Sample records for actual industrial applications

  1. Acrylonitrile removal from synthetic wastewater and actual industrial wastewater with high strength nitrogen using a pure bacteria culture.

    PubMed

    Wang, C C; Lee, C M; Cheng, P W

    2001-01-01

    A gram-negative rod-shaped bacteria (strain AAS6), capable of utilizing acrylonitrile as the sole source of both carbon and nitrogen, was utilized to investigate the removal of acrylonitrile in ABS resin manufacturing wastewater. Both synthetic wastewater, containing a high concentration of acrylonitrile, and actual wastewater obtained from an ABS manufacturing factory were used. The result indicated that strain AAS6 was capable of completely removing acrylonitrile from synthetic wastewater containing less than 889 mg/l acrylonitrile and from actual industrial wastewater containing less than 400 mg/l acrylonitrile. Whether in synthetic wastewater or actual industrial wastewater, strain AAS6 showed approximately the same ability for acrylonitrile removal and used acrylic acid, a metabolic by-product of acrylonitrile, as the carbon source and ammonium as the nitrogen source. The bacteria could not directly metabolize other chemicals found in the actual industrial wastewater. However, its metabolic activities were not inhibited by the presence of compounds such as butadiene, styrene or acrylonitrile-styrene polymer. Thus, this strain is expected to play an important role in aeration tanks for treating ABS resin manufacturing wastewater.

  2. Application of Core Theory to the Airline Industry

    NASA Technical Reports Server (NTRS)

    Raghavan, Sunder

    2003-01-01

    Competition in the airline industry has been fierce since the industry was deregulated in 1978. The proponents of deregulation believed that more competition would improve efficiency and reduce prices and bring overall benefits to the consumer. In this paper, a case is made based on core theory that under certain demand and cost conditions more competition can actually lead to harmful consequences for industries like the airline industry or cause an empty core problem. Practices like monopolies, cartels, price discrimination, which is considered inefficient allocation of resources in many other industries, can actually be beneficial in the case of the airline industry in bringing about an efficient equilibrium.

  3. OCT for industrial applications

    NASA Astrophysics Data System (ADS)

    Song, Guiju; Harding, Kevin

    2012-11-01

    Optical coherence tomography (OCT), as an interferometric method, has been studied as a distance ranger. As a technology capable of producing high-resolution, depth-resolved images of biological tissue, OCT had been widely used for the application of ophthalmology and has been commercialized in the market today. Enlightened by the emerging research interest in biomedical domain, the applications of OCT in industrial inspection were rejuvenated by a few groups to explore its potential for characterizing new materials, imaging or inspecting industrial parts as a service solution[3]. Benefiting from novel photonics components and devices, the industrial application of the older concepts in OCT can be re-visited with respect to the unique performance and availability. Commercial OCT developers such as Michelson Diagnostics (MDL; Orpington, U.K.) and Thorlabs (Newton, NJ) are actively exploring the application of OCT to industrial applications and they have outlined meaningful path toward the metrology application in emerging industry[3]. In this chapter, we will introduce the fundamental concepts of OCT and discuss its current and potential industrial applications.

  4. Industrial applications of nanoparticles.

    PubMed

    Stark, W J; Stoessel, P R; Wohlleben, W; Hafner, A

    2015-08-21

    Research efforts in the past two decades have resulted in thousands of potential application areas for nanoparticles - which materials have become industrially relevant? Where are sustainable applications of nanoparticles replacing traditional processing and materials? This tutorial review starts with a brief analysis on what makes nanoparticles attractive to chemical product design. The article highlights established industrial applications of nanoparticles and then moves to rapidly emerging applications in the chemical industry and discusses future research directions. Contributions from large companies, academia and high-tech start-ups are used to elucidate where academic nanoparticle research has revolutionized industry practice. A nanomaterial-focused analysis discusses new trends, such as particles with an identity, and the influence of modern instrument advances in the development of novel industrial products.

  5. Industrial storage applications overview

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.

    1980-01-01

    The implementation of a technology demonstration for the food processing industry, development and technology demonstrations for selected near-term, in-plant applications and advanced industrial applications of thermal energy storage are overviewed.

  6. Industrial application experiment series

    NASA Technical Reports Server (NTRS)

    Bluhm, S. A.

    1980-01-01

    The deployment of parabolic dish systems into the industrial sector for the purpose of providing users, suppliers, sponsors, and developers with a realistic assessment of system feasibility in selected near-term industrial applications will be accomplished initially through the industrial module experiment and later through additional experiments involving thermal, electric, and combined thermal and electrical systems. The approach is to progress through steps, from single module to multi-module systems, from thermal-only applications to more complex combined thermal and electric applications. The experience of other solar thermal experiments, particularly those involving parabolic dish hardware, will be utilized to the fullest extent possible in experiment planning and implementation.

  7. Diaphragmless shock wave generators for industrial applications of shock waves

    NASA Astrophysics Data System (ADS)

    Hariharan, M. S.; Janardhanraj, S.; Saravanan, S.; Jagadeesh, G.

    2011-06-01

    The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 ± 0.2%. This system shows much promise for automation in an industrial environment.

  8. Restructuring the Uranium Mining Industry in Romania: Actual Situation and Prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgescu, P.D.; Petrescu, S.T.; Iuhas, T.F.

    2002-07-01

    Uranium prospecting in Romania has started some 50 years ago, when a bilateral agreement between Romania and the former Soviet Union had been concluded and a joint Romanian-Soviet enterprise was created. The production started in 1952 by the opening of some deposits from western Transylvania (Bihor and Ciudanovita). From 1962 the production has continued only with Romanian participation on the ore deposit Avram Iancu and from 1985 on the deposits from Eastern Carpathians (Crucea and Botusana). Starting with 1978 the extracted ores have been completely processed in the Uranium Ore Processing Plant from Feldioara, Brasov. Complying with the initial stipulationsmore » of the Nuclear National Program launched at the beginning of the 1980's, the construction of a nuclear power station in Cernavoda has started in Romania, using natural uranium and heavy water (CANDU type), having five units of 650 MW installed capacity. After 1989 this initial Nuclear National Program was revised and the construction of the first unit (number 1) was finalized and put in operation in 1996. In 2001 the works at the unit number 2 were resumed, having the year 2005 as the scheduled activating date. The future of the other 3 units, being in different construction phases, hasn't been clearly decided. Taking into consideration the exhaustion degree of some ore deposits and from the prospect of exploiting other ore deposits, the uranium industry will be subject of an ample restructuring process. This process includes workings of modernization of the mines in operation and of the processing plant, increasing the profitableness, lowering of the production costs by closing out and ecological rehabilitation of some areas affected by mining works and even new openings of some uraniferous exploitations. This paper presents the actual situation and the prospects of uranium mining industry on the base of some new technical and economical strategic concepts in accordance with the actual Romanian

  9. Industrial Applications of Pulsed Power Technology

    NASA Astrophysics Data System (ADS)

    Takaki, Koichi; Katsuki, Sunao

    Recent progress of the industrial applications of pulsed power is reviewed in this paper. Repetitively operated pulsed power generators with a moderate peak power have been developed for industrial applications. These generators are reliable and low maintenance. Development of the pulsed power generators helps promote industrial applications of pulsed power for such things as food processing, medical treatment, water treatment, exhaust gas treatment, ozone generation, engine ignition, ion implantation and others. Here, industrial applications of pulsed power are classified by application for biological effects, for pulsed streamer discharges in gases, for pulsed discharges in liquid or liquid-mixture, and for bright radiation sources.

  10. Unusual Applications of Ultrasound in Industry

    NASA Astrophysics Data System (ADS)

    Keilman, George

    The application of physical acoustics in industry has been accelerated by increased understanding of the physics of industrial processes, coupled with rapid advancements in transducers, microelectronics, data acquisition, signal processing, and related software fields. This has led to some unusual applications of ultrasound to improve industrial processes.

  11. The applicability of a computer model for predicting head injury incurred during actual motor vehicle collisions.

    PubMed

    Moran, Stephan G; Key, Jason S; McGwin, Gerald; Keeley, Jason W; Davidson, James S; Rue, Loring W

    2004-07-01

    Head injury is a significant cause of both morbidity and mortality. Motor vehicle collisions (MVCs) are the most common source of head injury in the United States. No studies have conclusively determined the applicability of computer models for accurate prediction of head injuries sustained in actual MVCs. This study sought to determine the applicability of such models for predicting head injuries sustained by MVC occupants. The Crash Injury Research and Engineering Network (CIREN) database was queried for restrained drivers who sustained a head injury. These collisions were modeled using occupant dynamic modeling (MADYMO) software, and head injury scores were generated. The computer-generated head injury scores then were evaluated with respect to the actual head injuries sustained by the occupants to determine the applicability of MADYMO computer modeling for predicting head injury. Five occupants meeting the selection criteria for the study were selected from the CIREN database. The head injury scores generated by MADYMO were lower than expected given the actual injuries sustained. In only one case did the computer analysis predict a head injury of a severity similar to that actually sustained by the occupant. Although computer modeling accurately simulates experimental crash tests, it may not be applicable for predicting head injury in actual MVCs. Many complicating factors surrounding actual MVCs make accurate computer modeling difficult. Future modeling efforts should consider variables such as age of the occupant and should account for a wider variety of crash scenarios.

  12. Microbial Cellulases and Their Industrial Applications

    PubMed Central

    Kuhad, Ramesh Chander; Gupta, Rishi; Singh, Ajay

    2011-01-01

    Microbial cellulases have shown their potential application in various industries including pulp and paper, textile, laundry, biofuel production, food and feed industry, brewing, and agriculture. Due to the complexity of enzyme system and immense industrial potential, cellulases have been a potential candidate for research by both the academic and industrial research groups. Nowadays, significant attentions have been devoted to the current knowledge of cellulase production and the challenges in cellulase research especially in the direction of improving the process economics of various industries. Scientific and technological developments and the future prospects for application of cellulases in different industries are discussed in this paper. PMID:21912738

  13. Parallel programming of industrial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heroux, M; Koniges, A; Simon, H

    1998-07-21

    In the introductory material, we overview the typical MPP environment for real application computing and the special tools available such as parallel debuggers and performance analyzers. Next, we draw from a series of real applications codes and discuss the specific challenges and problems that are encountered in parallelizing these individual applications. The application areas drawn from include biomedical sciences, materials processing and design, plasma and fluid dynamics, and others. We show how it was possible to get a particular application to run efficiently and what steps were necessary. Finally we end with a summary of the lessons learned from thesemore » applications and predictions for the future of industrial parallel computing. This tutorial is based on material from a forthcoming book entitled: "Industrial Strength Parallel Computing" to be published by Morgan Kaufmann Publishers (ISBN l-55860-54).« less

  14. [Industrial application of lipases].

    PubMed

    Bancerz, Renata

    2017-01-01

    The ability of lipases to perform specific reactions of transformation (biotransformation) makes these enzymes a useful tool used in many syntheses, for example: in the production of detergents, cosmetics, biosurfactants, in the oil-chemical, paper, dairy, food or pharmaceutical industries. Lipases are ubiquitous enzymes but only lipases produced by microorganisms are important for industrial applications due to their wide variety of properties such as stability in organic solvents, action under mild conditions, high substrate specificity and region- and enantioselectivity, as well as the relatively simple methods of their production in fermentors and recovery from the culture medium. This paper reviews the latest achievements in the production of lipases in the submerged fermentation and solid state fermentation using waste products from the agricultural industry. In addition, new applications of lipases were described, including those for the synthesis of biopolymers and biodiesel and for the production of enantiomeric pharmaceuticals, agrochemicals and flavoring compounds.

  15. Design and Analysis of Nano-Pulse Generator for Industrial Wastewater Application

    NASA Astrophysics Data System (ADS)

    Jang, Sung-Duck; Son, Yoon-Kyoo; Cho, Moo-Hyun; Norov, Enkhbat

    2018-05-01

    Recently, the application of a pulsed power system is being extended to environmental and industrial fields. The non-dissolution wastewater pollutants from industrial plants can be processed by applying high-voltage pulses with a fast rising time (a few nanoseconds) and short duration (nano to microseconds) in a pulsed corona discharge reactor. The high-voltage nano-pulse generator with a magnetic switch has been developed. It can be used for a spray type water treatment facility. Its corona current in load can be adjusted by pulse width and repetition rate. We investigated the performance of the nano-pulse generator by using the dummy load that is composed of resistor and capacitor equivalent to the actual reactor. In this paper, the results of design, construction and characterization of a high-voltage nano-pulse generator for an industrial wastewater treatment are reported. Consequently, a pulse width of 1.1 μs at the repetition rate of 200 pps, a peak voltage of 41 kV for the nano-pulse generator were achieved across a 640 Ω load. The simulation results on magnetic switch show reasonable agreement with experimental ones.

  16. Biocatalysts: application and engineering for industrial purposes.

    PubMed

    Jemli, Sonia; Ayadi-Zouari, Dorra; Hlima, Hajer Ben; Bejar, Samir

    2016-01-01

    Enzymes are widely applied in various industrial applications and processes, including the food and beverage, animal feed, textile, detergent and medical industries. Enzymes screened from natural origins are often engineered before entering the market place because their native forms do not meet the requirements for industrial application. Protein engineering is concerned with the design and construction of novel enzymes with tailored functional properties, including stability, catalytic activity, reaction product inhibition and substrate specificity. Two broad approaches have been used for enzyme engineering, namely, rational design and directed evolution. The powerful and revolutionary techniques so far developed for protein engineering provide excellent opportunities for the design of industrial enzymes with specific properties and production of high-value products at lower production costs. The present review seeks to highlight the major fields of enzyme application and to provide an updated overview on previous protein engineering studies wherein natural enzymes were modified to meet the operational conditions required for industrial application.

  17. Industrial applications of metal-organic frameworks.

    PubMed

    Czaja, Alexander U; Trukhan, Natalia; Müller, Ulrich

    2009-05-01

    New materials are prerequisite for major breakthrough applications influencing our daily life, and therefore are pivotal for the chemical industry. Metal-organic frameworks (MOFs) constitute an emerging class of materials useful in gas storage, gas purification and separation applications as well as heterogeneous catalysis. They not only offer higher surface areas and the potential for enhanced activity than currently used materials like base metal oxides, but also provide shape/size selectivity which is important both for separations and catalysis. In this critical review an overview of the potential applications of MOFs in the chemical industry is presented. Furthermore, the synthesis and characterization of the materials are briefly discussed from the industrial perspective (88 references).

  18. Industrial production and professional application of manufactured nanomaterials-enabled end products in Dutch industries: potential for exposure.

    PubMed

    Bekker, Cindy; Brouwer, Derk H; Tielemans, Erik; Pronk, Anjoeka

    2013-04-01

    In order to make full use of the opportunities while responsibly managing the risks of working with manufactured nanomaterials (MNM), we need to gain insight into the potential level of exposure to MNM in the industry. Therefore, the goal of this study was to obtain an overview of the potential MNM exposure scenarios within relevant industrial sectors, applied exposure controls, and number of workers potentially exposed to MNM in Dutch industrial sectors producing and applying MNM-enabled end products in the Netherlands. A survey was conducted in three phases: (i) identification of MNM-enabled end products; (ii) identification of relevant industrial sectors; and (iii) a tiered telephone survey to estimate actual use of the products among 40 sector organizations/knowledge centres (Tier 1), 350 randomly selected companies (Tier 2), and 110 actively searched companies (Tier 3). The most dominant industrial sectors producing or applying MNM-enabled end products (market penetration >5%) are shoe repair shops, automotive, construction, paint, metal, and textile cleaning industry. In the majority of the companies (76%), potential risks related to working with MNM are not a specific point of interest. The total number of workers potentially exposed to MNM during the production or application of MNM-enabled end products was estimated at approximately 3000 workers in the Netherlands. The results of this study will serve as a basis for in-depth exposure and health surveys that are currently planned in the Netherlands. In addition, the results can be used to identify the most relevant sectors for policy makers and future studies focussing on evaluating the risks of occupational exposure to MNM.

  19. Industrial applications of THz systems

    NASA Astrophysics Data System (ADS)

    Wietzke, S.; Jansen, C.; Jördens, C.; Krumbholz, N.; Vieweg, N.; Scheller, M.; Shakfa, M. K.; Romeike, D.; Hochrein, T.; Mikulics, M.; Koch, M.

    2009-07-01

    Terahertz time-domain spectroscopy (THz TDS) holds high potential as a non-destructive, non-contact testing tool. We have identified a plethora of emerging industrial applications such as quality control of industrial processes and products in the plastics industry. Polymers are transparent to THz waves while additives show a significantly higher permittivity. This dielectric contrast allows for detecting the additive concentration and the degree of dispersion. We present a first inline configuration of a THz TDS spectrometer for monitoring polymeric compounding processes. To evaluate plastic components, non-destructive testing is strongly recommended. For instance, THz imaging is capable of inspecting plastic weld joints or revealing the orientation of fiber reinforcements. Water strongly absorbs THz radiation. However, this sensitivity to water can be employed in order to investigate the moisture absorption in plastics and the water content in plants. Furthermore, applications in food technology are discussed. Moreover, security scanning applications are addressed in terms of identifying liquid explosives. We present the vision and first components of a handheld security scanner. In addition, a new approach for parameter extraction of THz TDS data is presented. All in all, we give an overview how industry can benefit from THz TDS completing the tool box of non-destructive evaluation.

  20. 14 CFR 1201.402 - NASA Industrial Applications Centers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true NASA Industrial Applications Centers. 1201... ORGANIZATION AND GENERAL INFORMATION General Information § 1201.402 NASA Industrial Applications Centers. (a... and innovative technology to nonaerospace sectors of the economy—NASA operates a network of Industrial...

  1. 14 CFR 1201.402 - NASA Industrial Applications Centers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false NASA Industrial Applications Centers. 1201... ORGANIZATION AND GENERAL INFORMATION General Information § 1201.402 NASA Industrial Applications Centers. (a... and innovative technology to nonaerospace sectors of the economy—NASA operates a network of Industrial...

  2. 14 CFR 1201.402 - NASA Industrial Applications Centers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false NASA Industrial Applications Centers. 1201... ORGANIZATION AND GENERAL INFORMATION General Information § 1201.402 NASA Industrial Applications Centers. (a... and innovative technology to nonaerospace sectors of the economy—NASA operates a network of Industrial...

  3. 14 CFR 1201.402 - NASA Industrial Applications Centers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false NASA Industrial Applications Centers. 1201... ORGANIZATION AND GENERAL INFORMATION General Information § 1201.402 NASA Industrial Applications Centers. (a... and innovative technology to nonaerospace sectors of the economy—NASA operates a network of Industrial...

  4. Incorporating unnatural amino acids to engineer biocatalysts for industrial bioprocess applications.

    PubMed

    Ravikumar, Yuvaraj; Nadarajan, Saravanan Prabhu; Hyeon Yoo, Tae; Lee, Chong-Soon; Yun, Hyungdon

    2015-12-01

    The bioprocess engineering with biocatalysts broadly spans its development and actual application of enzymes in an industrial context. Recently, both the use of bioprocess engineering and the development and employment of enzyme engineering techniques have been increasing rapidly. Importantly, engineering techniques that incorporate unnatural amino acids (UAAs) in vivo has begun to produce enzymes with greater stability and altered catalytic properties. Despite the growth of this technique, its potential value in bioprocess applications remains to be fully exploited. In this review, we explore the methodologies involved in UAA incorporation as well as ways to synthesize these UAAs. In addition, we summarize recent efforts to increase the yield of UAA engineered proteins in Escherichia coli and also the application of this tool in enzyme engineering. Furthermore, this protein engineering tool based on the incorporation of UAA can be used to develop immobilized enzymes that are ideal for bioprocess applications. Considering the potential of this tool and by exploiting these engineered enzymes, we expect the field of bioprocess engineering to open up new opportunities for biocatalysis in the near future. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Aerospace industry representatives view actual and mock-up versions of 'X-Planes' intended to enhanc

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Aerospace industry representatives view actual and mock-up versions of 'X-Planes' intended to enhance access to space during a technical exposition on June 22, 2000 at Dryden Flight Research Center, Edwards, California. From left to right: NASA's B-52 launch aircraft, in service with NASA since 1959; a neutral-buoyancy model of the Boeing's X-37; the Boeing X-40A behind the MicroCraft X-43 mock-up; Orbital Science's X-34 and the modified Lockheed L-1011 airliner that was to launch the X-34. These X-vehicles are part of NASA's Access to Space plan intended to bring new technologies to bear in an effort to dramatically lower the cost of putting payloads in space, and near-space environments. The June 22, 2000 NASA Reusable Launch Vehicle (RLV) Technology Exposition included presentations on the history, present, and future of NASA's RLV program. Special Sessions for industry representatives highlighted the X-37 project and its related technologies. The X-37 project is managed by NASA's Marshall Space Flight Center, Huntsville, Alabama.

  6. Industrial applications of multiaxial warp knit composites

    NASA Technical Reports Server (NTRS)

    Kaufmann, James R.

    1992-01-01

    Over the past few years, multiaxial warp knit (MWK) fabrics have made significant inroads into the industrial composites arena. This paper examines the use of MWK fabrics in industrial composite applications. Although the focus is on current applications of MWK fabrics in composites, this paper also discusses the physical properties, advantages and disadvantages of MWK fabrics. The author also offers possibilities for the future of MWK fabrics in the industrial composites arena.

  7. The SMAT fiber laser for industrial applications

    NASA Astrophysics Data System (ADS)

    Ding, Jianwu; Liu, Jinghui; Wei, Xi; Xu, Jun

    2017-02-01

    With the increased adoption of high power fiber laser for various industrial applications, the downtime and the reliability of fiber lasers become more and more important. Here we present our approach toward a more reliable and more intelligent laser source for industrial applications: the SMAT fiber laser with the extensive sensor network and multi-level protection mechanism, the mobile connection and the mobile App, and the Smart Cloud. The proposed framework is the first IoT (Internet of Things) approach integrated in an industrial laser not only prolongs the reliability of an industrial laser but open up enormous potential for value-adding services by gathering and analyzing the Big data from the connected SMAT lasers.

  8. Industrial Application Of Psyllium: An Overview

    NASA Astrophysics Data System (ADS)

    Khaliq, Rehana; Tita, Ovidiu; Antofie, Maria Mihaela; Sava, Camelia

    2015-09-01

    Plantago ovata is economically an important medicinal plant commonly cultivated in different parts of India, Pakistan and Iran and some part of Europe. It has a long history of traditional uses with healing properties. There are various applications of seed husk and its marketable products for medicine and industrial uses. The seed husk is commonly called as psyllium or isabgol has a potential role in the treatment and prevention of gastrointestinal and bowel diseases. The intent of this review was to highlight the industrial uses of psyllium for the food products and therapeutic purposes. There is also considerable interest of local people, scientific communities and industries in the medical and food supplement application of psyllium husk and mucilage with specific health benefits.

  9. At NASA Dryden, Aerospace industry representatives view actual and mock-up versions of 'X-Planes' in

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Aerospace industry representatives view actual and mock-up versions of 'X-Planes' intended to enhance access to space during a technical exposition on June 22, 2000 at Dryden Flight Research Center, Edwards, California. From left to right: NASA's B-52 launch aircraft, in service with NASA since 1959; a neutral-buoyancy model of the Boeing's X-37; the Boeing X-40A behind the MicroCraft X-43 mock-up; Orbital Science's X-34 and the modified Lockheed L-1011 airliner that was to launch the X-34. These X-vehicles are part of NASA's Access to Space plan intended to bring new technologies to bear in an effort to dramatically lower the cost of putting payloads in space, and near-space environments. The June 22, 2000 NASA Reusable Launch Vehicle (RLV) Technology Exposition included presentations on the history, present, and future of NASA's RLV program. Special Sessions for industry representatives highlighted the X-37 project and its related technologies. The X-37 project is managed by NASA's Marshall Space Flight Center, Huntsville, Alabama.

  10. Conducting polymers: Synthesis and industrial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottesfeld, S.

    1997-04-01

    The Conducting Polymer project funded by the AIM Program has developed new methods for the synthesis of conducting polymers and evaluated new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1996 included two ongoing efforts on membranes for gas separation and on electrochemical capacitors and a third new application: electrochemical reactors (ECRs) based on polymeric electrolytes. As a gas separation membrane, conducting polymers offer high selectivity and the potential to chemically or electrically adapt the membrane for specific gas combinations. Potential energy savings in themore » US for this application are estimated at 1 to 3 quads/yr. As an active material in electrochemical capacitors, electronically conducting polymers have the potential of storing large amounts of electric energy in low cost materials. Potential energy savings estimated at 1 quad/yr would result from introduction of electrochemical capacitors as energy storage devices in power trains of electric and hybrid vehicles, once such vehicles reach 20% of the total transportation market in the US. In the chlor-alkali industry, electrochemical reactors based on polymer electrolyte membranes consume around 1 % of the total electric power in the US. A new activity, started in FY 1996, is devoted to energy efficient ECRs. In the case of the chlor-alkali industry, energy savings as high as 50% seem possible with the novel ECR technology demonstrated by the author in 1996.« less

  11. The applications of nanotechnology in food industry.

    PubMed

    Rashidi, Ladan; Khosravi-Darani, Kianoush

    2011-09-01

    Nanotechnology has the potential of application in the food industry and processing as new tools for pathogen detection, disease treatment delivery systems, food packaging, and delivery of bioactive compounds to target sites. The application of nanotechnology in food systems will provide new methods to improve safety and the nutritional value of food products. This article will review the current advances of applications of nanotechnology in food science and technology. Also, it describes new current food laws for nanofood and novel articles in the field of risk assessment of using nanotechnology in the food industry.

  12. Industrial and Systems Engineering Applications in NASA

    NASA Technical Reports Server (NTRS)

    Shivers, Charles H.

    2006-01-01

    A viewgraph presentation on the many applications of Industrial and Systems Engineering used for safe NASA missions is shown. The topics include: 1) NASA Information; 2) Industrial Engineering; 3) Systems Engineering; and 4) Major NASA Programs.

  13. Industrial applications of automated X-ray inspection

    NASA Astrophysics Data System (ADS)

    Shashishekhar, N.

    2015-03-01

    Many industries require that 100% of manufactured parts be X-ray inspected. Factors such as high production rates, focus on inspection quality, operator fatigue and inspection cost reduction translate to an increasing need for automating the inspection process. Automated X-ray inspection involves the use of image processing algorithms and computer software for analysis and interpretation of X-ray images. This paper presents industrial applications and illustrative case studies of automated X-ray inspection in areas such as automotive castings, fuel plates, air-bag inflators and tires. It is usually necessary to employ application-specific automated inspection strategies and techniques, since each application has unique characteristics and interpretation requirements.

  14. Engineering Thermostable Microbial Xylanases Toward its Industrial Applications.

    PubMed

    Kumar, Vishal; Dangi, Arun Kumar; Shukla, Pratyoosh

    2018-03-01

    Xylanases are one of the important hydrolytic enzymes which hydrolyze the β-1, 4 xylosidic linkage of the backbone of the xylan polymeric chain which consists of xylose subunits. Xylanases are mainly found in plant cell walls and are produced by several kinds of microorganisms such as fungi, bacteria, yeast, and some protozoans. The fungi are considered as most potent xylanase producers than that of yeast and bacteria. There is a broad series of industrial applications for the thermostable xylanase as an industrial enzyme. Thermostable xylanases have been used in a number of industries such as paper and pulp industry, biofuel industry, food and feed industry, textile industry, etc. The present review explores xylanase-substrate interactions using gene-editing tools toward the comprehension in improvement in industrial stability of xylanases. The various protein-engineering and metabolic-engineering methods have also been explored to improve operational stability of xylanase. Thermostable xylanases have also been used for improvement in animal feed nutritional value. Furthermore, they have been used directly in bakery and breweries, including a major use in paper and pulp industry as a biobleaching agent. This present review envisages some of such applications of thermostable xylanases for their bioengineering.

  15. Application of microbial α-amylase in industry - A review.

    PubMed

    de Souza, Paula Monteiro; de Oliveira Magalhães, Pérola

    2010-10-01

    Amylases are one of the main enzymes used in industry. Such enzymes hydrolyze the starch molecules into polymers composed of glucose units. Amylases have potential application in a wide number of industrial processes such as food, fermentation and pharmaceutical industries. α-Amylases can be obtained from plants, animals and microorganisms. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. The production of α-amylase is essential for conversion of starches into oligosaccharides. Starch is an important constituent of the human diet and is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. Starch-converting enzymes are used in the production of maltodextrin, modified starches, or glucose and fructose syrups. A large number of microbial α-amylases has applications in different industrial sectors such as food, textile, paper and detergent industries. The production of α-amylases has generally been carried out using submerged fermentation, but solid state fermentation systems appear as a promising technology. The properties of each α-amylase such as thermostability, pH profile, pH stability, and Ca-independency are important in the development of fermentation process. This review focuses on the production of bacterial and fungal α-amylases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  16. Color line-scan technology in industrial applications

    NASA Astrophysics Data System (ADS)

    Lemstrom, Guy F.

    1995-10-01

    Color machine vision opens new possibilities for industrial on-line quality control applications. With color machine vision it's possible to detect different colors and shades, make color separation, spectroscopic applications and at the same time do measurements in the same way as with gray scale technology. These can be geometrical measurements such as dimensions, shape, texture etc. By combining these technologies in a color line scan camera, it brings the machine vision to new dimensions of realizing new applications and new areas in the machine vision business. Quality and process control requirements in the industry get more demanding every day. Color machine vision can be the solution for many simple tasks that haven't been realized with gray scale technology. The lack of detecting or measuring colors has been one reason why machine vision has not been used in quality control as much as it could have been. Color machine vision has shown a growing enthusiasm in the industrial machine vision applications. Potential areas of the industry include food, wood, mining and minerals, printing, paper, glass, plastic, recycling etc. Tasks are from simple measuring to total process and quality control. The color machine vision is not only for measuring colors. It can also be for contrast enhancement, object detection, background removing, structure detection and measuring. Color or spectral separation can be used in many different ways for working out machine vision application than before. It's only a question of how to use the benefits of having two or more data per measured pixel, instead of having only one as in case with traditional gray scale technology. There are plenty of potential applications already today that can be realized with color vision and it's going to give more performance to many traditional gray scale applications in the near future. But the most important feature is that color machine vision offers a new way of working out applications, where

  17. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    PubMed

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  18. Archaeal Enzymes and Applications in Industrial Biocatalysts

    PubMed Central

    Littlechild, Jennifer A.

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in “extreme” conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches. PMID:26494981

  19. Enzymes from Extreme Environments and Their Industrial Applications

    PubMed Central

    Littlechild, Jennifer A.

    2015-01-01

    This article will discuss the importance of specific extremophilic enzymes for applications in industrial biotechnology. It will specifically address those enzymes that have applications in the area of biocatalysis. Such enzymes now play an important role in catalyzing a variety of chemical conversions that were previously carried out by traditional chemistry. The biocatalytic process is carried out under mild conditions and with greater specificity. The enzyme process does not result in the toxic waste that is usually produced in a chemical process that would require careful disposal. In this sense, the biocatalytic process is referred to as carrying out “green chemistry” which is considered to be environmentally friendly. Some of the extremophilic enzymes to be discussed have already been developed for industrial processes such as an l-aminoacylase and a γ-lactamase. The industrial applications of other extremophilic enzymes, including transaminases, carbonic anhydrases, dehalogenases, specific esterases, and epoxide hydrolases, are currently being assessed. Specific examples of these industrially important enzymes that have been studied in the authors group will be presented in this review. PMID:26528475

  20. Industrial Applications of Low Temperature Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardsley, J N

    2001-03-15

    The use of low temperature plasmas in industry is illustrated by the discussion of four applications, to lighting, displays, semiconductor manufacturing and pollution control. The type of plasma required for each application is described and typical materials are identified. The need to understand radical formation, ionization and metastable excitation within the discharge and the importance of surface reactions are stressed.

  1. Marine yeast isolation and industrial application

    PubMed Central

    Zaky, Abdelrahman Saleh; Tucker, Gregory A; Daw, Zakaria Yehia; Du, Chenyu

    2014-01-01

    Over the last century, terrestrial yeasts have been widely used in various industries, such as baking, brewing, wine, bioethanol and pharmaceutical protein production. However, only little attention has been given to marine yeasts. Recent research showed that marine yeasts have several unique and promising features over the terrestrial yeasts, for example higher osmosis tolerance, higher special chemical productivity and production of industrial enzymes. These indicate that marine yeasts have great potential to be applied in various industries. This review gathers the most recent techniques used for marine yeast isolation as well as the latest applications of marine yeast in bioethanol, pharmaceutical and enzyme production fields. PMID:24738708

  2. Solar energy in California industry - Applications, characteristics and potential

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. S.

    1978-01-01

    Results of a survey to determine the potential applicability of solar thermal energy to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar energy, total state energy consumption could be reduced by 100 trillion Btus (2%), while the use of solar energy in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar energy must contend are illustrated by a description of fluid milk processing operations. Solar energy application is found to be technically feasible for processes with thermal energy requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.

  3. REVIEW ARTICLE: Industrial applications of temperature and species concentration monitoring using laser diagnostics

    NASA Astrophysics Data System (ADS)

    Deguchi, Y.; Noda, M.; Fukuda, Y.; Ichinose, Y.; Endo, Y.; Inada, M.; Abe, Y.; Iwasaki, S.

    2002-10-01

    Industrial applications of laser diagnostics have been demonstrated for the purpose of clarifying combustor chemical reaction mechanisms, as well as temperature and harmful substance monitoring in large-scale burners and commercial plant exhaust ducts, and the combustion control of commercial plants. Laser induced fluorescence (LIF), laser induced breakdown spectroscopy (LIBS), and tunable diode laser absorption spectroscopy (TDLAS) have accordingly been applied in various industrial fields. In this study, temperature and species concentration were measured inside gas turbine combustors, a diesel engine, and a large-scale industrial burner using LIF. This technique introduces a new tool with respect to practical combustors for the analysis of NO formation characteristics, turbulent flame front structure, and differences between standard and improved combustors. On-line monitoring of trace elements to the ppb level was also successfully demonstrated using LIBS. The automated LIBS unit was found to be capable of monitoring trace element concentration fluctuations at ppb levels with a 1 min detection time under actual plant conditions. In addition, real-time measurement of O2 and CO concentrations in a commercial incinerator furnace was performed using TDLAS to improve the combustion control. By using the multiple-point laser measurement results to control secondary air allocation, higher secondary combustion efficiency was achieved, and CO concentration (considered to be a substitute indicator for dioxins) was reduced from 11.9 to 8.0 ppm.

  4. Applications of Microbial Enzymes in Food Industry.

    PubMed

    Raveendran, Sindhu; Parameswaran, Binod; Ummalyma, Sabeela Beevi; Abraham, Amith; Mathew, Anil Kuruvilla; Madhavan, Aravind; Rebello, Sharrel; Pandey, Ashok

    2018-03-01

    The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.

  5. Applications of Microbial Enzymes in Food Industry

    PubMed Central

    2018-01-01

    Summary The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed. PMID:29795993

  6. Driver development of IFE power plant in Japan Collaborative process with industry and industrial applications

    NASA Astrophysics Data System (ADS)

    Nakai, S.; Yamanaka, M.; Kitagawa, Y.; Fujita, K.; Heya, M.; Mima, K.; Izawa, Y.; Nakatsuka, M.; Murakami, M.; Ueda, K.; Sasaki, T.; Mori, Y.; Kanabe, T.; Hiruma, T.; Kan, H.; Kawashima, T.

    2006-06-01

    The typical specifications of the laser driver for a commercial IFE power plant are (1) total energy (MJ/pulse) with a tailored 20-40 ns pulse, (2) repetition operation (˜ 10 Hz), (3) efficiency (˜ 10%) with enough robustness and low cost. The key elements of the DPSSL driver technology are under development with HALNA. The HALNA 10 (High Average-power Laser for Nuclear-fusion Application) demonstrated 10 J × 10 Hz operation and the HALNA 100 (100 J × 10 Hz) is now under construction. By using the high average power and high intensity lasers, new industrial applications are being proceeded. The collaborative process for the development of high power laser with industry and for the industrial applications is effective and essential in the development of the laser driver for IFE power plant.

  7. [Fermentation production of microbial catalase and its application in textile industry].

    PubMed

    Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2010-11-01

    Microbial catalase is an important industrial enzyme that catalyzes the decomposition of hydrogen peroxide to water and oxygen. This enzyme has great potential of application in food, textile and pharmaceutical industries. The production of microbial catalase has been significantly improved thanks to advances in bioprocess engineering and genetic engineering. In this paper, we review the progresses in fermentation production of microbial catalase and its application in textile industry. Among these progresses, we will highlight strain isolation, substrate and environment optimization, enzyme induction, construction of engineering strains and application process optimization. Meanwhile, we also address future research trends for microbial catalase production and its application in textile industry. Molecular modification (site-directed mutagenesis and directed revolution) will endue catalase with high pH and temperature stabilities. Improvement of catalase production, based on the understanding of induction mechanism and the process control of recombinant stain fermentation, will further accelerate the application of catalase in textile industry.

  8. Leveraging multi-channel x-ray detector technology to improve quality metrics for industrial and security applications

    NASA Astrophysics Data System (ADS)

    Jimenez, Edward S.; Thompson, Kyle R.; Stohn, Adriana; Goodner, Ryan N.

    2017-09-01

    Sandia National Laboratories has recently developed the capability to acquire multi-channel radio- graphs for multiple research and development applications in industry and security. This capability allows for the acquisition of x-ray radiographs or sinogram data to be acquired at up to 300 keV with up to 128 channels per pixel. This work will investigate whether multiple quality metrics for computed tomography can actually benefit from binned projection data compared to traditionally acquired grayscale sinogram data. Features and metrics to be evaluated include the ability to dis- tinguish between two different materials with similar absorption properties, artifact reduction, and signal-to-noise for both raw data and reconstructed volumetric data. The impact of this technology to non-destructive evaluation, national security, and industry is wide-ranging and has to potential to improve upon many inspection methods such as dual-energy methods, material identification, object segmentation, and computer vision on radiographs.

  9. Electron beam irradiation processing for industrial and medical applications

    NASA Astrophysics Data System (ADS)

    Ozer, Zehra Nur

    2017-09-01

    In recent years, electron beam processing has been widely used for medical and industrial applications. Electron beam accelerators are reliable and durable equipments that can produce ionizing radiation when it is needed for a particular commercial use. On the industrial scale, accelerators are used to generate electrons in between 0.1-100 MeV energy range. These accelerators are used mainly in plastics, automotive, wire and electric cables, semiconductors, health care, aerospace and environmental industries, as well as numerous researches. This study presents the current applications of electron beam processing in medicine and industry. Also planned study of a design for such a system in the energy range of 200-300 keV is introduced.

  10. Application of microbial α-amylase in industry – A review

    PubMed Central

    de Souza, Paula Monteiro; de Oliveira Magalhães, Pérola

    2010-01-01

    Amylases are one of the main enzymes used in industry. Such enzymes hydrolyze the starch molecules into polymers composed of glucose units. Amylases have potential application in a wide number of industrial processes such as food, fermentation and pharmaceutical industries. α-Amylases can be obtained from plants, animals and microorganisms. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. The production of α-amylase is essential for conversion of starches into oligosaccharides. Starch is an important constituent of the human diet and is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. Starch-converting enzymes are used in the production of maltodextrin, modified starches, or glucose and fructose syrups. A large number of microbial α-amylases has applications in different industrial sectors such as food, textile, paper and detergent industries. The production of α-amylases has generally been carried out using submerged fermentation, but solid state fermentation systems appear as a promising technology. The properties of each α-amylase such as thermostability, pH profile, pH stability, and Ca-independency are important in the development of fermentation process. This review focuses on the production of bacterial and fungal α-amylases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications. PMID:24031565

  11. Advanced ammonia (NH3) monitoring system for industrial applications

    NASA Astrophysics Data System (ADS)

    Spector, Oded; Jacobson, Esther

    1999-12-01

    The present paper describes an Electro-Optical Monitoring System developed for the real time in-situ monitoring of Ammonia (NH3) emissions, at very low concentrations in air, well below the hazardous levels. Ammonia is the starting chemical for almost all industrially produced nitrogen compounds and is therefore one of the most important inorganic raw materials. Due to its unique chemical and physical characteristics, the Ammonia (NH3) anhydrous gas is used in various industrial applications such as: Air Conditioning, Refrigeration (including space shuttles), Agriculture and Chemical Processing. NH3 gas, being a highly irritant toxic and flammable gas with a pungent odor detectable by human perception at 53 ppm, has a TLV-TWA of 25 ppm (TLV-STEL of 35 ppm) and a lower explosive limit (LEL) of 15% in air. Being extremely corrosive and irritating to the skin, eyes, nose and respiratory tract, (irritation begins at 130 - 200 ppm), exposures to high concentrations (above 2500 ppm) are life threatening, thus early detection of Ammonia at concentrations up to 50 ppm is essential to prevent its toxic influence. Existing detection methods for NH3 rely mainly on chemical sensors and analytical methods that require the gas to be sampled and introduced into the detection system via a probe, compared to various standards (for determining the concentration) and the result is not always reflecting the actual gas concentration. The emerging optical open path remote sensing technology that analyzes the specific 'finger print' absorption characteristics of NH3 in various narrow spectral bands, specifically in the UV solar blind band, is discussed including the rationale of the detection algorithm and system design. The system offers warning and alarm signals set at the above low concentration detection sensitivity, (10 - 50 ppm(DOT)m) thus providing reliable Ammonia detection over an air path from 3 (including air-duct applications) to 400 ft (1 - 120 m). Typical installations of

  12. Application of Nanotechnology and Nanomaterials in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Nabhani, Nader; Emami, Milad; Moghadam, A. B. Taghavi

    2011-12-01

    Micro and nano technologies have already contributed significantly to technological advances in a number of industries, including electronics, biomedical, pharmaceutical, materials and manufacturing, aerospace, photography and more recently the energy industries. Micro and nanotechnologies have the potential to introduce revolutionary changes in several areas of the oil and gas industries such as exploration, drilling, production, refining and distribution. For example, nanosensors might provide more detailed and accurate information about reservoirs and smart fluids for enhanced oil recovery (EOR) and drilling. This paper examines and documents applicable nanotechnology base products that can improve the competitiveness of the oil and gas industry. The future challenges of nanotechnology application in the oil and gas industry are also discussed.

  13. Marine yeast isolation and industrial application.

    PubMed

    Zaky, Abdelrahman Saleh; Tucker, Gregory A; Daw, Zakaria Yehia; Du, Chenyu

    2014-09-01

    Over the last century, terrestrial yeasts have been widely used in various industries, such as baking, brewing, wine, bioethanol and pharmaceutical protein production. However, only little attention has been given to marine yeasts. Recent research showed that marine yeasts have several unique and promising features over the terrestrial yeasts, for example higher osmosis tolerance, higher special chemical productivity and production of industrial enzymes. These indicate that marine yeasts have great potential to be applied in various industries. This review gathers the most recent techniques used for marine yeast isolation as well as the latest applications of marine yeast in bioethanol, pharmaceutical and enzyme production fields. © 2014 The Authors FEMS Yeast Research published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  14. Electron tubes for industrial applications

    NASA Astrophysics Data System (ADS)

    Gellert, Bernd

    1994-05-01

    This report reviews research and development efforts within the last years for vacuum electron tubes, in particular power grid tubes for industrial applications. Physical and chemical effects are discussed that determine the performance of todays devices. Due to the progress made in the fundamental understanding of materials and newly developed processes the reliability and reproducibility of power grid tubes could be improved considerably. Modern computer controlled manufacturing methods ensure a high reproducibility of production and continuous quality certification according to ISO 9001 guarantees future high quality standards. Some typical applications of these tubes are given as an example.

  15. Industrial applications of shearography for inspection of aircraft components

    NASA Astrophysics Data System (ADS)

    Krupka, Rene; Walz, Thomas; Ettemeyer, Andreas

    2005-04-01

    Shearography has been validated as fast and reliable inspection technique for aerospace components. Following several years phase of evaluation of the technique, meanwhile, shearography has entered the industrial production inspection. The applications basically range from serial inspection in the production line to field inspection in assembly and to applications in the maintenance and repair area. In all applications, the main advantages of shearography, as very fast and full field insection and high sensitivity even on very complex on composite materials have led to the decision for laser shearography as inspection tool. In this paper, we present some highlights of industrial shearography inspection. One of the first industrial installations of laser shearography in Europe was a fully automatic inspection system for helicopter rotorblades. Complete rotor blades are inspected within 10 minutes on delaminations and debondingg in the composite structure. In case of more complex components, robotic manipulation of the shearography camera has proven to be the optimal solution. An industry 6-axis robot give utmost flexibility to position the camera in any angle and distance. Automatic defect marking systems have also been introduced to indicate the exact position of the defect directly on the inspected component. Other applications are shearography inspection systems for abradable seals in jet engines and portable shearography inspection systems for maintenance and repair inspection in the field. In this paper, recent installations of automatice inspection systems in aerospace industries are presented.

  16. New applications of particle accelerators in medicine, materials science, and industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, E.A.

    1981-01-01

    Recently, the application of particle accelerators to medicine, materials science, and other industrial uses has increased dramatically. A random sampling of some of these new programs is discussed, primarily to give the scope of these new applications. The three areas, medicine, materials science or solid-state physics, and industrial applications, are chosen for their diversity and are representative of new accelerator applications for the future.

  17. Implementation of NFC technology for industrial applications: case flexible production

    NASA Astrophysics Data System (ADS)

    Sallinen, Mikko; Strömmer, Esko; Ylisaukko-oja, Arto

    2007-09-01

    Near Field communication (NFC) technology enables a flexible short range communication. It has large amount of envisaged applications in consumer, welfare and industrial sector. Compared with other short range communication technologies such as Bluetooth or Wibree it provides advantages that we will introduce in this paper. In this paper, we present an example of applying NFC technology to industrial application where simple tasks can be automatized and industrial assembly process can be improved radically by replacing manual paperwork and increasing trace of the products during the production.

  18. Industrial applications of the microgravity environment

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Opportunities for commercialization of the microgravity environment will depend upon the success of basic research projects performed in space. Significant demands for manufacturing opportunities are unlikely in the near term. The microgravity environment is to be considered primarily as a tool for research and secondarily as a manufacturing site. This research tool is unique, valuable, and presently available to U.S. investigators only through resources provided by NASA. The United States has an obligation to facilitate corporate research, maintain a flexible international policy, foster use of and assure access to a wide variety of facilities, and develop a posture of national and international leadership in and stewardship of research and materials processing in the microgravity environment. The National Research Council's Committee on Industrial Applications of the Microgravity Environment recommends six actions that strengthen this posture, including the formation of an authoritative organization to oversee the implementation of a program of microgravity research and its industrial applications.

  19. Instrumentation for Applied Physics and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Hillemanns, H.; Le Goff, J.-M.

    This document is part of Part 2 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '7.3 Instrumentation for Applied Physics and Industrial Applications' of Chapter '7 Applications of Detectors in Technology; Medicine and Other Fields' with the content:

  20. Research and Application of Autodesk Fusion360 in Industrial Design

    NASA Astrophysics Data System (ADS)

    Song, P. P.; Qi, Y. M.; Cai, D. C.

    2018-05-01

    In 2016, Fusion 360, a productintroduced byAutodesk and integrating industrial design, structural design, mechanical simulation, and CAM, turns out a design platform supportingcollaboration and sharing both cross-platform and via the cloud. In previous products, design and manufacturing use to be isolated. In the course of design, research and development, the communication between designers and engineers used to go on through different software products, tool commands, and even industry terms. Moreover, difficulty also lies with the communication between design thoughts and machining strategies. Naturally, a difficult product design and R & D process would trigger a noticeable gap between the design model and the actual product. A complete product development process tends to cover several major areas, such as industrial design, mechanical design, rendering and animation, computer aided emulation (CAE), and computer aided manufacturing (CAM). Fusion 360, a perfect design solving the technical problems of cross-platform data exchange, realizes the effective control of cross-regional collaboration and presents an overview of collaboration and breaks the barriers between art and manufacturing, andblocks between design and processing. The “Eco-development of Fusion360 Industrial Chain” is both a significant means to and an inevitable trend forthe manufacturers and industrial designers to carry out innovation in China.

  1. Recycled water reuse permit renewal application for the materials and fuels complex industrial waste ditch and industrial waste pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Name, No

    This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in themore » initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.« less

  2. [Applicability of established drought index in Huang-Huai-Hai region based on actual evapotranspiration.

    PubMed

    Wang, Ying; Wu, Rong Jun; Guo, Zhao Bing

    2016-05-01

    Based on the modeled products of actual evapotranspiration with NOAH land surface model, the temporal and spatial variations of actual evapotranspiration were analyzed for the Huang-Huai-Hai region in 2002-2010. In the meantime, the agricultural drought index, namely, drought severity index (DSI) was constructed, incorporated with products of MOD17 potential evapotranspiration and MOD13 NDVI. Furthermore, the applicability of established DSI in this region in the whole year of 2002 was investigated based on the Palmer drought severity index (PDSI), the yield reduction rate of winter wheat, and drought severity data. The results showed that the annual average actual evapotranspiration within the survey region increased from the northwest to the southeast, with the maximum of 800-900 mm in the southeast and the minimum less than 300 mm in the northwest. The DSI and PDSI had positive correlation (R 2 =0.61) and high concordance in change trend. They all got the low point (-0.61 and -1.33) in 2002 and reached the peak (0.81 and 0.92) in 2003. The correlation between DSI and yield reduction rate of winter wheat (R 2 =0.43) was more significant than that between PDSI and yield reduction rate of winter wheat (R 2 =0.06). So, the DSI reflected a high spatial resolution of drought pattern and could reflect the region agricultural drought severity and intensity more accurately.

  3. Industrial applications of shearography for inspections of aircraft components

    NASA Astrophysics Data System (ADS)

    Krupka, Rene; Waltz, T.; Ettemeyer, Andreas

    2003-05-01

    Shearography has been validated as fast and reliable inspection technique for aerospace components. Following several years phase of evaluation of the technique, meanwhile, shearography has entered the industrial production inspection. The applications basically range from serial inspection in the production line to field inspection in assembly and to applications in the maintenance and repair area. In all applications, the main advantages of shearography, as very fast and full field inspection and high sensitivity even on very complex composite materials have led to the decision for laser shearography as inspection tool. In this paper, we present examples of recent industrial shearography inspection systems in the field of aerospace. One of the first industrial installations of laser shearography in Europe was a fully automatic inspection system for helicopter rotorblades. Complete rotor blades are inspected within 10 minutes on delaminations and debondings in the composite structure. In case of more complex components, robotic manipulation of the shearography camera has proven to be the optimum solution. An industry 6-axis robot gives utmost flexibility to position the camera in any angle and distance. Automatic defect marking systems have also been introduced to indicate the exact position of the defect directly on the inspected component. Other applications cover the inspection of abradable seals in jet engines and portable shearography inspection systems for maintenance and repair inspection in the field.

  4. Bromelain: an overview of industrial application and purification strategies.

    PubMed

    Arshad, Zatul Iffah Mohd; Amid, Azura; Yusof, Faridah; Jaswir, Irwandi; Ahmad, Kausar; Loke, Show Pau

    2014-09-01

    This review highlights the use of bromelain in various applications with up-to-date literature on the purification of bromelain from pineapple fruit and waste such as peel, core, crown, and leaves. Bromelain, a cysteine protease, has been exploited commercially in many applications in the food, beverage, tenderization, cosmetic, pharmaceutical, and textile industries. Researchers worldwide have been directing their interest to purification strategies by applying conventional and modern approaches, such as manipulating the pH, affinity, hydrophobicity, and temperature conditions in accord with the unique properties of bromelain. The amount of downstream processing will depend on its intended application in industries. The breakthrough of recombinant DNA technology has facilitated the large-scale production and purification of recombinant bromelain for novel applications in the future.

