Science.gov

Sample records for actuating systems

  1. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  2. Thermally actuated mechanical systems

    NASA Astrophysics Data System (ADS)

    Sul, Onejae

    This thesis will discuss the generation of controlled sub-micron motions using novel micro actuators. Our research focuses on the development of an arm-type actuator and a free-motion locomotive walking device. Nano-science and nano-technology focuses on the creation of novel functional materials and also at the development of new fabrication techniques incorporating them. In the fields of novel fabrication techniques, manipulations of micron or sub-micron objects by micro actuators have been suggested in the science and engineering societies for mainly two reasons. From a scientific standpoint, new tools enable new prospective sciences, as is evident from the development of the atomic force microscope. From an engineering standpoint, the miniaturization of manipulation tools will require less material and less energy during a material's production. In spite of such importance, progress in the actuator miniaturization is in a primitive state, especially for the micro mobile devices. The thesis will be a key step in pursuit of this goal with an emphasis on generating motions. Our static actuator uses the excellent elastic properties of multiwall carbon nanotubes as a template for a bimorph system. Deflections in response to temperature variations are demonstrated. The mobile device itself is a bimorph system consisting of thin metal films. Control mechanisms for its velocity and steering are discussed. Finally, fundamental limits on the capabilities of the two devices in a more general sense are discussed under via laws of physics.

  3. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  4. Torsional Ratcheting Actuating System

    SciTech Connect

    BARNES,STEPHEN MATTHEW; MILLER,SAMUEL L.; RODGERS,M. STEVEN; BITSIE,FERNANDO

    2000-01-24

    A new type of surface micromachined ratcheting actuation system has been developed at the Microelectronics Development Laboratory at Sandia National Laboratories. The actuator uses a torsional electrostatic comb drive that is coupled to an external ring gear through a ratcheting scheme. The actuator can be operated with a single square wave, has minimal rubbing surfaces, maximizes comb finger density, and can be used for open-loop position control. The prototypes function as intended with a minimum demonstrated operating voltage of 18V. The equations of motion are developed for the torsional electrostatic comb drive. The resonant frequency, voltage vs. displacement and force delivery characteristics are predicted and compared with the fabricated device's performance.

  5. Firewater system inadvertent actuation frequencies

    SciTech Connect

    Schroeder, J.A.; Eide, S.A.

    1993-04-01

    This paper presents some recommended generic values for fire protection system inadvertent actuation frequencies. The frequencies are based on actual data from Department of Energy and commercial reactor plant facilities.

  6. Firewater system inadvertent actuation frequencies

    SciTech Connect

    Schroeder, J.A. ); Eide, S.A. )

    1993-01-01

    This paper presents some recommended generic values for fire protection system inadvertent actuation frequencies. The frequencies are based on actual data from Department of Energy and commercial reactor plant facilities.

  7. Hybrid electromechanical actuator and actuation system

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Xu, Tian-Bing (Inventor)

    2008-01-01

    A hybrid electromechanical actuator has two different types of electromechanical elements, one that expands in a transverse direction when electric power is applied thereto and one that contracts in a transverse direction when electric power is applied thereto. The two electromechanical elements are (i) disposed in relation to one another such that the transverse directions thereof are parallel to one another, and (ii) mechanically coupled to one another at least at two opposing edges thereof. Electric power is applied simultaneously to the elements.

  8. Electromechanical propellant control system actuator

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.

  9. NASA pyrotechnically actuated systems program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    The Office of Safety and Mission Quality initiated a Pyrotechnically Actuated Systems (PAS) Program in FY-92 to address problems experienced with pyrotechnically actuated systems and devices used both on the ground and in flight. The PAS Program will provide the technical basis for NASA's projects to incorporate new technological developments in operational systems. The program will accomplish that objective by developing/testing current and new hardware designs for flight applications and by providing a pyrotechnic data base. This marks the first applied pyrotechnic technology program funded by NASA to address pyrotechnic issues. The PAS Program has been structured to address the results of a survey of pyrotechnic device and system problems with the goal of alleviating or minimizing their risks. Major program initiatives include the development of a Laser Initiated Ordnance System, a pyrotechnic systems data base, NASA Standard Initiator model, a NASA Standard Linear Separation System and a NASA Standard Gas Generator. The PAS Program sponsors annual aerospace pyrotechnic systems workshops.

  10. Digital flight control actuation system study

    NASA Technical Reports Server (NTRS)

    Rossing, R.; Hupp, R.

    1974-01-01

    Flight control actuators and feedback sensors suitable for use in a redundant digital flight control system were examined. The most appropriate design approach for an advanced digital flight control actuation system for development and use in a fly-by-wire system was selected. The concept which was selected consisted of a PM torque motor direct drive. The selected system is compatible with concurrent and independent development efforts on the computer system and the control law mechanizations.

  11. Conducting IPN actuators for biomimetic vision system

    NASA Astrophysics Data System (ADS)

    Festin, Nicolas; Plesse, Cedric; Chevrot, Claude; Teyssié, Dominique; Pirim, Patrick; Vidal, Frederic

    2011-04-01

    In recent years, many studies on electroactive polymer (EAP) actuators have been reported. One promising technology is the elaboration of electronic conducting polymers based actuators with Interpenetrating Polymer Networks (IPNs) architecture. Their many advantageous properties as low working voltage, light weight and high lifetime (several million cycles) make them very attractive for various applications including robotics. Our laboratory recently synthesized new conducting IPN actuators based on high molecular Nitrile Butadiene Rubber, poly(ethylene oxide) derivative and poly(3,4-ethylenedioxithiophene). The presence of the elastomer greatly improves the actuator performances such as mechanical resistance and output force. In this article we present the IPN and actuator synthesis, characterizations and design allowing their integration in a biomimetic vision system.

  12. Hydraulic Actuator System for Rotor Control

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz; Althaus, Josef

    1991-01-01

    In the last ten years, several different types of actuators were developed and fabricated for active control of rotors. A special hydraulic actuator system capable of generating high forces to rotating shafts via conventional bearings is addressed. The actively controlled hydraulic force actuator features an electrohydraulic servo valve which can produce amplitudes and forces at high frequencies necessary for influencing rotor vibrations. The mathematical description will be given in detail. The experimental results verify the theoretical model. Simulations already indicate the usefulness of this compact device for application to a real rotor system.

  13. Self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.

    1988-01-01

    A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

  14. Enhancing the force capability of permanent magnet latching actuators for electromechanical valve actuation systems

    NASA Astrophysics Data System (ADS)

    Rens, J.; Clark, R. E.; Jewell, G. W.; Howe, D.

    2005-05-01

    This article introduces a topology of parallel-polarized permanent magnet latching actuator for use in electromagnetic valve actuation systems for internal combustion engines. The actuator has a number of advantages over reluctance actuators, commonly employed in such systems, in terms of reduced starting currents and fail-safe capability. The influence of a number of design features on actuator performance, such as tooth tapering, additional magnets to improve the main magnet flux path and prevent the onset of saturation, and mechanical clearances required to protect the permanent magnet from shock loads are investigated. The design study findings are verified by measurements on a prototype actuator.

  15. Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor)

    2005-01-01

    A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.

  16. Actuators For A Segmented Mirror Control System

    NASA Astrophysics Data System (ADS)

    Gabor, George

    1983-11-01

    The active control of segmented mirrors requires actuators to move the segments in response to perturbations. Each segment of the University of California Ten Meter Telescope has three of its six rigid-body degrees of freedom actively controlled; piston and tilt about two axes. The system design requires the actuator to carry a load that varies as the telescope moves from zenith to horizon. The maximum load is one third of the segment mass, about 150kg. The system design also needs actuator adjustment resolution less than 20nm over a range of 3mm with a 2µm/sec response rate. Actuators which satisfy these requirements have been designed, built, and tested. A torque motor turns a screw shaft whose axial load is taken by a roller thrust bearing. Simultaneously the screw drives a roller nut to position the mirror segment. The roller screw converts rotary to linear motion with nanometer smoothness over a large dynamic range. A stick-slip behavior in the thrust bearing makes the mechanical system non-linear for small motions. Each actuator has a microprocessor-controlled servo loop and the servo loop algorithm compensates for this non-linear behavior. The actuator design and servo loop algorithm are described and the results of servo loop performance tests are given.

  17. Actuators for a segmented mirror control system.

    NASA Astrophysics Data System (ADS)

    Gabor, George

    1984-01-01

    The active control of segmented mirrors requires actuators to move the segments in response to perturbations. Each segment of the University of California Ten Meter Telescope has three of its six rigid-body degrees of freedom actively controlled; piston and tilt about two axes. The system design requires the actuator to carry a load that varies as the telescope moves from zenith to horizon. The maximum load is one third of the segment mass, about 150kg. The system design also needs actuator adjustment resolution less than 20nm over a range of 3mm with a 2 m/sec response rate. Actuators which satisfy these requirements have been designed, built, and tested. A torque motor turns a screw shaft whose axial load is taken by a roller thrust bearing. Simultaneously the screw drives a roller nut to position the mirror segment. The roller screw converts rotary to linear motion with nanometer smoothness over a large dynamic range. A stick-slip behavior in the thrust bearing makes the mechanical system non-linear for small motions. Each actuator has a microprocessor-controlled servo loop and the servo loop algorithm compensates for this non-linear behavior. The actuator design and servo loop algorithm are described and the results of servo loop performance tests are given.

  18. Dielectric Elastomer Actuated Systems and Methods

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The system of the present invention includes an actuator having at least two electrodes, an elastomeric dielectric film disposed between the two electrodes, and a frame attached to the elastomeric dielectric film. The frame provides a linear actuation force characteristic over a displacement range. The displacement range is preferably the stroke of the actuator. The displacement range can be about 5 mm and greater. Further, the frame can include a plurality of configurations, for example, at least a rigid members coupled to a flexible member wherein the frame provides an elastic restoring force. In preferred embodiments, the rigid member can be, but is not limited to, curved beams, parallel beams, rods and plates. In a preferred embodiment the actuator can further include a passive element disposed between two flexible members such as, for example, links to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. Further, the actuator can include a plurality of layers of the elastomeric dielectric film integrated into the frame. The elastomeric film can be made of different materials such as, for example, acrylic, silicone and latex.

  19. Electrostatic actuators for portable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Tice, Joshua

    Both developed and developing nations have an urgent need to diagnose disease cheaply, reliably, and independently of centralized facilities. Microfulidic platforms are well-positioned to address the need for portable diagnostics, mainly due to their obvious advantage in size. However, most microfluidic methods rely on equipment outside of the chip either for driving fluid flow (e.g., syringe pumps) or for taking measurements (e.g., lasers or microscopes). The energy and space requirements of the whole system inhibit portability and contribute to costs. To capitalize on the strengths of microfluidic platforms and address the serious needs of society, system components need to be miniaturized. Also, miniaturization should be accomplished as simply as possible, considering that simplicity is usually requisite for achieving truly transformative technology. Herein, I attempt to address the issue of controlling fluid flow in portable microfluidic systems. I focus on systems that are driven by elastomer-based membrane valves, since these valves are inherently simple, yet they are capable of sophisticated fluid manipulation. Others have attempted to modify pneumatic microvalves for portable applications, e.g., by transitioning to electromagnetic, thermopneumatic, or piezoelectric actuation principles. However, none of these strategies maintain the proper balance of simplicity, functionality, and ease of integration. My research centers on electrostatic actuators, due to their conceptual simplicity and the efficacy of electrostatic forces on the microscale. To ensure easy integration with polymer-based systems, and to maintain simplicity in the fabrication procedure, the actuators were constructed solely from poly(dimethylsiloxane) and multi-walled carbon nanotubes. In addition, the actuators were fabricated exclusively with soft-lithographic techniques. A mathematical model was developed to identify actuator parameters compatible with soft-lithography, and also to

  20. Accommodating Actuator Failures in Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Siwakosit, W.; Chung, J.

    1998-01-01

    A technique for the design of flight control systems that can accommodate a set of actuator failures is presented. As employed herein, an actuator failure is defined as any change in the parametric model of the actuator which can adversely affect actuator performance. The technique is based upon the formulation of a fixed feedback topology which ensures at least stability in the presence of the failures in the set. The fixed compensation is obtained from a loop-shaping design procedure similar to Quantitative Feedback Theory and provides stability robustness in the presence of uncertainty in the vehicle dynamics caused by the failures. System adaptation to improve performance after actuator failure(s) occurs through a static gain adjustment in the compensator followed by modification of the system prefilter. Precise identification of the vehicle dynamics is unnecessary. Application to a single-input, single-output design using a simplified model of the longitudinal dynamics of the NASA High Angle of Attack Research Vehicle is discussed. Non-real time simulations of the system including a model of the pilot demonstrate the effectiveness and limitations of the approach.

  1. A magnetorheological actuation system: test and model

    NASA Astrophysics Data System (ADS)

    John, Shaju; Chaudhuri, Anirban; Wereley, Norman M.

    2008-04-01

    Self-contained actuation systems, based on frequency rectification of the high frequency motion of an active material, can produce high force and stroke output. Magnetorheological (MR) fluids are active fluids whose rheological properties can be altered by the application of a magnetic field. By using MR fluids as the energy transmission medium in such hybrid devices, a valving system with no moving parts can be implemented and used to control the motion of an output cylinder shaft. The MR fluid based valves are configured in the form of an H-bridge to produce bi-directional motion in an output cylinder by alternately applying magnetic fields in the two opposite arms of the bridge. The rheological properties of the MR fluid are modeled using both Bingham plastic and bi-viscous models. In this study, the primary actuation is performed using a compact terfenol-D rod driven pump and frequency rectification of the rod motion is done using passive reed valves. The pump and reed valve configuration along with MR fluidic valves form a compact hydraulic actuation system. Actuator design, analysis and experimental results are presented in this paper. A time domain model of the actuator is developed and validated using experimental data.

  2. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    SciTech Connect

    Gorbunov, A. I.; Serdyukov, O. V.

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  3. Update: NASA Pyrotechnically Actuated Systems Program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1994-01-01

    This technical report discusses the NASA Pyrotechnically Actuated Systems (PAS) Program. It contains the following three sections: program origin, program description, and summary. The first section, program origin, contains an introduction to pyrotechnic systems and devices and discusses some examples. Section two focuses on the PAS program goals, program flow, and PAS programs organization. And section three gives a overall summary of the program.

  4. Pressure-actuated joint system

    NASA Technical Reports Server (NTRS)

    McGuire, John R. (Inventor)

    2004-01-01

    A pressure vessel is provided that includes first and second case segments mated with one another. First and second annular rubber layers are disposed inboard of the first and second case segments, respectively. The second annular rubber layer has a slot extending from the radial inner surface across a portion of its thickness to define a main body portion and a flexible portion. The flexible portion has an interfacing surface portion abutting against an interfacing surface portion of the first annular rubber layer to follow movement of the first annular rubber layer during operation of the pressure vessel. The slot receives pressurized gas and establishes a pressure-actuated joint between the interfacing surface portions. At least one of the interfacing surface portions has a plurality of enclosed and sealed recesses formed therein.

  5. Microelectromechanical Systems (MEMS) Actuators for Antenna Reconfigurability

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.

    2001-01-01

    A novel microelectromechanical systems (MEMS) actuator for patch antenna reconfiguration, is presented for the first time. A key feature is the capability of multi-band operation without greatly increasing the antenna element dimensions. Experimental results demonstrate that the center frequency can be reconfigured from few hundred MHz to few GHz away from the nominal operating frequency.

  6. 14 CFR 33.72 - Hydraulic actuating systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which...

  7. Sequential growth and monitoring of a polypyrrole actuator system

    NASA Astrophysics Data System (ADS)

    Sarrazin, J. C.; Mascaro, Stephen A.

    2014-03-01

    Electroactive polymers (EAPs) have emerged as viable materials in sensing and actuating applications, but the capability to mimic the structure and function of natural muscle is increased due to their ability to permit additional, sequential synthesis steps between stages of actuation. Current work is improving upon the mechanical performance in terms of achievable stresses, strains, and strain rates, but issues still remain with actuator lifetime and adaptability. This work seeks to create a bioinspired polymer actuation system that can be monitored using state estimation and adjusted in vivo during operation. The novel, time-saving process of sequential growth was applied to polymer actuator systems for the initial growth, as well as additional growth steps after actuation cycles. Synthesis of conducting polymers on a helical metal electrode directs polymer shape change during actuation, assists in charge distribution along the polymer for actuation, and as is described in this work, constructs a constant working electrode/polymer connection during operation which allows sequential polymer growth based on a performance need. The polymer system is monitored by means of a reduced-order, state estimation model that works between growth and actuation cycles. In this case, actuator stress is improved between growth cycles. The ability for additional synthesis of the polymer actuator not only creates an actuator system that can be optimized based on demand, but creates a dynamic actuator system that more closely mimics natural muscle capability.

