tanks into a single, detailed, comprehensive assessment; 2) discuss the fate (distribution/speciation) of Tc once retrieved from the storage tanks and processed into a final waste form; and 3) discuss/document in less detail the available data on the inventory of Tc in other "pools" such as the vadose zone below inactive cribs and trenches, below single-shell tanks (SSTs) that have leaked, and in the groundwater below the Hanford Site. A thorough understanding of the inventory for mobile contaminants is key to any performance or risk assessment for Hanford Site facilities because potential groundwater and river contamination levels are proportional to the amount of contaminants disposed at the Hanford Site. Because the majority of the total 99Tc produced at Hanford (~32,600 Ci) is currently stored in Hanford’s 177 tanks (~26,500 Ci), there is a critical need for knowledge of the fate of this 99Tc as it is removed from the tanks and processed into a final solid waste form. Current flow sheets for the Hanford Waste Treatment and Immobilization Plant process show most of the 99Tc will be immobilized as low-activity waste glass that will remain on the Hanford Site and disposed at the Integrated Disposal Facility (IDF); only a small fraction will be shipped to a geologic repository with the immobilized high-level waste. Past performance assessment studies, which focused on groundwater protection, have shown that 99Tc would be the primary dose contributor to the IDF performance.

  18. Criticality safety of high-level tank waste

    SciTech Connect

    Rogers, C.A.

    1995-07-01

    Radioactive waste containing low concentrations of fissile isotopes is stored in underground storage tanks on the Hanford Site in Washington State. The goal of criticality safety is to ensure that this waste remains subcritical into the indefinite future without supervision. A large ratio of solids to plutonium provides an effective way of ensuring a low plutonium concentration. Since the first waste discharge, a program of audits and appraisals has ensured that operations are conducted according to limits and controls applied to them. In addition, a program of surveillance and characterization maintains watch over waste after discharge.

  19. HANFORD TANK CLEANUP UPDATE

    SciTech Connect

    BERRIOCHOA MV

    2011-04-07

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  20. Disposal of Hanford site tank wastes

    SciTech Connect

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 {times} 10{sup 5} m{sup 3} of solid and liquid wastes. Wastes in the SSTs contain about 5.7 {times} 10{sup 18} Bq (170 MCi) of various radionuclides including {sup 90}Sr, {sup 99}Tc, {sup 137}Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 {times} 10{sup 4} m{sup 3} of liquid (mainly) and solid wastes; approximately 4 {times} 10{sup 18}Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes.

  1. Program plan for evaluation of the Ferrocyanide Waste Tank safety issue at the Hanford Site

    SciTech Connect

    Borsheim, G.L.; Meacham, J.E.; Cash, R.J.; Dukelow, G.T.

    1994-03-01

    This document describes the background, priorities, strategy and logic, and task descriptions for the Ferrocyanide Waste Tank Safety Program. The Ferrocyanide Safety Program was established in 1990 to provide resolution of a major safety issue identified for 24 high-level radioactive waste tanks at the Hanford Site.

  2. Contaminant desorption during long-term leaching of hydroxide-weathered Hanford sediments

    SciTech Connect

    Thompson, A.; Steefel, C.I.; Perdrial, N.; Chorover, J.

    2009-11-01

    Considerable efforts have been made toward understanding the behavior of contaminants introduced into sediments surrounding high-level radioactive waste (HLRW) storage sites at several Department of Energy (DOE) facilities (Hanford Site, WA; Savannah River Site, SC; Oak Ridge Site, TN).

  3. HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT

    SciTech Connect

    HERTING DL

    2008-09-16

    The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

  4. Caustic Leaching of Sludges from Selected Hanford Tanks

    SciTech Connect

    Chase, C.W.; Egan, B.Z.; Spencer, B.B.

    1998-08-01

    The objective of this project was to measure the caustic dissolution behavior of sludge components from selected Hanford waste tank sludge samples under different conditions. The dissolution of aluminum, chromium, and other constituents of actual sludge samples in aqueous sodium hydroxide solution was evaluated using various values of temperature, sodium hydroxide concentration, volume of caustic solution per unit mass of sludge (liquid:solids ratio), and leaching time.

  5. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    SciTech Connect

    Rechard, R.P.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

  6. An overview of very high level software design methods

    NASA Technical Reports Server (NTRS)

    Asdjodi, Maryam; Hooper, James W.

    1988-01-01

    Very High Level design methods emphasize automatic transfer of requirements to formal design specifications, and/or may concentrate on automatic transformation of formal design specifications that include some semantic information of the system into machine executable form. Very high level design methods range from general domain independent methods to approaches implementable for specific applications or domains. Applying AI techniques, abstract programming methods, domain heuristics, software engineering tools, library-based programming and other methods different approaches for higher level software design are being developed. Though one finds that a given approach does not always fall exactly in any specific class, this paper provides a classification for very high level design methods including examples for each class. These methods are analyzed and compared based on their basic approaches, strengths and feasibility for future expansion toward automatic development of software systems.

  7. High Level Waste (HLW) Feed Process Control Strategy

    SciTech Connect

    STAEHR, T.W.

    2000-06-14

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system.

  8. Disposal of high-level nuclear waste in space

    NASA Astrophysics Data System (ADS)

    Coopersmith, Jonathan

    1992-08-01

    A solution of launching high-level nuclear waste into space is suggested. Disposal in space includes solidifying the wastes, embedding them in an explosion-proof vehicle, and launching it into earth orbit, and then into a solar orbit. The benefits of such a system include not only the safe disposal of high-level waste but also the establishment of an infrastructure for large-scale space exploration and development. Particular attention is given to the wide range of technical choices along with the societal, economic, and political factors needed for success.

  9. Sterilization, high-level disinfection, and environmental cleaning.

    PubMed

    Rutala, William A; Weber, David J

    2011-03-01

    Failure to perform proper disinfection and sterilization of medical devices may lead to introduction of pathogens, resulting in infection. New techniques have been developed for achieving high-level disinfection and adequate environmental cleanliness. This article examines new technologies for sterilization and high-level disinfection of critical and semicritical items, respectively, and because semicritical items carry the greatest risk of infection, the authors discuss reprocessing semicritical items such as endoscopes and automated endoscope reprocessors, endocavitary probes, prostate biopsy probes, tonometers, laryngoscopes, and infrared coagulation devices. In addition, current issues and practices associated with environmental cleaning are reviewed. PMID:21315994

  10. High level radioactive waste management facility design criteria

    SciTech Connect

    Sheikh, N.A.; Salaymeh, S.R.

    1993-10-01

    This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding.

  11. The Use of ARTEMIS with High-Level Applications

    SciTech Connect

    B. A. Bowling; H. Shoaee; S. Witherspoon

    1995-10-01

    ARTEMIS is an online accelerator modeling server developed at CEBAF. One of the design goals of ARTEMIS was to provide an integrated modeling environment for high- level accelerator diagnostic and control applications such as automated beam steering, Linac Energy management (LEM) and the fast feedback system. This report illustrates the use of ARTEMIS in these applications as well as the application interface using the EPICS cdev device support API. Concentration is placed on the design and implementation aspects of high- level applications which utilize the ARTEMIS server for information on beam dynamics. Performance benchmarks for various model operations provided by ARTEMIS are also discussed.

  12. Environmental assessment: Reference repository location, Hanford site, Washington

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites available for characterization.

  13. Precipitation of Nitrate-Cancrinite in Hanford Tank Sludge

    SciTech Connect

    Buck, Edgar C.; McNamara, Bruce K.

    2004-08-15

    The chemistry of underground storage tanks containing high-level waste (HLW) at the Hanford Site in Washington State is an area of continued research interest. Thermodynamic models have predicted the formation of analcime and clinoptilolite in Hanford Tank, rather than cancrinite; however, these predictions were based on carbonate-cancrinite. We report the first observation of a nitrate-cancrinite [possibly Na{sub 8}K(AlSiO{sub 4}){sub 6}(NO{sub 3}){sub 2} {center_dot} nH{sub 2}O] in fully radioactive Hanford Tank waste evaporated to 6M, 8M, and 10M NaOH concentrations. The nitrate-cancrinite phase formed spherical aggregates (4 {micro}m in diameter) that consisted of platy hexagonal crystals ({approx}0.2 {micro}m thick). {sup 137}Cs was concentrated in these silicate structures. These phase possessed identical morphology as nitrate-cancrinite precipitated in Hanford Tank non-radioactive simulant tests supporting the contention that it is possible to develop non-radioactive artificial sludges. This investigation points to the continued importance of understanding the solubility of NO{sub 3}-cancrinite and related phases.

  14. Environmental assessment: Reference repository location, Hanford site, Washington

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization.

  15. 324 Radiochemical engineering cells and high level vault tanks mixed waste compliance status

    SciTech Connect

    Not Available

    1994-12-29

    The 324 Building in the Hanford 300 Area contains Radiochemical Engineering Cells and High Level Vault tanks (the {open_quotes}REC/HLV{close_quotes}) for research and development activities involving radioactive materials. Radioactive mixed waste within this research installation, found primarily in B-Cell and three of the high level vault tanks, is subject to RCRA/DWR ({open_quotes}RCRA{close_quotes}) regulations for storage. This white paper provides a baseline RCRA compliance summary of MW management in the REC/HLV, based on best available knowledge. The REC/HLV compliance project, of which this paper is a part, is intended to achieve the highest degree of compliance practicable given the special technical difficulties of managing high activity radioactive materials, and to assure protection of human health and safety and the environment. The REC/HLV was constructed in 1965 to strict standards for the safe management of highly radioactive materials. Mixed waste in the REC/HLV consists of discarded tools and equipment, dried feed stock from nuclear waste melting experiments, contaminated particulate matter, and liquid feed stock from various experimental programs in the vault tanks. B-Cell contains most of these materials. Total radiological inventory in B-Cell is estimated at 3 MCi, about half of which is potentially {open_quotes}dispersible{close_quotes}, that is, it is in small pieces or mobile particles. Most of the mixed waste currently in the REC/HLV was generated or introduced before mixed wastes were subjected to RCRA in 1987.

  16. Development of a Thermodynamic Model for the Hanford Tank Waste Operations Simulator - 12193

    SciTech Connect

    Carter, Robert; Seniow, Kendra

    2012-07-01

    The Hanford Tank Waste Operations Simulator (HTWOS) is the current tool used by the Hanford Tank Operations Contractor for system planning and assessment of different operational strategies. Activities such as waste retrievals in the Hanford tank farms and washing and leaching of waste in the Waste Treatment and Immobilization Plant (WTP) are currently modeled in HTWOS. To predict phase compositions during these activities, HTWOS currently uses simple wash and leach factors that were developed many years ago. To improve these predictions, a rigorous thermodynamic framework has been developed based on the multi-component Pitzer ion interaction model for use with several important chemical species in Hanford tank waste. These chemical species are those with the greatest impact on high-level waste glass production in the WTP and whose solubility depends on the processing conditions. Starting with Pitzer parameter coefficients and species chemical potential coefficients collated from open literature sources, reconciliation with published experimental data led to a self-consistent set of coefficients known as the HTWOS Pitzer database. Using Gibbs energy minimization with the Pitzer ion interaction equations in Microsoft Excel,1 a number of successful predictions were made for the solubility of simple mixtures of the chosen species. Currently, this thermodynamic framework is being programmed into HTWOS as the mechanism for determining the solid-liquid phase distributions for the chosen species, replacing their simple wash and leach factors. Starting from a variety of open literature sources, a collection of Pitzer parameters and species chemical potentials, as functions of temperature, was tested for consistency and accuracy by comparison with available experimental thermodynamic data (e.g., osmotic coefficients and solubility). Reconciliation of the initial set of parameter coefficients with the experimental data led to the development of the self-consistent set known

  17. The ATLAS Data Acquisition and High Level Trigger system

    NASA Astrophysics Data System (ADS)

    The ATLAS TDAQ Collaboration

    2016-06-01

    This paper describes the data acquisition and high level trigger system of the ATLAS experiment at the Large Hadron Collider at CERN, as deployed during Run 1. Data flow as well as control, configuration and monitoring aspects are addressed. An overview of the functionality of the system and of its performance is presented and design choices are discussed.

  18. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Definitions § 227.30...

  19. MIXING PROCESSES IN HIGH-LEVEL WASTE TANKS

    EPA Science Inventory

    Flammable gases can be generated in DOE high-level waste tanks, including radiolytic hydrogen, and during cesium precipitation from salt solutions, benzene. Under normal operating conditions the potential for deflagration or detonation from these gases is precluded by purging and...

  20. THE XAL INFRASTRUCTURE FOR HIGH LEVEL CONTROL ROOM APPLICATIONS

    SciTech Connect

    Shishlo, Andrei P; Allen, Christopher K; Chu, Paul; Galambos, John D; Pelaia II, Tom

    2009-01-01

    XAL is a Java programming framework for building high-level control applications related to accelerator physics. The structure, details of implementation, and interaction between components, auxiliary XAL packages, and the latest modifications are discussed. A general overview of XAL applications created for the SNS project is presented.

  1. High-Level waste process and product data annotated bibliography

    SciTech Connect

    Stegen, G.E.

    1996-02-13

    The objective of this document is to provide information on available issued documents that will assist interested parties in finding available data on high-level waste and transuranic waste feed compositions, properties, behavior in candidate processing operations, and behavior on candidate product glasses made from those wastes. This initial compilation is only a partial list of available references.

  2. Typewriter Modifications for Persons Who Are High-Level Quadriplegics.

    ERIC Educational Resources Information Center

    O'Reagan, James R.; And Others

    Standard, common electric typewriters are not completely suited to the needs of a high-level quadriplegic typing with a mouthstick. Experiences show that for complete control of a typewriter a mouthstick user needs the combined features of one-button correction, electric forward and reverse indexing, and easy character viewing. To modify a…

  3. The Politics of High-Level Manpower Supply in Tanzania

    ERIC Educational Resources Information Center

    Brooke-Smith, Robin

    1978-01-01

    In its policies related to high-level manpower, the Tanzanian Government attaches great importance to the university, viewing it as a key institution in its policies for national development. Describes the difficulties the administration of President Nyerere has had in using the university as a political tool and analyzes various instances of…

  4. Towards increased waste loading in high level waste glasses: Developing a better understanding of crystallization behavior

    DOE PAGESBeta

    Marra, James C.; Kim, Dong -Sang

    2014-12-18

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Thus, recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized.more » Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (with higher Al2O3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.« less

  5. Minor component study for simulated high-level nuclear waste glasses (Draft)

    SciTech Connect

    Li, H.; Langowskim, M.H.; Hrma, P.R.; Schweiger, M.J.; Vienna, J.D.; Smith, D.E.

    1996-02-01

    Hanford Site single-shell tank (SSI) and double-shell tank (DSI) wastes are planned to be separated into low activity (or low-level waste, LLW) and high activity (or high-level waste, HLW) fractions, and to be vitrified for disposal. Formulation of HLW glass must comply with glass processibility and durability requirements, including constraints on melt viscosity, electrical conductivity, liquidus temperature, tendency for phase segregation on the molten glass surface, and chemical durability of the final waste form. A wide variety of HLW compositions are expected to be vitrified. In addition these wastes will likely vary in composition from current estimates. High concentrations of certain troublesome components, such as sulfate, phosphate, and chrome, raise concerns about their potential hinderance to the waste vitrification process. For example, phosphate segregation in the cold cap (the layer of feed on top of the glass melt) in a Joule-heated melter may inhibit the melting process (Bunnell, 1988). This has been reported during a pilot-scale ceramic melter run, PSCM-19, (Perez, 1985). Molten salt segregation of either sulfate or chromate is also hazardous to the waste vitrification process. Excessive (Cr, Fe, Mn, Ni) spinel crystal formation in molten glass can also be detrimental to melter operation.

  6. Millimeter-Wave Measurements of High Level and Low Level Activity Glass Melts

    SciTech Connect

    Woskov, Paul P.; Sundaram, S.K.; Daniel, William E., Jr.

    2006-06-01

    The primary objectives of the current research is to develop on-line sensors for characterizing molten glass in high-level and low-activity waste glass melters using millimeter-wave (MMW) technology and to use this technology to do novel research of melt dynamics. Existing and planned waste glass melters lack sophisticated diagnostics due to the hot, corrosive, and radioactive melter environments. Without process control diagnostics, the Defense Waste Processing Facility (DWPF) and the Waste Treatment Plant (WTP) under construction at Hanford operate by a feed forward process control scheme that relies on predictive models with large uncertainties. This scheme severely limits production throughput and waste loading. Also operations at DWPF have shown susceptibility to anomalies such as pouring, foaming, and combustion gas build up, which can seriously disrupt operations. Future waste chemistries will be even more challenging. The scientific goals of this project are to develop new reliable on-line monitoring capability for important glass process parameters such as temperature profiles, emissivity, density, viscosity, and other characteristics using the unique advantages of millimeter wave electromagnetic radiation that can be eventually implemented in the operating melters. Once successfully developed and implemented, significant cost savings would be realized in melter operations by increasing production through put, reduced storage volumes (through higher waste loading), and reduced risks (prevention or mitigation of anomalies).

  7. Development and Deployment of Advanced Corrosion Monitoring Systems for High-Level Waste Tanks

    SciTech Connect

    Terry, M. T.; Edgemon, G. L.; Mickalonis, J. I.; Mizia, R. E.

    2002-02-26

    This paper describes the results of a collaborative technology development program, sponsored by the Tanks Focus Area, to use electrochemical noise (EN) for corrosion monitoring in underground storage tanks. These tanks, made of carbon or stainless steels, contain high-level radioactive liquid waste (HLW) generated by weapons production or radioactive liquid waste from nuclear fuel reprocessing activities at several Department of Energy (DOE) sites. The term EN is used to describe low frequency fluctuations in current and voltage measurements associated with corrosion. In their most basic form, EN-based corrosion monitoring systems measure and record these fluctuations over time from electrodes immersed in the environment of interest--in this case, radioactive tank waste. The resulting EN signals have characteristic patterns for different corrosion mechanisms. In recent years, engineers and scientists from several DOE sites, in collaboration with several private companies, have conducted laboratory studies and field applications to correlate the EN signals with corrosion mechanisms active in the radioactive waste tanks. The participating DOE sites are Hanford, Savannah River, Oak Ridge Reservation and the Idaho National Engineering and Environmental Laboratory. The commercial vendors have included HiLine Engineering and Fabrication, Inc., EIC Laboratories, Inc., and AEA Technologies. Successful deployment of the EN technology will yield improved information of waste tank corrosion conditions, better tank management, and lower overall cost.

  8. Development and deployment of advanced corrosion monitoring systems for high-level waste tanks.

    SciTech Connect

    Terry, M. T.; Edgemon, G. L.; Mickalonis, J. I.; Mizia, R. E.

    2002-01-01

    This paper describes the results of a collaborative technology development program, sponsored by the Tanks Focus Area, to use electrochemical noise (EN) for corrosion monitoring in underground storage tanks. These tanks, made of carbon or stainless steels, contain high-level radioactive liquid waste (HLW) generated by weapons production or radioactive liquid waste from nuclear fuel reprocessing activities at several Department of Energy (DOE) sites. The term EN is used to describe low frequency fluctuations in current and voltage measurements associated with corrosion. In their most basic form, EN-based corrosion monitoring systems measure and record these fluctuations over time from electrodes immersed in the environment of interest - in this case, radioactive tank waste. The resulting EN signals have characteristic patterns for different corrosion mechanisms. In recent years, engineers and scientists from several DOE sites, in collaboration with several private companies, have conducted laboratory studies and field applications to correlate the EN signals with corrosion mechanisms active in the radioactive waste tanks. The participating DOE sites are Hanford, Savannah River, Oak Ridge Reservation and the Idaho National Engineering and Environmental Laboratory. The commercial vendors have included HiLine Engineering and Fabrication, Inc., EIC Laboratories, Inc., and M A Technologies. Successful deployment of the EN technology will yield improved information of waste tank corrosion conditions, better tank management, and lower overall cost.

  9. Chemical Speciation of Americium, Curium and Selected Tetravalent Actinides in High Level Waste

    SciTech Connect

    Felmy, Andrew R.

    2004-06-01

    Large volumes of high-level waste (HLW) currently stored in tanks at DOE sites contain both sludges and supernatants. The sludges are composed of insoluble precipitates of actinides, radioactive fission products, and nonradioactive components. The supernatants are alkaline carbonate solutions, which can contain soluble actinides, fission products, metal ions, and high concentrations of major electrolytes including sodium hydroxide, nitrate, nitrite, phosphate, carbonate, aluminate, sulfate, and organic complexants. The organic complexants include several compounds that can form strong aqueous complexes with actinide species and fission products including ethylenediaminetetraacetic acid (EDTA), N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), citrate, glycolate, gluconate, and degradation products, formate and oxalate. The goal of this project is to determine the effects of hydrolysis, carbonate complexation, and metal ion displacement on trivalent and selected tetravalent actinide speciation in the presence of organic chelates present in tank waste and to use these data to develop accurate predictive thermodynamic models for use in chemical engineering applications at Hanford and other DOE sites.

  10. National long-term high-level waste-technology program

    NASA Astrophysics Data System (ADS)

    Gray, P. L.

    The national program for long-term management of high level waste (HLW) from nuclear fuels reprocessing is discussed. This covers only DOE defense wastes. Current emphasis is on solidification of waste into a form that, along with additional barriers, may be permanently stored in a repository. An integrated national plan incorporates all the elements of such an overall HLW disposal system. Interim storage is in near-surface tanks at the Hanford and Savannah River sites. At the Idaho site, waste is stored in bins after being calcined. Some Idaho waste is liquid and is also stored in tanks before calcination. Retrieval and immobilization of HLW into a solid, low-release form represent the major elements for which our long-term program has responsibility. Once solidified, the waste will temporarily remain onsite until the final disposal site is prepared for receipt of waste. Currently, a geologic repository is favored for ultimate disposal, although other possibilities such as seabed, icecap, space, and near-surface disposal are also being considered.

  11. Raman Based Process Monitor For Continuous Real-Time Analysis Of High Level Radioactive Waste Components

    SciTech Connect

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Schlahta, Stephan N.

    2008-05-27

    ABSTRACT A new monitoring system was developed at Pacific Northwest National Laboratory (PNNL) to quickly generate real-time data/analysis to facilitate a timely response to the dynamic characteristics of a radioactive high level waste stream. The developed process monitor features Raman and Coriolis/conductivity instrumentation configured for the remote monitoring, MatLab-based chemometric data processing, and comprehensive software for data acquisition/storage/archiving/display. The monitoring system is capable of simultaneously and continuously quantifying the levels of all the chemically significant anions within the waste stream including nitrate, nitrite, phosphate, carbonate, chromate, hydroxide, sulfate, and aluminate. The total sodium ion concentration was also determined independently by modeling inputs from on-line conductivity and density meters. In addition to the chemical information, this monitoring system provides immediate real-time data on the flow parameters, such as flow rate and temperature, and cumulative mass/volume of the retrieved waste stream. The components and analytical tools of the new process monitor can be tailored for a variety of complex mixtures in chemically harsh environments, such as pulp and paper processing liquids, electroplating solutions, and radioactive tank wastes. The developed monitoring system was tested for acceptability before it was deployed for use in Hanford Tank S-109 retrieval activities. The acceptance tests included performance inspection of hardware, software, and chemometric data analysis to determine the expected measurement accuracy for the different chemical species that are encountered during S-109 retrieval.

  12. Raman Based Process Monitor for Continuous Real-Time Analysis Of High Level Radioactive Waste Components

    SciTech Connect

    Bryan, S.; Levitskaia, T.; Schlahta, St.

    2008-07-01

    A new monitoring system was developed at Pacific Northwest National Laboratory (PNNL) to quickly generate real-time data/analysis to facilitate a timely response to the dynamic characteristics of a radioactive high level waste stream. The developed process monitor features Raman and Coriolis/conductivity instrumentation configured for the remote monitoring, MatLab-based chemometric data processing, and comprehensive software for data acquisition/storage/archiving/display. The monitoring system is capable of simultaneously and continuously quantifying the levels of all the chemically significant anions within the waste stream including nitrate, nitrite, phosphate, carbonate, chromate, hydroxide, sulfate, and aluminate. The total sodium ion concentration was also determined independently by modeling inputs from on-line conductivity and density meters. In addition to the chemical information, this monitoring system provides immediate real-time data on the flow parameters, such as flow rate and temperature, and cumulative mass/volume of the retrieved waste stream. The components and analytical tools of the new process monitor can be tailored for a variety of complex mixtures in chemically harsh environments, such as pulp and paper processing liquids, electroplating solutions, and radioactive tank wastes. The developed monitoring system was tested for acceptability before it was deployed for use in Hanford Tank S-109 retrieval activities. The acceptance tests included performance inspection of hardware, software, and chemometric data analysis to determine the expected measurement accuracy for the different chemical species that are encountered during S-109 retrieval. (authors)

  13. GLASS FORMULATION DEVELOPMENT TO SUPPORT MELTER TESTING TO DEMONSTRATE ENHANCED HIGH LEVEL WASTE THROUGHPUT

    SciTech Connect

    Marra, J; David Peeler, D; Tommy Edwards, T; Kevin Fox, K; Amanda Youchak, A; James Gillam, J

    2007-08-17

    The U.S. Department of Energy (DOE) is currently processing high-level waste (HLW) through a Joule-heated melter (JHM) at the Savannah River Site (SRS) and plans to vitrify HLW and Low activity waste (LAW) at the Hanford Site. Over the past few years at the DWPF, work has concentrated on increasing waste throughput. These efforts are continuing with an emphasis on high alumina content feeds. High alumina feeds have presented specific challenges for the JHM technology regarding the ability to increase waste loading yet still maintain product quality and adequate throughput. Alternatively, vitrification technology innovations are also being investigated as a means to increase waste throughput. The Cold Crucible Induction Melter (CCIM) technology affords the opportunity for higher vitrification process temperatures as compared to the current reference JHM technology. Higher process temperatures may allow for higher waste loading and higher melt rate. Glass formulation testing to support melter demonstration testing was recently completed. This testing was specifically aimed at high alumina concentration wastes. Glass composition property models were utilized as a guide for formulation development. Both CCIM and JHM testing will be conducted so glass formulation testing was targeted at both technologies with a goal to significantly increase waste loading without compromising product quality.