  5. Industrial application experiment series

    NASA Technical Reports Server (NTRS)

    Bluhm, S. A.

    1981-01-01

    Two procurements within the Industrial Application Experiment Series of the Thermal Power Systems Project are discussed. The first procurement, initiated in April 1980, resulted in an award to the Applied Concepts Corporation for the Capital Concrete Experiment: two Fresnel concentrating collectors will be evaluated in single-unit installations at the Jet Propulsion Laboratory Parabolic Dish Test Site and at Capitol Concrete Products, Topeka, Kansas. The second procurement, initiated in March 1981, is titled, "Thermal System Engineering Experiment B." The objective of the procurement is the rapid deployment of developed parabolic dish collectors.

  6. Scalable manufacturing of biomimetic moldable hydrogels for industrial applications.

    PubMed

    Yu, Anthony C; Chen, Haoxuan; Chan, Doreen; Agmon, Gillie; Stapleton, Lyndsay M; Sevit, Alex M; Tibbitt, Mark W; Acosta, Jesse D; Zhang, Tony; Franzia, Paul W; Langer, Robert; Appel, Eric A

    2016-12-13

    Hydrogels are a class of soft material that is exploited in many, often completely disparate, industrial applications, on account of their unique and tunable properties. Advances in soft material design are yielding next-generation moldable hydrogels that address engineering criteria in several industrial settings such as complex viscosity modifiers, hydraulic or injection fluids, and sprayable carriers. Industrial implementation of these viscoelastic materials requires extreme volumes of material, upwards of several hundred million gallons per year. Here, we demonstrate a paradigm for the scalable fabrication of self-assembled moldable hydrogels using rationally engineered, biomimetic polymer-nanoparticle interactions. Cellulose derivatives are linked together by selective adsorption to silica nanoparticles via dynamic and multivalent interactions. We show that the self-assembly process for gel formation is easily scaled in a linear fashion from 0.5 mL to over 15 L without alteration of the mechanical properties of the resultant materials. The facile and scalable preparation of these materials leveraging self-assembly of inexpensive, renewable, and environmentally benign starting materials, coupled with the tunability of their properties, make them amenable to a range of industrial applications. In particular, we demonstrate their utility as injectable materials for pipeline maintenance and product recovery in industrial food manufacturing as well as their use as sprayable carriers for robust application of fire retardants in preventing wildland fires.

  7. Scalable manufacturing of biomimetic moldable hydrogels for industrial applications

    NASA Astrophysics Data System (ADS)

    Yu, Anthony C.; Chen, Haoxuan; Chan, Doreen; Agmon, Gillie; Stapleton, Lyndsay M.; Sevit, Alex M.; Tibbitt, Mark W.; Acosta, Jesse D.; Zhang, Tony; Franzia, Paul W.; Langer, Robert; Appel, Eric A.

    2016-12-01

    Hydrogels are a class of soft material that is exploited in many, often completely disparate, industrial applications, on account of their unique and tunable properties. Advances in soft material design are yielding next-generation moldable hydrogels that address engineering criteria in several industrial settings such as complex viscosity modifiers, hydraulic or injection fluids, and sprayable carriers. Industrial implementation of these viscoelastic materials requires extreme volumes of material, upwards of several hundred million gallons per year. Here, we demonstrate a paradigm for the scalable fabrication of self-assembled moldable hydrogels using rationally engineered, biomimetic polymer-nanoparticle interactions. Cellulose derivatives are linked together by selective adsorption to silica nanoparticles via dynamic and multivalent interactions. We show that the self-assembly process for gel formation is easily scaled in a linear fashion from 0.5 mL to over 15 L without alteration of the mechanical properties of the resultant materials. The facile and scalable preparation of these materials leveraging self-assembly of inexpensive, renewable, and environmentally benign starting materials, coupled with the tunability of their properties, make them amenable to a range of industrial applications. In particular, we demonstrate their utility as injectable materials for pipeline maintenance and product recovery in industrial food manufacturing as well as their use as sprayable carriers for robust application of fire retardants in preventing wildland fires.

  8. Scalable manufacturing of biomimetic moldable hydrogels for industrial applications

    PubMed Central

    Yu, Anthony C.; Chen, Haoxuan; Chan, Doreen; Agmon, Gillie; Stapleton, Lyndsay M.; Sevit, Alex M.; Tibbitt, Mark W.; Acosta, Jesse D.; Zhang, Tony; Franzia, Paul W.; Langer, Robert

    2016-01-01

    Hydrogels are a class of soft material that is exploited in many, often completely disparate, industrial applications, on account of their unique and tunable properties. Advances in soft material design are yielding next-generation moldable hydrogels that address engineering criteria in several industrial settings such as complex viscosity modifiers, hydraulic or injection fluids, and sprayable carriers. Industrial implementation of these viscoelastic materials requires extreme volumes of material, upwards of several hundred million gallons per year. Here, we demonstrate a paradigm for the scalable fabrication of self-assembled moldable hydrogels using rationally engineered, biomimetic polymer–nanoparticle interactions. Cellulose derivatives are linked together by selective adsorption to silica nanoparticles via dynamic and multivalent interactions. We show that the self-assembly process for gel formation is easily scaled in a linear fashion from 0.5 mL to over 15 L without alteration of the mechanical properties of the resultant materials. The facile and scalable preparation of these materials leveraging self-assembly of inexpensive, renewable, and environmentally benign starting materials, coupled with the tunability of their properties, make them amenable to a range of industrial applications. In particular, we demonstrate their utility as injectable materials for pipeline maintenance and product recovery in industrial food manufacturing as well as their use as sprayable carriers for robust application of fire retardants in preventing wildland fires. PMID:27911849

  9. 14 CFR § 1201.402 - NASA Industrial Applications Centers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false NASA Industrial Applications Centers. Â... STATEMENT OF ORGANIZATION AND GENERAL INFORMATION General Information § 1201.402 NASA Industrial... aerospace knowledge and innovative technology to nonaerospace sectors of the economy—NASA operates a network...

  10. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Wojnar, F.; Lunberg, W. L.

    1980-03-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  11. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Technical Reports Server (NTRS)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  12. Industrial Application Experiments on the Neutron Imaging Instrument DINGO

    NASA Astrophysics Data System (ADS)

    Garbe, Ulf; Ahuja, Yogita; Ibrahim, Ralph; Li, Huijun; Aldridge, Laurie; Salvemini, Filomena; Paradowska, Anna Ziara

    The new neutron radiography / tomography / imaging instrument DINGO is operational since October 2014 to support the area of neutron imaging research at ANSTO. The instrument is designed for a diverse community in areas like defense, industrial, cultural heritage and archaeology applications. In the field of industrial application it provides a useful tool for studying cracking and defects in concrete or other structural material. Since being operational we gathered experience with industrial applications and commercial customers demanding beam time on DINGO. The instrument is a high flux facility with is 5.3 × 107 [n/(cm2s)] (confirmed by gold foil activation) for an L/D of approximately 500 at HB-2. A special feature of DINGO is the in-pile collimator position in front of the main shutter at HB-2. The collimator offers two pinholes with a possible L/D of 500 and 1000. A secondary collimator separates the two beams by blocking one and positions another aperture for the other beam. The neutron beam size can be adjusted to the sample size from 50 × 50 mm2 to 200 × 200 mm2 with a resulting pixel size from 27 μm to ∼100 μm. The whole instrument operates in two different positions, one for high resolution and one for high speed. We would like to present our first experience with commercial customers, scientific proposals with industrial applications and how to be customer ready.

  13. Applications of prebiotics in food industry: A review.

    PubMed

    Singla, Vinti; Chakkaravarthi, S

    2017-12-01

    Benefits of prebiotics for stimulating a healthy intestinal tract are well known. From suppression of pathogens to proliferation of indigenous bacteria of intestines, prebiotics have it all. Since the research on the scope of prebiotics is expanding, new applications are coming up every day thus upgrading the choices consumer has for a healthy living. Incorporation of prebiotics in a wide range of products that food industry offers on shelf is an innovative way to replace fat and sugars along with enhancing the mouthfeel by providing better tongue lubrication. In some cases, the thermal stability of the product is improved along with other sensory, textural and physiological benefits. This paper gives an overview of the various prebiotics available from different sources and their applications in various segments of food industry, notably dairy, beverage, processed fruit-vegetable, bakery, confectionary, extruded snack, sweetener, infant formula, pet food and livestock industry. The effects observed on addition of various prebiotics are also elaborated.

  14. Compact microwave ion source for industrial applications.

    PubMed

    Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok

    2012-02-01

    A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

  15. Potential Applications of Carbohydrases Immobilization in the Food Industry

    PubMed Central

    Contesini, Fabiano Jares; de Alencar Figueira, Joelise; Kawaguti, Haroldo Yukio; de Barros Fernandes, Pedro Carlos; de Oliveira Carvalho, Patrícia; Nascimento, Maria da Graça; Sato, Hélia Harumi

    2013-01-01

    Carbohydrases find a wide application in industrial processes and products, mainly in the food industry. With these enzymes, it is possible to obtain different types of sugar syrups (viz. glucose, fructose and inverted sugar syrups), prebiotics (viz. galactooligossacharides and fructooligossacharides) and isomaltulose, which is an interesting sweetener substitute for sucrose to improve the sensory properties of juices and wines and to reduce lactose in milk. The most important carbohydrases to accomplish these goals are of microbial origin and include amylases (α-amylases and glucoamylases), invertases, inulinases, galactosidases, glucosidases, fructosyltransferases, pectinases and glucosyltransferases. Yet, for all these processes to be cost-effective for industrial application, a very efficient, simple and cheap immobilization technique is required. Immobilization techniques can involve adsorption, entrapment or covalent bonding of the enzyme into an insoluble support, or carrier-free methods, usually based on the formation of cross-linked enzyme aggregates (CLEAs). They include a broad variety of supports, such as magnetic materials, gums, gels, synthetic polymers and ionic resins. All these techniques present advantages and disadvantages and several parameters must be considered. In this work, the most recent and important studies on the immobilization of carbohydrases with potential application in the food industry are reviewed. PMID:23344046

  16. Advanced glossmeters for industrial applications

    NASA Astrophysics Data System (ADS)

    Kuivalainen, Kalle; Oksman, Antti; Juuti, Mikko; Myller, Kari; Peiponen, Kai-Erik

    2010-05-01

    In this paper, we present three new types of diffractive-optical-element (DOE)-based glossmeters (DOGs) that have been developed for both laboratory and online local specular gloss measurements of objects in industrial processes. The three are denoted as the handheld wireless glossmeter, µDOG two-dimensional (2D) and µDOG one-dimensional (1D), respectively. These glossmeters are designed to operate under conditions where gloss measurement with conventional glossmeters is impossible or difficult, or when fine structures of the gloss over a surface are an issue. Here, we show the applicability of the handheld glossmeter and µDOG 2D in the inspection of gloss from rough stainless steel plates finished by different machining methods. We also briefly introduce the concept of online gauge µDOG 1D for gloss assessment in industrial measurement environments.

  17. Perspective on thermal barrier coatings for industrial gas turbine applications

    NASA Technical Reports Server (NTRS)

    Mutasim, Z. Z.; Hsu, L. L.; Brentnall, W. D.

    1995-01-01

    Thermal Barrier Coatings (TBC's) have been used in high thrust aircraft engines for many years, and have proved to be very effective in allowing higher turbine inlet temperatures. TBC life requirements for aircraft engines are typically less than those required in industrial gas turbines. The use of TBC's for industrial gas turbines can increase if durability and longer service life can be successfully demonstrated. This paper will describe current and future applications of TBC's in industrial gas turbine engines. Early testing and applications of TBC's will also be reviewed. This paper focuses on the key factors that are expected to influence utilization of TBC's in advanced industrial gas turbine engines. It is anticipated that reliable, durable and high effective coating systems will be produced that will ultimately improve engine efficiency and performance.

  18. Thermal performance assessment of a large aperture concentrating collector in an industrial application in Chile

    NASA Astrophysics Data System (ADS)

    Murray, Clare; Pino, Alan; Cardemil, José Miguel; Escobar, Rodrigo

    2017-06-01

    The application of solar thermal energy to meet the heat demands of the food and beverage processing industry in Chile has huge potential. This paper presents an assessment of the first large aperture trough collector installed in Latin America. The collector preheats water for a boiler in a juice-concentrating factory, 100 km north of Santiago. An analysis of the system for a day in November indicates the system was not able to utilize the heat generated, resulting in rapid de- and refocusing of the collector and problems with sensor calibration. An analysis of a day in March indicates the tracking algorithm has not correctly aligned the collector with the sun's position. An investigation into the design document reveals that the meteorological data underestimates the actual irradiation values by 40%, resulting in an oversized system given the actual conditions. To increase the energy gain in the system it is proposed to increase the working pressure from the current value of 1.5bar to up to 5bar, which could increase the system utilization from 41% to 65% and reduce the dumped energy to near zero. The simulation results with actual weather data and a fixed inlet temperature indicate the annual solar fraction could increase from the design value of 8.1% to 31.8% with a working pressure of 5 bar. The plant presents multiple opportunities for improvement not only to the performance of the plant but also in the design and installation of solar thermal systems in Chile in the future.

  19. A new e-beam application in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Sadat, Theo; Malcolm, Fiona

    2005-10-01

    The paper presents a new electron beam application in the pharmaceutical industry: an in-line self-shielded atropic transfer system using electron beam for surface decontamination of products entering a pharmaceutical filling line. The unit was developed by Linac Technologies in response to the specifications of a multi-national pharmaceutical company, to solve the risk of microbial contamination entering a filling line housed inside an isolator. In order to fit the sterilization unit inside the pharmaceutical plant, a "miniature" low-energy (200 keV) electron beam accelerator and e-beam tunnel were designed, all conforming to the pharmaceutical good manufacturing practice (GMP) regulations. Process validation using biological indicators is described, with reference to the regulations governing the pharmaceutical industry. Other industrial applications of a small-sized self-shielded electron beam sterilization unit are mentioned.

  20. Trends for Electron Beam Accelerator Applications in Industry

    NASA Astrophysics Data System (ADS)

    Machi, Sueo

    2011-02-01

    Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

  1. An International Survey of Industrial Applications of Formal Methods. Volume 2. Case Studies

    DTIC Science & Technology

    1993-09-30

    impact of the product on IBM revenues. 4. Error rates were claimed to be below industrial average and errors were minimal to fix. Formal methods, as...critical applications. These include: 3 I I International Survey of Industrial Applications 41 i) "Software failures, particularly under first use, seem...project to add improved modelling capability. I U International Survey of Industrial Applications 93 I Design and Implementation These products are being

  2. Industrial uses and applications of ionic liquids

    NASA Astrophysics Data System (ADS)

    Gutowski, Keith E.

    2018-02-01

    Ionic liquids are salts that melt at low temperatures (usually defined as less than 100 °C) and have a number of interesting properties that make them useful for industrial applications. Typical ionic liquid properties include high thermal stabilities, negligible vapor pressures, wide liquidus ranges, broad electrochemical windows, and unique solvation properties. Furthermore, the potential combinations of cations and anions provide nearly unlimited chemical tunability. This article will describe the diverse industrial uses of ionic liquids and how their unique properties are leveraged, with examples ranging from chemical processing to consumer packaged goods.

  3. Brewer's spent grain: a valuable feedstock for industrial applications.

    PubMed

    Mussatto, Solange I

    2014-05-01

    Brewer's spent grain (BSG) is the most abundant by-product generated from the beer-brewing process, representing approximately 85% of the total by-products obtained. This material is basically constituted by the barley grain husks obtained as solid residue after the wort production. Since BSG is rich in sugars and proteins, the main and quickest alternative for elimination of this industrial by-product has been as animal feed. However, BSG is a raw material of interest for application in different areas because of its low cost, large availability throughout the year and valuable chemical composition. In the last decade, many efforts have been directed towards the reuse of BSG, taking into account the incentive that has been given to recycle the wastes and by-products generated by industrial activities. Currently, many interesting and advantageous methods for application of BSG in foods, in energy production and in chemical and biotechnological processes have been reported. The present study presents and discusses the most recent perspectives for BSG application in such areas. © 2013 Society of Chemical Industry.

  4. [Application of bioinformatics in researches of industrial biocatalysis].

    PubMed

    Yu, Hui-Min; Luo, Hui; Shi, Yue; Sun, Xu-Dong; Shen, Zhong-Yao

    2004-05-01

    Industrial biocatalysis is currently attracting much attention to rebuild or substitute traditional producing process of chemicals and drugs. One of key focuses in industrial biocatalysis is biocatalyst, which is usually one kind of microbial enzyme. In the recent, new technologies of bioinformatics have played and will continue to play more and more significant roles in researches of industrial biocatalysis in response to the waves of genomic revolution. One of the key applications of bioinformatics in biocatalysis is the discovery and identification of the new biocatalyst through advanced DNA and protein sequence search, comparison and analyses in Internet database using different algorithm and software. The unknown genes of microbial enzymes can also be simply harvested by primer design on the basis of bioinformatics analyses. The other key applications of bioinformatics in biocatalysis are the modification and improvement of existing industrial biocatalyst. In this aspect, bioinformatics is of great importance in both rational design and directed evolution of microbial enzymes. Based on the successful prediction of tertiary structures of enzymes using the tool of bioinformatics, the undermentioned experiments, i.e. site-directed mutagenesis, fusion protein construction, DNA family shuffling and saturation mutagenesis, etc, are usually of very high efficiency. On all accounts, bioinformatics will be an essential tool for either biologist or biological engineer in the future researches of industrial biocatalysis, due to its significant function in guiding and quickening the step of discovery and/or improvement of novel biocatalysts.

  5. Future direction in marine bacterial agarases for industrial applications.

    PubMed

    Jahromi, Saeid Tamadoni; Barzkar, Noora

    2018-06-16

    The marine ecosystem has been known to be a rich source of novel enzymes. Agarase is a key enzyme that can hydrolyze agar in the marine environment. Marine bacterial agarase has been isolated from various sources, such as sediments, coastal water, and deep sea and from the surface of crustaceans and seaweeds. This review presents an account of the agarase production of marine bacteria. General information about agar, agarase, isolation, and purification of marine bacterial agarases; the biochemical properties of native agarase from marine bacteria; the biochemical properties of recombinant marine bacterial agarases from engineered microorganisms; and the industrial future of marine bacterial agarases is analyzed. With recent biotechnological processes, researchers need novel functional enzymes like agarase from marine resources, such as marine bacteria, that can be used for diverse applications in the biotechnological industry. Marine bacterial agarases might be of significant interest to the industry because they are safe and are a natural source. This review highlights the potential of marine bacteria as important sources of agarase for application in various industries.

  6. Layered Thermal Insulation Systems for Industrial and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2015-01-01

    From the high performance arena of cryogenic equipment, several different layered thermal insulation systems have been developed for industrial and commercial applications. In addition to the proven areas in cold-work applications for piping and tanks, the new Layered Composite Insulation for Extreme Environments (LCX) has potential for broader industrial use as well as for commercial applications. The LCX technology provides a unique combination of thermal, mechanical, and weathering performance capability that is both cost-effective and enabling. Industry applications may include, for example, liquid nitrogen (LN2) systems for food processing, liquefied natural gas (LNG) systems for transportation or power, and chilled water cooling facilities. Example commercial applications may include commercial residential building construction, hot water piping, HVAC systems, refrigerated trucks, cold chain shipping containers, and a various consumer products. The LCX system is highly tailorable to the end-use application and can be pre-fabricated or field assembled as needed. Product forms of LCX include rigid sheets, semi-flexible sheets, cylindrical clam-shells, removable covers, or flexible strips for wrapping. With increasing system control and reliability requirements as well as demands for higher energy efficiencies, thermal insulation in harsh environments is a growing challenge. The LCX technology grew out of solving problems in the insulation of mechanically complex cryogenic systems that must operate in outdoor, humid conditions. Insulation for cold work includes equipment for everything from liquid helium to chilled water. And in the middle are systems for LNG, LN2, liquid oxygen (LO2), liquid hydrogen (LH2) that must operate in the ambient environment. Different LCX systems have been demonstrated for sub-ambient conditions but are capable of moderately high temperature applications as well.

  7. Industrial applications of enzyme biocatalysis: Current status and future aspects.

    PubMed

    Choi, Jung-Min; Han, Sang-Soo; Kim, Hak-Sung

    2015-11-15

    Enzymes are the most proficient catalysts, offering much more competitive processes compared to chemical catalysts. The number of industrial applications for enzymes has exploded in recent years, mainly owing to advances in protein engineering technology and environmental and economic necessities. Herein, we review recent progress in enzyme biocatalysis, and discuss the trends and strategies that are leading to broader industrial enzyme applications. The challenges and opportunities in developing biocatalytic processes are also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A high-average-power FEL for industrial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dylla, H.F.; Benson, S.; Bisognano, J.

    1995-12-31

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt UV (150-1000 nm) and IR (2-25 micron) FEL driven by a recirculating, energy-recovering 200 MeV superconducting radio-frequency (SRF) accelerator. FEL users{endash}CEBAF`s partners in the Laser Processing Consortium, including AT&T, DuPont, IBM, Northrop-Grumman, 3M, and Xerox{endash}plan to develop applications such as polymer surface processing, metals and ceramics micromachining, and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunabilitymore » and pulse structure. 4 refs., 3 figs., 2 tabs.« less

  9. Thermal storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  10. Perspective on thermal barrier coatings for industrial gas turbine applications

    NASA Technical Reports Server (NTRS)

    Mutasim, Zaher; Brentnall, William

    1995-01-01

    Thermal barrier coatings (TBC's) have been used in high thrust aircraft engines for many years, and have proved to be very effective in providing thermal protection and increasing engine efficiencies. TBC life requirements for aircraft engines are typically less than those required for industrial gas turbines. This paper describes current and future applications of TBC's in industrial gas turbine engines. Early testing and applications of TBC's is reviewed. Areas of concern from the engine designer's and materials engineer's perspective are identified and evaluated. This paper focuses on the key factors that are expected to influence utilization of TBC's in advanced industrial gas turbine engines. It is anticipated that reliable, durable and highly effective coating systems will be produced that will ultimately improve engine efficiency and performance.

  11. Application of narrow-band television to industrial and commercial communications

    NASA Technical Reports Server (NTRS)

    Embrey, B. C., Jr.; Southworth, G. R.

    1974-01-01

    The development of narrow-band systems for use in space systems is presented. Applications of the technology to future spacecraft requirements are discussed along with narrow-band television's influence in stimulating development within the industry. The transferral of the technology into industrial and commercial communications is described. Major areas included are: (1) medicine; (2) education; (3) remote sensing for traffic control; and (5) weather observation. Applications in data processing, image enhancement, and information retrieval are provided by the combination of the TV camera and the computer.

  12. Multiplier Accounting of Indian Mining Industry: The Application

    NASA Astrophysics Data System (ADS)

    Hussain, Azhar; Karmakar, Netai Chandra

    2017-10-01

    In the previous paper (Hussain and Karmakar in Inst Eng India Ser, 2014. doi: 10.1007/s40033-014-0058-0), the concepts of input-output transaction matrix and multiplier were explained in detail. Input-output multipliers are indicators used for predicting the total impact on an economy due to changes in its industrial demand and output which is calculated using transaction matrix. The aim of this paper is to present an application of the concepts with respect to the mining industry, showing progress in different sectors of mining with time and explaining different outcomes from the results obtained. The analysis shows that a few mineral industries saw a significant growth in their multiplier values over the years.

  13. Microfluidics—from fundamental research to industrial applications

    NASA Astrophysics Data System (ADS)

    Köster, Sarah

    2013-03-01

    The advance of microfluidics started in the early 1980s. At the time, researchers realized that many processes and reactions in chemistry and biology, which typically take place on small length scales, can be defined, controlled and understood much better when using tools on equally small length scales. Reactions and reaction kinetics rely on (gradual) concentration differences and microfluidics provides the unique possibility to establish exactly such gradients of solutes, ion concentrations, pH value and so on. Nowadays the variety of specific microfluidic methods is large. In principle, they can be divided into two groups: (i) monophase flow, where miscible (e.g. aqueous) fluids are mixed, mostly by diffusion owing to the laminar flow on small length scales and (ii) multiphase flow, the most prominent example of which is probably droplet microfluidics, where water-in-oil or oil-in-water emulsions are used to encapsulate chemical or biological systems and separate them from each other, much like in 'micron-scale test tubes'. Now, 30 years later, microfluidic techniques are seriously considered for industrial applications, although some important steps in the upscaling process are still missing. The purpose of this special issue is to shed light on the different aspects in microfluidics research starting from fundamental research reaching all the way to industrial applications. The study by Toma and co-workers takes advantage of the controlled diffusive mixing when co-flowing aqueous, miscible solutions. They combine microfluidics with optical, spectroscopic and scattering techniques to study DNA packing. Nunes et al review the different regimes when replacing one of the fluids by an oil phase and varying flow rates and device geometries with a particular emphasis on using multiphase microfluidics for synthesis of particles or fibres. Going into the third dimension by fabricating microfluidic devices with several layers, producing emulsions can also be achieved by

  14. PERVAPORATION TECHNOLOGY RESEARCH IN INDUSTRIAL POLLUTION PREVENTION APPLICATIONS

    EPA Science Inventory

    The objective of this presentation is to describe research activities with USDPA's NRMRL Prevaporation Team pertaining to industrial waste. The presentation will provide a brief introduction to pervaporation technology theory and applications. Pervaporation is a membrane separ...

  15. A New Tool for Industry

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Ultrasonic P2L2 bolt monitor is a new industrial tool, developed at Langley Research Laboratory, which is lightweight, portable, extremely accurate because it is not subject to friction error, and it is cost-competitive with the least expensive of other types of accurate strain monitors. P2L2 is an acronym for Pulse Phase Locked Loop. The ultrasound system which measures the stress that occurs when a bolt becomes elongated in the process of tightening, transmits sound waves to the bolt being fastened and receives a return signal indicating changes in bolt stress. Results are translated into a digital reading of the actual stress on the bolt. Device monitors the bolt tensioning process on mine roof bolts that provide increased safety within the mine. Also has utility in industrial applications.

  16. Protein engineering and its applications in food industry.

    PubMed

    Kapoor, Swati; Rafiq, Aasima; Sharma, Savita

    2017-07-24

    Protein engineering is a young discipline that has been branched out from the field of genetic engineering. Protein engineering is based on the available knowledge about the proteins structure/function(s), tools/instruments, software, bioinformatics database, available cloned gene, knowledge about available protein, vectors, recombinant strains and other materials that could lead to change in the protein backbone. Protein produced properly from genetic engineering process means a protein that is able to fold correctly and to do particular function(s) efficiently even after being subjected to engineering practices. Protein is modified through its gene or chemically. However, modification of protein through gene is easier. There is no specific limitation of Protein Engineering tools; any technique that can lead to change the protein constituent of amino acid and result in the modification of protein structure/function is in the frame of Protein Engineering. Meanwhile, there are some common tools used to reach a specific target. More active industrial and pharmaceutical based proteins have been invented by the field of Protein Engineering to introduce new function as well as to change its interaction with surrounding environment. A variety of protein engineering applications have been reported in the literature. These applications range from biocatalysis for food and industry to environmental, medical and nanobiotechnology applications. Successful combinations of various protein engineering methods had led to successful results in food industries and have created a scope to maintain the quality of finished product after processing.

  17. Commercial Applications of Metal Foams: Their Properties and Production

    PubMed Central

    García-Moreno, Francisco

    2016-01-01

    This work gives an overview of the production, properties and industrial applications of metal foams. First, it classifies the most relevant manufacturing routes and methods. Then, it reviews the most important properties, with special interest in the mechanical and functional aspects, but also taking into account costs and feasibility considerations. These properties are the motivation and basis of related applications. Finally, a summary of the most relevant applications showing a large number of actual examples is presented. Concluding, we can forecast a slow, but continuous growth of this industrial sector. PMID:28787887

  18. MEMS testing and applications in automotive and aerospace industries

    NASA Astrophysics Data System (ADS)

    Ma, Zhichun; Chen, Xuyuan

    2009-05-01

    MEMS technology combines micromachining and integrated circuit fabrication technologies to produce highly reliable MEMS transducers. This paper presents an overview of MEMS transducers applications, particularly in automotive and aerospace industries, which includes inertia sensors for safety, navigation, and guidance control, thermal anemometer for temperature and heat-flux sensors in engine applications, MEMS atomizers for fuel injection, and micromachined actuators for flow control applications. Design examples for the devices in above mentioned applications are also presented and test results are given.

  19. Recent advances in industrial application of tannases: a review.

    PubMed

    Beniwal, Vikas; Kumar, Anil; Sharma, Jitender; Chhokar, Vinod

    2013-12-01

    Tannin acyl hydrolase (E.C. 3.1.1.20) commonly referred as tannase, is a hydrolytic enzyme that catalyses the hydrolysis of ester bonds present in gallotannins, ellagitannins, complex tannins and gallic acid esters. Tannases are the important group of botechnologically relevant enzymes distributed throughout the animal, plant and microbial kingdoms. However, microbial tannases are currently receiving a great deal of attention. Tannases are extensively used in food, feed, pharmaceutical, beverage, brewing and chemical industries. Owing to its diverse area of applications, a number of patents have been appeared in the recent past. The present review pretends to present the advances and perspectives in the industrial application of tannase with special emphasis on patents.

  20. Applications of Neutron Radiography for the Nuclear Power Industry

    NASA Astrophysics Data System (ADS)

    Craft, Aaron E.; Barton, John P.

    The World Conference on Neutron Radiography (WCNR) and International Topical Meeting on Neutron Radiography (ITMNR) series have been running over 35 years. The most recent event, ITMNR-8, focused on industrial applications and was the first time this series was hosted in China. In China, more than twenty new nuclear power plants are under construction and plans have been announced to increase the nuclear capacity by a factor of three within fifteen years. There are additional prospects in many other nations. Neutron tests were vital during previous developments of materials and components for nuclear power applications, as reported in the WCNR and ITMNR conference series. For example a majority of the 140 papers in the Proceedings of the First WCNR are for the benefit of the nuclear power industry. Many of those techniques are being utilized and advanced to the present time. Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Applications include examination of nuclear waste, nuclear fuels, cladding, control elements, and other critical components. In this paper, applications of neutron radiography techniques developed and applied internationally for the nuclear power industry since the earliest years are reviewed, and the question is asked whether neutron test techniques, in general, can be of value in development of the present and future generations of nuclear power plants world-wide.

  1. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes.

    PubMed

    Santiago, Margarita; Ramírez-Sarmiento, César A; Zamora, Ricardo A; Parra, Loreto P

    2016-01-01

    Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.

  2. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides.

    PubMed

    Zannini, Emanuele; Waters, Deborah M; Coffey, Aidan; Arendt, Elke K

    2016-02-01

    Exopolysaccharides (EPS)-producing lactic acid bacteria (LAB) are industrially important microorganisms in the development of functional food products and are used as starter cultures or coadjutants to develop fermented foods. There is large variability in EPS production by LAB in terms of chemical composition, quantity, molecular size, charge, presence of side chains, and rigidity of the molecules. The main body of the review will cover practical aspects concerning the structural diversity structure of EPS, and their concrete application in food industries is reported in details. To strengthen the food application and process feasibility of LAB EPS at industrial level, a future academic research should be combined with industrial input to understand the technical shortfalls that EPS can address.

  3. Application of the GERTS II simulator in the industrial environment.

    NASA Technical Reports Server (NTRS)

    Whitehouse, G. E.; Klein, K. I.

    1971-01-01

    GERT was originally developed to aid in the analysis of stochastic networks. GERT can be used to graphically model and analyze complex systems. Recently a simulator model, GERTS II, has been developed to solve GERT Networks. The simulator language used in the development of this model was GASP II A. This paper discusses the possible application of GERTS II to model and analyze (1) assembly line operations, (2) project management networks, (3) conveyor systems and (4) inventory systems. Finally, an actual application dealing with a job shop loading problem is presented.

  4. Video fingerprinting for copy identification: from research to industry applications

    NASA Astrophysics Data System (ADS)

    Lu, Jian

    2009-02-01

    Research that began a decade ago in video copy detection has developed into a technology known as "video fingerprinting". Today, video fingerprinting is an essential and enabling tool adopted by the industry for video content identification and management in online video distribution. This paper provides a comprehensive review of video fingerprinting technology and its applications in identifying, tracking, and managing copyrighted content on the Internet. The review includes a survey on video fingerprinting algorithms and some fundamental design considerations, such as robustness, discriminability, and compactness. It also discusses fingerprint matching algorithms, including complexity analysis, and approximation and optimization for fast fingerprint matching. On the application side, it provides an overview of a number of industry-driven applications that rely on video fingerprinting. Examples are given based on real-world systems and workflows to demonstrate applications in detecting and managing copyrighted content, and in monitoring and tracking video distribution on the Internet.

  5. Towards Industrial Application of Damage Models for Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Doig, M.; Roll, K.

    2011-05-01

    Due to global warming and financial situation the demand to reduce the CO2-emission and the production costs leads to the permanent development of new materials. In the automotive industry the occupant safety is an additional condition. Bringing these arguments together the preferable approach for lightweight design of car components, especially for body-in-white, is the use of modern steels. Such steel grades, also called advanced high strength steels (AHSS), exhibit a high strength as well as a high formability. Not only their material behavior but also the damage behavior of AHSS is different compared to the performances of standard steels. Conventional methods for the damage prediction in the industry like the forming limit curve (FLC) are not reliable for AHSS. Physically based damage models are often used in crash and bulk forming simulations. The still open question is the industrial application of these models for sheet metal forming. This paper evaluates the Gurson-Tvergaard-Needleman (GTN) model and the model of Lemaitre within commercial codes with a goal of industrial application.

  6. Industrial Applications of Terahertz Imaging

    NASA Astrophysics Data System (ADS)

    Zeitler, J. Axel; Shen, Yao-Chun

    This chapter gives a concise overview of potential industrial applications for terahertz imaging that have been reported over the past decade with a discussion of the major advantages and limitations of each approach. In the second half of the chapter we discuss in more detail how terahertz imaging can be used to investigate the microstructure of pharmaceutical dosage forms. A particular focus in this context is the nondestructive measurement of the coating thickness of polymer coated tablets, both by means of high resolution offline imaging in research and development as well as for in-line quality control during production.

  7. Industrial Internet of Things: (IIoT) applications in underground coal mines.

    PubMed

    Zhou, C; Damiano, N; Whisner, B; Reyes, M

    2017-12-01

    The Industrial Internet of Things (IIoT), a concept that combines sensor networks and control systems, has been employed in several industries to improve productivity and safety. U.S. National Institute for Occupational Safety and Health (NIOSH) researchers are investigating IIoT applications to identify the challenges of and potential solutions for transferring IIoT from other industries to the mining industry. Specifically, NIOSH has reviewed existing sensors and communications network systems used in U.S. underground coal mines to determine whether they are capable of supporting IIoT systems. The results show that about 40 percent of the installed post-accident communication systems as of 2014 require minimal or no modification to support IIoT applications. NIOSH researchers also developed an IIoT monitoring and control prototype system using low-cost microcontroller Wi-Fi boards to detect a door opening on a refuge alternative, activate fans located inside the Pittsburgh Experimental Mine and actuate an alarm beacon on the surface. The results of this feasibility study can be used to explore IIoT applications in underground coal mines based on existing communication and tracking infrastructure.

  8. Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system

    PubMed Central

    Rabert, Claudia; Weinacker, Daniel; Pessoa, Adalberto; Farías, Jorge G.

    2013-01-01

    The innovation in industrial process with impact in the efficient production is the major challenge for actual industry. A high numerous of enzymes are utilized in at different level of process; the search for new alternatives with better characteristic has become a field of study of great interest, the recombinant protein achievement in a different host system is an alternative widely assessed for production of this. The microorganism Pichia pastoris has been used like a successful expression system in diverse areas, improved the yield and extraction-recovery of the product expressed. The reported of diverse authors in the production of enzymes with different application in industry is varied, in this review the different industry areas and the characteristic of the enzymes produced are detailed. PMID:24294221

  9. Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system.

    PubMed

    Rabert, Claudia; Weinacker, Daniel; Pessoa, Adalberto; Farías, Jorge G

    2013-01-01

    The innovation in industrial process with impact in the efficient production is the major challenge for actual industry. A high numerous of enzymes are utilized in at different level of process; the search for new alternatives with better characteristic has become a field of study of great interest, the recombinant protein achievement in a different host system is an alternative widely assessed for production of this. The microorganism Pichia pastoris has been used like a successful expression system in diverse areas, improved the yield and extraction-recovery of the product expressed. The reported of diverse authors in the production of enzymes with different application in industry is varied, in this review the different industry areas and the characteristic of the enzymes produced are detailed.

  10. Aerospace management techniques: Commercial and governmental applications

    NASA Technical Reports Server (NTRS)

    Milliken, J. G.; Morrison, E. J.

    1971-01-01

    A guidebook for managers and administrators is presented as a source of useful information on new management methods in business, industry, and government. The major topics discussed include: actual and potential applications of aerospace management techniques to commercial and governmental organizations; aerospace management techniques and their use within the aerospace sector; and the aerospace sector's application of innovative management techniques.

  11. Seasat data applications in ocean industries

    NASA Technical Reports Server (NTRS)

    Montgomery, D. R.

    1985-01-01

    It is pointed out that the world population expansion and resulting shortages of food, minerals, and fuel have focused additional attention on the world's oceans. In this context, aspects of weather prediction and the monitoring/prediction of long-range climatic anomalies become more important. In spite of technological advances, the commercial ocean industry and the naval forces suffer now from inadequate data and forecast products related to the oceans. The Seasat Program and the planned Navy-Remote Oceanographic Satellite System (N-ROSS) represent major contributions to improved observational coverage and the processing needed to achieve better forecasts. The Seasat Program was initiated to evaluate the effectiveness of the remote sensing of oceanographic phenomena from a satellite platform. Possible oceanographic satellite applications are presented in a table, and the impact of Seasat data on industry sectors is discussed. Attention is given to offshore oil development, deep-ocean mining, fishing, and marine transportation.

  12. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes

    PubMed Central

    Santiago, Margarita; Ramírez-Sarmiento, César A.; Zamora, Ricardo A.; Parra, Loreto P.

    2016-01-01

    Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications. PMID:27667987

  13. Industrial applications of new sulphur biotechnology.

    PubMed

    Janssen, A J; Ruitenberg, R; Buisman, C J

    2001-01-01

    The emission of sulphur compounds into the environment is undesirable because of their acidifying characteristics. The processing of sulphidic ores, oil refining and sulphuric acid production are major sources of SO2 emissions. Hydrogen sulphide is emitted into the environment as dissolved sulphide in wastewater or as H2S in natural gas, biogas, syngas or refinery gases. Waste streams containing sulphate are generated by many industries, including mining, metallurgical, pulp and paper and petrochemical industries. Applying process technologies that rely on the biological sulphur cycle can prevent environmental pollution. In nature sulphur compounds may cycle through a series of oxidation states (-2, 0, +2, +4, +6). Bacteria of a wide range of genera gain metabolic energy from either oxidising or reducing sulphur compounds. Paques B.V. develops and constructs reactor systems to remove sulphur compounds from aqueous and gaseous streams by utilising naturally occurring bacteria from the sulphur cycle. Due to the presence of sulphide, heavy metal removal is also achieved with very high removal efficiencies. Ten years of extensive laboratory and pilot plant research has, to date, resulted in the construction of over 30 full-scale installations. This paper presents key processes from the sulphur cycle and discusses recent developments about their application in industry.

  14. Real-time optical fiber digital speckle pattern interferometry for industrial applications

    NASA Astrophysics Data System (ADS)

    Chan, Robert K.; Cheung, Y. M.; Lo, C. H.; Tam, T. K.

    1997-03-01

    There is current interest, especially in the industrial sector, to use the digital speckle pattern interferometry (DSPI) technique to measure surface stress. Indeed, many publications in the subject are evident of the growing interests in the field. However, to bring the technology to industrial use requires the integration of several emerging technologies, viz. optics, feedback control, electronics, imaging processing and digital signal processing. Due to the highly interdisciplinary nature of the technique, successful implementation and development require expertise in all of the fields. At Baptist University, under the funding of a major industrial grant, we are developing the technology for the industrial sector. Our system fully exploits optical fibers and diode lasers in the design to enable practical and rugged systems suited for industrial applications. Besides the development in optics, we have broken away from the reliance of a microcomputer PC platform for both image capture and processing, and have developed a digital signal processing array system that can handle simultaneous and independent image capture/processing with feedback control. The system, named CASPA for 'cascadable architecture signal processing array,' is a third generation development system that utilizes up to 7 digital signal processors has proved to be a very powerful system. With our CASPA we are now in a better position to developing novel optical measurement systems for industrial application that may require different measurement systems to operate concurrently and requiring information exchange between the systems. Applications in mind such as simultaneous in-plane and out-of-plane DSPI image capture/process, vibrational analysis with interactive DSPI and phase shifting control of optical systems are a few good examples of the potentials.

  15. Cell surface engineering of industrial microorganisms for biorefining applications.

    PubMed

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-11-15

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Industrial robots in Europe - market, applications and developments

    NASA Technical Reports Server (NTRS)

    Schraft, R. D.

    1975-01-01

    Different companies involving a wide range of products and manufacturing processes were studied to define the requirements for industrial robots. A survey of all such automatic units offered on the world market was made to establish a data base. Principal applications include coating, spot welding, and loading and unloading operations.

  17. Industrial applications of the air direct-contact, gravel, ground heat exchanger

    NASA Astrophysics Data System (ADS)

    Cepiński, Wojciech; Besler, Maciej

    2017-11-01

    The paper describes the analysis of possibility of using the air direct-contact, gravel, ground heat exchanger (Polish acronym BGWCiM), patented at the Wroclaw University of Science and Technology to prepare air for conditioning rooms in the industry. Indicated the industry sectors where the application may be the most beneficial.

  18. Energetics Applications for the Oil and Gas Industry

    DOE PAGES

    Brinsden, Mark; Boock, Andrea; Baum, Dennis

    2015-08-07

    Here, early motivation and use of energetic materials in the Western World by Alfred Nobel was intended to facilitate mining, construction, and demolition activities. The motivation for the work was the recognized need for a safer energetic material as an alternate to unstabilized nitroglycerine. The invention of dynamite by Nobel was widely adopted in the civilian world and brought a fortune to Nobel, resulting in the formation of the annual Nobel Prize awards, recognizing significant achievements across many fields of endeavour. Nonetheless, further development of energetics was primarily motivated by and funded for military purposes, rather than civilian usage. Andmore » indeed much investment has been given to the development and characterization of military energetics and their application. An example application is the precision shaped charge, primarily developed as a means of focusing energy in a narrow metallic jet for deep penetration of heavy armor. However, the largest costumer today and for many years for shaped charges is not the military, but rather the oil and gas industry, which has adapted the military technology for perforation of oil and gas wells. While there are similar aspects to desired penetration capabilities in both applications, there are enough differences to warrant energetics R & D focused on oil and gas industry needs.« less

  19. Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications

    PubMed Central

    Hii, Siew Ling; Tan, Joo Shun; Ling, Tau Chuan; Ariff, Arbakariya Bin

    2012-01-01

    The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α-amylase; saccharification, which results in further transformation of maltodextrins into glucose. During saccharification process, pullulanase has been used to increase the final glucose concentration with reduced amount of glucoamylase. Therefore, the reversion reaction that involves resynthesis of saccharides from glucose molecules is prevented. To date, five groups of pullulanase enzymes have been reported, that is, (i) pullulanase type I, (ii) amylopullulanase, (iii) neopullulanase, (iv) isopullulanase, and (v) pullulan hydrolase type III. The current paper extensively reviews each category of pullulanase, properties of pullulanase, merits of applying pullulanase during starch bioprocessing, current genetic engineering works related to pullulanase genes, and possible industrial applications of pullulanase. PMID:22991654

  20. Bacterial L-arabinose isomerases: industrial application for D-tagatose production.

    PubMed

    Boudebbouze, Samira; Maguin, Emmanuelle; Rhimi, Moez

    2011-12-01

    D-tagatose is a natural monosaccharide with a low caloric value and has an anti-hyperglycemiant effect. This hexose has potential applications both in pharmaceutical and agro-food industries. However, the use of D-tagatose remains limited by its production cost. Many production procedures including chemical and biological processes were developed and patented. The most profitable production way is based on the use of L-arabinose isomerase which allows the manufacture of D-tagatose with an attractive rate. Future developments are focused on the generation of L-arabinose isomerases having biochemical properties satisfying the industrial applications. This report provides a brief review of the most recent patents that have been published relating to this area.

  1. Flowability of granular materials with industrial applications - An experimental approach

    NASA Astrophysics Data System (ADS)

    Torres-Serra, Joel; Romero, Enrique; Rodríguez-Ferran, Antonio; Caba, Joan; Arderiu, Xavier; Padullés, Josep-Manel; González, Juanjo

    2017-06-01

    Designing bulk material handling equipment requires a thorough understanding of the mechanical behaviour of powders and grains. Experimental characterization of granular materials is introduced focusing on flowability. A new prototype is presented which performs granular column collapse tests. The device consists of a channel whose design accounts for test inspection using visualization techniques and load measurements. A reservoir is attached where packing state of the granular material can be adjusted before run-off to simulate actual handling conditions by fluidisation and deaeration of the pile. Bulk materials on the market, with a wide range of particle sizes, can be tested with the prototype and the results used for classification in terms of flowability to improve industrial equipment selection processes.

  2. 28 CFR 523.14 - Industrial good time.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., AND TRANSFER COMPUTATION OF SENTENCE Extra Good Time § 523.14 Industrial good time. Extra good time... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Industrial good time. 523.14 Section 523... Industries is not awarded industrial good time until actually employed. ...

  3. 28 CFR 523.14 - Industrial good time.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., AND TRANSFER COMPUTATION OF SENTENCE Extra Good Time § 523.14 Industrial good time. Extra good time... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Industrial good time. 523.14 Section 523... Industries is not awarded industrial good time until actually employed. ...

  4. 28 CFR 523.14 - Industrial good time.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., AND TRANSFER COMPUTATION OF SENTENCE Extra Good Time § 523.14 Industrial good time. Extra good time... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Industrial good time. 523.14 Section 523... Industries is not awarded industrial good time until actually employed. ...

  5. 28 CFR 523.14 - Industrial good time.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., AND TRANSFER COMPUTATION OF SENTENCE Extra Good Time § 523.14 Industrial good time. Extra good time... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Industrial good time. 523.14 Section 523... Industries is not awarded industrial good time until actually employed. ...

  6. 28 CFR 523.14 - Industrial good time.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., AND TRANSFER COMPUTATION OF SENTENCE Extra Good Time § 523.14 Industrial good time. Extra good time... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Industrial good time. 523.14 Section 523... Industries is not awarded industrial good time until actually employed. ...

  7. Plowshare Program - American Atomic Bomb Tests For Industrial Applications

    ScienceCinema

    None

    2018-01-16

    The United States Atomic Energy Commission (AEC) established the Plowshare Program as a research and development activity to explore the technical and economic feasibility of using nuclear explosives for industrial applications. The reasoning was that the relatively inexpensive energy available from nuclear explosions could prove useful for a wide variety of peaceful purposes. The Plowshare Program began in 1958 and continued through 1975. Between December 1961 and May 1973, the United States conducted 27 Plowshare nuclear explosive tests comprising 35 individual detonations. Conceptually, industrial applications resulting from the use of nuclear explosives could be divided into two broad categories: 1) large-scale excavation and quarrying, where the energy from the explosion was used to break up and/or move rock; and 2) underground engineering, where the energy released from deeply buried nuclear explosives increased the permeability and porosity of the rock by massive breaking and fracturing. Possible excavation applications included: canals, harbors, highway and railroad cuts through mountains, open pit mining, construction of dams, and other quarry and construction-related projects. Underground nuclear explosion applications included: stimulation of natural gas production, preparation of leachable ore bodies for in situ leaching, creation of underground zones of fractured oil shale for in situ retorting, and formation of underground natural gas and petroleum storage reservoirs.

  8. Super-sensing technology: industrial applications and future challenges of electrical tomography.

    PubMed

    Wei, Kent Hsin-Yu; Qiu, Chang-Hua; Primrose, Ken

    2016-06-28

    Electrical tomography is a relatively new imaging technique that can image the distribution of the passive electrical properties of an object. Since electrical tomography technology was proposed in the 1980s, the technique has evolved rapidly because of its low cost, easy scale-up and non-invasive features. The technique itself can be sensitive to all passive electrical properties, such as conductivity, permittivity and permeability. Hence, it has a huge potential to be applied in many applications. Owing to its ill-posed nature and low image resolution, electrical tomography attracts more attention in industrial fields than biomedical fields. In the past decades, there have been many research developments and industrial implementations of electrical tomography; nevertheless, the awareness of this technology in industrial sectors is still one of the biggest limitations for technology implementation. In this paper, the authors have summarized several representative applications that use electrical tomography. Some of the current tomography research activities will also be discussed. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  9. A compact LIBS system for industrial applications

    NASA Astrophysics Data System (ADS)

    Noharet, B.; Sterner, C.; Irebo, T.; Gurell, J.; Bengtson, A.; Vainik, R.; Karlsson, H.; Illy, E.

    2015-03-01

    In recent years, laser-induced breakdown spectroscopy (LIBS) has been established as a promising analytical tool for online chemical analysis. The emitted light spectrum is analyzed for instantaneous determination of the elemental composition of the sample, enabling on-line classification of materials. Two major strengths of the technique are the possibilities to perform both fast and remote chemical analysis to determine the elemental composition of the samples under test. In order to reduce the size of LIBS systems, the use of a compact Q-switched diode-pumped solid-state laser (DPSSL) in a LIBS system is evaluated for the industrial sorting of aluminium alloys. The DPSSL, which delivers 150μJ pulses of high beam quality at more than 7KHz repetition rate, provides irradiance on the target that is appropriate for LIBS measurements. The experimental results indicate that alloy classification and quantitative analysis are possible on scrap aluminium samples placed 50 cm apart from the focusing and collecting lenses, without sample preparation. Similar calibration curves and limits of detection are obtained for traditional high-energy low-frequency flashlamp-pumped and low-energy high-frequency diode-pumped lasers, showing the applicability of compact diode-pumped lasers for industrial LIBS applications.

  10. Preliminary investigation of groundwater flow and trichloroethene transport in the Surficial Aquifer System, Naval Industrial Reserve Ordnance Plant, Fridley, Minnesota

    USGS Publications Warehouse

    King, Jeffrey N.; Davis, J. Hal

    2016-05-16

    The August 20, 2001, groundwater flow model simulator and the 2001 trichloroethene transport simulator were applied to a groundwater extraction and treatment system that existed in 2011. Furnished trichloroethene source areas and concentrations in the 2001 simulator were replaced with different, furnished, hypothetical source areas and concentrations. Forcing in 2001 was replaced with forcing in 2011. No trichloroethene concentrations greater than 3 µg/L were simulated as discharging to the Mississippi River during applications of the 2001 simulator to the 2011 groundwater extraction and treatment system. These applications were not intended to represent historical conditions. Differences between furnished and actual trichloroethene sources may explain differences between measurements and simulation results for the 2001 trichloroethene transport simulator. Causes of differences between furnished and actual trichloroethene sources may cause differences between hypothetical application results and the performance of the actual U.S. Department of the Navy groundwater extraction and treatment system at the Naval Industrial Reserve Ordnance Plant. Other limitations may also cause differences between application results and performance.

  11. Industrial application of thermal image processing and thermal control

    NASA Astrophysics Data System (ADS)

    Kong, Lingxue

    2001-09-01

    Industrial application of infrared thermography is virtually boundless as it can be used in any situations where there are temperature differences. This technology has particularly been widely used in automotive industry for process evaluation and system design. In this work, thermal image processing technique will be introduced to quantitatively calculate the heat stored in a warm/hot object and consequently, a thermal control system will be proposed to accurately and actively manage the thermal distribution within the object in accordance with the heat calculated from the thermal images.