  8. NASA aerospace pyrotechnically actuated systems: Program plan

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1992-01-01

    The NASA Aerospace Pyrotechnically Actuated Systems (PAS) Program, a focused technology program, is being initiated to enhance the reliability, safety, and performance of pyrotechnically actuated systems. In broad terms, this Program Plan presents the approach that helps to resolve concerns raised by the NASA/DOD/DOE Aerospace Pyrotechnic Steering Committee. This Plan reflects key efforts needed in PAS technology. The resources committed to implement the Program will be identified in the Program Implementation Plan (PIP). A top level schedule is included along with major Program milestones and products. Responsibilities are defined in the PIP. The Plan identifies the goals and detailed objectives which define how those goals are to be accomplished. The Program will improve NASA's capabilities to design, develop, manufacture, and test pyrotechnically actuated systems for NASA's programs. Program benefits include the following: advanced pyrotechnic systems technology developed for NASA programs; hands-on pyrotechnic systems expertise; quick response capability to investigate and resolve pyrotechnic problems; enhanced communications and intercenter support among the technical staff; and government-industry PAS technical interchange. The PAS Program produces useful products that are of a broad-based technology nature rather than activities intended to meet specific technology objectives for individual programs. Serious problems have occurred with pyrotechnic devices although near perfect performance is demanded by users. The lack of a program to address those problems in the past is considered a serious omission. The nature of problems experienced as revealed by a survey are discussed and the origin of the program is explained.

  9. Requirement analysis of an intelligent, redundant, actuation system

    NASA Technical Reports Server (NTRS)

    De Feo, P.; Shih, K. C.

    1986-01-01

    The reliability and fault tolerance requirements of integrated, critical, digital fly-by-wire control systems for advanced military and civil aircraft requires redundant, reconfigurable implementations of the actuation system. An effective way for controlling the actuators and implementing the required fault detection and reconfiguration strategies is by means of dedicated microprocessors. This paper describes a laboratory implementation of a flexible intelligent redundant actuation system capable of demonstrating the concept and analyzing a variety of configurations and technical issues.

  10. Microelectromechanical systems integrating molecular spin crossover actuators

    NASA Astrophysics Data System (ADS)

    Manrique-Juarez, Maria D.; Rat, Sylvain; Mathieu, Fabrice; Saya, Daisuke; Séguy, Isabelle; Leïchlé, Thierry; Nicu, Liviu; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine

    2016-08-01

    Silicon MEMS cantilevers coated with a 200 nm thin layer of the molecular spin crossover complex [Fe(H2B(pz)2)2(phen)] (H2B(pz)2 = dihydrobis(pyrazolyl)borate and phen = 1,10-phenantroline) were actuated using an external magnetic field and their resonance frequency was tracked by means of integrated piezoresistive detection. The light-induced spin-state switching of the molecules from the ground low spin to the metastable high spin state at 10 K led to a well-reproducible shift of the cantilever's resonance frequency (Δfr = -0.52 Hz). Control experiments at different temperatures using coated as well as uncoated devices along with simple calculations support the assignment of this effect to the spin transition. This latter translates into changes in mechanical behavior of the cantilever due to the strong spin-state/lattice coupling. A guideline for the optimization of device parameters is proposed so as to efficiently harness molecular scale movements for large-scale mechanical work, thus paving the road for nanoelectromechanical systems (NEMS) actuators based on molecular materials.

  11. Intelligent redundant actuation system requirements and preliminary system design

    NASA Technical Reports Server (NTRS)

    Defeo, P.; Geiger, L. J.; Harris, J.

    1985-01-01

    Several redundant actuation system configurations were designed and demonstrated to satisfy the stringent operational requirements of advanced flight control systems. However, this has been accomplished largely through brute force hardware redundancy, resulting in significantly increased computational requirements on the flight control computers which perform the failure analysis and reconfiguration management. Modern technology now provides powerful, low-cost microprocessors which are effective in performing failure isolation and configuration management at the local actuator level. One such concept, called an Intelligent Redundant Actuation System (IRAS), significantly reduces the flight control computer requirements and performs the local tasks more comprehensively than previously feasible. The requirements and preliminary design of an experimental laboratory system capable of demonstrating the concept and sufficiently flexible to explore a variety of configurations are discussed.

  12. Design and performances of JPCam actuator system

    NASA Astrophysics Data System (ADS)

    Casalta, Joan Manel; Canchado, Manuel; Molins, Albert; Redondo, Miguel; Tomàs, Albert; Catalan, Albert

    2014-07-01

    JPCam is designed to perform the Javalambre-PAU Astrophysical Survey (J-PAS), a photometric survey of the northern sky with the new JST telescope being constructed in the Observatorio Astrofísico of Javalambre in Spain by CEFCA (Centro de Estudios de Física del Cosmos de Aragón). SENER has been responsible for the design, manufacturing, verification and delivery of the JPCam Actuator System that will be installed between the Telescope and the cryogenic Camera Subsystem. The main function is to control the instrument position to guarantee the image quality required during observations in all field of view and compensate deformations produced by gravity and temperature changes. The paper summarizes the main aspects of the hexapod design and earliest information related of integration and performances tests results.

  13. Configuration of a shear web based actuation system

    NASA Astrophysics Data System (ADS)

    Natterer, Franz Josef; Monner, Hans-Peter

    2010-04-01

    Shape adaptive systems and structural configurations are necessary to fulfill the demands of a future unmanned aerial vehicle structure. Predominantly the present approaches are based on a passive load-bearing structure having smart actuation systems deforming the passive structural configuration elastically in the wanted shape. Therefore the actuation system can be based on discrete actuators, like electrically driven motors using gearing systems to transform the displacement into the structure or on smart material configurations placed on the load bearing passive structure, deforming the structure within the elastic region into the wanted shape. Using smart materials within load-bearing structures, elastic and static strength properties vary between passive and active structures. Matching these properties is a great challenge for future structural configurations. This is a successful approach for certain applications, e.g. smart rotor blade. The availability of two-dimensional smart actuator configurations with distinct actuation orientation allows the definition of a distinct load bearing active structure. Therefore the so called "web" of a spar-equivalent configuration was substituted by such a smart material actuator also known as macro fiber composite (MFC). Activating the web of the active cantilevered spar-configuration is resulting in a free end displacement. The main advantage lies in the fact that this approach will allow larger active displacements in comparison to a passive structural configuration with applied smart material actuators. Within the paper the process of developing the shear web based actuation system with configuration details will be illustrated and future steps will be proposed.

  14. Ultrathin Alvarez lens system actuated by artificial muscles.

    PubMed

    Petsch, S; Grewe, A; Köbele, L; Sinzinger, S; Zappe, H

    2016-04-01

    A key feature of Alvarez lenses is that they may be tuned in focal length using lateral rather than axial translation, thus reducing the overall length of a focus-tunable optical system. Nevertheless the bulk of classical microsystems actuators limits further miniaturization. We present here a new, ultrathin focus-tunable Alvarez lens fabricated using molding techniques and actuated using liquid crystal elastomer (LCE) artificial muscle actuators. The large deformation generated by the LCE actuators permits the integration of the actuators in-plane with the mechanical and optical system and thus reduces the device thickness to only 1.6 mm. Movement of the Alvarez lens pair of 178 μm results in a focal length change of 3.3 mm, based on an initial focal length of 28.4 mm. This design is of considerable interest for realization of ultraflat focus-tunable and zoom systems. PMID:27139677

  15. Liquid rocket actuators and operators. [in spacecraft control systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    All the types of actuators and associated operators used in booster, upper stage, and spacecraft propulsion and reaction-control systems except for chemical-explosive actuators and turbine actuators are discussed. Discussion of static and dynamic seals, mechanical transmission of motion, and instrumentation is included to the extent that actuator or operator design is affected. Selection of the optimum actuator configuration is discussed for specific application which require a tradeoff study that considers all the relevant factors: available energy sources, load capacity, stroke, speed of response, leakage limitations, environmental conditions, chemical compatibility, storage life and conditions, size, weight, and cost. These factors are interrelated with overall control-system design evaluations that are beyond the scope of this monograph; however, literature references are cited for a detailed review of the general considerations. Perinent advanced-state-of-the-art design concepts are surveyed briefly.

  16. Design and demonstration of a fish robot actuated by a SMA-driven actuation system

    NASA Astrophysics Data System (ADS)

    Le, Chan H.; Nguyen, Quang S.; Park, Hoon C.

    2010-04-01

    This paper presents a concept of a fish robot actuated by an SMA-based actuator. The bending-type actuator system is composed of a 0.1mm diameter SMA wire and a 0.5mm thick glass/epoxy strip. The SMA wire is installed to the bent composite strip. The actuator can produce about 200gf of blocking force and 3.5mm displacement at the center of the glass/epoxy strip. The bending motion of the actuator is converted into the tail-beat motion of a fish robot through a linkage system. The fish robot is evaluated by measuring the tail-beat angle, swimming speed and thrust produced by the fish robot. The tail-beat angle is about 20° and the maximum swimming speed is about 1.6cm/s. The measured thrust is about 0.4gf when the fish robot is operated at 0.9Hz.

  17. Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction

    SciTech Connect

    McRae, Terry G.; Lee, Kwan H.; Harris, Glen I.; Knittel, Joachim; Bowen, Warwick P.

    2010-08-15

    A cavity optoelectromechanical system is reported which combines the ultrasensitive transduction of cavity optomechanical systems with the electrical actuation of nanoelectromechanical systems. Ultrasensitive mechanical transduction is achieved via optomechanical coupling. Electrical gradient forces as large as 0.40 {mu}N are realized, facilitating strong actuation with ultralow dissipation. A scanning probe microscope is implemented, capable of characterizing the mechanical modes. The integration of electrical actuation into optomechanical devices is an enabling step toward the regime of quantum nonlinear dynamics and provides capabilities for quantum control of mechanical motion.

  18. System and Method for Tensioning a Robotically Actuated Tendon

    NASA Technical Reports Server (NTRS)

    Reiland, Matthew J. (Inventor); Diftler, Myron A. (Inventor)

    2013-01-01

    A tendon tensioning system includes a tendon having a proximal end and a distal end, an actuator, and a motor controller. The actuator may include a drive screw and a motor, and may be coupled with the proximal end of the tendon and configured to apply a tension through the tendon in response to an electrical current. The motor controller may be electrically coupled with the actuator, and configured to provide an electrical current having a first amplitude to the actuator until a stall tension is achieved through the tendon; provide a pulse current to the actuator following the achievement of the stall tension, where the amplitude of the pulse current is greater than the first amplitude, and return the motor to a steady state holding current following the conclusion of the pulse current.

  19. Hydraulically-actuated operating system for an electric circuit breaker

    DOEpatents

    Barkan, Philip; Imam, Imdad

    1978-01-01

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A vent is located hydraulically between the actuating space and the valve for affording communication between said actuating space and a low pressure region. Flow control means is provided for restricting leakage through said vent to a rate that prevents said leakage from substantially detracting from the development of pressure within said actuatng space during the period from initial opening of the valve to the time when said piston has moved through most of its opening stroke. Following such period and while the valve is still open, said flow control means allows effective leakage through said vent. The accumulator has a limited capacity that results in the pressure within said actuating space decaying promptly to a low value as a result of effective leakage through said vent after the piston has moved through a circuit-breaker opening stroke and while the valve is in its open state. Means is provided for resetting the valve to its closed state in response to said pressure decay in the actuating space.

  20. Sensor-actuator system for dynamic chloride ion determination.

    PubMed

    de Graaf, Derk Balthazar; Abbas, Yawar; Gerrit Bomer, Johan; Olthuis, Wouter; van den Berg, Albert

    2015-08-12

    Chloride is a crucial anion for various analytical applications from biological to environmental applications. In order to measure the chloride ion concentration, a measurement system is needed which can detect this concentration for prolonged times reliably. Chronopotentiometry is a technique which does not need a long term stable reference electrode and is therefore very suitable for prolonged ion concentration measurements. As the used electrode might be fouled by reaction products, this work focuses on a chronopotentiometric approach with a separated sensing electrode (sensor) and actuating electrode (actuator). Both actuation and sensor electrode are made of Ag/AgCl. A constant current is applied to the actuator and will start the reaction between Ag and Cl-, while the resulting Cl- ion concentration change is observed through the sensor, which is placed close to the actuator. The time it takes to locally deplete the Cl- ions is called transition time. Experiments were performed to verify the feasibility of this approach. The performed experiments show that the sensor detects the local concentration changes resulting from the current applied to the actuator. A linear relation between the Cl- ion concentration and the square root of the transition time was observed, just as was predicted by theory. The calibration curves for different chips showed that both a larger sensor and a larger distance between sensor and actuator resulted in a larger time delay between the transition time detected at the actuator and the sensor. PMID:26320957

  1. A jellyfish-like swimming mini-robot actuated by an electromagnetic actuation system

    NASA Astrophysics Data System (ADS)

    Ko, Youngho; Na, Sungyoung; Lee, Youngwoo; Cha, Kyoungrae; Ko, Seong Young; Park, Jongoh; Park, Sukho

    2012-05-01

    Among the various kinds of actuations for biomimetic robots, the electromagnetic actuation (EMA) method has been regarded as the one with the most potential. This paper proposes a jellyfish-like swimming mini-robot actuated by an EMA system in three-dimensional (3D) space. The jellyfish-like mini-robot has four flexible fins, each of which is equipped with a permanent magnet for electromagnetic actuation; the robot’s body is 17 mm long and 0.5 mm thick. Our EMA system was able to generate a uniform magnetic field in a desired direction in 3D space, which could bend the fins of the jellyfish-like mini-robot. Therefore, a cyclic change in the uniform magnetic field, in the EMA system, would synchronize the fluctuation of the fins and could generate a propulsion force for the robot, in the desired direction. In order to maximize the propulsion force of the jellyfish-like mini-robot, the waveform and frequency of the input current in the EMA system are optimized. Consequently, our jellyfish-like mini-robot was able to generate maximum propulsion force when a square waveform input current (13 A magnitude and 10 Hz frequency) was applied to the EMA system. Finally, the jellyfish-like mini-robot with the EMA system was able to perform various 3D swimming motions.

  2. Engine having a variable valve actuation system

    DOEpatents

    Hefler, Gregory W.

    2005-10-12

    An engine has a cylinder head having a first surface and a second surface spaced from the first surface. A valve is moveably connected to the cylinder head. A rocker arm is connected to the valve, and a rocker shaft having a first location spaced a maximum distance from the cylinder head is connected to the rocker arm. A support member has and an actuator fluid passage network. The actuator fluid passage network defines a volume. The support member is connected to the cylinder head and is positioned such that a majority of the volume of the actuator fluid passage network is between the first location of the rocker shaft and the second surface of the cylinder head.

  3. Engine having a variable valve actuation system

    DOEpatents

    Hefler, Gregory W.

    2004-10-12

    An engine has a cylinder head having a first surface and a second surface spaced from the first surface. A valve is moveably connected to the cylinder head. A rocker arm is connected to the valve, and a rocker shaft having a first location spaced a maximum distance from the cylinder head is connected to the rocker arm. A support member has and an actuator fluid passage network. The actuator fluid passage network defines a volume. The support member is connected to the cylinder head and is positioned such that a majority of the volume of the actuator fluid passage network is between the first location of the rocker shaft and the second surface of the cylinder head.

  4. On reliable control system designs. Ph.D. Thesis; [actuators

    NASA Technical Reports Server (NTRS)

    Birdwell, J. D.

    1978-01-01

    A mathematical model for use in the design of reliable multivariable control systems is discussed with special emphasis on actuator failures and necessary actuator redundancy levels. The model consists of a linear time invariant discrete time dynamical system. Configuration changes in the system dynamics are governed by a Markov chain that includes transition probabilities from one configuration state to another. The performance index is a standard quadratic cost functional, over an infinite time interval. The actual system configuration can be deduced with a one step delay. The calculation of the optimal control law requires the solution of a set of highly coupled Riccati-like matrix difference equations. Results can be used for off-line studies relating the open loop dynamics, required performance, actuator mean time to failure, and functional or identical actuator redundancy, with and without feedback gain reconfiguration strategies.

  5. Polarization Reconfigurable Patch Antenna Using Microelectromechanical Systems (MEMS) Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.

    2002-01-01

    The paper demonstrates a nearly square patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the polarization. Experimental results demonstrate that at a fixed frequency, the polarization can be reconfigured, from circular to linear.

  6. A soft actuation system for segmented reflector articulation and isolation

    NASA Technical Reports Server (NTRS)

    Agronin, Michael L.; Jandura, Louise

    1990-01-01

    Segmented reflectors have been proposed for space based applications such as optical communication and large diameter telescopes. An actuation system for mirrors in a space based segmented mirror array was developed as part of NASA's Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), provides 3 degrees of freedom mirror articulation, gives isolation from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM was built and is described.

  7. Integrated actuation system for individual control of helicopter rotor blades

    NASA Astrophysics Data System (ADS)

    Bushko, Dariusz A.; Fenn, Ralph C.; Gerver, Michael J.; Berry, John R.; Phillips, Frank; Merkley, Donald J.

    1996-05-01

    The unique configuration of the rotorcraft generates problems unknown to fixed wing aircraft. These problems include high vibration and noise levels. This paper presents the development and test results of a Terfenol-D based actuator designed to operate in an individual blade control system in order to reduce vibration and noise and increase performance on Army UH- 60A helicopter. The full-scale, magnetostrictive, Terfenol-D based actuator was tested on a specially designed testbed that simulated operational conditions of a helicopter blade in the laboratory. Tests of actuator performance (strike, force moment, bandwidth, fatigue life under operational loading) were performed.

  8. Sequential growth for lifetime extension in biomimetic polypyrrole actuator systems

    NASA Astrophysics Data System (ADS)

    Sarrazin, J. C.; Mascaro, Stephen A.