  14. High-level waste borosilicate glass a compendium of corrosion characteristics. Volume 1

    SciTech Connect

    Cunnane, J.C.; Bates, J.K.; Bradley, C.R.

    1994-03-01

    Current plans call for the United States Department of Energy (DOE) to start up facilities for vitrification of high-level radioactive waste (HLW) stored in tanks at the Savannah River Site, Aiken, South Carolina, in 1995; West Valley Demonstration Project, West Valley, New York, in 1996; and at the Hanford Site, Richland, Washington, after the year 2000. The product from these facilities will be canistered HLW borosilicate glass, which will be stored, transported, and eventually disposed of in a geologic repository. The behavior of this glass waste product, under the range of likely service conditions, is the subject of considerable scientific and public interest. Over the past few decades, a large body of scientific information on borosilicate waste glass has been generated worldwide. The intent of this document is to consolidate information pertaining to our current understanding of waste glass corrosion behavior and radionuclide release. The objective, scope, and organization of the document are discussed in Section 1.1, and an overview of borosilicate glass corrosion is provided in Section 1.2. The history of glass as a waste form and the international experience with waste glass are summarized in Sections 1.3 and 1.4, respectively.

  15. Towards increased waste loading in high level waste glasses: Developing a better understanding of crystallization behavior

    SciTech Connect

    Marra, James C.; Kim, Dong -Sang

    2014-12-18

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Thus, recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (with higher Al2O3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.

  16. An Approach for the Analysis of Regulatory Analytes in High Level Radioactive Waste Stored at Hanford, Richland, Washington

    SciTech Connect

    Wiemers, K.D.; Miller, M.; Lerchen, M.E.

    1999-01-04

    Radiation levels, salt concentration, and the oxidizing nature of the waste dictates modifications to the SW-846 methods. Modified methods will be used to meet target EQLs and QC currently in SW-846. Method modifications will be validated per SW-846 and HASQARD and will be documented consistent with WAC 173-303-910. The affect of modifications to holding times and storage conditions will be evaluated using techniques developed by Maskarinec and Bayne (1996). After validating the methods and performing the holding time study on a minimum of two Phase 1 candidate feed source tank wastes, DOE and Ecology will assess: whether different methods are needed, whether holding time/storage conditions should be altered, whether the high priority analyte list should be refined, and which additional tank waste needs to be characterized.

  17. Electronmagnetic induction probe calibration for electrical conductivity measurements and moisture content determination of Hanford high level waste

    SciTech Connect

    Wittekind, W.D., Westinghouse Hanford

    1996-05-23

    Logic of converting EMI measured electrical conductivity to moisture with expected uncertainty. Estimates from present knowledge, assumptions, and measured data. Archie`s Law has been used since the 1940`s to relate electrical conductivity in porous media to liquid volume fraction. Measured electrical conductivity to moisture content uses: Porosity, Interstitial liquid electrical conductivity, Solid particle density,Interstitial liquid density, and interstitial liquid water content. The uncertainty of assumed values is calculated to determine the final moisture wt.% result uncertainty.

  18. Hanford Sludge Simulant Selection for Soil Mechanics Property Measurement

    SciTech Connect

    Wells, Beric E.; Russell, Renee L.; Mahoney, Lenna A.; Brown, Garrett N.; Rinehart, Donald E.; Buchmiller, William C.; Golovich, Elizabeth C.; Crum, Jarrod V.

    2010-03-23

    The current System Plan for the Hanford Tank Farms uses relaxed buoyant displacement gas release event (BDGRE) controls for deep sludge (i.e., high level waste [HLW]) tanks, which allows the tank farms to use more storage space, i.e., increase the sediment depth, in some of the double-shell tanks (DSTs). The relaxed BDGRE controls are based on preliminary analysis of a gas release model from van Kessel and van Kesteren. Application of the van Kessel and van Kesteren model requires parametric information for the sediment, including the lateral earth pressure at rest and shear modulus. No lateral earth pressure at rest and shear modulus in situ measurements for Hanford sludge are currently available. The two chemical sludge simulants will be used in follow-on work to experimentally measure the van Kessel and van Kesteren model parameters, lateral earth pressure at rest, and shear modulus.

  19. Washing and caustic leaching of Hanford Tank C-106 sludge

    SciTech Connect

    Lumetta, G.J.; Wagner, M.J.; Hoopes, F.V.; Steele, R.T.

    1996-10-01

    This report describes the results of a laboratory-scale washing and caustic leaching test performed on sludge from Hanford Tank C-106. The purpose of this test was to determine the behavior of important sludge components when subjected to washing with dilute or concentrated sodium hydroxide solutions. The results of this laboratory-scale test were used to support the design of a bench-scale washing and leaching process used to prepare several hundred grams of high-level waste solids for vitrification tests to be done by private contractors. The laboratory-scale test was conducted at Pacific Northwest Laboratory in FY 1996 as part of the Hanford privatization effort. The work was funded by the US Department of Energy through the Tank Waste Remediation System (TWRS; EM-30).

  20. Tank vapor mitigation requirements for Hanford Tank Farms

    SciTech Connect

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  1. Neptunium storage at Hanford

    SciTech Connect

    Alderman, C.J.; Shiraga, S.S.; Schwartz, R.A.; Smith, R.J.; Wootan, D.W.

    1993-06-01

    A decision must be made regarding whether the United State`s stockpile of neptunium should be discarded into the waste stream or kept for the production of Pu-238. Although the cost of long term storage is not inconsequential, to dispose of the material means the closing of our option to maintain control over our Pu-238 stockpile. Within the Fuels and Materials Examination Facility at Hanford there exists a remotely operated facility that can be converted for neptunium storage. This paper describes the facility and the anticipated handling requirements.

  2. Linguistic Theory and Actual Language.

    ERIC Educational Resources Information Center

    Segerdahl, Par

    1995-01-01

    Examines Noam Chomsky's (1957) discussion of "grammaticalness" and the role of linguistics in the "correct" way of speaking and writing. It is argued that the concern of linguistics with the tools of grammar has resulted in confusion, with the tools becoming mixed up with the actual language, thereby becoming the central element in a metaphysical…

  3. Evaluation and selection of candidate high-level waste forms

    SciTech Connect

    Bernadzikowski, T. A.; Allender, J. S.; Butler, J. L.; Gordon, D. E.; Gould, Jr., T. H.; Stone, J. A.

    1982-03-01

    Seven candidate waste forms being developed under the direction of the Department of Energy's National High-Level Waste (HLW) Technology Program, were evaluated as potential media for the immobilization and geologic disposal of high-level nuclear wastes. The evaluation combined preliminary waste form evaluations conducted at DOE defense waste-sites and independent laboratories, peer review assessments, a product performance evaluation, and a processability analysis. Based on the combined results of these four inputs, two of the seven forms, borosilicate glass and a titanate based ceramic, SYNROC, were selected as the reference and alternative forms for continued development and evaluation in the National HLW Program. Both the glass and ceramic forms are viable candidates for use at each of the DOE defense waste-sites; they are also potential candidates for immobilization of commercial reprocessing wastes. This report describes the waste form screening process, and discusses each of the four major inputs considered in the selection of the two forms.

  4. Radioactive high level waste insight modelling for geological disposal facilities

    NASA Astrophysics Data System (ADS)

    Carter, Alexander; Kelly, Martin; Bailey, Lucy

    Within this paper we present a simplified analytical model to provide insight into the key performance measures of a generic disposal system for high level waste within a geological disposal facility. The model assumes a low solubility waste matrix within a corrosion resistant disposal container surrounded by a low permeability buffer. Radionuclides migrate from the disposal area through a porous geosphere to the biosphere and give a radiological dose to a receptor. The system of equations describing the migration is transformed into Laplace space and an approximation used to determine peak values for the radionuclide mass transfer rate entering the biosphere. Results from the model are compared with those from more detailed numerical models for key radionuclides in the UK high level waste inventory. Such an insight model can provide a valuable second line of argument to assist in confirming the results of more detailed models and build confidence in the safety case for a geological disposal facility.

  5. RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS

    SciTech Connect

    Fox, K.

    2010-09-07

    High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

  6. The tracking of high level waste shipments-TRANSCOM system

    SciTech Connect

    Johnson, P.E.; Joy, D.S.; Pope, R.B.

    1995-12-31

    The TRANSCOM (transportation tracking and communication) system is the U.S. Department of Energy`s (DOE`s) real-time system for tracking shipments of spent fuel, high-level wastes, and other high-visibility shipments of radioactive material. The TRANSCOM system has been operational since 1988. The system was used during FY1993 to track almost 100 shipments within the US.DOE complex, and it is accessed weekly by 10 to 20 users.

  7. Automatic rule generation for high-level vision

    NASA Technical Reports Server (NTRS)

    Rhee, Frank Chung-Hoon; Krishnapuram, Raghu

    1992-01-01

    Many high-level vision systems use rule-based approaches to solving problems such as autonomous navigation and image understanding. The rules are usually elaborated by experts. However, this procedure may be rather tedious. In this paper, we propose a method to generate such rules automatically from training data. The proposed method is also capable of filtering out irrelevant features and criteria from the rules.

  8. Case for retrievable high-level nuclear waste disposal

    USGS Publications Warehouse

    Roseboom, Eugene H., Jr.

    1994-01-01

    Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.

  9. Mixing Processes in High-Level Waste Tanks - Final Report

    SciTech Connect

    Peterson, P.F.

    1999-05-24

    The mixing processes in large, complex enclosures using one-dimensional differential equations, with transport in free and wall jets is modeled using standard integral techniques. With this goal in mind, we have constructed a simple, computationally efficient numerical tool, the Berkeley Mechanistic Mixing Model, which can be used to predict the transient evolution of fuel and oxygen concentrations in DOE high-level waste tanks following loss of ventilation, and validate the model against a series of experiments.

  10. [Corrosion testing of high level radioactive waste. Final report

    SciTech Connect

    1996-06-01

    Alloys under consideration as candidates for the high level nuclear waste containers at Yucca Mountain were exposed to a range of corrosion conditions and their performance measured. The alloys tested were Incoloy 825, 70/30 Copper-Nickel, Monel 400, Hastelloy C- 22, and low carbon steel. The test conditions varied were: temperature, concentration, agitation, and crevice simulation. Only in the case of carbon steel was significant attack noted. This attack appeared to be transport limited.

  11. Decomposition of tetraphenylborate precipitates used to isolate Cs-137 from Savannah River Site high-level waste

    SciTech Connect

    Ferrara, D.M.; Bibler, N.E.; Ha, B.C.

    1993-03-01

    This paper presents results of the radioactive demonstration of the Precipitate Hydrolysis Process (PHP) that will be performed in the Defense Waste Processing Facility (DWPF) at the Savannah River Site. The PHP destroys the tetraphenylborate precipitate that is used at SRS to isolate Cs-137 from caustic High-Level Waste (HLW) supernates. This process is necessary to decrease the amount of organic compounds going to the melter in the DWPF. Actual radioactive precipitate containing Cs-137 was used for this demonstration.

  12. FLUOR HANFORD DECOMMISSIONING UPDATE

    SciTech Connect

    GERBER MS

    2008-04-21

    Fluor Hanford is completing D&D of the K East Basin at the U.S. Department of Energy's (DOE's) Hanford Site in southeastern Washington State this spring, with demolition expected to begin in June. Located about 400 yards from the Columbia River, the K East Basin is one of two indoor pools that formerly contained irradiated nuclear fuel, radioactive sludge and tons of contaminated debris. In unique and path-breaking work, workers finished removing the spent fuel from the K Basins in 2004. In May 2007, workers completed vacuuming the sludge into containers in the K East Basin, and transferring it into containers in the K West Basin. In December, they finished vacuuming the remainder of K West Basin sludge into these containers. The K East Basin was emptied of its radioactive inventory first because it was more contaminated than the K West Basin, and had leaked in the past. In October 2007, Fluor Hanford began physical D&D of the 8,400-square foot K East Basin by pouring approximately 14-inches of grout into the bottom of it. Grout is a type of special cement used for encasing waste. Two months later, Fluor Hanford workers completed sluicing contaminated sand from the large filter that had sieved contaminants from the basin water for more than 50 years. Next, they poured grout into the filter housing and the vault that surrounds the filter, as well as into ion exchange columns that also helped filter basin water. For a six-week period in February and March, personnel drained the approximately one million gallons of contaminated water from the K East Basin. The effort required more than 200 tanker truck loads that transported the water to an effluent treatment facility for treatment and then release. A thin fixative was also applied to the basin walls as the water was removed to hold residual contamination in place. As soon as the water was out of the basin, Fluor pumped in approximately 18 feet of 'controlled density fill' material (somewhat similar to sand) to shield

  13. Handbook of high-level radioactive waste transportation

    SciTech Connect

    Sattler, L.R.

    1992-10-01

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government`s system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government`s program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project.

  14. High level cognitive information processing in neural networks

    NASA Technical Reports Server (NTRS)

    Barnden, John A.; Fields, Christopher A.

    1992-01-01

    Two related research efforts were addressed: (1) high-level connectionist cognitive modeling; and (2) local neural circuit modeling. The goals of the first effort were to develop connectionist models of high-level cognitive processes such as problem solving or natural language understanding, and to understand the computational requirements of such models. The goals of the second effort were to develop biologically-realistic model of local neural circuits, and to understand the computational behavior of such models. In keeping with the nature of NASA's Innovative Research Program, all the work conducted under the grant was highly innovative. For instance, the following ideas, all summarized, are contributions to the study of connectionist/neural networks: (1) the temporal-winner-take-all, relative-position encoding, and pattern-similarity association techniques; (2) the importation of logical combinators into connection; (3) the use of analogy-based reasoning as a bridge across the gap between the traditional symbolic paradigm and the connectionist paradigm; and (4) the application of connectionism to the domain of belief representation/reasoning. The work on local neural circuit modeling also departs significantly from the work of related researchers. In particular, its concentration on low-level neural phenomena that could support high-level cognitive processing is unusual within the area of biological local circuit modeling, and also serves to expand the horizons of the artificial neural net field.

  15. Overview of high-level waste management accomplishments

    SciTech Connect

    Lawroski, H; Berreth, J R; Freeby, W A

    1980-01-01

    Storage of power reactor spent fuel is necessary at present because of the lack of reprocessing operations particularly in the U.S. By considering the above solidification and storage scenario, there is more than reasonable assurance that acceptable, stable, low heat generation rate, solidified waste can be produced, and safely disposed. The public perception of no waste disposal solutions is being exploited by detractors of nuclear power application. The inability to even point to one overall system demonstration lends credibility to the negative assertions. By delaying the gathering of on-line information to qualify repository sites, and to implement a demonstration, the actions of the nuclear power detractors are self serving in that they can continue to point out there is no demonstration of satisfactory high-level waste disposal. By maintaining the liquid and solidified high-level waste in secure above ground storage until acceptable decay heat generation rates are achieved, by producing a compatible, high integrity, solid waste form, by providing a second or even third barrier as a compound container and by inserting the enclosed waste form in a qualified repository with spacing to assure moderately low temperature disposal conditions, there appears to be no technical reason for not progressing further with the disposal of high-level wastes and needed implementation of the complete nuclear power fuel cycle.

  16. Materials Science of High-Level Nuclear Waste Immobilization

    SciTech Connect

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-09

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

  17. Vitrification of high-level radioactive waste in a pilot-scale liquid-fed ceramic melter

    SciTech Connect

    Bjorklund, W.J.; Holton, L.K.; Knowlton, D.E.

    1985-03-01

    Under the sponsorship of the Nuclear Waste Treatment Program (NWTP), a high-level radioactive waste vitrification system has been installed in a Radiochemical Engineering Facility at Hanford, Washington. The facility is designed for remote operation of equipment using master-slave manipulators and overhead cranes. The pilot-scale radioactive system consists of a melter, canister handling turntable, glass-level detection system and supporting waste preparation, offgas treatment and condensate treatment systems. The vitrification system will be operated with radioactive wastes to test remote equipment features and process performance. Destructive and nondestructive methods will be used in the characterization of the waste glass product after canisters are filled with specific waste compositions. 4 refs., 9 figs.

  18. Laboratory Report on Performance Evaluation of Key Constituents during Pre-Treatment of High Level Waste Direct Feed

    SciTech Connect

    Huber, Heinz J.

    2013-06-24

    The analytical capabilities of the 222-S Laboratory are tested against the requirements for an optional start up scenario of the Waste Treatment and Immobilization Plant on the Hanford Site. In this case, washed and in-tank leached sludge would be sent directly to the High Level Melter, bypassing Pretreatment. The sludge samples would need to be analyzed for certain key constituents in terms identifying melter-related issues and adjustment needs. The analyses on original tank waste as well as on washed and leached material were performed using five sludge samples from tanks 241-AY-102, 241-AZ-102, 241-AN-106, 241-AW-105, and 241-SY-102. Additionally, solid phase characterization was applied to determine the changes in mineralogy throughout the pre-treatment steps.

  19. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 6

    SciTech Connect

    Not Available

    1994-04-01

    The scope of the Environmental Restoration and Waste Management (EM) Functional Area includes the programmatic controls associated with the management and operation of the Hanford Tank Farm Facility. The driving management organization implementing the programmatic controls is the Tank Farms Waste Management (WM)organization whose responsibilities are to ensure that performance objectives are established; and that measurable criteria for attaining objectives are defined and reflected in programs, policies and procedures. Objectives for the WM Program include waste minimization, establishment of effective waste segregation methods, waste treatment technology development, radioactive (low-level, high-level) hazardous and mixed waste transfer, treatment, and storage, applicability of a corrective action program, and management and applicability of a decontamination and decommissioning (D&D) program in future years.

  20. Review of Analytes of Concern and Sample Methods for Closure of DOE High Level Waste Storage Tanks

    SciTech Connect

    Thomas, T.R.

    2002-05-06

    Sampling residual waste after tank cleaning and analysis for analytes of concern to support closure and cleaning targets of large underground tanks used for storage of legacy high level radioactive waste (HLW) at Department of Energy (DOE) sites has been underway since about 1995. The DOE Tanks Focus Area (TFA) has been working with DOE tank sites to develop new sampling plans, and sampling methods for assessment of residual waste inventories. This paper discusses regulatory analytes of concern, sampling plans, and sampling methods that support closure and cleaning target activities for large storage tanks at the Hanford Site, the Savannah River Site (SRS), the Idaho National Engineering and Environmental Laboratory (INEEL), and the West Valley Demonstration Project (WVDP).

  1. Review of Analytes of Concern and Sample Methods for Closure of DOE High Level Waste Storage Tanks

    SciTech Connect

    Thomas, Thomas Russell

    2002-08-01

    Sampling residual waste after tank cleaning and analysis for analytes of concern to support closure and cleaning targets of large underground tanks used for storage of legacy high level radioactive waste (HLW) at Department of Energy (DOE) sites has been underway since about 1995. The DOE Tanks Focus Area (TFA) has been working with DOE tank sites to develop new sampling plans, and sampling methods for assessment of residual waste inventories. This paper discusses regulatory analytes of concern, sampling plans, and sampling methods that support closure and cleaning target activities for large storage tanks at the Hanford Site, the Savannah River Site (SRS), the Idaho National Engineering and Environmental Laboratory (INEEL), and the West Valley Demonstration Project (WVDP).

  2. Hanford Site Secondary Waste Roadmap

    SciTech Connect

    Westsik, Joseph H.

    2009-01-29

    Summary The U.S. Department of Energy (DOE) is making plans to dispose of 54 million gallons of radioactive tank wastes at the Hanford Site near Richland, Washington. The high-level wastes and low-activity wastes will be vitrified and placed in permanent disposal sites. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents, and these need to be processed and disposed of also. The Department of Energy Office of Waste Processing sponsored a meeting to develop a roadmap to outline the steps necessary to design the secondary waste forms. Representatives from DOE, the U.S. Environmental Protection Agency, the Washington State Department of Ecology, the Oregon Department of Energy, Nuclear Regulatory Commission, technical experts from the DOE national laboratories, academia, and private consultants convened in Richland, Washington, during the week of July 21-23, 2008, to participate in a workshop to identify the risks and uncertainties associated with the treatment and disposal of the secondary wastes and to develop a roadmap for addressing those risks and uncertainties. This report describes the results of the roadmap meeting in Richland. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents. The secondary waste roadmap workshop focused on the waste streams that contained the largest fractions of the 129I and 99Tc that the Integrated Disposal Facility risk assessment analyses were showing to have the largest contribution to the estimated IDF disposal impacts to groundwater. Thus, the roadmapping effort was to focus on the scrubber/off-gas treatment liquids with 99Tc to be sent to the Effluent Treatment Facility for treatment and solidification and the silver mordenite and carbon beds with the captured 129I to be packaged and sent to the IDF. At the highest level, the secondary waste roadmap includes elements addressing regulatory and

  3. Advanced waste form and Melter development for treatment of troublesome high-level wastes

    SciTech Connect

    Marra, James; Kim, Dong -Sang; Maio, Vincent

    2015-10-01

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (also with high Al2O3 concentrations). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group. An extended duration CCIM melter test was conducted on an AZ-101 waste simulant using the CCIM platform at the Idaho National Laboratory (INL). The melter was continually operated for approximately 80 hours demonstrating that the AZ-101 high waste loading glass composition could be readily processed using the CCIM technology. The resulting glass was close to the targeted composition and exhibited excellent durability in both

  4. Remote Methodology used at B Plant Hanford to Map High Radiation and Contamination Fields and Document Remaining Hazards

    SciTech Connect

    SIMMONS, F.M.

    2000-01-01

    A remote radiation mapping system using the Gammacam{trademark} (AIL Systems Inc. Trademark) with real-time response was used in deactivating the B Plant at Hanford to produce digitized images showing actual radiation fields and dose rates. Deployment of this technology has significantly reduced labor requirements, decreased personnel exposure, and increased the accuracy of the measurements. Personnel entries into the high radiation/contamination areas was minimized for a dose savings of 30 Rem (.3 Seivert) and a cost savings of $640K. In addition, the data gathered was utilized along with historical information to estimate the amount of remaining hazardous waste in the process cells. The B Plant facility is a canyon facility containing 40 process cells which were used to separate cesium and strontium from high level waste. The cells and vessels are contaminated with chemicals used in the separation and purification processes. Most of the contaminants have been removed but the residual contamination from spills in the cells and heels in the tanks contribute to the localized high radioactivity. The Gammacam{trademark} system consists of a high density terbium-activated scintillating glass detector coupled with a digitized video camera. Composite images generated by the system are presented in pseudo color over a black and white image. Exposure times can be set from 10 milliseconds to 1 hour depending on the field intensity. This information coupled with process knowledge is then used to document the hazardous waste remaining in each cell. Additional uses for this radiation mapping system would be in support of facilities stabilization and deactivation activities at Hanford or other DOE sites. The system is currently scheduled for installation and mapping of the U Plant in 1999. This system is unique due to its portability and its suitability for use in high dose rate areas.

  5. Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs

    SciTech Connect

    Not Available

    1993-05-01

    The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.

  6. Project plan for resolution of the organic waste tank safety issues at the Hanford Site

    SciTech Connect

    Meacham, J.E.

    1996-10-03

    A multi-year project plan for the Organic Safety Project has been developed with the objective of resolving the organic safety issues associated with the High Level Waste (HLW) in Hanford`s single-shell tanks (SSTS) and double-shell tanks (DSTs). The objective of the Organic Safety Project is to ensure safe interim storage until retrieval for pretreatment and disposal operations begins, and to resolve the organic safety issues by September 2001. Since the initial identification of organics as a tank waste safety issue, progress has been made in understanding the specific aspects of organic waste combustibility, and in developing and implementing activities to resolve the organic safety issues.