  12. Two examples of industrial applications of shock physics research

    NASA Astrophysics Data System (ADS)

    Sanai, Mohsen

    1996-05-01

    An in-depth understanding of shock physics phenomena has led to many industrial applications. Two recent applications discussed in this paper are a method for assessing explosion safety in industrial plants and a bomb-resistant luggage container for widebody aircraft. Our explosion safety assessment is based on frequent use of computer simulation of postulated accidents to model in detail the detonation of energetic materials, the formation and propagation of the resulting airblast, and the projection of fragments of known material and mass. Using a general load-damage analysis technique referred to as the pressure-impulse (PI) method, we have developed a PC-based computer algorithm that includes a continually expanding library of PI load and damage curves, which can predict and graphically display common structural damage modes and the response of humans to postulated explosion accidents. A second commercial application of shock physics discussed here is a bomb-resistant luggage container for widebody aircraft that can protect the aircraft from a terrorist bomb hidden inside the luggage. This hardened luggage container (HLC) relies on blast management and debris containment provided by a flexible flow-through blanket woven from threads made with a strong lightweight material, such as Spectra or Kevlar. This mitigation blanket forms a continuous and seamless shell around the sides of the luggage container that are parallel to the aircraft axis, leaving the two ends of the container unprotected. When an explosion occurs, the mitigation blanket expands into a nearly circular shell that contains the flying debris while directing the flow into the adjacent containers. The HLC concept has been demonstrated through full-scale experiments conducted at SRI. We believe that these two examples represent a broad class of potential industrial hazard applications of the experimental, analytical, and computational tools possessed by the shock physics community.

  13. Applications of aerospace technology in the electric power industry

    NASA Technical Reports Server (NTRS)

    Johnson, F. D.; Heins, C. F.

    1974-01-01

    Existing applications of NASA contributions to disciplines such as combustion engineering, mechanical engineering, materials science, quality assurance and computer control are outlined to illustrate how space technology is used in the electric power industry. Corporate strategies to acquire relevant space technology are described.

  14. Evolutionary engineering of industrial microorganisms-strategies and applications.

    PubMed

    Zhu, Zhengming; Zhang, Juan; Ji, Xiaomei; Fang, Zhen; Wu, Zhimeng; Chen, Jian; Du, Guocheng

    2018-06-01

    Microbial cells have been widely used in the industry to obtain various biochemical products, and evolutionary engineering is a common method in biological research to improve their traits, such as high environmental tolerance and improvement of product yield. To obtain better integrate functions of microbial cells, evolutionary engineering combined with other biotechnologies have attracted more attention in recent years. Classical laboratory evolution has been proven effective to letting more beneficial mutations occur in different genes but also has some inherent limitations such as a long evolutionary period and uncontrolled mutation frequencies. However, recent studies showed that some new strategies may gradually overcome these limitations. In this review, we summarize the evolutionary strategies commonly used in industrial microorganisms and discuss the combination of evolutionary engineering with other biotechnologies such as systems biology and inverse metabolic engineering. Finally, we prospect the importance and application prospect of evolutionary engineering as a powerful tool especially in optimization of industrial microbial cell factories.

  15. Applications of neutron radiography for the nuclear power industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craft, Aaron E.; Barton, John P.

    The World Conference on Neutron Radiography (WCNR) and International Topical Meeting on Neutron Radiography (ITMNR) series have been running over 35 years. The most recent event, ITMNR-8, focused on industrial applications and was the first time this series was hosted in China. In China, more than twenty new nuclear power plants are in construction and plans have been announced to increase the nuclear capacity further by a factor of three within fifteen years. There are additional prospects in many other nations. Neutron tests were vital during previous developments of materials and components for nuclear power applications, as reported in thismore » conference series. For example a majority of the 140 papers in the Proceedings of the First WCNR are for the benefit of the nuclear power industry. Included are reviews of the diverse techniques being applied in Europe, Japan, the United States, and at many other centers. Many of those techniques are being utilized and advanced to the present time. Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Applications include examination of nuclear waste, nuclear fuels, cladding, control elements, and other critical components. In this paper, the techniques developed and applied internationally for the nuclear power industry since the earliest years are reviewed, and the question is asked whether neutron test techniques can be of value in development of the present and future generations of nuclear power plants world-wide.« less

  16. Nominal vs. actual supersaturation of solutions

    NASA Astrophysics Data System (ADS)

    Borisenko, Alexander

    2018-03-01

    Following the formalism of the Classical Nucleation Theory beyond the dilute solution approximation, this paper considers a difference between the actual solute supersaturation (given by the present-to-saturated solute activity ratio) and the nominal supersaturation (given by the present-to-saturated solute concentration ratio) due to formation of subcritical transient solute clusters, called heterophase fluctuations. Based on their distribution function, we introduce an algebraic equation of supersaturation that couples the nominal supersaturation of a binary metastable solution with its actual supersaturation and a function of the specific interface energy and temperature. The applicability of this approach is validated by comparison to simulation data [(Clouet et al., Phys. Rev. B 69, 064109 (2004)] on nucleation of Al3Zr and Al3Sc in model binary Al alloys.

  17. The application of powerful promoters to enhance gene expression in industrial microorganisms.

    PubMed

    Zhou, Shenghu; Du, Guocheng; Kang, Zhen; Li, Jianghua; Chen, Jian; Li, Huazhong; Zhou, Jingwen

    2017-02-01

    Production of useful chemicals by industrial microorganisms has been attracting more and more attention. Microorganisms screened from their natural environment usually suffer from low productivity, low stress resistance, and accumulation of by-products. In order to overcome these disadvantages, rational engineering of microorganisms to achieve specific industrial goals has become routine. Rapid development of metabolic engineering and synthetic biology strategies provide novel methods to improve the performance of industrial microorganisms. Rational regulation of gene expression by specific promoters is essential to engineer industrial microorganisms for high-efficiency production of target chemicals. Identification, modification, and application of suitable promoters could provide powerful switches at the transcriptional level for fine-tuning of a single gene or a group of genes, which are essential for the reconstruction of pathways. In this review, the characteristics of promoters from eukaryotic, prokaryotic, and archaea microorganisms are briefly introduced. Identification of promoters based on both traditional biochemical and systems biology routes are summarized. Besides rational modification, de novo design of promoters to achieve gradient, dynamic, and logic gate regulation are also introduced. Furthermore, flexible application of static and dynamic promoters for the rational engineering of industrial microorganisms is highlighted. From the perspective of powerful promoters in industrial microorganisms, this review will provide an extensive description of how to regulate gene expression in industrial microorganisms to achieve more useful goals.

  18. Plowshare Program - American Atomic Bomb Tests For Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-04-22

    The United States Atomic Energy Commission (AEC) established the Plowshare Program as a research and development activity to explore the technical and economic feasibility of using nuclear explosives for industrial applications. The reasoning was that the relatively inexpensive energy available from nuclear explosions could prove useful for a wide variety of peaceful purposes. The Plowshare Program began in 1958 and continued through 1975. Between December 1961 and May 1973, the United States conducted 27 Plowshare nuclear explosive tests comprising 35 individual detonations. Conceptually, industrial applications resulting from the use of nuclear explosives could be divided into two broad categories: 1)more » large-scale excavation and quarrying, where the energy from the explosion was used to break up and/or move rock; and 2) underground engineering, where the energy released from deeply buried nuclear explosives increased the permeability and porosity of the rock by massive breaking and fracturing. Possible excavation applications included: canals, harbors, highway and railroad cuts through mountains, open pit mining, construction of dams, and other quarry and construction-related projects. Underground nuclear explosion applications included: stimulation of natural gas production, preparation of leachable ore bodies for in situ leaching, creation of underground zones of fractured oil shale for in situ retorting, and formation of underground natural gas and petroleum storage reservoirs.« less

  19. Multiphase High-Frequency Isolated DC-DC Converter for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Maurya, Rakesh; Srivastava, S. P.; Agarwal, Pramod

    2014-01-01

    Industrial applications such as welding, plasma cutting, and surface hardening require a large DC current at low voltage. In such applications, the rating of power supply varies from few kilowatts to hundreds of kilowatts. The power supply employs in such applications particularly in arc welding process is expected to operate from open-circuit (no-load) to short-circuit (when the electrode sticks to the workpiece for a short span of time) quickly. In this paper, high-frequency isolated multiphase DC-DC converter is proposed which is well suited for aforementioned applications. Based on mathematical analysis, a simulation study with 5 kW, 5 V/1,000 A proposed model is carried out using Simulink block set and Sim Power System tool box and its performances are evaluated under symmetrical control methods. To verify the simulation results, scaled prototype model of rating 1.5 V/100 A is developed and tested with aforementioned control method under different operating conditions. In comparison with conventional welding power supply employed in many industries, the performance of proposed converter is improved significantly in terms of size and weight, efficiency and dynamic response.

  20. Nanotechnology: current uses and future applications in the food industry.

    PubMed

    Thiruvengadam, Muthu; Rajakumar, Govindasamy; Chung, Ill-Min

    2018-01-01

    Recent advances in nanoscience and nanotechnology intend new and innovative applications in the food industry. Nanotechnology exposed to be an efficient method in many fields, particularly the food industry and the area of functional foods. Though as is the circumstance with the growth of any novel food processing technology, food packaging material, or food ingredient, additional studies are needed to demonstrate the potential benefits of nanotechnologies and engineered nanomaterials designed for use in foods without adverse health effects. Nanoemulsions display numerous advantages over conventional emulsions due to the small droplets size they contain: high optical clarity, excellent physical constancy against gravitational partition and droplet accumulation, and improved bioavailability of encapsulated materials, which make them suitable for food applications. Nano-encapsulation is the most significant favorable technologies having the possibility to ensnare bioactive chemicals. This review highlights the applications of current nanotechnology research in food technology and agriculture, including nanoemulsion, nanocomposites, nanosensors, nano-encapsulation, food packaging, and propose future developments in the developing field of agrifood nanotechnology. Also, an overview of nanostructured materials, and their current applications and future perspectives in food science are also presented.

  1. Applications of Technology, Currently Being Used in Business and Industry, to Education.

    ERIC Educational Resources Information Center

    Satterlee, Brian

    Most educational institutions lag far behind business and industry in the adoption and use of technology. This paper explores the applications of technologies that are currently being used in business and industry, to education. The following technologies are reviewed: virtual learning, wireless networking, collaboration tools, digital video,…

  2. Potential Applications of Immobilized β-Galactosidase in Food Processing Industries

    PubMed Central

    Panesar, Parmjit S.; Kumari, Shweta; Panesar, Reeba

    2010-01-01

    The enzyme β-galactosidase can be obtained from a wide variety of sources such as microorganisms, plants, and animals. The use of β-galactosidase for the hydrolysis of lactose in milk and whey is one of the promising enzymatic applications in food and dairy processing industries. The enzyme can be used in either soluble or immobilized forms but the soluble enzyme can be used only for batch processes and the immobilized form has the advantage of being used in batch wise as well as in continuous operation. Immobilization has been found to be convenient method to make enzyme thermostable and to prevent the loss of enzyme activity. This review has been focused on the different types of techniques used for the immobilization of β-galactosidase and its potential applications in food industry. PMID:21234407

  3. [Application and prospect of fungi elicitors in fermentation industry].

    PubMed

    Gu, Shaobin; Gong, Hui; Yang, Bin; Bu, Meiling

    2013-11-01

    Fungal elicitors are a group of chemicals that can stimulate the secondary metabolite production in plants and microbial cells. After being recognized, it could enhance the expression of related genes through the signal-transduction pathway; regulate the activity of the enzyme involved in the biosynthesis of secondary metabolites. In recent years, the inducible mechanism of fungal elicitors has been studied deeply worldwide. Meanwhile, it has acquired wide concern in the area of biological industry, especially in the fermentation industry. This paper addresses the application and prospect of fungal elicitors in the secondary metabolites of plant and microbial cells.

  4. Development of a Neural Network-Based Renewable Energy Forecasting Framework for Process Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Soobin; Ryu, Jun-Hyung; Hodge, Bri-Mathias

    2016-06-25

    This paper presents a neural network-based forecasting framework for photovoltaic power (PV) generation as a decision-supporting tool to employ renewable energies in the process industry. The applicability of the proposed framework is illustrated by comparing its performance against other methodologies such as linear and nonlinear time series modelling approaches. A case study of an actual PV power plant in South Korea is presented.

  5. Hazard report. Don't use industrial-grade gases for clinical applications.

    PubMed

    2010-01-01

    The use of industrial-grade gases instead of medical-grade gases for clinical applications increases the risk of introducing undesirable and even toxic contaminants into the clinical environment. Hospitals should have policies in place to ensure that gases of the appropriate type and grade are used for the intended application.

  6. Bacterial and Archaeal α-Amylases: Diversity and Amelioration of the Desirable Characteristics for Industrial Applications.

    PubMed

    Mehta, Deepika; Satyanarayana, Tulasi

    2016-01-01

    Industrial enzyme market has been projected to reach US$ 6.2 billion by 2020. Major reasons for continuous rise in the global sales of microbial enzymes are because of increase in the demand for consumer goods and biofuels. Among major industrial enzymes that find applications in baking, alcohol, detergent, and textile industries are α-amylases. These are produced by a variety of microbes, which randomly cleave α-1,4-glycosidic linkages in starch leading to the formation of limit dextrins. α-Amylases from different microbial sources vary in their properties, thus, suit specific applications. This review focuses on the native and recombinant α-amylases from bacteria and archaea, their production and the advancements in the molecular biology, protein engineering and structural studies, which aid in ameliorating their properties to suit the targeted industrial applications.

  7. Tourism guide cloud service quality: What actually delights customers?

    PubMed

    Lin, Shu-Ping; Yang, Chen-Lung; Pi, Han-Chung; Ho, Thao-Minh

    2016-01-01

    The emergence of advanced IT and cloud services has beneficially supported the information-intensive tourism industry, simultaneously caused extreme competitions in attracting customers through building efficient service platforms. On response, numerous nations have implemented cloud platforms to provide value-added sightseeing information and personal intelligent service experiences. Despite these efforts, customers' actual perspectives have yet been sufficiently understood. To bridge the gap, this study attempts to investigate what aspects of tourism cloud services actually delight customers' satisfaction and loyalty. 336 valid survey questionnaire answers were analyzed using structural equation modeling method. The results prove positive impacts of function quality, enjoyment, multiple visual aids, and information quality on customers' satisfaction as well as of enjoyment and satisfaction on use loyalty. The findings hope to provide helpful references of customer use behaviors for enhancing cloud service quality in order to achieve better organizational competitiveness.

  8. Adaptive-passive vibration control systems for industrial applications

    NASA Astrophysics Data System (ADS)

    Mayer, D.; Pfeiffer, T.; Vrbata, J.; Melz, T.

    2015-04-01

    Tuned vibration absorbers have become common for passive vibration reduction in many industrial applications. Lightly damped absorbers (also called neutralizers) can be used to suppress narrowband disturbances by tuning them to the excitation frequency. If the resonance is adapted in-operation, the performance of those devices can be significantly enhanced, or inertial mass can be decreased. However, the integration of actuators, sensors and control electronics into the system raises new design challenges. In this work, the development of adaptive-passive systems for vibration reduction at an industrial scale is presented. As an example, vibration reduction of a ship engine was studied in a full scale test. Simulations were used to study the feasibility and evaluate the system concept at an early stage. Several ways to adjust the resonance of the neutralizer were evaluated, including piezoelectric actuation and common mechatronic drives. Prototypes were implemented and tested. Since vibration absorbers suffer from high dynamic loads, reliability tests were used to assess the long-term behavior under operational conditions and to improve the components. It was proved that the adaptive systems are capable to withstand the mechanical loads in an industrial application. Also a control strategy had to be implemented in order to track the excitation frequency. The most mature concepts were integrated into the full scale test. An imbalance exciter was used to simulate the engine vibrations at a realistic level experimentally. The neutralizers were tested at varying excitation frequencies to evaluate the tracking capabilities of the control system. It was proved that a significant vibration reduction is possible.

  9. Reviews on laser cutting technology for industrial applications

    NASA Astrophysics Data System (ADS)

    Muangpool, T.; Pullteap, S.

    2018-03-01

    In this paper, an overview of the laser technology applied for the industrial has been reviewed. In general, this technology was used in several engineering applications such as industrial, medical, science, research sectors, etc. Focusing on the laser technology in the industrial section, it was, normally, employed for many purposes i.e. target marking, welding, drilling, and also cutting. Consequently, the laser cutting technology was, however, divided into three classifications YAG, CO2, and fiber laser, respectively. Each laser types have different advantages and disadvantages depending on the material type. The advantages by using laser cutting compared with the general cutting machines were exploited in terms of narrow kerf, high cutting speed, low heat-affected zone (HAZ), improve efficiency of the cutting process, high accuracy, etc. However, the main objectives from the technology used were increasing of the products and also decreasing the production cost. In the opposite way, some disadvantages of the technology were summarized by complexity to operate, high maintenance cost, and also high power consumption. In Thailand industry, there were many factories used this technology as a cutting process. Unfortunately, only few researches were published. It might explains that this technology were difficulty to develop, high investment, and also easy to import from aboard. For becoming to the Thailand 4.0 community, the Thailand industry might awareness to reduce the importing machine and boosting some policies to create novel innovative / know-how from the own country.

  10. Applications of building information model (BIM) in Malaysian construction industry

    NASA Astrophysics Data System (ADS)

    Tahir, M. M.; Haron, N. A.; Alias, A. H.; Al-Jumaa, A. T.; Muhammad, I. B.; Harun, A. N.

    2017-12-01

    Since the introduction of BIM in Malaysia in 2009, the technology adoption rate is slow when compared to other countries of the world. Most of the construction companies in Malaysia have an insight on the BIM concept but are yet to implement it in the management of their construction projects. By the year 2020, the Malaysian government will make BIM mandatory, this makes it important to carry out research on the possible applications of the technology. A qualitative method of enquiry was used for this study in Klang Valley using semistructured interview. The responses received were analysed using Principal component analysis (PCA). The result of the analysis showed that “quantity take-off and estimation”, “clash detection and coordination”, “integration and collaboration of stakeholders”, and “design and visualisation” as the main applications of BIM in Malaysia presently. The implication of this findings is that the Malaysian construction industry productivity is likely to increase to meet the demand of the population through the implementations of BIM. More also, BIM technology is regarded as the future of construction industry, which makes it very important for the industry.

  11. Design Of A Low Cost Anthropomorphic Robot Hand For Industrial Applications

    NASA Astrophysics Data System (ADS)

    Allen, P.; Raleigh, B.

    2009-11-01

    Autonomous grasping systems using anthropomorphic robotic end effectors have many applications, and the potential of such devices has inspired researchers to develop many types of grasping systems over the past 30 years. Their research has yielded significant advances in end effector dexterity and functionality. However, due to the cost and complexity associated with such devices, their role has been largely confined to that of being research tools in laboratories. Industry, by contrast, has largely opted for simple, single task, devices. This paper presents a novel low cost anthropomorphic robotic end effector, and in particular the design characteristics that make it more applicable to industrial application. The design brief was (i) to be broadly similar to the human hand in terms of size and performance (ii) be low cost (less than €5000 for the system) and (iii) to provide sufficient performance to allow use in industrial applications. Consisting of three fingers and an opposing thumb, the robotic hand developed has a total of 12 automated degrees of freedom. Another 4 degrees of freedom can be set manually. The specific design of the fingers and thumb, together with the drive arrangement utilizing synchronous belts, yields a simplified kinematics solution for the control of movement. The modular nature of the design is extended also to the palm, which can be easily modified to produce different overall work envelopes for the hand. The drive system and grasping strategies are also detailed.

  12. Distribution, industrial applications, and enzymatic synthesis of D-amino acids.

    PubMed

    Gao, Xiuzhen; Ma, Qinyuan; Zhu, Hailiang

    2015-04-01

    D-Amino acids exist widely in microbes, plants, animals, and food and can be applied in pharmaceutical, food, and cosmetics. Because of their widespread applications in industry, D-amino acids have recently received more and more attention. Enzymes including D-hydantoinase, N-acyl-D-amino acid amidohydrolase, D-amino acid amidase, D-aminopeptidase, D-peptidase, L-amino acid oxidase, D-amino acid aminotransferase, and D-amino acid dehydrogenase can be used for D-amino acids synthesis by kinetic resolution or asymmetric amination. In this review, the distribution, industrial applications, and enzymatic synthesis methods are summarized. And, among all the current enzymatic methods, D-amino acid dehydrogenase method not only produces D-amino acid by a one-step reaction but also takes environment and atom economics into consideration; therefore, it is deserved to be paid more attention.

  13. Bacterial and Archaeal α-Amylases: Diversity and Amelioration of the Desirable Characteristics for Industrial Applications

    PubMed Central

    Mehta, Deepika; Satyanarayana, Tulasi

    2016-01-01

    Industrial enzyme market has been projected to reach US$ 6.2 billion by 2020. Major reasons for continuous rise in the global sales of microbial enzymes are because of increase in the demand for consumer goods and biofuels. Among major industrial enzymes that find applications in baking, alcohol, detergent, and textile industries are α-amylases. These are produced by a variety of microbes, which randomly cleave α-1,4-glycosidic linkages in starch leading to the formation of limit dextrins. α-Amylases from different microbial sources vary in their properties, thus, suit specific applications. This review focuses on the native and recombinant α-amylases from bacteria and archaea, their production and the advancements in the molecular biology, protein engineering and structural studies, which aid in ameliorating their properties to suit the targeted industrial applications. PMID:27516755

  14. International market assessment of stand-alone photovoltaic power systems for cottage industry applications

    NASA Astrophysics Data System (ADS)

    Philippi, T. M.

    1981-11-01

    The final result of an international assessment of the market for stand-alone photovoltaic systems in cottage industry applications is reported. Nonindustrialized countries without centrally planned economies were considered. Cottage industries were defined as small rural manufacturers, employing less than 50 people, producing consumer and simple products. The data to support this analysis were obtained from secondary and expert sources in the U.S. and in-country field investigations of the Philippines and Mexico. The near-term market for photovoltaics for rural cottage industry applications appears to be limited to demonstration projects and pilot programs, based on an in-depth study of the nature of cottage industry, its role in the rural economy, the electric energy requirements of cottage industry, and a financial analysis of stand-alone photovoltaic systems as compared to their most viable competitor, diesel driven generators. Photovoltaics are shown to be a better long-term option only for very low power requirements. Some of these uses would include clay mixers, grinders, centrifuges, lathes, power saws and lighting of a workshop.

  15. International market assessment of stand-alone photovoltaic power systems for cottage industry applications

    NASA Technical Reports Server (NTRS)

    Philippi, T. M.

    1981-01-01

    The final result of an international assessment of the market for stand-alone photovoltaic systems in cottage industry applications is reported. Nonindustrialized countries without centrally planned economies were considered. Cottage industries were defined as small rural manufacturers, employing less than 50 people, producing consumer and simple products. The data to support this analysis were obtained from secondary and expert sources in the U.S. and in-country field investigations of the Philippines and Mexico. The near-term market for photovoltaics for rural cottage industry applications appears to be limited to demonstration projects and pilot programs, based on an in-depth study of the nature of cottage industry, its role in the rural economy, the electric energy requirements of cottage industry, and a financial analysis of stand-alone photovoltaic systems as compared to their most viable competitor, diesel driven generators. Photovoltaics are shown to be a better long-term option only for very low power requirements. Some of these uses would include clay mixers, grinders, centrifuges, lathes, power saws and lighting of a workshop.

  16. The industrial applications of cassava: current status, opportunities and prospects.

    PubMed

    Li, Shubo; Cui, Yanyan; Zhou, Yuan; Luo, Zhiting; Liu, Jidong; Zhao, Mouming

    2017-06-01

    Cassava (Manihot esculenta Crantz) is a drought-tolerant, staple food crop that is grown in tropical and subtropical areas. As an important raw material, cassava is a valuable food source in developing countries and is also extensively employed for producing starch, bioethanol and other bio-based products (e.g. feed, medicine, cosmetics and biopolymers). These cassava-based industries also generate large quantities of wastes/residues rich in organic matter and suspended solids, providing great potential for conversion into value-added products through biorefinery. However, the community of cassava researchers is relatively small and there is very limited information on cassava. Therefore this review summarizes current knowledge on the system biology, economic value, nutritional quality and industrial applications of cassava and its wastes in an attempt to accelerate understanding of the basic biology of cassava. The review also discusses future perspectives with respect to integrating and utilizing cassava information resources for increasing the economic and environmental sustainability of cassava industries. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Augmented reality application for industrial non-destructive inspection training

    NASA Astrophysics Data System (ADS)

    Amza, Catalin Gheorghe; Zapciu, Aurelian; Teodorescu, Octav

    2018-02-01

    Such a technology - Augmented Reality (AR) has great potential of use, especially for training purposes of new operators on using expensive equipment. In this context, the paper presents an augmented reality training system developed for phased-array ultrasonic non-destructive testing (NDT) equipment. The application has been developed using Unity 5.6.0 game-engine platform integrated with Vuforia sdk toolkit for devices with Android operating system. The test results performed by several NDT operators showed good results, thus proving the potential of using the application in the industrial field.

  18. Solar industrial process heat: A study of applications and attitudes

    NASA Astrophysics Data System (ADS)

    Wilson, V.

    1981-04-01

    Data were gathered through site visits to 100 industrial plants. The site specific data suggests several possible near term market opportunities for solar thermal energy systems. Plants using electricity as their primary fuel for industrial process heat were identified, on the basis of their high fuel prices, as attractive early entry markets for solar energy. Additional opportunities were reflected in plants that had accomplished much of their conservation plans, or bad sizeable percentages of their operating budgets committed to energy expenses. A suitability analysis identified eleven industrial plants as highly suitable for solar thermal applications, they included producers of fluid milk, pottery, canned and bottled soft drinks, fabricated structural metal, refined petroleum, aluminum cans, chrome and nickel plating and stamped frame metal and metal finishings.

  19. Metabolic engineering of Yarrowia lipolytica for industrial applications.

    PubMed

    Zhu, Quinn; Jackson, Ethel N

    2015-12-01

    Yarrowia lipolytica is a safe and robust yeast that has a history of industrial applications. Its physiological, metabolic and genomic characteristics have made it a superior host for metabolic engineering. The results of optimizing internal pathways and introducing new pathways have demonstrated that Y. lipolytica can be a platform cell factory for cost-effective production of chemicals and fuels derived from fatty acids, lipids and acetyl-CoA. Two products have been commercialized from metabolically engineered Y. lipolytica strains producing high amounts of omega-3 eicosapentaenoic acid, and more products are on the way to be produced at industrial scale. Here we review recent progress in metabolic engineering of Y. lipolytica for production of biodiesel fuel, functional fatty acids and carotenoids. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Applications of color machine vision in the agricultural and food industries

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Ludas, Laszlo I.; Morgan, Mark T.; Krutz, Gary W.; Precetti, Cyrille J.

    1999-01-01

    Color is an important factor in Agricultural and the Food Industry. Agricultural or prepared food products are often grade by producers and consumers using color parameters. Color is used to estimate maturity, sort produce for defects, but also perform genetic screenings or make an aesthetic judgement. The task of sorting produce following a color scale is very complex, requires special illumination and training. Also, this task cannot be performed for long durations without fatigue and loss of accuracy. This paper describes a machine vision system designed to perform color classification in real-time. Applications for sorting a variety of agricultural products are included: e.g. seeds, meat, baked goods, plant and wood.FIrst the theory of color classification of agricultural and biological materials is introduced. Then, some tools for classifier development are presented. Finally, the implementation of the algorithm on real-time image processing hardware and example applications for industry is described. This paper also presented an image analysis algorithm and a prototype machine vision system which was developed for industry. This system will automatically locate the surface of some plants using digital camera and predict information such as size, potential value and type of this plant. The algorithm developed will be feasible for real-time identification in an industrial environment.

  1. Research advances of antimicrobial peptides and applications in food industry and agriculture.

    PubMed

    Meng, Shuo; Xu, Huanli; Wang, Fengshan

    2010-06-01

    Antimicrobial peptides (AMPs) are produced by a wide range of organisms and serve as their natural defenses against infection caused by bacteria, viruses and fungi. Because of the positively charge and amphipathic structure, AMPs kill target cells through diverse and complex mechanisms once in a target membrane and these special mechanisms are considered to be the critical factors for the less tendency of drug resistance development. Thus AMPs may become a new generation of promising antimicrobial agents in future anti-infection application. Additionally, AMPs can also be used in food industry and agriculture. On the basis of discussing the structural features, action mechanisms and sources, the applications of AMPs were reviewed in this paper, including in food industry, feedstuff, cultivation of disease-resistant transgenic plant, cultivation of transgenic animal, and aquaculture, especially the patented applications.

  2. Sustainable hemp-based composites for the building industry application

    NASA Astrophysics Data System (ADS)

    Schwarzova, Ivana; Stevulova, Nadezda; Junak, Jozef; Hospodarova, Viola

    2017-07-01

    Sustainability goals are essential driving principles for the development of innovative materials in the building industry. Natural plant (e.g. hemp) fibers represent an attractive alternative as reinforcing material due to its good properties and sustainability prerequisites. In this study, hemp-based composite materials, designed for building application as non-load bearing material, providing both thermal insulation and physico-mechanical properties, are presented. Composite materials were produced by bonding hemp hurds with a novel inorganic binder (MgO-based cement) and then were characterized in terms of physical properties (bulk density, water absorption), thermal properties (thermal conductivity) and mechanical properties (compressive and tensile strength). The composites exhibited promising physical, thermal and mechanical characteristics, generally comparable to commercially available products. In addition, the hemp-based composites have the advantage of a significantly low environmental impact (thanks to the nature of both the dispersed and the binding phase) and no negative effects on human health. All things considered, the composite materials seem like very promising materials for the building industry application.

  3. A new Cu(GeNx) alloy film for industrial applications

    NASA Astrophysics Data System (ADS)

    Lin, Chon-Hsin

    2014-11-01

    In this study, a copper alloy [Cu(GeNx)] film is developed for industrial applications by cosputtering Cu and Ge targets on a barrierless Si substrate within a vacuum chamber sparsely filled with N2 gas. Through extensive tests conducted in this study, the alloy film shows good thermal stability and adhesion to the substrate with no noticeable interactions between the film and the substrate after annealing at 720 °C for 1 h. The new Cu(GeNx) alloy film also renders adequate wetting for solders, shows good solderability, and has a dissolution rate lower than pure Cu by at least one order of magnitude, in addition to having a comparable consumption rate to Ni. The alloy film seems suitable for industrial applications in, e.g., barrierless Si metallization, interconnect manufacture and, the replacement of the wetting and diffusion layers for flip-chip solder joints in conventional metallurgy.

  4. An Overview of P450 Enzymes: Opportunity and Challenges in Industrial Applications

    DOE PAGES

    Notonier, Sandra; Alexander, Meyers; Jayakody, Lahiru N.

    2016-10-23

    Cytochrome P450 enzymes (P450s) containing a heme-iron center, are biocatalysts from all kingdoms, involvedin a large variety of reactions. Their potential in catalyzing a broad range of substrates makes perfect candidates for biotechnology applications and the production of high-value compounds. Biocatalytic reactions performed by P450s have a great interest in the pharmaceutical industry, fine chemicals, cosmetics, and for bioremediation procedures. However, the complex nature of this protein is still a major hurdle in the prospect of using their promising ability for expanding the number of industrial applications. Multiple approaches of protein engineering are currently conducted to improve activity, stability and/ormore » substrate specificity for a given reaction. Furthermore, in combination with the appropriate biocatalyst, a suitable bioengineering process is a key step in the implementation of P450s at the industrial scale.« less

  5. An Overview of P450 Enzymes: Opportunity and Challenges in Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notonier, Sandra; Alexander, Meyers; Jayakody, Lahiru N.

    Cytochrome P450 enzymes (P450s) containing a heme-iron center, are biocatalysts from all kingdoms, involvedin a large variety of reactions. Their potential in catalyzing a broad range of substrates makes perfect candidates for biotechnology applications and the production of high-value compounds. Biocatalytic reactions performed by P450s have a great interest in the pharmaceutical industry, fine chemicals, cosmetics, and for bioremediation procedures. However, the complex nature of this protein is still a major hurdle in the prospect of using their promising ability for expanding the number of industrial applications. Multiple approaches of protein engineering are currently conducted to improve activity, stability and/ormore » substrate specificity for a given reaction. Furthermore, in combination with the appropriate biocatalyst, a suitable bioengineering process is a key step in the implementation of P450s at the industrial scale.« less

  6. Biofibers from agricultural byproducts for industrial applications.

    PubMed

    Reddy, Narendra; Yang, Yiqi

    2005-01-01

    Lignocellulosic agricultural byproducts are a copious and cheap source for cellulose fibers. Agro-based biofibers have the composition, properties and structure that make them suitable for uses such as composite, textile, pulp and paper manufacture. In addition, biofibers can also be used to produce fuel, chemicals, enzymes and food. Byproducts produced from the cultivation of corn, wheat, rice, sorghum, barley, sugarcane, pineapple, banana and coconut are the major sources of agro-based biofibers. This review analyses the production processes, structure, properties and suitability of these biofibers for various industrial applications.

  7. Heterologous laccase production and its role in industrial applications

    PubMed Central

    Pezzella, Cinzia; Giardina, Paola; Faraco, Vincenza; Sannia, Giovanni

    2010-01-01

    Laccases are blue multicopper oxidases, catalyzing the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. These enzymes are implicated in a variety of biological activities. Most of the laccases studied thus far are of fungal origin. The large range of substrates oxidized by laccases has raised interest in using them within different industrial fields, such as pulp delignification, textile dye bleaching and bioremediation. Laccases secreted from native sources are usually not suitable for large-scale purposes, mainly due to low production yields and high cost of preparation/purification procedures. Heterologous expression may provide higher enzyme yields and may permit to produce laccases with desired properties (such as different substrate specificities, or improved stabilities) for industrial applications. This review surveys researches on heterologous laccase expression focusing on the pivotal role played by recombinant systems towards the development of robust tools for greening modern industry. PMID:21327057

  8. Brilliant gamma beams for industrial applications: new opportunities, new challenges

    NASA Astrophysics Data System (ADS)

    Iancu, V.; Suliman, G.; Turturica, G. V.; Iovea, M.; Daito, I.; Ohgaki, H.; Matei, C.; Ur, C. A.; Balabanski, D. L.

    2016-10-01

    The Nuclear Physics oriented pillar of the pan-European Extreme Light Infrastructure (ELI-NP) will host an ultra-bright, energy tunable, and quasi-monochromatic gamma-ray beam system in the range of 0.2-19.5 MeV produced by laser-Compton backscattering technique. The applied research program envisioned at ELI-NP targets to use nuclear resonance fluorescence (NRF) and computed tomography to provide new opportunities for industry and society. High sensitivity NRF-based investigations can be successfully applied to safeguard applications and management of radioactive wastes as well as to uncharted fields like cultural heritage and medical imaging. Gamma-ray radioscopy and computed tomography performed at ELI-NP has the potential to achieve high resolution in industrial-sized objects provided the detection challenges introduced by the unique characteristics of the gamma beam are overcome. Here we discuss the foreseen industrial applications that will benefit from the high quality and unique characteristics of ELI-NP gamma beam and the challenges they present. We present the experimental setups proposed to be implemented for this goal, discuss their performance based on analytical calculations and numerical Monte-Carlo simulations, and comment about constrains imposed by the limitation of current scintillator detectors. Several gamma-beam monitoring devices based on scintillator detectors will also be discussed.

  9. Global alcohol policy and the alcohol industry.

    PubMed

    Anderson, Peter

    2009-05-01

    The WHO is preparing its global strategy on alcohol, and, in so doing, has been asked to consult with the alcohol industry on ways it could contribute in reducing the harm done by alcohol. This review asks which is more effective in reducing harm: the regulatory approaches that the industry does not favour; or the educational approaches that it does favour. The current literature overwhelmingly finds that regulatory approaches (including those that manage the price, availability, and marketing of alcohol) reduce the risk of and the experience of alcohol-related harm, whereas educational approaches (including school-based education and public education campaigns) do not, with industry-funded education actually increasing the risk of harm. The alcohol industry should not be involved in making alcohol policy. Its involvement in implementing policy should be restricted to its role as a producer, distributor, and marketer of alcohol. In particular, the alcohol industry should not be involved in educational programmes, as such involvement could actually lead to an increase in harm.

  10. Amperometric Enzyme-Based Biosensors for Application in Food and Beverage Industry

    NASA Astrophysics Data System (ADS)

    Csöoregi, Elisabeth; Gáspñr, Szilveszter; Niculescu, Mihaela; Mattiasson, Bo; Schuhmann, Wolfgang

    Continuous, sensitive, selective, and reliable monitoring of a large variety of different compounds in various food and beverage samples is of increasing importance to assure a high-quality and tracing of any possible source of contamination of food and beverages. Most of the presently used classical analytical methods are often requiring expensive instrumentation, long analysis times and well-trained staff. Amperometric enzyme-based biosensors on the other hand have emerged in the last decade from basic science to useful tools with very promising application possibilities in food and beverage industry. Amperometric biosensors are in general highly selective, sensitive, relatively cheap, and easy to integrate into continuous analysis systems. A successful application of such sensors for industrial purposes, however, requires a sensor design, which satisfies the specific needs of monitoring the targeted analyte in the particular application, Since each individual application needs different operational conditions and sensor characteristics, it is obvious that biosensors have to be tailored for the particular case. The characteristics of the biosensors are depending on the used biorecognition element (enzyme), nature of signal transducer (electrode material) and the communication between these two elements (electron-transfer pathway).

  11. Overview of RFID technology and its applications in the food industry.

    PubMed

    Kumar, P; Reinitz, H W; Simunovic, J; Sandeep, K P; Franzon, P D

    2009-10-01

    Radio frequency identification (RFID) is an alternative technology with a potential to replace traditional universal product code (UPC) barcodes. RFID enables identification of an object from a distance without requiring a line of sight. RFID tags can also incorporate additional data such as details of product and manufacturer and can transmit measured environmental factors such as temperature and relative humidity. This article presents key concepts and terminology related to RFID technology and its applications in the food industry. Components and working principles of an RFID system are described. Numerous applications of RFID technology in the food industry (supply chain management, temperature monitoring of foods, and ensuring food safety) are discussed. Challenges in implementation of RFID technology are also discussed in terms of read range, read accuracy, nonuniform standards, cost, recycling issues, privacy, and security concerns.

  12. Application of predictive modelling techniques in industry: from food design up to risk assessment.

    PubMed

    Membré, Jeanne-Marie; Lambert, Ronald J W

    2008-11-30

    In this communication, examples of applications of predictive microbiology in industrial contexts (i.e. Nestlé and Unilever) are presented which cover a range of applications in food safety from formulation and process design to consumer safety risk assessment. A tailor-made, private expert system, developed to support safe product/process design assessment is introduced as an example of how predictive models can be deployed for use by non-experts. Its use in conjunction with other tools and software available in the public domain is discussed. Specific applications of predictive microbiology techniques are presented relating to investigations of either growth or limits to growth with respect to product formulation or process conditions. An example of a probabilistic exposure assessment model for chilled food application is provided and its potential added value as a food safety management tool in an industrial context is weighed against its disadvantages. The role of predictive microbiology in the suite of tools available to food industry and some of its advantages and constraints are discussed.

  13. Technological properties of amazonian oils and fats and their applications in the food industry.

    PubMed

    Bezerra, Carolina Vieira; Rodrigues, Antonio Manoel da Cruz; de Oliveira, Pedro Danilo; da Silva, Dayala Albuquerque; da Silva, Luiza Helena Meller

    2017-04-15

    The application of lipids to food production is dependent on their physical, chemical, and nutritional properties. In this study, pracaxi oil, passion fruit oil, cupuassu fat, and palm stearin underwent physicochemical analyses and were combined at ratios of 40:60, 50:50, 60:40, and 70:30 to assess their potential applications in the food industry. Pracaxi oil, passion fruit oil, and cupuassu fat had interesting fatty acid profiles from a nutritional standpoint, displaying the lowest atherogenicity and thrombogenicity indices (0.02 and 0.14; 0.12 and 0.34; 0.16 and 0.65), respectively. Palm stearin had high thermal stability (7.23h). The primary applications of the blends obtained in this study are in table and functional margarine, particularly the pracaxi-stearin and passion fruit-stearin 40:60 and 50:50, pracaxi-cupuassu 60:40 and 70:30, and passion fruit-cupuassu 40:60 blends. The results suggest new industrial applications, especially for pracaxi and passion fruit oils, which are commonly applied in the cosmetic industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. 36 CFR 28.13 - Variance, commercial and industrial application procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Variance, commercial and industrial application procedures. 28.13 Section 28.13 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR FIRE ISLAND NATIONAL SEASHORE: ZONING STANDARDS Federal Standards and...

  15. 36 CFR 28.13 - Variance, commercial and industrial application procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Variance, commercial and industrial application procedures. 28.13 Section 28.13 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR FIRE ISLAND NATIONAL SEASHORE: ZONING STANDARDS Federal Standards and...

  16. Mobile phone based SCADA for industrial automation.

    PubMed

    Ozdemir, Engin; Karacor, Mevlut

    2006-01-01

    SCADA is the acronym for "Supervisory Control And Data Acquisition." SCADA systems are widely used in industry for supervisory control and data acquisition of industrial processes. Conventional SCADA systems use PC, notebook, thin client, and PDA as a client. In this paper, a Java-enabled mobile phone has been used as a client in a sample SCADA application in order to display and supervise the position of a sample prototype crane. The paper presents an actual implementation of the on-line controlling of the prototype crane via mobile phone. The wireless communication between the mobile phone and the SCADA server is performed by means of a base station via general packet radio service (GPRS) and wireless application protocol (WAP). Test results have indicated that the mobile phone based SCADA integration using the GPRS or WAP transfer scheme could enhance the performance of the crane in a day without causing an increase in the response times of SCADA functions. The operator can visualize and modify the plant parameters using his mobile phone, without reaching the site. In this way maintenance costs are reduced and productivity is increased.

  17. Industrial applications of hot dry rock geothermal energy

    NASA Astrophysics Data System (ADS)

    Duchane, D. V.

    1992-07-01

    Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

  18. A breakthrough in enzyme technology to fight penicillin resistance-industrial application of penicillin amidase.

    PubMed

    Buchholz, Klaus

    2016-05-01

    Enzymatic penicillin hydrolysis by penicillin amidase (also penicillin acylase, PA) represents a Landmark: the first industrially and economically highly important process using an immobilized biocatalyst. Resistance of infective bacteria to antibiotics had become a major topic of research and industrial activities. Solutions to this problem, the antibiotics resistance of infective microorganisms, required the search for new antibiotics, but also the development of derivatives, notably penicillin derivatives, that overcame resistance. An obvious route was to hydrolyse penicillin to 6-aminopenicillanic acid (6-APA), as a first step, for the introduction via chemical synthesis of various different side chains. Hydrolysis via chemical reaction sequences was tedious requiring large amounts of toxic chemicals, and they were cost intensive. Enzymatic hydrolysis using penicillin amidase represented a much more elegant route. The basis for such a solution was the development of techniques for enzyme immobilization, a highly difficult task with respect to industrial application. Two pioneer groups started to develop solutions to this problem in the late 1960s and 1970s: that of Günter Schmidt-Kastner at Bayer AG (Germany) and that of Malcolm Lilly of Imperial College London. Here, one example of this development, that at Bayer, will be presented in more detail since it illustrates well the achievement of a solution to the problems of industrial application of enzymatic processes, notably development of an immobilization method for penicillin amidase suitable for scale up to application in industrial reactors under economic conditions. A range of bottlenecks and technical problems of large-scale application had to be overcome. Data giving an inside view of this pioneer achievement in the early phase of the new field of biocatalysis are presented. The development finally resulted in a highly innovative and commercially important enzymatic process to produce 6-APA that

  19. Application of ion implantation in tooling industry

    NASA Astrophysics Data System (ADS)

    Straede, Christen A.

    1996-06-01

    In papers published during the last half of the 1980s it is often stated that the application of ion beams to non-semiconductor purposes seems ready for full-scale industrial exploitation. However, progress with respect to commercialisation of ion implantation has been slower than predicted, although the process is quite clearly building up niche markets, especially in the tooling industry. It is the main purpose of this paper to discuss the implementation of the process in the tooling market, and to describe strategies used to ensure its success. The basic idea has been to find niches where ion implantation out-performs other processes both technically and in prices. For instance, it has been clearly realised that one should avoid competing with physical vapour deposition or other coating techniques in market areas where they perform excellently, and instead find niches where the advantages of the ion implantation technique can be fully utilised. The paper will present typical case stories in order to illustrate market niches where the technique has its greatest successes and potential.

  20. Who is Self-Actualized?

    ERIC Educational Resources Information Center

    Roweton, William E.

    1981-01-01

    In an attempt to clarify Maslow's concept of self-actualization as it relates to human motivation, a class of educational psychology students wrote essays describing a self-actualized person and then attempted to decide whether public schools contribute to the production of self-actualized persons. Two-thirds of the students decided that schools…

  1. [Application of enzymes in pulp and paper industry].

    PubMed

    Lin, Ying

    2014-01-01

    The application of enzymes has a high potential in the pulp and paper industry to improve the economics of the paper production process and to achieve, at the same time, a reduced environmental burden. Specific enzymes contribute to reduce the amount of chemicals, water and energy in various processes. This review is aimed at presenting the latest progresses of applying enzymes in bio-pulping, bio-bleaching, bio-deinking, enzymatic control of pitch and enzymatic modification of fibers.

  2. Candidate thermal energy storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  3. Development of advanced magnetic resonance sensor for industrial applications. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Los Santos, A.

    1997-06-01

    Southwest Research Institute (SwRI) and various subcontractors, in a cooperative agreement with the DOE, have developed and tested an advanced magnetic resonance (MR) sensor for several industrial applications and made various market surveys. The original goal of the program was to develop an advanced moisture sensor to allow more precise and rapid control of drying processes so that energy and/or product would not be wasted. Over the course of the program, it was shown that energy savings were achievable but in many processes the return in investment did not justify the cost of a magnetic resonance sensor. However, in manymore » processes, particularly chemical, petrochemical, paper and others, the return in investment can be very high as to easily justify the cost of a magnetic resonance sensor. In these industries, substantial improvements in product yield, quality, and efficiency in production can cause substantial energy savings and reductions in product wastage with substantial environmental effects. The initial applications selected for this program included measurement of corn gluten at three different points and corn germ at one point in an American Maize corn processing plant. During the initial phases (I and II) of this program, SwRI developed a prototype advanced moisture sensor utilizing NMR technology capable of accurately and reliably measuring moisture in industrial applications and tested the sensor in the laboratory under conditions simulating on-line products in the corn wet milling industry. The objective of Phase III was to test the prototype sensor in the plant environment to determine robustness, reliability and long term stability. Meeting these objectives would permit extended field testing to improve the statistical database used to calibrate the sensor and subject the sensor to true variations in operating conditions encountered in the process rather than those which could only be simulated in the laboratory.« less

  4. Terahertz thickness determination with interferometric vibration correction for industrial applications.

    PubMed

    Pfeiffer, Tobias; Weber, Stefan; Klier, Jens; Bachtler, Sebastian; Molter, Daniel; Jonuscheit, Joachim; Von Freymann, Georg

    2018-05-14

    In many industrial fields, like automotive and painting industry, the thickness of thin layers is a crucial parameter for quality control. Hence, the demand for thickness measurement techniques continuously grows. In particular, non-destructive and contact-free terahertz techniques access a wide range of thickness determination applications. However, terahertz time-domain spectroscopy based systems perform the measurement in a sampling manner, requiring fixed distances between measurement head and sample. In harsh industrial environments vibrations of sample and measurement head distort the time-base and decrease measurement accuracy. We present an interferometer-based vibration correction for terahertz time-domain measurements, able to reduce thickness distortion by one order of magnitude for vibrations with frequencies up to 100 Hz and amplitudes up to 100 µm. We further verify the experimental results by numerical calculations and find very good agreement.

  5. Fiber Bragg grating sensors in harsh environments: considerations and industrial monitoring applications

    NASA Astrophysics Data System (ADS)

    Méndez, Alexis

    2017-06-01

    Over the last few years, fiber optic sensors (FOS) have seen an increased acceptance and widespread use in industrial sensing and in structural monitoring in civil, aerospace, marine, oil & gas, composites and other applications. One of the most prevalent types in use today are fiber Bragg grating (FBG) sensors. Historically, FOS have been an attractive solution because of their EM immunity and suitability for use in harsh environments and rugged applications with extreme temperatures, radiation exposure, EM fields, high voltages, water contact, flammable atmospheres, or other hazards. FBG sensors have demonstrated that can operate reliably in many different harsh environment applications but proper type and fabrication process are needed, along with suitable packaging and installation procedure. In this paper, we review the impact that external factors and environmental conditions play on FBG's performance and reliability, and describe the appropriate sensor types and protection requirements suitable for a variety of harsh environment applications in industrial furnaces, cryogenic coolers, nuclear plants, maritime vessels, oil & gas wells, aerospace crafts, automobiles, and others.

  6. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications.

    PubMed

    Borrelli, Grazia M; Trono, Daniela

    2015-09-01

    Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.

  7. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications

    PubMed Central

    Borrelli, Grazia M.; Trono, Daniela

    2015-01-01

    Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes. PMID:26340621

  8. Thermophotovoltaic systems for civilian and industrial applications in Japan

    NASA Astrophysics Data System (ADS)

    Yugami, Hiroo; Sasa, Hiromi; Yamaguchi, Masafumi

    2003-05-01

    The potential market for thermophotovoltaic (TPV) applications has been studied for civilian and industrial sectors in Japan. Comparing the performance of gas engines or turbines, as well as the underdeveloped power generation technologies such as fuel cells or chemical batteries, we have discussed the feasible application field of TPV systems to compete with those power generations. From the point of view of applicability for TPV systems in Japan, portable generators, co-generation systems and solar power plants are selected for our system analysis. The cost and performance targets of TPV systems for co-generation are also discussed by assuming a typical daily profile of electricity and hot water demands in Japanese homes. A progress report on the recent TPV research activities is given as well as a feasibility study concerning such TPV systems in Japan.

  9. Commercial Pesticides Applicator Manual: Industrial, Institutional, Structural and Health Related.

    ERIC Educational Resources Information Center

    Fitzwater, William D.; Renes, Robert

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the industrial, institutional, structural and health related pest control category. The text discusses the use and safety of applying pesticides to control invertebrate and vertebrate pests such as ants,…

  10. 27 CFR 20.41 - Application for industrial alcohol user permit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Application for industrial alcohol user permit. 20.41 Section 20.41 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTRIBUTION AND USE OF DENATURED ALCOHOL AND RUM...

  11. Contributions and future of radioisotopes in medical, industrial, and space applications

    NASA Astrophysics Data System (ADS)

    Tingey, G. L.; Dix, G. P.; Wahlquist, E. J.

    1990-11-01

    There are 333 isotopes that have a half-life between 1 day and 100,000 years that have a wide variety of applications including public health, medicine, industrial technology, food technology and packaging, agriculture, energy supply, and national security. This paper provides an overview of some of the most extensive applications of radioisotopes including some observations of future uses. Examples are discussed that indicate that the use of radioisotopes is almost unlimited and will continue to grow. There is a growing need for future applications development and production.

  12. Contributions and Future of Radioisotopes in Medical, Industrial and Space Applications

    DOE R&D Accomplishments Database

    Tingey, G. L.; Dix, G. P.; Wahlquist, E. J.