    2015-04-01

    Electroactive polymers (EAPs) present prospective use in actuation and manipulation devices due to their low electrical activation requirements, biocompatibility, and mechanical performance. One of the main drawbacks with EAP actuators is a decrease in performance over extended periods of operation caused by over-oxidation of the polymer and general polymer degradation. Synthesis of the EAP material, polypyrrole with an embedded metal helix allows for sequential growth of the polymer during operation. The helical metal electrode acts as a scaffolding to support the polymer, and direct the 3-dimensional change in volume of the polymer along the axis of the helix during oxidative and reductive cycling. The metal helix also provides a working metal electrode through the entire length of the polymer actuator to distribute charge for actuation, as well as for sequential growth steps during the lifetime of operation of the polymer. This work demonstrates the method of sequential growth can be utilized after extended periods of use to partially restore electrical and mechanical performance of polypyrrole actuators. Since the actuation must be temporarily stopped to allow for a sequential growth cycle to be performed and reverse some of the polymer degradation, these actuator systems more closely mimic natural muscle in their analogous maintenance and repair.

  9. Microelectromechanical Systems (MEMS) Actuator for Reconfigurable Patch Antenna Demonstrated

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2001-01-01

    A microstrip patch antenna with two contact actuators along the radiating edges for frequency reconfiguration was demonstrated at K-band frequencies. The layout of the antenna is shown in the following figure. This antenna has the following advantages over conventional semiconductor varactor-diode-tuned patch antennas: 1. By eliminating the semiconductor diode and its nonlinear I-V characteristics, the antenna minimizes intermodulation signal distortion. This is particularly important in digital wireless systems, which are sensitive to intersymbol interference caused by intermodulation products. 2. Because the MEMS actuator is an electrostatic device, it does not draw any current during operation and, hence, requires a negligible amount of power for actuation. This is an important advantage for hand-held, battery-operated, portable wireless systems since the battery does not need to be charged frequently. 3. The MEMS actuator does not require any special epitaxial layers as in the case of diodes and, hence, is cost effective.

  10. Two-stage actuation system using DC motors and piezoelectric actuators for controllable industrial and automotive brakes and clutches

    NASA Astrophysics Data System (ADS)

    Neelakantan, Vijay A.; Washington, Gregory N.; Bucknor, Norman K.

    2005-05-01

    High bandwidth actuation systems that are capable of simultaneously producing relatively large forces and displacements are required for use in automobiles and other industrial applications. Conventional hydraulic actuation mechanisms used in automotive brakes and clutches are complex, inefficient and have poor control robustness. These lead to reduced fuel economy, controllability issues and other disadvantages. This paper involves the design, development, testing and control of a two-stage hybrid actuation mechanism by combining classical actuators like DC motors and advanced smart material actuators like piezoelectric actuators. The paper also discusses the development of a robust control methodology using the Internal Model Control (IMC) principle and emphasizes the robustness property of this control methodology by comparing and studying simulation and experimental results.

  11. A latchable thermally activated phase change actuator for microfluidic systems

    NASA Astrophysics Data System (ADS)

    Richter, Christiane; Sachsenheimer, Kai; Rapp, Bastian E.

    2016-03-01

    Complex microfluidic systems often require a high number of individually controllable active components like valves and pumps. In this paper we present the development and optimization of a latchable thermally controlled phase change actuator which uses a solid/liquid phase transition of a phase change medium and the displacement of the liquid phase change medium to change and stabilize the two states of the actuator. Because the phase change is triggered by heat produced with ohmic resistors the used control signal is an electrical signal. In contrast to pneumatically activated membrane valves this concept allows the individual control of several dozen actuators with only two external pressure lines. Within this paper we show the general working principle of the actuator and demonstrate its general function and the scalability of the concept at an example of four actuators. Additionally we present the complete results of our studies to optimize the response behavior of the actuator - the influence of the heating power as well as the used phase change medium on melting and solidifying times.

  12. Dual-Actuator Active Vibration-Control System

    NASA Technical Reports Server (NTRS)

    Kascak, Albert F.; Kiraly, Louis J.; Montague, Gerald T.; Palazzolo, Alan B.; Manchala, Daniel

    1994-01-01

    Dual-actuator active vibration-control (DAAVC) system is developmental system of type described in "Active Vibration Dampers for Rotating Machinery" (LEW-15427). System features sensors and actuators positioned and oriented at bearings to measure and counteract vibrations of shaft along either of two axes perpendicular to axis of rotation. Effective in damping vibrations of helicopter-engine test stand, making it safer to operate engine at speeds near and above first resonance of engine/test-stand system. Opens new opportunities for engine designers to draw more power from engine, and concept applicable to other rotating machines.

  13. Control of Systems With Slow Actuators Using Time Scale Separation

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vehram; Nguyen, Nhan

    2009-01-01

    This paper addresses the problem of controlling a nonlinear plant with a slow actuator using singular perturbation method. For the known plant-actuator cascaded system the proposed scheme achieves tracking of a given reference model with considerably less control demand than would otherwise result when using conventional design techniques. This is the consequence of excluding the small parameter from the actuator dynamics via time scale separation. The resulting tracking error is within the order of this small parameter. For the unknown system the adaptive counterpart is developed based on the prediction model, which is driven towards the reference model by the control design. It is proven that the prediction model tracks the reference model with an error proportional to the small parameter, while the prediction error converges to zero. The resulting closed-loop system with all prediction models and adaptive laws remains stable. The benefits of the approach are demonstrated in simulation studies and compared to conventional control approaches.

  14. A voice-actuated wind tunnel model leak checking system

    NASA Technical Reports Server (NTRS)

    Larson, W. E.

    1985-01-01

    A voice-actuated wind tunnel model leak checking system was developed. The system uses a voice recognition and response unit to interact with the technician along with a graphics terminal to provide the technician with visual feedback while checking a model for leaks.

  15. A Hybrid Actuation System Demonstrating Significantly Enhanced Electromechanical Performance

    NASA Technical Reports Server (NTRS)

    Su, Ji; Xu, Tian-Bing; Zhang, Shujun; Shrout, Thomas R.; Zhang, Qiming

    2004-01-01

    A hybrid actuation system (HYBAS) utilizing advantages of a combination of electromechanical responses of an electroactive polymer (EAP), an electrostrictive copolymer, and an electroactive ceramic single crystal, PZN-PT single crystal, has been developed. The system employs the contribution of the actuation elements cooperatively and exhibits a significantly enhanced electromechanical performance compared to the performances of the device made of each constituting material, the electroactive polymer or the ceramic single crystal, individually. The theoretical modeling of the performances of the HYBAS is in good agreement with experimental observation. The consistence between the theoretical modeling and experimental test make the design concept an effective route for the development of high performance actuating devices for many applications. The theoretical modeling, fabrication of the HYBAS and the initial experimental results will be presented and discussed.

  16. Development of a miniature actuator/controller system

    NASA Technical Reports Server (NTRS)

    Stanley, Scott P.

    1995-01-01

    Development of new products is often hampered or prevented by the cost and resource commitments required by a traditional engineering approach. Schaeffer Magnetics, Inc. identified the potential need for a miniature incremental actuator with an integrated controller but did not want the development to be subject to the obstacles inherent in the traditional approach. In response a new approach - the Pathfinder Engineering Program (PEP) - was developed to streamline new product generation and improve product quality. The actuator/controller system resulting from implementation of this new procedure is an exceptionally compact and self-contained device with many applications.

  17. Electromechanical Simulation of Actively Controlled Rotordynamic Systems with Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Lin, Reng Rong; Palazzolo, A. B.; Kascak, A. F.; Montague, G.

    1991-01-01

    Theories and tests for incorporating piezoelectric pushers as actuator devices for active vibration control are discussed. It started from a simple model with the assumption of ideal pusher characteristics and progressed to electromechanical models with nonideal pushers. Effects on system stability due to the nonideal characteristics of piezoelectric pushers and other elements in the control loop were investigated.

  18. 14 CFR 33.72 - Hydraulic actuating systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Hydraulic actuating systems. 33.72 Section 33.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72...

  19. 14 CFR 33.72 - Hydraulic actuating systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Hydraulic actuating systems. 33.72 Section 33.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72...

  20. 14 CFR 33.72 - Hydraulic actuating systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Hydraulic actuating systems. 33.72 Section 33.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72...

  1. 14 CFR 33.72 - Hydraulic actuating systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Hydraulic actuating systems. 33.72 Section 33.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72...

  2. Reconfigurable Array Antenna Using Microelectromechanical Systems (MEMS) Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.

    2001-01-01

    The paper demonstrates a patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the operating frequency. Experimental results demonstrate that the center frequency can be reconfigured by as much as 1.6 percent of the nominal operating frequency at K-Band In addition, a novel on-wafer antenna pattern measurement technique is demonstrated.

  3. A description of model 3B of the multipurpose ventricular actuating system. [providing controlled driving pressures

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.

    1974-01-01

    The multipurpose ventricular actuating system is a pneumatic signal generating device that provides controlled driving pressures for actuating pulsatile blood pumps. Overall system capabilities, the timing circuitry, and calibration instruction are included.

  4. An improved flapping wing system actuated by the LIPCA

    NASA Astrophysics Data System (ADS)

    Syaifuddin, Moh.; Park, Hoon C.; Lee, Sang K.; Byun, Do Y.

    2006-03-01

    This paper presents an improved version of the insect-mimicking flapping-wing mechanism actuated by LIPCA (Lightweight Piezo-Composite Actuator). As the previous version, the actuation displacement of the actuator is converted into flapping-wing motion by a mechanical linkage system that functioned as displacement amplifier as well. In order to provide feathering motion, the wing is attached to the axis through a hinge system that allows the wing rotation at each end of half-stroke, due to air resistance. In this improved version, the total weight has been reduced to the half of the previous one. The device could produce about 90 degree of flapping angle when it operated at around 10 Hz, which was the natural flapping-frequency. Several flapping tests under different parameter configurations were conducted in order to investigate the characteristic of the generated lift. In addition, the smoke-wire test was also conducted, so that the vortices around the wing can be visually observed. Even though the present wing has smaller wing area, it could produce higher lift then before.

  5. Structural/control system optimization with variable actuator masses

    NASA Technical Reports Server (NTRS)

    Jin, Ik M.; Sepulveda, Abdon E.

    1993-01-01

    A method is presented to integrate the design space for structural/control system optimization problems in the case of linear state feedback control. Nonstructural lumped masses and control system design variables as well as structural sizing variables are all treated equally as independent design variables in the optimization process. Structural and control design variable linking schemes are used in order to avoid a prohibitively large increase in the total number of independent design variables. When actuator masses are treated as nonstructural lumped mass design variables, special consideration is given to the relation between the transient peak responses and the required actuator masses which is formulated as a behavior constraint form. The original nonlinear mathematical programming problem based on a finite element formulation and linear state feedback is replaced by a sequence of explicit approximate problems exploiting various approximation concepts such as design variable linkings, temporary constraint deletion and first order Taylor series expansion of nonlinear behavior constraints in terms of intermediate design variables. Examples which involve a variety of dynamic behavior constraints (including constraints on closed-loop eigenvalues, peak transient displacements, peak actuator forces, and relations between the peak responses and the actuator masses) are effectively solved by using the method presented.

  6. Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2014-01-01

    A novel full piezoelectric multilayer stacked hybrid actuation/transduction system. The system demonstrates significantly-enhanced electromechanical performance by utilizing the cooperative contributions of the electromechanical responses of multilayer stacked negative and positive strain components. Both experimental and theoretical studies indicate that for this system, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The system consists of at least 2 layers which include electromechanically active components. The layers are arranged such that when electric power is applied, one layer contracts in a transverse direction while the second layer expands in a transverse direction which is perpendicular to the transverse direction of the first layer. An alternate embodiment includes a third layer. In this embodiment, the outer two layers contract in parallel transverse directions while the middle layer expands in a transverse direction which is perpendicular to the transverse direction of the outer layers.

  7. Flight Control System Design with Rate Saturating Actuators

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Snell, S. A.

    1997-01-01

    Actuator rate saturation is an important factor adversely affecting the stability and performance of aircraft flight control systems. It has been identified as a catalyst in pilot-induced oscillations, some of which have been catastrophic. A simple design technique is described that utilizes software rate limiters to improve the performance of control systems operating in the presence of actuator rate saturation. As described, the technique requires control effectors to be ganged such that any effector is driven by only a single compensated error signal. Using an analysis of the steady-state behavior of the system, requirements are placed upon the type of the loop transmissions and compensators in the proposed technique. Application of the technique to the design of a multi-input/multi-output, lateral-directional control system for a simple model of a high-performance fighter is demonstrated as are the stability and performance improvements that can accrue with the technique.

  8. Conducting IPN actuator/sensor for biomimetic vibrissa system

    NASA Astrophysics Data System (ADS)

    Festin, N.; Plesse, C.; Pirim, P.; Chevrot, C.; Vidal, F.

    2014-03-01

    Electroactive polymers, or EAPs, are polymers that exhibit a change in size or shape when stimulated by an electric field. The most common applications of this type of material are in actuators and sensors. One promising technology is the elaboration of electronic conducting polymers based actuators with Interpenetrating Polymer Networks (IPNs) architecture. Their many advantageous properties as low working voltage, light weight and high lifetime make them very attractive for various applications including robotics. Conducting IPNs were fabricated by oxidative polymerization of 3,4-ethylenedioxythiophene within a flexible Solid Polymer Electrolytes (SPE) combining poly(ethylene oxide) and Nitrile Butadiene Rubber. SPE mechanical properties and ionic conductivities in the presence of 1-ethyl-3- methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) have been characterized. The presence of the elastomer within the SPE greatly improves the actuator performances. The free strain as well as the blocking force was characterized as a function of the actuator length. The sensing properties of those conducting IPNs allow their integration into a biomimetic perception prototype: a system mimicking the tactile perception of rat vibrissae.

  9. Intelligent fault diagnosis and failure management of flight control actuation systems

    NASA Technical Reports Server (NTRS)

    Bonnice, William F.; Baker, Walter

    1988-01-01

    The real-time fault diagnosis and failure management (FDFM) of current operational and experimental dual tandem aircraft flight control system actuators was investigated. Dual tandem actuators were studied because of the active FDFM capability required to manage the redundancy of these actuators. The FDFM methods used on current dual tandem actuators were determined by examining six specific actuators. The FDFM capability on these six actuators was also evaluated. One approach for improving the FDFM capability on dual tandem actuators may be through the application of artificial intelligence (AI) technology. Existing AI approaches and applications of FDFM were examined and evaluated. Based on the general survey of AI FDFM approaches, the potential role of AI technology for real-time actuator FDFM was determined. Finally, FDFM and maintainability improvements for dual tandem actuators were recommended.

  10. Three Dimensional Modeling of an MRI Actuated Steerable Catheter System

    PubMed Central

    Liu, Taoming; Çavuşoğlu, M. Cenk

    2014-01-01

    This paper presents the three dimensional kinematic modeling of a novel steerable robotic ablation catheter system. The catheter, embedded with a set of current-carrying micro-coils, is actuated by the magnetic forces generated by the magnetic field of the MRI scanner. This paper develops a 3D model of the MRI actuated steerable catheter system by using finite differences approach. For each finite segment, a quasi-static torque-deflection equilibrium equation is calculated using beam theory. By using the deflection displacements and torsion angles, the kinematic modeling of the catheter system is derived. The proposed models are evaluated by comparing the simulation results of the proposed model with the experimental results of a proof-of-concept prototype. PMID:25328804

  11. Three Dimensional Modeling of an MRI Actuated Steerable Catheter System.

    PubMed

    Liu, Taoming; Cavuşoğlu, M Cenk

    2014-01-01

    This paper presents the three dimensional kinematic modeling of a novel steerable robotic ablation catheter system. The catheter, embedded with a set of current-carrying micro-coils, is actuated by the magnetic forces generated by the magnetic field of the MRI scanner. This paper develops a 3D model of the MRI actuated steerable catheter system by using finite differences approach. For each finite segment, a quasi-static torque-deflection equilibrium equation is calculated using beam theory. By using the deflection displacements and torsion angles, the kinematic modeling of the catheter system is derived. The proposed models are evaluated by comparing the simulation results of the proposed model with the experimental results of a proof-of-concept prototype. PMID:25328804

  12. Apollo experience report: Guidance and control systems: CSM service propulsion system gimbal actuators

    NASA Technical Reports Server (NTRS)

    Mcmahon, W. A.

    1975-01-01

    The service propulsion system gimbal actuators of the Apollo command and service module were developed, modified, and qualified between February 1962 and April 1968. The development of these actuators is described as the result of extensive testing, retesting, and modification of the initial design. Successful completion of each mission without anomalies attributable to the actuators indicated that the particular configuration (modification) in use was adequate for the flight profile imposed.

  13. Three-axis lever actuator with flexure hinges for an optical disk system

    NASA Astrophysics Data System (ADS)

    Han, Chang-Soo; Kim, Soo-Hyun

    2002-10-01

    A three-axis lever actuator with a flexure hinge has been designed and fabricated. This actuator is driven by electromagnetic force based on a coil-magnet system and can be used as a high precision actuator and, especially as a pickup head actuator in optical disks. High precision and low sensitivity to external vibration are the major advantages of this lever actuator. An analysis model was found and compared to the finite element method. Dynamic characteristics of the three-axis lever actuator were measured. The results are in very close agreement to those predicted by the model and finite element analysis.

  14. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water...

  15. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water...