  7. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    SciTech Connect

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P.

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  8. Hanford coring bit temperature monitor development testing results report

    SciTech Connect

    Rey, D.

    1995-05-01

    Instrumentation which directly monitors the temperature of a coring bit used to retrieve core samples of high level nuclear waste stored in tanks at Hanford was developed at Sandia National Laboratories. Monitoring the temperature of the coring bit is desired to enhance the safety of the coring operations. A unique application of mature technologies was used to accomplish the measurement. This report documents the results of development testing performed at Sandia to assure the instrumentation will withstand the severe environments present in the waste tanks.

  9. Degradation of dome cutting minerals in Hanford waste

    SciTech Connect

    Reynolds, Jacob G.; Huber, Heinz J.; Cooke, Gary A.

    2013-01-11

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high-pH regimes

  10. Degradation of Dome Cutting Minerals in Hanford Waste - 13100

    SciTech Connect

    Reynolds, Jacob G.; Cooke, Gary A.; Huber, Heinz J.

    2013-07-01

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg. C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high

  11. Hanford Facility RCRA permit handbook

    SciTech Connect

    1996-03-01

    Purpose of this Hanford Facility (HF) RCRA Permit Handbook is to provide, in one document, information to be used for clarification of permit conditions and guidance for implementing the HF RCRA Permit.

  12. Introduction to the Hanford Site

    SciTech Connect

    Cushing, C.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal.

  13. Hanford Site 1998 Environmental Report

    SciTech Connect

    RL Dirkes; RW Hanf; TM Poston

    1999-09-21

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.

  14. Hanford Site Environmental Report 1993

    SciTech Connect

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references.

  15. Hanford Site Environmental Report 1999

    SciTech Connect

    TM Poston; RW Hanf; RL Dirkes

    2000-09-28

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.

  16. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  17. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  18. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  19. PNNL Supports Hanford Waste Treatment

    SciTech Connect

    2015-06-16

    For more than 40 years, technical assistance from PNNL has supported the operations and processing of Hanford tank waste. Our expertise in tank waste chemistry, fluid dynamics and scaling, waste forms, and safety bases has helped to shape the site’s waste treatment baseline and solve operational challenges. The historical knowledge and unique scientific and technical expertise at PNNL are essential to the success of the Hanford mission.

  20. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  1. HANFORD WASTE MINERALOGY REFERENCE REPORT

    SciTech Connect

    DISSELKAMP RS

    2010-06-29

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  2. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    SciTech Connect

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  3. HANFORD BERYLLIUM STEERING GROUP CHARTER

    SciTech Connect

    HEWITT, E.R.

    2003-11-19

    The purpose of the Beryllium Steering Group (BSG) is to (1) provide a forum for discussion of beryllium issues and concerns among Hanford prime contractors and DOE; (2) review proposed changes in prime contractor Chronic Beryllium Disease Prevention Programs (CBDPP) to determine if these changes will result in significant impacts to other contractors and their employees; (3) review proposed changes to Beryllium Hanford Facilities List prior to updating of this list.

  4. Hanford internal dosimetry program manual

    SciTech Connect

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  5. High-level waste management technology program plan

    SciTech Connect

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

  6. Defense High Level Waste Disposal Container System Description Document

    SciTech Connect

    N. E. Pettit

    2001-07-13

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by

  7. Hanford plots reactor move

    SciTech Connect

    King, H.

    1993-10-04

    Anxious to show skeptics some bang for the mounting cleanup bucks, the US Dept. of Energy has taken steps to get a large and visible project under way at its Hanford weapon plant-moving eight old nuclear reactors to permanent burial at an inland dump site. The effort, conservatively budgeted at $235 million, will be the eastern Washington site's largest [open quotes]D D[close quotes]-decontamination and decommissioning-project yet. Last month, DOE unveiled its final record of decision for the plants that spells out D D options-from doing nothing to immediate removal of entire reactor blocks. At issue are reactors built from 1943 to 1963 along the Columbia River. Defunct since 1971, they once produced plutonium.

  8. Modern Alchemy: Solidifying high-level nuclear waste

    SciTech Connect

    Newton, C.C.

    1997-07-01

    The U.S. Department of Energy is putting a modern version of alchemy to work to produce an answer to a decades-old problem. It is taking place at the Savannah River Site (SRS) in Aiken, South Carolina and at the West Valley Demonstration Project (WVDP) near Buffalo, New York. At both locations, contractor Westinghouse Electric Corporation is applying technology that is turning liquid high-level radioactive waste (HLW) into a stabilized, durable glass for safer and easier management. The process is called vitrification. SRS and WVDP are now operating the nation`s first full-scale HLW vitrification plants.

  9. CLASSIFICATION OF THE MGR DEFENSE HIGH LEVEL WASTE DISPOSAL CONTIANER

    SciTech Connect

    J.A. Ziegler

    1999-08-31

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) defense high-level waste disposal container system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333PY ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

  10. Ionization chamber for measurements of high-level tritium gas

    SciTech Connect

    Carstens, D.H.W.; David, W.R.

    1980-01-01

    The construction and calibration of a simple ionization-chamber apparatus for measurement of high level tritium gas is described. The apparatus uses an easily constructed but rugged chamber containing the unknown gas and an inexpensive digital multimeter for measuring the ion current. The equipment after calibration is suitable for measuring 0.01 to 100% tritium gas in hydrogen-helium mixes with an accuracy of a few percent. At both the high and low limits of measurements deviations from the predicted theoretical current are observed. These are briefly discussed.

  11. Solidification of Savannah River Plant high-level waste

    SciTech Connect

    Maher, R; Shafranek, L F; Stevens, III, W R

    1983-01-01

    The Department of Energy, in accord with recommendations from the Du Pont Company, has started construction of a Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The facility should be completed by the end of 1988, and full-scale operation should begin in 1990. This facility will immobilize in borosilicate glass the large quantity of high-level radioactive waste now stored at the plant plus the waste to be generated from continued chemical reprocessing operations. The existing wastes at the Savannah River Plant will be completely converted by about 2010. 21 figures.

  12. High-level neutron coincidence counter maintenance manual

    SciTech Connect

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included.

  13. Market Designs for High Levels of Variable Generation: Preprint

    SciTech Connect

    Milligan, M.; Holttinen, H.; Kiviluoma, J.; Orths, A.; Lynch, M.; Soder, L.

    2014-10-01

    Variable renewable generation is increasing in penetration in modern power systems, leading to higher variability in the supply and price of electricity as well as lower average spot prices. This raises new challenges, particularly in ensuring sufficient capacity and flexibility from conventional technologies. Because the fixed costs and lifetimes of electricity generation investments are significant, designing markets and regulations that ensure the efficient integration of renewable generation is a significant challenge. This papers reviews the state of play of market designs for high levels of variable generation in the United States and Europe and considers new developments in both regions.

  14. Overview and History of DOE's Hanford Site - 12502

    SciTech Connect

    Flynn, Karen; McCormick, Matt

    2012-07-01

    Operations Office (RL) and DOE Office of River Protection (ORP) have prepared this document to describe the strategy and to begin developing the approach for making cleanup decisions for the remainder of the Hanford Site. DOE's intent is that the Completion Framework document will facilitate dialogue among the Tri-Parties and with Hanford's diverse interest groups, including Tribal Nations, State of Oregon, Hanford Advisory Board, Natural Resource Trustees, and the public. Future cleanup decisions will be enhanced by an improved understanding of the challenges facing cleanup and a common understanding of the goals and approaches for cleanup completion. The overarching goals for cleanup are sevenfold. - Goal 1: Protect the Columbia River. - Goal 2: Restore groundwater to its beneficial use to protect human health, the environment, and the Columbia River. - Goal 3: Clean up River Corridor waste sites and facilities to: Protect groundwater and the Columbia River. Shrink the active cleanup footprint to the Central Plateau, and support anticipated future uses of the land. - Goal 4: Clean up Central Plateau waste sites, tank farms, and facilities to: Protect groundwater. Minimize the footprint of areas requiring long-term waste management activities. Support anticipated future uses of the land. - Goal 5: Safely manage and transfer legacy materials scheduled for off-site disposition including special nuclear material (including plutonium), spent nuclear fuel, transuranic waste, and immobilized high-level waste. - Goal 6: Consolidate waste treatment, storage, and disposal operations on the Central Plateau. - Goal 7: Develop and implement institutional controls and long-term stewardship activities that protect human health, the environment, and Hanford's unique cultural, historical and ecological resources after cleanup activities are completed. These goals embody more than 20 years of dialogue among the Tri-Party Agencies, Tribal Nations, State of Oregon, stakeholders, and the

  15. Chemical pathways for the formation of ammonia in Hanford wastes

    SciTech Connect

    Stock, L.M.; Pederson, L.R.

    1997-12-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important).

  16. Training Load and Player Monitoring in High-Level Football: Current Practice and Perceptions.

    PubMed

    Akenhead, Richard; Nassis, George P

    2016-07-01

    Training load (TL) is monitored with the aim of making evidence-based decisions on appropriate loading schemes to reduce injuries and enhance team performance. However, little is known in detail about the variables of load and methods of analysis used in high-level football. Therefore, the aim of this study was to provide information on the practices and practitioners' perceptions of monitoring in professional clubs. Eighty-two high-level football clubs from Europe, the United States, and Australia were invited to answer questions relating to how TL is quantified, how players' responses are monitored, and their perceptions of the effectiveness of monitoring. Forty-one responses were received. All teams used GPS and heart-rate monitors during all training sessions, and 28 used rating of perceived exertion. The top-5-ranking TL variables were acceleration (various thresholds), total distance, distance covered above 5.5 m/s, estimated metabolic power, and heart-rate exertion. Players' responses to training are monitored using questionnaires (68% of clubs) and submaximal exercise protocols (41%). Differences in expected vs actual effectiveness of monitoring were 23% and 20% for injury prevention and performance enhancement, respectively (P < .001 d = 1.0-1.4). Of the perceived barriers to effectiveness, limited human resources scored highest, followed by coach buy-in. The discrepancy between expected and actual effectiveness appears to be due to suboptimal integration with coaches, insufficient human resources, and concerns over the reliability of assessment tools. Future approaches should critically evaluate the usefulness of current monitoring tools and explore methods of reducing the identified barriers to effectiveness. PMID:26456711

  17. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect

    Not Available

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  18. High level radioactive waste glass production and product description

    SciTech Connect

    Sproull, J.F.; Marra, S.L.; Jantzen, C.M.

    1993-12-01

    This report examines borosilicate glass as a means of immobilizing high-level radioactive wastes. Borosilicate glass will encapsulate most of the defense and some of the commercial HLW in the US. The resulting waste forms must meet the requirements of the WA-SRD and the WAPS, which include a short term PCT durability test. The waste form producer must report the composition(s) of the borosilicate waste glass(es) produced but can choose the composition(s) to meet site-specific requirements. Although the waste form composition is the primary determinant of durability, the redox state of the glass; the existence, content, and composition of crystals; and the presence of glass-in-glass phase separation can affect durability. The waste glass should be formulated to avoid phase separation regions. The ultimate result of this effort will be a waste form which is much more stable and potentially less mobile than the liquid high level radioactive waste is currently.

  19. Executive functions in kindergarteners with high levels of disruptive behaviours.

    PubMed

    Monette, Sébastien; Bigras, Marc; Guay, Marie-Claude

    2015-11-01

    Executive function (EF) deficits have yet to be demonstrated convincingly in children with disruptive behaviour disorders (DBD), as only a few studies have reported these. The presence of EF weaknesses in children with DBD has often been contested on account of the high comorbidity between DBD and attention-deficit/hyperactivity disorder (ADHD) and of methodological shortcomings regarding EF measures. Against this background, the link between EF and disruptive behaviours in kindergarteners was investigated using a carefully selected battery of EF measures. Three groups of kindergarteners were compared: (1) a group combining high levels of disruptive behaviours and ADHD symptoms (COMB); (2) a group presenting high levels of disruptive/aggressive behaviours and low levels of ADHD symptoms (AGG); and (3) a normative group (NOR). Children in the COMB and AGG groups presented weaker inhibition capacities compared with normative peers. Also, only the COMB group showed weaker working memory capacities compared with the NOR group. Results support the idea that preschool children with DBD have weaker inhibition capacities and that this weakness could be common to both ADHD and DBD. PMID:26198079

  20. How to achieve high-level expression of microbial enzymes

    PubMed Central

    Liu, Long; Yang, Haiquan; Shin, Hyun-dong; Chen, Rachel R.; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-01-01

    Microbial enzymes have been used in a large number of fields, such as chemical, agricultural and biopharmaceutical industries. The enzyme production rate and yield are the main factors to consider when choosing the appropriate expression system for the production of recombinant proteins. Recombinant enzymes have been expressed in bacteria (e.g., Escherichia coli, Bacillus and lactic acid bacteria), filamentous fungi (e.g., Aspergillus) and yeasts (e.g., Pichia pastoris). The favorable and very advantageous characteristics of these species have resulted in an increasing number of biotechnological applications. Bacterial hosts (e.g., E. coli) can be used to quickly and easily overexpress recombinant enzymes; however, bacterial systems cannot express very large proteins and proteins that require post-translational modifications. The main bacterial expression hosts, with the exception of lactic acid bacteria and filamentous fungi, can produce several toxins which are not compatible with the expression of recombinant enzymes in food and drugs. However, due to the multiplicity of the physiological impacts arising from high-level expression of genes encoding the enzymes and expression hosts, the goal of overproduction can hardly be achieved, and therefore, the yield of recombinant enzymes is limited. In this review, the recent strategies used for the high-level expression of microbial enzymes in the hosts mentioned above are summarized and the prospects are also discussed. We hope this review will contribute to the development of the enzyme-related research field. PMID:23686280

  1. Space augmentation of military high-level waste disposal

    NASA Technical Reports Server (NTRS)

    English, T.; Lees, L.; Divita, E.

    1979-01-01

    Space disposal of selected components of military high-level waste (HLW) is considered. This disposal option offers the promise of eliminating the long-lived radionuclides in military HLW from the earth. A space mission which meets the dual requirements of long-term orbital stability and a maximum of one space shuttle launch per week over a period of 20-40 years, is a heliocentric orbit about halfway between the orbits of earth and Venus. Space disposal of high-level radioactive waste is characterized by long-term predictability and short-term uncertainties which must be reduced to acceptably low levels. For example, failure of either the Orbit Transfer Vehicle after leaving low earth orbit, or the storable propellant stage failure at perihelion would leave the nuclear waste package in an unplanned and potentially unstable orbit. Since potential earth reencounter and subsequent burn-up in the earth's atmosphere is unacceptable, a deep space rendezvous, docking, and retrieval capability must be developed.

  2. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect

    Not Available

    1990-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  3. Spent Fuel and High-Level Radioactive Waste Transportation Report

    SciTech Connect

    Not Available

    1992-03-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  4. VITRIFICATION OF HIGH LEVEL WASTE AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Fox, K.; Peeler, D.

    2009-06-17

    The objective of this study was to experimentally measure the properties and performance of a series of glasses with compositions that could represent high level waste Sludge Batch 5 (SB5) as vitrified at the Savannah River Site Defense Waste Processing Facility. These data were used to guide frit optimization efforts as the SB5 composition was finalized. Glass compositions for this study were developed by combining a series of SB5 composition projections with a group of candidate frits. The study glasses were fabricated using depleted uranium and their chemical compositions, crystalline contents and chemical durabilities were characterized. Trevorite was the only crystalline phase that was identified in a few of the study glasses after slow cooling, and is not of concern as spinels have been shown to have little impact on the durability of high level waste glasses. Chemical durability was quantified using the Product Consistency Test (PCT). All of the glasses had very acceptable durability performance. The results of this study indicate that a frit composition can be identified that will provide a processable and durable glass when combined with SB5.

  5. Pilot-scale verification test for Hanford grout

    SciTech Connect

    Bagaasen, L.M.; Powell, W.J.

    1993-02-01

    The Grout Treatment Facility (GTF) at Hanford, Washington will process the low-level fraction of selected double-shell tank (DST) wastes on the Hanford Site, to produce a cementitious waste form. This facility, which is operated by Westinghouse Hanford Company (Westinghouse Hanford), mixes liquid wastes with cementitious materials and pumps the resulting grout slurry into large [5,300 cubic meters (m{sup 3})] concrete vaults. Once in the vault, the grout cures to produce a waste form that immobilizes radioactive and hazardous constituents through chemical reactions and/or microencapsulation. Although this disposal scheme has several advantages, pouring grout into large vaults raises concerns about how to handle the heat generated from the exothermic hydration reactions that occur as the grout cures. WHC`s current strategy for addressing the problem of hydration heat is to fill the vault in stages and use forced ventilation in the airspace above the grout to speed heat removal. The varying composition of Hanford tank waste requires that each tank be processed in a separate campaign using a grout formulation specifically designed for that waste. The next tank scheduled for treatment is DST 241-AN-106. A four-phase process for developing the grout formulation development process is used to assure that the formulation will meet various processing and waste form requirements. These phases are: (1) laboratory formulation development studies and modeling with simulated wastes, (2) laboratory variability studies with simulated waste, (3) pilot-scale verification tests with simulated wastes, and (4) laboratory verification tests with actual waste. This paper presents an overview of the pilot-scale verification tests conducted as part of the grout formulation development for the 241-AN-106 tank waste. The paper specifically discusses results dealing with (1) the grout slurry critical flow rate and (2) the ability to handle grout hydration heat with forced ventilation.

  6. High-level power analysis and optimization techniques

    NASA Astrophysics Data System (ADS)

    Raghunathan, Anand

    1997-12-01

    This thesis combines two ubiquitous trends in the VLSI design world--the move towards designing at higher levels of design abstraction, and the increasing importance of power consumption as a design metric. Power estimation and optimization tools are becoming an increasingly important part of design flows, driven by a variety of requirements such as prolonging battery life in portable computing and communication devices, thermal considerations and system cooling and packaging costs, reliability issues (e.g. electromigration, ground bounce, and I-R drops in the power network), and environmental concerns. This thesis presents a suite of techniques to automatically perform power analysis and optimization for designs at the architecture or register-transfer, and behavior or algorithm levels of the design hierarchy. High-level synthesis refers to the process of synthesizing, from an abstract behavioral description, a register-transfer implementation that satisfies the desired constraints. High-level synthesis tools typically perform one or more of the following tasks: transformations, module selection, clock selection, scheduling, and resource allocation and assignment (also called resource sharing or hardware sharing). High-level synthesis techniques for minimizing the area, maximizing the performance, and enhancing the testability of the synthesized designs have been investigated. This thesis presents high-level synthesis techniques that minimize power consumption in the synthesized data paths. This thesis investigates the effects of resource sharing on the power consumption in the data path, provides techniques to efficiently estimate power consumption during resource sharing, and resource sharing algorithms to minimize power consumption. The RTL circuit that is obtained from the high-level synthesis process can be further optimized for power by applying power-reducing RTL transformations. This thesis presents macro-modeling and estimation techniques for switching

  7. HIGH ALUMINUM HLW GLASSES FOR HANFORDS WTP

    SciTech Connect

    KRUGER AA; JOSEPH I; BOWMAN BW; GAN H; KOT W; MATLACK KS; PEGG IL

    2009-08-19

    The world's largest radioactive waste vitrification facility is now under construction at the United State Department of Energy's (DOE's) Hanford site. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is designed to treat nearly 53 million gallons of mixed hazardous and radioactive waste now residing in 177 underground storage tanks. This multi-decade processing campaign will be one of the most complex ever undertaken because of the wide chemical and physical variability of the waste compositions generated during the cold war era that are stored at Hanford. The DOE Office of River Protection (ORP) has initiated a program to improve the long-term operating efficiency of the WTP vitrification plants with the objective of reducing the overall cost of tank waste treatment and disposal and shortening the duration of plant operations. Due to the size, complexity and duration of the WTP mission, the lifecycle operating and waste disposal costs are substantial. As a result, gains in High Level Waste (HLW) and Low Activity Waste (LAW) waste loadings, as well as increases in glass production rate, which can reduce mission duration and glass volumes for disposal, can yield substantial overall cost savings. EnergySolutions and its long-term research partner, the Vitreous State Laboratory (VSL) of the Catholic University of America, have been involved in a multi-year ORP program directed at optimizing various aspects of the HLW and LAW vitrification flow sheets. A number of Hanford HLW streams contain high concentrations of aluminum, which is challenging with respect to both waste loading and processing rate. Therefore, a key focus area of the ORP vitrification process optimization program at EnergySolutions and VSL has been development of HLW glass compositions that can accommodate high Al{sub 2}O{sub 3} concentrations while maintaining high processing rates in the Joule Heated Ceramic Melters (JHCMs) used for waste vitrification at the WTP. This paper, reviews

  8. Spray Calciner/In-Can Melter high-level waste solidification technical manual

    SciTech Connect

    Larson, D.E.

    1980-09-01

    This technical manual summarizes process and equipment technology developed at Pacific Northwest Laboratory over the last 20 years for vitrification of high-level liquid waste by the Spray Calciner/In-Can Melter process. Pacific Northwest Laboratory experience includes process development and demonstration in laboratory-, pilot-, and full-scale equipment using nonradioactive synthetic wastes. Also, laboratory- and pilot-scale process demonstrations have been conducted using actual high-level radioactive wastes. In the course of process development, more than 26 tonnes of borosilicate glass have been produced in 75 canisters. Four of these canisters contained radioactive waste glass. The associated process and glass chemistry is discussed. Technology areas described include calciner feed treatment and techniques, calcination, vitrification, off-gas treatment, glass containment (the canister), and waste glass chemistry. Areas of optimization and site-specific development that would be needed to adapt this base technology for specific plant application are indicated. A conceptual Spray Calciner/In-Can Melter system design and analyses are provided in the manual to assist prospective users in evaluating the process for plant application, to provide equipment design information, and to supply information for safety analyses and environmental reports. The base (generic) technology for the Spray Calciner/In-Can Melter process has been developed to a point at which it is ready for plant application.

  9. Area and Delay Estimation for Constraint-Driven High-Level Synthesis

    NASA Astrophysics Data System (ADS)

    Nourani-Dargiri, Mehrdad

    1994-01-01

    The flurry of activity in high level synthesis and its increasing popularity as a research topic, both in industry and academia, is a natural consequence of the progress in VLSI design technology and methodology. High level synthesis (HLS) fills the gap between behavioral level and layout level by automatically generating an RTL datapath realization from a behavioral description. The actual circuit layout can be generated later from the RTL datapath using a silicon compiler. A common characteristic of most HLS systems is the lack of consideration to the logic and layout synthesis aspects during the HLS process. The designs generated by these systems may or may not satisfy the initial design requirements and thus the design may need to be changed or modified. One method to address this deficiency is to use estimators, as a bridge between high and low levels, during HLS. The estimators can be iteratively invoked at high levels (e.g. scheduling and allocation) to provide a guiding mechanism to search the design space, which in turn leads to improved design quality and shorter design turnaround time. Motivated by the above observations, in this dissertation we present methods to cover the gap between high and low levels of design hierarchy, including: (1) Scheduling and mixed scheduling-allocation algorithms under time and resource constraints based on Liapunov stability theorem; (2) A neural network based scheduling as an alternative for implementing on parallel machines; (3) A layout estimation method which uses non-probabilistic analytical formulas in a constructive algorithm to estimate the overall area of a datapath; (4) A delay estimation algorithm which identifies false paths at the RTL and computes the static and dynamic critical delay in a datapath. Incorporation of these tools into an experimental HLS system, SYNTEST, has been completed with the overall objective of generating a structural VHDL description of a self-testable RTL datapath from a given

  10. How People Actually Use Thermostats

    SciTech Connect

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  11. USE OF BATCH TESTS AS A SCREENING TOOL FOR RADIONUCLIDE SORPTION CHARACTERIZATION STUDIES, HANFORD, WSHINGTON, U.S.A.

    EPA Science Inventory

    The U.S. Department of Energy was studying the feasibility of locating a high-level radioactive waste repository in basalt at the Hanford site in south-central Washington. his is a saturated site where ground water transport of radionuclides away from a repository is the mechanis...

  12. Application of the office of civilian radioactive waste management QA requirements to the hanford spent nuclear fuel project

    SciTech Connect

    MCCORMACK, R.L.

    1999-05-12

    This document identifies, at a high-level, the Hanford SNF Project systems, structures, and components and activities that must implement to some degree the OCRWM QARD requirements to ensure compliance with RL direction. This document will also be used to support development of a QARD requirements matrix for the implementation of QARD requirements.

  13. THE USE OF BATCH TESTS AS A SCREENING TOOL FOR RADIONUCLIDE SORPTION CHARACTERIZATION STUDIES, HANFORD, WASHINGTON, U.S.A.

    EPA Science Inventory

    The U.S. Department of Energy was studying the feasibility of locating a high-level radioactive waste repository in basalt at the Hanford site in south-central Washington. This is a saturated site where ground water transport of radionuclides away from a repository is the mechani...