    1990-11-01

    There are 333 isotopes that have a half-life between 1 day and 100,000 years that have a wide variety of applications including public health, medicine,industrial technology, food technology and packaging, agriculture, energy supply, and national security. This paper provides an overview of some of the most extensive applications of radioisotopes including some observations of future uses. Examples are discussed that indicate that the use of radioisotopes is almost unlimited and will continue to grow. There is a growing need for future applications development and production. 12 refs., 1 tab. (BM)

  13. Hybrid modeling for quality by design and PAT-benefits and challenges of applications in biopharmaceutical industry.

    PubMed

    von Stosch, Moritz; Davy, Steven; Francois, Kjell; Galvanauskas, Vytautas; Hamelink, Jan-Martijn; Luebbert, Andreas; Mayer, Martin; Oliveira, Rui; O'Kennedy, Ronan; Rice, Paul; Glassey, Jarka

    2014-06-01

    This report highlights the drivers, challenges, and enablers of the hybrid modeling applications in biopharmaceutical industry. It is a summary of an expert panel discussion of European academics and industrialists with relevant scientific and engineering backgrounds. Hybrid modeling is viewed in its broader sense, namely as the integration of different knowledge sources in form of parametric and nonparametric models into a hybrid semi-parametric model, for instance the integration of fundamental and data-driven models. A brief description of the current state-of-the-art and industrial uptake of the methodology is provided. The report concludes with a number of recommendations to facilitate further developments and a wider industrial application of this modeling approach. These recommendations are limited to further exploiting the benefits of this methodology within process analytical technology (PAT) applications in biopharmaceutical industry. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Recent development of radiation measurement instrument for industrial and medical applications

    NASA Astrophysics Data System (ADS)

    Baba, Sueki; Ohmori, Koichi; Mito, Yoshio; Tanoue, Toshiya; Yano, Shigeki; Tokumori, Kenji; Toyofuku, Fukai; Kanda, Shigenobu

    2001-02-01

    Recently, computer imaging technology has developed very high-quality image and fast processing time. X-rays have been used for many purposes such as medical diagnosis and analyzing the structure of industrial materials. However, as X-rays are hazardous to the human body, it is desirable to reduce its exposed dose to a minimum. For this purpose, it is necessary to use a semiconductor radiation detector with a high efficiency for X-rays. We have developed photon-counting CdTe array detector system for medical and industrial use. The bone densitometer for Dual Energy X-ray Absorptometry (DEXA) has been developed to make diagnosis of osteoporosis, and it is developed to analyze a material element for industrial use. Recently, we have developed a monochromatic X-ray CT using a 256 ch CdTe array detector. We found that the array detector systems are very useful for medical and industrial applications.

  15. Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications.

    PubMed

    Bharathiraja, S; Suriya, J; Krishnan, M; Manivasagan, P; Kim, S-K

    Enzymatic hydrolysis is the significant technique for the conversion of agricultural wastes into valuable products. Agroindustrial wastes such as rice bran, wheat bran, wheat straw, sugarcane bagasse, and corncob are cheapest and plentifully available natural carbon sources for the production of industrially important enzymes. Innumerable enzymes that have numerous applications in industrial processes for food, drug, textile, and dye use have been produced from different types of microorganisms from agricultural wastes. Utilization of agricultural wastes offers great potential for reducing the production cost and increasing the use of enzymes for industrial purposes. This chapter focuses on economic production of actinobacterial enzymes from agricultural wastes to make a better alternative for utilization of biomass generated in million tons as waste annually. © 2017 Elsevier Inc. All rights reserved.

  16. Recent Developments of Magnetoresistive Sensors for Industrial Applications

    PubMed Central

    Jogschies, Lisa; Klaas, Daniel; Kruppe, Rahel; Rittinger, Johannes; Taptimthong, Piriya; Wienecke, Anja; Rissing, Lutz; Wurz, Marc Christopher

    2015-01-01

    The research and development in the field of magnetoresistive sensors has played an important role in the last few decades. Here, the authors give an introduction to the fundamentals of the anisotropic magnetoresistive (AMR) and the giant magnetoresistive (GMR) effect as well as an overview of various types of sensors in industrial applications. In addition, the authors present their recent work in this field, ranging from sensor systems fabricated on traditional substrate materials like silicon (Si), over new fabrication techniques for magnetoresistive sensors on flexible substrates for special applications, e.g., a flexible write head for component integrated data storage, micro-stamping of sensors on arbitrary surfaces or three dimensional sensing under extreme conditions (restricted mounting space in motor air gap, high temperatures during geothermal drilling). PMID:26569263

  17. Diversity, Application, and Synthetic Biology of Industrially Important Aspergillus Fungi.

    PubMed

    Park, Hee-Soo; Jun, Sang-Cheol; Han, Kap-Hoon; Hong, Seung-Beom; Yu, Jae-Hyuk

    2017-01-01

    The filamentous fungal genus Aspergillus consists of over 340 officially recognized species. A handful of these Aspergillus fungi are predominantly used for food fermentation and large-scale production of enzymes, organic acids, and bioactive compounds. These industrially important Aspergilli primarily belong to the two major Aspergillus sections, Nigri and Flavi. Aspergillus oryzae (section Flavi) is the most commonly used mold for the fermentation of soybeans, rice, grains, and potatoes. Aspergillus niger (section Nigri) is used in the industrial production of various enzymes and organic acids, including 99% (1.4 million tons per year) of citric acid produced worldwide. Better understanding of the genomes and the signaling mechanisms of key Aspergillus species can help identify novel approaches to enhance these commercially significant strains. This review summarizes the diversity, current applications, key products, and synthetic biology of Aspergillus fungi commonly used in industry. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Less common applications of simulated moving bed chromatography in the pharmaceutical industry.

    PubMed

    Huthmann, E; Juza, M

    2005-10-21

    Simulated moving bed (SMB) chromatography is often perceived in the pharmaceutical industry as chromatographic method for separating binary mixtures, like racemates. However, SMB can also be used for unbalanced separations, i.e. binary mixtures of varying compositions and multi-component mixtures. These less common application modes of isocratic SMB chromatography are exemplified for four different compounds (racemates and diastereomers) and discussed in view of the so-called 'triangle theory' from an industrial perspective.

  19. Mobile robotics application in the nuclear industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.L.; White, J.R.

    1995-03-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980`s, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Somemore » of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities.« less

  20. Space Applications Industrial Laser System (SAILS)

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-01-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  1. A Study on the Training Mode of Electronic Application-Oriented Undergraduate with Industry Needs

    ERIC Educational Resources Information Center

    Wang, Zhonghua; Cheng, Lifang; Wang, Hao

    2017-01-01

    Electronic industry is an economic pillar in China. Due to the Moore's Law, the industry requires continuous development and innovation. In order to achieve these goals, the cultivation of electronic application-oriented undergraduate is essential. However, at current, the innovative educational concepts and teaching methods are lagging behind so…

  2. Industrial waste treatment and application in rubber production

    NASA Astrophysics Data System (ADS)

    Pugacheva, I. N.; Popova, L. V.; Repin, P. S.; Molokanova, L. V.

    2018-03-01

    The paper provides for the relevance of various industrial waste treatment and application, as well as their secondary commercialization. It considers treatment of secondary polymer materials turning to additives applied in rubber production, in particular, in production of conveyor and V-type belts used in mechanical engineering. It is found that oligomers obtained from petroleum by-products can be used as an impregnating compound for fiber materials. Such adhesive treatment prior to introduction of impregnating compounds into elastomeric materials improves adhesion and complements performance of obtained composites.

  3. Elastic memory composites (EMC) for deployable industrial and commercial applications

    NASA Astrophysics Data System (ADS)

    Arzberger, Steven C.; Tupper, Michael L.; Lake, Mark S.; Barrett, Rory; Mallick, Kaushik; Hazelton, Craig; Francis, William; Keller, Phillip N.; Campbell, Douglas; Feucht, Sara; Codell, Dana; Wintergerst, Joe; Adams, Larry; Mallioux, Joe; Denis, Rob; White, Karen; Long, Mark; Munshi, Naseem A.; Gall, Ken

    2005-05-01

    The use of smart materials and multifunctional components has the potential to provide enhanced performance, improved economics, and reduced safety concerns for applications ranging from outer space to subterranean. Elastic Memory Composite (EMC) materials, based on shape memory polymers and used to produce multifunctional components and structures, are being developed and qualified for commercial use as deployable components and structures. EMC materials are similar to traditional fiber-reinforced composites except for the use of a thermoset shape memory resin that enables much higher packaging strains than traditional composites without damage to the fibers or the resin. This unique capability is being exploited in the development of very efficient EMC structural components for deployable spacecraft systems as well as capability enhancing components for use in other industries. The present paper is intended primarily to describe the transition of EMC materials as smart structure technologies into viable industrial and commercial products. Specifically, the paper discusses: 1) TEMBO EMC materials for deployable space/aerospace systems, 2) TEMBO EMC resins for terrestrial applications, 3) future generation EMC materials.

  4. THz wave sensing for petroleum industrial applications

    NASA Astrophysics Data System (ADS)

    Al-Douseri, Fatemah M.; Chen, Yunqing; Zhang, X.-C.

    2006-04-01

    We present the results of terahertz (THz) sensing of gasoline products. The frequency-dependent absorption coefficients, refractive indices, and complex dielectric constants of gasoline and xylene isomers were extracted in the spectral range from 0.5 3.0 THz. The THz spectra of gasoline (#87, #89, #93) and related BTEX (benzene, toluene, ethylbenzene, and xylene) compounds were studied by using Fourier transform infrared spectroscopy (FTIR) in the 1.5 20 THz (50 660 cm-1). The xylene isomers, which are used as antiknock agent in gasoline were determined quantitatively in gasoline in the THz range. Our investigations show the potential of THz technology for the petroleum industrial applications.

  5. Industrial process surveillance system

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.; Singer, Ralph M.; Mott, Jack E.

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  6. Industrial Process Surveillance System

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  7. Feasible Application Area Study for Linear Laser Cutting in Paper Making Processes

    NASA Astrophysics Data System (ADS)

    Happonen, A.; Stepanov, A.; Piili, H.

    Traditional industry sectors, like paper making industry, tend to stay within well-known technology rather than going forward towards promising, but still quite new technical solutions and applications. This study analyses the feasibility of the laser cutting in large-scale industrial paper making processes. Aim was to reveal development and process related challenges and improvement potential in paper making processes by utilizing laser technology. This study has been carried out, because there still seems to be only few large-scale industrial laser processing applications in paper converting processes worldwide, even in the beginning of 2010's. Because of this, the small-scale use of lasers in paper material manufacturing industry is related to a shortage of well-known and widely available published research articles and published measurement data (e.g. actual achieved cut speeds with high quality cut edges, set-up times and so on). It was concluded that laser cutting has strong potential in industrial applications for paper making industries. This potential includes quality improvements and a competitive advantage for paper machine manufacturers and industry. The innovations have also added potential, when developing new paper products. An example of these kinds of products are ones with printed intelligence, which could be a new business opportunity for the paper industries all around the world.

  8. Performance characteristics and typical industrial applications of Selfshield® electron accelerators (< 300 kV)

    NASA Astrophysics Data System (ADS)

    Aaronson, Judith N.; Nablo, Sam V.

    1985-05-01

    Selfshielded electron accelerators have been successfully used in industry for more than ten years. One of the important advantages of these machines is their compactness for easy adaptation to conventional coating and product finishing machinery. It is equally important that these machines qualify for use under "unrestricted" conditions as specified by OSHA. The shielding and product handling configurations which make this unrestricted designation possible for operating voltages under 300 kV are discussed. Thin film dosimetry techniques used for the determination of the machine performance parameters are discussed along with the rotary scanner techniques employed for the dose rate studies which are important in the application of these processors. Paper and wood coatings, which are important industrial applications involving electron initiated polymerization, are reviewed. The sterilization and disinfestation applications are also discussed. The increasing concern of these industries for the more efficient use of energy and for compliance with more stringent pollution regulations, coupled with the novel processes this energy source makes possible, assure a bright future for this developing technology.

  9. Classification of lipolytic enzymes and their biotechnological applications in the pulping industry.

    PubMed

    Ramnath, L; Sithole, B; Govinden, R

    2017-03-01

    In the pulp and paper industry, during the manufacturing process, the agglomeration of pitch particles (composed of triglycerides, fatty acids, and esters) leads to the formation of black pitch deposits in the pulp and on machinery, which impacts on the process and pulp quality. Traditional methods of pitch prevention and treatment are no longer feasible due to environmental impact and cost. Consequently, there is a need for more efficient and environmentally friendly approaches. The application of lipolytic enzymes, such as lipases and esterases, could be the sustainable solution to this problem. Therefore, an understanding of their structure, mechanism, and sources are essential. In this report, we review the microbial sources for the different groups of lipolytic enzymes, the differences between lipases and esterases, and their potential applications in the pulping industry.

  10. Pulsed power systems for environmental and industrial applications

    NASA Astrophysics Data System (ADS)

    Neau, E. L.

    1994-10-01

    The development of high peak power simulators, laser drivers, free electron lasers, and Inertial Confinement Fusion drivers is being extended to high average power short-pulse machines with the capabilities of performing new roles in environmental cleanup and industrial manufacturing processes. We discuss a new class of short-pulse, high average power accelerator that achieves megavolt electron and ion beams with 10's of kiloamperes of current and average power levels in excess of 100 kW. Large treatment areas are possible with these systems because kilojoules of energy are available in each output pulse. These systems can use large area x-ray converters for applications requiring grater depth of penetration such as food pasteurization and waste treatment. The combined development of this class of accelerators and applications, and Sandia National Laboratories, is called Quantum Manufacturing.

  11. Applications of sonochemistry in Russian food processing industry.

    PubMed

    Krasulya, Olga; Shestakov, Sergey; Bogush, Vladimir; Potoroko, Irina; Cherepanov, Pavel; Krasulya, Boris

    2014-11-01

    In food industry, conventional methodologies such as grinding, mixing, and heat treatment are used for food processing and preservation. These processes have been well studied for many centuries and used in the conversion of raw food materials to consumable food products. This report is dedicated to the application of a cost-efficient method of energy transfer caused by acoustic cavitation effects in food processing, overall, having significant impacts on the development of relatively new area of food processing such as food sonochemistry. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Non-contact data access with direction identification for industrial differential serial bus

    NASA Astrophysics Data System (ADS)

    Xie, Kai; Li, Xiaoping; Zhang, Hanlu; Yang, Ming; Ye, Yinghao

    2013-06-01

    We propose a non-contact method for accessing data in industrial differential serial bus applications, which could serve as an effective and safe online testing and diagnosing tool. The data stream and the transmission direction are reconstructed simultaneously from the near-field emanations of a twisted pair, eliminating direct contact with the actual conductors, and avoiding damage to the insulation (only the outer sheathing is removed). A non-contact probe with the ability to sense electric and magnetic fields is presented, as are theories for data reconstruction, direction identification, and a circuit implementation. The prototype was built using inexpensive components and then tested on a standard RS-485 industrial serial bus. Experimental results verified the validity of the proposed scheme.

  13. Potential applications of silk sericin, a natural protein from textile industry by-products.

    PubMed

    Aramwit, Pornanong; Siritientong, Tippawan; Srichana, Teerapol

    2012-03-01

    Silk is composed of two major proteins, fibroin (fibrous protein) and sericin (globular, gumming protein). Fibroin has been used in textile manufacturing and for several biomaterial applications, whereas sericin is considered a waste material in the textile industry. Sericin has recently been found to activate the proliferation of several cell-lines and has also shown various biological activities. Sericin can form a gel by itself; however, after mixing with other polymers and cross-linking it can form a film or a scaffold with good characteristics that can be used in the cosmetic and pharmaceutical industries. Sericin is proven to cause no immunological responses, which has resulted in a more acceptable material for biological applications.

  14. CRISPR Mediated Genome Engineering and its Application in Industry.

    PubMed

    Kaboli, Saeed; Babazada, Hasan

    2018-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) method has been dramatically changing the field of genome engineering. It is a rapid, highly efficient and versatile tool for precise modification of genome that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This novel RNA-guided genome-editing technique has become a revolutionary tool in biomedical science and has many innovative applications in different fields. In this review, we briefly introduce the Cas9-mediated genome-editing tool, summarize the recent advances in CRISPR/Cas9 technology to engineer the genomes of a wide variety of organisms, and discuss their applications to treatment of fungal and viral disease. We also discuss advantageous of CRISPR/Cas9 technology to drug design, creation of animal model, and to food, agricultural and energy sciences. Adoption of the CRISPR/Cas9 technology in biomedical and biotechnological researches would create innovative applications of it not only for breeding of strains exhibiting desired traits for specific industrial and medical applications, but also for investigation of genome function.

  15. Application of food industry waste to agricultural soils mitigates green house gas emissions.

    PubMed

    Rashid, M T; Voroney, R P; Khalid, M

    2010-01-01

    Application of organic waste materials such as food processing and serving industry cooking oil waste (OFW) can recycle soil nitrate nitrogen (NO(3)-N), which is otherwise prone to leaching after the harvest of crop. Nitrogen (N) recycling will not only reduce the amount of N fertilizer application for corn crop production but is also expected to mitigate green house gas (GHG) emissions by saving energy to be used for the production of the same amount of industrial fertilizer N required for the growth of corn crop. Application of OFW at 10Mg solid ha(-1)y(-1) conserved 68 kg N ha(-1)y(-1) which ultimately saved 134 L diesel ha(-1)y(-1), which would otherwise be used for the production of fertilizer N as urea. Average fossil energy substitution value (FESV) of N conserved/recycled was calculated to be 93 US$ ha(-1)y(-1), which is about 13 million US$y(-1). Potential amount of GHG mitigation through the application of OFW to agricultural soils in Canada is estimated to be 57 Gg CO(2)Eq y(-1).

  16. Confocal fluorescence techniques in industrial application

    NASA Astrophysics Data System (ADS)

    Eggeling, Christian; Gall, Karsten; Palo, Kaupo; Kask, Peet; Brand, Leif

    2003-06-01

    The FCS+plus family of evaluation tools for confocal fluorescence spectroscopy, which was developed during recent years, offers a comprehensive view to a series of fluorescence properties. Originating in fluorescence correlation spectroscopy (FCS) and using similar experimental equipment, a system of signal processing methods such as fluorescence intensity distribution analysis (FIDA) was created to analyze in detail the fluctuation behavior of fluorescent particles within a small area of detection. Giving simultaneous access to molecular parameters like concentration, translational and rotational diffusion, molecular brightness, and multicolor coincidence, this portfolio was enhanced by more traditional techniques of fluorescence lifetime as well as time-resolved anisotropy determination. The cornerstones of the FCS+plus methodology will be shortly described. The inhibition of a phosphatase enzyme activity gives a comprehensive industrial application that demonstrates FCS+plus' versatility and its potential for pharmaceutical drug discovery.

  17. 3DS-colorimeter based on a mobile phone camera for industrial applications

    NASA Astrophysics Data System (ADS)

    Miettinen, Jari; Martinkauppi, J. Birgitta; Suopajärvi, Pekka

    2013-02-01

    Colour gives an essential finishing touch to many products. Consumers find it as an important factor, for example, when selecting doors, furniture, parquet and coated metal products. Currently, colour evaluation is often carried out by looking at the product. Since people's memory for an exact colour is poor, this method often produces unsatisfactory results in industrial quality control. In this paper, we discuss how to solve this problem by the use of a colour measurement technology for mobile phones equipped with a suitable accessory. Mobile phones provide a suitable monitor platform even for laymen as people are increasingly using their mobile devices for purposes of entertainment, communication and business, thus making them a familiar device to use. Our 3DS-colorimeter is a new, handheld, low-cost consumer/industrial-level prototype combining both a colorimeter feature and 3D surface measurement feature. In this paper, we describe its colorimeter features shortly and demonstrate its performance in measurement repeatability and colorimetric accuracy. As an application example, we show its usefulness for monitoring the colour appearance of painted doors. This study indicates that the 3DS-colorimeter is applicable to industrial quality control.

  18. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application.

    PubMed

    Schüürmann, Jan; Quehl, Paul; Festel, Gunter; Jose, Joachim

    2014-10-01

    Despite the first report on the bacterial display of a recombinant peptide appeared almost 30 years ago, industrial application of cells with surface-displayed enzymes is still limited. To display an enzyme on the surface of a living cell bears several advantages. First of all, neither the substrate nor the product of the enzymatic reaction needs to cross a membrane barrier. Second, the enzyme being linked to the cell can be separated from the reaction mixture and hence the product by simple centrifugation. Transfer to a new substrate preparation results in multiple cycles of enzymatic conversion. Finally, the anchoring in a matrix, in this case, the cell envelope stabilizes the enzyme and makes it less accessible to proteolytic degradation and material adsorption resulting in continuous higher activities. These advantages in common need to balance some disadvantages before this application can be taken into account for industrial processes, e.g., the exclusion of the enzyme from the cellular metabolome and hence from redox factors or other co-factors that need to be supplied. Therefore, this digest describes the different systems in Gram-positive and Gram-negative bacteria that have been used for the surface display of enzymes so far and focuses on examples among these which are suitable for industrial purposes or for the production of valuable resources, not least in order to encourage a broader application of whole-cell biocatalysts with surface-displayed enzymes.

  19. Industrial process surveillance system

    DOEpatents

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  20. Graphene for energy solutions and its industrialization.

    PubMed

    Wei, Di; Kivioja, Jani

    2013-11-07

    Graphene attracts intensive interest globally across academia and industry since the award of the Nobel Prize in Physics 2010. Within the last half decade, there has been an explosion in the number of scientific publications, patents and industry projects involved in this topic. On the other hand, energy is one of the biggest challenges of this century and related to the global sustainable economy. There are many reviews on graphene and its applications in various devices, however, few of the review articles connect the intrinsic properties of graphene with its energy. The IUPAC definition of graphene refers to a single carbon layer of graphite structure and its related superlative properties. A lot of scientific results on graphene published to date are actually dealing with multi-layer graphenes or reduced graphenes from insulating graphene oxides (GO) which contain defects and contaminants from the reactions and do not possess some of the intrinsic physical properties of pristine graphene. In this review, the focus is on the most recent advances in the study of pure graphene properties and novel energy solutions based on these properties. It also includes graphene metrology and analysis of both intellectual property and the value chain for the existing and forthcoming graphene industry that may cause a new 'industry revolution' with the strong and determined support of governments and industries across the European Union, U. S., Asia and many other countries in the world.

  1. A panorama of bacterial inulinases: Production, purification, characterization and industrial applications.

    PubMed

    Singh, Ram Sarup; Chauhan, Kanika; Kennedy, John F

    2017-03-01

    Inulinases are important hydrolysing enzymes which specifically act on β-2, 1 linkages of inulin to produce fructose or fructooligosaccharides. Fungi, yeasts and bacteria are the potent microbial sources of inulinases. The data on bacterial inulinases is scarce as compared to other microbial sources. Inulinases yield from bacteria is very less as compared to fungal and yeast sources of inulinases. Submerged fermentation (SmF) is the method of choice for the production of inulinases from bacterial sources. Moreover, inulin is a potent substrate for the production of inulinases in SmF. Many bacterial inulinases have been reported to display magnificent environment abiding features and variability in their biophysical and biochemical properties. These properties have attracted intention of many researchers towards exploring adverse ecological niches for more distinctive inulinase producing bacterial strains. Inulinases are substantially important in current biotechnological era due to their numerous industrial applications. High fructose syrup and fructooligosaccharides are two major industrial applications of inulinases. Additionally, there are many reports on the production of various metabolites like citric acid, lactic acid, ethanol, biofuels, butanediol etc. using mixed cultures of inulinase producing organisms with other microorganisms. The present review mainly envisages inulinase producing bacterial sources, inulinase production, purification, characterization and their applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The present situation of the irradiation application industry and irradiation facilities in Japan

    NASA Astrophysics Data System (ADS)

    Mizusawa, K.; Baba, T.

    2003-08-01

    The irradiation application industry and irradiation facilities in Japan have been making slow but steady progress for the past 2-3 years. Beside conventional applications, new ones such as carbon fibers and membrane filters have come into the market. There are a lot of new applications about to emerge. PE tubing, already is in the European market, is being evaluated by end users in Japan. Cleaning of dioxin in exhaust gas was successfully tested at a pilot plant. Cross-linked PTFE and polyamide are waiting customers' evaluations as an engineering plastic. Surface cross-linking of artificial polycarbonate teeth has yielded remarkable experimental results. Cross-linking of polycaprolactone will be useful for biodegradable products. Being aware of the future growth of irradiation industry, contract service providers opened new facilities or increased their capability. Beside in-house facilities, there are now three Co-60 facilities and nine EB facilities available for contract irradiation in Japan.

  3. Advanced high-temperature thermal energy storage media for industrial applications

    NASA Astrophysics Data System (ADS)

    Clear, T. D.; Weibel, R. T.

    An advanced thermal energy storage (TES) media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. This paper describes the composite latent/sensible media concept and its potential advantages over state-of-the-art latent heat systems. Media stability requirements, on-going materials development efforts and planned TES performance evaluation tests are discussed.

  4. Advanced high-temperature thermal energy storage media for industrial applications

    NASA Astrophysics Data System (ADS)

    Claar, T. D.; Waibel, R. T.

    1982-02-01

    An advanced thermal energy storage media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. The composite latent/sensible media concept and its potential advantages over state of the art latent heat systems is described. Media stability requirements, on-going materials development efforts, and planned thermal energy storage (TES) performance evaluation tests are discussed.

  5. Integrated Imaging and Vision Techniques for Industrial Inspection: A Special Issue on Machine Vision and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zheng; Ukida, H.; Ramuhalli, Pradeep

    2010-06-05

    Imaging- and vision-based techniques play an important role in industrial inspection. The sophistication of the techniques assures high- quality performance of the manufacturing process through precise positioning, online monitoring, and real-time classification. Advanced systems incorporating multiple imaging and/or vision modalities provide robust solutions to complex situations and problems in industrial applications. A diverse range of industries, including aerospace, automotive, electronics, pharmaceutical, biomedical, semiconductor, and food/beverage, etc., have benefited from recent advances in multi-modal imaging, data fusion, and computer vision technologies. Many of the open problems in this context are in the general area of image analysis methodologies (preferably in anmore » automated fashion). This editorial article introduces a special issue of this journal highlighting recent advances and demonstrating the successful applications of integrated imaging and vision technologies in industrial inspection.« less

  6. Trends and developments in industrial machine vision: 2013

    NASA Astrophysics Data System (ADS)

    Niel, Kurt; Heinzl, Christoph

    2014-03-01

    When following current advancements and implementations in the field of machine vision there seems to be no borders for future developments: Calculating power constantly increases, and new ideas are spreading and previously challenging approaches are introduced in to mass market. Within the past decades these advances have had dramatic impacts on our lives. Consumer electronics, e.g. computers or telephones, which once occupied large volumes, now fit in the palm of a hand. To note just a few examples e.g. face recognition was adopted by the consumer market, 3D capturing became cheap, due to the huge community SW-coding got easier using sophisticated development platforms. However, still there is a remaining gap between consumer and industrial applications. While the first ones have to be entertaining, the second have to be reliable. Recent studies (e.g. VDMA [1], Germany) show a moderately increasing market for machine vision in industry. Asking industry regarding their needs the main challenges for industrial machine vision are simple usage and reliability for the process, quick support, full automation, self/easy adjustment at changing process parameters, "forget it in the line". Furthermore a big challenge is to support quality control: Nowadays the operator has to accurately define the tested features for checking the probes. There is an upcoming development also to let automated machine vision applications find out essential parameters in a more abstract level (top down). In this work we focus on three current and future topics for industrial machine vision: Metrology supporting automation, quality control (inline/atline/offline) as well as visualization and analysis of datasets with steadily growing sizes. Finally the general trend of the pixel orientated towards object orientated evaluation is addressed. We do not directly address the field of robotics taking advances from machine vision. This is actually a fast changing area which is worth an own

  7. Computer technology applications in industrial and organizational psychology.

    PubMed

    Crespin, Timothy R; Austin, James T

    2002-08-01

    This article reviews computer applications developed and utilized by industrial-organizational (I-O) psychologists, both in practice and in research. A primary emphasis is on applications developed for Internet usage, because this "network of networks" changes the way I-O psychologists work. The review focuses on traditional and emerging topics in I-O psychology. The first topic involves information technology applications in measurement, defined broadly across levels of analysis (persons, groups, organizations) and domains (abilities, personality, attitudes). Discussion then focuses on individual learning at work, both in formal training and in coping with continual automation of work. A section on job analysis follows, illustrating the role of computers and the Internet in studying jobs. Shifting focus to the group level of analysis, we briefly review how information technology is being used to understand and support cooperative work. Finally, special emphasis is given to the emerging "third discipline" in I-O psychology research-computational modeling of behavioral events in organizations. Throughout this review, themes of innovation and dissemination underlie a continuum between research and practice. The review concludes by setting a framework for I-O psychology in a computerized and networked world.

  8. Wood industrial application for quality control using image processing

    NASA Astrophysics Data System (ADS)

    Ferreira, M. J. O.; Neves, J. A. C.

    1994-11-01

    This paper describes an application of image processing for the furniture industry. It uses an input data, images acquired directly from wood planks where defects were previously marked by an operator. A set of image processing algorithms separates and codes each defect and detects a polygonal approach of the line representing them. For such a purpose we developed a pattern classification algorithm and a new technique of segmenting defects by carving the convex hull of the binary shape representing each isolated defect.

  9. Lasers for industrial production processing: tailored tools with increasing flexibility

    NASA Astrophysics Data System (ADS)

    Rath, Wolfram

    2012-03-01

    High-power fiber lasers are the newest generation of diode-pumped solid-state lasers. Due to their all-fiber design they are compact, efficient and robust. Rofin's Fiber lasers are available with highest beam qualities but the use of different process fiber core sizes enables the user additionally to adapt the beam quality, focus size and Rayleigh length to his requirements for best processing results. Multi-mode fibers from 50μm to 600μm with corresponding beam qualities of 2.5 mm.mrad to 25 mm.mrad are typically used. The integrated beam switching modules can make the laser power available to 4 different manufacturing systems or can share the power to two processing heads for parallel processing. Also CO2 Slab lasers combine high power with either "single-mode" beam quality or higher order modes. The wellestablished technique is in use for a large number of industrial applications, processing either metals or non-metallic materials. For many of these applications CO2 lasers remain the best choice of possible laser sources either driven by the specific requirements of the application or because of the cost structure of the application. The actual technical properties of these lasers will be presented including an overview over the wavelength driven differences of application results, examples of current industrial practice as cutting, welding, surface processing including the flexible use of scanners and classical optics processing heads.

  10. Physiology, ecology and industrial applications of aroma formation in yeast

    PubMed Central

    Dzialo, Maria C; Park, Rahel; Steensels, Jan; Lievens, Bart; Verstrepen, Kevin J

    2017-01-01

    Abstract Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors. PMID:28830094

  11. Biology and Industrial Applications of Chlorella: Advances and Prospects.

    PubMed

    Liu, Jin; Chen, Feng

    2016-01-01

    Chlorella represents a group of eukaryotic green microalgae that has been receiving increasing scientific and commercial interest. It possesses high photosynthetic ability and is capable of growing robustly under mixotrophic and heterotrophic conditions as well. Chlorella has long been considered as a source of protein and is now industrially produced for human food and animal feed. Chlorella is also rich in oil, an ideal feedstock for biofuels. The exploration of biofuel production by Chlorella is underway. Chlorella has the ability to fix carbon dioxide efficiently and to remove nutrients of nitrogen and phosphorous, making it a good candidate for greenhouse gas biomitigation and wastewater bioremediation. In addition, Chlorella shows potential as an alternative expression host for recombinant protein production, though challenges remain to be addressed. Currently, omics analyses of certain Chlorella strains are being performed, which will help to unravel the biological implications of Chlorella and facilitate the future exploration of industrial applications.

  12. A patent landscape on application of microorganisms in construction industry.

    PubMed

    Dapurkar, Dipti; Telang, Manasi

    2017-07-01

    Construction biotechnology includes research and development of construction materials and processes that make use of various microbes. The present technology landscape gives a perspective on how microbes have been used in construction industry as cement and concrete additives by analyzing patents filed in this technology arena. All patents related to the technology of interest published globally to date have been reviewed. The earliest patent filing in this technology domain was recorded in the year 1958 and the patenting activity reached its peak around mid to late 1990s. The early technology was mainly focused on microbial polysaccharides and other metabolic products as additives. Year 2002 onwards, biomineralization has taken precedence over the other technologies with consistent patent filings indicating a shift in innovation focus. Japan has been the global leader with highest number of patents filed on application of microbes in construction industry. Southeast University, China has topped the patent assignee list with maximum number of filings followed by Kajima Corp. and Shin-Etsu Chemical Co., Ltd. Most patent applications have claimed microbe based bio-products. Construction-related microbial technologies are mainly based on activity of different microorganisms such as urease-producing, acidogenic, halophilic, alkaliphilic, nitrate and iron-reducing bacteria. Sporosarcina pasteurii has been the most widely used microbe for biomineralization.

  13. System dynamic modelling of industrial growth and landscape ecology in China.

    PubMed

    Xu, Jian; Kang, Jian; Shao, Long; Zhao, Tianyu

    2015-09-15

    With the rapid development of large industrial corridors in China, the landscape ecology of the country is currently being affected. Therefore, in this study, a system dynamic model with multi-dimensional nonlinear dynamic prediction function that considers industrial growth and landscape ecology is developed and verified to allow for more sustainable development. Firstly, relationships between industrial development and landscape ecology in China are examined, and five subsystems are then established: industry, population, urban economy, environment and landscape ecology. The main influencing factors are then examined for each subsystem to establish flow charts connecting those factors. Consequently, by connecting the subsystems, an overall industry growth and landscape ecology model is established. Using actual data and landscape index calculated based on GIS of the Ha-Da-Qi industrial corridor, a typical industrial corridor in China, over the period 2005-2009, the model is validated in terms of historical behaviour, logical structure and future prediction, where for 84.8% of the factors, the error rate of the model is less than 5%, the mean error rate of all factors is 2.96% and the error of the simulation test for the landscape ecology subsystem is less than 2%. Moreover, a model application has been made to consider the changes in landscape indices under four industrial development modes, and the optimal industrial growth plan has been examined for landscape ecological protection through the simulation prediction results over 2015-2020. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Production of a bioemulsifier with potential application in the food industry.

    PubMed

    Campos, Jenyffer M; Stamford, Tânia L M; Sarubbo, Leonie A

    2014-03-01

    Biosurfactants are of considerable interest due to their biodegradability, low degree of toxicity, and diverse applications. However, the high production costs involved in the acquisition of biosurfactants underscore the need for optimization of the production process to enable viable application on an industrial scale. The aims of the present study were to select a species of Candida that produces a biosurfactant with the greatest emulsifying potential and to investigate the influence of components of the production medium and cultivation conditions. Candida utilis achieved the lowest surface tension (35.53 mN/m), best emulsification index (73%), and highest yield (12.52 g/l) in a medium containing waste canola frying oil as the carbon source and ammonium nitrate as the nitrogen source. The best combination of medium components and cultivation conditions was 6% (w/v) glucose, 6% (w/v) waste canola frying oil, 0.2% (w/v) ammonium nitrate, 0.3% (w/v) yeast extract, 150 rpm, 1% inoculum (w/v), and 88 h of fermentation. The greatest biosurfactant production and the lowest surface tension were achieved in the first 24 h of production, and the maximum biomass production was recorded at 72 h. The biosurfactant produced from C. utilis under the conditions investigated in the present study has a potential to be a bioemulsifier for application in the food industry.

  15. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2001-01-01

    An overview of the industrial diamond industry is provided. More than 90 percent of the industrial diamond consumed in the U.S. and the rest of the world is manufactured diamond. Ireland, Japan, Russia, and the U.S. produce 75 percent of the global industrial diamond output. In 2000, the U.S. was the largest market for industrial diamond. Industrial diamond applications, prices for industrial diamonds, imports and exports of industrial diamonds, the National Defense Stockpile of industrial diamonds, and the outlook for the industrial diamond market are discussed.

  16. A Resource Service Model in the Industrial IoT System Based on Transparent Computing.

    PubMed

    Li, Weimin; Wang, Bin; Sheng, Jinfang; Dong, Ke; Li, Zitong; Hu, Yixiang

    2018-03-26

    The Internet of Things (IoT) has received a lot of attention, especially in industrial scenarios. One of the typical applications is the intelligent mine, which actually constructs the Six-Hedge underground systems with IoT platforms. Based on a case study of the Six Systems in the underground metal mine, this paper summarizes the main challenges of industrial IoT from the aspects of heterogeneity in devices and resources, security, reliability, deployment and maintenance costs. Then, a novel resource service model for the industrial IoT applications based on Transparent Computing (TC) is presented, which supports centralized management of all resources including operating system (OS), programs and data on the server-side for the IoT devices, thus offering an effective, reliable, secure and cross-OS IoT service and reducing the costs of IoT system deployment and maintenance. The model has five layers: sensing layer, aggregation layer, network layer, service and storage layer and interface and management layer. We also present a detailed analysis on the system architecture and key technologies of the model. Finally, the efficiency of the model is shown by an experiment prototype system.

  17. A Resource Service Model in the Industrial IoT System Based on Transparent Computing

    PubMed Central

    Wang, Bin; Sheng, Jinfang; Dong, Ke; Li, Zitong; Hu, Yixiang

    2018-01-01

    The Internet of Things (IoT) has received a lot of attention, especially in industrial scenarios. One of the typical applications is the intelligent mine, which actually constructs the Six-Hedge underground systems with IoT platforms. Based on a case study of the Six Systems in the underground metal mine, this paper summarizes the main challenges of industrial IoT from the aspects of heterogeneity in devices and resources, security, reliability, deployment and maintenance costs. Then, a novel resource service model for the industrial IoT applications based on Transparent Computing (TC) is presented, which supports centralized management of all resources including operating system (OS), programs and data on the server-side for the IoT devices, thus offering an effective, reliable, secure and cross-OS IoT service and reducing the costs of IoT system deployment and maintenance. The model has five layers: sensing layer, aggregation layer, network layer, service and storage layer and interface and management layer. We also present a detailed analysis on the system architecture and key technologies of the model. Finally, the efficiency of the model is shown by an experiment prototype system. PMID:29587450

  18. Partnering with Industry to Deliver Continuing Education to Florida's Licensed Pesticide Applicators

    ERIC Educational Resources Information Center

    Fishel, Fred

    2014-01-01

    Partnering with private industry can empower Extension educators to enhance their educational outreach efforts. Since 2011, UF/IFAS has cooperated with the Florida Turfgrass Association in conducting a 1-day statewide Polycom® event for providing continuing education to licensed pesticide applicators employed primarily in the ornamental and…

  19. Using Scientific and Industrial Films in Teaching Technical Communication.

    ERIC Educational Resources Information Center

    Veeder, Gerry

    A film course especially designed for technical communication students can illustrate basic film concepts and techniques while showing how film effectively communicates ideas in an industrial and scientific communication system. After a basic introduction to film terms, the study of actual scientific and industrial films demonstrates the following…

  20. Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology

    NASA Astrophysics Data System (ADS)

    Pořízka, P.; Prochazka, D.; Pilát, Z.; Krajcarová, L.; Kaiser, J.; Malina, R.; Novotný, J.; Zemánek, P.; Ježek, J.; Šerý, M.; Bernatová, S.; Krzyžánek, V.; Dobranská, K.; Novotný, K.; Trtílek, M.; Samek, O.

    2012-08-01

    We report on the application of laser-induced breakdown spectroscopy (LIBS) to the determination of elements distinctive in terms of their biological significance (such as potassium, magnesium, calcium, and sodium) and to the monitoring of accumulation of potentially toxic heavy metal ions in living microorganisms (algae), in order to trace e.g. the influence of environmental exposure and other cultivation and biological factors having an impact on them. Algae cells were suspended in liquid media or presented in a form of adherent cell mass on a surface (biofilm) and, consequently, characterized using their spectra. In our feasibility study we used three different experimental arrangements employing double-pulse LIBS technique in order to improve on analytical selectivity and sensitivity for potential industrial biotechnology applications, e.g. for monitoring of mass production of commercial biofuels, utilization in the food industry and control of the removal of heavy metal ions from industrial waste waters.

  1. The Implications of Industrial Management for the Administration of Industrial Education Programs

    ERIC Educational Resources Information Center

    White, Michael R.

    1978-01-01

    The paper discusses the functions and principles of industrial management, compares educational and industrial organization, and notes industrial management techniques applicable to industrial education administration. (MF)

  2. A review of shape memory material’s applications in the offshore oil and gas industry

    NASA Astrophysics Data System (ADS)

    Patil, Devendra; Song, Gangbing

    2017-09-01

    The continuously increasing demand for oil and gas and the depleting number of new large reservoir discoveries have made it necessary for the oil and gas industry to investigate and design new, improved technologies that unlock new sources of energy and squeeze more from existing resources. Shape memory materials (SMM), with their remarkable properties such as the shape memory effect (SME), corrosion resistance, and superelasticity have shown great potential to meet these demands by significantly improving the functionality and durability of offshore systems. Shape memory alloy (SMA) and shape memory polymer (SMP) are two types of most commonly used SMM’s and are ideally suited for use over a range of robust engineering applications found within the oil and gas industry, such as deepwater actuators, valves, underwater connectors, seals, self-torqueing fasteners and sand management. The potential high strain and high force output of the SME of SMA can be harnessed to create a lightweight, solid state alternative to conventional hydraulic, pneumatic or motor based actuator systems. The phase transformation property enables the SMA to withstand erosive stresses, which is useful for minimizing the effect of erosion often experienced by downhole devices. The superelasticity of the SMA provides good energy dissipation, and can overcome the various defects and limitations suffered by conventional passive damping methods. The higher strain recovery during SME makes SMP ideal for developments of packers and sand management in downhole. The increasing number of SMM related research papers and patents from oil and gas industry indicate the growing research interest of the industry to implement SMM in offshore applications. This paper reviews the recent developments and applications of SMM in the offshore oil and gas industry.

  3. Selection and characterization of Euglena anabaena var. minor as a new candidate Euglena species for industrial application.

    PubMed

    Suzuki, Kengo; Mitra, Sharbanee; Iwata, Osamu; Ishikawa, Takahiro; Kato, Sueo; Yamada, Koji

    2015-01-01

    Euglena gracilis is a microalgae used as a model organism. Recently, mass cultivation of this species has been achieved for industrial applications. The genus Euglena includes more than 200 species that share common useful features, but the potential industrial applications of other Euglena species have not been evaluated. Thus, we conducted a pilot screening study to identify other species that proliferate at a sufficiently rapid rate to be used for mass cultivation; we found that Euglena anabaena var. minor had a rapid growth rate. In addition, its cells accumulated more than 40% weight of carbohydrate, most of which is considered to be a euglenoid specific type of beta-1-3-glucan, paramylon. Carbohydrate is stored in E. anabaena var. minor cells during normal culture, whereas E. gracilis requires nitrogen limitation to facilitate paramylon accumulation. These results suggest the potential industrial application of E. anabaena var. minor.

  4. Rationale and Application of Tangential Scanning to Industrial Inspection of Hardwood Logs

    Treesearch

    Nand K. Gupta; Daniel L. Schmoldt; Bruce Isaacson

    1998-01-01

    Industrial computed tomography (CT) inspection of hardwood logs has some unique requirements not found in other CT applications. Sawmill operations demand that large volumes of wood be scanned quickly at high spatial resolution for extended duty cycles. Current CT scanning geometries and commercial systems have both technical and economic [imitations. Tangential...

  5. Using ITS to Create an Insurance Industry Application: A Joint Case Study.

    ERIC Educational Resources Information Center

    Boies, Stephen J.; And Others

    1993-01-01

    Presents an empirical case study of the use of ITS, a software development environment designed by IBM, by Continental Insurance for underwriting applications. Use of a rule-based user interface style that made electronic forms look like standard insurance industry paper forms and worked according to Continental's guidelines is described.…

  6. Evaluation of general non-reflecting boundary conditions for industrial CFD applications

    NASA Astrophysics Data System (ADS)

    Basara, Branislav; Frolov, Sergei; Lidskii, Boris; Posvyanskii, Vladimir

    2007-11-01

    The importance of having proper boundary conditions for the calculation domain is a known issue in Computational Fluid Dynamics (CFD). In many situations, it is very difficult to define a correct boundary condition. The flow may enter and leave the computational domain at the same time and at the same boundary. In such circumstances, it is important that numerical implementation of boundary conditions enforces certain physical constraints leading to correct results which then ensures a better convergence rate. The aim of this paper is to evaluate recently proposed non-reflecting boundary conditions (Frolov et al., 2001, Advances in Chemical Propulsion) on industrial CFD applications. Derivation of the local non-reflecting boundary conditions at the open boundary is based on finding the solution of linearized Euler equations vanishing at infinity for both incompressible and compressible formulations. This is implemented into the in-house CFD package AVL FIRE and some numerical details will be presented as well. The key applications in this paper are from automotive industry, e.g. an external car aerodynamics, an intake port, etc. The results will show benefits of using effective non-reflecting boundary conditions.

  7. Commercial and industrial applications of color ink jet: a technological perspective

    NASA Astrophysics Data System (ADS)

    Dunand, Alain

    1996-03-01

    In just 5 years, color ink-jet has become the dominant technology for printing color images and graphics in the office and home markets. In commercial printing, the traditional printing processes are being influenced by new digital techniques. Color ink-jet proofing, and concepts such as computer to film/plate or digital processes are contributing to the evolution of the industry. In industrial color printing, the penetration of digital techniques is just beginning. All widely used conventional contact printing technologies involve mechanical printing forms including plates, screens or engraved cylinders. Such forms, which need to be newly created and set up for each job, increase costs. In our era of fast changing customer demands, growing needs for customization, and increasing use of digital exchange of information, the commercial and industrial printing markets represent an enormous potential for digital printing technologies. The adoption characteristics for the use of color ink-jet in these industries are discussed. Examples of color ink-jet applications in the fields of billboard printing, floor/wall covering decoration, and textile printing are described. The requirements on print quality, productivity, reliability, substrate compatibility, and color lead to the consideration of various types of ink-jet technologies. Key technical enabling factors and directions for future improvements are presented.

  8. ETV REPORT - EVALUATION OF DAVIS TECHNOLOGIES INTERNATIONAL CORP. - INDUSTRIAL WASTEWATER TREATMENT PLANT

    EPA Science Inventory

    Abstract: Evaluation of Davis Technologies International Corp. Industrial Wastewater Treatment Plant

    The Davis Technologies International Corp. (DTIC) Industrial Wastewater Treatment Plant (IWTP) was tested, under actual production conditions, processing metalworking and ...

  9. Application of blood cadmium determination to industry using a punched disc technique.

    PubMed Central

    Cernik, A A; Sayers, M P

    1975-01-01

    A paper disc flameless atomic absorption spectroscopy (AAS) method is described for the determination of cadmium (Cd) in blood, enabling difficulties in sample preparation to be minimized. By control of the ashing step the matrix can be removed without loss of cadmium. Problems with the fast signal response during atomization can be met by spectral band width and temperature control. At the 106 pg level (471 nmol Cd/1 blood; 5-3 mug/100 ml) the relative standard deviation (RSD) was 0-06. Results in four industrial situations are reported. This description of the method should facilitate further investigation of its application to industry using capillary or venous blood. PMID:1131342

  10. A preliminary investigation of the potential applicability of the IPAD system to non-aerospace industry

    NASA Technical Reports Server (NTRS)

    Hulbert, L. E.

    1975-01-01

    A study of the applicability of the planned Integrated Programs for Aerospace-Vehicle Design (IPAD) system to the design activities of non-aerospace industries was carried out. It was determined that IPAD could be of significant benefit to a number of industries, with the most likely users being the heavy construction and automotive industries. Two additional short studies were initiated to investigate the possible impact of IPAD on a national energy program and on urban and regional planning activities of local and state governments. These initial studies indicated the possibility of significant payoff in these areas and the need for further investigations. It was also determined that utilization of IPAD by non-aerospace industries will probably involve a long stepwise process, since these industries maintain a policy of gradual introduction of new technology.

  11. Recent progress of obliquely deposited thin films for industrial applications

    NASA Astrophysics Data System (ADS)

    Suzuki, Motofumi; Itoh, Tadayoshi; Taga, Yasunori

    1999-06-01

    More than 10 years ago, birefringent films of metal oxides were formed by oblique vapor deposition and investigated with a view of their application to optical retardation plates. The retardation function of the films was explained in terms of the birefringence caused by the characteristic anisotropic nanostructure inside the films. These films are now classified in the genre of the so-called sculptured thin films. However, the birefringent films thus prepared are not yet industrialized even now due to the crucial lack of the durability and the yield of products. In this review paper, we describe the present status of application process of the retardation films to the information systems such as compact disc and digital versatile disc devices with a special emphasis on the uniformity of retardation properties in a large area and the stability of the optical properties of the obliquely deposited thin films. Finally, further challenges for wide application of the obliquely deposited thin films are also discussed.

  12. Multi - party Game Analysis of Coal Industry and Industry Regulation Policy Optimization

    NASA Astrophysics Data System (ADS)

    Jiang, Tianqi

    2018-01-01

    In the face of the frequent occurrence of coal mine safety accidents, this paper analyses the relationship between central and local governments, coal mining enterprises and miners from the perspective of multi - group game. In the actual production, the decision of one of the three groups can affect the game strategy of the other of the three, so we should assume the corresponding game order. In this order, the game analysis of the income and decision of the three is carried out, and the game decision of the government, the enterprise and the workers is obtained through the establishment of the benefit matrix and so on. And then on the existing system to optimize the coal industry regulation proposed practical recommendations to reduce the frequency of industry safety accidents, optimize the industry production environment.

  13. Applications of Biosurfactants in the Petroleum Industry and the Remediation of Oil Spills

    PubMed Central

    Silva, Rita de Cássia F. S.; Almeida, Darne G.; Rufino, Raquel D.; Luna, Juliana M.; Santos, Valdemir A.; Sarubbo, Leonie Asfora

    2014-01-01

    Petroleum hydrocarbons are important energy resources. However, petroleum is also a major pollutant of the environment. Contamination by oil and oil products has caused serious harm, and increasing attention has been paid to the development and implementation of innovative technologies for the removal of these contaminants. Biosurfactants have been extensively used in the remediation of water and soil, as well as in the main stages of the oil production chain, such as extraction, transportation, and storage. This diversity of applications is mainly due to advantages such as biodegradability, low toxicity and better functionality under extreme conditions in comparison to synthetic counterparts. Moreover, biosurfactants can be obtained with the use of agro-industrial waste as substrate, which helps reduce overall production costs. The present review describes the potential applications of biosurfactants in the oil industry and the remediation of environmental pollution caused by oil spills. PMID:25029542

  14. Applications of biosurfactants in the petroleum industry and the remediation of oil spills.

    PubMed

    de Cássia F S Silva, Rita; Almeida, Darne G; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie Asfora

    2014-07-15

    Petroleum hydrocarbons are important energy resources. However, petroleum is also a major pollutant of the environment. Contamination by oil and oil products has caused serious harm, and increasing attention has been paid to the development and implementation of innovative technologies for the removal of these contaminants. Biosurfactants have been extensively used in the remediation of water and soil, as well as in the main stages of the oil production chain, such as extraction, transportation, and storage. This diversity of applications is mainly due to advantages such as biodegradability, low toxicity and better functionality under extreme conditions in comparison to synthetic counterparts. Moreover, biosurfactants can be obtained with the use of agro-industrial waste as substrate, which helps reduce overall production costs. The present review describes the potential applications of biosurfactants in the oil industry and the remediation of environmental pollution caused by oil spills.

  15. A Practical Model of Quartz Crystal Microbalance in Actual Applications.

    PubMed

    Huang, Xianhe; Bai, Qingsong; Hu, Jianguo; Hou, Dong

    2017-08-03

    A practical model of quartz crystal microbalance (QCM) is presented, which considers both the Gaussian distribution characteristic of mass sensitivity and the influence of electrodes on the mass sensitivity. The equivalent mass sensitivity of 5 MHz and 10 MHz AT-cut QCMs with different sized electrodes were calculated according to this practical model. The equivalent mass sensitivity of this practical model is different from the Sauerbrey's mass sensitivity, and the error between them increases sharply as the electrode radius decreases. A series of experiments which plate rigid gold film onto QCMs were carried out and the experimental results proved this practical model is more valid and correct rather than the classical Sauerbrey equation. The practical model based on the equivalent mass sensitivity is convenient and accurate in actual measurements.