  16. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water...

  17. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water...

  18. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water...

  19. Transfer matrix method for multibody systems for piezoelectric stack actuators

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Chen, Gangli; Bian, Leixiang; Rui, Xiaoting

    2014-09-01

    In order to achieve a large displacement output from a piezoelectric actuator, we realized the piezoelectric stack actuator (PSA) by mechanically layering/stacking multi-chip piezoelectric wafers in a series and electrically connecting the electrodes in parallel. In this paper, in order to accurately model the hysteresis and the dynamic characteristics of a PSA, the transfer matrix method for multibody systems (MSTMM) was adopted to describe the dynamic characteristics, and the Bouc-Wen hysteresis operator was used to represent the hysteresis. The vibration characteristics of a PSA and a piezo-actuated positioning mechanism (PPM) are derived and analyzed by the MSTMM; then, the dynamic responses of the PSA and the PPM are calculated. The experimental results show that the new method can accurately portray the hysteresis and the dynamic characteristics of a PSA and a PPM. On one hand, if we use this method to model the dynamic response of the PSA and the PPM, the PSA can be considered as a flexible body, as opposed to a mass-spring-damper system, which is in better agreement with the actual condition. On the other hand, the global dynamics equation is not needed for the study of system dynamics, and the dynamics equation has a small-sized matrix and a higher computational speed. Therefore, this method gives a broad range of possibilities for model-based controller design.

  20. Piezoceramic multilayer actuators for fuel injection systems in automotive area

    NASA Astrophysics Data System (ADS)

    Schuh, Carsten; Steinkopff, Thorsten; Wolff, Andreas; Lubitz, Karl

    2000-06-01

    Cofired multilayer piezoceramic actuators as extremely fast valve driving elements will lead to a significant progress in the field of fuel injection systems. A careful adaptation of the component performance to the system demands, an extraordinary high reliability, and competitive low production costs are prerequisites for this large-scale industrial application. With proper material selection as basis, conventional multilayer technology has to be substantially extended in order to achieve large stack volumes, to avoid degradation effects during cofiring and nevertheless to meet the target costs. Under large-signal driving conditions, the static and dynamic behavior of the component is essentially influenced by driving pulse shape, clamping force, and stiffness of the load. Linear FE methods are employed to calculate the performance criteria of different actuator designs. Moreover, a FE-implementation using a micromechanical domain switching model was developed in order to describe the strongly nonlinear material behavior. Together with a quantitative estimation of crack initiation and propagation by means of fracture mechanics, these methods can give valuable hits for controlling the effects of fatigue and deterioration which may limit the operating life time. In order to optimize the interaction of the electrical and mechanical parts in the injection system, dynamic models of piezoelectric components must be provided. A nonlinear model of the stack actuator has been developed for the analysis software MATLAB/SIMULINK. Special attention has been paid to the hysteresis properties.

  1. System Dynamics and Control System for a High Bandwidth Rotary Actuator and Fast Tool Servo

    SciTech Connect

    Montesanti, R C; Trumper, D L

    2005-08-05

    This paper explores some of the system dynamics and control issues for a short-stroke rotary actuator that we designed and tested for a new fast tool servo referred to as the 10 kHz rotary fast tool servo. The use of a fast tool servo (FTS) with a diamond turning machine for producing non-axisymmetric or textured surfaces on a workpiece is well known. In a previous paper [1] the authors provide details on the mechanical design and trade-off issues that were considered during the design phase for the fast tool servo. At the heart of that machine is the normal-stress variable reluctance rotary actuator described in more detail in this paper. In addition to producing the torque that is needed for the 10 kHz rotary fast tool servo, the actuator produces a force and is therefore referred to as a hybrid rotary/linear actuator. The actuator uses bias and steering magnetic fluxes for linearizing the torque versus current relationship. Certain types of electric engraving heads use an actuator similar in principle to our hybrid actuator. In the case of the engraving heads, the actuator is used to produce and sustain a resonating mechanical oscillator. This is in sharp contrast to the arbitrary trajectory point-to-point closed-loop control of the tool tip that we demonstrate with our actuator and the 10 kHz FTS. Furthermore, we demonstrate closed-loop control of both the rotary and linear degrees of freedom for our actuator. We provide a brief summary of the demonstrated performance of the 10 kHz rotary fast tool servo, and discuss the magnetic circuit for the actuator and some of the related control issues. Montesanti [2] provides a more detailed and thorough discussion on the 10 kHz rotary fast tool servo, the hybrid actuator, and the pertinent prior art.

  2. Quick actuating closure and handling system

    NASA Technical Reports Server (NTRS)

    Allred, Johnny W.; White, Dorsey E., III; Updike, Benjamin T.; Gregory, Peyton B.

    1988-01-01

    A quick activating closure and handling system, which utilizes conical sections for locking, was developed to allow quick access to the combustor internal components of the 8 ft High Temperature Tunnel. These critical components include the existing methane spraybar, a transpiration cooled nozzle and the new liquid oxygen (LOX) injection system housed within the combustor. A substantial cost savings will be realized once the mechanism is installed since it will substantially reduce the access time and increase the time available for conducting wind tunnel tests. A need exists for more frequent inspections when the wind tunnel operates at the more severe conditions generated by using LOX in the combustor. A loads analysis and a structural (finite element) analysis were conducted to verify that the new closure system is compatible with the existing pressure shell. In addition, strain gages were placed on the pressure vessel to verify how the pressure shell reacts to transient pressure loads. A scale model of the new closure system was built to verify the operation of the conical sections in the locking mechanisms.

  3. Magnetohydrodynamic actuation of droplets for millimetric planar fluidic systems

    NASA Astrophysics Data System (ADS)

    Ahmadi, A.; McDermid, C. M.; Markley, L.

    2016-01-01

    In this work, a magnetohydrodynamic method is proposed for the actuation of droplets in small-scale planar fluidic systems, providing an alternative to commonly used methods such as electrowetting-on-dielectric. Elementary droplet-based operations, including transport, merging, and mixing, are demonstrated. The forces acting on millimetric droplets are carefully investigated, with a primary focus on the magnetic actuation force and on the unbalanced capillary forces that arise due to hysteresis. A super-hydrophobic channel is 3D printed to guide the droplets, with thin wires installed as contact electrodes and permanent magnets providing a static magnetic field. It is shown that droplet motion is enhanced by increasing the droplet size and minimizing the electrode contact surface. The effects of channel geometry on threshold voltage and minimum moveable droplet volume are characterized. Finally, the presence of electrolysis is investigated and mitigating strategies are discussed.

  4. EAP hydrogels for pulse-actuated cell system (PACS) architectures

    NASA Astrophysics Data System (ADS)

    Plata, R. Erik; Rogers, Hallena R.; Banister, Mark; Vohnout, Sonia; McGrath, Dominic V.

    2007-04-01

    Electroactuated polymer (EAP) hydrogels based on JEFFAMINE® T-403 and ethylene glycol glycidyl ether (EGDGE) are used in an infusion pump based on the proprietary Pulse Actuated Cell System (PACS) architecture in development at Medipacs LLC. We report here significant progress in optimizing the formulation of the EAP hydrogels to dramatically increase hydrolytic stability and reproducibility of actuation response. By adjusting the mole fraction of reactive components of the formulation and substituting higher molecular weight monomers, we eliminated a large degree of the hydrolytic instability of the hydrogels, decreased the brittleness of the gel, and increased the equilibrium swelling ratio. The combination of these two modifications to the formulation resulted in hydrogels that exhibited reproducible swelling and deswelling in response to pH for a total period of 10-15 hours.

  5. Position control system for use with micromechanical actuators

    DOEpatents

    Guckel, Henry; Stiers, Eric W.

    2000-01-01

    A positioning system adapted for use with micromechanical actuators provides feedback control of the position of the movable element of the actuator utilizing a low Q sensing coil. The effective inductance of the sensing coil changes with position of the movable element to change the frequency of oscillation of a variable oscillator. The output of the variable oscillator is compared in a phase detector to a reference oscillator signal. The phase detector provides a pulsed output having a pulse duty cycle related to the phase or frequency difference between the oscillator signals. The output of the phase detector is provided to a drive coil which applies a magnetic force to the movable element which balances the force of a spring. The movable element can be displaced to a new position by changing the frequency of the reference oscillator.

  6. Delocalized pi-electron systems: Towards actuators and switches

    NASA Astrophysics Data System (ADS)

    Almutairi, Adah

    The underlying theme in this dissertation is the study of structure-property relationships of pi-electron systems, and thereby determining the functions that may arise from these properties. We primarily describe our findings on the structure-property relationship of ortho oligo aryls and our proposed application of these helical systems as Single Molecule, or Intrinsic Electromechanical Actuators. Electromechanical actuation (EMA) is the conversion of electrical to mechanical energy. Conducting polymer EMAs (CP-EMAs) are a well-known class of functional conjugated polymers, that can generate up to 100 times more force than natural muscle for a given cross-section, and up to three times the power to mass ratios. Ortho oligo thiophenes, in general, have shown a propensity for helicity, coupled with redox induced dimensional changes that mimic the movement of a spring. We show, as proof of concept, their utility as spring-like Intrinsic Electromechemical Actuators, which function at lower voltages, allowing for higher efficiencies, faster response rates, and higher fatigue resistance.

  7. Integrating Sensory/Actuation Systems in Agricultural Vehicles

    PubMed Central

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles. PMID:24577525

  8. Integrating sensory/actuation systems in agricultural vehicles.

    PubMed

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles. PMID:24577525

  9. High speed hydraulically-actuated operating system for an electric circuit breaker

    DOEpatents

    Iman, I.

    1983-06-07

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a breaker-opening piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A dashpotting mechanism operating separately from the hydraulic actuating system is provided, thereby reducing flow restriction interference with breaker opening. 3 figs.

  10. Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    1997-01-01

    An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.

  11. Flight Test Experience with an Electromechanical Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David; Flick, Brad (Technical Monitor)

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  12. Flight Test Experience With an Electromechanical Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  13. A portable air jet actuator device for mechanical system identification

    NASA Astrophysics Data System (ADS)

    Belden, Jesse; Staats, Wayne L.; Mazumdar, Anirban; Hunter, Ian W.

    2011-03-01

    System identification of limb mechanics can help diagnose ailments and can aid in the optimization of robotic limb control parameters and designs. An interesting fluid phenomenon—the Coandă effect—is utilized in a portable actuator to provide a stochastic binary force disturbance to a limb system. The design of the actuator is approached with the goal of creating a portable device which could be deployed on human or robotic limbs for in situ mechanical system identification. The viability of the device is demonstrated by identifying the parameters of an underdamped elastic beam system with fixed inertia and stiffness and variable damping. The nonparametric compliance impulse response yielded from the system identification is modeled as a second-order system and the resultant parameters are found to be in excellent agreement with those found using more traditional system identification techniques. The current design could be further miniaturized and developed as a portable, wireless, unrestrained mechanical system identification instrument for less intrusive and more widespread use.

  14. A portable air jet actuator device for mechanical system identification.

    PubMed

    Belden, Jesse; Staats, Wayne L; Mazumdar, Anirban; Hunter, Ian W

    2011-03-01

    System identification of limb mechanics can help diagnose ailments and can aid in the optimization of robotic limb control parameters and designs. An interesting fluid phenomenon--the Coandă effect--is utilized in a portable actuator to provide a stochastic binary force disturbance to a limb system. The design of the actuator is approached with the goal of creating a portable device which could be deployed on human or robotic limbs for in situ mechanical system identification. The viability of the device is demonstrated by identifying the parameters of an underdamped elastic beam system with fixed inertia and stiffness and variable damping. The nonparametric compliance impulse response yielded from the system identification is modeled as a second-order system and the resultant parameters are found to be in excellent agreement with those found using more traditional system identification techniques. The current design could be further miniaturized and developed as a portable, wireless, unrestrained mechanical system identification instrument for less intrusive and more widespread use. PMID:21456788

  15. Multivariable control systems with saturating actuators antireset windup strategies

    NASA Technical Reports Server (NTRS)

    Kapasouris, P.; Athans, M.

    1985-01-01

    Preliminary, promising, results for introducing antireset windup (ARW) properties in multivariable feedback control systems with multiple saturating actuator nonlinearities and integrating actions are presented. The ARW method introduces simple nonlinear feedback around the integrators. The multiloop circle criterion is used to derive sufficient conditions for closed-loop stability that employ frequency-domain singular value tests. The improvement in transient response due to the ARW feedback is demonstrated using a 2-input 2-outpurt control system based upon F-404 jet engine dynamics.

  16. The design and evaluation of a hydraulic actuation system for a legged rough-terrain vehicle

    NASA Astrophysics Data System (ADS)

    Srinivasan, K.; Waldron, K. J.; Dworak, J. A.

    One of the causes of low efficiency of legged vehicles is the type of actuation system used. This paper describes the overall design and the evaluation of some aspects of a proposed hydraulic actuation system for a six-legged vehicle intended for use in rough terrain. Features of the hydraulic actuation system designed to improve mechanical efficiency are described. A combination of linearized dynamic system analysis and computer simulation of the nonlinear dynamic system equations is used to evaluate some aspects of the proposed design. The tradeoff between energy efficient operation and the dynamic performance of the actuation system is investigated. Some criteria for controller design are enumerated.

  17. Design and Integration of an Actuated Nose Strake Control System

    NASA Technical Reports Server (NTRS)

    Flick, Bradley C.; Thomson, Michael P.; Regenie, Victoria A.; Wichman, Keith D.; Pahle, Joseph W.; Earls, Michael R.

    1996-01-01

    Aircraft flight characteristics at high angles of attack can be improved by controlling vortices shed from the nose. These characteristics have been investigated with the integration of the actuated nose strakes for enhanced rolling (ANSER) control system into the NASA F-18 High Alpha Research Vehicle. Several hardware and software systems were developed to enable performance of the research goals. A strake interface box was developed to perform actuator control and failure detection outside the flight control computer. A three-mode ANSER control law was developed and installed in the Research Flight Control System. The thrust-vectoring mode does not command the strakes. The strakes and thrust-vectoring mode uses a combination of thrust vectoring and strakes for lateral- directional control, and strake mode uses strakes only for lateral-directional control. The system was integrated and tested in the Dryden Flight Research Center (DFRC) simulation for testing before installation in the aircraft. Performance of the ANSER system was monitored in real time during the 89-flight ANSER flight test program in the DFRC Mission Control Center. One discrepancy resulted in a set of research data not being obtained. The experiment was otherwise considered a success with the majority of the research objectives being met.

  18. Applications catalog of pyrotechnically actuated devices/systems

    NASA Technical Reports Server (NTRS)

    Seeholzer, Thomas L.; Smith, Floyd Z.; Eastwood, Charles W.; Steffes, Paul R.

    1995-01-01

    A compilation of basic information on pyrotechnically actuated devices/systems used in NASA aerospace and aeronautic applications was formatted into a catalog. The intent is to provide (1) a quick reference digest of the types of operational pyro mechanisms and (2) a source of contacts for further details. Data on these items was furnished by the NASA Centers that developed and/or utilized such devices to perform specific functions on spacecraft, launch vehicles, aircraft, and ground support equipment. Information entries include an item title, user center name, commercial contractor/vendor, identifying part number(s), a basic figure, briefly described purpose and operation, previous usage, and operational limits/requirements.

  19. OMS engine shutoff valve and actuation system design and evaluation. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Wichmann, H.

    1974-01-01

    Shutoff valve and actuation system concepts that are most suitable for the Orbital Maneuvering Systems engine application were determined. Emphasis was placed on the ten year and 100 mission life requirement, propellant and propellant residue compatibility and weight. It was found that poppet or ball valves utilizing electric or electropneumatic actuation were most applicable. Preliminary design layouts of a number of valve and actuation concepts were prepared and analyzed to make the optimum concept selection. Pneumatic actuation systems were required to feature their own pneumatic supply so that for the quad redundant valve, it was necessary to include two pneumatic supply systems, one for each of the series legs of the quad redundant package. The requirement for the pneumatic package placed heavy reliability, weight, and maintenance penalties upon electropneumatic actuation systems. The two valve and actuation systems concepts selected featured electric torque motor operation and a poppet as well as a ball valve concept with a retractable seal.

  20. Understanding the Space Shuttle Main Engine Hydraulic Actuation System and Reviewing Its Evolution

    NASA Technical Reports Server (NTRS)

    McWade, Robert J.; Minor, Robert B.; McNutt, Leslie M.

    2010-01-01

    The complex engine start and thrust control requirements of the Space Shuttle Main Engine (SSME) require unique valve, actuator and control system hardware. The Hydraulic Actuation System (HAS) was designed, developed, and now operates to meet tight engine control requirement limits to assure safe, reliable and correct engine thrust at all times. The actuator is designed to be fail safe and fail operate in the areas where redundancy is important. The HAS has an additional pneumatic operating capability that insures a safe sequential closure of all actuators and propellant valves in the event of the loss of hydraulic system pressure or loss of electrical closed loop control of the actuator. The objective of this paper is to provide a complete description of the actuator s internal operating system, along with its interaction with all SSME system interfaces. Additionally the paper addresses the challenges, problems identified, and corrected, and lessons learned, during the course of the almost 35 years of engine operation.