  14. Hanford Tanks 241-C-202 and 241-C-203 Residual Waste Contaminant Release Models and Supporting Data

    SciTech Connect

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Mattigod, Shas V.; Schaef, Herbert T.; Arey, Bruce W.

    2007-09-13

    As directed by Congress, the U. S. Department of Energy (DOE) established the Office of River Protection in 1998 to manage DOE's largest, most complex environmental cleanup project – retrieval of radioactive waste from Hanford tanks for treatment and eventual disposal. Sixty percent by volume of the nation's high-level radioactive waste is stored at Hanford in aging deteriorating tanks. If not cleaned up, this waste is a threat to the Columbia River and the Pacific Northwest. CH2M Hill Hanford Group, Inc., is the Office of River Protection's prime contractor responsible for the storage, retrieval, and disposal of Hanford's tank waste. As part of this effort, CH2M HILL Hanford Group, Inc. contracted with Pacific Northwest National Laboratory (PNNL) to develop release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for DOE.

  15. Recommended environmental dose calculation methods and Hanford-specific parameters. Revision 2

    SciTech Connect

    Schreckhise, R.G.; Rhoads, K.; Napier, B.A.; Ramsdell, J.V.; Davis, J.S.

    1993-03-01

    This document was developed to support the Hanford Environmental Dose overview Panel (HEDOP). The Panel is responsible for reviewing all assessments of potential doses received by humans and other biota resulting from the actual or possible environmental releases of radioactive and other hazardous materials from facilities and/or operations belonging to the US Department of Energy on the Hanford Site in south-central Washington. This document serves as a guide to be used for developing estimates of potential radiation doses, or other measures of risk or health impacts, to people and other biota in the environs on and around the Hanford Site. It provides information to develop technically sound estimates of exposure (i.e., potential or actual) to humans or other biotic receptors that could result from the environmental transport of potentially harmful materials that have been, or could be, released from Hanford operations or facilities. Parameter values and information that are specific to the Hanford environs as well as other supporting material are included in this document.

  16. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect

    GREAGER, T.M.

    1999-12-14

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  17. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  18. Exceptionally high levels of multiple mating in an army ant

    NASA Astrophysics Data System (ADS)

    Denny, A. Jay; Franks, Nigel R.; Powell, Scott; Edwards, Keith J.

    Most species of social insects have singly mated queens, although there are notable exceptions. Competing hypotheses have been proposed to explain the evolution of high levels of multiple mating, but this issue is far from resolved. Here we use microsatellites to investigate mating frequency in the army ant Eciton burchellii and show that queens mate with an exceptionally large number of males, eclipsing all but one other social insect species for which data are available. In addition we present evidence that suggests that mating is serial, continuing throughout the lifetime of the queen. This is the first demonstration of serial mating among social hymenoptera. We propose that high paternity within colonies is most likely to have evolved to increase genetic diversity and to counter high pathogen and parasite loads.

  19. ALICE: Project Overview and High Level Science Products

    NASA Astrophysics Data System (ADS)

    Soummer, Remi; Choquet, Elodie; Pueyo, Laurent; Brendan Hagan, J.; Gofas-Salas, Elena; Rajan, Abhijith; Perrin, Marshall D.; Chen, Christine; Debes, John H.; Golimowski, David A.; Hines, Dean C.; Schneider, Glenn; N'Diaye, Mamadou; Mawet, Dimitri; Marois, Christian; Barman, Travis

    2015-01-01

    We report on the status of the ALICE project (Archival Legacy Investigation of Circumstellar Environments), which consists in a consistent reanalysis of the entire HST-NICMOS coronagraphic archive. Over the last two years, we have developed a sophisticated pipeline able to handle the data of the 400 stars of the archive. This pipeline builds on the Karhunen-Loeve Image Projection (KLIP) algorithm, and was completed in the fall of 2014. We discuss the first processing and analysis results of the overall reduction campaign. As we will deliver high-level science products to the STScI MAST archive, we are defining a new standard format for high-contrast science products, which will be compatible with every new high-contrast imaging instrument (GPI, SPHERE, P1640, CHARIS, etc.) and used by the JWST coronagraphs. We present here the specifications of this standard.

  20. High-level waste tank farm set point document

    SciTech Connect

    Anthony, J.A. III

    1995-01-15

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

  1. High Level Waste System Impacts from Acid Dissolution of Sludge

    SciTech Connect

    KETUSKY, EDWARD

    2006-04-20

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  2. Using the CMS High Level Trigger as a Cloud Resource

    NASA Astrophysics Data System (ADS)

    Colling, David; Huffman, Adam; McCrae, Alison; Lahiff, Andrew; Grandi, Claudio; Cinquilli, Mattia; Gowdy, Stephen; Coarasa, Jose Antonio; Tiradani, Anthony; Ozga, Wojciech; Chaze, Olivier; Sgaravatto, Massimo; Bauer, Daniela

    2014-06-01

    The CMS High Level Trigger is a compute farm of more than 10,000 cores. During data taking this resource is heavily used and is an integral part of the experiment's triggering system. However, outside of data taking periods this resource is largely unused. We describe why CMS wants to use the HLT as a cloud resource (outside of data taking periods) and how this has been achieved. In doing this we have turned a single-use cluster into an agile resource for CMS production computing. While we are able to use the HLT as a production cloud resource, there is still considerable further work that CMS needs to carry out before this resource can be used with the desired agility. This report, therefore, represents a snapshot of this activity at the time of CHEP 2013.

  3. Socioeconomic studies of high-level nuclear waste disposal.

    PubMed

    White, G F; Bronzini, M S; Colglazier, E W; Dohrenwend, B; Erikson, K; Hansen, R; Kneese, A V; Moore, R; Page, E B; Rappaport, R A

    1994-11-01

    The socioeconomic investigations of possible impacts of the proposed repository for high-level nuclear waste at Yucca Mountain, Nevada, have been unprecedented in several respects. They bear on the public decision that sooner or later will be made as to where and how to dispose permanently of the waste presently at military weapons installations and that continues to accumulate at nuclear power stations. No final decision has yet been made. There is no clear precedent from other countries. The organization of state and federal studies is unique. The state studies involve more disciplines than any previous efforts. They have been carried out in parallel to federal studies and have pioneered in defining some problems and appropriate research methods. A recent annotated bibliography provides interested scientists with a compact guide to the 178 published reports, as well as to relevant journal articles and related documents. PMID:7971963

  4. Socioeconomic studies of high-level nuclear waste disposal.

    PubMed Central

    White, G F; Bronzini, M S; Colglazier, E W; Dohrenwend, B; Erikson, K; Hansen, R; Kneese, A V; Moore, R; Page, E B; Rappaport, R A

    1994-01-01

    The socioeconomic investigations of possible impacts of the proposed repository for high-level nuclear waste at Yucca Mountain, Nevada, have been unprecedented in several respects. They bear on the public decision that sooner or later will be made as to where and how to dispose permanently of the waste presently at military weapons installations and that continues to accumulate at nuclear power stations. No final decision has yet been made. There is no clear precedent from other countries. The organization of state and federal studies is unique. The state studies involve more disciplines than any previous efforts. They have been carried out in parallel to federal studies and have pioneered in defining some problems and appropriate research methods. A recent annotated bibliography provides interested scientists with a compact guide to the 178 published reports, as well as to relevant journal articles and related documents. PMID:7971963

  5. A High-Level Language for Rule-Based Modelling

    PubMed Central

    Pedersen, Michael; Phillips, Andrew; Plotkin, Gordon D.

    2015-01-01

    Rule-based languages such as Kappa excel in their support for handling the combinatorial complexities prevalent in many biological systems, including signalling pathways. But Kappa provides little structure for organising rules, and large models can therefore be hard to read and maintain. This paper introduces a high-level, modular extension of Kappa called LBS-κ. We demonstrate the constructs of the language through examples and three case studies: a chemotaxis switch ring, a MAPK cascade, and an insulin signalling pathway. We then provide a formal definition of LBS-κ through an abstract syntax and a translation to plain Kappa. The translation is implemented in a compiler tool which is available as a web application. We finally demonstrate how to increase the expressivity of LBS-κ through embedded scripts in a general-purpose programming language, a technique which we view as generally applicable to other domain specific languages. PMID:26043208

  6. SIMULANT DEVELOPMENT FOR SAVANNAH RIVER SITE HIGH LEVEL WASTE

    SciTech Connect

    Stone, M; Russell Eibling, R; David Koopman, D; Dan Lambert, D; Paul Burket, P

    2007-09-04

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The HLW is processed in large batches through DWPF; DWPF has recently completed processing Sludge Batch 3 (SB3) and is currently processing Sludge Batch 4 (SB4). The composition of metal species in SB4 is shown in Table 1 as a function of the ratio of a metal to iron. Simulants remove radioactive species and renormalize the remaining species. Supernate composition is shown in Table 2.

  7. High level radioactive waste vitrification process equipment component testing

    SciTech Connect

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system.

  8. High-Level Language Production in Parkinson's Disease: A Review

    PubMed Central

    Altmann, Lori J. P.; Troche, Michelle S.

    2011-01-01

    This paper discusses impairments of high-level, complex language production in Parkinson's disease (PD), defined as sentence and discourse production, and situates these impairments within the framework of current psycholinguistic theories of language production. The paper comprises three major sections, an overview of the effects of PD on the brain and cognition, a review of the literature on language production in PD, and a discussion of the stages of the language production process that are impaired in PD. Overall, the literature converges on a few common characteristics of language production in PD: reduced information content, impaired grammaticality, disrupted fluency, and reduced syntactic complexity. Many studies also document the strong impact of differences in cognitive ability on language production. Based on the data, PD affects all stages of language production including conceptualization and functional and positional processing. Furthermore, impairments at all stages appear to be exacerbated by impairments in cognitive abilities. PMID:21860777

  9. Review of High Level Waste Tanks Ultrasonic Inspection Data

    SciTech Connect

    Wiersma, B

    2006-03-09

    A review of the data collected during ultrasonic inspection of the Type I high level waste tanks has been completed. The data was analyzed for relevance to the possibility of vapor space corrosion and liquid/air interface corrosion. The review of the Type I tank UT inspection data has confirmed that the vapor space general corrosion is not an unusually aggressive phenomena and correlates well with predicted corrosion rates for steel exposed to bulk solution. The corrosion rates are seen to decrease with time as expected. The review of the temperature data did not reveal any obvious correlations between high temperatures and the occurrences of leaks. The complex nature of temperature-humidity interaction, particularly with respect to vapor corrosion requires further understanding to infer any correlation. The review of the waste level data also did not reveal any obvious correlations.

  10. Midwestern High-Level Radioactive Waste Transportation Project

    SciTech Connect

    Dantoin, T.S.

    1990-12-01

    For more than half a century, the Council of State Governments has served as a common ground for the states of the nation. The Council is a nonprofit, state-supported and -directed service organization that provides research and resources, identifies trends, supplies answers and creates a network for legislative, executive and judicial branch representatives. This List of Available Resources was prepared with the support of the US Department of Energy, Cooperative Agreement No. DE-FC02-89CH10402. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of DOE. The purpose of the agreement, and reports issued pursuant to it, is to identify and analyze regional issues pertaining to the transportation of high-level radioactive waste and to inform Midwestern state officials with respect to technical issues and regulatory concerns related to waste transportation.

  11. Calculates Neutron Production in Canisters of High-level Waste

    Energy Science and Technology Software Center (ESTSC)

    1993-01-15

    ALPHN calculates the (alpha,n) neutron production rate of a canister of vitrified high-level waste. The user supplies the chemical composition of the glass or glass-ceramic and the curies of the alpha-emitting actinides present. The output of the program gives the (alpha,n) neutron production of each actinide in neutrons per second and the total for the canister. The (alpha,n) neutron production rates are source terms only; that is, they are production rates within the glass andmore » do not take into account the shielding effect of the glass. For a given glass composition, the user can calculate up to eight cases simultaneously; these cases are based on the same glass composition but contain different quantities of actinides per canister.« less

  12. A high-level language for rule-based modelling.

    PubMed

    Pedersen, Michael; Phillips, Andrew; Plotkin, Gordon D

    2015-01-01

    Rule-based languages such as Kappa excel in their support for handling the combinatorial complexities prevalent in many biological systems, including signalling pathways. But Kappa provides little structure for organising rules, and large models can therefore be hard to read and maintain. This paper introduces a high-level, modular extension of Kappa called LBS-κ. We demonstrate the constructs of the language through examples and three case studies: a chemotaxis switch ring, a MAPK cascade, and an insulin signalling pathway. We then provide a formal definition of LBS-κ through an abstract syntax and a translation to plain Kappa. The translation is implemented in a compiler tool which is available as a web application. We finally demonstrate how to increase the expressivity of LBS-κ through embedded scripts in a general-purpose programming language, a technique which we view as generally applicable to other domain specific languages. PMID:26043208

  13. Washing and caustic leaching of Hanford tank sludges: results of FY 1996 studies. Revision

    SciTech Connect

    Lumetta, G.J.; Rapko, B.M.; Wagner, M.J.; Liu, J.; Chen, Y.L.

    1996-08-01

    During the past few years, the primary mission at the US Department of Energy`s Hanford Site has changed from producing plutonium to restoring the environment. Large volumes of high-level radioactive wastes (HLW), generated during past Pu production and other operations, are stored in underground tanks on site. The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The HLW will be immobilized in a borosilicate glass matrix and then disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implemented to reduce the volume of borosilicate glass produced in disposing of the tank wastes. On this basis, a pretreatment plan is being developed. This report describes the sludge washing and caustic leaching test conducted to create a Hanford tank sludge pretreatment flowsheet.

  14. High Level Information Fusion (HLIF) with nested fusion loops

    NASA Astrophysics Data System (ADS)

    Woodley, Robert; Gosnell, Michael; Fischer, Amber

    2013-05-01

    Situation modeling and threat prediction require higher levels of data fusion in order to provide actionable information. Beyond the sensor data and sources the analyst has access to, the use of out-sourced and re-sourced data is becoming common. Through the years, some common frameworks have emerged for dealing with information fusion—perhaps the most ubiquitous being the JDL Data Fusion Group and their initial 4-level data fusion model. Since these initial developments, numerous models of information fusion have emerged, hoping to better capture the human-centric process of data analyses within a machine-centric framework. 21st Century Systems, Inc. has developed Fusion with Uncertainty Reasoning using Nested Assessment Characterizer Elements (FURNACE) to address challenges of high level information fusion and handle bias, ambiguity, and uncertainty (BAU) for Situation Modeling, Threat Modeling, and Threat Prediction. It combines JDL fusion levels with nested fusion loops and state-of-the-art data reasoning. Initial research has shown that FURNACE is able to reduce BAU and improve the fusion process by allowing high level information fusion (HLIF) to affect lower levels without the double counting of information or other biasing issues. The initial FURNACE project was focused on the underlying algorithms to produce a fusion system able to handle BAU and repurposed data in a cohesive manner. FURNACE supports analyst's efforts to develop situation models, threat models, and threat predictions to increase situational awareness of the battlespace. FURNACE will not only revolutionize the military intelligence realm, but also benefit the larger homeland defense, law enforcement, and business intelligence markets.

  15. High-level hepatitis B virus replication in transgenic mice.

    PubMed Central

    Guidotti, L G; Matzke, B; Schaller, H; Chisari, F V

    1995-01-01

    Hepatitis B virus (HBV) transgenic mice whose hepatocytes replicate the virus at levels comparable to that in the infected livers of patients with chronic hepatitis have been produced, without any evidence of cytopathology. High-level viral gene expression was obtained in the liver and kidney tissues in three independent lineages. These animals were produced with a terminally redundant viral DNA construct (HBV 1.3) that starts just upstream of HBV enhancer I, extends completely around the circular viral genome, and ends just downstream of the unique polyadenylation site in HBV. In these animals, the viral mRNA is more abundant in centrilobular hepatocytes than elsewhere in the hepatic lobule. High-level viral DNA replication occurs inside viral nucleocapsid particles that preferentially form in the cytoplasm of these centrilobular hepatocytes, suggesting that an expression threshold must be reached for nucleocapsid assembly and viral replication to occur. Despite the restricted distribution of the viral replication machinery in centrilobular cytoplasmic nucleocapsids, nucleocapsid particles are detectable in the vast majority of hepatocyte nuclei throughout the hepatic lobule. The intranuclear nucleocapsid particles are empty, however, suggesting that viral nucleocapsid particle assembly occurs independently in the nucleus and the cytoplasm of the hepatocyte and implying that cytoplasmic nucleocapsid particles do not transport the viral genome across the nuclear membrane into the nucleus during the viral life cycle. This model creates the opportunity to examine the influence of viral and host factors on HBV pathogenesis and replication and to assess the antiviral potential of pharmacological agents and physiological processes, including the immune response. PMID:7666518

  16. Strontium and Actinides Removal from Savannah River Site Actual Waste Samples by Freshly Precipitated Manganese Oxide

    SciTech Connect

    Barnes, M.J.

    2003-10-30

    The authors investigated the performance of freshly precipitated manganese oxide and monosodium titanate (MST) for the removal of strontium (Sr) and actinides from actual high-level waste. Manganese oxide precipitation occurs upon addition of a reductant such as formate (HCO2-) or peroxide (H2O2) to a waste solution containing permanganate (MnO4-). Tests described in this document address the capability of manganese oxide treatment to remove Rs, Pu, and Np from actual high-level waste containing elevated concentrations of Pu. Additionally, tests investigate MST (using two unique batches) performance with the same waste for direct comparison to the manganese oxide performance.

  17. Design requirements document for the interim store phase I solidified high-level waste function 4.2.4.1.2

    SciTech Connect

    Calmus, R.B.

    1996-09-30

    The U.S. Department of Energy (DOE) has embarked upon a course to acquire Hanford site.t,,nk waste tr:atment and immobilization services using privatized facilities. This plan contains a two-phased approach. Phase I is a ``proof-of-principle/commercial demonstration-scale`` effort and Phase II is a full-scale production effort. In accordance with the planned approach, interim storage and disposal of various products from privatized facilities are to be DOE furnished. The path forward adopted for Phase I solidified high-level waste (HLW) interim storage entails use of Vaut 2 and 3 in the Hanford Site Spent Nuclear Fuels Canister Storage Building (CSB), to be located in the Hanford Site 200 East Area. This design requirements document establishes the functions, with associated requirements, allocated to the Phase I solidified HLW interim storage system. These requirements will be used as the basis for conceptual design of the CSB and supporting systems. This document will also provide the basis for preparation of a performance specification for design and construction activities necessary to achieve the overall project mission.

  18. Independent engineering review of the Hanford Waste Vitrification System

    SciTech Connect

    Not Available

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs.

  19. Hanford basalt flow mineralogy

    SciTech Connect

    Ames, L.L.

    1980-09-01

    Mineralogy of the core samples from five core wells was examined in some detail. The primary mineralogy study included an optical examination of polished mounts, photomicrographs, chemical analyses of feldspars, pyroxenes, metallic oxides and microcrystalline groundmasses and determination from the chemical analyses of the varieties of feldspars, pyroxenes and metallic oxides. From the primary mineralogy data, a firm understanding of the average Hanford basalt flow primary mineralogy emerged. The average primary feldspar was a laboradorite, the average pyroxene was an augite and the average metallic oxide was a solid solution of ilmenite and magnetite. Secondary mineralization consisted of vug filling and joint coating, chiefly with a nontronite-beidellite clay, several zeolites, quartz, calcite, and opal. Specific flow units also were examined to determine the possibility of using the mineralogy to trace flows between core wells. These included units of the Pomona, the Umatilla and a high chromium flow just below the Huntzinger. In the Umatilla, or high barium flow, the compositional variation of the feldspars was unique in range. The pyroxenes in the Pomona were relatively highly zoned and accumulated chromium. The high chromium flow contained chromium spinels that graded in chromium content into simple magnetites very low in chromium content. A study of the statistical relationships of flow unit chemical constituents showed that flow unit constituents could be roughly correlated between wells. The probable cause of the correlation was on-going physical-chemical changes in the source magma.

  20. Hanford gas dispersion analysis

    SciTech Connect

    Fujita, R.K.; Travis, J.R.

    1994-07-01

    An analysis was performed to verify the design of a waste gas exhauster for use in support of rotary core sampling activities at the Westinghouse Hanford Waste Tank Farm. The exhauster was designed to remove waste gases from waste storage tanks during the rotary core drilling process of the solid materials in the tank. Some of the waste gases potentially are very hazardous and must be monitored during the exhauster`s operation. If the toxic gas concentrations in specific areas near the exhauster exceed minimum Threshold Limit Values (TLVs), personnel must be excluded from the area. The exhauster stack height is of interest because an increase in stack height will alter the gas concentrations at the critical locations. The exhaust stack is currently {approximately}4.6 m (15 ft) high. An equipment operator will be located within a 6.1 m (20 ft) radius of the exhaust stack, and his/her head will be at an elevation 3.7 m (12 ft) above ground level (AGL). Therefore, the maximum exhaust gas concentrations at this location must be below the TLV for the toxic gases. Also, the gas concentrations must be within the TLV at a 61 m (200 ft) radius from the stack. If the calculated gas concentrations are above the TLV, where the operator is working below the stack at the 61 m (200 ft) radius location, the stack height may need to be increased.

  1. TANK WASTE RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    SciTech Connect

    DODD, R.A.

    2006-01-17

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the US Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60% of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring the waste to the DST system since 1997 as part of the interim stabilization program. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. This paper presents lessons learned from retrieval of tank waste at the Hanford Site and discusses how this information is used to optimize retrieval system efficiency, improve overall cost effectiveness of retrieval operations, and ensure that HFFACO requirements are met.

  2. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    SciTech Connect

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facility intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.

  3. Defense High Level Waste Disposal Container System Description

    SciTech Connect

    2000-10-12

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials

  4. Washing and caustic leaching of Hanford tank sludge: Results of FY 1997 studies

    SciTech Connect

    Lumetta, G.J.; Burgeson, I.E.; Wagner, M.J.; Liu, J.; Chen, Y.L.

    1997-08-01

    The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The tank wastes will be partitioned into high-level and low-level fractions. The HLW will be immobilized in a borosilicate glass matrix; the resulting glass canisters will then be disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implemented to reduce the volume of immobilized high-level waste (IHLW). Caustic leaching (sometimes referred to as enhanced sludge washing or ESW) represents the baseline method for pretreating Hanford tank sludges. Caustic leaching is expected to remove a large fraction of the Al, which is present in large quantities in Hanford tank sludges. A significant portion of the P is also expected to be removed from the sludge by metathesis of water-insoluble metal phosphates to insoluble hydroxides and soluble Na{sub 3}PO{sub 4}. Similar metathesis reactions can occur for insoluble sulfate salts, allowing the removal of sulfate from the HLW stream. This report describes the sludge washing and caustic leaching tests performed at the Pacific Northwest National Laboratory in FY 1996. The sludges used in this study were taken from Hanford tanks AN-104, BY-108, S-101, and S-111.

  5. Interim criteria for Organic Watch List tanks at the Hanford Site

    SciTech Connect

    Babad, S.; Turner, D.A.

    1993-09-01

    This document establishes interim criteria for identifying single-shell radioactive waste storage tanks at the Hanford Site that contain organic chemicals mixed with nitrate/nitrite salts in potentially hazardous concentrations. These tanks are designated as ``organic Watch List tanks.`` Watch List tanks are radioactive waste storage tanks that have the potential for release of high-level waste as a result of uncontrolled increases in temperature or pressure. Organic Watch List tanks are those Watch List tanks that contain relatively high concentrations of organic chemicals. Because of the potential for release of high-level waste resulting from uncontrolled increases in temperature or pressure, the organic Watch List tanks (collectively) constitute a Hanford Site radioactive waste storage tank ``safety issue.``

  6. Development of Alkaline Oxidative Dissolution Methods for Chromium (III) Compounds Present in Hanford Site Tank Sludges

    SciTech Connect

    NN Krot; VP Shilov; AM Fedoseev; NA Budantseva; MV Nikonov; AB Yusov; AYu Garnov; IA Charushnikova; VP Perminov; LN Astafurova; TS Lapitskaya; VI Makarenkov

    1999-07-02

    The high-level radioactive waste sludge in the underground storage tanks at the Hanford Site contains various chromium(III)solid phases. Dissolution and removal of chromium from tank waste sludges is desirable prior to high-level waste vitrification because increased volume is required to incorporate the residual chromium. Unfortunately, dissolution of chromium from the sludge to form Cr(OH){sub 4}{sup {minus}} through treatment with heated NaOH solution (also used to dissolve aluminum phases and metathesize phosphates to sodium salts) generally has been unsuccessful in tests with both simulated and genuine Hanford waste sludges. Oxidative dissolution of the Cr(III) compounds to form soluble chromate has been proposed as an alternative chromium solid phase dissolution method and results of limited prior testing have been reported.

  7. Review Of Rheology Models For Hanford Waste Blending

    SciTech Connect

    Koopman, D. C.; Stone, M.