  16. Application of NASTRAN to a fluid solids unit in the petroleum industry. [plenum/cyclone/dipleg assembly

    NASA Technical Reports Server (NTRS)

    Nelson, N. W.

    1975-01-01

    The application of NASTRAN to the design of a fluid solids unit plenum/cyclone/dipleg assembly is described. The major loads considered are thermal, pressure, and gravity. Such applications are of interest in the petroleum industry since the equipment described is historically critical.

  17. Marijuana and actual driving performance

    DOT National Transportation Integrated Search

    1993-11-01

    This report concerns the effects of marijuana smoking on actual driving performance. It presents the results of one pilot and three actual driving studies. The pilot study's major purpose was to establish the THC dose current marijuana users smoke to...

  18. Quantitative microbiological risk assessment in food industry: Theory and practical application.

    PubMed

    Membré, Jeanne-Marie; Boué, Géraldine

    2018-04-01

    The objective of this article is to bring scientific background as well as practical hints and tips to guide risk assessors and modelers who want to develop a quantitative Microbiological Risk Assessment (MRA) in an industrial context. MRA aims at determining the public health risk associated with biological hazards in a food. Its implementation in industry enables to compare the efficiency of different risk reduction measures, and more precisely different operational settings, by predicting their effect on the final model output. The first stage in MRA is to clearly define the purpose and scope with stakeholders, risk assessors and modelers. Then, a probabilistic model is developed; this includes schematically three important phases. Firstly, the model structure has to be defined, i.e. the connections between different operational processing steps. An important step in food industry is the thermal processing leading to microbial inactivation. Growth of heat-treated surviving microorganisms and/or post-process contamination during storage phase is also important to take into account. Secondly, mathematical equations are determined to estimate the change of microbial load after each processing step. This phase includes the construction of model inputs by collecting data or eliciting experts. Finally, the model outputs are obtained by simulation procedures, they have to be interpreted and communicated to targeted stakeholders. In this latter phase, tools such as what-if scenarios provide an essential added value. These different MRA phases are illustrated through two examples covering important issues in industry. The first one covers process optimization in a food safety context, the second one covers shelf-life determination in a food quality context. Although both contexts required the same methodology, they do not have the same endpoint: up to the human health in the foie gras case-study illustrating here a safety application, up to the food portion in the

  19. Nanoscale Delivery Systems: Actual and Potential Applications in the Natural Products Industry.

    PubMed

    Simona, Antal Diana; Florina, Ardelean; Rodica, Chis Aimee; Evelyne, Ollivier; Maria-Corina, Serban

    2017-01-01

    Compounds and extracts derived from natural sources continue to stand in the spotlight of drug design owing to their versatile interaction with enzymes, receptors and metabolic pathways. Nanomedicine offers an operative tool for the efficient delivery of natural products, in terms of increased bioavailability, targeting, and controlled release while protecting active constituents against physico-chemical alterations. The interest of the scientific community in the field of nanosized delivery of natural compounds is demonstrated by the exponential growth of the publications in this field. Beyond the presentation of successful examples of nanoscale delivery systems containing natural products, the scope of this review is to point out the yet underexplored capacities of this field with relevance for the pharmaceutical and nutraceutical market. Departing from a short presentation of plant-derived natural products and strategies to obtain nanoformulations, the current work discusses nanoparticulate drug delivery systems targeting diseases of various organs and systems: skin, central nervous system, skeletal tissue, cardiovascular apparatus, and diabetes. While notable progress has been achieved in the preparation of nanomedicines containing selected dietary polyphenols, works dealing with crude extracts or standardized fractions are much less frequent. In fact, most of the plants with solidly documented therapeutic properties and registered in pharmacopoeias still wait to benefit from advances in the field of nanotechnology. At least for some of them, adequate nanoformulation shall contribute to their removal from the group of dietary supplements and pharmaceutical preparations with suboptimal bioavailability and efficacy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Use of high-radiant flux, high-resolution DMD light engines in industrial applications

    NASA Astrophysics Data System (ADS)

    Müller, Alexandra; Ram, Surinder

    2014-03-01

    The field of application of industrial projectors is growing day by day. New Digital Micromirror Device (DMD) - based applications like 3D printing, 3D scanning, Printed Circuit Board (PCB) board printing and others are getting more and more sophisticated. The technical demands for the projection system are rising as new and more stringent requirements appear. The specification for industrial projection systems differ substantially from the ones of business and home beamers. Beamers are designed to please the human eye. Bright colors and image enhancement are far more important than uniformity of the illumination or image distortion. The human eye, followed by the processing of the brain can live with quite high intensity variations on the screen and image distortion. On the other hand, a projector designed for use in a specialized field has to be tailored regarding its unique requirements in order to make no quality compromises. For instance, when the image is projected onto a light sensitive resin, a good uniformity of the illumination is crucial for good material hardening (curing) results. The demands on the hardware and software are often very challenging. In the following we will review some parameters that have to be considered carefully for the design of industrial projectors in order to get the optimum result without compromises.

  1. Pulse tube cryocoolers for industrial applications

    NASA Astrophysics Data System (ADS)

    Martin, J. L.; Martin, C. M.

    2002-05-01

    Stirling-type, high frequency pulse tube cryocoolers have received considerable interest in the past decade due to their high reliability, low vibration, and high efficiency. Most of the previous development of Stirling-type pulse tube cryocoolers has focused on relatively small machines with cooling powers in the range of 5 W at 80 K. In this paper, we discuss the extension of Stirling-type pulse tube cryocoolers to higher capacities for industrial applications. Mesoscopic Devices is currently developing a family of pulse tube cryocoolers with capacities ranging from 10 W at 80 K to over 1300 W at 80 K. Each of these machines uses a 50 or 60 Hz moving magnet linear compressor, inertance tube phase shift network, and either in-line or coaxial pulse tube expanders. With input powers of up to 20 kW, these large cryocoolers require different heat exchanger and regenerator designs to efficiently exchange heat with the load and environment. Design and construction techniques for the expander and heat exchangers are discussed.

  2. Terahertz thickness measurements for real industrial applications: from automotive paints to aerospace industry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Krimi, Soufiene; Beigang, René

    2017-02-01

    In this contribution, we present a highly accurate approach for real-time thickness measurements of multilayered coatings using terahertz time domain spectroscopy in reflection geometry. The proposed approach combines the benefits of a model-based material parameters extraction method to calibrate the specimen under test, a generalized modeling method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity and the precision of the minimum thickness measurement limit. Furthermore, a novel self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the car painting process and the influence of the spraying conditions and the sintering process on ceramic thermal barrier coatings (TBCs) in aircraft industry. In addition, the developed approach enables for some applications the simultaneous determination of the complex refractive index and the coating thickness. Hence, a pre-calibration of the specimen under test is not required for such cases. Due to the high robustness of the self-calibration method and the genetic optimization algorithms, the approach has been successfully applied to resolve individual layer thicknesses within multi-layered coated samples down to less than 10 µm. The regression method can be applied in time-domain, frequency-domain or in both the time and frequency-domain simultaneously. The data evaluation uses general-purpose computing on graphics processing units and thanks to the developed highly parallelized algorithm lasts less than 300 ms. Thus, industrial requirements for fast thickness measurements with an "every-second-cycle" can be fulfilled.

  3. Developing of method for primary frequency control droop and deadband actual values estimation

    NASA Astrophysics Data System (ADS)

    Nikiforov, A. A.; Chaplin, A. G.

    2017-11-01

    Operation of thermal power plant generation equipment, which participates in standardized primary frequency control (SPFC), must meet specific requirements. These requirements are formalized as nine algorithmic criteria, which are used for automatic monitoring of power plant participation in SPFC. One of these criteria - primary frequency control droop and deadband actual values estimation is considered in detail in this report. Experience shows that existing estimation method sometimes doesn’t work properly. Author offers alternative method, which allows estimating droop and deadband actual values more accurately. This method was implemented as a software application.

  4. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The APH...

  5. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The APH...

  6. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The APH...

  7. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The APH...

  8. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The APH...

  9. Artificial Intelligence Application in Power Generation Industry: Initial considerations

    NASA Astrophysics Data System (ADS)

    Ismail, Rahmat Izaizi B.; Ismail Alnaimi, Firas B.; AL-Qrimli, Haidar F.

    2016-03-01

    With increased competitiveness in power generation industries, more resources are directed in optimizing plant operation, including fault detection and diagnosis. One of the most powerful tools in faults detection and diagnosis is artificial intelligence (AI). Faults should be detected early so correct mitigation measures can be taken, whilst false alarms should be eschewed to avoid unnecessary interruption and downtime. For the last few decades there has been major interest towards intelligent condition monitoring system (ICMS) application in power plant especially with AI development particularly in artificial neural network (ANN). ANN is based on quite simple principles, but takes advantage of their mathematical nature, non-linear iteration to demonstrate powerful problem solving ability. With massive possibility and room for improvement in AI, the inspiration for researching them are apparent, and literally, hundreds of papers have been published, discussing the findings of hybrid AI for condition monitoring purposes. In this paper, the studies of ANN and genetic algorithm (GA) application will be presented.

  10. Coal conversion products industrial applications

    NASA Technical Reports Server (NTRS)

    Dunkin, J. H.; Warren, D.

    1980-01-01

    Coal-based synthetic fuels complexes under development consideration by NASA/MSFC will produce large quantities of synthetic fuels, primarily medium BTU gas, which could be sold commercially to industries located in South Central Tennessee and Northern Alabama. The complexes would be modular in construction, and subsequent modules may produce liquid fuels or fuels for electric power production. Current and projected industries in the two states which have a propensity for utilizing coal-based synthetic fuels were identified, and a data base was compiled to support MFSC activities.

  11. 3D body scanning technology for fashion and apparel industry

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2007-01-01

    This paper presents an overview of 3D body scanning technologies with applications to the fashion and apparel industry. Complete systems for the digitization of the human body exist since more than fifteen years. One of the main users of this technology with application in the textile field was the military industry. In fact, body scanning technology is being successfully employed since many years in military bases for a fast selection of the correct size of uniforms for the entire staff. Complete solutions were especially developed for this field of application. Many different research projects were issued for the exploitation of the same technology in the commercial field. Experiments were performed and start-up projects are to time running in different parts of the world by installing full body scanning systems in various locations such as shopping malls, boutiques or dedicated scanning centers. Everything is actually ready to be exploited and all the required hardware, software and solutions are available: full body scanning systems, software for the automatic and reliable extraction of body measurements, e-kiosk and web solutions for the presentation of garments, high-end and low-end virtual-try-on systems. However, complete solutions in this area have still not yet found the expected commercial success. Today, with the on-going large cost reduction given by the appearance of new competitors, methods for digitization of the human body becomes more interesting for the fashion and apparel industry. Therefore, a large expansion of these technologies is expected in the near future. To date, different methods are used commercially for the measurement of the human body. These can be divided into three major distinguished groups: laser-scanning, projection of light patterns, combination modeling and image processing. The different solutions have strengths and weaknesses that profile their suitability for specific applications. This paper gives an overview of their

  12. The Microcalorimeter for Industrial Applications

    PubMed Central

    Redfern, Del; Nicolosi, Joe; Höhne, Jens; Weiland, Rainer; Simmnacher, Birgit; Hollerich, Christian

    2002-01-01

    To achieve the dramatic increases in x-ray spectral resolution (<20 eV at 1.5k eV) desired by market segments such as the semiconductor industry, NIST developed a transition-edge sensor (TES) microcalorimeter. To bring this exciting, yet demanding, new technology to the industrial users, certain criteria must be addressed. Aspects of resolution, cooling and hold time, count rates as well as vibrations are considered. Data is presented to the present efforts to handle these issues as well as discussing development plans for the future. PMID:27446756

  13. Recent Trends in Human Resource Development. Japanese Industrial Relations Series 17.

    ERIC Educational Resources Information Center

    Amaya, Tadashi

    This paper discusses human resources development (HRD) in Japanese industry. Chapter I addresses changing industrial and occupational structures as a foundation for planning and constructing management strategy, especially for business restructuring. The actual situation regarding business diversification is considered, and an attempt is made to…

  14. A Short Distance CW-Radar Sensor at 77 GHz in LTCC for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Rusch, Christian; Klein, Tobias; Beer, Stefan; Zwick, Thomas

    2013-12-01

    The paper presents a Continuous-Wave(CW)-Radar sensor for high accuracy distance measurements in industrial applications. The usage of radar sensors in industrial scenarios has the advantage of a robust functionality in wet or dusty environments where optical systems reach their limits. This publication shows that accuracies of a few micro-meters are possible with millimeter-wave systems. In addition to distance measurement results the paper describes the sensor concept, the experimental set-up with the measurement process and possibilities to increase the accuracy even further.

  15. Pahoa geothermal industrial park. Engineering and economic analysis for direct applications of geothermal energy in an industrial park at Pahoa, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, J.W.

    1980-12-01

    This engineering and economic study evaluated the potential for developing a geothermal industrial park in the Puna District near Pahoa on the Island of Hawaii. Direct heat industrial applications were analyzed from a marketing, engineering, economic, environmental, and sociological standpoint to determine the most viable industries for the park. An extensive literature search produced 31 existing processes currently using geothermal heat. An additional list was compiled indicating industrial processes that require heat that could be provided by geothermal energy. From this information, 17 possible processes were selected for consideration. Careful scrutiny and analysis of these 17 processes revealed three thatmore » justified detailed economic workups. The three processes chosen for detailed analysis were: an ethanol plant using bagasse and wood as feedstock; a cattle feed mill using sugar cane leaf trash as feedstock; and a papaya processing facility providing both fresh and processed fruit. In addition, a research facility to assess and develop other processes was treated as a concept. Consideration was given to the impediments to development, the engineering process requirements and the governmental support for each process. The study describes the geothermal well site chosen, the pipeline to transmit the hydrothermal fluid, and the infrastructure required for the industrial park. A conceptual development plan for the ethanol plant, the feedmill and the papaya processing facility was prepared. The study concluded that a direct heat industrial park in Pahoa, Hawaii, involves considerable risks.« less

  16. The Potential of RFID Technology in the Textile and Clothing Industry: Opportunities, Requirements and Challenges

    NASA Astrophysics Data System (ADS)

    Legnani, Elena; Cavalieri, Sergio; Pinto, Roberto; Dotti, Stefano

    In the current competitive environment, companies need to extensively exploit the use of advanced technologies in order to develop a sustainable advantage, enhance their operational efficiency and better serve customers. In this context, RFID technology has emerged as a valid support for the company progress and its value is becoming more and more apparent. In particular, the textile and clothing industry, characterised by short life-cycles , quick response production , fast distribution, erratic customer preferences and impulsive purchasing, is one of the sectors which can extensively benefit from the RFID technology. However, actual applications are still very limited, especially in the upstream side of the supply network. This chapter provides an insight into the main benefits and potentials of this technology and highlights the main issues which are currently inhibiting its large scale development in the textile and clothing industry. The experience of two industry-academia projects and the relative fallouts are reported.

  17. Ecopa: actual status and plans.

    PubMed

    Rogiers, Vera

    2003-01-01

    Ecopa, the European Consensus Platform on alternatives, is an international not-for-profit organization, based in Belgium and complying with Belgium law. It is the only quadripartite organization at EU level, which is promoting the 3R-Alternatives at the European level. Ecopa brings together National Consensus Platforms on alternative methods. Consensus means that all parties concerned are represented: animal welfare, industry, academia and governmental institutions. Ecopa actually counts 14 National Platforms of Member States (or future Member States), (8 full members, platforms of Austria, Belgium, Finland, Germany, The Netherlands, Spain, Switzerland and United Kingdom and six associate members being Czech Republic, Denmark, Italy, Norway, Poland and Sweden) and has three working groups. The fields of interest of these working groups change according to the needs and were until now concerned with (i) the 6th Framework Programme of the EC for Research, Technological Development and Demonstration Activities, (ii) the EC White Paper Strategy for a Future EU Chemicals Policy and (iii) the formation & educational programmes on alternative methods. Ecopa is thus uniquely placed and has huge expertise to offer to the debate around scientific and politically-linked topics. It has to be considered a key stakeholder by the European Commission and Parliament (http://ecopa.vub.ac.be) or http://ecopa.tsx.org).

  18. Potential Industrial Applications of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) Operating in Ambient Air

    NASA Astrophysics Data System (ADS)

    Reece Roth, J.

    2004-11-01

    The majority of industrial plasma processing with glow discharges has been conducted at pressures below 10 torr. This tends to limit applications to high value workpieces as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharge plasmas would play a much larger industrial role if they could be generated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP), developed at the University of Tennessee's Plasma Sciences Laboratory, is a non-thermal RF plasma operating on displacement currents with the time-resolved characteristics of a classical low pressure DC normal glow discharge. As a glow discharge, the OAUGDP operates with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum [1, 2]. Several interdisciplinary teams have investigated potential applications of the OAUGDP. These teams included collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC), and the Departments of Electrical and Computer Engineering, Microbiology, and Food Science and Technology, as well as the NASA Langley Research Center. The potential applications of the OAUGDP have all been at one atmosphere and room temperature, using air as the working gas. These applications include sterilizing medical and dental equipment; sterilizable air filters to deal with the "sick building syndrome"; removal of soot from Diesel engine exhaust; subsonic plasma aerodynamic effects, including flow re-attachment to airfoils and boundary layer modification; electrohydrodynamic (EDH) flow control of working gases; increasing the surface energy of materials; improving the adhesion of paints and electroplated layers: improving the wettability and wickability of fabrics; stripping of photoresist; and plasma deposition and directional etching of potential microelectronic relevance. [1] J. R. Roth, Industrial Plasma Engineering

  19. HiLASE Project: high intensity lasers for industrial and scientific applications

    NASA Astrophysics Data System (ADS)

    Rostohar, Danijela; Lucianetti, Antonio; Endo, Akira; Mocek, Tomas

    2015-01-01

    The Czech national R&D project HiLASE is a platform for development of advance high repetition rate, diode pump solid state lasers (DPSSL) systems with energies in the range from mJ to 10J and repetition rate from 10 Hz to 100 kHz. In this paper an overview and a status of the project will be given. Additionally some applications of these lasers in the hi-tech industry, which initiated their development, will be also presented.

  20. Industrial applications of high-average power high-peak power nanosecond pulse duration Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Harrison, Paul M.; Ellwi, Samir

    2009-02-01

    Within the vast range of laser materials processing applications, every type of successful commercial laser has been driven by a major industrial process. For high average power, high peak power, nanosecond pulse duration Nd:YAG DPSS lasers, the enabling process is high speed surface engineering. This includes applications such as thin film patterning and selective coating removal in markets such as the flat panel displays (FPD), solar and automotive industries. Applications such as these tend to require working spots that have uniform intensity distribution using specific shapes and dimensions, so a range of innovative beam delivery systems have been developed that convert the gaussian beam shape produced by the laser into a range of rectangular and/or shaped spots, as required by demands of each project. In this paper the authors will discuss the key parameters of this type of laser and examine why they are important for high speed surface engineering projects, and how they affect the underlying laser-material interaction and the removal mechanism. Several case studies will be considered in the FPD and solar markets, exploring the close link between the application, the key laser characteristics and the beam delivery system that link these together.

  1. DEM GPU studies of industrial scale particle simulations for granular flow civil engineering applications

    NASA Astrophysics Data System (ADS)

    Pizette, Patrick; Govender, Nicolin; Wilke, Daniel N.; Abriak, Nor-Edine

    2017-06-01

    The use of the Discrete Element Method (DEM) for industrial civil engineering industrial applications is currently limited due to the computational demands when large numbers of particles are considered. The graphics processing unit (GPU) with its highly parallelized hardware architecture shows potential to enable solution of civil engineering problems using discrete granular approaches. We demonstrate in this study the pratical utility of a validated GPU-enabled DEM modeling environment to simulate industrial scale granular problems. As illustration, the flow discharge of storage silos using 8 and 17 million particles is considered. DEM simulations have been performed to investigate the influence of particle size (equivalent size for the 20/40-mesh gravel) and induced shear stress for two hopper shapes. The preliminary results indicate that the shape of the hopper significantly influences the discharge rates for the same material. Specifically, this work shows that GPU-enabled DEM modeling environments can model industrial scale problems on a single portable computer within a day for 30 seconds of process time.

  2. Development of contactless sensors for industrial and automative applications

    NASA Astrophysics Data System (ADS)

    Heidler, E. A.; Kanbach, H.; Interhoff, H.

    1985-04-01

    Contactless speed and torque sensors were developed for power measurement and control of motors and for the investigation of their properties for applications in motor vehicle and in industrial domains. For the speed sensor a magnetic bistable wire was developed. The method of wire preparation, efforts to optimize its properties, and data of the prototypes are described. The torque sensor is based on an eddy current measuring head of relatively small dimensions. Changes of permeability at rotating ferromagnetic shafts are detected contactlessly. These changes originate from the inverse magnetostrictive effect as a result of the torsion of the loaded shaft. They are a function of the torque acting at the shaft. The measuring heads and relevant effects are described.

  3. Monitoring based maintenance utilizing actual stress sensory technology

    NASA Astrophysics Data System (ADS)

    Sumitro, Sunaryo; Kurokawa, Shoji; Shimano, Keiji; Wang, Ming L.

    2005-06-01

    one to provide adequate accuracy and reliability for monitoring actual stresses of those steel tendons during the life cycle of infrastructures. An example of a field application at a cable-stayed bridge is described.

  4. Actual and perceived impacts of tobacco regulation on restaurants and firms.

    PubMed

    Crémieux, P Y; Ouellette, P

    2001-03-01

    To examine the actual and anticipated costs of a law regulating workplace smoking and smoking in restaurants, taking into consideration observed and anticipated infrastructure costs, lost productivity, increased absenteeism, and loss of clientele. A survey of 401 Québec restaurants and 600 Québec firms conducted by the Québec Ministry of Health before the enactment of the law was used to derive costs incurred by those who had already complied and anticipated by those that did not. Direct and indirect costs associated with tobacco regulation at work and in restaurants were minimal. Annualised infrastructure costs amounted to less than 0.0002% of firm revenues and 0.15% of restaurant revenues. Anticipated costs were larger and amounted to 0.0004% of firm revenues and 0.41% of restaurant revenues. Impacts on productivity, absenteeism, and restaurant patronage were widely anticipated but not observed in currently compliant establishments. Firms and restaurants expected high costs to result from strict tobacco regulation because of infrastructure costs, decreased productivity, and decreased patronage. That none of these were actually observed suggests that policy makers should discount industry claims that smoking regulations impose undue economic hardship.

  5. Review of patents and application of spray drying in pharmaceutical, food and flavor industry.

    PubMed

    Patel, Bhavesh B; Patel, Jayvadan K; Chakraborty, Subhashis

    2014-04-01

    Spray drying has always remained an energetic field of innovation in pharmaceutical, food and flavor industry since last couple of decades. The current communication embodies an in-depth application of spray drying in pulmonary drug delivery for production of uniform and respirable size particles suitable for nebulizers, dry powder inhalers (DPI) and pressurized metered dose inhalers (pMDI). The review also highlights spray drying application in the manufacturing of mucoadhesive formulation suitable for nasal cavities to improve the drug absorption and bioavailability. Recent research works and patents filed by various researchers on spray drying technology for solubility enhancement have also been accentuated. Benefits of spray drying in production of dry flavorings to meet a product with maximum yield and least flavor loss are also discussed. The use of spray drying in production of various food products like milk or soymilk powder, tomato pulp, dry fruit juice etc, and in encapsulation of vegetable oil or fish oil and dry creamer has been discussed. Current review also highlights the application of spray drying in the biotechnology field like production of dry influenza or measles vaccine as well as application in ceramic industry. Spray drying based patents issued by the U.S. Patent and Trademark Office in the area of drug delivery have also been included in the current review to emphasize importance of spray drying in the recent research scenario.

  6. Industrial bioprocesses: beyond routine applications of established methodologies.

    PubMed

    Junker, Beth

    2010-04-15

    The subject matter of manuscripts by industrial authors has primarily focused on elements with perceived commercial or regulatory significance. Once published, this information interacted and ultimately influenced manuscripts from authors of other affiliations, creating the rapid advancements that culminated in the current multi-billion dollar worldwide biotechnology industry. This paper discusses trends in "solely industrial" articles published in the specific journal of Biotechnology and Bioengineering over the past five decades of this journal's lifetime. "Solely industrial" articles were defined as papers in which all the authors were affiliated with industry. Data were gathered concerning "solely industrial" article distribution and frequency, authoring companies, subject classification, and category distribution. Selected articles and their impact were related to current and past technology milestones as well as associated challenges. Suggestions for areas of greater emphasis to influence the number and subject matter of "solely industrial" articles for the journal's sixth decade were offered for consideration.

  7. Balanced scorecard application in the health care industry: a case study.

    PubMed

    Kocakülâh, Mehmet C; Austill, A David

    2007-01-01

    Balanced scorecards became a popular strategic performance measurement and management tool in the 1990s by Robert Kaplan and David Norton. Mainline companies accepted balanced scorecards quickly, but health care organizations were slow to adopt them for use. A number of problems face the health care industry, including cost structure, payor limitations and constraints, and performance and quality issues that require changes in how health care organizations, both profit and nonprofit, manage operations. This article discusses balanced scorecards generally from theoretical and technical views, and why they should be used by health care organizations. The authors argue that balanced scorecards are particularly applicable to hospitals, clinics, and other health care companies. Finally, the authors perform a case study of the development, implementation, and use of balance scorecards by a regional Midwestern health care system. The positive and negative aspects of the subject's balanced scorecard are discussed. Leaders in today's health care industry are under great pressure to meet their financial goals. The industry is faced with financial pressures from consumers, insurers, and governments. Inflation in the industry is much higher than it is within the overall economy. Employers can no longer bear the burden of rising group health insurance costs for its employees. Too many large companies have used bankruptcy law as a shield to reduce or shift some of their legal obligations to provide health insurance coverage to present or retired employees. Stakeholders of health care providers are demanding greater control over costs. As the segment of un- or underinsured within the United States becomes larger as a percentage of the population, voters are seriously beginning to demand some form of national health insurance, which will drastically change the health care industry.

  8. [Advances in microbial production of alkaline polygalacturonate lyase and its application in clean production of textile industry].

    PubMed

    Liu, Long; Wang, Zhihao; Zhang, Dongxu; Li, Jianghua; Du, Guocheng; Chen, Jian

    2009-12-01

    We reviewed the microbial production of alkaline polygalacturonate lyase (PGL) and its application in the clean production of textile industry. Currently PGL is mainly produced by microbial fermentation and Bacillus sp. is an ideal wild strain for PGL production. Microbial PGL production was affected by many factors including the concentration and feeding mode of substrate, cell concentration, agitation speed, aeration rate, pH and temperature. Constructing the recombinant strain provided an effective alternative for PGL production, and the concentration of PGL produced by the recombinant Pichia pastoris reached 1305 U/mL in 10 m3 fermentor. The recombinant Pichia pastoris had the potential to reach the industrial production of PGL. PGL can be applied in bio-scouring process in the pre-treatment of cotton. Compared with the traditional alkaline cooking process, the application of PGL can protect fiber, improve the bio-scouring efficiency, decrease energy consumption and alleviate the environmental pollution. The future research focus will be the molecular directed evolution of PGL to make PGL more suitable for the application of PGL in bio-scouring process to realize the clean production of textile industry.

  9. An Investigation of the Applicability of Modern Management Processes by Industrial Managers in Turkey.

    ERIC Educational Resources Information Center

    Lauter, Geza Peter

    This study noted American concepts of modern management which Turkish industrial managers tend to find difficult: identified cultural, economic, and other factors that impede application of modern management processes; and compared the practices of American overseas managers with those of Turkish managers of domestic firms. Managerial performance…

  10. Spectral imaging spreads into new industrial and on-field applications

    NASA Astrophysics Data System (ADS)

    Bouyé, Clémentine; Robin, Thierry; d'Humières, Benoît

    2018-02-01

    Numerous recent innovative developments have led to a high reduction of hyperspectral and multispectral cameras cost and size. The achieved products - compact, reliable, low-cot, easy-to-use - meet end-user requirements in major fields: agriculture, food and beverages, pharmaceutics, machine vision, health. The booming of this technology in industrial and on-field applications is getting closer. Indeed, the Spectral Imaging market is at a turning point. A high growth rate of 20% is expected in the next 5 years. The number of cameras sold will increase from 3 600 in 2017 to more than 9 000 in 2022.

  11. Sugar ester surfactants: enzymatic synthesis and applications in food industry.

    PubMed

    Neta, Nair S; Teixeira, José A; Rodrigues, Lígia R

    2015-01-01

    Sugar esters are non-ionic surfactants that can be synthesized in a single enzymatic reaction step using lipases. The stability and efficiency of lipases under unusual conditions and using non-conventional media can be significantly improved through immobilization and protein engineering. Also, the development of de novo enzymes has seen a significant increase lately under the scope of the new field of synthetic biology. Depending on the esterification degree and the nature of fatty acid and/or sugar, a range of sugar esters can be synthesized. Due to their surface activity and emulsifying capacity, sugar esters are promising for applications in food industry.

  12. Strategies to characterize fungal lipases for applications in medicine and dairy industry.

    PubMed

    Gopinath, Subash C B; Anbu, Periasamy; Lakshmipriya, Thangavel; Hilda, Azariah

    2013-01-01

    Lipases are water-soluble enzymes that act on insoluble substrates and catalyze the hydrolysis of long-chain triglycerides. Lipases play a vital role in the food, detergent, chemical, and pharmaceutical industries. In the past, fungal lipases gained significant attention in the industries due to their substrate specificity and stability under varied chemical and physical conditions. Fungal enzymes are extracellular in nature, and they can be extracted easily, which significantly reduces the cost and makes this source preferable over bacteria. Soil contaminated with spillage from the products of oil and dairy harbors fungal species, which have the potential to secrete lipases to degrade fats and oils. Herein, the strategies involved in the characterization of fungal lipases, capable of degrading fatty substances, are narrated with a focus on further applications.

  13. Strategies to Characterize Fungal Lipases for Applications in Medicine and Dairy Industry

    PubMed Central

    Gopinath, Subash C. B.; Anbu, Periasamy; Lakshmipriya, Thangavel; Hilda, Azariah

    2013-01-01

    Lipases are water-soluble enzymes that act on insoluble substrates and catalyze the hydrolysis of long-chain triglycerides. Lipases play a vital role in the food, detergent, chemical, and pharmaceutical industries. In the past, fungal lipases gained significant attention in the industries due to their substrate specificity and stability under varied chemical and physical conditions. Fungal enzymes are extracellular in nature, and they can be extracted easily, which significantly reduces the cost and makes this source preferable over bacteria. Soil contaminated with spillage from the products of oil and dairy harbors fungal species, which have the potential to secrete lipases to degrade fats and oils. Herein, the strategies involved in the characterization of fungal lipases, capable of degrading fatty substances, are narrated with a focus on further applications. PMID:23865040

  14. Exploiting biological activities of brown seaweed Ecklonia cava for potential industrial applications: a review.

    PubMed

    Wijesinghe, W A J P; Jeon, You-Jin

    2012-03-01

    Seaweeds are rich in vitamins, minerals, dietary fibres, proteins, polysaccharides and various functional polyphenols. Many researchers have focused on brown algae as a potential source of bioactive materials in the past few decades. Ecklonia cava is a brown seaweed that is abundant in the subtidal regions of Jeju Island in the Republic of Korea. This seaweed attracted extensive interest due to its multiple biological activities. E. cava has been identified as a potential producer of wide spectrum of natural substances such as carotenoids, fucoidans and phlorotannins showing different biological activities in vital industrial applications including pharmaceutical, nutraceutical, cosmeceutical and functional food. This review focuses on biological activities of the brown seaweed E. cava based on latest research results, including antioxidant, anticoagulative, antimicrobial, antihuman immunodeficiency virus, anti-inflammatory, immunomodulatory, antimutagenic, antitumour and anticancer effects. The facts summarized here may provide novel insights into the functions of E. cava and its derivatives and potentially enable their use as functional ingredients in potential industrial applications.

  15. Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debellefontaine, H.; Foussard, J.N.

    2000-07-01

    Aqueous wastes containing organic pollutants can be efficiently treated by wet air oxidation (WAO), i.e., oxidation (or combustion) by molecular oxygen in the liquid phase, at high temperature (200--325 C) and pressure (up to 175 bar). This method is suited to the elimination of special aqueous wastes from the chemical industry as well as to the treatment of domestic sludge. It is an enclosed process, with a limited interaction with the environment, as opposed to incineration. Usually, the operating cost is lower than 95 Euro M{sup {minus}3} and the preferred COD load ranges from 10 to 80 kg m{sup {minus}3}.more » Only a handful of industrial reactors are in operation world-wide, mainly because of the high capital investment they require. This paper reviews the major results obtained with the WAO process and assess its field of possible application to industrial wastes. In addition, as only a very few studies have been devoted to the scientific design of such reactors (bubble columns), what needs to be known for this scientific design is discussed. At present, a computer program aimed at determining the performance of a wet air oxidation reactor depending on the various operating parameters has been implemented at the laboratory. Some typical results are presented, pointing out the most important parameters and the specific behavior of these units.« less

  16. Biotechnological applications of functional metagenomics in the food and pharmaceutical industries.

    PubMed

    Coughlan, Laura M; Cotter, Paul D; Hill, Colin; Alvarez-Ordóñez, Avelino

    2015-01-01

    Microorganisms are found throughout nature, thriving in a vast range of environmental conditions. The majority of them are unculturable or difficult to culture by traditional methods. Metagenomics enables the study of all microorganisms, regardless of whether they can be cultured or not, through the analysis of genomic data obtained directly from an environmental sample, providing knowledge of the species present, and allowing the extraction of information regarding the functionality of microbial communities in their natural habitat. Function-based screenings, following the cloning and expression of metagenomic DNA in a heterologous host, can be applied to the discovery of novel proteins of industrial interest encoded by the genes of previously inaccessible microorganisms. Functional metagenomics has considerable potential in the food and pharmaceutical industries, where it can, for instance, aid (i) the identification of enzymes with desirable technological properties, capable of catalyzing novel reactions or replacing existing chemically synthesized catalysts which may be difficult or expensive to produce, and able to work under a wide range of environmental conditions encountered in food and pharmaceutical processing cycles including extreme conditions of temperature, pH, osmolarity, etc; (ii) the discovery of novel bioactives including antimicrobials active against microorganisms of concern both in food and medical settings; (iii) the investigation of industrial and societal issues such as antibiotic resistance development. This review article summarizes the state-of-the-art functional metagenomic methods available and discusses the potential of functional metagenomic approaches to mine as yet unexplored environments to discover novel genes with biotechnological application in the food and pharmaceutical industries.

  17. Biotechnological applications of functional metagenomics in the food and pharmaceutical industries

    PubMed Central

    Coughlan, Laura M.; Cotter, Paul D.; Hill, Colin; Alvarez-Ordóñez, Avelino

    2015-01-01

    Microorganisms are found throughout nature, thriving in a vast range of environmental conditions. The majority of them are unculturable or difficult to culture by traditional methods. Metagenomics enables the study of all microorganisms, regardless of whether they can be cultured or not, through the analysis of genomic data obtained directly from an environmental sample, providing knowledge of the species present, and allowing the extraction of information regarding the functionality of microbial communities in their natural habitat. Function-based screenings, following the cloning and expression of metagenomic DNA in a heterologous host, can be applied to the discovery of novel proteins of industrial interest encoded by the genes of previously inaccessible microorganisms. Functional metagenomics has considerable potential in the food and pharmaceutical industries, where it can, for instance, aid (i) the identification of enzymes with desirable technological properties, capable of catalyzing novel reactions or replacing existing chemically synthesized catalysts which may be difficult or expensive to produce, and able to work under a wide range of environmental conditions encountered in food and pharmaceutical processing cycles including extreme conditions of temperature, pH, osmolarity, etc; (ii) the discovery of novel bioactives including antimicrobials active against microorganisms of concern both in food and medical settings; (iii) the investigation of industrial and societal issues such as antibiotic resistance development. This review article summarizes the state-of-the-art functional metagenomic methods available and discusses the potential of functional metagenomic approaches to mine as yet unexplored environments to discover novel genes with biotechnological application in the food and pharmaceutical industries. PMID:26175729

  18. Application of a Subspace-Based Fault Detection Method to Industrial Structures

    NASA Astrophysics Data System (ADS)

    Mevel, L.; Hermans, L.; van der Auweraer, H.

    1999-11-01

    Early detection and localization of damage allow increased expectations of reliability, safety and reduction of the maintenance cost. This paper deals with the industrial validation of a technique to monitor the health of a structure in operating conditions (e.g. rotating machinery, civil constructions subject to ambient excitations, etc.) and to detect slight deviations in a modal model derived from in-operation measured data. In this paper, a statistical local approach based on covariance-driven stochastic subspace identification is proposed. The capabilities and limitations of the method with respect to health monitoring and damage detection are discussed and it is explained how the method can be practically used in industrial environments. After the successful validation of the proposed method on a few laboratory structures, its application to a sports car is discussed. The example illustrates that the method allows the early detection of a vibration-induced fatigue problem of a sports car.

  19. A hydrogen transient nuclear magnetic resonance sensor for industrial drying applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholls, C.

    1990-01-01

    It has been estimated that industrial non-paper drying processes consume {approximately}0.8 quad (i.e. 8 {times} 10{sup 14} BTU) of energy per year in the United States, representing {approximately}5% of total industrial consumption. If improved technologies could be used to increase the efficiencies of the drying process and hence produce a 2% reduction in energy consumption, the energy savings would be 0.016 quad per year, or {approximately}2.5 million bbl of crude oil. DOE studies indicated that the most attractive R D target to aid in achieving these savings was an advanced moisture sensor, capable of application to a wide variety ofmore » drying processes. To meet these objectives the sensor should accurately monitor product moisture content over the range 2--35 % wt moisture (wb) and be usable at temperatures up to 350{degree}F. 22 refs., 11 figs., 1 tab.« less

  20. Worker satisfaction with personal flotation devices (PFDs) in the fishing industry: evaluations in actual use.

    PubMed

    Lucas, Devin; Lincoln, Jennifer; Somervell, Philip; Teske, Theodore

    2012-07-01

    The purpose of this study was to determine which type of commercially available PFD resulted in the highest satisfaction among workers in the fishing industry. Fishing industry workers on four types of vessels wore and evaluated six different PFDs during their fishing seasons. Linear regression was used to test the differences in mean satisfaction scores, adjusting for clustered observations on vessels. The data were stratified by vessel type to determine the differences in PFD satisfaction within each vessel type. PFD D had the highest mean satisfaction score, but satisfaction with particular PFDs varied depending on the vessel type. Although the common objections by workers to wearing PFDs are that they are bulky and uncomfortable, some of the PFDs that were evaluated in this study received high scores for comfort and satisfaction. Given the availability of PFDs that are comfortable to wear while working, fishing vessel owners and operators should consider implementing policies mandating the use of PFDs on deck. Published by Elsevier Ltd.

  1. Optical inspection methods and their applications in the manufactured industrial sector: knowledge transfer to Panamanian industry

    NASA Astrophysics Data System (ADS)

    Pino, Abdiel O.; Pladellorens, Josep

    2014-07-01

    A means of facilitating the transfer of Optical inspection methods knowledge and skills from academic institutions and their research partners into Panama optics and optical research groups is described. The process involves the creation of an Integrated Knowledge Group Research (IKGR), a partnership led by Polytechnic University of Panama with the support of the SENACYT and Optics and Optometry Department, Polytechnic University of Catalonia. This paper describes the development of the Project for knowledge transfer "Implementation of a method of optical inspection of low cost for improving the surface quality of rolled material of metallic and nonmetallic industrial use", this project will develop a method for measuring the surface quality using texture analysis speckle pattern formed on the surface to be characterized. The project is designed to address the shortage of key skills in the field of precision engineering for optical applications. The main issues encountered during the development of the knowledge transfer teaching and learning are discussed, and the outcomes from the first four months of knowledge transfer activities are described. In overall summary, the results demonstrate how the Integrated Knowledge Group Research and new approach to knowledge transfer has been effective in addressing the engineering skills gap in precision optics for manufactured industrial sector.

  2. Innovations in Hospitality Industry

    ERIC Educational Resources Information Center

    Dzhandzhugazova, Elena A.; Blinova, Ekaterina A.; Orlova, Liubov N.; Romanova, Marianna M.

    2016-01-01

    The article focuses on the study of the role and importance of innovation, its classification, the problems of its application in the hotel industry with emphasis on the application of sensory marketing tools in the development of the innovative marketing mix within the hospitality industry. The article provides an analysis of the "seven…

  3. Application of a multi-beam vibrometer on industrial components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendel, Karl

    2014-05-27

    Laser Doppler vibrometry is a well proven tool for the non-contact measurement of vibration. The scanning of several measurement points allows to visualize the deflection shape of the component, ideally a 3D-operating deflection shape, if a 3-D scanner is applied. Measuring the points sequentially, however, requires stationary behavior during the measurement time. This cannot be guaranteed for many real objects. Therefore, a multipoint laser Doppler vibrometer has been developed by Polytec and the University of Stuttgart with Bosch as industrial partner. A short description of the measurement system is given. Applications for the parallel measurement of the vibration of severalmore » points are shown for non-stationary vibrating Bosch components such as power-tools or valves.« less

  4. Power Delivery from an Actual Thermoelectric Generation System

    NASA Astrophysics Data System (ADS)

    Kaibe, Hiromasa; Kajihara, Takeshi; Nagano, Kouji; Makino, Kazuya; Hachiuma, Hirokuni; Natsuume, Daisuke

    2014-06-01

    Similar to photovoltaic (PV) and fuel cells, thermoelectric generators (TEGs) supply direct-current (DC) power, essentially requiring DC/alternating current (AC) conversion for delivery as electricity into the grid network. Use of PVs is already well established through power conditioning systems (PCSs) that enable DC/AC conversion with maximum-power-point tracking, which enables commercial use by customers. From the economic, legal, and regulatory perspectives, a commercial PCS for PVs should also be available for TEGs, preferably as is or with just simple adjustment. Herein, we report use of a PV PCS with an actual TEG. The results are analyzed, and proper application for TEGs is proposed.

  5. On Study of New Progress and Application of Coordination Chemistry in Chemistry and Chemical Industry in Recent Years

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshen

    2017-12-01

    Coordination chemistry refers to a branch of chemistry, and its research results are widely used in industry and people's daily life. Many edge disciplines emerge during the development, which propels the process of disciplines and technology. This paper briefly discusses new progress of coordination chemistry and its application in chemistry and chemical industry in recent years.

  6. Prize for Industrial Applications of Physics Lecture: A physicist in Business

    NASA Astrophysics Data System (ADS)

    Woollam, John

    2013-03-01

    In the 1980s I inherited a famous ellipsometry laboratory. To speed up data acquisition and analysis I associated myself with creative scientists and engineers. We started a company which grew. Together we rapidly improved acquisition speed, accuracy, precision, spectral range, and types of applications. Yet, a business is much more than technology. In this talk I outline how a high-tech business functions, and illustrate the role of physicists and engineers in making a company successful. It is fast-paced, exciting, and enormously gratifying to provide quality instruments for researchers and industry.

  7. Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives.

    PubMed

    Kumar, Vishal; Marín-Navarro, Julia; Shukla, Pratyoosh

    2016-02-01

    Xylanases are enzymes with biotechnological relevance in a number of fields, including food, feed, biofuel, and textile industries. Their most significant application is in the paper and pulp industry, where they are used as a biobleaching agent, showing clear economic and environmental advantages over chemical alternatives. Since this process requires high temperatures and alkali media, the identification of thermostable and alkali stable xylanases represents a major biotechnological goal in this field. Moreover, thermostability is a desirable property for many other applications of xylanases. The review makes an overview of xylanase producing microorganisms and their current implementation in paper biobleaching. Future perspectives are analyzed focusing in the efforts carried out to generate thermostable enzymes by means of modern biotechnological tools, including metagenomic analysis, enzyme molecular engineering and nanotechnology. Furthermore, structural and mutagenesis studies have revealed critical sites for stability of xylanases from glycoside hydrolase families GH10 and GH11, which constitute the main classes of these enzymes. The overall conclusions of these works are summarized here and provide relevant information about putative weak spots within xylanase structures to be targeted in future protein engineering approaches.

  8. Search for technological advantages and commercial success in sensor applications: lessons of industrial trials for fiber multianalyzer technology

    NASA Astrophysics Data System (ADS)

    McMillan, Norman D.; Baker, M.; O'Neill, M.; Smith, Stuart; Augousti, Andreas T.; Mason, Julian; Ryan, Bernard; Ryan, R. A.

    1999-01-01

    The multianalyzer is a powerful amplitude modulated fiber optic sensor which is perhaps quite typical of so many sensor innovations in that it is a technology looking for an application. Consequently, a series of collaborations with fruit juice, brewing, distilling, biotechnology and polymer industries were made with the objective of identifying potential applications of the multianalyzer. An assessment of these interactions is made for each of the industrial fields explored, by giving for each, just one positive result from the work. The results are then critically assessed. While these studies have illustrated the universal nature of the technology, in every case, lessons have been drawn of a general nature. This experience in particular underlined the difficulty in acceptance of a fiber based technology in industrial process monitoring, against the backdrop of the conservative practice of industry with long established instrumentation. The hard won experience of this product development has shown the vital important of technologists understanding the difference between the marketing concepts of features, benefits and advantages. Three categories of conclusions are drawn, the technical, the commercial, and finally, conclusions drawn from generalizations of the project by the Kingston partners based on their own independent experience in sensor development involving industrial and medical collaborations.

  9. Excimer-laser-induced surface treatments on metal and ceramic materials: applications to automotive, aerospace, and microelectronic industries

    NASA Astrophysics Data System (ADS)

    Autric, Michel L.

    1999-09-01

    Surface treatments by laser irradiation can improve materials properties in terms of mechanical and physico- chemical behaviors, these improvements being related to the topography, the hardness, the microstructure, the chemical composition. Up to now, the use of excimer lasers for industrial applications remained marginal in spite of the interest related to the short wavelength (high photon energy and better energetic coupling with materials and reduced thermal effects in the bulk material). Up to now, the main limitations concerned the beam quality, the beam delivery, the gas handling and the relatively high investment cost. At this time, the cost of laser devices is going down and the ultraviolet radiation can be conducted through optical fibers. These two elements give new interest in using excimer laser for industrial applications. The main objective of this research program which we are involved in, is to underline some materials processing applications for automotive, aerospace or microelectronic industries for which it could be more interesting to use excimer lasers (minimized thermal effects). This paper concerns the modifications of the roughness, porosity, hardness, structure, phase, residual stresses, chemical composition of the surface of materials such as metallic alloys (aluminum, steel, cast iron, titanium, and ceramics (oxide, nitride, carbide,...) irradiated by KrF and XeCl excimer lasers.

  10. Applications for fiber optic sensing in the upstream oil and gas industry

    NASA Astrophysics Data System (ADS)

    Baldwin, Chris S.

    2015-05-01

    Fiber optic sensing has been used in an increasing number of applications in the upstream oil and gas industry over the past 20 years. In some cases, fiber optic sensing is providing measurements where traditional measurement technologies could not. This paper will provide a general overview of these applications and describe how the use of fiber optic sensing is enabling these applications. Technologies such as Bragg gratings, distributed temperature and acoustic sensing, interferometric sensing, and Brillouin scattering will be discussed. Applications for optic sensing include a range of possibilities from a single pressure measurement point in the wellbore to multizone pressure and flow monitoring. Some applications make use of fully distributed measurements including thermal profiling of the well. Outside of the wellbore, fiber optic sensors are used in applications for flowline and pipeline monitoring and for riser integrity monitoring. Applications to be described in this paper include in-flow profiling, well integrity, production monitoring, and steam chamber growth. These applications will cover well types such as injectors, producers, hydraulic fracturing, and thermal recovery. Many of these applications use the measurements provided by fiber optic sensing to improve enhanced oil recovery operations. The growing use of fiber optic sensors is providing improved measurement capabilities leading to the generation of actionable data for enhanced production optimization. This not only increases the recovered amount of production fluids but can also enhance wellbore integrity and safety.

  11. A technical analysis for cogeneration systems with potential applications in twelve California industrial plants. [energy saving heat-electricity utility systems

    NASA Technical Reports Server (NTRS)

    Moretti, V. C.; Davis, H. S.; Slonski, M. L.

    1978-01-01

    In a study sponsored by the State of California Energy Resources Conservation and Development Commission, 12 industrial plants in five utility districts were surveyed to assess the potential applications of the cogeneration of heat and electricity in California industry. Thermodynamic calculations were made for each plant in determining the energy required to meet the existing electrical and steam demands. The present systems were then compared to conceptual cogeneration systems specified for each plant. Overall energy savings were determined for the cogeneration applications. Steam and gas turbine topping cycle systems were considered as well as bottoming cycle systems. Types of industries studied were: pulp and paper, timber, cement, petroleum refining, enhanced oil recovery, foods processing, steel and glass

  12. Activated charcoal filters: Water treatment, pollution control, and industrial applications. (Latest citations from the Patent Bibliographic database with exemplary claims. ) Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The bibliography contains citations of selected patents concerning activated charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic materials and contaminants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, waste conversion, automotive fuel and exhaust systems, swimming pool filtration, tobacco smoke filters, kitchen ventilators, medical filtration treatment, and odor absorbing materials. (Contains 250 citations and includes a subject term index and title list.)

  13. Application of poultry processing industry waste: a strategy for vegetation growth in degraded soil.

    PubMed

    do Nascimento, Carla Danielle Vasconcelos; Pontes Filho, Roberto Albuquerque; Artur, Adriana Guirado; Costa, Mirian Cristina Gomes

    2015-02-01

    The disposal of poultry processing industry waste into the environment without proper care, can cause contamination. Agricultural monitored application is an alternative for disposal, considering its high amount of organic matter and its potential as a soil fertilizer. This study aimed to evaluate the potential of poultry processing industry waste to improve the conditions of a degraded soil from a desertification hotspot, contributing to leguminous tree seedlings growth. The study was carried out under greenhouse conditions in a randomized blocks design and a 4 × 2 factorial scheme with five replicates. The treatments featured four amounts of poultry processing industry waste (D1 = control 0 kg ha(-1); D2 = 1020.41 kg ha(-1); D3 = 2040.82 kg ha(-1); D4 = 4081.63 kg ha(-1)) and two leguminous tree species (Mimosa caesalpiniaefolia Benth and Leucaena leucocephala (Lam.) de Wit). The poultry processing industry waste was composed of poultry blood, grease, excrements and substances from the digestive system. Plant height, biomass production, plant nutrient accumulation and soil organic carbon were measured forty days after waste application. Leguminous tree seedlings growth was increased by waste amounts, especially M. caesalpiniaefolia Benth, with height increment of 29.5 cm for the waste amount of 1625 kg ha(-1), and L. leucocephala (Lam.) de Wit, with maximum height increment of 20 cm for the waste amount of 3814.3 kg ha(-1). M. caesalpiniaefolia Benth had greater initial growth, as well as greater biomass and nutrient accumulation compared with L. leucocephala (Lam.) de Wit. However, belowground biomass was similar between the evaluated species, resulting in higher root/shoot ratio for L. leucocephala (Lam.) de Wit. Soil organic carbon did not show significant response to waste amounts, but it did to leguminous tree seedlings growth, especially L. leucocephala (Lam.) de Wit. Poultry processing industry waste contributes to leguminous tree seedlings growth

  14. Industry 4.0 Concept Introduction into Construction SMEs

    NASA Astrophysics Data System (ADS)

    Nowotarski, Piotr; Paslawski, Jerzy

    2017-10-01

    The article presents a general idea of Industry 4.0 concept with the introduction presenting descriptions of the most important aspects in terms of production and construction industry development. The importance of the SME sector is stressed showing that this group of companies plays significant role in the European economy. The main objective of the article is to define and show possible research areas connected with the introduction of Industry 4.0 concept into SMEs with the main focus on the construction sector. For this purpose, an analysis was made, based on the most recent literature, to point out actual needs in the SMEs sector in terms of its evolution into 4.0 level. What is more, the analysis was performed based on the most popular articles published in journals available in Thomson Reuters Web of Science Core Collection database regarding Industry 4.0 concept in the last decade showing the actual change of interest in this filed, taking into account possibility of usage of this concept in the construction and production sector. Authors tried to describe current knowledge regarding Industry 4.0 introduction for SMEs. Performed analysis showed that there is a wide spectrum of disciplines that are affected by the Industry 4.0 that needs to be examined considering introduction into SMEs. Study also showed that multidiscipline approach was not investigated so far to create special rules, procedures and methods and know-how designed for introduction of main principles of Industry 4.0 in the SME sector. Authors came to the conclusions that there should be more stress put into research in this field especially taking into account the huge potential which lies in SME sector in terms of global economic strength.