  1. Thermionic switched self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.; Brummond, William A.

    1989-01-01

    A self-actuating reactor shutdown system incorporating a thermionic switched electromagnetic latch arrangement which is responsive to reactor neutron flux changes and to reactor coolant temperature changes. The system is self-actuating in that the sensing thermionic device acts directly to release (scram) the control rod (absorber) without reference or signal from the main reactor plant protective and control systems. To be responsive to both temperature and neutron flux effects, two detectors are used, one responsive to reactor coolant temperatures, and the other responsive to reactor neutron flux increase. The detectors are incorporated into a thermionic diode connected electrically with an electromagnetic mechanism which under normal reactor operating conditions holds the the control rod in its ready position (exterior of the reactor core). Upon reaching either a specified temperature or neutron flux, the thermionic diode functions to short-circuit the electromagnetic mechanism causing same to lose its holding power and release the control rod, which drops into the reactor core region under gravitational force.

  2. Electromagnetic variable degrees of freedom actuator systems and methods

    DOEpatents

    Montesanti, Richard C.; Trumper, David L.; Kirtley, Jr., James L.

    2009-02-17

    The present invention provides a variable reluctance actuator system and method that can be adapted for simultaneous rotation and translation of a moving element by applying a normal-direction magnetic flux on the moving element. In a beneficial example arrangement, the moving element includes a swing arm that carries a cutting tool at a set radius from an axis of rotation so as to produce a rotary fast tool servo that provides a tool motion in a direction substantially parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. An actuator rotates a swing arm such that a cutting tool moves toward and away from a mounted rotating workpiece in a controlled manner in order to machine the workpiece. Position sensors provide rotation and displacement information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in feed slide of a precision lathe.

  3. Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems

    NASA Technical Reports Server (NTRS)

    Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing

    2011-01-01

    The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric

  4. Design and modeling of new suspension system using direct drive servo-valve system actuated by piezostack actuator

    NASA Astrophysics Data System (ADS)

    Han, Chulhee; Kim, Wan Ho; Choi, Seung-Bok

    2016-04-01

    This paper proposes a new type of a direct-drive valve (DDV) suspension system for vehicle controlled by the piezostack actuator associated with displacement amplifier. In order to achieve this goal, a new type of controllable piezostack DDV damper is designed and its performance evaluation of damping force is undertaken. Next, a full vehicle suspension system consisting of sprung mass, spring, tire and the piezostack DDV damper is constructed. After deriving the governing equations of the motion for the proposed the piezostack DDV suspension system, the skyhook controller is implemented for the realization of the full vehicle. Analytical model of the whole suspension system is then derived and performance characteristics are analyzed through numerical simulation. Finally, vibration control responses of the vehicle suspension system such as vertical acceleration are evaluated under both bump and sine road conditions.

  5. Double-Acting Sleeve Muscle Actuator for Bio-Robotic Systems

    PubMed Central

    Zheng, Hao; Shen, Xiangrong

    2014-01-01

    This paper presents a new type of muscle-like actuator, namely double-acting (DA) sleeve muscle actuator, which is suitable for the actuation of biologically-inspired and biomedical robotic systems, especially those serving human-assistance purposes (prostheses, orthoses, etc.). Developed based on the traditional pneumatic muscle actuator, the new DA sleeve muscle incorporates a unique insert at the center. With the insert occupying the central portion of the internal volume, this new actuator enjoys multiple advantages relative to the traditional pneumatic muscle, including a consistent increase of force capacity over the entire range of motion, and a significant decrease of energy consumption in operation. Furthermore, the insert encompasses an additional chamber, which generates an extension force when pressurized. As such, this new actuator provides a unique bi-directional actuation capability, and, thus, has a potential to significantly simplify the design of a muscle actuator-powered robotic system. To demonstrate this new actuator concept, a prototype has been designed and fabricated, and experiments conducted on this prototype demonstrated the enhanced force capacity and the unique bi-directional actuation capability. PMID:25264492

  6. Magnetic actuator intended for left ventricular assist system

    NASA Astrophysics Data System (ADS)

    Saotome, H.; Okada, T.

    2006-04-01

    With the goal of developing an artificial heart, the authors fabricated a prototype pump employing a linear motion magnetic actuator, and carried out performance tests. The actuator is composed of two disk-shaped Nd-Fe-B magnets having a diameter of 80 mm and a thickness of 7 mm. The disks are magnetized in the direction normal to the circular surface, and are formed by semicircular pieces; one semicircle serves as a N pole and the other as a S pole. The magnets face each other in the actuator. One magnet is limited to spin around its axis while the second magnet is limited to move in linear motion along its axis. In this way, the circumferential rotation of one of the magnets produces reciprocating forces on the other magnet, causing it to move back and forth. This coupled action produces a pumping motion. Because the two magnets are magnetically coupled without any mechanical contact, the rotating magnet does not have to be implanted and should be placed outside the body. The rotating magnet is driven by a motor. The motor power is magnetically conveyed, via the rotating magnet, to the implanted linear motion magnet through the skin. The proposed system yields no problems with infection that would otherwise require careful treatment in a system employing a tube penetrating the skin for power transmission. Comparison of the proposed system with another system using a transcutaneous transformer shows that our system has good potential to occupy a smaller space in the body, because it obviates implantation of a secondary part of the transformer, a power supply, and armature windings. The dimensions of the trial pump are designed in accordance with the fluid mechanical specifications of a human left ventricle, by computing magnetic fields that provide the magnetic forces on the magnets. The output power of the trial pump, 1.0 W at 87 beats/min, is experimentally obtained under the pressure and flow conditions of water, 100 mm Hg and 4.5 l/min.

  7. Evaluation of actuators for the SDOF and MDOF active microgravity isolation systems

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The University of Virginia examined the design of actuators for both single-degree-of-freedom (SDOF) and multiple-degree-of-freedom (MDOF) active microgravity isolation systems. For SDOF systems, two actuators were considered: a special large gap magnetic actuator and a large stroke Lorentz actuator. The magnetic actuator was viewed to be of greater difficulty than the Lorentz actuator with little compelling technical advantage and was dropped from consideration. A Lorentz actuator was designed and built for the SDOF test rig using magnetic circuit and finite element analysis. The design and some experimental results are discussed. The University also examined the design of actuators for MDOF isolation systems. This includes design of an integrated 1 cm gap 6-DOF noncontacting magnetic suspension system and of a 'coarse' follower which permits the practical extension of magnetic suspension to large strokes. The proposed 'coarse' actuator was a closed kinematic chain manipulator known as a Stewart Platform. The integration of the two isolation systems together, the isolation tasks assigned to each, and possible control architectures were also explored. The results of this research are examined.

  8. Evaluation of actuators for the SDOF and MDOF active microgravity isolation systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The University of Virginia examined the design of actuators for both single-degree-of-freedom (SDOF) and multiple-degree-of-freedom (MDOF) active microgravity isolation systems. For SDOF systems, two actuators were considered: a special large gap magnetic actuator and a large stroke Lorentz actuator. The magnetic actuator was viewed to be of greater difficulty than the Lorentz actuator with little compelling technical advantage and was dropped from consideration. A Lorentz actuator was designed and built for the SDOF test rig using magnetic circuit and finite element analysis. The design and some experimental results are discussed. The University also examined the design of actuators for MDOF isolation systems. This includes design of an integrated 1 cm gap 6-DOF noncontacting magnetic suspension system and of a 'coarse' follower which permits the practical extension of magnetic suspension to large strokes. The proposed 'coarse' actuator was a closed kinematic chain manipulator known as a Stewart Platform. The integration of the two isolation systems together, the isolation tasks assigned to each, and possible control architectures were also explored. The results of this research are examined.

  9. New results on switched linear systems with actuator saturation

    NASA Astrophysics Data System (ADS)

    Duan, Chang; Wu, Fen

    2016-04-01

    This paper further studies the analysis and control problems of continuous-time switched linear systems subject to actuator saturation. Using the norm-bounded differential inclusion description of the saturated systems and the minimal switching rule, a set of switched output feedback controllers is designed to minimise the disturbance attenuation level defined by the regional ? gain over a class of energy-bounded disturbances. The synthesis conditions are expressed as bilinear matrix inequalities, and can be solved by numerical search coupled with linear matrix inequality optimisation. Compared to the previous method based on polytopic differential inclusion, the proposed approach has good scalability and potentially renders better performance. Numerical examples are provided to verify the effectiveness of the proposed approach.

  10. Actuation and system design and evaluation OMS engine shutoff valve, Volume 1. [space shuttles

    NASA Technical Reports Server (NTRS)

    Dunn, V. B.

    1975-01-01

    A technology program was conducted to identify and verify the optimum valve and actuation system concept for the Space Shuttle Orbit Maneuvering System engine. Of major importance to the valve and actuation system selection was the ten-year, 100-mission, 10,000-cycle life requirement, while maintaining high reliability, low leakage, and low weight. Valve and actuation system concepts were comparatively evaluated against past valve failure reports and potential failure modes due to the shuttle mission profile to aid in the selection of the most optimum concept for design, manufacture and verification testing. Two valve concepts were considered during the preliminary design stage; i.e., the moving seat and lifting ball. Two actuation systems were manufactured and tested. Test results demonstrate the viability of a lifting ball concept as well as the applicability of an ac motor actuation system to best meet the requirements of the shuttle mission.

  11. Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2007-04-01

    The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.

  12. Concept and Demonstration of Individual Probe Actuation in Two-Dimensional Parallel Atomic Force Microscope System

    NASA Astrophysics Data System (ADS)

    Akiyama, Terunobu; Aeschimann, Laure; Chantada, Laura; de Rooij, Nico. F.; Heinzelmann, Harry; Herzig, Hans P.; Manzardo, Omar; Meister, André; Polesel-Maris, Jérôme; Pugin, Raphaël; Staufer, Urs; Vettiger, Peter

    2007-09-01

    A concept of an array actuator that is used to control the tip-sample separation of cantilevers in a two-dimensional (2D) probe array scanning system is proposed in this article. The feasibility of the concept is demonstrated with a 10× 10 array actuator with 500 μm xy-pitches. The array actuator is made by slicing a bulk piezoceramic block. The obtained maximum actuation of a single probe was 2.19 μmp-p at ± 168 Vp-p. A major issue for the actuator was the insufficient strength of the frame of the probe array chip. The demonstrated array actuator is highly compatible with previously developed parallel readout modules that use either a parallel optical beam or integrated piezoresistive deflection sensing. A large-scale 2D probe array is our ultimate target.

  13. Transducer-actuator systems and methods for performing on-machine measurements and automatic part alignment

    DOEpatents

    Barkman, William E.; Dow, Thomas A.; Garrard, Kenneth P.; Marston, Zachary

    2016-07-12

    Systems and methods for performing on-machine measurements and automatic part alignment, including: a measurement component operable for determining the position of a part on a machine; and an actuation component operable for adjusting the position of the part by contacting the part with a predetermined force responsive to the determined position of the part. The measurement component consists of a transducer. The actuation component consists of a linear actuator. Optionally, the measurement component and the actuation component consist of a single linear actuator operable for contacting the part with a first lighter force for determining the position of the part and with a second harder force for adjusting the position of the part. The actuation component is utilized in a substantially horizontal configuration and the effects of gravitational drop of the part are accounted for in the force applied and the timing of the contact.

  14. Control system design for nano-positioning using piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Shan, Jinjun; Liu, Yanfang; Gabbert, Ulrich; Cui, Naigang

    2016-02-01

    This paper presents a systematic control system design for nano-positioning of a piezoelectric actuator (PEA). PEAs exhibit hysteresis nonlinearity, which can dramatically limit the application and performance of linear feedback control theory. Thus the hysteresis is compensated for based on the Maxwell resistive capacitor (MRC) model first. Then a proportional plus integral (PI) controller and a proportional double integral plus lead compensation (PII&L) controller are designed for the hysteresis-compensated PEA to account for model uncertainty, disturbance, and noise. The robust stability of both controllers is proved. The effectiveness of the proposed control scheme is demonstrated experimentally. Both controllers achieve fast precise positioning. The 2% settling times for the PI controller and the PII&L controller are 1.5 ms and 4.7 ms, respectively. The positioning resolution is upto 1 nm for both controllers.

  15. Shape memory system with integrated actuation using embedded particles

    DOEpatents

    Buckley, Patrick R.; Maitland, Duncan J.

    2009-09-22

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  16. Shape memory system with integrated actuation using embedded particles

    DOEpatents

    Buckley, Patrick R; Maitland, Duncan J

    2014-04-01

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  17. Shape memory system with integrated actuation using embedded particles

    DOEpatents

    Buckley, Patrick R.; Maitland, Duncan J.

    2012-05-29

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  18. Direct Adaptive Control of Systems with Actuator Failures: State of the Art and Continuing Challenges

    NASA Technical Reports Server (NTRS)

    Tao, Gang; Joshi, Suresh M.

    2008-01-01

    In this paper, the problem of controlling systems with failures and faults is introduced, and an overview of recent work on direct adaptive control for compensation of uncertain actuator failures is presented. Actuator failures may be characterized by some unknown system inputs being stuck at some unknown (fixed or varying) values at unknown time instants, that cannot be influenced by the control signals. The key task of adaptive compensation is to design the control signals in such a manner that the remaining actuators can automatically and seamlessly take over for the failed ones, and achieve desired stability and asymptotic tracking. A certain degree of redundancy is necessary to accomplish failure compensation. The objective of adaptive control design is to effectively use the available actuation redundancy to handle failures without the knowledge of the failure patterns, parameters, and time of occurrence. This is a challenging problem because failures introduce large uncertainties in the dynamic structure of the system, in addition to parametric uncertainties and unknown disturbances. The paper addresses some theoretical issues in adaptive actuator failure compensation: actuator failure modeling, redundant actuation requirements, plant-model matching, error system dynamics, adaptation laws, and stability, tracking, and performance analysis. Adaptive control designs can be shown to effectively handle uncertain actuator failures without explicit failure detection. Some open technical challenges and research problems in this important research area are discussed.

  19. Advanced launch system (ALS) actuation and power systems impact operability and cost

    SciTech Connect

    Sundberg, G.R. . Lewis Research Center)

    1990-09-01

    To obtain the advanced launch system (ALS) primary goals of reduced costs ($300/lb earth to LEO) and improved operability, there must be significant reductions in the launch operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using electrical actuation integrated with a single vehicle electrical power system and controls for all actuation and avionics requirements. This paper reviews the ALS and its associated advanced development program to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the ALS goals (cryogenic fuel valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles and a multitude of commercial applications.

  20. Robotic Arm and Rover Actuator Systems for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Reid, L.; Brawn, D.; Noon, D.

    1999-01-01

    Missions such as the Sojourner Rover, the Robotic Arm for Mars Polar Lander, and the 2003 Mars Rover, Athena, use numerous actuators that must operate reliably in extreme environments for long periods of time.

  1. Fault-tolerant control of delta operator systems with actuator saturation and effectiveness loss

    NASA Astrophysics Data System (ADS)

    Yang, Hongjiu; Zhang, Luyang; Zhao, Ling; Yuan, Yuan

    2016-07-01

    This paper studies the problem of robust fault-tolerant control against the actuator effectiveness loss for delta operator systems with actuator saturation. Ellipsoids are used to estimate the domain of attraction for the delta operator systems with actuator saturation and effectiveness loss. Some invariance set conditions used for enlarging the domain of attraction are expressed by linear matrix inequalities. Discussions on system performance optimisation are presented in this paper, including reduction on computational complexity, expansion of the domain of attraction and disturbance rejection. Two numerical examples are given to illustrate the effectiveness of the developed techniques.

  2. Conducting polymer actuators: From basic concepts to proprioceptive systems

    NASA Astrophysics Data System (ADS)

    Martinez Gil, Jose Gabriel

    Designers and engineers have been dreaming for decades of motors sensing, by themselves, working and surrounding conditions, as biological muscles do originating proprioception. Here bilayer full polymeric artificial muscles were checked up to very high cathodic potential limits (-2.5 V) in aqueous solution by cyclic voltammetry. The electrochemical driven exchange of ions from the conducting polymer film, and the concomitant Faradaic bending movement of the muscle, takes place in the full studied potential range. The presence of trapped counterion after deep reduction was corroborated by EDX determinations giving quite high electronic conductivity to the device. The large bending movement was used as a tool to quantify the amount of water exchanged per reaction unit (exchanged electron or ion). The potential evolutions of self-supported films of conducting polymers or conducting polymers (polypyrrole, polyaniline) coating different microfibers, during its oxidation/reduction senses working mechanical, thermal, chemical or electrical variables. The evolution of the muscle potential from electrochemical artificial muscles based on electroactive materials such as intrinsically conducting polymers and driven by constant currents senses, while working, any variation of the mechanical (trailed mass, obstacles, pressure, strain or stress), thermal or chemical conditions of work. One physically uniform artificial muscle includes one electrochemical motor and several sensors working simultaneously under the same driving reaction. Actuating (current and charge) and sensing (potential and energy) magnitudes are present, simultaneously, in the only two connecting wires and can be read by the computer at any time. From basic polymeric, mechanical and electrochemical principles a physicochemical equation describing artificial proprioception has been developed. It includes and describes, simultaneously, the evolution of the muscle potential during actuation as a function of the

  3. A new class of high force, low-voltage, compliant actuation system

    SciTech Connect

    RODGERS,M. STEVEN; KOTA,SRIDHAR; HETRICK,JOEL; LI,ZHE; JENSEN,BRIAN D.; KRYGOWSKI,THOMAS W.; MILLER,SAMUEL L.; BARNES,STEPHEN MATTHEW; BURG,MICHAEL STANLEY

    2000-04-10

    Although many actuators employing electrostatic comb drives have been demonstrated in a laboratory environment, widespread acceptance in mass produced microelectromechanical systems (MEMS) may be limited due to issues associated with low drive force, large real estate demands, high operating voltages, and reliability concerns due to stiction. On the other hand, comb drives require very low drive currents, offer predictable response, and are highly compatible with the fabrication technology. The expand the application space and facilitate the widespread deployment of self-actuated MEMS, a new class of advanced actuation systems has been developed that maintains the highly desirable aspects of existing components, while significantly diminishing the issues that could impede large scale acceptance. In this paper, the authors will present low-voltage electrostatic actuators that offer a dramatic increase in force over conventional comb drive designs. In addition, these actuators consume only a small fraction of the chip area previously used, yielding significant gains in power density. To increase the stroke length of these novel electrostatic actuators, the authors have developed highly efficient compliant stroke amplifiers. The coupling of compact, high-force actuators with fully compliant displacement multipliers sets a new paradigm for highly integrated microelectromechanical systems.