    2013-09-26

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations

  8. Crystalline plutonium hosts derived from high-level waste formulations.

    SciTech Connect

    O'Holleran, T. P.

    1998-04-24

    The Department of Energy has selected immobilization for disposal in a repository as one approach for disposing of excess plutonium (1). Materials for immobilizing weapons-grade plutonium for repository disposal must meet the ''spent fuel standard'' by providing a radiation field similar to spent fuel (2). Such a radiation field can be provided by incorporating fission products from high-level waste into the waste form. Experiments were performed to evaluate the feasibility of incorporating high-level waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) into plutonium dispositioning materials to meet the spent fuel standard. A variety of materials and preparation techniques were evaluated based on prior experience developing waste forms for immobilizing HLW. These included crystalline ceramic compositions prepared by conventional sintering and hot isostatic pressing (HIP), and glass formulations prepared by conventional melting. Because plutonium solubility in silicate melts is limited, glass formulations were intentionally devitrified to partition plutonium into crystalline host phases, thereby allowing increased overall plutonium loading. Samarium, added as a representative rare earth neutron absorber, also tended to partition into the plutonium host phases. Because the crystalline plutonium host phases are chemically more inert, the plutonium is more effectively isolated from the environment, and its attractiveness for proliferation is reduced. In the initial phase of evaluating each material and preparation method, cerium was used as a surrogate for plutonium. For promising materials, additional preparation experiments were performed using plutonium to verify the behavior of cerium as a surrogate. These experiments demonstrated that cerium performed well as a surrogate for plutonium. For the most part, cerium and plutonium partitioned onto the same crystalline phases, and no anomalous changes in oxidation state were observed. The only observed

  9. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    SciTech Connect

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure

  10. Interventions for Individuals With High Levels of Needle Fear

    PubMed Central

    Noel, Melanie; Taddio, Anna; Antony, Martin M.; Asmundson, Gordon J.G.; Riddell, Rebecca Pillai; Chambers, Christine T.; Shah, Vibhuti

    2015-01-01

    Background: This systematic review evaluated the effectiveness of exposure-based psychological and physical interventions for the management of high levels of needle fear and/or phobia and fainting in children and adults. Design/Methods: A systematic review identified relevant randomized and quasi-randomized controlled trials of children, adults, or both with high levels of needle fear, including phobia (if not available, then populations with other specific phobias were included). Critically important outcomes were self-reported fear specific to the feared situation and stimulus (psychological interventions) or fainting (applied muscle tension). Data were pooled using standardized mean difference (SMD) or relative risk with 95% confidence intervals. Results: The systematic review included 11 trials. In vivo exposure-based therapy for children 7 years and above showed benefit on specific fear (n=234; SMD: −1.71 [95% CI: −2.72, −0.7]). In vivo exposure-based therapy with adults reduced fear of needles posttreatment (n=20; SMD: −1.09 [−2.04, −0.14]) but not at 1-year follow-up (n=20; SMD: −0.28 [−1.16, 0.6]). Compared with single session, a benefit was observed for multiple sessions of exposure-based therapy posttreatment (n=93; SMD: −0.66 [−1.08, −0.24]) but not after 1 year (n=83; SMD: −0.37 [−0.87, 0.13]). Non in vivo e.g., imaginal exposure-based therapy in children reduced specific fear posttreatment (n=41; SMD: −0.88 [−1.7, −0.05]) and at 3 months (n=24; SMD: −0.89 [−1.73, −0.04]). Non in vivo exposure-based therapy for adults showed benefit on specific fear (n=68; SMD: −0.62 [−1.11, −0.14]) but not procedural fear (n=17; SMD: 0.18 [−0.87, 1.23]). Applied tension showed benefit on fainting posttreatment (n=20; SMD: −1.16 [−2.12, −0.19]) and after 1 year (n=20; SMD: −0.97 [−1.91, −0.03]) compared with exposure alone. Conclusions: Exposure-based psychological interventions and applied muscle tension show

  11. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    SciTech Connect

    GARVIN, L. J.; JENSEN, M. A.

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  12. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.

    1990-09-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms, environmental transport, environmental monitoring data, demographics, agriculture, food habits, environmental pathways and dose estimates. 3 figs.

  13. Hanford Site sustainable development initiatives

    SciTech Connect

    Sullivan, C.T.

    1994-05-01

    Since the days of the Manhattan Project of World War II, the economic well being of the Tri-Cities (Pasco, Kennewick, and Richland) of Washington State has been tied to the US Department of Energy missions at the nearby Hanford Site. As missions at the Site changed, so did the economic vitality of the region. The Hanford Site is now poised to complete its final mission, that of environmental restoration. When restoration is completed, the Site may be closed and the effect on the local economy will be devastating if action is not taken now. To that end, economic diversification and transition are being planned. To facilitate the process, the Hanford Site will become a sustainable development demonstration project.

  14. EXPERIMENTS ON CAKE DEVELOPMENT IN CROSSFLOW FILTRATION FOR HIGH LEVEL WASTE

    SciTech Connect

    Duignan, M.; Nash, C.

    2011-04-14

    Crossflow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self cleaning through the action of wall shear stress, which is created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduces permeability. Low filter flux can be a bottleneck in waste processing facilities such as the Salt Waste Processing Facility at the Savannah River Site and the Waste Treatment Plant at the Hanford Site. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date, increased rates are generally realized by either increasing the crossflow filter axial flowrate, which is limited by pump capacity, or by increasing filter surface area, which is limited by space and increases the required pump load. In the interest of accelerating waste treatment processing, DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing crossflow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on startup techniques and filter cake development. This paper discusses those filter studies. SRNL set up both dead-end and crossflow filter tests to better understand filter performance based on filter media structure, flow conditions, and filter cleaning. Using non-radioactive simulated wastes, which were both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions filter flow rates can be increased

  15. Hanford Site Environmental Surveillance Data Report for Calendar Year 2005

    SciTech Connect

    Bisping, Lynn E.

    2006-09-28

    This data report contains the actual raw data used to create the tables and summaries in the Hanford Site Environmental Report for Calendar Year 2005. In addition to providing raw data collected during routine sampling efforts in 2005, this data report also includes Columbia River shoreline spring data collected by the PNNL Groundwater Performance Assessment Project, and data from collaborative studies performed by the PNNL during 2005 under partial support by the SESP. Some analytical results were not received in time to include in this report or changes may have occurred to the data following publication.

  16. HANFORD SITE RIVER CORRIDOR CLEANUP

    SciTech Connect

    BAZZELL, K.D.

    2006-02-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

  17. STATUS & DIRECTION OF THE BULK VITRIFICATION PROGRAM FOR THE SUPPLEMENTAL TREATMENT OF LOW ACTIVITY TANK WASTE AT HANFORD

    SciTech Connect

    RAYMOND, R.E.

    2005-01-12

    The DOE Office of River Protection (ORP) is managing a program at the Hanford site that will retrieve and treat more than 200 million liters (53 million gal.) of radioactive waste stored in underground storage tanks. The waste was generated over the past 50 years as part of the nation's defense programs. The project baseline calls for the waste to be retrieved from the tanks and partitioned to separate the highly radioactive constituents from the large volumes of chemical waste. These highly radioactive components will be vitrified into glass logs in the Waste Treatment Plant (WTP), temporarily stored on the Hanford Site, and ultimately disposed of as high-level waste in the offsite national repository. The less radioactive chemical waste, referred to as low-activity waste (LAW), is also planned to be vitrified by the WTP, and then disposed of in approved onsite trenches. However, additional treatment capacity is required in order to complete the pretreatment and immobilization of the tank waste by 2028, which represents a Tri-Party Agreement milestone. To help ensure that the treatment milestones will be met, the Supplemental Treatment Program was undertaken. The program, managed by CH2M HILL Hanford Group, Inc., involves several sub-projects each intended to supplement part of the treatment of waste being designed into the WTP. This includes the testing, evaluation, design, and deployment of supplemental LAW treatment and immobilization technologies, retrieval and treatment of mixed TRU waste stored in the Hanford Tanks, and supplemental pre-treatment. Applying one or more supplemental treatment technologies to the LAW has several advantages, including providing additional processing capacity, reducing the planned loading on the WTP, and reducing the need for double-shell tank space for interim storage of LAW. In fiscal year 2003, three potential supplemental treatment technologies were evaluated including grout, steam reforming and bulk vitrification using AMEC

  18. High-Level Performance Modeling of SAR Systems

    NASA Technical Reports Server (NTRS)

    Chen, Curtis

    2006-01-01

    SAUSAGE (Still Another Utility for SAR Analysis that s General and Extensible) is a computer program for modeling (see figure) the performance of synthetic- aperture radar (SAR) or interferometric synthetic-aperture radar (InSAR or IFSAR) systems. The user is assumed to be familiar with the basic principles of SAR imaging and interferometry. Given design parameters (e.g., altitude, power, and bandwidth) that characterize a radar system, the software predicts various performance metrics (e.g., signal-to-noise ratio and resolution). SAUSAGE is intended to be a general software tool for quick, high-level evaluation of radar designs; it is not meant to capture all the subtleties, nuances, and particulars of specific systems. SAUSAGE was written to facilitate the exploration of engineering tradeoffs within the multidimensional space of design parameters. Typically, this space is examined through an iterative process of adjusting the values of the design parameters and examining the effects of the adjustments on the overall performance of the system at each iteration. The software is designed to be modular and extensible to enable consideration of a variety of operating modes and antenna beam patterns, including, for example, strip-map and spotlight SAR acquisitions, polarimetry, burst modes, and squinted geometries.

  19. THERMAL ANALYSIS OF GEOLOGIC HIGH-LEVEL RADIOACTIVE WASTE PACKAGES

    SciTech Connect

    Hensel, S.; Lee, S.

    2010-04-20

    The engineering design of disposal of the high level waste (HLW) packages in a geologic repository requires a thermal analysis to provide the temperature history of the packages. Calculated temperatures are used to demonstrate compliance with criteria for waste acceptance into the geologic disposal gallery system and as input to assess the transient thermal characteristics of the vitrified HLW Package. The objective of the work was to evaluate the thermal performance of the supercontainer containing the vitrified HLW in a non-backfilled and unventilated underground disposal gallery. In order to achieve the objective, transient computational models for a geologic vitrified HLW package were developed by using a computational fluid dynamics method, and calculations for the HLW disposal gallery of the current Belgian geological repository reference design were performed. An initial two-dimensional model was used to conduct some parametric sensitivity studies to better understand the geologic system's thermal response. The effect of heat decay, number of co-disposed supercontainers, domain size, humidity, thermal conductivity and thermal emissivity were studied. Later, a more accurate three-dimensional model was developed by considering the conduction-convection cooling mechanism coupled with radiation, and the effect of the number of supercontainers (3, 4 and 8) was studied in more detail, as well as a bounding case with zero heat flux at both ends. The modeling methodology and results of the sensitivity studies will be presented.

  20. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    SciTech Connect

    J.A. Ziegler

    2000-11-20

    The purpose of this calculation is to provide a dose consequence analysis of high-level waste (HLW) consisting of plutonium immobilized in vitrified HLW to be handled at the proposed Monitored Geologic Repository at Yucca Mountain for a beyond design basis event (BDBE) under expected conditions using best estimate values for each calculation parameter. In addition to the dose calculation, a plutonium respirable particle size for dose calculation use is derived. The current concept for this waste form is plutonium disks enclosed in cans immobilized in canisters of vitrified HLW (i.e., glass). The plutonium inventory at risk used for this calculation is selected from Plutonium Immobilization Project Input for Yucca Mountain Total Systems Performance Assessment (Shaw 1999). The BDBE examined in this calculation is a nonmechanistic initiating event and the sequence of events that follow to cause a radiological release. This analysis will provide the radiological releases and dose consequences for a postulated BDBE. Results may be considered in other analyses to determine or modify the safety classification and quality assurance level of repository structures, systems, and components. This calculation uses best available technical information because the BDBE frequency is very low (i.e., less than 1.0E-6 events/year) and is not required for License Application for the Monitored Geologic Repository. The results of this calculation will not be used as part of a licensing or design basis.

  1. Wind resource quality affected by high levels of renewables

    DOE PAGESBeta

    Diakov, Victor

    2015-06-17

    For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a givenmore » level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.« less

  2. High Level Rule Modeling Language for Airline Crew Pairing

    NASA Astrophysics Data System (ADS)

    Mutlu, Erdal; Birbil, Ş. Ilker; Bülbül, Kerem; Yenigün, Hüsnü

    2011-09-01

    The crew pairing problem is an airline optimization problem where a set of least costly pairings (consecutive flights to be flown by a single crew) that covers every flight in a given flight network is sought. A pairing is defined by using a very complex set of feasibility rules imposed by international and national regulatory agencies, and also by the airline itself. The cost of a pairing is also defined by using complicated rules. When an optimization engine generates a sequence of flights from a given flight network, it has to check all these feasibility rules to ensure whether the sequence forms a valid pairing. Likewise, the engine needs to calculate the cost of the pairing by using certain rules. However, the rules used for checking the feasibility and calculating the costs are usually not static. Furthermore, the airline companies carry out what-if-type analyses through testing several alternate scenarios in each planning period. Therefore, embedding the implementation of feasibility checking and cost calculation rules into the source code of the optimization engine is not a practical approach. In this work, a high level language called ARUS is introduced for describing the feasibility and cost calculation rules. A compiler for ARUS is also implemented in this work to generate a dynamic link library to be used by crew pairing optimization engines.

  3. ATW system impact on high-level waste

    SciTech Connect

    Arthur, E.D.

    1992-12-01

    This report discusses the Accelerator Transmutation of Waste (ATW) concept which aims at destruction of key long-lived radionuclides in high-level nuclear waste (HLW), both fission products and actinides. This focus makes it different from most other transmutation concepts which concentrate primarily on actinide burning. The ATW system uses an accelerator-driven, sub-critical assembly to create an intense thermal neutron environment for radionuclide transmutation. This feature allows rapid transmutation under low-inventory system conditions, which in turn, has a direct impact on the size of chemical separations and materials handling components of the system. Inventories in ATW are factors of eight to thirty times smaller than reactor systems of equivalent thermal power. Chemical separations systems are relatively small in scale and can be optimized to achieve high decontamination factors and minimized waste streams. The low-inventory feature also directly impacts material amounts remaining in the system at its end of life. In addition to its low-inventory operation, the accelerator-driven neutron source features of ATW are key to providing a sufficient level of neutrons to allow transmutation of long-lived fission products.

  4. The GRAVITY instrument software/high-level software

    NASA Astrophysics Data System (ADS)

    Burtscher, Leonard; Wieprecht, Ekkehard; Ott, Thomas; Kok, Yitping; Yazici, Senol; Anugu, Narsireddy; Dembet, Roderick; Fedou, Pierre; Lacour, Sylvestre; Ott, Jürgen; Paumard, Thibaut; Lapeyrere, Vincent; Kervella, Pierre; Abuter, Roberto; Pozna, Eszter; Eisenhauer, Frank; Blind, Nicolas; Genzel, Reinhard; Gillessen, Stefan; Hans, Oliver; Haug, Marcus; Haussmann, Frank; Kellner, Stefan; Lippa, Magdalena; Pfuhl, Oliver; Sturm, Eckhard; Weber, Johannes; Amorim, Antonio; Brandner, Wolfgang; Rousselet-Perraut, Karine; Perrin, Guy S.; Straubmeier, Christian; Schöller, Markus

    2014-07-01

    GRAVITY is the four-beam, near-infrared, AO-assisted, fringe tracking, astrometric and imaging instrument for the Very Large Telescope Interferometer (VLTI). It is requiring the development of one of the most complex instrument software systems ever built for an ESO instrument. Apart from its many interfaces and interdependencies, one of the most challenging aspects is the overall performance and stability of this complex system. The three infrared detectors and the fast reflective memory network (RMN) recorder contribute a total data rate of up to 20 MiB/s accumulating to a maximum of 250 GiB of data per night. The detectors, the two instrument Local Control Units (LCUs) as well as the five LCUs running applications under TAC (Tools for Advanced Control) architecture, are interconnected with fast Ethernet, RMN fibers and dedicated fiber connections as well as signals for the time synchronization. Here we give a simplified overview of all subsystems of GRAVITY and their interfaces and discuss two examples of high-level applications during observations: the acquisition procedure and the gathering and merging of data to the final FITS file.

  5. Anthropometric characteristics of high level European junior basketball players.

    PubMed

    Jelicić, M; Sekulić, D; Marinović, M

    2002-12-01

    The purpose of the research was to assess anthropometric status of European high-level junior basketball players and to determine anthropometric differences between the players playing in different game positions (guards, forwards, centers). The sample consisted of 132 young basketball players, participants of the European Junior Basketball Championship, Zadar, 2000. Participants were measured with 31 measures (anthropometric variables), on the basis of which two body composition measures (BMI and relative body fat) and somatotype were calculated. The basic statistical parameters were computed. The analysis of variance and discriminant canonical analysis were employed to determine the differences between positions in play. Results indicate that prominent longitudinal and transversal skeletal dimensions as well as circumference measures characterize players on the position of centers, but they do not have significantly larger skinfold measures in relation to forwards. Centers are also predominantly ectomorphic compared with other players. Guards achieved significantly lower values in all spaces and they are predominantly mesomorphic. Further investigations are necessary in order to assess potential changes in status of these parameters when the participants will reach the age of senior players and afterwards, as well as to determine relations between anthropometric status and skill related variables. PMID:12674837

  6. High-Level Fluorescence Labeling of Gram-Positive Pathogens

    PubMed Central

    Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara

    2011-01-01

    Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10–50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration. PMID:21731607

  7. High levels of molecular chlorine in the Arctic atmosphere

    NASA Astrophysics Data System (ADS)

    Liao, Jin; Huey, L. Gregory; Liu, Zhen; Tanner, David J.; Cantrell, Chris A.; Orlando, John J.; Flocke, Frank M.; Shepson, Paul B.; Weinheimer, Andrew J.; Hall, Samuel R.; Ullmann, Kirk; Beine, Harry J.; Wang, Yuhang; Ingall, Ellery D.; Stephens, Chelsea R.; Hornbrook, Rebecca S.; Apel, Eric C.; Riemer, Daniel; Fried, Alan; Mauldin, Roy L.; Smith, James N.; Staebler, Ralf M.; Neuman, J. Andrew; Nowak, John B.

    2014-02-01

    Chlorine radicals can function as a strong atmospheric oxidant, particularly in polar regions, where levels of hydroxyl radicals are low. In the atmosphere, chlorine radicals expedite the degradation of methane and tropospheric ozone, and the oxidation of mercury to more toxic forms. Here we present direct measurements of molecular chlorine levels in the Arctic marine boundary layer in Barrow, Alaska, collected in the spring of 2009 over a six-week period using chemical ionization mass spectrometry. We report high levels of molecular chlorine, of up to 400 pptv. Concentrations peaked in the early morning and late afternoon, and fell to near-zero levels at night. Average daytime molecular chlorine levels were correlated with ozone concentrations, suggesting that sunlight and ozone are required for molecular chlorine formation. Using a time-dependent box model, we estimate that the chlorine radicals produced from the photolysis of molecular chlorine oxidized more methane than hydroxyl radicals, on average, and enhanced the abundance of short-lived peroxy radicals. Elevated hydroperoxyl radical levels, in turn, promoted the formation of hypobromous acid, which catalyses mercury oxidation and the breakdown of tropospheric ozone. We therefore suggest that molecular chlorine exerts a significant effect on the atmospheric chemistry of the Arctic.

  8. The ALICE High Level Trigger: status and plans

    NASA Astrophysics Data System (ADS)

    Krzewicki, Mikolaj; Rohr, David; Gorbunov, Sergey; Breitner, Timo; Lehrbach, Johannes; Lindenstruth, Volker; Berzano, Dario

    2015-12-01

    The ALICE High Level Trigger (HLT) is an online reconstruction, triggering and data compression system used in the ALICE experiment at CERN. Unique among the LHC experiments, it extensively uses modern coprocessor technologies like general purpose graphic processing units (GPGPU) and field programmable gate arrays (FPGA) in the data flow. Realtime data compression is performed using a cluster finder algorithm implemented on FPGA boards. These data, instead of raw clusters, are used in the subsequent processing and storage, resulting in a compression factor of around 4. Track finding is performed using a cellular automaton and a Kalman filter algorithm on GPGPU hardware, where both CUDA and OpenCL technologies can be used interchangeably. The ALICE upgrade requires further development of online concepts to include detector calibration and stronger data compression. The current HLT farm will be used as a test bed for online calibration and both synchronous and asynchronous processing frameworks already before the upgrade, during Run 2. For opportunistic use as a Grid computing site during periods of inactivity of the experiment a virtualisation based setup is deployed.

  9. Defense High-Level Waste Leaching Mechanisms Program. Final report

    SciTech Connect

    Mendel, J.E.

    1984-08-01

    The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90/sup 0/C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations.

  10. Application of SYNROC to high-level defense wastes

    SciTech Connect

    Tewhey, J.D.; Hoenig, C.L.; Newkirk, H.W.; Rozsa, R.B.; Coles, D.G.; Ryerson, F.J.

    1981-01-01

    The SYNROC method for immobilization of high-level nuclear reactor wastes is currently being applied to US defense wastes in tank storage at Savannah River, South Carolina. The minerals zirconolite, perovskite, and hollandite are used in SYNROC D formulations to immobilize fission products and actinides that comprise up to 10% of defense waste sludges and coexisting solutions. Additional phases in SYNROC D are nepheline, the host phase for sodium; and spinel, the host for excess aluminum and iron. Up to 70 wt % of calcined sludge can be incorporated with 30 wt % of SYNROC additives to produce a waste form consisting of 10% nepheline, 30% spinel, and approximately 20% each of the radioactive waste-bearing phases. Urea coprecipitation and spray drying/calcining methods have been used in the laboratory to produce homogeneous, reactive ceramic powders. Hot pressing and sintering at temperatures from 1000 to 1100/sup 0/C result in waste form products with greater than 97% of theoretical density. Hot isostatic pressing has recently been implemented as a processing alternative. Characterization of waste-form mineralogy has been done by means of XRD, SEM, and electron microprobe. Leaching of SYNROC D samples is currently being carried out. Assessment of radiation damage effects and physical properties of SYNROC D will commence in FY 81.

  11. Why consider subseabed disposal of high-level nuclear waste

    SciTech Connect

    Heath, G. R.; Hollister, C. D.; Anderson, D. R.; Leinen, M.

    1980-01-01

    Large areas of the deep seabed warrant assessment as potential disposal sites for high-level radioactive waste because: (1) they are far from seismically and tectonically active lithospheric plate boundaries; (2) they are far from active or young volcanos; (3) they contain thick layers of very uniform fine-grained clays; (4) they are devoid of natural resources likely to be exploited in the forseeable future; (5) the geologic and oceanographic processes governing the deposition of sediments in such areas are well understood, and are remarkably insensitive to past oceanographic and climatic changes; and (6) sedmentary records of tens of millions of years of slow, uninterrupted deposition of fine grained clay support predictions of the future stability of such sites. Data accumulated to date on the permeability, ion-retardation properties, and mechanical strength of pelagic clay sediments indicate that they can act as a primary barrier to the escape of buried nuclides. Work in progress should determine within the current decade whether subseabed disposal is environmentally acceptable and technically feasible, as well as address the legal, political and social issues raised by this new concept.

  12. Wind resource quality affected by high levels of renewables

    SciTech Connect

    Diakov, Victor

    2015-06-17

    For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a given level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.

  13. Attenuation of high-level impulses by earmuffs.

    PubMed

    Zera, Jan; Mlynski, Rafal

    2007-10-01

    Attenuation of high-level acoustic impulses (noise reduction) by various types of earmuffs was measured using a laboratory source of type A impulses and an artificial test fixture compatible with the ISO 4869-3 standard. The measurements were made for impulses of peak sound-pressure levels (SPLs) from 150 to 170 dB. The rise time and A duration of the impulses depended on their SPL and were within a range of 12-400 mus (rise time) and 0.4-1.1 ms (A duration). The results showed that earmuff peak level attenuation increases by about 10 dB when the impulse's rise time and the A duration are reduced. The results also demonstrated that the signals under the earmuff cup have a longer rise and A duration than the original impulses recorded outside the earmuff. Results of the measurements were used to check the validity of various hearing damage risk criteria that specify the maximum permissible exposure to impulse noise. The present data lead to the conclusion that procedures in which hearing damage risk is assessed only from signal attenuation, without taking into consideration changes in the signal waveform under the earmuff, tend to underestimate the risk of hearing damage. PMID:17902846

  14. The LHCb Data Acquisition and High Level Trigger Processing Architecture

    NASA Astrophysics Data System (ADS)

    Frank, M.; Gaspar, C.; Jost, B.; Neufeld, N.