  15. Rheological investigation of body cream and body lotion in actual application conditions

    NASA Astrophysics Data System (ADS)

    Kwak, Min-Sun; Ahn, Hye-Jin; Song, Ki-Won

    2015-08-01

    The objective of the present study is to systematically evaluate and compare the rheological behaviors of body cream and body lotion in actual usage situations. Using a strain-controlled rheometer, the steady shear flow properties of commercially available body cream and body lotion were measured over a wide range of shear rates, and the linear viscoelastic properties of these two materials in small amplitude oscillatory shear flow fields were measured over a broad range of angular frequencies. The temperature dependency of the linear viscoelastic behaviors was additionally investigated over a temperature range most relevant to usual human life. The main findings obtained from this study are summarized as follows: (1) Body cream and body lotion exhibit a finite magnitude of yield stress. This feature is directly related to the primary (initial) skin feel that consumers usually experience during actual usage. (2) Body cream and body lotion exhibit a pronounced shear-thinning behavior. This feature is closely connected with the spreadability when cosmetics are applied onto the human skin. (3) The linear viscoelastic behaviors of body cream and body lotion are dominated by an elastic nature. These solid-like properties become a criterion to assess the selfstorage stability of cosmetic products. (4) A modified form of the Cox-Merz rule provides a good ability to predict the relationship between steady shear flow and dynamic viscoelastic properties for body cream and body lotion. (5) The storage modulus and loss modulus of body cream show a qualitatively similar tendency to gradually decrease with an increase in temperature. In the case of body lotion, with an increase in temperature, the storage modulus is progressively decreased while the loss modulus is slightly increased and then decreased. This information gives us a criterion to judge how the characteristics of cosmetic products are changed by the usual human environments.

  16. Novel application of red-light runner proneness theory within traffic microsimulation to an actual signal junction.

    PubMed

    Bell, Margaret Carol; Galatioto, Fabio; Giuffrè, Tullio; Tesoriere, Giovanni

    2012-05-01

    Building on previous research a conceptual framework, based on potential conflicts analysis, has provided a quantitative evaluation of 'proneness' to red-light running behaviour at urban signalised intersections of different geometric, flow and driver characteristics. The results provided evidence that commonly used violation rates could cause inappropriate evaluation of the extent of the red-light running phenomenon. Initially, an in-depth investigation of the functional form of the mathematical relationship between the potential and actual red-light runners was carried out. The application of the conceptual framework was tested on a signalised intersection in order to quantify the proneness to red-light running. For the particular junction studied proneness for daytime was found to be 0.17 north and 0.16 south for opposing main road approaches and 0.42 east and 0.59 west for the secondary approaches. Further investigations were carried out using a traffic microsimulation model, to explore those geometric features and traffic volumes (arrival patterns at the stop-line) that significantly affect red-light running. In this way the prediction capability of the proposed potential conflict model was improved. A degree of consistency in the measured and simulated red-light running was observed and the conceptual framework was tested through a sensitivity analysis applied to different stop-line positions and traffic volume variations. The microsimulation, although at its early stages of development, has shown promise in its ability to model unintentional red light running behaviour and following further work through application to other junctions, potentially provides a tool for evaluation of alternative junction designs on proneness. In brief, this paper proposes and applies a novel approach to model red-light running using a microsimulation and demonstrates consistency with the observed and theoretical results. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Application of industrial scale genomics to discovery of therapeutic targets in heart failure.

    PubMed

    Mehraban, F; Tomlinson, J E

    2001-12-01

    In recent years intense activity in both academic and industrial sectors has provided a wealth of information on the human genome with an associated impressive increase in the number of novel gene sequences deposited in sequence data repositories and patent applications. This genomic industrial revolution has transformed the way in which drug target discovery is now approached. In this article we discuss how various differential gene expression (DGE) technologies are being utilized for cardiovascular disease (CVD) drug target discovery. Other approaches such as sequencing cDNA from cardiovascular derived tissues and cells coupled with bioinformatic sequence analysis are used with the aim of identifying novel gene sequences that may be exploited towards target discovery. Additional leverage from gene sequence information is obtained through identification of polymorphisms that may confer disease susceptibility and/or affect drug responsiveness. Pharmacogenomic studies are described wherein gene expression-based techniques are used to evaluate drug response and/or efficacy. Industrial-scale genomics supports and addresses not only novel target gene discovery but also the burgeoning issues in pharmaceutical and clinical cardiovascular medicine relative to polymorphic gene responses.

  18. Expert systems in the process industries

    NASA Technical Reports Server (NTRS)

    Stanley, G. M.

    1992-01-01

    This paper gives an overview of industrial applications of real-time knowledge based expert systems (KBES's) in the process industries. After a brief overview of the features of a KBES useful in process applications, the general roles of KBES's are covered. A particular focus is diagnostic applications, one of the major applications areas. Many applications are seen as an expansion of supervisory control. The lessons learned from numerous online applications are summarized.

  19. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2000-01-01

    The state of the global industrial garnet industry in 1999 is discussed. Industrial garnet mined in the U.S., which accounts for approximately one-third of the world's total, is usually a solid-solution of almandine and pyrope. The U.S. is the largest consumer of industrial garnet, using an estimated 47,800 st in 1999 as an abrasive and as a filtration medium in the petroleum industry, filtration plants, aircraft and motor vehicle manufacture, shipbuilding, wood furniture finishing operations, electronic component manufacture, ceramics manufacture, and glass production. Prices for crude concentrates ranged from approximately $50 to $110/st and refined garnet from $50 to $215/st in 1999, depending on type, source, quantity purchased, quality, and application.

  20. Industrial robots: Handbook

    NASA Astrophysics Data System (ADS)

    Kozyrev, Iu. G.

    Topics covered include terms, definitions, and classification; operator-directed manipulators; autooperators as used in automated pressure casting; construction and application of industrial robots; and the operating bases of automated systems. Attention is given to adaptive and interactive robots; gripping mechanisms; applications to foundary production, press-forging plants, heat treatment, welding, and assembly operations. A review of design recommendations includes a determination of fundamental structural and technological indicators for industrial robots and a consideration of drive mechanisms.

  1. Assessment of industrial applications for fuel cell cogeneration systems

    NASA Technical Reports Server (NTRS)

    Stickles, R. P.; Oneill, J. K.; Smith, E. H.

    1978-01-01

    The fuel cell energy systems are designed with and without a utility connection for emergency back-up power. Sale of electricity to the utility during periods of low plant demand is not considered. For each of the three industrial applications, conceptual designs were also developed for conventional utility systems relying on purchased electric power and fossil-fired boilers for steam/hot water. The capital investment for each energy system is estimated. Annual operating costs are also determined for each system. These cost estimates are converted to levelized annual costs by applying appropriate economic factors. The breakeven electricity price that would make fuel cell systems competitive with the conventional systems is plotted as a function of naphtha price. The sensitivity of the breakeven point to capital investment and coal price is also evaluated.

  2. 76 FR 60504 - Guidance for Industry on Time and Extent Applications for Nonprescription Drug Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... process includes submitting a time and extent application (TEA) to determine whether a condition is..., submitting safety and effectiveness data. This guidance is designed to clarify the TEA process and what happens after a TEA is submitted. This guidance finalizes the draft guidance for industry entitled ``Time...

  3. Single-species microbial biofilm screening for industrial applications.

    PubMed

    Li, Xuan Zhong; Hauer, Bernhard; Rosche, Bettina

    2007-10-01

    While natural microbial biofilms often consist of multiple species, single-species biofilms are of great interest to biotechnology. The current study evaluates biofilm formation for common industrial and laboratory microorganisms. A total of 68 species of biosafety level one bacteria and yeasts from over 40 different genera and five phyla were screened by growing them in microtiter plates and estimating attached biomass by crystal violet staining. Most organisms showed biofilm formation on surfaces of polystyrene within 24 h. By changing a few simple conditions such as substratum characteristics, inoculum and nutrient availability, 66 strains (97%) demonstrated biofilm formation under at least one of the experimental conditions and over half of these strains were classified as strong biofilm formers, potentially suitable as catalysts in biofilm applications. Many non-motile bacteria were also strong biofilm formers. Biofilm morphologies were visualized for selected strains. A model organism, Zymomonas mobilis, easily established itself as a biofilm on various reactor packing materials, including stainless steel.

  4. Perfect metamaterial absorber-based energy harvesting and sensor applications in the industrial, scientific, and medical band

    NASA Astrophysics Data System (ADS)

    Bakir, Mehmet; Karaaslan, Muharrem; Dincer, Furkan; Delihacioglu, Kemal; Sabah, Cumali

    2015-09-01

    An electromagnetic (EM) energy harvesting application based on metamaterials is introduced. This application is operating at the the industrial, scientific, and medical band (2.40 GHz), which is especially chosen because of its wide usage area. A square ring resonator (SRR) which has two gaps and two resistors across the gaps on it is used. Chip resistors are used to deliver the power to any active component that requires power. Transmission and reflection characteristics of the metamaterial absorber for energy harvesting application are theoretically investigated and 83.6% efficient energy harvesting application is realized. To prove that this study can be used for different sensor applications other than harvesting, a temperature sensor configuration is developed that can be applied to other sensing applications.

  5. Microbial transglutaminase and its application in the food industry. A review.

    PubMed

    Kieliszek, Marek; Misiewicz, Anna

    2014-05-01

    The extremely high costs of manufacturing transglutaminase from animal origin (EC 2.3.2.13) have prompted scientists to search for new sources of this enzyme. Interdisciplinary efforts have been aimed at producing enzymes synthesised by microorganisms which may have a wider scope of use. Transglutaminase is an enzyme that catalyses the formation of isopeptide bonds between proteins. Its cross-linking property is widely used in various processes: to manufacture cheese and other dairy products, in meat processing, to produce edible films and to manufacture bakery products. Transglutaminase has considerable potential to improve the firmness, viscosity, elasticity and water-binding capacity of food products. In 1989, microbial transglutaminase was isolated from Streptoverticillium sp. Its characterisation indicated that this isoform could be extremely useful as a biotechnological tool in the food industry. Currently, enzymatic preparations are used in almost all industrial branches because of their wide variety and low costs associated with their biotechnical production processes. This paper presents an overview of the literature addressing the characteristics and applications of transglutaminase.

  6. A Literature Review on the Progression of Agile Manufacturing Paradigm and Its Scope of Application in Pump Industry

    PubMed Central

    Devadasan, S. R.; Sivaram, N. M.

    2015-01-01

    During the recent years, the manufacturing world has been witnessing the application of agile manufacturing paradigm. The literature review reported in this paper was carried out to study this progression. This literature review was carried out in two phases. In the first phase, the literature was reviewed to trace the origin of agile manufacturing paradigm and identify its enablers. Further, during this phase, the applications of agile manufacturing reported in literature arena were reviewed. It was also discernable that certain research works have been initiated to apply agile manufacturing paradigm in pump industry. During the second phase, the researches reported on applying agile manufacturing in pump industry were reviewed. At the end of this review, it was found that so far the implementation of agile manufacturing in pump industry has been examined by the researchers by considering only certain components of pumps. In fact, the holistic implementation of agile manufacturing in the pump industry is yet to be examined by the researchers. In the context of drawing this inference, this paper has been concluded by stating that high scope exists in examining the infusing of agility characteristics in designing and manufacturing of pumps. PMID:26065016

  7. A Literature Review on the Progression of Agile Manufacturing Paradigm and Its Scope of Application in Pump Industry.

    PubMed

    Thilak, V M M; Devadasan, S R; Sivaram, N M

    2015-01-01

    During the recent years, the manufacturing world has been witnessing the application of agile manufacturing paradigm. The literature review reported in this paper was carried out to study this progression. This literature review was carried out in two phases. In the first phase, the literature was reviewed to trace the origin of agile manufacturing paradigm and identify its enablers. Further, during this phase, the applications of agile manufacturing reported in literature arena were reviewed. It was also discernable that certain research works have been initiated to apply agile manufacturing paradigm in pump industry. During the second phase, the researches reported on applying agile manufacturing in pump industry were reviewed. At the end of this review, it was found that so far the implementation of agile manufacturing in pump industry has been examined by the researchers by considering only certain components of pumps. In fact, the holistic implementation of agile manufacturing in the pump industry is yet to be examined by the researchers. In the context of drawing this inference, this paper has been concluded by stating that high scope exists in examining the infusing of agility characteristics in designing and manufacturing of pumps.

  8. Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.

    Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

  9. Physics and Industrial Development - Proceedings of the 2nd International Conference on Physics and Industrial Development

    NASA Astrophysics Data System (ADS)

    Gazzinelli, R.; Moreira, R. L.; Rodrigues, W. N.

    1997-04-01

    The Table of Contents for the full book PDF is as follows: * Preface * Sponsors * Committees * Opening Lecture * Relations between Science and Industry in Brazil * Technological Change and Economic Development * Science and Economic Development * Recent Technological Change and Industrial Dynamics * Technology and Economic Development: Suitability of the Institutional System of Minais Gerais * Bridging the Gap * Transfer of Scientific Results into Industry: A Controversial Problem in Central and Eastern Europe * Bridging the Gap Between Basic Research and Industrial Development at the J. STEFAN Institute * Liquid Crystals: A Case Study of the Interaction Between Science and Application * Role of Physics in the Modern Industrialization Process of Korea * Research in Industry * A Theoretical Physicist's 21-Year Experience in the Argentine Industry * Four Characters in Search of a Profession * Status and Prospects for the Use of Renewable Sources of Energy in Minas Gerais State-Brazil * University-Industry Cooperation I * Development and Industrialization of Fiber Optics Metrology Equipment * Finnish Experiences on University-Industry Collaboration in Materials Science and Physical Metallurgy * A Conceptual Framework for Understanding the Interaction between Academic Research and Industry * Technological Modernization of the Alkaline Cooking Process for the Production of Masa and Tortilla * The Fapergs Program on University Versus Private Enterprise * Integral Development Centers: Tying Mexican Industry With the National Polytechnic Institute * Materials Characterization and Applied Physics * Imaging Manganese Sulfide Inclusions in Grain Oriented Silicon Steels * Electrical Resistivity Changes Associated to Static Strain Aging in High Carbon Steel * PVD Hard Coatings for Wear Applications * Scanning Acoustic Microscopy: Application to Porous Materials * Indentation Testing of Thennal Sprayed WC-Co * Applications of Capillary Electrophoresis with Laserinduced

  10. Directed evolution: tailoring biocatalysts for industrial applications.

    PubMed

    Kumar, Ashwani; Singh, Suren

    2013-12-01

    Current challenges and promises of white biotechnology encourage protein engineers to use a directed evolution approach to generate novel and useful biocatalysts for various sets of applications. Different methods of enzyme engineering have been used in the past in an attempt to produce enzymes with improved functions and properties. Recent advancement in the field of random mutagenesis, screening, selection and computational design increased the versatility and the rapid development of enzymes under strong selection pressure with directed evolution experiments. Techniques of directed evolution improve enzymes fitness without understanding them in great detail and clearly demonstrate its future role in adapting enzymes for use in industry. Despite significant advances to date regarding biocatalyst improvement, there still remains a need to improve mutagenesis strategies and development of easy screening and selection tools without significant human intervention. This review covers fundamental and major development of directed evolution techniques, and highlights the advances in mutagenesis, screening and selection methods with examples of enzymes developed by using these approaches. Several commonly used methods for creating molecular diversity with their advantages and disadvantages including some recently used strategies are also discussed.

  11. Investigation of thermolytic hydrogen generation rate of tank farm simulated and actual waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C.; Newell, D.; Woodham, W.

    To support resolution of Potential Inadequacies in the Safety Analysis for the Savannah River Site (SRS) Tank Farm, Savannah River National Laboratory conducted research to determine the thermolytic hydrogen generation rate (HGR) with simulated and actual waste. Gas chromatography methods were developed and used with air-purged flow systems to quantify hydrogen generation from heated simulated and actual waste at rates applicable to the Tank Farm Documented Safety Analysis (DSA). Initial simulant tests with a simple salt solution plus sodium glycolate demonstrated the behavior of the test apparatus by replicating known HGR kinetics. Additional simulant tests with the simple salt solutionmore » excluding organics apart from contaminants provided measurement of the detection and quantification limits for the apparatus with respect to hydrogen generation. Testing included a measurement of HGR on actual SRS tank waste from Tank 38. A final series of measurements examined HGR for a simulant with the most common SRS Tank Farm organics at temperatures up to 140 °C. The following conclusions result from this testing.« less

  12. Accelerating the introduction of HTS products for a broad range of electric power and industrial applications

    NASA Astrophysics Data System (ADS)

    Eaton, Russell

    2002-01-01

    The Department of Energy (DOE), as part of its Superconductivity Program for Electric Systems, is successfully pursuing the development of electric power and industrial devices, incorporating significant high-temperature superconducting (HTS) components or subsystems, through its innovative Superconducting Partnership Initiative (SPI). The objective of the SPI is to accelerate the commercial introduction of the HTS products for a broad range of electric power and industrial applications. DOE's approach to accomplishing the SPI objective is to support cost shared projects carried out by industry led teams. DOE will fund projects to develop HTS devices that are either in (1) the research and development stage (Phase 1), (2) the pre-commercialization stage (Phase II), or (3) the commercial entry stage (Phase III). DOE's industry partners must contribute at least half a project's costs. These teams will include capabilities needed to develop the device as well as to develop the business plan for the commercial product introduction. DOE's partners consist of vertically integrated teams consisting of equipment manufacturers, HTS wire and coil suppliers, national laboratories, and end users, primarily utilities. These partners carry out the multi-year technology development efforts, consisting generally of design, construction, and testing of the HTS system. Finally, commercialization of HTS products will be discussed primarily in terms of benefits these products will have over competing products based upon conventional conductors and the critical need for affordable, practical HTS materials and conductors for these applications. .

  13. Recent Advances in Doping of Molybdenum Disulfide: Industrial Applications and Future Prospects.

    PubMed

    Pham, Viet Phuong; Yeom, Geun Young

    2016-11-01

    Owing to their excellent physical properties, atomically thin layers of molybdenum disulfide (MoS 2 ) have recently attracted much attention due to their nonzero-gap property, exceptionally high electrical conductivity, good thermal stability, and excellent mechanical strength, etc. MoS 2 -based devices exhibit great potential for applications in optoelectronics and energy harvesting. Here, a comprehensive review of various doping strategies is presented, including wet doping and dry doping of atomically crystalline MoS 2 thin layers, and the progress made so far for their doping-based prospective applications is also discussed. Finally, several significant research issues for the prospects of doped-MoS 2 in industry, as a guide for 2D material community, are also provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chief Information Officers in Service and Industrial Organizations.

    ERIC Educational Resources Information Center

    Brumm, Eugenia K.

    1990-01-01

    Describes a survey that examined the role of chief information officers (CIOs) in service and industry organizations. The findings discussed include prevalence of CIOs and their level in the organization, scope of authority, control of resources, involvement in corporate strategy, and personal backgrounds. Conclusions about the actual and intended…

  15. Photonic crystal fibre for industrial laser delivery

    NASA Astrophysics Data System (ADS)

    O'Driscoll, E. J.; McDonald, J.; Morgan, S.; Simpson, G.; Sidhu, J.; Baggett, J. C.; Hayes, J. R.; Petrovich, M. N.; Finazzi, V.; Polletti, F.; Richardson, D. J.; Horley, R.; Harker, A.; Grunewald, P.; Allott, R.; Judd, E.

    2006-12-01

    Fiber delivery of intense laser radiation is important for a broad range of application sectors, from medicine through to industrial laser processing of materials, and offers many practical system benefits relative to free space solutions. In recent years, photonic crystal fiber technology has revolutionized the dynamic field of optical fibers, bringing with them a wide range of novel optical properties that make them ideally suited to power delivery with unparalleled control over the beam properties. The DTI funded project: Photonic Fibers for Industrial beam DELivery (PFIDEL), aims to develop novel fiber geometries for use as a delivery system for high power industrial lasers and to assess their potential in a range of "real" industrial applications. In this paper we review, from an industrial laser user perspective, the advantages of each of the fibers studied under PFIDEL. We present results of application demonstrations and discuss how these fibers can positively impact the field of industrial laser systems and processes, in particular for direct write and micromachining applications.

  16. 77 FR 34031 - Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Application Take notice that on May 21, 2012, Petal Gas Storage, L.L.C. (Petal) and Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg... pursuant to sections 7(c) and 7(b) of the Natural Gas Act (NGA), for authorization for Petal to acquire the...

  17. Silicon Based Schottky Barrier Infrared Sensors For Power System And Industrial Applications

    NASA Astrophysics Data System (ADS)

    Elabd, Hammam; Kosonocky, Walter F.

    1984-03-01

    Schottky barrier infrared charge coupled device sensors (IR-CCDs) have been developed. PtSi Schottky barrier detectors require cooling to liquid Nitrogen temperature and cover the wavelength range between 1 and 6 μm. The PtSi IR-CCDs can be used in industrial thermography with NEAT below 0.1°C. Pd Si-Schottkybarrier detectors require cooling to 145K and cover the spectral range between 1 and 3.5 μm. 11d2Si-IR-CCDs can be used in imaging high temperature scenes with NE▵T around 100°C. Several high density staring area and line imagers are available. Both interlaced and noninterlaced area imagers can be operated with variable and TV compatible frame rates as well as various field of view angles. The advantages of silicon fabrication technology in terms of cost and high density structures opens the doors for the design of special purpose thermal camera systems for a number of power aystem and industrial applications.

  18. Hypochondria as an actual neurosis.

    PubMed

    Nissen, Bernd

    2017-09-27

    Freud defined hypochondria as an actual neurosis. In this paper the actual neurosis will be interpreted as unbound traumatic elements which threaten the self. In severe hypochondria, breakdowns have occurred, as outlined by Winnicott. The nameless traumatic elements of the breakdown have been encapsulated. The moment these encapsulated elements are liberated, an actual dynamic takes place which threatens the self with annihilation. Projective identification is not possible because no idea of containment exists. The self tries to evacuate these elements projectively, thus triggering a disintegrative regression. However, the object of this projection, which becomes a malign introject, is felt to remove the remaining psychical elements, forcing the worthless residue back into the self. In a final re-introjection, the self is threatened by unintegration. To save the self, these elements are displaced into an organ which becomes hypochondriacal, an autistoid object, protecting itself against unintegration and decomposition. An autistoid dynamic develops between the hypochondriac organ, the ego and the introject. Two short clinical vignettes illustrate the regressive dynamical and metapsychological considerations. Copyright © 2017 Institute of Psychoanalysis.

  19. The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage.

    PubMed

    Zhang, Qiang; Huang, Jia-Qi; Qian, Wei-Zhong; Zhang, Ying-Ying; Wei, Fei

    2013-04-22

    The innovation on the low dimensional nanomaterials brings the rapid growth of nano community. Developing the controllable production and commercial applications of nanomaterials for sustainable society is highly concerned. Herein, carbon nanotubes (CNTs) with sp(2) carbon bonding, excellent mechanical, electrical, thermal, as well as transport properties are selected as model nanomaterials to demonstrate the road of nanomaterials towards industry. The engineering principles of the mass production and recent progress in the area of CNT purification and dispersion are described, as well as its bulk application for nanocomposites and energy storage. The environmental, health, and safety considerations of CNTs, and recent progress in CNT commercialization are also included. With the effort from the CNT industry during the past 10 years, the price of multi-walled CNTs have decreased from 45 000 to 100 $ kg(-1) and the productivity increased to several hundred tons per year for commercial applications in Li ion battery and nanocomposites. When the prices of CNTs decrease to 10 $ kg(-1) , their applications as composites and conductive fillers at a million ton scale can be anticipated, replacing conventional carbon black fillers. Compared with traditional bulk chemicals, the controllable synthesis and applications of CNTs on a million ton scale are still far from being achieved due to the challenges in production, purification, dispersion, and commercial application. The basic knowledge of growth mechanisms, efficient and controllable routes for CNT production, the environmental and safety issues, and the commercialization models are still inadequate. The gap between the basic scientific research and industrial development should be bridged by multidisciplinary research for the rapid growth of CNT nano-industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    NASA Astrophysics Data System (ADS)

    Vaz, Pedro

    2015-11-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed.

  1. 77 FR 58999 - Draft Guidance for Industry on Abbreviated New Drug Applications: Stability Testing of Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-D-0938] Draft Guidance for Industry on Abbreviated New Drug Applications: Stability Testing of Drug Substances... their complexity, the FDA is considering standardizing stability testing policies by adopting...

  2. 78 FR 36194 - Draft Guidance for Industry and FDA Staff: Investigational New Drug Applications for Minimally...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2009-D-0490] Draft Guidance for Industry and FDA Staff: Investigational New Drug Applications for Minimally... Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the...

  3. Application of the removal of pollutants from textile industry wastewater in constructed wetlands using fuzzy logic.

    PubMed

    Dogdu, Gamze; Yalcuk, Arda; Postalcioglu, Seda

    2017-02-01

    There are more than a hundred textile industries in Turkey that discharge large quantities of dye-rich wastewater, resulting in water pollution. Such effluents must be treated to meet discharge limits imposed by the Water Framework Directive in Turkey. Industrial treatment facilities must be required to monitor operations, keep them cost-effective, prevent operational faults, discharge-limit infringements, and water pollution. This paper proposes the treatment of actual textile wastewater by vertical flow constructed wetland (VFCW) systems operation and monitoring effluent wastewater quality using fuzzy logic with a graphical user interface. The treatment performance of VFCW is investigated in terms of chemical oxygen demand and ammonium nitrogen (NH4-N) content, color, and pH parameters during a 75-day period of operation. A computer program was developed with a fuzzy logic system (a decision- making tool) to graphically present (via a status analysis chart) the quality of treated textile effluent in relation to the Turkish Water Pollution Control Regulation. Fuzzy logic is used in the evaluation of data obtained from the VFCW systems and for notification of critical states exceeding the discharge limits. This creates a warning chart that reports any errors encountered in a reactor during the collection of any sample to the concerned party.

  4. Whiteheadian Actual Entitities and String Theory

    NASA Astrophysics Data System (ADS)

    Bracken, Joseph A.

    2012-06-01

    In the philosophy of Alfred North Whitehead, the ultimate units of reality are actual entities, momentary self-constituting subjects of experience which are too small to be sensibly perceived. Their combination into "societies" with a "common element of form" produces the organisms and inanimate things of ordinary sense experience. According to the proponents of string theory, tiny vibrating strings are the ultimate constituents of physical reality which in harmonious combination yield perceptible entities at the macroscopic level of physical reality. Given that the number of Whiteheadian actual entities and of individual strings within string theory are beyond reckoning at any given moment, could they be two ways to describe the same non-verifiable foundational reality? For example, if one could establish that the "superject" or objective pattern of self- constitution of an actual entity vibrates at a specific frequency, its affinity with the individual strings of string theory would be striking. Likewise, if one were to claim that the size and complexity of Whiteheadian 'societies" require different space-time parameters for the dynamic interrelationship of constituent actual entities, would that at least partially account for the assumption of 10 or even 26 instead of just 3 dimensions within string theory? The overall conclusion of this article is that, if a suitably revised understanding of Whiteheadian metaphysics were seen as compatible with the philosophical implications of string theory, their combination into a single world view would strengthen the plausibility of both schemes taken separately. Key words: actual entities, subject/superjects, vibrating strings, structured fields of activity, multi-dimensional physical reality.

  5. Thermophotovoltaic potential applications for civilian and industrial use in Japan

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiromi; Yamaguchi, Masafumi

    1999-03-01

    Investigative research on potential market for TPV power sources in Japan has been focused on how TPV can contribute to energy conservation and environmental protection and harmony. The application needs for TPV were surveyed in comparison with conventional engine or turbine generators and developing power generation technologies such as fuel cells or chemical batteries, etc. The investigation on the performance of commercial generators shows that regarding system efficiency, TPV can compete with conventional generators in the output power class of tens of kW. According to the sales for small scale generators in Japan, most of the generators below 10 kW class are utilized mainly for construction, communication, leisure, and that 10-100 kW class generators are for cogeneration in small buildings. Waste heat recovery in dispersed furnaces is another potential application of compact TPV cells. Exhaust heat from small scale incinerators and industrial furnaces is undesirable to be recorded into electricity due to excessive heat loss of the smaller steam turbine generators. Solar powered TPV is also of our concern as a natural energy use. From the viewpoint of applicability for TPV, portable generators cogeneration systems, and solar power plants were selected for our system consideration. Intermediate report on the feasibility study concerning such TPV systems is given as well as the review of the current status of competing power generation technologies in Japan.

  6. Reliability techniques in the petroleum industry

    NASA Technical Reports Server (NTRS)

    Williams, H. L.

    1971-01-01

    Quantitative reliability evaluation methods used in the Apollo Spacecraft Program are translated into petroleum industry requirements with emphasis on offsetting reliability demonstration costs and limited production runs. Described are the qualitative disciplines applicable, the definitions and criteria that accompany the disciplines, and the generic application of these disciplines to the chemical industry. The disciplines are then translated into proposed definitions and criteria for the industry, into a base-line reliability plan that includes these disciplines, and into application notes to aid in adapting the base-line plan to a specific operation.

  7. Red mud application in construction industry: review of benefits and possibilities

    NASA Astrophysics Data System (ADS)

    Lima, M. S. S.; Thives, L. P.; Haritonovs, V.; Bajars, K.

    2017-10-01

    Red mud is a waste originated in the processing of bauxite into aluminium, which properties of high alkalinity make it cumulatively stored, occupying increasing deforested areas. Annually, it is estimated that approximately 117 million tons of red mud are generated in the world, with no prospect of use, what represents an imminent risk of pollution prone to contamination. Nevertheless, environmental liabilities caused by red mud affect not only the environment, but also the companies responsible for the waste, which will be subject to highest fee payments. Although there are studies that prove the feasibility of using this solid waste in the constitution of ceramic materials, there are no large-scale applications. This study seeks to evaluate the possibilities of red mud application in construction industry, focusing into two main areas: cement production/ceramic material and road construction. Backgrounds from other researchers were taken into consideration and analysed according environmental, economic and technical feasibilities.

  8. Development of Advanced Seals for Industrial Turbine Applications

    NASA Astrophysics Data System (ADS)

    Chupp, Raymond E.; Aksit, Mahmut F.; Ghasripoor, Farshad; Turnquist, Norman A.; Dinc, Saim; Mortzheim, Jason; Demiroglu, Mehmet

    2002-10-01

    A critical area being addressed to improve industrial turbine performance is reducing the parasitic leakage flows through the various static and dynamic seals. Implementation of advanced seals into General Electric (GE) industrial turbines has progressed well over the last few years with significant operating performance gains achieved. Advanced static seals have been placed in gas turbine hot gas-path junctions and steam turbine packing ring segment end gaps. Brush seals have significantly decreased labyrinth seal leakages in gas turbine compressors and turbine interstages, steam turbine interstage and end packings, industrial compressor shaft seals, and generator seals. Abradable seals are being developed for blade-tip locations in various turbine locations. This presentation summarizes the status of advanced seal development for industrial turbines at GE.

  9. Microbial Biotreatment of Actual Textile Wastewater in a Continuous Sequential Rice Husk Biofilter and the Microbial Community Involved

    PubMed Central

    Lindh, Markus V.; Pinhassi, Jarone; Welander, Ulrika

    2017-01-01

    Textile dying processes often pollute wastewater with recalcitrant azo and anthraquinone dyes. Yet, there is little development of effective and affordable degradation systems for textile wastewater applicable in countries where water technologies remain poor. We determined biodegradation of actual textile wastewater in biofilters containing rice husks by spectrophotometry and liquid chromatography mass spectrometry. The indigenous microflora from the rice husks consistently performed >90% decolorization at a hydraulic retention time of 67 h. Analysis of microbial community composition of bacterial 16S rRNA genes and fungal internal transcribed spacer (ITS) gene fragments in the biofilters revealed a bacterial consortium known to carry azoreductase genes, such as Dysgonomonas, and Pseudomonas and the presence of fungal phylotypes such as Gibberella and Fusarium. Our findings emphasize that rice husk biofilters support a microbial community of both bacteria and fungi with key features for biodegradation of actual textile wastewater. These results suggest that microbial processes can substantially contribute to efficient and reliable degradation of actual textile wastewater. Thus, development of biodegradation systems holds promise for application of affordable wastewater treatment in polluted environments. PMID:28114377

  10. [Application of Fourier transform attenuated total reflection infrared spectroscopy in analysis of pulp and paper industry].

    PubMed

    Zhang, Yong; Cao, Chun-yu; Feng, Wen-ying; Xu, Ming; Su, Zhen-hua; Liu, Xiao-meng; Lü, Wei-jun

    2011-03-01

    As one of the most powerful tools to investigate the compositions of raw materials and the property of pulp and paper, infrared spectroscopy has played an important role in pulp and paper industry. However, the traditional transmission infrared spectroscopy has not met the requirements of the producing processes because of its disadvantages of time consuming and sample destruction. New technique would be needed to be found. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) is an advanced spectroscopic tool for nondestructive evaluation and could rapidly, accurately estimate the production properties of each process in pulp and paper industry. The present review describes the application of ATR-FTIR in analysis of pulp and paper industry. The analysis processes will include: pulping, papermaking, environmental protecting, special processing and paper identifying.

  11. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. Thismore » report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.« less

  12. CFD analysis of a full-scale ceramic kiln module under actual operating conditions

    NASA Astrophysics Data System (ADS)

    Milani, Massimo; Montorsi, Luca; Stefani, Matteo; Venturelli, Matteo

    2017-11-01

    The paper focuses on the CFD analysis of a full-scale module of an industrial ceramic kiln under actual operating conditions. The multi-dimensional analysis includes the real geometry of a ceramic kiln module employed in the preheating and firing sections and investigates the heat transfer between the tiles and the burners' flame as well as the many components that comprise the module. Particular attention is devoted to the simulation of the convective flow field in the upper and lower chambers and to the effects of radiation on the different materials is addressed. The assessment of the radiation contribution to the tiles temperature is paramount to the improvement of the performance of the kiln in terms of energy efficiency and fuel consumption. The CFD analysis is combined to a lumped and distributed parameter model of the entire kiln in order to simulate the module behaviour at the boundaries under actual operating conditions. Finally, the CFD simulation is employed to address the effects of the module operating conditions on the tiles' temperature distribution in order to improve the temperature uniformity as well as to enhance the energy efficiency of the system and thus to reduce the fuel consumption.

  13. Marine microbial L-asparaginase: Biochemistry, molecular approaches and applications in tumor therapy and in food industry.

    PubMed

    Izadpanah Qeshmi, Fatemeh; Homaei, Ahmad; Fernandes, Pedro; Javadpour, Sedigheh

    2018-03-01

    The marine environment is a rich source of biological and chemical diversity. It covers more than 70% of the Earth's surface and features a wide diversity of habitats, often displaying extreme conditions, where marine organisms thrive, offering a vast pool for microorganisms and enzymes. Given the dissimilarity between marine and terrestrial habitats, enzymes and microorganisms, either novel or with different and appealing features as compared to terrestrial counterparts, may be identified and isolated. L-asparaginase (E.C. 3.5.1.1), is among the relevant enzymes that can be obtained from marine sources. This amidohydrolase acts on L-asparagine and produce L-aspartate and ammonia, accordingly it has an acknowledged chemotherapeutic application, namely in acute lymphoblastic leukemia. Moreover, L-asparaginase is also of interest in the food industry as it prevents acrylamide formation. Terrestrial organisms have been largely tapped for L-asparaginases, but most failed to comply with criteria for practical applications, whereas marine sources have only been marginally screened. This work provides an overview on the relevant features of this enzyme and the framework for its application, with a clear emphasis on the use of L-asparaginase from marine sources. The review envisages to highlight the unique properties of marine L-asparaginases that could make them good candidates for medical applications and industries, especially in food safety. Copyright © 2018 Elsevier GmbH. All rights reserved.

  14. Process heat in California: Applications and potential for solar energy in the industrial, agricultural and commercial sectors

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Bartera, R. E.; Davis, E. S.; Hlavka, G. E.; Pivirotto, D. S.; Yanow, G.

    1978-01-01

    A summary of the results of a survey of potential applications of solar energy for supplying process heat requirements in the industrial, agricultural, and commercial sectors of California is presented. Technical, economic, and institutional characteristics of the three sectors are examined. Specific applications for solar energy are then discussed. Finally, implications for California energy policy are discussed along with recommendations for possible actions by the State of California.

  15. Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: • Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. • Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale testsmore » at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF). • Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. • Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. • Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. • Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project completion date was April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior

  16. Characterising freeze in the UK: applications for the insurance industry

    NASA Astrophysics Data System (ADS)

    Raven, E. K.; Keef, C.; Busby, K.

    2012-04-01

    The UK winters of 2009-2010 and 2010-2011 were characterised by prolonged and widespread low temperatures. This was challenging for the UK insurance industry and organisations such as the emergency services, the Highways Agency and British Gas who had to manage the extra demands that resulted. In the 6-day period running to Christmas Eve 2010, British Gas reported 100,000 boiler repair call-outs, whilst those 190,000 homes and businesses left with frozen and subsequently burst pipes contributed to the ABI's estimated £ 900 million in insured losses for December 2010 alone; the highest payout by the industry for damages associated with cold weather. Unfortunately, the severity of these winters made the difference between profit and loss for some primary UK insurance companies. To enable better pricing of premiums in the future, insurance companies are looking to understand the potential risk from cold waves at a local, postcode-level, whilst reinsurance firms seek to determine the accumulated loss across the UK associated with spatially coherent events. Other industry sectors also strive to improve their understanding of weather extremes for planning and management. Underpinning this is the need to statistically characterise the physical hazard. Aimed primarily at the re/insurance industry, we have applied an established methodology for developing statistical event sets and applied this to generate a UK freeze event set. An event set provides a stochastic set of several thousand events over 10's of 1000's of years and is typically applied within probabilistic catastrophe models. Our method applies extreme value theory and dependence modelling to explain low-temperature relationships across the UK and over time using historical records. The resulting event set represents the spatial and temporal dependence of cold waves in the UK and is modelled against household factors that increase the vulnerability to freezing conditions, such as property type, age and condition

  17. 78 FR 52931 - Draft Guidance for Industry on Abbreviated New Drug Applications: Stability Testing of Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-D-0938] Draft Guidance for Industry on Abbreviated New Drug Applications: Stability Testing of Drug Substances... Products, Questions and Answers.'' Because of increases in the number and complexity of ANDAs and FDA's...

  18. 78 FR 37231 - Guidance for Industry; Guidance on Abbreviated New Drug Applications: Stability Testing of Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-D-0938] Guidance for Industry; Guidance on Abbreviated New Drug Applications: Stability Testing of Drug Substances....'' Because of increases in the number and complexity of ANDAs and FDA's desire to standardize generic drug...

  19. Three-dimensional laser window formation for industrial application

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.; Kowalski, David

    1993-01-01

    The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional, compound-curvature laser windows to extreme accuracies. These windows represent an integral component of specialized nonintrusive laser data acquisition systems that are used in a variety of compressor and turbine research testing facilities. These windows are molded to the flow surface profile of turbine and compressor casings and are required to withstand extremely high pressures and temperatures. This method of glass formation could also be used to form compound-curvature mirrors that would require little polishing and for a variety of industrial applications, including research view ports for testing devices and view ports for factory machines with compound-curvature casings. Currently, sodium-alumino-silicate glass is recommended for three-dimensional laser windows because of its high strength due to chemical strengthening and its optical clarity. This paper discusses the main aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities that are associated with the formation of these windows.

  20. Sonocrystallization and Its Application in Food and Bioprocessing

    NASA Astrophysics Data System (ADS)

    Gogate, Parag R.; Pandit, Aniruddha B.

    The chapter aims at understanding in detail, the application of ultrasound for intensification of crystallization operation and covers different aspects such as basic mechanism of expected intensification, reactor designs and overview of existing literature related to food and bioprocess industry applications with an objective of presenting optimum guidelines for maximizing the efficacy of using ultrasound. A case study of lactose recovery from whey has also been discussed in details so as to give quantitative information about the effects of ultrasound in different stages of the crystallization operation and guidelines for optimization of different geometric and operating parameters. Overall it appears that use of ultrasound can significantly improve the crystallization operation by significant reduction in the processing time with generation of better quality crystals and also the recent developments in the design of large scale sonochemical reactors have enhanced the possibility of the application in actual commercial practice.

  1. Vision servo of industrial robot: A review

    NASA Astrophysics Data System (ADS)

    Zhang, Yujin

    2018-04-01

    Robot technology has been implemented to various areas of production and life. With the continuous development of robot applications, requirements of the robot are also getting higher and higher. In order to get better perception of the robots, vision sensors have been widely used in industrial robots. In this paper, application directions of industrial robots are reviewed. The development, classification and application of robot vision servo technology are discussed, and the development prospect of industrial robot vision servo technology is proposed.

  2. Polysaccharide production by lactic acid bacteria: from genes to industrial applications.

    PubMed

    Zeidan, Ahmad A; Poulsen, Vera Kuzina; Janzen, Thomas; Buldo, Patrizia; Derkx, Patrick M F; Øregaard, Gunnar; Neves, Ana Rute

    2017-08-01

    The ability to produce polysaccharides with diverse biological functions is widespread in bacteria. In lactic acid bacteria (LAB), production of polysaccharides has long been associated with the technological, functional and health-promoting benefits of these microorganisms. In particular, the capsular polysaccharides and exopolysaccharides have been implicated in modulation of the rheological properties of fermented products. For this reason, screening and selection of exocellular polysaccharide-producing LAB has been extensively carried out by academia and industry. To further exploit the ability of LAB to produce polysaccharides, an in-depth understanding of their biochemistry, genetics, biosynthetic pathways, regulation and structure-function relationships is mandatory. Here, we provide a critical overview of the latest advances in the field of glycosciences in LAB. Surprisingly, the understanding of the molecular processes involved in polysaccharide synthesis is lagging behind, and has not accompanied the increasing commercial value and application potential of these polymers. Seizing the natural diversity of polysaccharides for exciting new applications will require a concerted effort encompassing in-depth physiological characterization of LAB at the systems level. Combining high-throughput experimentation with computational approaches, biochemical and structural characterization of the polysaccharides and understanding of the structure-function-application relationships is essential to achieve this ambitious goal. © FEMS 2017.

  3. Risk Management at NASA and Its Applicability to the Oil and Gas Industry

    NASA Technical Reports Server (NTRS)

    Kaplan, David

    2018-01-01

    NASA has a world-class capability for quantitatively assessing the risk of highly-complex, isolated engineering structures operated in extremely hostile environments. In particular, the International Space Station (ISS) represents a reasonable risk analog for High Pressure, High Temperature drilling and production operations on deepwater rigs. Through a long-term U.S. Government Interagency Agreement, BSEE has partnered with NASA to modify NASA's Probabilistic Risk Assessment (PRA) capabilities for application to deepwater drilling and production operations. The immediate focus of the activity will be to modify NASA PRA Procedure Guides and Methodology Documents to make them applicable to the Oil &Gas Industry. The next step will be for NASA to produce a PRA for a critical drilling system component, such as a Blowout Preventer (BOP). Subsequent activities will be for NASA and industry partners to jointly develop increasingly complex PRA's that analyze other critical drilling and production system components, including both hardware and human reliability. In the presentation, NASA will provide the objectives, schedule, and current status of its PRA activities for BSEE. Additionally, NASA has a Space Act Agreement with Anadarko Petroleum Corporation to develop a PRA for a generic 20K BOP. NASA will summarize some of the preliminary insights gained to date from that 20K BOP PRA as an example of the distinction between quantitative versus qualitative risk assessment.

  4. The application of advanced oxidation technologies to the treatment of effluents from the pulp and paper industry: a review.

    PubMed

    Hermosilla, Daphne; Merayo, Noemí; Gascó, Antonio; Blanco, Ángeles

    2015-01-01

    The paper industry is adopting zero liquid effluent technologies to reduce freshwater use and meet environmental regulations, which implies closure of water circuits and the progressive accumulation of pollutants that must be removed before water reuse and final wastewater discharge. The traditional water treatment technologies that are used in paper mills (such as dissolved air flotation or biological treatment) are not able to remove recalcitrant contaminants. Therefore, advanced water treatment technologies, such as advanced oxidation processes (AOPs), are being included in industrial wastewater treatment chains aiming to either improve water biodegradability or its final quality. A comprehensive review of the current state of the art regarding the use of AOPs for the treatment of the organic load of effluents from the paper industry is herein addressed considering mature and emerging treatments for a sustainable water use in this sector. Wastewater composition, which is highly dependent on the raw materials being used in the mills, the selected AOP itself, and its combination with other technologies, will determine the viability of the treatment. In general, all AOPs have been reported to achieve good organic removal efficiencies (COD removal >40%, and about an extra 20% if AOPs are combined with biological stages). Particularly, ozonation has been the most extensively reported and successfully implemented AOP at an industrial scale for effluent treatment or reuse within pulp and paper mills, although Fenton processes (photo-Fenton particularly) have actually addressed better oxidative results (COD removal ≈ 65-75%) at a lab scale, but still need further development at a large scale.

  5. Ten Commandments Revisited: A Ten-Year Perspective on the Industrial Application of Formal Methods

    NASA Technical Reports Server (NTRS)

    Bowen, Jonathan P.; Hinchey, Michael G.

    2005-01-01

    Ten years ago, our 1995 paper Ten Commandments of Formal Methods suggested some guidelines to help ensure the success of a formal methods project. It proposed ten important requirements (or "commandments") for formal developers to consider and follow, based on our knowledge of several industrial application success stories, most of which have been reported in more detail in two books. The paper was surprisingly popular, is still widely referenced, and used as required reading in a number of formal methods courses. However, not all have agreed with some of our commandments, feeling that they may not be valid in the long-term. We re-examine the original commandments ten years on, and consider their validity in the light of a further decade of industrial best practice and experiences.

  6. Modern industrial and pharmacological applications of indigo dye and its derivatives--a review.

    PubMed

    Stasiak, Natalia; Kukuła-Koch, Wirginia; Głowniak, Kazimierz

    2014-01-01

    Plant sources, chemical properties, bioactivities, as well as the synthesis of indigo dye and its derivatives, are reviewed in this paper. These compounds were chosen because of their significant benefits and scope of application as both coloring agents in the textile industry and as pharmacologically active natural products. Their use in traditional chinese medicine (TCM) has directed the attention of European researchers and medical doctors alike. The preparation of indigoferous plants--Indigo naturalis is currently about to be introduced into the European Pharmacopoeia.

  7. Factors affecting RFID adoption in the agricultural product distribution industry: empirical evidence from China.

    PubMed

    Shi, Ping; Yan, Bo

    2016-01-01

    We conducted an exploratory investigation of factors influencing the adoption of radio frequency identification (RFID) methods in the agricultural product distribution industry. Through a literature review and field research, and based on the technology-organization-environment (TOE) theoretical framework, this paper analyzes factors influencing RFID adoption in the agricultural product distribution industry in reference to three contexts: technological, organizational, and environmental contexts. An empirical analysis of the TOE framework was conducted by applying structural equation modeling based on actual data from a questionnaire survey on the agricultural product distribution industry in China. The results show that employee resistance and uncertainty are not supported by the model. Technological compatibility, perceived effectiveness, organizational size, upper management support, trust between enterprises, technical knowledge, competitive pressure and support from the Chinese government, which are supported by the model, have significantly positive effects on RFID adoption. Meanwhile, organizational size has the strongest positive effect, while competitive pressure levels have the smallest effect. Technological complexities and costs have significantly negative effects on RFID adoption, with cost being the most significantly negative influencing factor. These research findings will afford enterprises in the agricultural products supply chain with a stronger understanding of the factors that influence RFID adoption in the agricultural product distribution industry. In addition, these findings will help enterprises remain aware of how these factors affect RFID adoption and will thus help enterprises make more accurate and rational decisions by promoting RFID application in the agricultural product distribution industry.

  8. The status of Chinese permanent magnet industry and R&D activities

    NASA Astrophysics Data System (ADS)

    Dong, Shengzhi; Li, Wei; Chen, Hongsheng; Han, Rui

    2017-05-01

    It has been 15 years since China dominated the rare earth permanent magnet market in 2001. The annual output of sintered Nd-Fe-B magnets in China reached a new record of 126,300 tonnages in 2015 while the output in 2001 is only 6,500 tonnages. The average growth rate from 2001 to 2015 is about 23.5% though the output in 2012 suffers a deep drop due to the well known rare earth crisis in 2011. Currently, the RE magnet production capability in China seems to be over developed compared to actual requirements. Needless to say the oversupply situation implies a hard time for RE magnet manufacturers due to the fierce competition but maybe a good time for the whole industry. The motivation for a company to develop new technology and more competitive products with better performance and/or lower costs is greatly enhanced. The objective of this paper is to give a general picture of Chinese REPM industry and market including the output capability, the status of competition, the development of magnet application and the market trend. Some new research hot points potentially being applied, for example the Cerium magnet, will be introduced as well.

  9. Biocompounds from rapeseed oil industry co-stream as active ingredients for skin care applications.

    PubMed

    Rivera, D; Rommi, K; Fernandes, M M; Lantto, R; Tzanov, T

    2015-10-01

    Despite the great number of substances produced by the skincare industry, very few of them seem to truly have an effect on the skin. Therefore, given the social implications surrounding physical appearance, the search for new bioactive compounds to prevent or attenuate skin ageing and enhance self-image is a priority of current research. In this context, being rich in valuable compounds, such as proteins, phenolics, lipids and vitamins, this study is focused on the potential activity of rapeseed press cake hydrolysates to be used as raw materials for skincare applications. In this study, the protein-rich press residue from the rapeseed oil industry was converted enzymatically into short-chain biologically active peptides using four protease products with varying substrate specificity - Alcalase 2.4L FG, Protex 6L, Protamex and Corolase 7089. The antioxidant, anti-wrinkle and anti-inflammatory activities of the obtained hydrolysates were evaluated in vitro while their biocompatibility with human skin fibroblasts was tested. All hydrolysates were biocompatible with skin fibroblasts after 24 h of exposure, while the non-hydrolysed extract induced cell toxicity. Alcalase 2,4L FG and Protex 6L-obtained hydrolysates were the most promising extracts showing improved bioactivities suitable for skin anti-ageing formulations, namely antioxidant activity, inhibiting approximately 80% cellular reactive oxidative species, anti-inflammatory and anti-wrinkle properties, inhibiting around 36% of myeloperoxidase activity and over 83% of elastase activity. The enzymatic technology applied to the rapeseed oil industry costream results in the release of bioactive compounds suitable for skincare applications. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  10. Passenger bus industry weather information application.