  4. Experimental Validation of the Piezoelectric Triple Hybrid Actuation System (TriHYBAS)

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Jiang, Xiaoning; Su, Ji

    2008-01-01

    A piezoelectric triple hybrid actuation system (TriHYBAS) has been developed. In this brief presentation of the validation process the displacement profile of TriHYBAS and findings regarding displacement versus applied voltage are highlighted.

  5. An electromechanical actuation system for an expendable launch vehicle

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Roth, Mary Ellen

    1992-01-01

    A major effort at the NASA Lewis Research Center in recent years has been to develop electro-mechanical actuators (EMA's) to replace the hydraulic systems used for thrust vector control (TVC) on launch vehicles. This is an attempt ot overcome the inherent inefficiencies and costs associated with the existing hydraulic structures. General Dynamics Space Systems Division, under contract to NASA Lewis, is developing 18.6 kW (25 hp), 29.8 kW (40 hp), and 52.2 kW (70 hp) peak EMA systems to meet the power demands for TVC on a family of vehicles developed for the National Launch System. These systems utilize a pulse population modulated converter and field-oriented control scheme to obtain independent control of both the voltage and frequency. These techniques allow an induction motor to be operated at its maximum torque at all times. At NASA Lewis, we are building on this technology to develop our own in-house system capable of meeting the peak power requirements for an expendable launch vehicle (ELV) such as the Atlas. Our EMA will be capable of delivering 22.4 kW (30 hp) peak power with a nominal of 6.0 kW (8 hp). This system differs from the previous ones in two areas: (1) the use of advanced control methods, and (2) the incorporation of built-in-test. The advanced controls are essential for minimizing the controller size, while the built-in-test is necessary to enhance the system reliability and vehicle health monitoring. The ultimate goal of this program is to demonstrate an EMA which will be capable of self-test and easy integration into other projects. This paper will describe the effort underway at NASA Lewis to develop an EMA for an Atlas class ELV. An explanation will be given for each major technology block, and the status of each major technology block and the status of the overall program will be reported.

  6. Optimal actuator and sensor placement in the linearized complex Ginzburg-Landau system

    NASA Astrophysics Data System (ADS)

    Chen, Kevin; Rowley, Clarence

    2010-11-01

    The linearized complex Ginzburg-Landau equation is a model for the evolution of small fluid perturbations, such as in a bluff body wake. We control this system by implementing actuators and sensors and designing an H2-optimal controller. We seek the optimal actuator and sensor placement that minimizes the H2 norm of the controlled system, from flow disturbances to a cost on the perturbation and input magnitude. We formulate the gradient of the H2 squared norm with respect to actuator and sensor positions, and iterate toward the optimal position. With a single actuator and sensor, it is optimal to place the actuator just upstream of the origin (e.g., the bluff body object) and the sensor just downstream. With multiple but an equal number of actuators and sensors, it is optimal to arrange them in pairs, placing actuators slightly upstream of sensors, and scattering pairs throughout the spatial domain. Global mode and Gramian analyses fail to predict the optimal placement; they produce H2 norms about five times higher than at the true optimum. A wave maker formulation is better able to guess an initial condition for the iterator.

  7. Performance of an Active Noise Control System for Fan Tones Using Vane Actuators

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Curtis, Alan R. D.; Heidelberg, Laurence J.; Remington, Paul J.

    2000-01-01

    An Active Noise Control (ANC) system for ducted fan noise was built that uses actuators located in stator vanes. The custom designed actuators A,ere piezoelectric benders manufactured using THUNDER technology. The ANC system was tested in the NASA Active Noise Control Fan rig. A total of 168 actuators in 28 stator vanes were used (six per vane). Simultaneous inlet and exhaust acoustic power level reductions were demonstrated for a fan modal structure that contained two radial modes in each direction. Total circumferential mode power levels were reduced by up to 9 dB in the inlet and 3 dB in the exhaust. The corresponding total 2BPF tone level reductions were by 6 dB in the inlet and 2 dB in the exhaust. Farfield sound pressure level reductions of up to 17 dB were achieved at the peak mode lobe angle. The performance of the system was limited by the constraints of the power amplifiers and the presence of control spillover. Simpler control/actuator systems using carefully selected subsets of the full system and random simulated failures of up to 7% of the actuators were investigated. (The actuators were robust and none failed during the test). Useful reductions still occurred under these conditions.

  8. Silicon micromachined pumps employing piezoelectric membrane actuation for microfluidic systems

    NASA Astrophysics Data System (ADS)

    Koch, Michael

    Microsystems technology is a rapidly expanding area that comprises electronics, mechanics and optics. In this field, physical/chemical sensing, fluid handling and optical communication are emerging as potential markets. Microfluidic systems like an implantable insulin pump, a drug delivery system and a total chemical analysis system are currently being developed by academia and industry around the world. This project contributes to the area of microfluidics in that a novel thick-film-on-silicon membrane actuator has been developed to allow inexpensive mass production of micropumps. To date piezoelectric plates have been surface mounted onto a silicon membrane. This single chip fabrication method can now be replaced by screen printing thick piezoelectric layers onto 4 inch silicon substrates. Two different pump types have been developed. These are membrane pumps with either cantilever valves or diffuser/nozzle valves. Pump rates between 100 and 200 μl min-1 and backpressures up to 4 kPa have been achieved with these pumps. Along with the technology of micropumps, simulators have been developed. A novel coupled FEM-CFD solver was realised by a computer controlled coupling of two commercially available packages (ANSYS and CFX-Flow3D). The results of this simulator were in good agreement with measurements on micromachined cantilever valves. CFX- Flow3D was also used to successfully model the behaviour of the diffuser/nozzle valve. Finally, the pump has been simulated using a continuity equation. A behavioural dynamic extension of the cantilever valve was necessary to achieve better prediction of the pump rates for higher frequencies. As well, a common process has been developed for microfluidic devices like micromixers, particle counters and sorters as well as flow sensors. The micromixer has been tested already and achieves mixing for input pressures between 2 and 7 kPa. This agrees with simulations of the diffusive mixing with CFX-Flow3D. Together with the micropump

  9. Advanced Launch System (ALS): Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  10. Advanced Launch System (ALS): Electrical actuation and power systems improve operability and cost picture

    NASA Astrophysics Data System (ADS)

    Sundberg, Gale R.

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  11. Advanced Launch System (ALS) actuation and power systems impact operability and cost

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  12. Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves

    SciTech Connect

    MISKA, C.R.

    2000-09-03

    1 inch gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

  13. Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves

    SciTech Connect

    VAN KATWIJK, C.

    2000-10-23

    1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fall closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

  14. Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves

    SciTech Connect

    MISKA, C.R.

    2000-11-13

    1 inch gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

  15. Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves

    SciTech Connect

    VAN KATWIJK, C.

    2000-06-06

    1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

  16. Adaptive dynamic surface control for a class of MIMO nonlinear systems with actuator failures

    NASA Astrophysics Data System (ADS)

    Amezquita S., Kendrick; Yan, Lin; Butt, Waseem A.

    2013-03-01

    In this article, an adaptive dynamic surface control scheme for a class of MIMO nonlinear systems with actuator failures and uncertainties is presented. In the proposed control scheme, the dynamic changes and disturbances induced by actuator failures are detected and isolated by means of radial basis function neural networks, which also compensate system uncertainties that arise from the mismatch between nominal model and real plant. In the presence of unknown actuation functions, the effectiveness of the control scheme is guaranteed by imposing a structural condition on the actuation matrix. Moreover, the singularity problem that arises from the approximation of unknown actuation functions is circumvented, and thus the use parameter projection is avoided. In this work, the nominal plant is transformed into a suitable form via diffeomorphism. Dynamic surface control design technique is used to develop the control laws. The closed-loop signals are proven to be uniformly ultimately bounded through Lyapunov approach, and the output tracking error is shown to be bounded within a residual set which can be made arbitrarily small by appropriately tuning the controller parameters. Finally, the proposed adaptive control scheme effectiveness is verified by simulation of the longitudinal dynamics of a twin otter aircraft undergoing actuator failures.

  17. Closed-loop control of a shape memory alloy actuation system for variable area fan nozzle

    NASA Astrophysics Data System (ADS)

    Barooah, Prabir; Rey, Nancy

    2002-07-01

    Shape Memory Alloys have been used in a wide variety of actuation applications. A bundled shape memory alloy cable actuator, capable of providing large force and displacement has been developed by United Technologies Corporation (patents pending) for actuating a Variable Area fan Nozzle (VAN). The ability to control fan nozzle exit area is an enabling technology for the next generation turbofan engines. Performance benefits for VAN engines are estimated to be up to 9% in Thrust Specific Fuel Consumption (TSFC) compared to traditional fixed geometry designs. The advantage of SMA actuated VAN design is light weight and low complexity compared to conventionally actuated designs. To achieve the maximum efficiency from a VAN engine, the nozzle exit area has to be continuously varied for a certain period of time during climb, since the optimum nozzle exit area is a function of several flight variables (flight Mach number, altitude etc). Hence, the actuator had to be controlled to provide the time varying desired nozzle area. A new control algorithm was developed for this purpose, which produced the desired flap area by metering the resistive heating of the SMA actuator. Since no active cooling was used, reducing overshoot was a significant challenge of the controller. A full scale, 2 flap model of the VAN system was built, which was capable of simulating a 20% nozzle area variation, and tested under full scale aerodynamic load in NASA Langley Jet Exit Test facility. The controller met all the requirements of the actuation system and was able to drive the flap position to the desired position with less than 2% overshoot in step input tests. The controller is based on a adaptive algorithm formulation with logical switches that reduces its overshoot error. Although the effectiveness of the controller was demonstrated in full scale model tests, no theoretical results as to its stability and robustness has been derived. Stability of the controller will have to be investigated

  18. Flexible system model reduction and control system design based upon actuator and sensor influence functions

    NASA Technical Reports Server (NTRS)

    Yam, Yeung; Johnson, Timothy L.; Lang, Jeffrey H.

    1987-01-01

    A model reduction technique based on aggregation with respect to sensor and actuator influence functions rather than modes is presented for large systems of coupled second-order differential equations. Perturbation expressions which can predict the effects of spillover on both the reduced-order plant model and the neglected plant model are derived. For the special case of collocated actuators and sensors, these expressions lead to the derivation of constraints on the controller gains that are, given the validity of the perturbation technique, sufficient to guarantee the stability of the closed-loop system. A case study demonstrates the derivation of stabilizing controllers based on the present technique. The use of control and observation synthesis in modifying the dimension of the reduced-order plant model is also discussed. A numerical example is provided for illustration.

  19. Strategic avionics technology definition studies. Subtask 3-1A: Electrical Actuation (ELA) systems

    NASA Technical Reports Server (NTRS)

    Pond, Charles L.; Mcdermott, William A.; Lum, Ben T. F.

    1993-01-01

    Electrical actuator (ELA) power efficiency and requirements are examined for space system application. Requirements for Space Shuttle effector systems are presented, along with preliminary ELA trades and selection to form a preliminary ELA system baseline. Power and energy requirements for this baseline ELA system are applicable to the Space Shuttle and similar space vehicles.

  20. Design of a bidirectional actuator for a nanopositioning system with a permanent magnet and an electromagnet

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Gweon, D. G.

    2005-12-01

    A precision bidirectional linear actuator for ultraprecision systems is proposed and designed in this article. The actuator is composed of a symmetric structure with a force generation unit and a guide mechanism. The force generation part consists of a permanent magnet and an electromagnet, which generate a permanent and a reversible flux, respectively. The combination of permanent and reversible fluxes makes various flux densities in its air gaps between the moving part and the fixed yokes. The difference between flux densities in the lower and upper gaps creates forces for bidirectional linear motions of hundreds of micrometers. As a guide mechanism, two circular plates and one shaft are used. Reducing other forces generated by motions, except the z-directional motion, these circular plates in the form of a flexure endow the actuator with smooth motion, freedom from wear, and a high stiffness for a rapid settling time. The function of the shaft is to transfer motion to an object. Finally, the total body has a symmetric structure enabling it to be stable in terms of thermal error. The actuator is designed with the software tools MAXWELL™2D and PRO-MECHANICA™. The designed actuator is evaluated with a linear current amplifier, a laser Doppler vibrometer for nanometer resolution, a dynamic signal analyzer for frequency responses of the proposed actuator, and a simple proportional-integral-derivative controller for its tracking performance.

  1. Dry actuation testing of viscous drag micropumping systems for determination of optimal drive waveforms

    NASA Astrophysics Data System (ADS)

    Sosnowchik, Brian D.; Galambos, Paul C.; Sharp, Kendra V.; Jenkins, Mark W.; Horn, Mark W.; Hendrix, Jason R.

    2004-01-01

    This paper presents the dry actuation testing procedures and results for novel viscous drag micropumping systems. To overcome the limitations of previously developed mechanical pumps, we have developed pumps that are surface micromachined for efficient mass production which utilize viscous drag (dominant at low Reynolds numbers typical of microfluidics) to move fluid. The SUMMiT (www.sandia.gov/micromachine) fabricated pumps, presented first by Kilani et al., are being experimentally and computationally analyzed. In this paper we will describe the development of optimal waveforms to drive the electrostatic pumping mechanism while dry. While wet actuation will be significantly different, dry testing provides insight into how to optimally move the mechanism and differences between dry and wet actuation can be used to isolate fluid effects. Characterization began with an analysis of the driving voltage waveforms for the torsional ratcheting actuator (TRA), a micro-motor that drove the gear transmission for the pump, actuated with SAMA (Sandia"s Arbitrary waveform MEMS Actuator), a new waveform generating computer program with the ability to generate and output arbitrary voltage signals. Based upon previous research, a 50% duty cycle half-sine wave was initially selected for actuation of the TRA. However, due to the geometry of the half-sine waveform, the loaded micromotor could not transmit the motion required to pump the tested liquids. Six waveforms were then conceived, constructed, and selected for device actuation testing. Dry actuation tests included high voltage, low voltage, high frequency, and endurance/reliability testing of the TRA, gear transmission and pump assembly. In the SUMMiT process, all of the components of the system are fabricated together on one silicon chip already assembled in a monolithic microfabrication process. A 40% duty cycle quarter-sine waveform with a 20% DC at 60V has currently proved to be the most reliable, allowing for an 825Hz

  2. Dry actuation testing of viscous drag micropumping systems for determination of optimal drive waveforms

    NASA Astrophysics Data System (ADS)

    Sosnowchik, Brian D.; Galambos, Paul C.; Sharp, Kendra V.; Jenkins, Mark W.; Horn, Mark W.; Hendrix, Jason R.

    2003-12-01

    This paper presents the dry actuation testing procedures and results for novel viscous drag micropumping systems. To overcome the limitations of previously developed mechanical pumps, we have developed pumps that are surface micromachined for efficient mass production which utilize viscous drag (dominant at low Reynolds numbers typical of microfluidics) to move fluid. The SUMMiT (www.sandia.gov/micromachine) fabricated pumps, presented first by Kilani et al., are being experimentally and computationally analyzed. In this paper we will describe the development of optimal waveforms to drive the electrostatic pumping mechanism while dry. While wet actuation will be significantly different, dry testing provides insight into how to optimally move the mechanism and differences between dry and wet actuation can be used to isolate fluid effects. Characterization began with an analysis of the driving voltage waveforms for the torsional ratcheting actuator (TRA), a micro-motor that drove the gear transmission for the pump, actuated with SAMA (Sandia"s Arbitrary waveform MEMS Actuator), a new waveform generating computer program with the ability to generate and output arbitrary voltage signals. Based upon previous research, a 50% duty cycle half-sine wave was initially selected for actuation of the TRA. However, due to the geometry of the half-sine waveform, the loaded micromotor could not transmit the motion required to pump the tested liquids. Six waveforms were then conceived, constructed, and selected for device actuation testing. Dry actuation tests included high voltage, low voltage, high frequency, and endurance/reliability testing of the TRA, gear transmission and pump assembly. In the SUMMiT process, all of the components of the system are fabricated together on one silicon chip already assembled in a monolithic microfabrication process. A 40% duty cycle quarter-sine waveform with a 20% DC at 60V has currently proved to be the most reliable, allowing for an 825Hz

  3. Subminiature hydraulic actuator

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.