    2015-12-01

    The LHCb experiment at the LHC accelerator at CERN collects collisions of particle bunches at 40 MHz. After a first level of hardware trigger with an output rate of 1 MHz, the physically interesting collisions are selected by running dedicated trigger algorithms in the High Level Trigger (HLT) computing farm. This farm consists of up to roughly 25000 CPU cores in roughly 1750 physical nodes each equipped with up to 4 TB local storage space. This work describes the LHCb online system with an emphasis on the developments implemented during the current long shutdown (LS1). We will elaborate the architecture to treble the available CPU power of the HLT farm and the technicalities to determine and verify precise calibration and alignment constants which are fed to the HLT event selection procedure. We will describe how the constants are fed into a two stage HLT event selection facility using extensively the local disk buffering capabilities on the worker nodes. With the installed disk buffers, the CPU resources can be used during periods of up to ten days without beams. These periods in the past accounted to more than 70% of the total time.

  15. Hemipelvectomy: high-level amputation surgery and prosthetic rehabilitation.

    PubMed

    Houdek, Matthew T; Kralovec, Michael E; Andrews, Karen L

    2014-07-01

    The hemipelvectomy, most commonly performed for pelvic tumor resection, is one of the most technically demanding and invasive surgical procedures performed today. Adequate soft tissue coverage and wound complications after hemipelvectomy are important considerations. Rehabilitation after hemipelvectomy is optimally managed by a multidisciplinary integrated team. Understanding the functional outcomes for this population assists the rehabilitation team to counsel patients, plan goals, and determine discharge needs. The most important rehabilitation goal is the optimal restoration of the patient's functional independence. Factors such as age, sex, etiology, level of amputation, and general health play important roles in determining prosthetic use. The three main criteria for successful prosthetic rehabilitation of patients with high-level amputation are comfort, function, and cosmesis. Recent advances in hip and knee joints have contributed to increased function. Prosthetic use after hemipelvectomy improves balance and decreases the need for a gait aid. Using a prosthesis helps maintain muscle strength and tone, cardiovascular health, and functional mobility. With new advances in prosthetic components, patients are choosing to use their prostheses for primary mobility. PMID:24508940

  16. The CMS High Level Trigger System: Experience and Future Development

    NASA Astrophysics Data System (ADS)

    Bauer, G.; Behrens, U.; Bowen, M.; Branson, J.; Bukowiec, S.; Cittolin, S.; Coarasa, J. A.; Deldicque, C.; Dobson, M.; Dupont, A.; Erhan, S.; Flossdorf, A.; Gigi, D.; Glege, F.; Gomez-Reino, R.; Hartl, C.; Hegeman, J.; Holzner, A.; Hwong, Y. L.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; O'Dell, V.; Orsini, L.; Paus, C.; Petrucci, A.; Pieri, M.; Polese, G.; Racz, A.; Raginel, O.; Sakulin, H.; Sani, M.; Schwick, C.; Shpakov, D.; Simon, S.; Spataru, A. C.; Sumorok, K.

    2012-12-01

    The CMS experiment at the LHC features a two-level trigger system. Events accepted by the first level trigger, at a maximum rate of 100 kHz, are read out by the Data Acquisition system (DAQ), and subsequently assembled in memory in a farm of computers running a software high-level trigger (HLT), which selects interesting events for offline storage and analysis at a rate of order few hundred Hz. The HLT algorithms consist of sequences of offline-style reconstruction and filtering modules, executed on a farm of 0(10000) CPU cores built from commodity hardware. Experience from the operation of the HLT system in the collider run 2010/2011 is reported. The current architecture of the CMS HLT, its integration with the CMS reconstruction framework and the CMS DAQ, are discussed in the light of future development. The possible short- and medium-term evolution of the HLT software infrastructure to support extensions of the HLT computing power, and to address remaining performance and maintenance issues, are discussed.

  17. Adaptation, high-level vision, and the phenomenology of perception

    NASA Astrophysics Data System (ADS)

    Webster, Michael A.

    2002-06-01

    To what extent do we have shared or unique visual experiences? This paper examines how the answer to this question is constrained by known processes of visual adaptation. Adaptation constantly recalibrates visual sensitivity so that our vision is matched to the stimuli that we are currently exposed to. These processes normalize perception not only to low-level features in the image, but to high-level, biologically relevant properties of the visual world. They can therefore strongly impact many natural perceptual judgments. To the extent that observers are exposed to and thus adapted by a different environment, their vision will be normalized in different ways and their subjective visual experience will differ. These differences are illustrated by considering how adaptation can influence human face perception. To the extent that observers are exposed and adapted to common properties in the environment, their vision will be adjusted toward common states, and in this respect they will have a common visual experience. This is illustrated by reviewing the effects of adaptation on the perception of image blur. In either case, it is the similarities or differences in the stimuli - and not the intrinsic similarities or differences in the observers - which determine the relative states of adaptation. Thus at least some aspects of our private internal experience are controlled by external factors that are accessible to objective measurement.

  18. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  19. Hanford Small Building Demolition Program

    SciTech Connect

    Diebel, J.A.; Douglas, L.M.; Shuck, R.G.

    1993-09-01

    Over 1,100 buildings currently exist on the Hanford Site. Many of these structures are outdated and no longer needed to support the environmental restoration mission. The Hanford Small Building Demolition Program is part of a combined effort of an Accelerated Decontamination and Decommissioning (D and D) Program and Landlord Site Preparation and Stabilization Program aimed at reducing the inventory of noncontaminated surplus facilities onsite. The reduction of surplus facilities results in reduced surveillance and maintenance (S and M) costs and eliminates the safety and environmental hazards associated with aging buildings. The project involves decommissioning up to 80 surplus facilities over the next five years.

  20. Washing and caustic leaching of Hanford tank sludges: Results of FY 1995 studies

    SciTech Connect

    Rapko, B.M.; Lumetta, G.J.; Wagner, M.J.

    1995-08-11

    During the past few years, the primary mission at the US Department of Energy`s Hanford Site has changed from producing plutonium to environmental restoration. Large volumes of high-level radioactive wastes (HLW), generated during past Pu production and other operations, are stored in underground tanks on site. The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The HLW will be immobilized in a borosilicate glass matrix; the resulting glass canisters will then be disposed of in a geologic repository. Because of the expected high cost of HLW immobilization and disposal, pretreatment processes will be implemented to reduce the volume of borosilicate glass produced in processing the tank wastes. This document describes sludge washing and caustic leaching tests conducted in FY 1995 at the Pacific Northwest Laboratory (PNL) at the request of Westinghouse Hanford Company. These tests were performed using sludges from seven Hanford waste tanks -- B-111, BX-107, C-103, S-104, SY-103, T-104, and T-111. The primary and secondary types of waste stored in each of these tanks are given in Table 1. 1. The data collected in this effort will be used to support the March 1998 Tri-Party Agreement decision on the extent of pretreatment to be performed on the Hanford tank sludges (Ecology, EPA, and DOE 1994).

  1. Response of the Hanford Combination Neutron Dosimeter in plutonium environments

    SciTech Connect

    Endres, A.W.; Brackenbush, L.W.; Baumgartner, W.V.

    1996-02-01

    This report documents response characteristics and the development of dose algorithms for the Hanford Combination Neutron Dosimeter (HCNO) implemented on January 1, 1995. The HCND was accredited under the U.S. Department of Energy (DOE) Laboratory Accreditation Program (DOELAP) during 1994. The HCND employs two neutron dose components consisting of (1) an albedo thermoluminescent dosimeter (TLD), and (2) a track-etch dosimeter (TED). Response characteristics of these two dosimeter components were measured under the low-scatter conditions of the Hanford 318 Building Calibration Laboratory, and under the high-scatter conditions in the workplace at the Plutonium Finishing Plant (PFP). The majority of personnel neutron dose at Hanford (currently and historically) occurs at the PFP. National Institute of Standards and Technology (NIST) traceable sources were used to characterize dosimeter response in the laboratory. At the PFP, neutron spectra and dose-measuring instruments, including a multisphere spectrometer, tissue equivalent proportional counters, and specially calibrated rem meters, were used to determine the neutron dose under several configurations from three different plutonium sources: (1) plutonium tetrafluoride, (2) plutonium metal, and (3) plutonium oxide. In addition, measurements were performed at many selected work locations. The HCNDs were included in all measurements. Comparison of dosimeter- and instrument-measured dose equivalents provided the data necessary to develop HCND dose algorithms and to assess the accuracy of estimated neutron dose under actual work conditions.

  2. The actual goals of geoethics

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2014-05-01

    The most actual goals of geoethics have been formulated as results of the International Conference on Geoethics (October 2013) held at the geoethics birth-place Pribram (Czech Republic): In the sphere of education and public enlightenment an appropriate needed minimum know how of Earth sciences should be intensively promoted together with cultivating ethical way of thinking and acting for the sustainable well-being of the society. The actual activities of the Intergovernmental Panel of Climate Changes are not sustainable with the existing knowledge of the Earth sciences (as presented in the results of the 33rd and 34th International Geological Congresses). This knowledge should be incorporated into any further work of the IPCC. In the sphere of legislation in a large international co-operation following steps are needed: - to re-formulate the term of a "false alarm" and its legal consequences, - to demand very consequently the needed evaluation of existing risks, - to solve problems of rights of individuals and minorities in cases of the optimum use of mineral resources and of the optimum protection of the local population against emergency dangers and disasters; common good (well-being) must be considered as the priority when solving ethical dilemmas. The precaution principle should be applied in any decision making process. Earth scientists presenting their expert opinions are not exempted from civil, administrative or even criminal liabilities. Details must be established by national law and jurisprudence. The well known case of the L'Aquila earthquake (2009) should serve as a serious warning because of the proven misuse of geoethics for protecting top Italian seismologists responsible and sentenced for their inadequate superficial behaviour causing lot of human victims. Another recent scandal with the Himalayan fossil fraud will be also documented. A support is needed for any effort to analyze and to disclose the problems of the deformation of the contemporary

  3. Properties of the platinoid fission products during vitrification of high-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Gong, W.; Lutze, W.; Perez-Cardenas, F.; Matlack, K. S.; Pegg, I. L.

    2006-05-01

    Platinoid fission products present in high-level nuclear wastes present particular challenges to their treatment by vitrification. The platinoid metals Ru, Rh, Pd, and their compounds are sparingly soluble in borosilicate glass melts. During glass melting under oxidizing conditions, the platinoids form small crystals of highly dense solid intermetallic phases and oxides. Under reducing conditions, the platinoids form only intermetallic phases. A fraction of these crystals settles to the bottom of the melting furnace, forming an immobile sludge. The fraction settling reported in the literature is highly variable. In the present work, the fraction settling was found to be >90% under reducing conditions but only 10 to 20% under oxidizing conditions. The thickness of the sludge layer depends on the volume fraction of platinoid crystals in the sludge, which is poorly known (typically ~0.06 under oxidizing conditions). Since the electrical conductivity of the sludge can be >10X that of the melt, in joule-heated melters the presence of such a layer can lead to diversion of the electric current, thereby compromising melter operability. The time to failure by this mechanism is clearly of practical importance. A variety of data are required in order to estimate the time to failure due to this mechanism and such data must be obtained under conditions representative of those in a full-size melting furnace. We have acquired such data using a melting furnace installed in our laboratory. This furnace is a one-third scale prototype of the system to be used for the vitrification of defense HLW at Hanford, WA. In the present work, simulated Hanford HLW material was combined with glass formers to produce a melter feed slurry that was then spiked with the platinoids. Over one thousand chemical and optical analyses were performed on hundreds of samples taken from the feed, various locations inside the furnace, the glass melt during pouring, the solid glass, and various locations along

  4. Process Design Concepts for Stabilization of High Level Waste Calcine

    SciTech Connect

    T. R. Thomas; A. K. Herbst

    2005-06-01

    The current baseline assumption is that packaging ¡§as is¡¨ and direct disposal of high level waste (HLW) calcine in a Monitored Geologic Repository will be allowed. The fall back position is to develop a stabilized waste form for the HLW calcine, that will meet repository waste acceptance criteria currently in place, in case regulatory initiatives are unsuccessful. A decision between direct disposal or a stabilization alternative is anticipated by June 2006. The purposes of this Engineering Design File (EDF) are to provide a pre-conceptual design on three low temperature processes under development for stabilization of high level waste calcine (i.e., the grout, hydroceramic grout, and iron phosphate ceramic processes) and to support a down selection among the three candidates. The key assumptions for the pre-conceptual design assessment are that a) a waste treatment plant would operate over eight years for 200 days a year, b) a design processing rate of 3.67 m3/day or 4670 kg/day of HLW calcine would be needed, and c) the performance of waste form would remove the HLW calcine from the hazardous waste category, and d) the waste form loadings would range from about 21-25 wt% calcine. The conclusions of this EDF study are that: (a) To date, the grout formulation appears to be the best candidate stabilizer among the three being tested for HLW calcine and appears to be the easiest to mix, pour, and cure. (b) Only minor differences would exist between the process steps of the grout and hydroceramic grout stabilization processes. If temperature control of the mixer at about 80„aC is required, it would add a major level of complexity to the iron phosphate stabilization process. (c) It is too early in the development program to determine which stabilizer will produce the minimum amount of stabilized waste form for the entire HLW inventory, but the volume is assumed to be within the range of 12,250 to 14,470 m3. (d) The stacked vessel height of the hot process vessels

  5. High-level disinfection of gastrointestinal endoscope reprocessing

    PubMed Central

    Chiu, King-Wah; Lu, Lung-Sheng; Chiou, Shue-Shian

    2015-01-01

    High level disinfection (HLD) of the gastrointestinal (GI) endoscope is not simply a slogan, but rather is a form of experimental monitoring-based medicine. By definition, GI endoscopy is a semicritical medical device. Hence, such medical devices require major quality assurance for disinfection. And because many of these items are temperature sensitive, low-temperature chemical methods, such as liquid chemical germicide, must be used rather than steam sterilization. In summarizing guidelines for infection prevention and control for GI endoscopy, there are three important steps that must be highlighted: manual washing, HLD with automated endoscope reprocessor, and drying. Strict adherence to current guidelines is required because compared to any other medical device, the GI endoscope is associated with more outbreaks linked to inadequate cleaning or disinfecting during HLD. Both experimental evaluation on the surveillance bacterial cultures and in-use clinical results have shown that, the monitoring of the stringent processes to prevent and control infection is an essential component of the broader strategy to ensure the delivery of safe endoscopy services, because endoscope reprocessing is a multistep procedure involving numerous factors that can interfere with its efficacy. Based on our years of experience in the surveillance of culture monitoring of endoscopic reprocessing, we aim in this study to carefully describe what details require attention in the GI endoscopy disinfection and to share our experience so that patients can be provided with high quality and safe medical practices. Quality management encompasses all aspects of pre- and post-procedural care including the efficiency of the endoscopy unit and reprocessing area, as well as the endoscopic procedure itself. PMID:25699232

  6. High levels of untreated distress and fatigue in cancer patients.

    PubMed

    Carlson, L E; Angen, M; Cullum, J; Goodey, E; Koopmans, J; Lamont, L; MacRae, J H; Martin, M; Pelletier, G; Robinson, J; Simpson, J S A; Speca, M; Tillotson, L; Bultz, B D

    2004-06-14

    The purpose of the study was to assess a large representative sample of cancer patients on distress levels, common psychosocial problems, and awareness and use of psychosocial support services. A total of 3095 patients were assessed over a 4-week period with the Brief Symptom Inventory-18 (BSI-18), a common problems checklist, and on awareness and use of psychosocial resources. Full data was available on 2776 patients. On average, patients were 60 years old, Caucasian (78.3%), and middle class. Approximately, half were attending for follow-up care. Types of cancer varied, with the largest groups being breast (23.5%), prostate (16.9%), colorectal (7.5%), and lung (5.8%) cancer patients. Overall, 37.8% of all patients met criteria for general distress in the clinical range. A higher proportion of men met case criteria for somatisation, and more women for depression. There were no gender differences in anxiety or overall distress severity. Minority patients were more likely to be distressed, as were those with lower income, cancers other than prostate, and those currently on active treatment. Lung, pancreatic, head and neck, Hodgkin's disease, and brain cancer patients were the most distressed. Almost half of all patients who met distress criteria had not sought professional psychosocial support nor did they intend to in the future. In conclusion, distress is very common in cancer patients across diagnoses and across the disease trajectory. Many patients who report high levels of distress are not taking advantage of available supportive resources. Barriers to such use, and factors predicting distress and use of psychosocial care, require further exploration. PMID:15162149

  7. Review of high-level waste form properties. [146 bibliographies

    SciTech Connect

    Rusin, J.M.

    1980-12-01

    This report is a review of waste form options for the immobilization of high-level-liquid wastes from the nuclear fuel cycle. This review covers the status of international research and development on waste forms as of May 1979. Although the emphasis in this report is on waste form properties, process parameters are discussed where they may affect final waste form properties. A summary table is provided listing properties of various nuclear waste form options. It is concluded that proposed waste forms have properties falling within a relatively narrow range. In regard to crystalline versus glass waste forms, the conclusion is that either glass of crystalline materials can be shown to have some advantage when a single property is considered; however, at this date no single waste form offers optimum properties over the entire range of characteristics investigated. A long-term effort has been applied to the development of glass and calcine waste forms. Several additional waste forms have enough promise to warrant continued research and development to bring their state of development up to that of glass and calcine. Synthetic minerals, the multibarrier approach with coated particles in a metal matrix, and high pressure-high temperature ceramics offer potential advantages and need further study. Although this report discusses waste form properties, the total waste management system should be considered in the final selection of a waste form option. Canister design, canister materials, overpacks, engineered barriers, and repository characteristics, as well as the waste form, affect the overall performance of a waste management system. These parameters were not considered in this comparison.

  8. High Levels of Molecular Chlorine found in the Arctic Atmosphere

    NASA Astrophysics Data System (ADS)

    Liao, J.; Huey, L. G.; Liu, Z.; Tanner, D.; Cantrell, C. A.; Orlando, J. J.; Flocke, F. M.; Shepson, P. B.; Weinheimer, A. J.; Hall, S. R.; Beine, H.; Wang, Y.; Ingall, E. D.; Thompson, C. R.; Hornbrook, R. S.; Apel, E. C.; Fried, A.; Mauldin, L.; Smith, J. N.; Staebler, R. M.; Neuman, J. A.; Nowak, J. B.

    2014-12-01

    Chlorine radicals are a strong atmospheric oxidant, particularly in polar regions where levels of hydroxyl radicals can be quite low. In the atmosphere, chlorine radicals expedite the degradation of methane and tropospheric ozone and the oxidation of mercury to more toxic forms. Here, we present direct measurements of molecular chlorine levels in the Arctic marine boundary layer in Barrow, Alaska, collected in the spring of 2009 over a six-week period using chemical ionization mass spectrometry. We detected high levels of molecular chlorine of up to 400 pptv. Concentrations peaked in the early morning and late afternoon and fell to near-zero levels at night. Average daytime molecular chlorine levels were correlated with ozone concentrations, suggesting that sunlight and ozone are required for molecular chlorine formation. Using a time-dependent box model, we estimated that the chlorine radicals produced from the photolysis of molecular chlorine on average oxidized more methane than hydroxyl radicals and enhanced the abundance of short-lived peroxy radicals. Elevated hydroperoxyl radical levels, in turn, promoted the formation of hypobromous acid, which catalyzed mercury oxidation and the breakdown of tropospheric ozone. Therefore, we propose that molecular chlorine exerts a significant effect on the atmospheric chemistry in the Arctic. While the formation mechanisms of molecular chlorine are not yet understood, the main potential sources of chlorine include snowpack, sea salt, and sea ice. There is recent evidence of molecular halogen (Br2 and Cl2) formation in the Arctic snowpack. The coverage and composition of the snow may control halogen chemistry in the Arctic. Changes of sea ice and snow cover in the changing climate may affect air-snow-ice interaction and have a significant impact on the levels of radicals, ozone, mercury and methane in the Arctic troposphere.

  9. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    SciTech Connect

    D.C. Richardson

    2003-03-19

    In accordance with the Nuclear Waste Policy Amendments Act of 1987, Yucca Mountain was designated as the site to be investigated as a potential repository for the disposal of high-level radioactive waste. The Yucca Mountain site is an undeveloped area located on the southwestern edge of the Nevada Test Site (NTS), about 100 miles northwest of Las Vegas. The site currently lacks rail service or an existing right-of-way. If the Yucca Mountain site is found suitable for the repository, rail service is desirable to the Office of Civilian Waste Management (OCRWM) Program because of the potential of rail transportation to reduce costs and to reduce the number of shipments relative to highway transportation. A Preliminary Rail Access Study evaluated 13 potential rail spur options. Alternative routes within the major options were also developed. Each of these options was then evaluated for potential land use conflicts and access to regional rail carriers. Three potential routes having few land use conflicts and having access to regional carriers were recommended for further investigation. Figure 1-1 shows these three routes. The Jean route is estimated to be about 120 miles long, the Carlin route to be about 365 miles long, and Caliente route to be about 365 miles long. The remaining ten routes continue to be monitored and should any of the present conflicts change, a re-evaluation of that route will be made. Complete details of the evaluation of the 13 routes can be found in the previous study. The DOE has not identified any preferred route and recognizes that the transportation issues need a full and open treatment under the National Environmental Policy Act. The issue of transportation will be included in public hearings to support development of the Environmental Impact Statement (EIS) proceedings for either the Monitored Retrievable Storage Facility or the Yucca Mountain Project or both.

  10. Activity profile of high-level Australian lacrosse players.

    PubMed

    Polley, Chris S; Cormack, Stuart J; Gabbett, Tim J; Polglaze, Ted

    2015-01-01

    Despite lacrosse being one of the fastest growing team sports in the world, there is a paucity of information detailing the activity profile of high-level players. Microtechnology systems (global positioning systems and accelerometers) provide the opportunity to obtain detailed information on the activity profile in lacrosse. Therefore, this study aimed to analyze the activity profile of lacrosse match-play using microtechnology. Activity profile variables assessed relative to minutes of playing time included relative distance (meter per minute), distance spent standing (0-0.1 m·min), walking (0.2-1.7 m·min), jogging (1.8-3.2 m·min), running (3.3-5.6 m·min), sprinting (≥5.7 m·min), number of high, moderate, low accelerations and decelerations, and player load (PL per minute), calculated as the square root of the sum of the squared instantaneous rate of change in acceleration in 3 vectors (medio-lateral, anterior-posterior, and vertical). Activity was recorded from 14 lacrosse players over 4 matches during a national tournament. Players were separated into positions of attack, midfield, or defense. Differences (effect size [ES] ± 90% confidence interval) between positions and periods of play were considered likely positive when there was ≥75% likelihood of the difference exceeding an ES threshold of 0.2. Midfielders had likely covered higher (mean ± SD) meters per minute (100 ± 11) compared with attackers (87 ± 14; ES = 0.89 ± 1.04) and defenders (79 ± 14; ES = 1.54 ± 0.94) and more moderate and high accelerations and decelerations. Almost all variables across positions were reduced in quarter 4 compared with quarter 1. Coaches should accommodate for positional differences when preparing lacrosse players for competition. PMID:25264672

  11. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  12. Engineering Escherichia coli for high-level production of propionate.

    PubMed

    Akawi, Lamees; Srirangan, Kajan; Liu, Xuejia; Moo-Young, Murray; Perry Chou, C

    2015-07-01

    Mounting environmental concerns associated with the use of petroleum-based chemical manufacturing practices has generated significant interest in the development of biological alternatives for the production of propionate. However, biological platforms for propionate production have been limited to strict anaerobes, such as Propionibacteria and select Clostridia. In this work, we demonstrated high-level heterologous production of propionate under microaerobic conditions in engineered Escherichia coli. Activation of the native Sleeping beauty mutase (Sbm) operon not only transformed E. coli to be propionogenic (i.e., propionate-producing) but also introduced an intracellular "flux competition" between the traditional C2-fermentative pathway and the novel C3-fermentative pathway. Dissimilation of the major carbon source of glycerol was identified to critically affect such "flux competition" and, therefore, propionate synthesis. As a result, the propionogenic E. coli was further engineered by inactivation or overexpression of various genes involved in the glycerol dissimilation pathways and their individual genetic effects on propionate production were investigated. Generally, knocking out genes involved in glycerol dissimilation (except glpA) can minimize levels of solventogenesis and shift more dissimilated carbon flux toward the C3-fermentative pathway. For optimal propionate production with high C3:C2-fermentative product ratios, glycerol dissimilation should be channeled through the respiratory pathway and, upon suppressed solventogenesis with minimal production of highly reduced alcohols, the alternative NADH-consuming route associated with propionate synthesis can be critical for more flexible redox balancing. With the implementation of various biochemical and genetic strategies, high propionate titers of more than 11 g/L with high yields up to 0.4 g-propionate/g-glycerol (accounting for ~50 % of dissimilated glycerol) were achieved, demonstrating the

  13. High-Level Waste Systems Plan. Revision 7

    SciTech Connect

    Brooke, J.N.; Gregory, M.V.; Paul, P.; Taylor, G.; Wise, F.E.; Davis, N.R.; Wells, M.N.