    DOT National Transportation Integrated Search

    2011-03-21

    Adverse weather significantly affects the United States national transportation system, including commercial companies that rely on highways to support their enterprises. The Passenger Bus (Motorcoach) Industry (PBI) is one such affected user whose o...

  11. Preliminary study of the use of radiotracers for leak detection in industrial applications

    NASA Astrophysics Data System (ADS)

    Wetchagarun, S.; Petchrak, A.; Tippayakul, C.

    2015-05-01

    One of the most widespread uses of radiotracers in the industrial applications is the leak detection of the systems. This technique can be applied, for example, to detect leak in heat exchangers or along buried industrial pipelines. The ability to perform online investigation is one of the most important advantages of the radiotracer technique over other non-radioactive leak detection methods. In this paper, a preliminary study of the leak detection using radiotracer in the laboratory scale was presented. Br-82 was selected for this work due to its chemical property, its suitable half-life and its on-site availability. The NH4Br in the form of aqueous solution was injected into the experimental system as the radiotracer. Three NaI detectors were placed along the pipelines to measure system flow rate and to detect the leakage from the piping system. The results obtained from the radiotracer technique were compared to those measured by other methods. It is found that the flow rate obtained from the radiotracer technique agreed well with the one obtained from the flow meter. The leak rate result, however, showed discrepancy between results obtained from two different measuring methods indicating further study on leak detection was required before applying this technique in the industrial system.

  12. N18, powder metallurgy superalloy for disks: Development and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guedou, J.Y.; Lautridou, J.C.; Honnorat, Y.

    1993-08-01

    The preliminary industrial development of a powder metallurgy (PM) superalloy, designated N18, for disk applications has been completed. This alloy exhibits good overall mechanical properties after appropriate processing of the material. These properties have been measured on both isothermally forged and extruded billets, as well as on specimens cut from actual parts. The temperature capability of the alloy is about 700 C for long-term applications and approximately 750 C for short-term use because of microstructural instability. Further improvements in creep and crack propagation properties, without significant reduction in tensile strength, are possible through appropriate thermomechanical processing, which results in amore » large controlled grain size. Spin pit tests on subscale disks have confirmed that the N18 alloy has a higher resistance than PM Astrology and is therefore an excellent alloy for modern turbine disk applications.« less

  13. Industrial Internet of Things

    PubMed Central

    Zhou, C.; Damiano, N.; Whisner, B.; Reyes, M.

    2017-01-01

    The Industrial Internet of Things (IIoT), a concept that combines sensor networks and control systems, has been employed in several industries to improve productivity and safety. U.S. National Institute for Occupational Safety and Health (NIOSH) researchers are investigating IIoT applications to identify the challenges of and potential solutions for transferring IIoT from other industries to the mining industry. Specifically, NIOSH has reviewed existing sensors and communications network systems used in U.S. underground coal mines to determine whether they are capable of supporting IIoT systems. The results show that about 40 percent of the installed post-accident communication systems as of 2014 require minimal or no modification to support IIoT applications. NIOSH researchers also developed an IIoT monitoring and control prototype system using low-cost microcontroller Wi-Fi boards to detect a door opening on a refuge alternative, activate fans located inside the Pittsburgh Experimental Mine and actuate an alarm beacon on the surface. The results of this feasibility study can be used to explore IIoT applications in underground coal mines based on existing communication and tracking infrastructure. PMID:29348699

  14. Spectroscopy for Industrial Applications: High-Temperature Processes

    NASA Astrophysics Data System (ADS)

    Fateev, Alexander; Grosch, Helge; Clausen, Sonnik; Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2014-06-01

    The continuous development of the spectroscopic databases brings new perspectives in the environmental and industrial on-line process control, monitoring and stimulates further optical sensor developments. This is because no calibration gases are needed and, in general, temperature-dependent spectral absorption features gases of interest for a specific instrument can in principle be calculated by knowing only the gas temperature and pressure in the process under investigation/monitoring. The latest HITRAN-2012 database contains IR/UV spectral data for 47 molecules and it is still growing. However use of HITRAN is limited to low-temperature processes (< 400 K) and therefor can be used for absorption spectra calculations at limited temperature/pressure ranges. For higher temperatures, the HITEMP-2010 database is available. Only a few molecules CO2, H2O, CO and NO are those of interest for e.g. various combustion and astronomical applications are included. In the recent few years, several efforts towards a development of hot line lists have been made; those have been implemented in the latest HITRAN2012 database1. High-resolution absorption measurements of NH3 (IR, 0.1 cm-1) and phenol (UV, 0.019 nm) on a flow gas cell2 up to 800 K are presented. Molecules are of great interest in various high-temperature environments including exoplanets, combustion and gasification. Measured NH3 hot lines have been assigned and spectra have been compared with that obtained by calculations based on the BYTe hot line list1. High-temperature NH3 absorption spectra have been used in the analysis of in situ high-resolution IR absorption measurements on the producer gas in low-temperature gasification process on a large scale. High-resolution UV temperature-dependent absorption cross-sections of phenol are reported for the first time. All UV data have been calibrated by relevant GC/MS measurements. Use of the data is demonstrated by the analysis of in situ UV absorption measurements on a

  15. Application research on big data in energy conservation and emission reduction of transportation industry

    NASA Astrophysics Data System (ADS)

    Bai, Bingdong; Chen, Jing; Wang, Mei; Yao, Jingjing

    2017-06-01

    In the context of big data age, the energy conservation and emission reduction of transportation is a natural big data industry. The planning, management, decision-making of energy conservation and emission reduction of transportation and other aspects should be supported by the analysis and forecasting of large amounts of data. Now, with the development of information technology, such as intelligent city, sensor road and so on, information collection technology in the direction of the Internet of things gradually become popular. The 3G/4G network transmission technology develop rapidly, and a large number of energy conservation and emission reduction of transportation data is growing into a series with different ways. The government not only should be able to make good use of big data to solve the problem of energy conservation and emission reduction of transportation, but also to explore and use a large amount of data behind the hidden value. Based on the analysis of the basic characteristics and application technology of energy conservation and emission reduction of transportation data, this paper carries out its application research in energy conservation and emission reduction of transportation industry, so as to provide theoretical basis and reference value for low carbon management.

  16. Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production

    USDA-ARS?s Scientific Manuscript database

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemi...

  17. Natural gums of plant origin as edible coatings for food industry applications.

    PubMed

    Saha, Anuradha; Tyagi, Shvetambri; Gupta, Rajinder K; Tyagi, Yogesh K

    2017-12-01

    Natural plant-based gums and their derivatives are widely utilized in food industries, however, their applications as edible coatings to extend fresh fruits and vegetable shelf-life has been explored recently. These natural polymeric polysaccharides have many advantages as compared to synthetic polymers, because they are biodegradable, nontoxic, economical and easily available in the environment. Natural gums can also be semi synthetically modified to produce derivatives, which can easily compete with the synthetic preservatives available on the food market. In this review, the recent developments in the use of natural gums and their derivatives as edible coatings have been explored and discussed.

  18. Industrial laser marketplace

    NASA Astrophysics Data System (ADS)

    Belforte, David A.

    1990-05-01

    Introduction: Gary Forrest As with medical, we have a specific individual, Dave Belforte, who, in addition to writing for Laser Focus, publishes with Laser Focus the Industrial Laser Review. Again, this is an area that has some really unique aspects to it which is why we have a specialist at the magazine who tracks this as well as having his own business interests. I just have one quick example. One of the things that I've noticed and I've put this in your handout is it's always interesting to me to see why how the lasers actually impact on finished goods that people buy. So I just clipped out one recent article that mentions some of the different areas when lasers are used in automotive production. There's an ad for the Infinity car of course they've had a strange ad program anyway, but the latest version is "Look at the paint." It's a super high gloss paint. I know in Japan, what I would call laser priming, the use of laser in surface preparation of the metal to obtain a super high gloss is something that's become popular. Now I don't know whether the Infinity is using that or not but it's another example as Moe Levitt indicated earlier lasers have moved into the industrial segment maybe not in the volume that people would like but in a quality sense that is definitely starting to have an impact on the people who are buying those finished products. So I'll give you Dave for the details. David Belforte: The answer is yes, the Infinity has a body which has been processed in what is called laser texturizing process. In Japan, it's known as a mirror finish, and it's not actually applied to the steel of the car. It's a texturizing process on the rolls that reduce the steel down to body thickness. They emboss on that steel a regular pattern which tends to trap radiated light and reflect it back to your eye in a much more intense pattern to give you what appears to be brighter paint. But that was not developed in Japan. It was developed in Belgium actually.

  19. 19 CFR 162.79b - Recovery of actual loss of duties, taxes and fees or actual loss of revenue.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Recovery of actual loss of duties, taxes and fees or actual loss of revenue. 162.79b Section 162.79b Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) INSPECTION, SEARCH, AND SEIZURE...

  20. Remote control of the industry processes. POWERLINK protocol application

    NASA Astrophysics Data System (ADS)

    Wóbel, A.; Paruzel, D.; Paszkiewicz, B.

    2017-08-01

    The present technological development enables the use of solutions characterized by a lower failure rate, and work with greater precision. This allows you to obtain the most efficient production, high speed production and reliability of individual components. The main scope of this article was POWERLINK protocol application for communication with the controller B & R through communication Ethernet for recording process parameters. This enables control of run production cycle using an internal network connected to the PC industry. Knowledge of the most important parameters of the production in real time allows detecting of a failure immediately after occurrence. For this purpose, the position of diagnostic use driver X20CP1301 B&R to record measurement data such as pressure, temperature valve between the parties and the torque required to change the valve setting was made. The use of POWERLINK protocol allows for the transmission of information on the status of every 200 μs.

  1. SELF-ACTUALIZATION AND THE UTILIZATION OF TALENT.

    ERIC Educational Resources Information Center

    FRENCH, JOHN R.P.; MILLER, DANIEL R.

    THIS STUDY ATTEMPTED (1) TO DEVELOP A THEORY OF THE CAUSES AND CONSEQUENCES OF SELF-ACTUALIZATION AS RELATED TO THE UTILIZATION OF TALENT, (2) TO FIT THE THEORY TO EXISTING DATA, AND (3) TO PLAN ONE OR MORE RESEARCH PROJECTS TO TEST THE THEORY. TWO ARTICLES ON IDENTITY AND MOTIVATION AND SELF-ACTUALIZATION AND SELF-IDENTITY THEORY REPORTED THE…

  2. A multi-model fusion strategy for multivariate calibration using near and mid-infrared spectra of samples from brewing industry.

    PubMed

    Tan, Chao; Chen, Hui; Wang, Chao; Zhu, Wanping; Wu, Tong; Diao, Yuanbo

    2013-03-15

    Near and mid-infrared (NIR/MIR) spectroscopy techniques have gained great acceptance in the industry due to their multiple applications and versatility. However, a success of application often depends heavily on the construction of accurate and stable calibration models. For this purpose, a simple multi-model fusion strategy is proposed. It is actually the combination of Kohonen self-organizing map (KSOM), mutual information (MI) and partial least squares (PLSs) and therefore named as KMICPLS. It works as follows: First, the original training set is fed into a KSOM for unsupervised clustering of samples, on which a series of training subsets are constructed. Thereafter, on each of the training subsets, a MI spectrum is calculated and only the variables with higher MI values than the mean value are retained, based on which a candidate PLS model is constructed. Finally, a fixed number of PLS models are selected to produce a consensus model. Two NIR/MIR spectral datasets from brewing industry are used for experiments. The results confirms its superior performance to two reference algorithms, i.e., the conventional PLS and genetic algorithm-PLS (GAPLS). It can build more accurate and stable calibration models without increasing the complexity, and can be generalized to other NIR/MIR applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. A multi-model fusion strategy for multivariate calibration using near and mid-infrared spectra of samples from brewing industry

    NASA Astrophysics Data System (ADS)

    Tan, Chao; Chen, Hui; Wang, Chao; Zhu, Wanping; Wu, Tong; Diao, Yuanbo

    2013-03-01

    Near and mid-infrared (NIR/MIR) spectroscopy techniques have gained great acceptance in the industry due to their multiple applications and versatility. However, a success of application often depends heavily on the construction of accurate and stable calibration models. For this purpose, a simple multi-model fusion strategy is proposed. It is actually the combination of Kohonen self-organizing map (KSOM), mutual information (MI) and partial least squares (PLSs) and therefore named as KMICPLS. It works as follows: First, the original training set is fed into a KSOM for unsupervised clustering of samples, on which a series of training subsets are constructed. Thereafter, on each of the training subsets, a MI spectrum is calculated and only the variables with higher MI values than the mean value are retained, based on which a candidate PLS model is constructed. Finally, a fixed number of PLS models are selected to produce a consensus model. Two NIR/MIR spectral datasets from brewing industry are used for experiments. The results confirms its superior performance to two reference algorithms, i.e., the conventional PLS and genetic algorithm-PLS (GAPLS). It can build more accurate and stable calibration models without increasing the complexity, and can be generalized to other NIR/MIR applications.

  4. Comparison of solar-thermal and fossil total-energy systems for selected industrial applications

    NASA Astrophysics Data System (ADS)

    Pine, G. D.

    1980-06-01

    Economic analyses of a conventional system and total energy systems based on phosphoric acid fuel cells, diesel piston engines, and central receiver solar thermal systems were performed for each of four industrial applications; a concrete block plant in Arizona, a fluid milk processing plant in California, a sugar beet processing plant in Colorado, and a meat packing plant in Texas. A series of sensitivity analyses was performed to show the effects of variations in fuel price, system size, cost of capital, and system initial cost. Solar total energy systems (STES) are more capital intensive than the other systems, and significant economies of scale are associated with the STES. If DOE solar system cost goals are met, STES can compete with the other systems for facilities with electrical demands greater than two or three megawatts, but STES are not competitive for smaller facilities. Significant energy resource savings, especially of oil and gas, resulted from STES implementation in the four industries.

  5. Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology.

    PubMed

    Gordon, Sarah; Daneshian, Mardas; Bouwstra, Joke; Caloni, Francesca; Constant, Samuel; Davies, Donna E; Dandekar, Gudrun; Guzman, Carlos A; Fabian, Eric; Haltner, Eleonore; Hartung, Thomas; Hasiwa, Nina; Hayden, Patrick; Kandarova, Helena; Khare, Sangeeta; Krug, Harald F; Kneuer, Carsten; Leist, Marcel; Lian, Guoping; Marx, Uwe; Metzger, Marco; Ott, Katharina; Prieto, Pilar; Roberts, Michael S; Roggen, Erwin L; Tralau, Tewes; van den Braak, Claudia; Walles, Heike; Lehr, Claus-Michael

    2015-01-01

    Models of the outer epithelia of the human body - namely the skin, the intestine and the lung - have found valid applications in both research and industrial settings as attractive alternatives to animal testing. A variety of approaches to model these barriers are currently employed in such fields, ranging from the utilization of ex vivo tissue to reconstructed in vitro models, and further to chip-based technologies, synthetic membrane systems and, of increasing current interest, in silico modeling approaches. An international group of experts in the field of epithelial barriers was convened from academia, industry and regulatory bodies to present both the current state of the art of non-animal models of the skin, intestinal and pulmonary barriers in their various fields of application, and to discuss research-based, industry-driven and regulatory-relevant future directions for both the development of new models and the refinement of existing test methods. Issues of model relevance and preference, validation and standardization, acceptance, and the need for simplicity versus complexity were focal themes of the discussions. The outcomes of workshop presentations and discussions, in relation to both current status and future directions in the utilization and development of epithelial barrier models, are presented by the attending experts in the current report.

  6. 40 CFR 74.22 - Actual SO2 emissions rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Actual SO2 emissions rate. 74.22... (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Calculations for Combustion Sources § 74.22 Actual SO2 emissions... actual SO2 emissions rate shall be 1985. (2) For combustion sources that commenced operation after...

  7. Anomaly Detection Based on Sensor Data in Petroleum Industry Applications

    PubMed Central

    Martí, Luis; Sanchez-Pi, Nayat; Molina, José Manuel; Garcia, Ana Cristina Bicharra

    2015-01-01

    Anomaly detection is the problem of finding patterns in data that do not conform to an a priori expected behavior. This is related to the problem in which some samples are distant, in terms of a given metric, from the rest of the dataset, where these anomalous samples are indicated as outliers. Anomaly detection has recently attracted the attention of the research community, because of its relevance in real-world applications, like intrusion detection, fraud detection, fault detection and system health monitoring, among many others. Anomalies themselves can have a positive or negative nature, depending on their context and interpretation. However, in either case, it is important for decision makers to be able to detect them in order to take appropriate actions. The petroleum industry is one of the application contexts where these problems are present. The correct detection of such types of unusual information empowers the decision maker with the capacity to act on the system in order to correctly avoid, correct or react to the situations associated with them. In that application context, heavy extraction machines for pumping and generation operations, like turbomachines, are intensively monitored by hundreds of sensors each that send measurements with a high frequency for damage prevention. In this paper, we propose a combination of yet another segmentation algorithm (YASA), a novel fast and high quality segmentation algorithm, with a one-class support vector machine approach for efficient anomaly detection in turbomachines. The proposal is meant for dealing with the aforementioned task and to cope with the lack of labeled training data. As a result, we perform a series of empirical studies comparing our approach to other methods applied to benchmark problems and a real-life application related to oil platform turbomachinery anomaly detection. PMID:25633599

  8. Cross-industry benchmarking: is it applicable to the operating room?

    PubMed

    Marco, A P; Hart, S

    2001-01-01

    The use of benchmarking has been growing in nonmedical industries. This concept is being increasingly applied to medicine as the industry strives to improve quality and improve financial performance. Benchmarks can be either internal (set by the institution) or external (use other's performance as a goal). In some industries, benchmarking has crossed industry lines to identify breakthroughs in thinking. In this article, we examine whether the airline industry can be used as a source of external process benchmarking for the operating room.

  9. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2012-01-01

    Domestic production of industrial sand and gravel in 2011 was about 30 Mt (33 million st), increasing slightly compared with 2010. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  10. Channeling Polyolefin Molecular Structure - Bulk Property Correlation Strategies for Industrial Applicability

    NASA Astrophysics Data System (ADS)

    Hule, Rohan; Thurman, Derek; Doufas, Antonios

    Polyolefins occupy a significant volume of the polymer products portfolio in commodity and high value applications. Quantifying and optimizing structure-property relationships enables growth in new markets. It is well recognized that coupling lab-based, comprehensive methodologies with bulk properties of interest to industrial environments offer the greatest potential of technology advancement, ultimately leading to commercial success. It is imperative to recognize the existing gap of knowledge translation between lab measurements and industrial-scale operability. This study highlights experimental HDPEs synthesized from dual, single-site, co-supported catalysts that exhibit enhanced solid-state properties such as stiffness, impact and ESCR surpassing conventional trends. Commercial resins across distinct sub-families were included as well. Commonality amongst these resins is bimodality and broad MW distribution with well-defined splits and spreads. Investigations on commercially relevant parameters such as melt strength, melt elasticity and shear thinning established excellent performance for experimental bimodals, corroborating potential benefits compared to commercial HDPEs. To summarize, the effort highlights well-recognized pathways such as improvements in mechanical and melt properties that can be attributed to apposite tuning of polymer chain architecture and MW distribution with implications across myriad markets. Ultimately, this may serve as a pathway for producing innovative products that deliver business success and growth.

  11. Actual distribution of Cronobacter spp. in industrial batches of powdered infant formula and consequences for performance of sampling strategies.

    PubMed

    Jongenburger, I; Reij, M W; Boer, E P J; Gorris, L G M; Zwietering, M H

    2011-11-15

    The actual spatial distribution of microorganisms within a batch of food influences the results of sampling for microbiological testing when this distribution is non-homogeneous. In the case of pathogens being non-homogeneously distributed, it markedly influences public health risk. This study investigated the spatial distribution of Cronobacter spp. in powdered infant formula (PIF) on industrial batch-scale for both a recalled batch as well a reference batch. Additionally, local spatial occurrence of clusters of Cronobacter cells was assessed, as well as the performance of typical sampling strategies to determine the presence of the microorganisms. The concentration of Cronobacter spp. was assessed in the course of the filling time of each batch, by taking samples of 333 g using the most probable number (MPN) enrichment technique. The occurrence of clusters of Cronobacter spp. cells was investigated by plate counting. From the recalled batch, 415 MPN samples were drawn. The expected heterogeneous distribution of Cronobacter spp. could be quantified from these samples, which showed no detectable level (detection limit of -2.52 log CFU/g) in 58% of samples, whilst in the remainder concentrations were found to be between -2.52 and 2.75 log CFU/g. The estimated average concentration in the recalled batch was -2.78 log CFU/g and a standard deviation of 1.10 log CFU/g. The estimated average concentration in the reference batch was -4.41 log CFU/g, with 99% of the 93 samples being below the detection limit. In the recalled batch, clusters of cells occurred sporadically in 8 out of 2290 samples of 1g taken. The two largest clusters contained 123 (2.09 log CFU/g) and 560 (2.75 log CFU/g) cells. Various sampling strategies were evaluated for the recalled batch. Taking more and smaller samples and keeping the total sampling weight constant, considerably improved the performance of the sampling plans to detect such a type of contaminated batch. Compared to random sampling

  12. PREFACE: Applications of Novel Scintillators for Research and Industry (ANSRI 2015)

    NASA Astrophysics Data System (ADS)

    Roberts, O. J.

    2015-06-01

    Scintillator detectors are used widely in the field of γ- and X-ray spectroscopy, particularly in the mid 1900s when the invention of NaI(Tl) by nobel laureate Robert Hofstadter in 1948, spurred the creation of new scintillator materials. In the development of such new scintillators, important characteristics such as its intrinsic efficiency, position sensitivity, robustness, energy and timing response, light output, etc, need to be addressed. To date, these requirements cannot be met by a single type of scintillator alone and therefore the development of an ''ideal'' scintillator remains the holy grail of nuclear instrumentation. Consequently, the last two decades have seen significant progress in the development of scintillator crystals, driven largely by technological advances. Conventional inorganic scintillators such as NaI(Tl) and BGO are now being replaced with better, novel organic, inorganic, ceramic and plastic scintillators offering a wider variety of options for many applications. The workshop on the Applications of Novel Scintillators in Research and Industry was held at University College Dublin in January 2015 and covered a wide range of topics that characterise modern advances in the field of scintillator technology. This set of proceedings covers areas including the growth, production and characterisation of such contemporary scintillators, along with their applications in various fields, such as; Medical Imaging; Defence/Security; Astrophysics; and Nuclear/Particle Physics. We would like to thank all those who presented their recent results on their research at the workshop. These proceedings atest to the excitement and interest in such a broad field, that pervades the pursuit of the development of novel materials for future applications. We would also like to thank Professor Luigi Piro, for giving an interesting public talk during the conference, and to the Institute of Physics Ireland Group for supporting the event. We thank ORTEC for

  13. Current applications and different approaches for microbial l-asparaginase production.

    PubMed

    Cachumba, Jorge Javier Muso; Antunes, Felipe Antonio Fernandes; Peres, Guilherme Fernando Dias; Brumano, Larissa Pereira; Santos, Júlio César Dos; Da Silva, Silvio Silvério

    2016-12-01

    l-asparaginase (EC 3.5.1.1) is an enzyme that catalysis mainly the asparagine hydrolysis in l-aspartic acid and ammonium. This enzyme is presented in different organisms, such as microorganisms, vegetal, and some animals, including certain rodent's serum, but not unveiled in humans. It can be used as important chemotherapeutic agent for the treatment of a variety of lymphoproliferative disorders and lymphomas (particularly acute lymphoblastic leukemia (ALL) and Hodgkin's lymphoma), and has been a pivotal agent in chemotherapy protocols from around 30 years. Also, other important application is in food industry, by using the properties of this enzyme to reduce acrylamide levels in commercial fried foods, maintaining their characteristics (color, flavor, texture, security, etc.) Actually, l-asparaginase catalyzes the hydrolysis of l-asparagine, not allowing the reaction of reducing sugars with this aminoacid for the generation of acrylamide. Currently, production of l-asparaginase is mainly based in biotechnological production by using some bacteria. However, industrial production also needs research work aiming to obtain better production yields, as well as novel process by applying different microorganisms to increase the range of applications of the produced enzyme. Within this context, this mini-review presents l-asparaginase applications, production by different microorganisms and some limitations, current investigations, as well as some challenges to be achieved for profitable industrial production. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  14. Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview.

    PubMed

    Brodowska, Agnieszka Joanna; Nowak, Agnieszka; Śmigielski, Krzysztof

    2017-04-10

    The food contamination issue requires continuous control of food at each step of the production process. High quality and safety of products are equally important factors in the food industry. They may be achieved with several, more or less technologically advanced methodologies. In this work, we review the role, contribution, importance, and impact of ozone as a decontaminating agent used to control and eliminate the presence of microorganisms in food products as well as to extend their shelf-life and remove undesirable odors. Several researchers have been focusing on the ozone's properties and applications, proving that ozone treatment technology can be applied to all types of foods, from fruits, vegetables, spices, meat, and seafood products to beverages. A compilation of those works, presented in this review, can be a useful tool for establishing appropriate ozone treatment conditions, and factors affecting the improved quality and safety of food products. A critical evaluation of the advantages and disadvantages of ozone in the context of its application in the food industry is presented as well.

  15. Critical analysis of industrial electron accelerators

    NASA Astrophysics Data System (ADS)

    Korenev, S.

    2004-09-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterlization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed.

  16. Information Services of Maritime Industry

    NASA Astrophysics Data System (ADS)

    Palazov, Atanas; Stefanov, Asen

    2015-04-01

    The ultimate goal of modern oceanography is an end user oriented product. Beneficiaries are the governmental services, coast-based enterprises and research institutions that make use of the products generated by operational oceanography. Direct potential users and customers are coastal managers, shipping, offshore industry, ports and harbours, fishing, tourism and recreation industry, and scientific community. Indirect beneficiaries, through climate forecasting based on ocean observations, are food, energy, water and medical suppliers. Five general classes of users for data and information are specified: (1) operational users that analyze the collected data and produce different forecasts serving to impose regulation measures; (2) authorities and managers of large-scale projects needing timely oceanographic information, including statistics and climatic trends; (3) industrial enterprises, safety of structures and avoiding of pollution; (4) tourism and recreation related users aiming protection of human health; (5) scientists, engineers, and economists carrying out special researches, strategic design studies, and other investigations to advance the application of marine data. The analysis of information received during the extensive inquiry among all potential end users reveals variety of data and information needs encompassing physical, chemical, biological and hydrometeorological observation. Nevertheless, the common requirement concerns development of observing and forecasting systems providing accurate real-time or near-real time data and information supporting decision making and environmental management. Availability of updated information on the actual state as well as forecast for the future changes of marine environment are essential for the success and safety of maritime operations in the offshore industry. For this purpose different systems have been developed to collect data and to produce forecasts on the state of the marine environment and to provide

  17. Clinical application of microencapsulated islets: actual prospectives on progress and challenges.

    PubMed

    Calafiore, Riccardo; Basta, Giuseppe

    2014-04-01

    After 25 years of intense pre-clinical work on microencapsulated intraperitoneal islet grafts into non-immunosuppressed diabetic recipients, the application of this procedure to patients with type 1 diabetes mellitus has been a significant step forward. This result, achieved in a few centers worldwide, underlies the safety of biopolymers used for microencapsulation. Without this advance, no permission for human application of microcapsules would have ever been obtained after years of purification technologies applied to the raw alginates. To improve safety of the encapsulated islet graft system, renewed efforts on the capsules' bioengineering, as well as on insulin-producing cells within the capsular membranes, are in progress. It is hoped that advances in these two critical aspects of the cell encapsulation technology will result in wider human application of this system. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Functionalized nanocompartments (Synthosomes): limitations and prospective applications in industrial biotechnology.

    PubMed

    Onaca, Ozana; Nallani, Madhavan; Ihle, Saskia; Schenk, Alexander; Schwaneberg, Ulrich

    2006-01-01

    Synthosomes are mechanically stable vesicles with a block copolymer membrane and an engineered transmembrane protein acting as selective gate. The polymer vesicles are nanometer-sized (50-1000 nm) and functionalized by loading them with enzymes for bioconversions or encapsulating charged macromolecules for selective compound recovery/release. The Synthosome system might become a novel technology platform for biocatalysis and selective product recovery. Progress in Synthosome research comprises employed block copolymers, transmembrane channel engineering, and functionalizations, which are discussed here in detail. The challenges in transmembrane protein engineering, as well as cost-effective production, in block copolymer design and the state of the art in Synthosome characterization comprising quantification of encapsulated protein, translocation efficiency, number of transmembrane channels per vesicle, and enzyme kinetics are also presented and discussed. An assessment of the Synthosome technology platform for prospective applications in industrial (white) biotechnology concludes this review.

  19. Androids: application of EAP as artificial muscles to entertainment industry

    NASA Technical Reports Server (NTRS)

    Hanson, D.; Pioggia, G.; Bar-Cohen, Yoseph; de Rossi, D.

    2001-01-01

    The classic movie Metropolis (1926), which is nowadays considered a cinema milestone, has shown the possibility to build robots called androids that are science and fiction run together to realize a dream: the human-like robot. In that movie, Dr. Rotwang transforms a simple and cold calculating robot into the body of a beautiful woman. Robots have often been depicted as metal creatures with cold steel bodies, but there is no reason why metals should be the only kind of material for construction of robots. The authors examined the issues related to applying electroactive polymers materials (EAP) to the entertainment industry. EAP are offering attractive characteristics with the potential to produce more realistic models of living creatures at significantly lower cost. This paper seeks to elucidate how EAP might infiltrate and ultimately revolutionize entertainment, showing some applicative examples.

  20. Does medical students' clinical performance affect their actual performance during medical internship?

    PubMed

    Han, Eui-Ryoung; Chung, Eun-Kyung

    2016-02-01

    This study examines the relationship between the clinical performance of medical students and their performance as doctors during their internships. This retrospective study involved 63 applicants to a residency programme conducted at the Chonnam National University Hospital, South Korea, in November 2012. We compared the performance of the applicants during their internship with the clinical performance of the applicants during their fourth year of medical school. The performance of the applicants as interns was periodically evaluated by the faculty of each department, while the clinical performance of the applicants as fourth year medical students was assessed using the Clinical Performance Examination (CPX) and the Objective Structured Clinical Examination (OSCE). The performance of the applicants as interns was positively correlated with their clinical performance as fourth year medical students, as measured by CPX and OSCE. The performance of the applicants as interns was moderately correlated with the patient-physician interactions items addressing communication and interpersonal skills in the CPX. The clinical performance of medical students during their fourth year in medical school was related to their performance as medical interns. Medical students should be trained to develop good clinical skills, through actual encounters with patients or simulated encounters using manikins, so that they are able to become competent doctors. Copyright © Singapore Medical Association.

  1. Insights into lignin degradation and its potential industrial applications.

    PubMed

    Abdel-Hamid, Ahmed M; Solbiati, Jose O; Cann, Isaac K O

    2013-01-01

    -phenolic lignin model compounds. In addition to the peroxidases and laccases, fungi produce other accessory oxidases such as aryl-alcohol oxidase and the glyoxal oxidase that generate the hydrogen peroxide required by the peroxidases. Lignin-degrading enzymes have attracted the attention for their valuable biotechnological applications especially in the pretreatment of recalcitrant lignocellulosic biomass for biofuel production. The use of lignin-degrading enzymes has been studied in various applications such as paper industry, textile industry, wastewater treatment and the degradation of herbicides. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Commercializing solar for industry in California

    NASA Astrophysics Data System (ADS)

    Yudelson, J.

    1980-10-01

    The State of California has begun a commercialization program for increasing the rate of solar applications in industry. The components of this program include low interest loans, tax credits, revenue bonds and educational efforts. Many California industries appear to be likely candidates for solar systems, but as yet only a few companies have elected to install them. The various barriers to solar use by industry are primarily perceptual and financial. The emphasis of the state program for commercialization is turning increasingly towards educational seminars for industry groups and development of creative financial tools and arrangements. There are a few remaining legislative changes at state and federal levels, primarily involving leasing and tax laws which, if enacted, would overcome all of the remaining financial barriers to widespread adoption of solar applications by industry.

  3. An Estimation of the Potential Utilization in Iranian Pharmaceutical Industry Involved in the Stock Exchange, 2008-2012.

    PubMed

    Annabi, Majid; Kebriaeezadeh, Abbas; Mohammadi, Timor; Marashi Shoshtari, Seyed Nasrolah; Abedin Dorkoosh, Farid; Pourreza, Abolghasem; Heydari, Hassan

    2017-01-01

    The aim of this study was to measure the potential of production and the capacity used in the pharmaceutical industry. Capacity use is the actual production rate to the potential output, which reflects the gap between actual production and production capacity . Through econometric methods, translog cost function in the short run along with functions of share cost of production factors is estimated through seemingly unrelated repeated regression (SURE) as a multivariate regression analysis provided by zeller. During the study the capacity used is decreasing. The capacity used, which calculated by weighted average, also decreased and the amount during the study period is much less than the simple average of the industry. Average capacity utilization in the industry over five years of study is equal to 57% while the average capacity used calculated by the weighted of industry average is 37%. To enhance the economic potential requires a proper use of resources, creation of favorable economic structure and productivity of the industry. Due to the large amount of unused capacity in the pharmaceutical industry there is no need to invest anymore unless in new grounds and it is obvious that more investment will change using capacity.

  4. An Estimation of the Potential Utilization in Iranian Pharmaceutical Industry Involved in the Stock Exchange, 2008-2012

    PubMed Central

    Annabi, Majid; Kebriaeezadeh, Abbas; Mohammadi, Timor; Marashi Shoshtari, Seyed Nasrolah; Abedin Dorkoosh, Farid; Pourreza, Abolghasem; Heydari, Hassan

    2017-01-01

    The aim of this study was to measure the potential of production and the capacity used in the pharmaceutical industry. Capacity use is the actual production rate to the potential output, which reflects the gap between actual production and production capacity. Through econometric methods, translog cost function in the short run along with functions of share cost of production factors is estimated through seemingly unrelated repeated regression (SURE) as a multivariate regression analysis provided by zeller. During the study the capacity used is decreasing. The capacity used, which calculated by weighted average, also decreased and the amount during the study period is much less than the simple average of the industry. Average capacity utilization in the industry over five years of study is equal to 57% while the average capacity used calculated by the weighted of industry average is 37%. To enhance the economic potential requires a proper use of resources, creation of favorable economic structure and productivity of the industry. Due to the large amount of unused capacity in the pharmaceutical industry there is no need to invest anymore unless in new grounds and it is obvious that more investment will change using capacity. PMID:29552074

  5. Mapping ergonomics application to improve SMEs working condition in industrially developing countries: a critical review.

    PubMed

    Hermawati, Setia; Lawson, Glyn; Sutarto, Auditya Purwandini

    2014-01-01

    In industrially developing countries (IDC), small and medium enterprises (SMEs) account for the highest proprotion of employment. Unfortunately, the working conditions in SMEs are often very poor and expose employees to a potentially wide range of health and safety risks. This paper presents a comprehensive review of 161 articles related to ergonomics application in SMEs, using Indonesia as a case study. The aim of this paper is to investigate the extent of ergonomics application and identify areas that can be improved to promote effective ergonomics for SMEs in IDC. The most urgent issue found is the need for adopting participatory approach in contrast to the commonly implemented top-down approach. Some good practices in ergonomics application were also revealed from the review, e.g. a multidisciplinary approach, unsophisticated and low-cost solutions, and recognising the importance of productivity. The review also found that more work is still required to achieve appropriate cross-cultural adaptation of ergonomics application.

  6. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2013-01-01

    Domestic production of industrial sand and gravel in 2012 was about 49.5 Mt (55 million st), increasing 13 percent compared with that of 2011. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  7. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    PubMed Central

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue-Rong; Green, Allan G.; Shockey, Jay; Klasson, K. Thomas; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  8. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    PubMed

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-02-26

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.

  9. Advanced Industrial Materials Program

    NASA Astrophysics Data System (ADS)

    Stooksbury, F.

    1994-06-01

    The mission of the Advanced Industrial Materials (AIM) program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDA's. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  10. Applications of aerospace technology in industry, a technology transfer profile: Fire safety

    NASA Technical Reports Server (NTRS)

    Kottenstette, J. P.; Freeman, J. E.; Heins, C. R.; Hildred, W. M.; Johnson, F. D.; Staskin, E. R.

    1971-01-01

    The fire safety field is considered as being composed of three parts: an industry, a technology base, and a user base. An overview of the field is presented, including a perspective on the magnitude of the national fire safety problem. Selected NASA contributions to the technology of fire safety are considered. Communication mechanisms, particularly conferences and publications, used by NASA to alert the community to new developments in the fire safety field, are reviewed. Several examples of nonaerospace applications of NASA-generated fire safety technology are also presented. Issues associated with attempts to transfer this technology from the space program to other sectors of the American economy are outlined.

  11. DLP-based 3D metrology by structured light or projected fringe technology for life sciences and industrial metrology

    NASA Astrophysics Data System (ADS)

    Frankowski, G.; Hainich, R.

    2009-02-01

    Since the mid-eighties, a fundamental idea for achieving measuring accuracy in projected fringe technology was to consider the projected fringe pattern as an interferogram and evaluate it on the basis of advanced algorithms widely used for phase measuring in real-time interferometry. A fundamental requirement for obtaining a sufficiently high degree of measuring accuracy with this so-called "phase measuring projected fringe technology" is that the projected fringes, analogous to interference fringes, must have a cos2-shaped intensity distribution. Until the mid-nineties, this requirement for the projected fringe pattern measurement technology presented a basic handicap for its wide application in 3D metrology. This situation changed abruptly, when in the nineties Texas Instruments introduced to the market advanced digital light projection on the basis of micro mirror based projection systems, socalled DLP technology, which also facilitated the generation and projection of cos2-shaped intensity and/or fringe patterns. With this DLP technology, which from its original approach was actually oriented towards completely different applications such as multimedia projection, Texas Instruments boosted phase-measuring fringe projection in optical 3D metrology to a worldwide breakthrough both for medical as well as industrial applications. A subject matter of the lecture will be to present the fundamental principles and the resulting advantages of optical 3D metrology based on phase-measuring fringe projection using DLP technology. Further will be presented and discussed applications of the measurement technology in medical engineering and industrial metrology.

  12. Applications of aerospace technology in the electric power industry

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An overview of the electric power industry, selected NASA contributions to progress in the industry, linkages affecting the transfer and diffusion of technology, and, finally, a perspective on technology transfer issues are presented.

  13. Reliability and availability evaluation of Wireless Sensor Networks for industrial applications.

    PubMed

    Silva, Ivanovitch; Guedes, Luiz Affonso; Portugal, Paulo; Vasques, Francisco

    2012-01-01

    Wireless Sensor Networks (WSN) currently represent the best candidate to be adopted as the communication solution for the last mile connection in process control and monitoring applications in industrial environments. Most of these applications have stringent dependability (reliability and availability) requirements, as a system failure may result in economic losses, put people in danger or lead to environmental damages. Among the different type of faults that can lead to a system failure, permanent faults on network devices have a major impact. They can hamper communications over long periods of time and consequently disturb, or even disable, control algorithms. The lack of a structured approach enabling the evaluation of permanent faults, prevents system designers to optimize decisions that minimize these occurrences. In this work we propose a methodology based on an automatic generation of a fault tree to evaluate the reliability and availability of Wireless Sensor Networks, when permanent faults occur on network devices. The proposal supports any topology, different levels of redundancy, network reconfigurations, criticality of devices and arbitrary failure conditions. The proposed methodology is particularly suitable for the design and validation of Wireless Sensor Networks when trying to optimize its reliability and availability requirements.

  14. Reliability and Availability Evaluation of Wireless Sensor Networks for Industrial Applications

    PubMed Central

    Silva, Ivanovitch; Guedes, Luiz Affonso; Portugal, Paulo; Vasques, Francisco

    2012-01-01

    Wireless Sensor Networks (WSN) currently represent the best candidate to be adopted as the communication solution for the last mile connection in process control and monitoring applications in industrial environments. Most of these applications have stringent dependability (reliability and availability) requirements, as a system failure may result in economic losses, put people in danger or lead to environmental damages. Among the different type of faults that can lead to a system failure, permanent faults on network devices have a major impact. They can hamper communications over long periods of time and consequently disturb, or even disable, control algorithms. The lack of a structured approach enabling the evaluation of permanent faults, prevents system designers to optimize decisions that minimize these occurrences. In this work we propose a methodology based on an automatic generation of a fault tree to evaluate the reliability and availability of Wireless Sensor Networks, when permanent faults occur on network devices. The proposal supports any topology, different levels of redundancy, network reconfigurations, criticality of devices and arbitrary failure conditions. The proposed methodology is particularly suitable for the design and validation of Wireless Sensor Networks when trying to optimize its reliability and availability requirements. PMID:22368497

  15. Motivators to participation in actual HIV vaccine trials.

    PubMed

    Dhalla, Shayesta; Poole, Gary

    2014-02-01

    An examination of actual HIV vaccine trials can contribute to an understanding of motivators for participation in these studies. Analysis of these motivators reveals that they can be categorized as social and personal benefits. Social benefits are generally altruistic, whereas personal benefits are psychological, physical, and financial. In this systematic review, the authors performed a literature search for actual preventive HIV vaccine trials reporting motivators to participation. Of studies conducted in the Organization for Economic Co-operation and Development (OECD) countries, the authors retrieved 12 studies reporting on social benefits and seven reporting on personal benefits. From the non-OECD countries, nine studies reported on social benefits and eight studies on personal benefits. Social benefits were most frequently described on macroscopic, altruistic levels. Personal benefits were most frequently psychological in nature. Rates of participation were compared between the OECD and the non-OECD countries. Knowledge of actual motivators in specific countries and regions can help target recruitment in various types of actual HIV vaccine trials.

  16. Microbial xylanases: engineering, production and industrial applications.

    PubMed

    Juturu, Veeresh; Wu, Jin Chuan

    2012-01-01

    and paper industries for a longer time but more and more attention has been paid to using them in producing sugars and other chemicals from lignocelluloses in recent years. Mining new genes from nature, rational engineering of known genes and directed evolution of these genes are required to get tailor-made xylanases for various industrial applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Patents on Phytochemicals: Methodologies of Extraction, Application in Food and Pharmaceutical Industry.

    PubMed

    Ordaz-Trinidad, Nancy; Dorantes-Alvarez, Lidia; Salas-Benito, Juan

    2015-01-01

    Patents on phytochemicals are being registered worldwide. Such phytochemicals provide benefits to human health, and include terpenoids, phenolic compounds, alkaloids, lignin, and fiber. This review has the purpose to provide a comprehensive overview of patents published in the last five years about extraction of phytochemicals and their application in the food and pharmaceutical industry. Forty eight pa- tents were analyzed and classified in four topics of interest; 1) Extraction, 2) Functional foods, 3) Biological activity, and 4) Prevention of diseases. Extraction yield of phytochemicals is the critical step. The techniques to extract phytochemicals include enzymat- ic hydrolysis, nano-particulate precipitation, salts formation and combination of solvents; however, the use of ultrasound and microwave is increasing. Patents concerning functional foods include pediatric formulations, sport drink, and compo- sitions that produce beneficial effects. Biological activity of plant extracts tested in animals or cell cultures, as antioxidant, anti-inflammatory, anticancer activity, reduction of obesity and diabetes are presented in this review. Application of phy- tochemicals in the prevention and treatment of health disorders, such as diabetes, gastritis, enteritis, topical inflammation, macular degeneration, gingivitis, prostatic hyperplasia, urinary impairments. Patents revised include 30% methodologies for extraction of phytochemicals, 16% application of phytochem- icals in food matrixes to obtain functional foods, 18% biological activity of extracts or compounds and 36% application in the prevention and treatment of illness, which reveals a great interest to protect intellectual property concerning applica- tion of phytochemicals formulations for human health.

  18. External Validity of Contingent Valuation: Comparing Hypothetical and Actual Payments.

    PubMed

    Ryan, Mandy; Mentzakis, Emmanouil; Jareinpituk, Suthi; Cairns, John

    2017-11-01

    Whilst contingent valuation is increasingly used in economics to value benefits, questions remain concerning its external validity that is do hypothetical responses match actual responses? We present results from the first within sample field test. Whilst Hypothetical No is always an Actual No, Hypothetical Yes exceed Actual Yes responses. A constant rate of response reversals across bids/prices could suggest theoretically consistent option value responses. Certainty calibrations (verbal and numerical response scales) minimise hypothetical-actual discrepancies offering a useful solution. Helping respondents resolve uncertainty may reduce the discrepancy between hypothetical and actual payments and thus lead to more accurate policy recommendations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Rational Behavioral Training and Changes in Self-Actualization.

    ERIC Educational Resources Information Center

    Johnson, Norbert; And Others

    1982-01-01

    Examined the effects on self-actualization of CETA supervisors who participated in a Rational Behavioral Training (RBT) group. The Personal Orientation Inventory (POI) was administered to experimental and control groups before and after the group. Results indicated the RBT experience enabled participants to move toward self-actualization. (RC)

  20. Self-Actualization Effects Of A Marathon Growth Group

    ERIC Educational Resources Information Center

    Jones, Dorothy S.; Medvene, Arnold M.

    1975-01-01

    This study examined the effects of a marathon group experience on university student's level of self-actualization two days and six weeks after the experience. Gains in self-actualization as a result of marathon group participation depended upon an individual's level of ego strength upon entering the group. (Author)

  1. Three-dimensional discrete-time Lotka-Volterra models with an application to industrial clusters

    NASA Astrophysics Data System (ADS)

    Bischi, G. I.; Tramontana, F.

    2010-10-01

    We consider a three-dimensional discrete dynamical system that describes an application to economics of a generalization of the Lotka-Volterra prey-predator model. The dynamic model proposed is used to describe the interactions among industrial clusters (or districts), following a suggestion given by [23]. After studying some local and global properties and bifurcations in bidimensional Lotka-Volterra maps, by numerical explorations we show how some of them can be extended to their three-dimensional counterparts, even if their analytic and geometric characterization becomes much more difficult and challenging. We also show a global bifurcation of the three-dimensional system that has no two-dimensional analogue. Besides the particular economic application considered, the study of the discrete version of Lotka-Volterra dynamical systems turns out to be a quite rich and interesting topic by itself, i.e. from a purely mathematical point of view.

  2. Chlor-Alkali Industry: A Laboratory Scale Approach

    ERIC Educational Resources Information Center

    Sanchez-Sanchez, C. M.; Exposito, E.; Frias-Ferrer, A.; Gonzalez-Garaia, J.; Monthiel, V.; Aldaz, A.

    2004-01-01

    A laboratory experiment for students in the last year of degree program in chemical engineering, chemistry, or industrial chemistry is presented. It models the chlor-alkali process, one of the most important industrial applications of electrochemical technology and the second largest industrial consumer of electricity after aluminium industry.

  3. Tracing Actual Causes

    DTIC Science & Technology

    2016-08-08

    actual values for variables in the SEM ), and an event e with M ,~u |= e, our definition answers the question : Which paths of the causal network G( M ...for each variable and a directed edge from vari- able X to Y if the equation for computing X uses Y . Given an SEM M , a context ~u (that supplies the...caused the event e1? Our definition answers this question as a set of causal slices, where each causal slice is a subgraph of G( M ). All paths in each

  4. A review on the applications of portable near-infrared spectrometers in the agro-food industry.

    PubMed

    dos Santos, Cláudia A Teixeira; Lopo, Miguel; Páscoa, Ricardo N M J; Lopes, João A

    2013-11-01

    Industry has created the need for a cost-effective and nondestructive quality-control analysis system. This requirement has increased interest in near-infrared (NIR) spectroscopy, leading to the development and marketing of handheld devices that enable new applications that can be implemented in situ. Portable NIR spectrometers are powerful instruments offering several advantages for nondestructive, online, or in situ analysis: small size, low cost, robustness, simplicity of analysis, sample user interface, portability, and ergonomic design. Several studies of on-site NIR applications are presented: characterization of internal and external parameters of fruits and vegetables; conservation state and fat content of meat and fish; distinguishing among and quality evaluation of beverages and dairy products; protein content of cereals; evaluation of grape ripeness in vineyards; and soil analysis. Chemometrics is an essential part of NIR spectroscopy manipulation because wavelength-dependent scattering effects, instrumental noise, ambient effects, and other sources of variability may complicate the spectra. As a consequence, it is difficult to assign specific absorption bands to specific functional groups. To achieve useful and meaningful results, multivariate statistical techniques (essentially involving regression techniques coupled with spectral preprocessing) are therefore required to extract the information hidden in the spectra. This work reviews the evolution of the use of portable near-infrared spectrometers in the agro-food industry.

  5. Application of Life Cycle Assessment (LCA) in Sugar Industries

    NASA Astrophysics Data System (ADS)

    Astuti, Arieyanti Dwi; Astuti, Rahayu Siwi Dwi; Hadiyanto, Hadiyanto

    2018-02-01

    Sugar is one of the main commodities that are needed for human life. The demand of sugar is very high with the trend increase from year to year. This condition makes the sugar industry become a leading industry that must be maintained sustainability. The sustainability of the sugar industry is influenced by the use of energy and natural resources and the resulting environmental impacts. Therefore, an effort is needed to analyze the environmental aspects and potential environmental impacts resulting from a product (sugar), by using Life Cycle Assessment (LCA). LCA is a very important tool for the analysis of a process/system from its cradle to grave. This technique is very useful in the estimation of energy usage and environmental load of a product/system. This paper aims to describe the main elements of sugar industries using Life Cycle Assessment.

  6. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2006-01-01

    In 2005, US production of crude garnet concentrate for industrial use was 28.4 kt valued at $3.05 million. Refined garnet material sold or used was 30.4 kt valued at $10 million. For the year, the US was one of the world's leading consumers of industrial garnet. Domestic values for crude concentrates for different applications ranged from about $53 to $120/t. In the short term, excess production capacity, combined with suppliers that vary in quality, grain size and mineral type, will keep prices down.

  7. Microbial keratinases: industrial enzymes with waste management potential.

    PubMed

    Verma, Amit; Singh, Hukum; Anwar, Shahbaz; Chattopadhyay, Anirudha; Tiwari, Kapil K; Kaur, Surinder; Dhilon, Gurpreet Singh

    2017-06-01

    Proteases are ubiquitous enzymes that occur in various biological systems ranging from microorganisms to higher organisms. Microbial proteases are largely utilized in various established industrial processes. Despite their numerous industrial applications, they are not efficient in hydrolysis of recalcitrant, protein-rich keratinous wastes which result in environmental pollution and health hazards. This paved the way for the search of keratinolytic microorganisms having the ability to hydrolyze "hard to degrade" keratinous wastes. This new class of proteases is known as "keratinases". Due to their specificity, keratinases have an advantage over normal proteases and have replaced them in many industrial applications, such as nematicidal agents, nitrogenous fertilizer production from keratinous waste, animal feed and biofuel production. Keratinases have also replaced the normal proteases in the leather industry and detergent additive application due to their better performance. They have also been proved efficient in prion protein degradation. Above all, one of the major hurdles of enzyme industrial applications (cost effective production) can be achieved by using keratinous waste biomass, such as chicken feathers and hairs as fermentation substrate. Use of these low cost waste materials serves dual purposes: to reduce the fermentation cost for enzyme production as well as reducing the environmental waste load. The advent of keratinases has given new direction for waste management with industrial applications giving rise to green technology for sustainable development.