    1978-01-01

    Subminiature, single-vane rotary actuator for wind-tunnel test-model control-surface actuation systems presents severe torque and system band-pass requirements with stringent space and weight limitations. Actuator has very low leakage of fluid from one side to other, permitting use in precision position servo-systems.

  4. Autonomous control system reconfiguration for spacecraft with non-redundant actuators

    NASA Technical Reports Server (NTRS)

    Grossman, Walter

    1995-01-01

    The Small Satellite Technology Initiative (SSTI) 'CLARK' spacecraft is required to be single-failure tolerant, i.e., no failure of any single component or subsystem shall result in complete mission loss. Fault tolerance is usually achieved by implementing redundant subsystems. Fault tolerant systems are therefore heavier and cost more to build and launch than non-redundent, non fault-tolerant spacecraft. The SSTI CLARK satellite Attitude Determination and Control System (ADACS) achieves single-fault tolerance without redundancy. The attitude determination system system uses a Kalman Filter which is inherently robust to loss of any single attitude sensor. The attitude control system uses three orthogonal reaction wheels for attitude control and three magnetic dipoles for momentum control. The nominal six-actuator control system functions by projecting the attitude correction torque onto the reaction wheels while a slower momentum management outer loop removes the excess momentum in the direction normal to the local B field. The actuators are not redundant so the nominal control law cannot be implemented in the event of a loss of a single actuator (dipole or reaction wheel). The spacecraft dynamical state (attitude, angular rate, and momentum) is controllable from any five-element subset of the six actuators. With loss of an actuator the instantaneous control authority may not span R(3) but the controllability gramian integral(limits between t,0) Phi(t, tau)B(tau )B(prime)(tau) Phi(prime)(t, tau)d tau retains full rank. Upon detection of an actuator failure the control torque is decomposed onto the remaining active axes. The attitude control torque is effected and the over-orbit momentum is controlled. The resulting control system performance approaches that of the nominal system.

  5. Actuator fault estimation and accommodation for switched systems with time delay: Discrete-time case.

    PubMed

    Du, Dongsheng; Jiang, Bin

    2016-05-01

    This paper investigates the problems of actuator fault estimation and accommodation for discrete-time switched systems with state delay. By using reduced-order observer method and switched Lyapunov function technique, a fault estimation algorithm is achieved for the discrete-time switched system with actuator fault and state delay. Then based on the obtained online fault estimation information, a switched dynamic output feedback controller is employed to compensate for the effect of faults by stabilizing the closed-loop systems. Finally, an example is proposed to illustrate the obtained results. PMID:26924247

  6. Strategic avionics technology definition studies. Subtask 3-1A3: Electrical Actuation (ELA) Systems Test Facility

    NASA Technical Reports Server (NTRS)

    Rogers, J. P.; Cureton, K. L.; Olsen, J. R.

    1994-01-01

    Future aerospace vehicles will require use of the Electrical Actuator systems for flight control elements. This report presents a proposed ELA Test Facility for dynamic evaluation of high power linear Electrical Actuators with primary emphasis on Thrust Vector Control actuators. Details of the mechanical design, power and control systems, and data acquisition capability of the test facility are presented. A test procedure for evaluating the performance of the ELA Test Facility is also included.

  7. All inkjet-printed electroactive polymer actuators for microfluidic lab-on-chip systems

    NASA Astrophysics Data System (ADS)

    Pabst, Oliver; Beckert, Erik; Perelaer, Jolke; Schubert, Ulrich S.; Eberhardt, Ramona; Tünnermann, Andreas

    2013-04-01

    Piezoelectric electroactive polymers (EAP) are promising materials for applications in microfluidic lab-on-chip systems. In such systems, fluids can be analyzed by different chemical or physical methods. During the analysis the fluids need to be distributed through the channels of the chip, which requires a pumping function. We present here all inkjet-printed EAP actuators that can be configured as a membrane-based micropump suitable for direct integration into lab-on-chip systems. Drop-on-demand inkjet printing is a versatile digital deposition technique that is capable of depositing various functional materials onto a wide variety of substrates in an additive way. Compared to conventional lithography-based processing it is cost-efficient and flexible, as no masking is required. The actuators consist of a polymer foil substrate with an inkjet-printed EAP layer sandwiched between a set of two electrodes. The actuators are printed using a commercially available EAP solution and silver nanoparticle inks. When a voltage is applied across the polymer layer, piezoelectric strain leads to a bending deflection of the beam or membrane. Circular membrane actuators with 20 mm diameter and EAP thicknesses of 10 to 15 μm exhibit deflections of several μm when driven at their resonance frequency with voltages of 110 V. From the behavior of membrane actuators a pumping rate of several 100 μL/min can be estimated, which is promising for applications in lab-on-chip devices.

  8. Influence of low optical frequencies on actuation dynamics of microelectromechanical systems via Casimir forces

    NASA Astrophysics Data System (ADS)

    Sedighi, Mehdi; Palasantzas, George

    2015-04-01

    The role of the Casimir force on the analysis of microactuators is strongly influenced by the optical properties of interacting materials. Bifurcation and phase portrait analysis were used to compare the sensitivity of actuators when the optical properties at low optical frequencies were modeled using the Drude and Plasma models. Indeed, for metallic systems, which have strong Casimir attraction, the details of the modeling of the low optical frequency regime can be dramatic, leading to predictions of either stable motion or stiction instability. However, this difference is strongly minimized for weakly conductive systems as are the doped insulators making actuation modeling more certain to predict.

  9. INTEGRATED DRILLING SYSTEM USING MUD ACTUATED DOWN HOLE HAMMER AS PRIMARY ENGINE

    SciTech Connect

    John V. Fernandez; David S. Pixton

    2005-12-01

    A history and project summary of the development of an integrated drilling system using a mud-actuated down-hole hammer as its primary engine are given. The summary includes laboratory test results, including atmospheric tests of component parts and simulated borehole tests of the hammer system. Several remaining technical hurdles are enumerated. A brief explanation of commercialization potential is included. The primary conclusion for this work is that a mud actuated hammer can yield substantial improvements to drilling rate in overbalanced, hard rock formations. A secondary conclusion is that the down-hole mud actuated hammer can serve to provide other useful down-hole functions including generation of high pressure mud jets, generation of seismic and sonic signals, and generation of diagnostic information based on hammer velocity profiles.

  10. Hydraulic engine valve actuation system including independent feedback control

    DOEpatents

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  11. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  12. Multi-Axis Independent Electromechanical Load Control for Docking System Actuation Development and Verification Using dSPACE

    NASA Technical Reports Server (NTRS)

    Oesch, Christopher; Dick, Brandon; Rupp, Timothy

    2015-01-01

    The development of highly complex and advanced actuation systems to meet customer demands has accelerated as the use of real-time testing technology expands into multiple markets at Moog. Systems developed for the autonomous docking of human rated spacecraft to the International Space Station (ISS), envelope multi-operational characteristics which place unique constraints on an actuation system. Real-time testing hardware has been used as a platform for incremental testing and development for the linear actuation system which controls initial capture and docking for vehicles visiting the ISS. This presentation will outline the role of dSPACE hardware as a platform for rapid control-algorithm prototyping as well as an Electromechanical Actuator (EMA) system dynamic loading simulator, both conducted at Moog to develop the safety critical Linear Actuator System (LAS) of the NASA Docking System (NDS).

  13. A novel magnetic suspension cum linear actuator system for satellite cryo coolers

    SciTech Connect

    Sivadasan, K.K. . ISRO Inertial Systems Unit)

    1994-05-01

    Stirling cycle cryogenic coolers have been widely used for device cooling in satellites. Various types of magnetic bearings and linear actuators find application in such systems. The most widely used configurations have two-axis-radially-active suspension stations placed at either ends of a reciprocating shaft in the compression and expansion sections. Separate or integral liner motors are provided in each section for axial shaft movement. It may be noted that such configurations are rather complicated and less reliable because of the presence of numerous electro-mechanical components, sensors and electronic servo channels. In this paper, a simple and reliable scheme is suggested which axially stabilizes and linearly perturbs the piston so that the need for a separate motor for axial actuation can be totally dispensed with. The piston is radially supported by passive repulsive bearings. In the axial direction, a servo actuator balances'' the piston and also actuates it bi-directionally. Implemented of this bearing cum motor theme,'' reduces the number of electromechanical and electronic components required to operate the system and hence minimizes the chances of system failure. Apart from this, the system's power consumption is reduced and efficiency is improved as electrical heating losses caused by quiescent-operating currents are removed and electromagnetic losses on the moving parts are minimized. The necessary system parameters have been derived using finite element analysis techniques. Finally, the proposed design is validated by computer-aided system simulation.

  14. Prototyping a compact system for active vibration isolation using piezoelectric sensors and actuators

    NASA Astrophysics Data System (ADS)

    Shen, Hui; Wang, Chun; Li, Liufeng; Chen, Lisheng

    2013-05-01

    Being small in size and weight, piezoelectric transducers hold unique positions in vibration sensing and control. Here, we explore the possibility of building a compact vibration isolation system using piezoelectric sensors and actuators. The mechanical resonances of a piezoelectric actuator around a few kHz are suppressed by an order of magnitude via electrical damping, which improves the high-frequency response. Working with a strain gauge located on the piezoelectric actuator, an auxiliary control loop eliminates the drift associated with a large servo gain at dc. Following this approach, we design, optimize, and experimentally verify the loop responses using frequency domain analysis. The vibration isolation between 1 Hz and 200 Hz is achieved and the attenuation peaks at 60 near vibration frequency of 20 Hz. Restrictions and potentials for extending the isolation to lower vibration frequencies are discussed.

  15. Study of hydraulic actuation system for Space Shuttle main engine propellant valves

    NASA Technical Reports Server (NTRS)

    Ewel, Bob (Editor)

    1993-01-01

    Recent performance concerns involving the Space Shuttle Main Engine Propellant Valve Actuator assemblies prompted the NASA Marshall Space Flight Center to request an independent design assessment. Moog Inc. responded to this request and received a study contract with objectives of increasing valve reliability, decreasing maintenance costs while preserving the existing design interfaces. The results of the Propellant Valve Actuation System review focus on contamination control and the bypass valve design. Three proof of concept bypass valves employing design changes were built and successfully tested. Test results are presented.

  16. Application of a passive/active autoparametric cantilever beam absorber with PZT actuator for Duffing systems

    NASA Astrophysics Data System (ADS)

    Silva-Navarro, G.; Abundis-Fong, H. F.; Vazquez-Gonzalez, B.

    2013-04-01

    An experimental investigation is carried out on a cantilever-type passive/active autoparametric vibration absorber, with a PZT patch actuator, to be used in a primary damped Duffing system. The primary system consists of a mass, viscous damping and a cubic stiffness provided by a soft helical spring, over which is mounted a cantilever beam with a PZT patch actuator actively controlled to attenuate harmonic and resonant excitation forces. With the PZT actuator on the cantilever beam absorber, cemented to the base of the beam, the auto-parametric vibration absorber is made active, thus enabling the possibility to control the effective stiffness and damping associated to the passive absorber and, as a consequence, the implementation of an active vibration control scheme able to preserve, as possible, the autoparametric interaction as well as to compensate varying excitation frequencies and parametric uncertainty. This active vibration absorber employs feedback information from a high resolution optical encoder on the primary Duffing system and an accelerometer on the tip beam absorber, a strain gage on the base of the beam, feedforward information from the excitation force and on-line computations from the nonlinear approximate frequency response, parameterized in terms of a proportional gain provided by a voltage input to the PZT actuator, thus modifying the closed-loop dynamic stiffness and providing a mechanism to asymptotically track an optimal, robust and stable attenuation solution on the primary Duffing system. Experimental results are included to describe the dynamic and robust performance of the overall closed-loop system.

  17. Fiber Optic Experience with the Smart Actuation System on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Zavala, Eddie

    1997-01-01

    High bandwidth, immunity to electromagnetic interference, and potential weight savings have led to the development of fiber optic technology for future aerospace vehicle systems. This technology has been incorporated in a new smart actuator as the primary communication interface. The use of fiber optics simplified system integration and significantly reduced wire count. Flight test results showed that fiber optics could be used in aircraft systems and identified critical areas of development of fly-by-light technology. This paper documents the fiber optic experience gained as a result of this program, and identifies general design considerations that could be used in a variety of specific applications of fiber optic technology. Environmental sensitivities of fiber optic system components that significantly contribute to optical power variation are discussed. Although a calibration procedure successfully minimized the effect of fiber optic sensitivities, more standardized calibration methods are needed to ensure system operation and reliability in future aerospace vehicle systems.

  18. Quiet Clean Short-haul Experimental Engine (QCSEE) whirl test of cam/harmonic pitch change actuation system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A variable pitch fan actuation system, which incorporates a remote nacelle mounted blade angle regulator, was tested. The regulator drives a rotating fan mounted mechanical actuator through a flexible shaft and differential gear train. The actuator incorporates a high ratio harmonic drive attached to a multitrack spherical cam which changes blade pitch through individual cam follower arms attached to each blade trunnion. Testing of the actuator on a whirl rig, is reported. Results of tests conducted to verify that the unit satisfied the design requirements and was structurally adequate for use in an engine test are presented.

  19. Low spring index, large displacement Shape Memory Alloy (SMA) coil actuators for use in macro- and micro-systems

    NASA Astrophysics Data System (ADS)

    Holschuh, Brad; Newman, Dava

    2014-03-01

    Shape memory alloys (SMA) offer unique shape changing characteristics that can be exploited to produce low­ mass, low-bulk, large-stroke actuators. We are investigating the use of low spring index (defined as the ratio of coil diameter to wire diameter) SMA coils for use as actuators in morphing aerospace systems. Specifically, we describe the development and characterization of minimum achievable spring index coiled actuators made from 0.3048 mm (0.012") diameter shape memory alloy (SMA) wire for integration in textile architectures for future compression space suit applications. Production and shape setting of the coiled actuators, as well as experimental test methods, are described. Force, length and voltage relationships for multiple coil actuators are reported and discussed. The actuators exhibit a highly linear (R2 < 0.99) relationship between isometric blocking force and coil displacement, which is consistent with current SMA coil models; and SMA coil actuators demonstrate the ability to produce significant linear forces (i.e., greater than 8 N per coil) at strains up to 3x their initial (i.e., fully coiled) length. Discussions of both the potential use of these actuators in future compression space suit designs, and the broader viability of these actuators in both macro- and micro-systems, are presented.

  20. Development of a magneto-rheological fluid based hybrid actuation system

    NASA Astrophysics Data System (ADS)

    John, Shaju

    A hybrid hydraulic actuation system is proposed as an active pitch link for rotorcraft applications. Such an active pitch link can be used to implement Individual Blade Control (IBC) techniques for vibration and noise reduction, in addition to providing primary control for the helicopter. Conventional technologies like electric motors and hydraulic actuators have major disadvantages when it come to applications on a rotating environment. Centralized hydraulic system require the use of mechanically complex hydraulic slip rings and electric motors have high precision mechanical moving parts that make them unattractive in application with high centrifugal load. The high energy density of smart materials can be used to design hydraulic actuators in a compact package. MagnetoRheological (MR) fluids can be used as the working fluid in such a hybrid hydraulic actuation system to implement a valving system with no moving parts. Thus, such an actuation system can be theoretically well-suited for application in a rotating environment. To develop an actuation system based on an active material stack and MR fluidic valves, a fundamental understanding of the hydraulic circuit is essential. In order to address this issue, a theoretical model was developed to understand the effect of pumping chamber geometry on the pressure losses in the pumping chamber. Three dimensional analytical models were developed for steady and unsteady flow and the results were correlated to results obtained from Computation Fluid Dynamic simulation of fluid flow inside the pumping chamber. Fundamental understanding regarding the pressure losses in a pumping chamber are obtained from the modeling process. Vortices that form in the pumping chamber (during intake) and the discharge tube (during discharge) are identified as a major cause of pressure loss in the chamber. The role of vortices during dynamic operation is also captured through a frequency domain model. Extensive experimental studies were

  1. 30 CFR 250.1611 - Blowout preventer systems tests, actuations, inspections, and maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Blowout preventer systems tests, actuations, inspections, and maintenance. 250.1611 Section 250.1611 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations...

  2. AMSD Cryo Actuator Testing

    NASA Technical Reports Server (NTRS)

    Mullette, Mark; Matthews, Gary; Russell, Kevin (Technical Monitor)

    2002-01-01

    The actuator technology required for AMSD and subsequently NGST are critical in the successful development for future cryogenic systems. Kodak has undertaken an extensive test plan to determine the performance of the force actuators developed under the AMSD program. These actuators are currently in testing at MSFC and are expected to finish this test cycle in early June 2002.

  3. Non-collinear valve actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2012-01-01

    A non-collinear valve actuator includes a primary actuating system and a return spring system with each applying forces to a linkage system in order to regulate the flow of a quarter-turn valve. The primary actuating system and return spring system are positioned non-collinearly, which simply means the primary actuating system and return spring system are not in line with each other. By positioning the primary actuating system and return spring system in this manner, the primary actuating system can undergo a larger stroke while the return spring system experiences significantly less displacement. This allows the length of the return spring to be reduced due to the minimization of displacement thereby reducing the weight of the return spring system. By allowing the primary actuating system to undergo longer strokes, the weight of the primary actuating system may also be reduced. Accordingly, the weight of the non-collinear valve actuator is reduced.