    1996-10-01

    This revision of the High-Level Waste (HLW) System Plan aligns SRS HLW program planning with the DOE Savannah River (DOE-SR) Ten Year Plan (QC-96-0005, Draft 8/6), which was issued in July 1996. The objective of the Ten Year Plan is to complete cleanup at most nuclear sites within the next ten years. The two key principles of the Ten Year Plan are to accelerate the reduction of the most urgent risks to human health and the environment and to reduce mortgage costs. Accordingly, this System Plan describes the HLW program that will remove HLW from all 24 old-style tanks, and close 20 of those tanks, by 2006 with vitrification of all HLW by 2018. To achieve these goals, the DWPF canister production rate is projected to climb to 300 canisters per year starting in FY06, and remain at that rate through the end of the program in FY18, (Compare that to past System Plans, in which DWPF production peaked at 200 canisters per year, and the program did not complete until 2026.) An additional $247M (FY98 dollars) must be made available as requested over the ten year planning period, including a one-time $10M to enhance Late Wash attainment. If appropriate resources are made available, facility attainment issues are resolved and regulatory support is sufficient, then completion of the HLW program in 2018 would achieve a $3.3 billion cost savings to DOE, versus the cost of completing the program in 2026. Facility status information is current as of October 31, 1996.

  14. Engineering neural systems for high-level problem solving.

    PubMed

    Sylvester, Jared; Reggia, James

    2016-07-01

    There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem

  15. High-level disinfection of gastrointestinal endoscope reprocessing.

    PubMed

    Chiu, King-Wah; Lu, Lung-Sheng; Chiou, Shue-Shian

    2015-02-20

    High level disinfection (HLD) of the gastrointestinal (GI) endoscope is not simply a slogan, but rather is a form of experimental monitoring-based medicine. By definition, GI endoscopy is a semicritical medical device. Hence, such medical devices require major quality assurance for disinfection. And because many of these items are temperature sensitive, low-temperature chemical methods, such as liquid chemical germicide, must be used rather than steam sterilization. In summarizing guidelines for infection prevention and control for GI endoscopy, there are three important steps that must be highlighted: manual washing, HLD with automated endoscope reprocessor, and drying. Strict adherence to current guidelines is required because compared to any other medical device, the GI endoscope is associated with more outbreaks linked to inadequate cleaning or disinfecting during HLD. Both experimental evaluation on the surveillance bacterial cultures and in-use clinical results have shown that, the monitoring of the stringent processes to prevent and control infection is an essential component of the broader strategy to ensure the delivery of safe endoscopy services, because endoscope reprocessing is a multistep procedure involving numerous factors that can interfere with its efficacy. Based on our years of experience in the surveillance of culture monitoring of endoscopic reprocessing, we aim in this study to carefully describe what details require attention in the GI endoscopy disinfection and to share our experience so that patients can be provided with high quality and safe medical practices. Quality management encompasses all aspects of pre- and post-procedural care including the efficiency of the endoscopy unit and reprocessing area, as well as the endoscopic procedure itself. PMID:25699232

  16. Radiative Lifetimes for High Levels of Neutral Fe

    NASA Astrophysics Data System (ADS)

    Lawler, James E.; Den Hartog, E.; Guzman, A.

    2013-01-01

    New radiative lifetime measurements for ~ 50 high lying levels of Fe I are reported. Laboratory astrophysics faces a challenge to provide basic spectroscopic data, especially reliable atomic transition probabilities, in the IR region for abundance studies. The availability of HgCdTe (HAWAII) detector arrays has opened IR spectral regions for extensive new spectroscopic studies. The SDSS III APOGEE project in the H-Band is an important example which will penetrate the dust obscuring the Galactic bulge. APOGEE will survey elemental abundances of 100,000 red giant stars in the bulge, bar, disk, and halo of the Milky Way. Many stellar spectra in the H-Band are, as expected, dominated by transitions of Fe I. Most of these IR transitions connect high levels of Fe. Our program has started an effort to meet this challenge with new radiative lifetime measurements on high lying levels of Fe I using time resolved laser induced fluorescence (TRLIF). The TRLIF method is typically accurate to 5% and is efficient. Our goal is to combine these accurate, absolute radiative lifetimes with emission branching fractions [1] to determine log(gf) values of the highest quality for Fe I lines in the UV, visible, and IR. This method was used very successfully by O’Brian et al. [2] on lower levels of Fe I. This method is still the best available for all but very simple spectra for which ab-initio theory is more accurate. Supported by NSF grant AST-0907732. [1] Branching fractions are being measured by M. Ruffoni and J. C. Pickering at Imperial College London. [2] O'Brian, T. R., Wickliffe, M. E., Lawler, J. E., Whaling, W., & Brault, J. W. 1991, J. Opt. Soc. Am. B 8, 1185

  17. 324 Building radiochemical engineering cells, high-level vault, low-level vault, and associated areas closure plan

    SciTech Connect

    Barnett, J.M.

    1998-03-25

    The Hanford Site, located adjacent to and north of Richland, Washington, is operated by the US Department of Energy, Richland Operations Office (RL). The 324 Building is located in the 300 Area of the Hanford Site. The 324 Building was constructed in the 1960s to support materials and chemical process research and development activities ranging from laboratory/bench-scale studies to full engineering-scale pilot plant demonstrations. In the mid-1990s, it was determined that dangerous waste and waste residues were being stored for greater than 90 days in the 324 Building Radiochemical Engineering Cells (REC) and in the High-Level Vault/Low-Level Vault (HLV/LLV) tanks. [These areas are not Resource Conservation and Recovery Act of 1976 (RCRA) permitted portions of the 324 Building.] Through the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-89, agreement was reached to close the nonpermitted RCRA unit in the 324 Building. This closure plan, managed under TPA Milestone M-20-55, addresses the identified building areas targeted by the Tri-Party Agreement and provides commitments to achieve the highest degree of compliance practicable, given the special technical difficulties of managing mixed waste that contains high-activity radioactive materials, and the physical limitations of working remotely in the areas within the subject closure unit. This closure plan is divided into nine chapters. Chapter 1.0 provides the introduction, historical perspective, 324 Building history and current mission, and the regulatory basis and strategy for managing the closure unit. Chapters 2.0, 3.0, 4.0, and 5.0 discuss the detailed facility description, process information, waste characteristics, and groundwater monitoring respectively. Chapter 6.0 deals with the closure strategy and performance standard, including the closure activities for the B-Cell, D-Cell, HLV, LLV; piping and miscellaneous associated building areas. Chapter 7.0 addresses the

  18. Hanford Immobilized Low Activity Waste (ILAW) Performance Assessment 2001 Version [Formerly DOE/RL-97-69] [SEC 1 & 2

    SciTech Connect

    MANN, F.M.

    2000-08-01

    The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.

  19. High levels of cryptic species diversity uncovered in Amazonian frogs

    PubMed Central

    Funk, W. Chris; Caminer, Marcel; Ron, Santiago R.

    2012-01-01

    One of the greatest challenges for biodiversity conservation is the poor understanding of species diversity. Molecular methods have dramatically improved our ability to uncover cryptic species, but the magnitude of cryptic diversity remains unknown, particularly in diverse tropical regions such as the Amazon Basin. Uncovering cryptic diversity in amphibians is particularly pressing because amphibians are going extinct globally at an alarming rate. Here, we use an integrative analysis of two independent Amazonian frog clades, Engystomops toadlets and Hypsiboas treefrogs, to test whether species richness is underestimated and, if so, by how much. We sampled intensively in six countries with a focus in Ecuador (Engystomops: 252 individuals from 36 localities; Hypsiboas: 208 individuals from 65 localities) and combined mitochondrial DNA, nuclear DNA, morphological, and bioacoustic data to detect cryptic species. We found that in both clades, species richness was severely underestimated, with more undescribed species than described species. In Engystomops, the two currently recognized species are actually five to seven species (a 150–250% increase in species richness); in Hypsiboas, two recognized species represent six to nine species (a 200–350% increase). Our results suggest that Amazonian frog biodiversity is much more severely underestimated than previously thought. PMID:22130600

  20. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S. M.; McMakin, A. H.

    1991-09-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into five technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (i.e., dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movements of radioactive particles from the areas of release to populations. The Environmental Monitoring Data Task assemblies, evaluates and reports historical environmental monitoring data. The Demographics, Agriculture and Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. The Environmental Pathways and Dose Estimates Task used the information derived from the other Tasks to estimate the radiation doses individuals could have received from Hanford radiation. This document lists the progress on this project as of September 1991. 3 figs., 2 tabs.

  1. Hanford Site environmental management specification

    SciTech Connect

    Grygiel, M.L.

    1998-06-10

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

  2. Hanford Site Ecological Quality Profile

    SciTech Connect

    Bilyard, Gordon R.; Sackschewsky, Michael R.; Tzemos, Spyridon

    2002-02-17

    This report reviews the ecological quality profile methodology and results for the Hanford Site. It covers critical ecological assets and terrestrial resources, those in Columbia River corridor and those threatened and engdangered, as well as hazards and risks to terrestrial resources. The features of a base habitat value profile are explained, as are hazard and ecological quality profiles.

  3. Uncertainty and Sensitivity Analyses Plan. Draft for Peer Review: Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Simpson, J.C.; Ramsdell, J.V. Jr.

    1993-04-01

    Hanford Environmental Dose Reconstruction (HEDR) Project staff are developing mathematical models to be used to estimate the radiation dose that individuals may have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. An uncertainty and sensitivity analyses plan is essential to understand and interpret the predictions from these mathematical models. This is especially true in the case of the HEDR models where the values of many parameters are unknown. This plan gives a thorough documentation of the uncertainty and hierarchical sensitivity analysis methods recommended for use on all HEDR mathematical models. The documentation includes both technical definitions and examples. In addition, an extensive demonstration of the uncertainty and sensitivity analysis process is provided using actual results from the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC). This demonstration shows how the approaches used in the recommended plan can be adapted for all dose predictions in the HEDR Project.

  4. PROCESSING OF HIGH LEVEL WASTE: SPECTROSCOPIC CHARACTERIZATION OF REDOX REACTIONS IN SUPERCRITICAL WATER

    EPA Science Inventory

    Current efforts are focused on the oxidative dissolution of chromium compounds found in Hanford tank waste sludge. Samples of chromium oxides and hydroxides with varying degrees of hydration are being characterized using Raman, FTIR, and XPS spectroscopic techniques. Kinetics of ...

  5. TRACKING CLEAN UP AT HANFORD

    SciTech Connect

    CONNELL, C.W.

    2005-05-27

    The Hanford Federal Facility Agreement and Consent Order, known as the ''Tri-Party Agreement'' (TPA), is a legally binding agreement among the US Department of Energy (DOE), The Washington State Department of Ecology, and the US Environmental Protection Agency (EPA) for cleaning up the Hanford Site. Established in the 1940s to produce material for nuclear weapons as part of the Manhattan Project, Hanford is often referred to as the world's large environmental cleanup project. The Site covers more than 580 square miles in a relatively remote region of southeastern Washington state in the US. The production of nuclear materials at Hanford has left a legacy of tremendous proportions in terms of hazardous and radioactive waste. From a waste-management point of view, the task is enormous: 1700 waste sites; 450 billion gallons of liquid waste; 70 billion gallons of contaminated groundwater; 53 million gallons of tank waste; 9 reactors; 5 million cubic yards of contaminated soil; 22 thousand drums of mixed waste; 2.3 tons of spent nuclear fuel; and 17.8 metric tons of plutonium-bearing material and this is just a partial listing. The agreement requires that DOE provide the results of analytical laboratory and non-laboratory tests/readings to the lead regulatory agency to help guide then in making decisions. The agreement also calls for each signatory to preserve--for at least ten years after the Agreement has ended--all of the records in it, or its contractors, possession related to sampling, analysis, investigations, and monitoring conducted. The Action Plan that supports the TPA requires that Ecology and EPA have access to all data that is relevant to work performed, or to be performed, under the Agreement. Further, the Action Plan specifies two additional requirements: (1) that EPA, Ecology and their respective contractor staffs have access to all the information electronically, and (2) that the databases are accessible to, and used by, all personnel doing TPA

  6. Impact testing of simulated high-level waste glass canisters

    SciTech Connect

    Peterson, M.E.; Alzheimer, J.M.; Slate, S.C.

    1985-01-01

    Three Savannah River Laboratory reference high-level waste canisters were subjected to impact tests at the Pacific Northwest Laboratory in Richland, Washington, in June 1983. The purpose of the test was to determine the integrity of the canister, nozzle, and final closure weld and to assess the effects of impacts on the glass. Two of the canisters were fabricated from 304L stainless steel and the third canister from titanium. The titanium canister was subjected to two drops. The first drop was vertical from 9.14 m onto an unyielding surface with the bottom corner of the canister receiving the impact. No failure occurred during this drop. The second drop was vertical from 9.14 m onto an unyielding surface with the corner of the fill nozzle receiving the impact. A large breach in the canister occurred in the region where the fill nozzle joins the dished head. The first stainless steel canister was dropped with the corner of the fill nozzle receiving the impact. The canister showed significant strain with no rupturing in the region where the fill nozzle joins the dished head. The second canister was dropped with the bottom corner receiving the impact and also, dropped horizontally onto an unyielding vertical solid steel cylinder in a puncture test. The bottom drop did not damage the weld and the puncture test did not rupture the canister body. The glass particles in the damaged zone of these canisters were sampled and analyzed for particle size. A comparison was made with control canister in which no impact had occurred. The particle size distribution for the control canisters and the zones of damaged glass were determined down to 1.5 ..mu..m. The quantity of glass fines, smaller than 10 ..mu..m, which must be determined for transportation safety studies, was found to be the largest in the bottom-damaged zone. The total amount of fines smaller than 10 ..mu..m after impact was less than 0.01 wt % of the total amount of glass in the canister.

  7. Reusable, Extensible High-Level Data-Distribution Concept

    NASA Technical Reports Server (NTRS)

    James, Mark; Zima, Hans; Diaconescua, Roxana

    2007-01-01

    A framework for high-level specification of data distributions in data-parallel application programs has been conceived. [As used here, distributions signifies means to express locality (more specifically, locations of specified pieces of data) in a computing system composed of many processor and memory components connected by a network.] Inasmuch as distributions exert a great effect on the performances of application programs, it is important that a distribution strategy be flexible, so that distributions can be adapted to the requirements of those programs. At the same time, for the sake of productivity in programming and execution, it is desirable that users be shielded from such error-prone, tedious details as those of communication and synchronization. As desired, the present framework enables a user to refine a distribution type and adjust it to optimize the performance of an application program and conceals, from the user, the low-level details of communication and synchronization. The framework provides for a reusable, extensible, data-distribution design, denoted the design pattern, that is independent of a concrete implementation. The design pattern abstracts over coding patterns that have been found to be commonly encountered in both manually and automatically generated distributed parallel programs. The following description of the present framework is necessarily oversimplified to fit within the space available for this article. Distributions are among the elements of a conceptual data-distribution machinery, some of the other elements being denoted domains, index sets, and data collections (see figure). Associated with each domain is one index set and one distribution. A distribution class interface (where "class" is used in the object-oriented-programming sense) includes operations that enable specification of the mapping of an index to a unit of locality. Thus, "Map(Index)" specifies a unit, while "LocalLayout(Index)" specifies the local address

  8. DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    SciTech Connect

    WASHENFELDER DJ

    2008-01-22

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLW until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  9. Cementitious Grout for Closing SRS High Level Waste Tanks - 12315

    SciTech Connect

    Langton, C.A.; Stefanko, D.B.; Burns, H.H.; Waymer, J.; Mhyre, W.B.; Herbert, J.E.; Jolly, J.C. Jr.

    2012-07-01

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. Ancillary equipment abandoned in the tanks will also be filled to the extent practical. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and to be chemically reducing with a reduction potential (Eh) of -200 to -400. Grouts with this chemistry stabilize potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted to support the mass placement strategy developed by

  10. Trade study of leakage detection, monitoring, and mitigation technologies to support Hanford single-shell waste retrieval

    SciTech Connect

    Hertzel, J.S.

    1996-03-01

    The U.S. Department of Energy has established the Tank Waste Remediation System to safely manage and dispose of low-level, high-level, and transuranic wastes currently stored in underground storage tanks at the Hanford Site in Eastern Washington. This report supports the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone No. M-45-08-T01 and addresses additional issues regarding single-shell tank leakage detection, monitoring, and mitigation technologies and provide an indication of the scope of leakage detection, monitoring, and mitigation activities necessary to support the Tank Waste Remedial System Initial Single-shell Tank Retrieval System project.

  11. Development of Crystal-Tolerant High-Level Waste Glasses

    SciTech Connect

    Matyas, Josef; Vienna, John D.; Schaible, Micah J.; Rodriguez, Carmen P.; Crum, Jarrod V.; Arrigoni, Alyssa L.; Tate, Rachel M.

    2010-12-17

    Twenty five glasses were formulated. They were batched from HLW AZ-101 simulant or raw chemicals and melted and tested with a series of tests to elucidate the effect of spinel-forming components (Ni, Fe, Cr, Mn, and Zn), Al, and noble metals (Rh2O3 and RuO2) on the accumulation rate of spinel crystals in the glass discharge riser of the high-level waste (HLW) melter. In addition, the processing properties of glasses, such as the viscosity and TL, were measured as a function of temperature and composition. Furthermore, the settling of spinel crystals in transparent low-viscosity fluids was studied at room temperature to access the shape factor and hindered settling coefficient of spinel crystals in the Stokes equation. The experimental results suggest that Ni is the most troublesome component of all the studied spinel-forming components producing settling layers of up to 10.5 mm in just 20 days in Ni-rich glasses if noble metals or a higher concentration of Fe was not introduced in the glass. The layer of this thickness can potentially plug the bottom of the riser, preventing glass from being discharged from the melter. The noble metals, Fe, and Al were the components that significantly slowed down or stopped the accumulation of spinel at the bottom. Particles of Rh2O3 and RuO2, hematite and nepheline, acted as nucleation sites significantly increasing the number of crystals and therefore decreasing the average crystal size. The settling rate of ≤10-μm crystal size around the settling velocity of crystals was too low to produce thick layers. The experimental data for the thickness of settled layers in the glasses prepared from AZ-101 simulant were used to build a linear empirical model that can predict crystal accumulation in the riser of the melter as a function of concentration of spinel-forming components in glass. The developed model predicts the thicknesses of accumulated layers quite well, R2 = 0.985, and can be become an efficient tool for the formulation

  12. TANK FARM RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    SciTech Connect

    DODD RA

    2008-01-22

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the TriParty Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U. S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 fe in 530,000 gallon or larger tanks; 30 fe in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an

  13. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    SciTech Connect

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The

  14. Summary of uncertainty estimation results for Hanford tank chemical and radionuclide inventories

    SciTech Connect

    Ferryman, T.A.; Amidan, B.G.; Chen, G.

    1998-09-01

    The exact physical and chemical nature of 55 million gallons of radioactive waste held in 177 underground waste tanks at the Hanford Site is not known in sufficient detail to support safety, retrieval, and immobilization missions. The Hanford Engineering Analysis Best-Basis team has made point estimates of the inventories in each tank. The purpose of this study is to estimate probability distributions for each of the analytes and tanks for which the Hanford Best-Basis team has made point estimates. Uncertainty intervals can then be calculated for the Best-Basis inventories and should facilitate the cleanup missions. The methodology used to generate the results published in the Tank Characterization Database (TCD) and summarized in this paper is based on scientific principles, sound technical knowledge of the realities associated with the Hanford waste tanks, the chemical analysis of actual samples from the tanks, the Hanford Best-Basic research, and historical data records. The methodology builds on research conducted by Pacific Northwest National Laboratory (PNNL) over the last few years. Appendix A of this report summarizes the results of the study. The full set of results (in percentiles, 1--99) is available through the TCD, (http://twins.pnl.gov:8001).

  15. Concrete structural analysis tools and properties for Hanford site waste tank evaluation

    SciTech Connect

    Moore, C.J.; Peterson, W.S.; Winkel, B.V.; Weiner, E.O.

    1995-09-01

    As Hanford Site Contractors address maintenance and future structural demands on nuclear waste tanks built as early as 1943, it is necessary to address their current safety margins and ensure safe margins are maintained. Although the current civil engineering practice has building codes for reinforced concrete design guidelines, the tanks were not constructed to today`s building codes and future demands potentially result in loads and modifications to the tanks that are outside the original design basis and current practice. The Hanford Site engineering staff has embraced nonlinear finite-element modeling of concrete in an effort to obtain a more accurate understanding of the actual tank margins. This document brings together and integrates past Hanford Site nonlinear reinforced concrete analysis methods, past Hanford Site concrete testing, public domain research testing, and current concrete research directions. This document, including future revisions, provides the structural engineering overview (or survey) for a consistent, accurate approach to nonlinear finite-element modeling of reinforced concrete for Hanford Site waste storage tanks. This report addresses concrete strength and modulus degradation with temperature, creep, shrinkage, long-term sustained loads, and temperature degradation of rebar and concrete bonds. Recommendations are given for parameter studies and evaluation techniques for review of nonlinear finite-element analysis of concrete.

  16. Analysis of crack initiation and growth in the high level vibration test at Tadotsu

    SciTech Connect

    Kassir, M.K.; Park, Y.J.; Hofmayer, C.H.; Bandyopadhyay, K.K.; Shteyngart, S.

    1993-08-01

    The High Level Vibration Test data are used to assess the accuracy and usefulness of current engineering methodologies for predicting crack initiation and growth in a cast stainless steel pipe elbow under complex, large amplitude loading. The data were obtained by testing at room temperature a large scale modified model of one loop of a PWR primary coolant system at the Tadotsu Engineering Laboratory in Japan. Fatigue crack initiation time is reasonably predicted by applying a modified local strain approach (Coffin-Mason-Goodman equation) in conjunction with Miner`s rule of cumulative damage. Three fracture mechanics methodologies are applied to investigate the crack growth behavior observed in the hot leg of the model. These are: the {Delta}K methodology (Paris law), {Delta}J concepts and a recently developed limit load stress-range criterion. The report includes a discussion on the pros and cons of the analysis involved in each of the methods, the role played by the key parameters influencing the formulation and a comparison of the results with the actual crack growth behavior observed in the vibration test program. Some conclusions and recommendations for improvement of the methodologies are also provided.

  17. Analyses of high-level radioactive glasses and sludges at the Savannah River Site

    SciTech Connect

    Coleman, C.J.; Bibler, N.E.; Dewberry, R.A.

    1990-01-01

    Reliable analyses of high level radioactive glass and sludge are necessary for successful operation of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). This facility will convert the radioactive waste sludges at SRS into durable borosilicate glasses for final disposal in a geologic repository. Analyses that are crucial to DWPF operation and repository acceptance of the glass are measurement of the radioactive and nonradioactive composition of the waste sludges and final glasses and measurement of the Fe(II)/Fe(III) ratio in a vitrified sample of melter feed. These measurements are based on the remote dissolutions of the glass and sludge followed by appropriate chemical analyses. Glasses are dissolved by a peroxide fusion method and a method using HF, HNO{sub 3}, H{sub 3}BO{sub 3}, and HCl acids where the solutions are heated in a microwave oven. The resulting solutions are analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and atomic absorption spectroscopy (AAS) for nonradioactive elements and appropriate counting techniques for radioactive elements. Results for two radioactive glasses containing actual radioactive waste are also presented. Sludges are dissolved by the Na{sub 2}O{sub 2} fusion method and an aqua regia method. 8 refs., 4 tabs.

  18. Risk perception on management of nuclear high-level and transuranic waste storage

    SciTech Connect

    Dees, L.A.

    1994-08-15

    The Department of Energy`s program for disposing of nuclear High-Level Waste (HLW) and transuranic (TRU) waste has been impeded by overwhelming political opposition fueled by public perceptions of actual risk. Analysis of these perceptions shows them to be deeply rooted in images of fear and dread that have been present since the discovery of radioactivity. The development and use of nuclear weapons linked these images to reality and the mishandling of radioactive waste from the nations military weapons facilities has contributed toward creating a state of distrust that cannot be erased quickly or easily. In addition, the analysis indicates that even the highly educated technical community is not well informed on the latest technology involved with nuclear HLW and TRU waste disposal. It is not surprising then, that the general public feels uncomfortable with DOE`s management plans for with nuclear HLW and TRU waste disposal. Postponing the permanent geologic repository and use of Monitored Retrievable Storage (MRS) would provide the time necessary for difficult social and political issues to be resolved. It would also allow time for the public to become better educated if DOE chooses to become proactive.

  19. Public involvement in environmental surveillance at Hanford

    SciTech Connect

    Hanf, R.W. Jr.; Patton, G.W.; Woodruff, R.K.; Poston, T.M.