  8. A house divided: cooperative and competitive recruitment in vital industries.

    PubMed

    Willis, William K; Muslin, Ivan; Timko, Karlyn N

    2016-03-01

    To propose a theoretical based model approach to address the nursing shortage problem of recruiting qualified applicants. Vital industries such as nursing and trucking face a large labour shortage. A literature review focusing on recruitment and realistic job previews examines relevant theories and an indication of the focus of similar research. Game theory illustrates cooperative and competitive recruitment strategies in vital industries. Proposition and model development where cooperative or competitive strategies for recruitment can either increase or decrease the employee applicant pool. Institutional theory states that firms within a population become isomorphic in nature. Firms employing cooperative or competitive strategies for recruitment can change organisational practices through isomorphic processes. Industries facing a labour market shortage using cooperative strategy will use realistic job previews accurately to disseminate information about industry jobs. Realistic job previews will increase the applicant pool through individuals self-selecting into, rather than out of, the applicant pool. Recruitment in the nursing industry has been examined at the individual applicant and organisational level, yet the overall industry has been ignored. As nursing shortages continue, viewing recruitment at the macro level (the overall industry) is appropriate. Game theory as proposed provides opportunities for current research at the industry level. © 2015 John Wiley & Sons Ltd.

  9. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH...

  10. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH...

  11. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH...

  12. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH...

  13. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH...

  14. Activated-charcoal filters: water treatment, pollution control, and industrial applications. January 1970-July 1988 (citations from the US Patent data base). Report for January 1970-July 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This bibliography contains citations of selected patents concerning activated-charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic gases and pollutants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, swimming pool filtration, waste conversion, automobile fuel and exhaust systems, and footwear deodorizing. (Contains 129 citations fully indexed and including a title list.)

  15. Dancers' Perceived and Actual Knowledge of Anatomy.

    PubMed

    Kotler, Dana H; Lynch, Meaghan; Cushman, Daniel; Hu, Jason; Garner, Jocelyn

    2017-06-15

    Dancers are highly susceptible to musculoskeletal injuries and frequently require interaction with medical professionals. While many dancers have a finely tuned awareness of their bodies, their knowledge of the fundamentals of human anatomy is not uniform. There is a paucity of literature on the benefits of human anatomy education in dancers, though it seems intuitive that there should be a relationship. The purpose of this study was to assess dancers' perceived and actual knowledge of basic musculoskeletal anatomy and its relationship to function. Adult dancers at the undergraduate, pre-professional, and professional levels were surveyed through an anonymous online questionnaire. Questions included demographic information, dance techniques studied, anatomy training, and injury history. Subjects rated their perceived knowledge of anatomy and were tested with 15 multiple-choice questions on basic musculoskeletal anatomy. Four hundred seventy-five surveys were completed. Ordinal regression showed a correlation of perceived to actual knowledge of anatomy (p < 0.001). Factors that correlated with increases in both perceived and actual knowledge of anatomy included having taken an anatomy course of any type (p < 0.001) and increased age (p ≤ 0.001). Years of dance training and professional dancer status both significantly correlated with increased knowledge of anatomy (p < 0.001) but not perceived knowledge. Chi-square analysis showed that dancers with training in either modern or jazz dance had a significantly higher perceived, but not actual, knowledge when compared to those without training in those styles of dance (p < 0.001 and p = 0.011, respectively). In conclusion, dancers generally scored well on questions pertaining to basic musculoskeletal anatomy, and their perception correlated with their actual knowledge of anatomy. Factors that contribute to dancers' knowledge of anatomy include age, years of experience, professional dancer status, and anatomy training.

  16. The Self-Actualization of Polk Community College Students.

    ERIC Educational Resources Information Center

    Pearsall, Howard E.; Thompson, Paul V., Jr.

    This article investigates the concept of self-actualization introduced by Abraham Maslow (1954). A summary of Maslow's Needs Hierarchy, along with a description of the characteristics of the self-actualized person, is presented. An analysis of humanistic education reveals it has much to offer as a means of promoting the principles of…

  17. Liquid sourdough fermentation: industrial application perspectives.

    PubMed

    Carnevali, P; Ciati, R; Leporati, A; Paese, M

    2007-04-01

    Sourdough fermentation is considered to play a key role to get improved flavour, texture, nutritional and shelf-life properties of bakery products. Since few years Barilla R&D has been focusing on liquid sourdough fermentation which may deserve several advantages with respect to traditional processes. The results showed that the micro-biota of sourdough markedly influences flavour and texture of bakery products. Particular attention has been paid to lactic acid bacteria and yeasts. Selected lactic acid bacteria and yeasts were tested in sourdough liquid fermentation as single strain or in association. The parameters of fermentations were optimized and standardized to set up a laboratory plant liquid fermentation. Only a few strains of lactic acid bacteria were found to be suitable for liquid fermentation alone or in association with yeasts. Fermentations were carried out at pilot plant and an industrial technology was developed. This work describes the results found for the organoleptic profile of an industrial bread started with liquid sourdough with respect to bakers' yeast bread without sourdough addition.

  18. Performance of Building Technology Graduates in the Construction Industry in Ghana

    ERIC Educational Resources Information Center

    Ayarkwa, J.; Dansoh, Ayirebi; Adinyira, E.; Amoah, P.

    2011-01-01

    Purpose: This paper aims to assess the perception of the Ghanaian construction industry of the performance of entry-level building technology graduates. Also, other non-technical skills or attributes expected from building technology graduates are to be compared with the actual proficiency of the graduates. Design/methodology/approach: The…

  19. Changes in Occupational Employment in the Food and Kindred Products Industry, 1977-1980. Technical Note No. 1.

    ERIC Educational Resources Information Center

    Lewis, Gary

    The extent to which occupational staffing patterns change over time was examined in a study focusing on the Food and Kindred Products industry--Standard Industrial Classification (SIC) 20. Data were taken from the 1977 and 1980 Occupational Employment Statistics program coordinated by the United States Department of Labor Statistics. Actual 1980…

  20. The globalization of the arms industry: The next proliferation challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bitzinger, R.A.

    1994-12-31

    The globalization of the arms industry entails a significant shift away from traditional, single-country patterns of weapons production toward internationalization of the development, production, and marketing of arms. While wholly indigenous armaments production may be on the decline, multinational arms production - through collaboration on individual weapon systems and increasingly via interfirm linkages across the international arms industry - appears actually to be expanding. In several instances, in fact, multinational armaments production is increasingly supplementing or even supplanting indigenous or autonomous weapons production or arms imports. The emergence of an increasingly transnational defense technology and industrial base is fundamentally affectingmore » the shape and content of much of the global arms trade. This changing defense market, in turn, will have a profound impact on a number of national security issues concerning the Western industrialized nations. 3 figs., 2 tabs.« less

  1. Industrial demand side management: A status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, M.F.; Conger, R.L.; Foley, T.J.

    This report provides an overview of and rationale for industrial demand side management (DSM) programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential energy savings in kilowatt hours. The report presents types and examples of programs and explores elements of successful programs. Two in-depth case studies (from Boise Cascade and Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. A comprehensive bibliography is included, technical assistance programsmore » are listed and described, and a methodology for evaluating potential or actual savings from projects is delineated.« less

  2. The small community solar thermal power experiment. Parabolic dish technology for industrial process heat application

    NASA Technical Reports Server (NTRS)

    Polzien, R. E.; Rodriguez, D.

    1981-01-01

    Aspects of incorporating a thermal energy transport system (ETS) into a field of parabolic dish collectors for industrial process heat (IPH) applications were investigated. Specific objectives are to: (1) verify the mathematical optimization of pipe diameters and insulation thicknesses calculated by a computer code; (2) verify the cost model for pipe network costs using conventional pipe network construction; (3) develop a design and the associated production costs for incorporating risers and downcomers on a low cost concentrator (LCC); (4) investigate the cost reduction of using unconventional pipe construction technology. The pipe network design and costs for a particular IPH application, specifically solar thermally enhanced oil recovery (STEOR) are analyzed. The application involves the hybrid operation of a solar powered steam generator in conjunction with a steam generator using fossil fuels to generate STEOR steam for wells. It is concluded that the STEOR application provides a baseline pipe network geometry used for optimization studies of pipe diameter and insulation thickness, and for development of comparative cost data, and operating parameters for the design of riser/downcomer modifications to the low cost concentrator.

  3. The design and development of CO2 medium-level laser power calibration system for industrial and medical applications in Thailand

    NASA Astrophysics Data System (ADS)

    Nontapot, Kanokwan

    2018-03-01

    The carbon dioxide laser (CO2 laser) is one of the most useful and is the highest CW laser at the present. The laser produces infrared light at 10.6 um. Due to its high power, CO2 lasers are usually used in industrial applications such as cutting and welding, or for engraving at less power. CO2 lasers are also used widely in medical applications, such as laser surgery, skin resurfacing, and removing mold, due to water (biological tissue) absorb light at this wavelength very well. CO2 lasers are also used as LIDAR laser source for military range finding applications because of the transparency of the atmosphere to infrared light. Due to the increasing use of CO2 lasers laser in industrial and medical applications in Thailand, the National Institute of Metrology (Thailand) has set up a CO2 laser power calibration system and provide calibration service to customers this year. The service support calibration of medium-level laser power at wavelength of 10.6 um and at power range 100 mW-10W. The design and development of the calibration system will be presented.

  4. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2012-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet's angular fractures, relatively high hardness and specific gravity, chemical inertness, and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  5. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2011-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet's angular fractures, relatively high hardness and specific gravity, chemical inertness and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  6. Feed Additives Production Out of Dairy Industry Waste

    NASA Astrophysics Data System (ADS)

    Ulrikh, EV

    2017-05-01

    Application of macro- and microelements in animal feed is the most effective in the case of their industrial brining in mixed feeds, feed mixes, and protein-vitamin supplements in the form of various complex salts. Application of the product contributes to the body’s needs of broiler chickens in vitamins and minerals, normalization of metabolism, and ensures a high rate of growth and development. The composition of the premix can be adjusted depending on the actual proportion of biologically active substances in the feed used by a consumer. It is possible to include in the premix other biologically active substances. Assessing the slaughter qualities of experimental pigs, it was found (Table. 2) that the pigs of group II has a tendency toward greater weight of hot carcass (4.5 kg), of slaughter yelts (by 3.83%) and toward a smaller thickness of fat over the spinous processes of the 6-7th thoracic vertebrae (1.67 mm). The performed investigations have established that there is no significant difference between groups I and II in the content of certain amino acids, however, group I shows poorer results in the content of valine, isoleucine, leucine and lysine by 0.16 g / 100 g of protein (P> 0.999) 0.2 (P> 0.90), 0.46 (P> 0.999) and 0.39 (P> 0.999) g / 100 g protein respectively.

  7. Does medical students’ clinical performance affect their actual performance during medical internship?

    PubMed Central

    Han, Eui-Ryoung; Chung, Eun-Kyung

    2016-01-01

    INTRODUCTION This study examines the relationship between the clinical performance of medical students and their performance as doctors during their internships. METHODS This retrospective study involved 63 applicants of a residency programme conducted at Chonnam National University Hospital, South Korea, in November 2012. We compared the performance of the applicants during their internship with their clinical performance during their fourth year of medical school. The performance of the applicants as interns was periodically evaluated by the faculty of each department, while their clinical performance as fourth-year medical students was assessed using the Clinical Performance Examination (CPX) and the Objective Structured Clinical Examination (OSCE). RESULTS The performance of the applicants as interns was positively correlated with their clinical performance as fourth-year medical students, as measured by the CPX and OSCE. The performance of the applicants as interns was moderately correlated with the patient-physician interaction items addressing communication and interpersonal skills in the CPX. CONCLUSION The clinical performance of medical students during their fourth year in medical school was related to their performance as medical interns. Medical students should be trained to develop good clinical skills through actual encounters with patients or simulated encounters using manikins, to enable them to become more competent doctors. PMID:26768172

  8. R&D Plan for RISMC Industry Application #1: ECCS/LOCA Cladding Acceptance Criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szilard, Ronaldo Henriques; Zhang, Hongbin; Epiney, Aaron Simon

    The Nuclear Regulatory Commission (NRC) is finalizing a rulemaking change that would revise the requirements in 10 CFR 50.46. In the proposed new rulemaking, designated as 10 CFR 50.46c, the NRC proposes a fuel performance-based equivalent cladding reacted (ECR) criterion as a function of cladding hydrogen content before the accident (pre-transient) in order to include the effects of higher burnup on cladding performance as well as to address other technical issues. A loss of operational margin may result due to the more restrictive cladding embrittlement criteria. Initial and future compliance with the rule may significantly increase vendor workload and licenseemore » costs as a spectrum of fuel rod initial burnup states may need to be analyzed to demonstrate compliance. The Idaho National Laboratory (INL) has initiated a project, as part of the DOE Light Water Reactor Sustainability Program (LWRS), to develop analytical capabilities to support the industry in the transition to the new rule. This project is called the Industry Application 1 (IA1) within the Risk-Informed Safety Margin Characterization (RISMC) Pathway of LWRS. The general idea behind the initiative is the development of an Integrated Evaluation Model (IEM). The motivation is to develop a multiphysics framework to analyze how uncertainties are propagated across the stream of physical disciplines and data involved, as well as how risks are evaluated in a LOCA safety analysis as regulated under 10 CFR 50.46c. This IEM is called LOTUS which stands for LOCA Toolkit for US, and it represents the LWRS Program’s response to the proposed new rule making. The focus of this report is to complete an R&D plan to describe the demonstration of the LOCA/ECCS RISMC Industry Application # 1 using the advanced RISMC Toolkit and methodologies. This report includes the description and development plan for a RISMC LOCA tool that fully couples advanced MOOSE tools already in development in order to characterize and

  9. The epidemiology and re-employment outcomes of 467 workers with industrial injuries.

    PubMed

    Li, Kuicheng; Tang, Dan; Xu, Yanwen; Lu, Xunwen

    2008-01-01

    To describe the epidemiology and re-employment outcomes of employees with industrial injuries and provide further information for the prevention of industrial injuries and work rehabilitation with the purpose of lower injury rate and cost savings. Learn about epidemiology and re-employment status by investigating 467 employees separately when in hospital and half a year after leaving hospital. The investigation form is designed according to the Classification Criterion of Employee's Casualty Accident (UDC658.382 GB6441-86) and local industrial injury status. Employees with industrial injuries have obvious regional characteristics in aspects such as sex composition, age, position of injury, injury causes, injury type, and vocation before suffering injury, level of education, degree of disability, employment wishes, and actual employment status. Industrial injury presents obvious characteristics in epidemiology. Therefore, it should take respective characteristics into consideration when conducting prevention of industrial injury and work rehabilitation.

  10. Diffraction and Transmission Synchrotron Imaging at the German Light Source ANKA--Potential Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rack, Alexander; Weitkamp, Timm; European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex

    2009-03-10

    Diffraction and transmission synchrotron imaging methods have proven to be highly suitable for investigations in materials research and non-destructive evaluation. The high flux and spatial coherence of X-rays from modern synchrotron light sources allows one to work using high resolution and different contrast modalities. This article gives a short overview of different transmission and diffraction imaging methods with high potential for industrial applications, now available for commercial access via the German light source ANKA (Forschungszentrum Karlsruhe) and its new department ANKA Commercial Service (ANKA COS, http://www.anka-cos.de)

  11. Electrodermal responses to implied versus actual violence on television.

    PubMed

    Kalamas, A D; Gruber, M L

    1998-01-01

    The electrodermal response (EDR) of children watching a violent show was measured. Particular attention was paid to the type of violence (actual or implied) that prompted an EDR. In addition, the impact of the auditory component (sounds associated with violence) of the show was evaluated. Implied violent stimuli, such as the villain's face, elicited the strongest EDR. The elements that elicited the weakest responses were the actual violent stimuli, such as stabbing. The background noise and voices of the sound track enhanced the total number of EDRs. The results suggest that implied violence may elicit more fear (as measured by EDRs) than actual violence does and that sounds alone contribute significantly to the emotional response to television violence. One should not, therefore, categorically assume that a show with mostly actual violence evokes less fear than one with mostly implied violence.

  12. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2013-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet’s angular fractures, relatively high hardness and specific gravity, chemical inertness and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  13. Self-Actualization and the Human Tendency for Varied Experience

    ERIC Educational Resources Information Center

    Schwartz, Marilyn M.; Gaines, Lawrence S.

    1974-01-01

    Examines the hypothesis that a significant correlate of self-actualization may be the subjective expression of the tendency towards novelty experiencing and examines the interaction of self-actualization level and specific components of the novelty experiencing construct. (Author/RC)

  14. Dimensional measuring techniques in the automotive and aircraft industry

    NASA Astrophysics Data System (ADS)

    Muench, K. H.; Baertlein, Hugh

    1994-03-01

    Optical tooling methods used in industry are rapidly being replaced by new electronic sensor techniques. The impact of new measuring technologies on the production process has caused major changes on the industrial shop floor as well as within industrial measurement systems. The paper deals with one particular industrial measuring system, the manual theodolite measuring system (TMS), within the aircraft and automobile industry. With TMS, setup, data capture, and data analysis are flexible enough to suit industry's demands regarding speed, accuracy, and mobility. Examples show the efficiency and the wide range of TMS applications. In cooperation with industry, the Video Theodolite System was developed. Its origin, functions, capabilities, and future plans are briefly described. With the VTS a major step has been realized in direction to vision systems for industrial applications.

  15. Rice Bran Oil: A Versatile Source for Edible and Industrial Applications.

    PubMed

    Pal, Yogita P; Pratap, Amit P

    2017-01-01

    Rice bran oil (RBO) is healthy gift generously given by nature to mankind. RBO is obtained from rice husk, a byproduct of rice milling industry and is gaining lot of importance as cooking oil due to presence of important micronutrient, gamma oryzanol. Its high smoke point is beneficial for its use for frying and deep frying of food stuff. It is popular because of balanced fatty acid profile (most ideal ratio of saturated, monounsaturated and polyunsaturated fatty acids), antioxidant capacity, and cholesterollowering abilities. Rice bran wax which is secondary by-product obtained as tank settling from RBO is used as a substitute for carnauba wax in cosmetics, confectionery, shoe creams etc. It can be also used as a source for fatty acid and fatty alcohol. The article is intended to highlight for the importance of RBO and its applications.

  16. Academia Meets Industry.

    PubMed

    Schäfer, Christian; Paprotka, Tobias; Heitzer, Ellen; Eccleston, Mark; Noe, Johannes; Holdenrieder, Stefan; Diehl, Frank; Thierry, Alain

    2016-01-01

    Researchers working in industrial laboratories as well as in academic laboratories discussed topics related to the use of extracellular nucleic acids in different fields. These included areas like non-invasive prenatal diagnosis, the application of different methods for the analysis and characterization of patients with benign and malignant diseases and technical aspects associated with extracellular nucleic acids. In addition, the possibilities and chances for a cooperation of researchers working in different worlds, i.e. academia and industry, were discussed.

  17. Microbial biosurfactants as additives for food industries.

    PubMed

    Campos, Jenyffer Medeiros; Stamford, Tânia Lúcia Montenegro; Sarubbo, Leonie Asfora; de Luna, Juliana Moura; Rufino, Raquel Diniz; Banat, Ibrahim M

    2013-01-01

    Microbial biosurfactants with high ability to reduce surface and interfacial surface tension and conferring important properties such as emulsification, detergency, solubilization, lubrication and phase dispersion have a wide range of potential applications in many industries. Significant interest in these compounds has been demonstrated by environmental, bioremediation, oil, petroleum, food, beverage, cosmetic and pharmaceutical industries attracted by their low toxicity, biodegradability and sustainable production technologies. Despite having significant potentials associated with emulsion formation, stabilization, antiadhesive and antimicrobial activities, significantly less output and applications have been reported in food industry. This has been exacerbated by uneconomical or uncompetitive costing issues for their production when compared to plant or chemical counterparts. In this review, biosurfactants properties, present uses and potential future applications as food additives acting as thickening, emulsifying, dispersing or stabilising agents in addition to the use of sustainable economic processes utilising agro-industrial wastes as alternative substrates for their production are discussed. © 2013 American Institute of Chemical Engineers.

  18. Applications of multi-spectral imaging: failsafe industrial flame detector

    NASA Astrophysics Data System (ADS)

    Wing Au, Kwong; Larsen, Christopher; Cole, Barry; Venkatesha, Sharath

    2016-05-01

    Industrial and petrochemical facilities present unique challenges for fire protection and safety. Typical scenarios include detection of an unintended fire in a scene, wherein the scene also includes a flare stack in the background. Maintaining a high level of process and plant safety is a critical concern. In this paper, we present a failsafe industrial flame detector which has significant performance benefits compared to current flame detectors. The design involves use of microbolometer in the MWIR and LWIR spectrum and a dual band filter. This novel flame detector can help industrial facilities to meet their plant safety and critical infrastructure protection requirements while ensuring operational and business readiness at project start-up.

  19. Activated charcoal filters: Water treatment, pollution control, and industrial applications. October 1970-October 1989 (Citations from the US Patent data base). Report for October 1970-October 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This bibliography contains citations of selected patents concerning activated charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic materials and contaminants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, waste conversion, automotive fuel and exhaust systems, swimming-pool filtration, tobacco-smoke filters, kitchen ventilators, medical filtration treatment, and odor-absorbing materials. (This updated bibliography contains 173 citations, 12 of which are new entries to the previous edition.)

  20. Activated-charcoal filters: Water treatment, pollution control, and industrial applications. January 1970-August 1989 (Citations from the US Patent data base). Report for January 1970-August 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This bibliography contains citations of selected patents concerning activated charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic materials and contaminants are described. Applications include drinking-water purification, filtering beverages, production of polymer materials, solvent and metal recovery, waste conversion, automotive fuel and exhaust systems, swimming-pool filtration, tobacco-smoke filters, kitchen ventilators, medical-filtration treatment, and odor absorbing materials. (This updated bibliography contains 161 citations, 32 of which are new entries to the previous edition.)

  1. Benefits of clean development mechanism application on the life cycle assessment perspective: a case study in the palm oil industry.

    PubMed

    Chuen, Onn Chiu; Yusoff, Sumiani

    2012-03-01

    This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill.

  2. The Self-Actualizing Case Method.

    ERIC Educational Resources Information Center

    Gunn, Bruce

    1980-01-01

    Presents a case procedure designed to assist trainees in perfecting their problem-solving skills. Elements of that procedure are the rationale behind this "self-actualizing" case method; the role that the instructor, case leaders, and participants play in its execution; and the closed-loop grading system used for peer evaluation. (CT)

  3. Linguistic Theory and Actual Language.

    ERIC Educational Resources Information Center

    Segerdahl, Par

    1995-01-01

    Examines Noam Chomsky's (1957) discussion of "grammaticalness" and the role of linguistics in the "correct" way of speaking and writing. It is argued that the concern of linguistics with the tools of grammar has resulted in confusion, with the tools becoming mixed up with the actual language, thereby becoming the central…

  4. Energy industry

    NASA Astrophysics Data System (ADS)

    Staszak, Katarzyna; Wieszczycka, Karolina

    2018-04-01

    The potential sources of metals from energy industries are discussed. The discussion is organized based on two main metal-contains wastes from power plants: ashes, slags from combustion process and spent catalysts from selective catalytic NOx reduction process with ammonia, known as SCR. The compositions, methods of metals recovery, based mainly on leaching process, and their further application are presented. Solid coal combustion wastes are sources of various compounds such as silica, alumina, iron oxide, and calcium. In the case of the spent SCR catalysts mainly two metals are considered: vanadium and tungsten - basic components of industrial ones.

  5. The National Ignition Facility and Industry

    NASA Astrophysics Data System (ADS)

    Harri, J. G.; Paisner, J. A.; Lowdermilk, W. H.; Boyes, J. D.; Kumpan, S. A.; Sorem, M. S.

    1994-09-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of our construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project.

  6. Analysis on online word-of-mouth of customer satisfaction in cultural and creative industries of Taiwan: using cultural heritage application and performance facilities as examples

    NASA Astrophysics Data System (ADS)

    Tsai, Li-Fen; Shaw, Jing-Chi; Wang, Pei-Wen; Shih, Meng-Long; Su, Yi-Jing

    2011-10-01

    This study aims to probe into customers' online word-of-mouth regarding cultural heritage applications and performance facilities in Cultural and Creative Industries. Findings demonstrate that, regarding online word-of-mouth for art museums, museums, and art villages, items valued by customers are design aesthetics of displays and collections, educational functions, and environments and landscapes. The percentages are 10.102%, 11.208% and 11.44%, respectively. In addition, cultural heritage applications and performance facility industries in Taiwan are highly valued in online word-of-mouth.

  7. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications.

    PubMed

    Gu, Yang; Xu, Xianhao; Wu, Yaokang; Niu, Tengfei; Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Liu, Long

    2018-05-15

    Bacillus subtilis is the most characterized gram-positive bacterium that has significant attributes, such as growing well on cheap carbon sources, possessing clear inherited backgrounds, having mature genetic manipulation methods, and exhibiting robustness in large-scale fermentations. Till date, B. subtilis has been identified as attractive hosts for the production of recombinant proteins and chemicals. By applying various systems and synthetic biology tools, the productivity features of B. subtilis can be thoroughly analyzed and further optimized via metabolic engineering. In the present review, we discussed why B. subtilis is the primary organisms used for metabolic engineering and industrial applications. Additionally, we summarized the recent advances in systems and synthetic biology, engineering strategies for improving cellular performances, and metabolic engineering applications of B. subtilis. In particular, we proposed emerging opportunities and essential strategies to enable the successful development of B. subtilis as microbial cell factories. Copyright © 2018. Published by Elsevier Inc.

  8. Taking things apart: ovario-hysterectomy--textbook knowledge and actual practice in veterinary surgery.

    PubMed

    Woodgate, Dawn

    2006-06-01

    Veterinary surgery provides an interesting context in which to address important questions about the links between formal 'book' learning and actual, personal experience of the phenomena in question, and to examine the processes through which these links are forged. Participant observation of surgical procedures suggests that surgeons initially learn about anatomy from books, pictures and demonstrations, and become skilled 'operators' through the application of enhancement and reduction procedures that have the effect of transforming the living body into something more closely resembling anatomical pictures of it. Some of these procedures can be seen as a set of formalized 'rules' for performing operations, and like most rules, they appear to decrease in importance as a surgeon gains experience. They may, however, regain importance when a practitioner meets with an anatomical variant that he or she has not previously encountered. Other practices appear to be less formalized, requiring creative, constructive use of visual aids or language practices outside formal textbook knowledge. The links between actual bodies (and operations) and textbook representations of them are thus formed within a community of 'operators'.

  9. Chromatography - mass spectrometry in aerospace industry

    NASA Astrophysics Data System (ADS)

    Buryak, A. K.; Serdyuk, T. M.

    2013-01-01

    The applications of chromatography - mass spectrometry in aerospace industry are considered. The primary attention is devoted to the development of physicochemical grounds of the use of various chromatography - mass spectrometry procedures to solve topical problems of this industry. Various methods for investigation of the composition of rocket fuels, surfaces of structural materials and environmental media affected by aerospace activities are compared. The application of chromatography - mass spectrometry for the development and evaluation of processes for decontaminations of equipment, industrial wastes and soils from rocket fuel components is substantiated. The bibliography includes 135 references.

  10. Industry involvement in IPAD through the Industry Technical Advisory Board

    NASA Technical Reports Server (NTRS)

    Swanson, W. E.

    1980-01-01

    In 1976 NASA awarded The Boeing Company a contract to develop IPAD (Integrated Programs for Aerospace-Vehicle Design). This contract included a requirement for Boeing to form an Industrial Technical Advisory Board (ITAB), with members representing major aerospace and computer companies. The purpose of this board was to guide the development of IPAD. The specific goal of IPAD is to increase United States aerospace industry productivity through the application of computers to manage engineering data. This goal clearly is attainable; in fact, IPAD's influence can reach beyond the aerospace industry to many businesses where product development is based on the design-building process. An enhanced IPAD, therefore, is a national asset of significance. The role of ITAB in guiding the development of this system is described.

  11. Safety of Nanotechnology in Food Industries

    PubMed Central

    Amini, Seyed Mohammad; Gilaki, Marzieh; Karchani, Mohsen

    2014-01-01

    The arrival of nanotechnology in various industries has been so rapid and widespread because of its wide-ranging applications in our daily lives. Nutrition and food service is one of the biggest industries to be affected by nanotechnology in all areas, changing even the nature of food itself. Whether it’s farming, food packaging, or the prevention of microbial contamination the major food industries have seen dramatic changes because of nanotechnology. Different nanomaterials such as nanopowders, nanotubes, nano-fibers, quantum dots, and metal and metal-oxide nanoparticles are globally produced in large quantities due to their broad applicability in food-related industries. Because of the unique properties of nanostructures and nanomaterials – such as a large surface area, high activity, and small size, there is some concern about the potential for harmful adverse effects of used nanomaterials on health or the environment. However, because of tremendous advances in different industries, this concern may be unnecessary. This paper presents some uses of nanomaterials in food and related industries and their possible side-effects. This review covers the various aspects of nanomaterials and their impact on human exposure, safety, and environmental concerns. PMID:25763176

  12. Microfluidics for food, agriculture and biosystems industries.

    PubMed

    Neethirajan, Suresh; Kobayashi, Isao; Nakajima, Mitsutoshi; Wu, Dan; Nandagopal, Saravanan; Lin, Francis

    2011-05-07

    Microfluidics, a rapidly emerging enabling technology has the potential to revolutionize food, agriculture and biosystems industries. Examples of potential applications of microfluidics in food industry include nano-particle encapsulation of fish oil, monitoring pathogens and toxins in food and water supplies, micro-nano-filtration for improving food quality, detection of antibiotics in dairy food products, and generation of novel food structures. In addition, microfluidics enables applications in agriculture and animal sciences such as nutrients monitoring and plant cells sorting for improving crop quality and production, effective delivery of biopesticides, simplified in vitro fertilization for animal breeding, animal health monitoring, vaccination and therapeutics. Lastly, microfluidics provides new approaches for bioenergy research. This paper synthesizes information of selected microfluidics-based applications for food, agriculture and biosystems industries. © The Royal Society of Chemistry 2011

  13. Development and application of a real-time testbed for multiagent system interoperability: A case study on hierarchical microgrid control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cintuglu, Mehmet Hazar; Youssef, Tarek; Mohammed, Osama A.

    This article presents the development and application of a real-time testbed for multiagent system interoperability. As utility independent private microgrids are installed constantly, standardized interoperability frameworks are required to define behavioral models of the individual agents for expandability and plug-and-play operation. In this paper, we propose a comprehensive hybrid agent framework combining the foundation for intelligent physical agents (FIPA), IEC 61850, and data distribution service (DDS) standards. The IEC 61850 logical node concept is extended using FIPA based agent communication language (ACL) with application specific attributes and deliberative behavior modeling capability. The DDS middleware is adopted to enable a real-timemore » publisher-subscriber interoperability mechanism between platforms. The proposed multi-agent framework was validated in a laboratory based testbed involving developed intelligent electronic device (IED) prototypes and actual microgrid setups. Experimental results were demonstrated for both decentralized and distributed control approaches. Secondary and tertiary control levels of a microgrid were demonstrated for decentralized hierarchical control case study. A consensus-based economic dispatch case study was demonstrated as a distributed control example. Finally, it was shown that the developed agent platform is industrially applicable for actual smart grid field deployment.« less

  14. Development and application of a real-time testbed for multiagent system interoperability: A case study on hierarchical microgrid control

    DOE PAGES

    Cintuglu, Mehmet Hazar; Youssef, Tarek; Mohammed, Osama A.

    2016-08-10

    This article presents the development and application of a real-time testbed for multiagent system interoperability. As utility independent private microgrids are installed constantly, standardized interoperability frameworks are required to define behavioral models of the individual agents for expandability and plug-and-play operation. In this paper, we propose a comprehensive hybrid agent framework combining the foundation for intelligent physical agents (FIPA), IEC 61850, and data distribution service (DDS) standards. The IEC 61850 logical node concept is extended using FIPA based agent communication language (ACL) with application specific attributes and deliberative behavior modeling capability. The DDS middleware is adopted to enable a real-timemore » publisher-subscriber interoperability mechanism between platforms. The proposed multi-agent framework was validated in a laboratory based testbed involving developed intelligent electronic device (IED) prototypes and actual microgrid setups. Experimental results were demonstrated for both decentralized and distributed control approaches. Secondary and tertiary control levels of a microgrid were demonstrated for decentralized hierarchical control case study. A consensus-based economic dispatch case study was demonstrated as a distributed control example. Finally, it was shown that the developed agent platform is industrially applicable for actual smart grid field deployment.« less

  15. Self-Actualization in a Marathon Growth Group: Do the Strong Get Stronger?

    ERIC Educational Resources Information Center

    Kimball, Ronald; Gelso, Charles J.

    1974-01-01

    This study examined the effects of a weekend marathon on the level of self-actualization of college students and the relationship between ego strength and extent of change in self-actualization. The group experience did increase self-actualization, but participants' initial level of ego strength was unrelated to changes in self-actualization.…

  16. Applications of Seasat to the offshore oil, gas and mining industries

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Robinson, A. C.

    1977-01-01

    The NASA satellite Seasat-A (to be launched in 1978) has applications to the offshore oil, gas, and mining industries including: (1) improvements in weather and wave forecasting, (2) studies of past wind and wave statistics for planning design requirements, and (3) monitoring ice formation, breakup, and movement in arctic regions. The primary geographic areas which will be monitored by Seasat-A include: the Beaufort Sea, the Labrador Sea, the Gulf of Mexico, the U.S. east coast, West Africa, Equatorial East Pacific, the Gulf of Alaska, and the North Sea. Seasat-A instrumentation used in ocean monitoring consists of a radar altimeter, a radar scatterometer, a synthetic aperture radar, a microwave radiometer, and a visible and infrared radiometer. The future outlook of the Seasat program is planned in three phases: measurement feasibility demonstration (1978-1980), data accessibility/utility demonstration (1980-1983), and operational system demonstration (1983-1985).

  17. Application of game theory in decision making strategy: Does gas fuel industry need to kill oil based fuel industry?

    NASA Astrophysics Data System (ADS)

    Azmi, Abdul Luky Shofi'ul; Prabandari, Dyah Lusiana; Hakim, Muhammad Lintang Islami

    2017-03-01

    Even though conversion of oil based fuel (Bahan Bakar Minyak) into gas fuel (Bahan Bakar Gas) for transportation (both land and sea) is one of the priority programs of the government of Indonesia, rules that have been established merely basic rules of gas fuel usage license for transportation, without discussing position of gas fuel related to oil based fuel in detail. This paper focus on possible strategic behavior of the key players in the oil-gas fuel conversion game, who will be impacted by the position of gas fuel as complement or substitution of oil based fuel. These players include industry of oil based fuel, industry of gas fuel, and the government. Modeling is made based on two different conditions: government plays a passive role and government plays an active role in legislating additional rules that may benefit industry of gas fuel. Results obtained under a passive government is that industry of oil based fuel need to accommodate the presence of industry of gas fuel, and industry of gas fuel does not kill/ eliminate the oil based fuel, or gas fuel serves as a complement. While in an active government, the industry of oil based fuel need to increase its negotiation spending in the first phase so that the additional rule that benefitting industry of gas fuel would not be legislated, while industry of gas fuel chooses to indifferent; however, in the last stage, gas fuel turned to be competitive or choose its role to be substitution.

  18. Applications of recombinant Pichia pastoris in the healthcare industry.

    PubMed

    Weinacker, Daniel; Rabert, Claudia; Zepeda, Andrea B; Figueroa, Carolina A; Pessoa, Adalberto; Farías, Jorge G

    2013-12-01

    Since the 1970s, the establishment and development of the biotech industry has improved exponentially, allowing the commercial production of biopharmaceutical proteins. Nowadays, new recombinant protein production is considered a multibillion-dollar market, in which about 25% of commercial pharmaceuticals are biopharmaceuticals. But to achieve a competitive production process is not an easy task. Any production process has to be highly productive, efficient and economic. Despite that the perfect host is still not discovered, several research groups have chosen Pichia pastoris as expression system for the production of their protein because of its many features. The attempt of this review is to embrace several research lines that have adopted Pichia pastoris as their expression system to produce a protein on an industrial scale in the health care industry.

  19. Applications of recombinant Pichia pastoris in the healthcare industry

    PubMed Central

    Weinacker, Daniel; Rabert, Claudia; Zepeda, Andrea B.; Figueroa, Carolina A.; Pessoa, Adalberto; Farías, Jorge G.

    2013-01-01

    Since the 1970s, the establishment and development of the biotech industry has improved exponentially, allowing the commercial production of biopharmaceutical proteins. Nowadays, new recombinant protein production is considered a multibillion-dollar market, in which about 25% of commercial pharmaceuticals are biopharmaceuticals. But to achieve a competitive production process is not an easy task. Any production process has to be highly productive, efficient and economic. Despite that the perfect host is still not discovered, several research groups have chosen Pichia pastoris as expression system for the production of their protein because of its many features. The attempt of this review is to embrace several research lines that have adopted Pichia pastoris as their expression system to produce a protein on an industrial scale in the health care industry. PMID:24688491

  20. Commonalities and Differences in Functional Safety Systems Between ISS Payloads and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Malyshev, Mikhail; Kreimer, Johannes

    2013-09-01

    Safety analyses for electrical, electronic and/or programmable electronic (E/E/EP) safety-related systems used in payload applications on-board the International Space Station (ISS) are often based on failure modes, effects and criticality analysis (FMECA). For industrial applications of E/E/EP safety-related systems, comparable strategies exist and are defined in the IEC-61508 standard. This standard defines some quantitative criteria based on potential failure modes (for example, Safe Failure Fraction). These criteria can be calculated for an E/E/EP system or components to assess their compliance to requirements of a particular Safety Integrity Level (SIL). The standard defines several SILs depending on how much risk has to be mitigated by a safety-critical system. When a FMECA is available for an ISS payload or its subsystem, it may be possible to calculate the same or similar parameters as defined in the 61508 standard. One example of a payload that has a dedicated functional safety subsystem is the Electromagnetic Levitator (EML). This payload for the ISS is planned to be operated on-board starting 2014. The EML is a high-temperature materials processing facility. The dedicated subsystem "Hazard Control Electronics" (HCE) is implemented to ensure compliance to failure tolerance in limiting samples processing parameters to maintain generation of the potentially toxic by-products to safe limits in line with the requirements applied to the payloads by the ISS Program. The objective of this paper is to assess the implementation of the HCE in the EML against criteria for functional safety systems in the IEC-61508 standard and to evaluate commonalities and differences with respect to safety requirements levied on ISS Payloads. An attempt is made to assess a possibility of using commercially available components and systems certified for compliance to industrial functional safety standards in ISS payloads.

  1. Tobacco industry interference for pictorial warnings.

    PubMed

    Oswal, K C; Pednekar, M S; Gupta, P C

    2010-07-01

    A study was carried out to understand the process of interference by the tobacco industry, to measure the compliance of the industry for displaying pictorial warnings on a tobacco product as per the packaging and labeling rules post 31st May, 2009, and to understand the public opinion on the messages conveyed through such warnings. A total of 60 samples of tobacco products were purchased after 31 May, 2009, from the retail vendors of tobacco sellers across the country. The government of India has from time to time, taken measures, including legislations, to control tobacco consumption. The actual implementation of these rules has been postponed repeatedly, apparently because of constant pressure exerted by the tobacco industry. The skull and bone sign hurting religious sentiments as stated by the group of ministers proved to be misleading. Later the Group of Ministers (GOM) proposed three very weak and poorly communicative pictorial health warnings to replace those recommended by the Union Health Ministry based on the inputs of the Department of Audio Visual Publicity (DAVP). The industry tried to use strategic means by displaying a dull, diluted, and watered down pictorial warning. The focus group study conducted showed that a scorpion gets associated with the product in a non-scientific manner. X-ray of the lung was hardly understood by anybody. Overall the tobacco industry has constantly flouted with the law right from the policy level to its implementation by displaying dull, diluted, and poorly informed pictorial warnings.

  2. What Industry Is Saying About the Battery ISC Device (Text Version) |

    Science.gov Websites

    -Founder, Chairman and CEO, AllCell Technologies:"Lithium ion batteries today are actually state of really bad for the industry as a whole." Read On Graphic: Lithium-ion Batteries Power Cell Phones a potential fire." Read On Graphic: Rare Latent Defects in Lithium-ion Batteries Can Cause

  3. Self-actualization: Its Use and Misuse in Teacher Education.

    ERIC Educational Resources Information Center

    Ivie, Stanley D.

    1982-01-01

    The writings of Abraham Maslow are analyzed to determine the meaning of the psychological term "self-actualization." After pointing out that self-actualization is a rare quality and that it has little to do with formal education, the author concludes that the concept has little practical relevance for teacher education. (PP)

  4. Case Studies of Self-Actualization.

    ERIC Educational Resources Information Center

    Brennan, Thomas P.; Piechowski, Michael M.

    Case studies of self-actualizing people according to the ideas of A. Maslow and the criteria of K. Dabrowski are presented. To find people meeting the criteria of Level 4 of the Dabrowski theory, a pool of 21 subjects was established by nomination. All subjects were given the Definition-Response Instrument to assess levels of emotional…

  5. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Qualification for actual production history coverage... Production History § 400.55 Qualification for actual production history coverage program. (a) The approved... history is certified and T or D-Yields are not provided in the actuarial documents, (2) If actual yield...

  6. Cereal bran fractionation: processing techniques for the recovery of functional components and their applications to the food industry.

    PubMed

    Soukoulis, Christos; Aprea, Eugenio

    2012-04-01

    Bran is the outer part of cereal grains that is separated during the cereals de-hulling and milling processes. It was considered in the past a by-product of cereal industry employed mainly as animal feed. Cereal bran, being particularly rich in different functional biopolymers, bio-active compounds and essential fatty acids, attracted the interest of pharmaceutical and food industry. Furthermore, the peculiar techno-functional properties of brans together with their particular physiological and nutritional aspects have led to a great interest in their incorporation as main or secondary components in different groups of food products including bakery and confectionery products, breakfast cereals and extruded foodstuffs, emulsions and functional dairy products and pasta products. In the first part of the present work the main fractionation processes, bran fractions properties and their physicochemical and technological properties are briefly reviewed. In the second part, relevant applications, with emphasis on patents, in food industry are reviewed as well.

  7. Energy optimization of water and wastewater management for municipal and industrial applications conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-08-01

    These proceedings document the presentations given at the Energy Optimization of Water and Wastewater Management for Municipal and Industrial Applications, Conference, sponsored by the Department of Energy (DOE). The conference was organized and coordinated by Argonne National Laboratory. The conference focused on energy use on conservation in water and wastewater. The General Session also reflects DOE's commitment to the support and development of waste and wastewater systems that are environmentally acceptable. The conference proceedings are divided into two volumes. Volume 1 contains the General Session and Sessions 1 to 5. Volume 2 covers Sessions 6 to 12. Separate abstracts aremore » prepared for each item within the scope of the Energy Data Base.« less

  8. Industry tests of NASA ceramic thermal barrier coating. [for gas turbine engine applications

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Stepka, F. S.

    1979-01-01

    Ceramic thermal barrier coating (TBC) system was tested by industrial and governmental organizations for a variety of aeronautical, marine, and ground-based gas turbine engine applications. This TBC is a two-layer system with a bond coating of nickel-chromium-aluminum-yttrium (Ni-16Cr-6Al-0.6Y, in wt. percent) and a ceramic coating of yttria-stabilized zirconia (ZrO2-12Y2O3, in wt. percent). Seven tests evaluated the system's thermal protection and durability. Five other tests determined thermal conductivity, vibratory fatigue characteristics, and corrosion resistance of the system. The information presented includes test results and photographs of the coated parts. Recommendations are made for improving the coating procedures.

  9. Performance of Higher National Diploma of Building Technology Graduates in the Construction Industry: A Tracer Study in Kumasi Metropolis, Ghana

    ERIC Educational Resources Information Center

    Awere, E.; Edu-Buandoh, K. B. M.; Dadzie, D. K.; Aboagye, J. A.

    2016-01-01

    Building Technology graduates from Ghanaian Polytechnics seek employment in the construction industry, yet little information is known as to whether their tertiary education is really related to and meeting the actual needs of their prospective employers in the construction industry. The tracer study was conducted to ascertain the performance of…

  10. Application of airborne remote sensing to the ancient Pompeii site

    NASA Astrophysics Data System (ADS)

    Vitiello, Fausto; Giordano, Antonio; Borfecchia, Flavio; Martini, Sandro; De Cecco, Luigi

    1996-12-01

    The ancient Pompeii site is in the Sarno Valley, an area of about 400 km2 in the South of Italy near Naples, that was utilized by man since old time (thousands of years ago). Actually the valley is under critical environmental conditions because of the relevant industrial development. ENEA is conducting various studies and research in the valley. ENEA is employing historical research, ground campaigns, cartography and up-to-date airborne multispectral remote sensing technologies to make a geographical information system. Airborne remote sensing technologies are very suitable for situations as that of the Sarno Valley. The paper describes the archaeological application of the research in progress as regarding the ancient site of Pompeii and its fluvial port.

  11. Recent patents on microbial proteases for the dairy industry.

    PubMed

    Feijoo-Siota, Lucía; Blasco, Lucía; Rodríguez-Rama, José Luis; Barros-Velázquez, Jorge; Miguel, Trinidad de; Sánchez-Pérez, Angeles; Villa, Tomás G

    2014-01-01

    This paper reviews the general characteristics of exo and endopeptidases of microbial origin currently used in the milk industry. It also includes recent patents developed either to potentiate the enzymatic activity or to improve the resulting milk derivatives. The main application of these proteases is in the cheese-making industry. Although this industry preferentially uses animal rennets, and in particular genetically engineered chymosins, it also utilizes milk coagulants of microbial origin. Enzymes derived from Rhizomucor miehei, Rhizomucor pusillus and Cryphonectria parasitica are currently used to replace the conventional milk-clotting enzymes. In addition, the dairy industry uses microbial endo and exoproteases for relatively new applications, such as debittering and flavor generation in cheese, accelerated cheese ripening, manufacture of protein hydrolysates with improved functional properties, and production of enzyme-modified cheeses. Lactic acid bacteria play an essential role in these processes, hence these bacteria and the proteases they produce are currently being investigated by the dairy industry and are the subject of many of their patent applications.

  12. Perceived and actual social discrimination: the case of overweight and social inclusion.

    PubMed

    Hartung, Freda-Marie; Renner, Britta

    2013-01-01

    The present study examined the correspondence between perceived and actual social discrimination of overweight people. In total, 77 first-year students provided self-ratings about their height, weight, and perceived social inclusion. To capture actual social inclusion, each participant nominated those fellow students (a) she/he likes and dislikes and (b) about whom she/he is likely to hear social news. Students with lower Body Mass Index (BMI) felt socially included, irrespective of their actual social inclusion. In contrast, students with higher BMI felt socially included depending on the degree of their actual social inclusion. Specifically, their felt social inclusion accurately reflected whether they were actually liked/disliked, but only when they were part of social news. When not part of social news, they also showed insensitivity to their actual social inclusion status. Thus, students with a lower BMI tended to be insensitive, while students with a higher BMI showed a differential sensitivity to actual social discrimination.

  13. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  14. High pressure metrology for industrial applications

    NASA Astrophysics Data System (ADS)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  15. Marijuana, alcohol and actual driving performance

    DOT National Transportation Integrated Search

    1999-07-01

    The purpose of this study was to empirically determine the separate and combined effects of Delta-9-tetrahydrocannabinol (THC) and alcohol on actual driving performance. This was the first study ever in which the drugs' combined effects were measured...

  16. Industrial Applications of High Power Ultrasonics

    NASA Astrophysics Data System (ADS)

    Patist, Alex; Bates, Darren

    Since the change of the millennium, high-power ultrasound has become an alternative food processing technology applicable to large-scale commercial applications such as emulsification, homogenization, extraction, crystallization, dewatering, low-temperature pasteurization, degassing, defoaming, activation and inactivation of enzymes, particle size reduction, extrusion, and viscosity alteration. This new focus can be attributed to significant improvements in equipment design and efficiency during the late 1990 s. Like most innovative food processing technologies, high-power ultrasonics is not an off-the-shelf technology, and thus requires careful development and scale-up for each and every application. The objective of this chapter is to present examples of ultrasonic applications that have been successful at the commercialization stage, advantages, and limitations, as well as key learnings from scaling up an innovative food technology in general.

  17. Cold and Hot Extremozymes: Industrial Relevance and Current Trends

    PubMed Central

    Sarmiento, Felipe; Peralta, Rocío; Blamey, Jenny M.

    2015-01-01

    The development of enzymes for industrial applications relies heavily on the use of microorganisms. The intrinsic properties of microbial enzymes, e.g., consistency, reproducibility, and high yields along with many others, have pushed their introduction into a wide range of products and industrial processes. Extremophilic microorganisms represent an underutilized and innovative source of novel enzymes. These microorganisms have developed unique mechanisms and molecular means to cope with extreme temperatures, acidic and basic pH, high salinity, high radiation, low water activity, and high metal concentrations among other environmental conditions. Extremophile-derived enzymes, or extremozymes, are able to catalyze chemical reactions under harsh conditions, like those found in industrial processes, which were previously not thought to be conducive for enzymatic activity. Due to their optimal activity and stability under extreme conditions, extremozymes offer new catalytic alternatives for current industrial applications. These extremozymes also represent the cornerstone for the development of environmentally friendly, efficient, and sustainable industrial technologies. Many advances in industrial biocatalysis have been achieved in recent years; however, the potential of biocatalysis through the use of extremozymes is far from being fully realized. In this article, the adaptations and significance of psychrophilic, thermophilic, and hyperthermophilic enzymes, and their applications in selected industrial markets will be reviewed. Also, the current challenges in the development and mass production of extremozymes as well as future prospects and trends for their biotechnological application will be discussed. PMID:26539430

  18. 16 CFR 700.4 - Parties “actually making” a written warranty.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Parties âactually makingâ a written warranty... “actually making” a written warranty. Section 110(f) of the Act provides that only the supplier “actually making” a written warranty is liable for purposes of FTC and private enforcement of the Act. A supplier...

  19. Self-perceived health versus actual cardiovascular disease risks.

    PubMed

    Ko, Young; Boo, Sunjoo

    2016-01-01

    Self-perceived poor health is related to cardiovascular disease (CVD) risk perception, cardiovascular event, hospital readmission, and death from CVD. This study evaluated the associations between self-perceived health and actual CVD risk in South Koreans as well as the influence of sociodemographic and cardiovascular risk factors on self-perceived poor health. This is a secondary data analysis of the 2010 Korea National Health and Nutrition Examination Survey. The sample was 4535 South Koreans aged 30-74 years without CVD. Self-perceived health status was compared with actual cardiovascular risk separately by sex using χ(2) -tests. Logistic regressions were used to identify potential sociodemographic and cardiovascular risk factors of self-perceived poor health. Self-perceived poor health was related to higher CVD risk but there were substantial gaps between them. Among cardiovascular risk factors, dyslipidemia, obesity, smoking, and a family history of CVD did not affect self-perceived health. Gaps between perceived health and actual CVD risk should be closed to optimize cardiovascular health of South Koreans. Koreans need to increase risk perception to a level commensurate with their actual risk. Healthcare providers should try to provide individuals at increased CVD risk with better information more frequently, especially those who have favorable perceptions of their health but smoke or have elevated cholesterol levels and bodyweight. © 2015 Japan Academy of Nursing Science.

  20. Biocatalysis: applications and potentials for the chemical industry.

    PubMed

    Thomas, Stuart M; DiCosimo, Robert; Nagarajan, Vasantha

    2002-06-01

    The chemical industry is exploring the use of renewable feed stocks to improve sustainability, prompting the exploration of bioprocesses for the production of chemicals. Attractive features of biological systems include versatility, substrate selectivity, regioselectivity, chemoselectivity, enantioselectivity and catalysis at ambient temperatures and pressures. However, a challenge facing bioprocesses is cost competitiveness with chemical processes because capital assets associated with the existing commercial processes are high. The chemical industry will probably use biotechnology with existing feed stocks and processes to extract higher values from feed stocks, process by-products and waste streams. In this decade, bioprocesses that offer either a process or a product advantage over traditional chemical routes will become more widely used.