    1994-08-01

    Environmental surveillance at the Hanford Site began during the mid-1940s following the construction and start-up of the nation`s first plutonium production reactor. Over the past approximately 45 years, surveillance operations on and off the Site have continued, with virtually all sampling being conducted by Hanford Site workers. Recently, the US Department of Energy Richland Operations Office directed that public involvement in Hanford environmental surveillance operations be initiated. Accordingly, three special radiological air monitoring stations were constructed offsite, near hanford`s perimeter. Each station is managed and operated by two local school teaches. These three stations are the beginning of a community-operated environmental surveillance program that will ultimately involve the public in most surveillance operations around the Site. The program was designed to stimulate interest in Hanford environmental surveillance operations, and to help the public better understand surveillance results. The program has also been used to enhance educational opportunities at local schools.

  20. History of Hanford Site Defense Production (Brief)

    SciTech Connect

    GERBER, M S

    2001-02-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history.

  1. Meeting Hanford's Infrastructure Requirements - 12505

    SciTech Connect

    Flynn, Karen

    2012-07-01

    Hanford, by all accounts, is an enormous and complex project, with thousands of disparate, but co-mingled activities in motion on any given day. The primary target of the mission at Hanford is cleanup of the 586 square-mile site, but there is the equally vital mission of site services and infrastructure. Without functions like the well-maintained site roads, electricity, water, and emergency management services, not a single cleanup project could be undertaken. As the cleanup projects evolve - with new work-scope emerging, while existing projects are completed - there becomes a very real need to keep projects integrated and working to the same 'blueprint'. And the Hanford blueprint extends for years and includes myriad variables that come with meeting the challenges and complexities associated with Hanford cleanup. Because of an innovative and unique contracting strategy, the Department of Energy (DOE) found a way to keep the cleanup projects un-encumbered from the side task of having to self-provide their individual essential site services, thus allowing the cleanup contractors to concentrate their efforts on their primary mission of cleaning up the site. These infrastructure and support services also need to be provided efficiently and cost effectively - done primarily through 'right-sizing' efforts. The real innovation came when DOE had the foresight to include a second provision in this contract which specifically asked for a specialized role of site integrator and innovator, with a special emphasis placed on providing substantial cost savings for the government. The need for a true site integrator function was necessitated by the ever-increasing complexity of projects at Hanford and the progression of cleanup at others. At present, there are two main DOE offices overseeing the cleanup work and six primary contractors performing that work. Each of these contractors works to separate schedules and cleanup milestones, and the nature of the cleanup differs, but

  2. Goat Moths (Lepidoptera: Cossidae) of the Hanford Site and Hanford National Monument, Washington State

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three species of goat moths are recorded at the Hanford Nuclear Site and Hanford National Monument in south central Washington State. They are: Comadia bertholdi (Grote), 1880, Givira cornelia (Neumoegen & Dyar), 1893, and Prionoxystus robiniae (Peck), 1818. The general habitat of the Hanford area...

  3. Potential radiation doses from 1994 Hanford Operations

    SciTech Connect

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  4. Corrosion issues in high-level nuclear waste containers

    NASA Astrophysics Data System (ADS)

    Asl, Samin Sharifi

    In this dissertation different aspects of corrosion and electrochemistry of copper, candidate canister material in Scandinavian high-level nuclear waste disposal program, including the thermodynamics and kinetics of the reactions that are predicted to occur in the practical system have been studied. A comprehensive thermodynamic study of copper in contact with granitic groundwater of the type and composition that is expected in the Forsmark repository in Sweden has been performed. Our primary objective was to ascertain whether copper would exist in the thermodynamically immune state in the repository, in which case corrosion could not occur and the issue of corrosion in the assessment of the storage technology would be moot. In spite of the fact that metallic copper has been found to exist for geological times in granitic geological formations, copper is well-known to be activated from the immune state to corrode by specific species that may exist in the environment. The principal activator of copper is known to be sulfur in its various forms, including sulfide (H2S, HS-, S2-), polysulfide (H2Sx, HSx -, Sx 2-), poly sulfur thiosulfate ( SxO3 2-), and polythionates (SxO6 2-). A comprehensive study of this aspect of copper chemistry has never been reported, and yet an understanding of this issue is vital for assessing whether copper is a suitable material for fabricating canisters for the disposal of HLNW. Our study identifies and explores those species that activate copper; these species include sulfur-containing entities as well as other, non-sulfur species that may be present in the repository. The effects of temperature, solution pH, and hydrogen pressure on the kinetics of the hydrogen electrode reaction (HER) on copper in borate buffer solution have been studied by means of steady-state polarization measurements, including electrochemical impedance spectroscopy (EIS). In order to obtain electrokinetic parameters, such as the exchange current density and the

  5. High-level waste program progress report, April 1, 1980-June 30, 1980

    SciTech Connect

    1980-08-01

    The highlights of this report are on: waste management analysis for nuclear fuel cycles; fixation of waste in concrete; study of ceramic and cermet waste forms; alternative high-level waste forms development; and high-level waste container development.

  6. HANFORD SCIENCE & TECHNOLOGY NEEDS STATEMENTS 2002

    SciTech Connect

    WIBLE, R.A.

    2002-04-01

    This document: (a) provides a comprehensive listing of the Hanford sites science and technology needs for fiscal year (FY) 2002; and (b) identifies partnering and commercialization opportunities within industry, other federal and state agencies, and the academic community. These needs were prepared by the Hanford projects (within the Project Hanford Management Contract, the Environmental Restoration Contract and the River Protection Project) and subsequently reviewed and endorsed by the Hanford Site Technology Coordination Group (STCG). The STCG reviews included participation of DOE-RL and DOE-ORP Management, site stakeholders, state and federal regulators, and Tribal Nations. These needs are reviewed and updated on an annual basis and given a broad distribution.

  7. Hanford Site Solid Waste Acceptance Criteria

    SciTech Connect

    Not Available

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  8. Pollution prevention opportunity assessments at Hanford

    SciTech Connect

    Betsch, M.D., Westinghouse Hanford

    1996-06-26

    The Pollution Prevention Opportunity Assessment (PPOA) is a pro- active way to look at a waste generating activity and identify opportunities to minimize wastes through a cost benefit analysis. Hanford`s PPOA process is based upon the graded approach developed by the Kansas City Plant. Hanford further streamlined the process while building in more flexibility for the individual users. One of the most challenging aspects for implementing the PPOA process at Hanford is one overall mission which is environmental restoration, Now that the facilities are no longer in production, each has a different non- routine activity making it difficult to quantify the inputs and outputs of the activity under consideration.

  9. Application of single ion activity coefficients to determine solvent extraction mechanism for components of high level nuclear waste

    SciTech Connect

    Nunez, L.; Vandegrift, G.F.

    1995-12-31

    The TRUEX solvent extraction process is being developed to remove and concentrate transuranic (TRU) elements from high-level and TRU radioactive wastes currently stored at US Department of Energy sites. Phosphoric acid is one of the chemical species of concern at the Hanford site where bismuth phosphate was used to recover plutonium. The mechanism of phosphoric acid extraction with TRUEX-NPH solvent at 25{degrees}C was determined by phosphoric acid distribution ratios, which were measured by using phosphoric acid radiotracer and a variety of aqueous phases containing different concentrations of nitric acid and nitrate ions. A model was developed for predicting phosphoric acid distribution ratios as a function of the thermodynamic activities of nitrate ion and hydrogen ion. The Generic TRUEX Model (GTM) was used to calculate these activities based on the Bromley method. The derived model supports CMPO and TBP extraction of a phosphoric acid-nitric acid complex and a CMPO-phosphoric acid complex in TRUEX-NPH solvent.

  10. Development of the high-level waste high-temperature melter feed preparation flowsheet for vitrification process testing

    SciTech Connect

    Seymour, R.G.

    1995-02-17

    High-level waste (HLW) feed preparation flowsheet development was initiated in fiscal year (FY) 1994 to evaluate alternative flowsheets for preparing melter feed for high-temperature melter (HTM) vitrification testing. Three flowsheets were proposed that might lead to increased processing capacity relative to the Hanford Waste Vitrification Plant (HWVP) and that were flexible enough to use with other HLW melter technologies. This document describes the decision path that led to the selection of flowsheets to be tested in the FY 1994 small-scale HTM tests. Feed preparation flowsheet development for the HLW HTM was based on the feed preparation flowsheet that was developed for the HWVP. This approach allowed the HLW program to build upon the extensive feed preparation flowsheet database developed under the HWVP Project. Primary adjustments to the HWVP flowsheet were to the acid adjustment and glass component additions. Developmental background regarding the individual features of the HLW feed preparation flowsheets is provided. Applicability of the HWVP flowsheet features to the new HLW vitrification mission is discussed. The proposed flowsheets were tested at the laboratory-scale at Pacific Northwest Laboratory. Based on the results of this testing and previously established criteria, a reductant-based flowsheet using glycolic acid and a nitric acid-based flowsheet were selected for the FY 1994 small-scale HTM testing.

  11. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed

  12. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.

  13. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  14. Hanford Generic Interim Safety Basis

    SciTech Connect

    Lavender, J.C.

    1994-09-09

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  15. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that...

  16. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that...

  17. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that...

  18. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that...

  19. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that...

  20. Hanford whole body counting manual

    SciTech Connect

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs.

  1. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    SciTech Connect

    Ramsey, William Gene

    2013-08-15

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper

  2. Application of Archimedes Filter for Reduction of Hanford HLW

    SciTech Connect

    Gilleland, J.; Agnew, S.; Cluggish, B.; Freeman, R.; Miller, R.; Putvinski, S.; Sevier, L.; Umstadter, K.

    2002-02-26

    Archimedes Technology Group, Inc., is developing a plasma mass separator called the Archimedes Filter that separates waste oxide mixtures ion by ion into two mass groups: light and heavy. For the first time, it is feasible to separate large amounts of material atom by atom in a single pass device. Although vacuum ion based electromagnetic separations have been around for many decades, they have traditionally depended on ion beam manipulation. Neutral plasma devices, on the other hand, are much easier, less costly, and permit several orders of magnitude greater throughput. The Filter has many potential applications in areas where separation of species is otherwise difficult or expensive. In particular, radioactive waste sludges at Hanford have been a particularly difficult issue for pretreatment and immobilization. Over 75% of Hanford HLW oxide mass (excluding water, carbon, and nitrogen) has mass less than 59 g/mol. On the other hand, 99.9% of radionuclide activity has mass greater than 89 g/mol. Therefore, Filter mass separation tuned to this cutoff would have a dramatic effect on the amount of IHLW produced--in fact IHLW would be reduced by a factor of at least four. The Archimedes Filter is a brand new tool for the separations specialist's toolbox. In this paper, we show results that describe the extent to which the Filter separates ionized material. Such results provide estimates for the potential advantages of Filter tunability, both in cutoff mass (electric and magnetic fields) and in degree of ionization (plasma power). Archimedes is now engaged in design and fabrication of its Demonstration Filter separator and intends on performing a full-scale treatment of Hanford high-level waste surrogates. The status of the Demo project will be described.

  3. Ancient Glass Studies: Potential Archaeological Sites Relevant to Low-Activity Waste Disposal at Hanford

    SciTech Connect

    Strachan, Denis M.

    2003-03-24

    In this document we identify several archaeological sites that may be of use in validating the ILAW performance assessment. Glasses that might be recovered at these sites would be recovered with the surrounding soil. This soil would be analyzed and the distribution of elements released from the glass to the soil would be mapped. Coincidence of the actual migration and the modeled migration would constitute a validation exercise of the current performance assessment model for the Hanford Site.

  4. Hanford Waste Physical and Rheological Properties: Data and Gaps - 12078

    SciTech Connect

    Kurath, D.E.; Wells, B.E.; Huckaby, J.L.; Mahoney, L.A.; Daniel, R.C.; Burns, C.A.; Tingey, J.M.; Cooley, S.K.

    2012-07-01

    The retrieval, transport, treatment and disposal operations associated with Hanford Tank Wastes involve the handling of a wide range of slurries. Knowledge of the physical and rheological properties of the waste is a key component to the success of the design and implementation of the waste processing facilities. Previous efforts to compile and analyze the physical and rheological properties were updated with new results including information on solids composition and density, particle size distributions, slurry rheology, and particle settling behavior. The primary source of additional data is from a recent series of tests sponsored by the Hanford Waste Treatment and Immobilization Plant (WTP). These tests involved an extensive suite of characterization and bench-scale process testing of 8 waste groups representing approximately 75% of the high-level waste mass expected to be processed through the WTP. Additional information on the morphology of the waste solids was also included. Based on the updated results, a gap analysis to identify gaps in characterization data, analytical methods and data interpretation was completed. (authors)

  5. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    SciTech Connect

    Not Available

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumed to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely.

  6. Hanford Waste Physical and Rheological Properties: Data and Gaps

    SciTech Connect

    Kurath, Dean E.; Wells, Beric E.; Huckaby, James L.; Mahoney, Lenna A.; Daniel, Richard C.; Burns, Carolyn A.; Tingey, Joel M.; Cooley, Scott K.

    2012-03-01

    The retrieval, transport, treatment and disposal operations associated with Hanford Tank Wastes involve the handling of a wide range of slurries. Knowledge of the physical and rheological properties of the waste is a key component to the success of the design and implementation of the waste processing facilities. Previous efforts to compile and analyze the physical and rheological properties were updated with new results including information on solids composition and density, particle size distributions, slurry rheology, and particle settling behavior. The primary source of additional data is from a recent series of tests sponsored by the Hanford Waste Treatment and Immobilization Plant. These tests involved an extensive suite of characterization and bench-scale process testing of 8 waste groups representing approximately 75% of the high-level waste mass expected to be processed through the WTP. Additional information on the morphology of the waste solids was also included. Based on the updated results, a gap analysis to identify gaps in characterization data, analytical methods and data interpretation was completed.

  7. Statistical Methods and Tools for Hanford Staged Feed Tank Sampling

    SciTech Connect

    Fountain, Matthew S.; Brigantic, Robert T.; Peterson, Reid A.

    2013-10-01

    This report summarizes work conducted by Pacific Northwest National Laboratory to technically evaluate the current approach to staged feed sampling of high-level waste (HLW) sludge to meet waste acceptance criteria (WAC) for transfer from tank farms to the Hanford Waste Treatment and Immobilization Plant (WTP). The current sampling and analysis approach is detailed in the document titled Initial Data Quality Objectives for WTP Feed Acceptance Criteria, 24590-WTP-RPT-MGT-11-014, Revision 0 (Arakali et al. 2011). The goal of this current work is to evaluate and provide recommendations to support a defensible, technical and statistical basis for the staged feed sampling approach that meets WAC data quality objectives (DQOs).

  8. 1976 Hanford americium exposure incident: in vivo measurements

    SciTech Connect

    Palmer, H.E.; Rieksts, G.A.; Icayan, E.E.

    1982-01-01

    Detailed external measurement were made of internally deposited /sup 241/Am in a nuclear chemical operator involved in an americium exposure accident at the Hanford plant. Despite some interference from high-level external contamination, quantitative measurements of the /sup 241/Am content in the lung, liver, and bones were made starting on the third day after the accident. The rate of excretion of /sup 241/Am from these organs was determined. The /sup 241/Am embedded in the skin of the face and head was carefully mapped. The distribution over the total length of the body was also determined. Linear and rectilinear scanners, gamma cameras, large and small scintillation detectors, proportional counters, and Si(Li) and intrinsic germanium detectors were used to evaluate the internal deposition. Methods of calibration for quantitative measurement included simulation of the /sup 241/Am activity in both phantom and cadaver parts.

  9. Preliminary examination of the impacts of repository site characterization activities and facility construction and operation activities on Hanford air quality

    SciTech Connect

    Glantz, C.S.; Ramsdell, J.V.

    1986-04-01

    Air quality impacts that would result from site characterization activities and from the construction and operation of a high-level nuclear wste repository at Hanford are estimated using two simple atmospheric dispersion models, HANCHI and CHISHORT. Model results indicate that pollutant concentrations would not exceed ambient air quality standards at any point outside the Hanford fenceline or at any publicly accessible location within the Hanford Site. The increase in pollutant concentrations in nearby communities due to site activities would be minimal. HANCHI and CHISHORT are documented in the appendices of this document. Further study of the repository's impact on air quality will be conducted when more detailed project plans and work schedules are available.

  10. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION & PLANNING FOR REVRIEVAL TREATMENT & EVENTUAL DISPOSAL AT WIPP

    SciTech Connect

    KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

    2006-01-18

    The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP).

  11. Moral Reasoning in Hypothetical and Actual Situations.

    ERIC Educational Resources Information Center

    Sumprer, Gerard F.; Butter, Eliot J.

    1978-01-01

    Results of this investigation suggest that moral reasoning of college students, when assessed using the DIT format, is the same whether the dilemmas involve hypothetical or actual situations. Subjects, when presented with hypothetical situations, become deeply immersed in them and respond as if they were actual participants. (Author/BEF)

  12. Factors Related to Self-Actualization.

    ERIC Educational Resources Information Center

    Hogan, H. Wayne; McWilliams, Jettie M.

    1978-01-01

    Provides data to further support the notions that females score higher in self-actualization measures and that self-actualization scores correlate inversely to the degree of undesirability individuals assign to their heights and weights. Finds that, contrary to predictions, greater androgyny was related to lower, not higher, self-actualization…

  13. Identification of Mission Sensitivities with Mission Modeling from the One System Organization at Hanford - 13292

    SciTech Connect

    Belsher, Jeremy D.; Pierson, Kayla L.; Gimpel, Rod F.

    2013-07-01

    The Hanford site in southeast Washington contains approximately 207 million liters of radioactive and hazardous waste stored in 177 underground tanks. The U.S. Department of Energy's Office of River Protection is currently managing the Hanford waste treatment mission, which includes the storage, retrieval, treatment and disposal of the tank waste. Two recent studies, employing the modeling tools managed by the One System organization, have highlighted waste cleanup mission sensitivities. The Hanford Tank Waste Operations Simulator Sensitivity Study evaluated the impact that varying 21 different parameters had on the Hanford Tank Waste Operations Simulator model. It concluded that inaccuracies in the predicted phase partitioning of a few key components can result in significant changes in the waste treatment duration and in the amount of immobilized high-level waste that is produced. In addition, reducing the efficiency with which tank waste is retrieved and staged can increase mission duration. The 2012 WTP Tank Utilization Assessment concluded that flowsheet models need to include the latest low-activity waste glass algorithms or the waste treatment mission duration and the amount of low activity waste that is produced could be significantly underestimated. (authors)

  14. Regulatory issues associated with closure of the Hanford AX Tank Farm ancillary equipment

    SciTech Connect

    Becker, D.L.

    1998-09-02

    Liquid mixed, high-level radioactive waste has been stored in underground single-shell tanks at the US Department of Energy`s (DOE`s) Hanford Site. After retrieval of the waste from the single-shell tanks, the DOE will proceed with closure of the tank farm. The 241-AX Tank Farm includes four one-million gallon single-shell tanks in addition to sluice lines, transfer lines, ventilation headers, risers, pits, cribs, catch tanks, buildings, well and associated buried piping. This equipment is classified as ancillary equipment. This document addresses the requirements for regulatory close of the ancillary equipment in the Hanford Site 241-AX Tank Farm. The options identified for physical closure of the ancillary equipment include disposal in place, disposal in place after treatment, excavation and disposal on site in an empty single-shell tank, and excavation and disposal outside the AX Tank Farm. The document addresses the background of the Hanford Site and ancillary equipment in the AX Tank Farm, regulations for decontamination and decommissioning of radioactively contaminated equipment, requirements for the cleanup and disposal of radioactive wastes, cleanup and disposal requirements governing hazardous and mixed waste, and regulatory requirements and issues associated with each of the four physical closure options. This investigation was conducted by the Sandia National Laboratories, Albuquerque, New Mexico, during Fiscal Year 1998 for the Hanford Tanks Initiative Project.

  15. Preparing for Implementation of DOE O 435.1 at Hanford

    SciTech Connect

    FRITZ, D.W.

    2000-02-01

    Implementation of a new DOE Order at a complex site like Hanford is not as simple as just stating that the Order is to be followed. There are contractual changes, interface adjustments and institutional obstacles to overcome that all must be properly analyzed and dealt with before the actual physical changes embodied in the new requirements can be put into practice. In planning for these changes associated with the new DOE 0 435.1 ''Radioactive Waste Management'', the Richland Operations Office (RL) of the U.S. Department of Energy is attempting to make an orderly and efficient transition to the new Order requirements. In so doing, RL is tasking the Management and Integration contractor for the Project Hanford Management Contract (PHMC) held by Fluor Daniel Hanford (FDH) to coordinate the planning and integration efforts necessary to ensure that resources needed to implement the new requirements are identified and plans for implementation completed within the first year after issuance of the Order. Implementation at Hanford is complicated not only by the relatively complex contract situation with the PHMC under FDH and its major subcontractors, the Environmental Remediation Contract (under Bechtel), and the Pacific Northwest National Laboratory (run by Battelle), but also by the newly created Office of River Protection (ORP) which reports directly to EM-1, and not to the Hanford site RL Manager. Despite the obstacles, however, Hanford is making a concerted effort to effectively implement the new requirements, while maximizing use of existing systems, processes and documentation. This paper describes the process and experiences Hanford has developed to accomplish this objective. The interested audience will include others involved in implementation of new DOE Order 435.1 and others interested in the workings of large federal installations such as Hanford. This paper concludes that through use of planning, communications and participation of involved parties, complex

  16. Permitting plan for Hanford Tanks Initiative

    SciTech Connect

    Bloom, J.W.

    1998-03-19

    This plan describes all the permitting actions that have been identified as required to implement the Hanford Tanks Initiative. It reflects changes in the scope to the Hanford Tanks Initiative since the Rev. 0 plan was issued. The cost and schedule for the permitting actions are included.

  17. Managing Electrochemical Noise Data by Exception Application of an On Line EN Data Analysis Technique to Data From a High Level Nuclear Waste Tank

    SciTech Connect

    EDGEMON, G.L.

    2003-11-13

    Electrochemical noise has been used a t the Hanford Site for a number of years to monitor in real time for pitting corrosion and stress corrosion cracking (SCC) mechanisms in high level nuclear waste tanks. Currently the monitoring technique has only been implemented on three of the 177 underground storage tanks on the site. Widespread implementation of the technique has been held back for of a number of reasons, including issues around managing the large volume of data associated with electrochemical noise and the complexity of data analysis. Expert review of raw current and potential measurements is the primary form of data analysis currently used at the Hanford site. This paper demonstrates the application of an on-line data filtering and analysis technique that could allow data from field applications of electrochemical noise to be managed by exception, transforming electrochemical noise data into a process parameter and focusing data analysis efforts on the important data. Results of the analysis demonstrate a data compression rate of 95%; that is, only 5% of the data would require expert analysis if such a technique were implemented. It is also demonstrated that this technique is capable of identifying key periods where localized corrosion activity is apparent.

  18. Progress in evaluation of radionuclide geochemical information developed by DOE high-level nuclear waste repository site projects. Annual report, October 1984-September 1985. Volume 4

    SciTech Connect

    Meyer, R.E.; Arnold, W.D.; Blencoe, J.G.; Jacobs, G.K.; Kelmers, A.D.; Seeley, F.G.; Whatley, S.K.

    1986-05-01

    Information pertaining to the potential geochemical behavior of radionuclides at candidate sites for a high-level radioactive waste repository, which is being developed by projects within the Department of Energy (DOE), is being evaluated by Oak Ridge National Laboratory for the Nuclear Regulatory Commission (NRC). During this report period, emphasis was placed on the evaluation of information pertinent to the Hanford site in southeastern Washington. Results on the sorption/solubility behavior of technetium, neptunium, and uranium in the basalt/water geochemical system are summarized and compared to the results of DOE. Also, summaries of results are reported from two geochemical modeling studies: (1) an evaluation of the information developed by DOE on the native copper deposits of Michigan as a natural analog for the emplacement of copper canisters in a repository in basalt, and (2) calculation of the solubility and speciation of radionuclides for representative groundwaters from the Yucca Mountain site in Nevada.

  19. Final Report - High Level Waste Vitrification System Improvements, VSL-07R1010-1, Rev 0, dated 04/16/07

    SciTech Connect

    Kruger, Albert A.; Gan, H.; Pegg, I. L.; Gong, W.; Champman, C. C.; Joseph, I.; Matlack, K. S.

    2013-11-13

    This report describes work conducted to support the development and testing of new glass formulations that extend beyond those that have been previously investigated for the Hanford Waste Treatment and Immobilization Plant (WTP). The principal objective was to investigate maximization of the incorporation of several waste components that are expected to limit waste loading and, consequently, high level waste (HLW) processing rates and canister count. The work was performed with four waste compositions specified by the Office of River Protection (ORP); these wastes contain high concentrations of bismuth, chromium, aluminum, and aluminum plus sodium. The tests were designed to identify glass formulations that maximize waste loading while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass formulations, increased glass processing temperature, increased crystallinity, and feed solids content on waste processing rate and product quality.

  20. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.