  4. Effectiveness of a passive-active vibration isolation system with actuator constraints

    NASA Astrophysics Data System (ADS)

    Sun, Lingling; Sun, Wei; Song, Kongjie; Hansen, Colin H.

    2014-05-01

    In the prediction of active vibration isolation performance, control force requirements were ignored in previous work. This may limit the realization of theoretically predicted isolation performance if control force of large magnitude cannot be supplied by actuators. The behavior of a feed-forward active isolation system subjected to actuator output constraints is investigated. Distributed parameter models are developed to analyze the system response, and to produce a transfer matrix for the design of an integrated passive-active isolation system. Cost functions comprising a combination of the vibration transmission energy and the sum of the squared control forces are proposed. The example system considered is a rigid body connected to a simply supported plate via two passive-active isolation mounts. Vertical and transverse forces as well as a rotational moment are applied at the rigid body, and resonances excited in elastic mounts and the supporting plate are analyzed. The overall isolation performance is evaluated by numerical simulation. The simulation results are then compared with those obtained using unconstrained control strategies. In addition, the effects of waves in elastic mounts are analyzed. It is shown that the control strategies which rely on unconstrained actuator outputs may give substantial power transmission reductions over a wide frequency range, but also require large control force amplitudes to control excited vibration modes of the system. Expected power transmission reductions for modified control strategies that incorporate constrained actuator outputs are considerably less than typical reductions with unconstrained actuator outputs. In the frequency range in which rigid body modes are present, the control strategies can only achieve 5-10 dB power transmission reduction, when control forces are constrained to be the same order of the magnitude as the primary vertical force. The resonances of the elastic mounts result in a notable increase

  5. A Method for Exploiting Redundancy to Accommodate Actuator Limits in Multivariable Systems

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Roulette, Greg

    1995-01-01

    This paper introduces a new method for accommodating actuator saturation in a multivariable system with actuator redundancy. Actuator saturation can cause significant deterioration in control system performance because unmet demand may result in sluggish transients and oscillations in response to setpoint changes. To help compensate for this problem, a technique has been developed which takes advantage of redundancy in multivariable systems to redistribute the unmet control demand over the remaining useful effectors. This method is not a redesign procedure, rather it modifies commands to the unlimited effectors to compensate for those which are limited, thereby exploiting the built-in redundancy. The original commands are modified by the increments due to unmet demand, but when a saturated effector comes off its limit, the incremental commands disappear and the original unmodified controller remains intact. This scheme provides a smooth transition between saturated and unsaturated modes as it divides up the unmet requirement over any available actuators. This way, if there is sufficiently redundant control authority, performance can be maintained.

  6. Magnetorheological valve based actuator for improvement of passively controlled turbocharger system

    NASA Astrophysics Data System (ADS)

    Bahiuddin, I.; Mazlan, S. A.; Imaduddin, F.; Ubaidillah, Ichwan, B.

    2016-03-01

    Variable geometry turbochargers have been widely researched to fulfil the current engine stringent regulations. The passively controlled turbocharger (PCT) concept has been proposed to reduce energy consumption by utilizing the emission energy to move the actuator. However, it only covered a small range operating condition. Therefore, a magnetorheological(MR) Valve device, as typical smart material devices to enhance a passive device, is proposed to improve the PCT. Even though the benefits have been considered for the compactness and easiness to connect to an electrical system, the number of publications regarding the MR application within engine system is hard to be found. Therefore, this paper introduces a design of an MR Valve in a turbocharger. The main challenge is to make sure its capability to produce a sufficient total pressure drop. To overcome the challenge, its material properties, shape and pressure drop calculation has been analyzed to fulfil the requirement. Finally, to get a more understanding of actuator performance, the actuator response was simulated by treating the exhaust gas pressure as an input. It shows that the new MR actuator has a potential dynamic to improve the PCT controllability.

  7. The X-43 Fin Actuation System Problem - Reliability in Shades of Gray

    NASA Technical Reports Server (NTRS)

    Peebles, Curtis

    2006-01-01

    Following the loss of the first X-43 during launch, the mishap investigation board indicated the Fin Actuator System (FAS) needed to have a larger torque margin. To supply this added torque, a second actuator was added. The consequences of what seemed to be a simple modification would trouble the X-43 program. Because of the second actuator, a new computer board was required. This proved to be subject to electronic noise. This resulted in the actuator latch up in ground tests of the FAS for the second launch. Such a latch up would cause the Pegasus booster to fail, as the FAS was a single string system. The problem was corrected and the second flight was successful. The same modifications were added to the FAS for flight three. When the FAS underwent ground tests, it also latched up. The failure indicated that each computer board had a different tolerance to electronic noise. The problem with the FAS was corrected. Subsequently, another failure occurred, raising questions about the design, and the probability of failure for the X-43 Mach 10 flight. This was not simply a technical issue, but illuminated the difficulties facing both managers and engineers in assessing risk, design requirements, and probabilities in cutting edge aerospace projects.

  8. Design and analysis of rotor systems with multiple trailing edge flaps and resonant actuators

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Sik

    The purpose of this thesis is to develop piezoelectric resonant actuation systems and new active control methods utilizing the multiple trailing-edge flaps' configuration for rotorcraft vibration suppression and blade loads control. An aeroelastic model is developed for a composite rotor blade with multiple trailing-edge flaps. The rotor blade airloads are calculated using quasi-steady blade element aerodynamics with a free wake model for rotor inflow. A compressible unsteady aerodynamics model is employed to accurately predict the incremental trailing edge flap airloads. Both the finite wing effect and actuator saturation for trailing-edge flaps are also included in an aeroelastic analysis. For a composite articulated rotor, a new active blade loads control method is developed and tested numerically. The concept involves straightening the blade by introducing dual trailing edge flaps. The objective function, which includes vibratory hub loads, bending moment harmonics and active flap control inputs, is minimized by an integrated optimal control/optimization process. A numerical simulation is performed for the steady-state forward flight of an advance ratio of 0.35. It is demonstrated that through straightening the rotor blade, which mimics the behavior of a rigid blade, both the bending moments and vibratory hub loads can be significantly reduced by 32% and 57%, respectively. An active vibration control method is developed and analyzed for a hingeless rotor. The concept involves deflecting each individual trailing-edge flap using a compact resonant actuation system. Each resonant actuation system could yield high authority, while operating at a single frequency. Parametric studies are conducted to explore the finite wing effect of trailing-edge flaps and actuator saturation. A numerical simulation has been performed for the steady-state forward flight (mu = 0.15 ˜ 0.35). It is demonstrated that multiple trailing-edge flap configuration with the resonant actuation

  9. Advanced launch system (ALS) - Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrrical power system and controls for all aviation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a sdpecific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military ans civilian aircraft, lunar/Martian vehicles, and a multitude of comercial applications.

  10. On-orbit jitter control in momentum actuators using a three-flywheel system

    NASA Astrophysics Data System (ADS)

    Nagabhushan, Vivek; Fitz-Coy, Norman G.

    2014-02-01

    Vibrations on-board a spacecraft have degrading effects on the performance of certain payloads like astronomical telescopes, Earth observation systems, optical communication equipment, etc. The major source of these vibrations include momentum actuators used for attitude control, thrusters, solar array drives and other rotary mechanical equipment. The effect of these vibrations is spacecraft jitter which causes for example, smearing of images in a telescope. Spacecraft jitter due to rotor imbalance in momentum actuators is considered. Publications to date have researched isolation and suppression of vibration thus caused. This paper investigates the dynamics of jitter due to rotor imbalance and proposes a modification to the momentum actuators that provides a long term jitter management solution. The modification involves replacing a flywheel/rotor in the momentum actuator by a three-flywheel system. This method overcomes the need for prior precision balancing of individual flywheels and is capable of achieving a balanced system on orbit. It also provides limited redundancy against flywheel failure and may help accelerate testing and calibration. The dynamics of the three-flywheel system are developed and elaborate simulations are performed to verify the validity of the method. The performances of the proposed three-flywheel system and an equivalent single-flywheel system are compared. The effect of single/multiple flywheel failure in the three-flywheel system is investigated. An indicative design of the three-flywheel system and other implementation aspects are discussed to evidence its practicality. The potential increase in the mass, and power consumption of the three-flywheel system is discussed using a power and mass analysis based on the indicative design.

  11. Shape control of a morphing structure (rotor blade) using a shape memory alloy actuator system

    NASA Astrophysics Data System (ADS)

    Bushnell, Glenn S.; Arbogast, Darin; Ruggeri, Robert

    2008-03-01

    Development and test results of a rotor blade twist control system that utilizes a thermo-mechanical shape memory alloy (SMA) are presented. The actuation system controls the blade shape during flight operations allowing the blade to be configured for greater lift during takeoff and landing. SMA actuators provided an excellent solution because of their very high torque output to weight ratio and suitability to the dynamic environment of a rotor blade. Several challenges related to the behavior of the SMA material are overcome by innovative control system design. Thermoelectric modules (TEM's) are used to actively transfer heat between SMA tubes and other heat conductor and radiator components. Modeling and system identification techniques and a non-trivial solution to nonlinear and coupled thermal response equations are used to insure effective use of the TEM's and to improve control during SMA phase transition.

  12. Self-Learning Variable Structure Control for a Class of Sensor-Actuator Systems

    PubMed Central

    Chen, Sanfeng; Li, Shuai; Liu, Bo; Lou, Yuesheng; Liang, Yongsheng

    2012-01-01

    Variable structure strategy is widely used for the control of sensor-actuator systems modeled by Euler-Lagrange equations. However, accurate knowledge on the model structure and model parameters are often required for the control design. In this paper, we consider model-free variable structure control of a class of sensor-actuator systems, where only the online input and output of the system are available while the mathematic model of the system is unknown. The problem is formulated from an optimal control perspective and the implicit form of the control law are analytically obtained by using the principle of optimality. The control law and the optimal cost function are explicitly solved iteratively. Simulations demonstrate the effectiveness and the efficiency of the proposed method. PMID:22778633

  13. Influence of Ordered Morphology on the Anisotropic Actuation in Uniaxially Oriented Electroactive Polymer Systems

    SciTech Connect

    Park, Jong Keun; Moore, Robert B.

    2009-06-12

    Ionic polymer-metal composites (IPMCs) are electroactive materials that undergo bending motions with the stimulus of a relatively weak electric field. To understand the fundamental role of the nanoscale morphology of the ionomer membrane matrix in affecting the actuation behavior of IPMC systems, we evaluated the actuation performance of IPMC materials subjected to uniaxial orientation. The perfluorinated ionomer nanostructure altered by uniaxial orientation mimicks the fibrillar structure of biological muscle tissue and yields a new anisotropic actuation response. It is evident that IPMCs cut from films oriented perpendicular to the draw direction yield tip-displacement values that are significantly greater than those of unoriented IPMCs. In contrast, IPMCs cut from films oriented parallel to the draw direction appear to resist bending and yield tip-displacement values that are much less than those of unoriented IPMCs. This anisotropic actuation behavior is attributed, in part, to the contribution of the fibrillar morphology to the bulk bending modulus. As an additional contribution, electrically stimulated water swelling perpendicular to the rodlike aggregate axis facilitates bending in the perpendicular direction.

  14. Characterization of electromechanical actuator implemented to phase-shift system applied to a Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Barcelata-Pinzon, A.; Meneses Fabian, C.; Juarez-Salazar, R.; Durán-Sánchez, M.; Alvarez-Tamayo, R. I.; Robledo-Sánchez, C. I.; Muñoz-Mata, J. L.; Casco-Vázquez, J. F.

    2016-05-01

    Numerical results are presented to show the characterization of an electromechanical actuator capable to achieve equally spaced phase shifts and fraction linear wavelength displacements aided by an interface and a computational system. Measurements were performed by extracting the phase with consecutive interference patterns obtained in a Michelson arrangement setup. This paper is based in the use of inexpensive resources on stability adverse conditions to achieve similar results to those obtained with high-grade systems.

  15. Design and performance evaluation of a new jetting dispenser system using two piezostack actuators

    NASA Astrophysics Data System (ADS)

    Jeon, Juncheol; Hong, Seung-Min; Choi, Minkyu; Choi, Seung-Bok

    2015-01-01

    This paper presents a new jetting dispenser system which is adaptable to various packaging processes such as light emitting diode packaging and flip chip packaging. The proposed dispenser system is driven by piezostack actuators and a lever-hinge mechanism. In order to improve jetting performances such as accurate dispensed amount and adaptability to high viscosity fluid, two piezostack actuators are used. By activating the two actuators dually, the angular displacement of the lever can be controlled to produce a required motion of the needle. Firstly, the configuration and working principles of the proposed jetting system are explained, the design of the dispenser is then conducted and significant geometric dimensions of the dispenser are presented. In the design process, several operational requirements such as the maximum needle stroke, operational frequency, and amplification ratio of the lever-hinge are considered. The principal design parameters of the jetting dispenser system are determined from static and modal analysis using the finite element analysis. After obtaining the dimensional characteristics, the control logic for the dispensing operation is explained using a feed-forward controller. The piezostack-driven jetting dispenser system and control devices are then fabricated to evaluate the dispenser performance. It is shown experimentally that by changing the input voltage conditions, the amount of fluid dispensed by the proposed jetting system can be effectively controlled to achieve the desired jetting performance.

  16. Robust reliable guaranteed cost control of positive interval systems with multiple time delays and actuator failure

    NASA Astrophysics Data System (ADS)

    Zhang, Ji-Shi; Wang, Yan-Wu; Xiao, Jiang-Wen; Chen, Yang

    2016-03-01

    This paper addresses the robust reliable guaranteed cost control problem of positive interval systems with multiple time delays and actuator failure for a given quadratic cost function. Through constructing a Lyapunov-Krasovskii functional, a sufficient condition for the existence of robust reliable guaranteed cost controllers is established such that the closed-loop system is positive and asymptotically stable, and the cost function is guaranteed to be no more than a certain upper bound. Based on the linear matrix inequality method, a criterion for the design of robust reliable guaranteed cost controllers is derived which can tolerate all admissible uncertainties as well as actuator failure. Moreover, a convex optimisation problem with linear matrix inequality constraints is formulated to design the optimal robust reliable guaranteed cost controller which minimises the upper bound of the closed-loop system cost. A numerical example is given to show the effectiveness of the proposed methods.

  17. UIO design for singular delayed LPV systems with application to actuator fault detection and isolation

    NASA Astrophysics Data System (ADS)

    Hassanabadi, Amir Hossein; Shafiee, Masoud; Puig, Vicenc

    2016-01-01

    In this paper, the unknown input observer (UIO) design for singular delayed linear parameter varying (LPV) systems is considered regarding its application to actuator fault detection and isolation. The design procedure assumes that the LPV system is represented in the polytopic framework. Existence and convergence conditions for the UIO are established. The design procedure is formulated by means of linear matrix inequalities (LMIs). Actuator fault detection and isolation is based on using the UIO approach for designing a residual generator that is completely decoupled from unknown inputs and exclusively sensitive to faults. Fault isolation is addressed considering two different strategies: dedicated and generalised bank of observers' schemes. The applicability of these two schemes for the fault isolation is discussed. An open flow canal system is considered as a case study to illustrate the performance and usefulness of the proposed fault detection and isolation method in different fault scenarios.

  18. Bias Dependence of Gallium Nitride Micro-Electro-Mechanical Systems Actuation Using a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Amar, Achraf Ben; Faucher, Marc; Grimbert, Bertrand; Cordier, Yvon; Fran\\{c}ois, Marc; Tilmant, Pascal; Werquin, Matthieu; Zhang, Victor; Ducatteau, Damien; Gaquière, Christophe; Buchaillot, Lionel; Théron, Didier

    2012-06-01

    The piezoelectric actuation of a micro-electro-mechanical system (MEMS) resonator based on an AlGaN/GaN heterostructure is studied under various bias conditions. Using an actuator electrode that is also a transistor gate, we correlate the mechanical behaviour to the two-dimensional electron gas (2DEG) presence. The measured amplitude of the actuated resonator is maximum at moderate negative biases and drops near the pinch-off voltage in concordance with the 2DEG becoming depleted. Below the pinch-off voltage, residual actuation is still present, which is attributed to a more complex electric field pattern supported by quantitative modelling. The results confirm that epitaxial AlGaN barriers are fully adapted to the piezoelectric actuation of MEMS.

  19. A new type of a direct-drive valve system driven by a piezostack actuator and sliding spool

    NASA Astrophysics Data System (ADS)

    Jeon, Juncheol; Han, Chulhee; Han, Young-Min; Choi, Seung-Bok

    2014-07-01

    A direct-drive valve (DDV) system is a kind of electrohydraulic servo valve system, in which the actuator directly drives the spool of the valve. In conventional DDV systems, the spool is generally driven by an electromagnetic actuator. Performance characteristics such as frequency bandwidth of DDV systems driven by the electromagnetic actuator are limited due to the actuator response property. In order to improve the performance characteristics of conventional DDV systems, in this work a new configuration for a direct-drive valve system actuated by a piezostack actuator with a flexible beam mechanism is proposed (in short, a piezo-driven DDV system). Its benefits are demonstrated through both simulation and experiment. After describing the geometric configuration and operational principle of the proposed valve system, a governing equation of the whole system is obtained by combining the dynamic equations of the fluid part and the structural parts: the piezostack, the flexible beam, and the spool. In the structural parts of the piezostack and flexible beam, a lumped parameter modeling method is used, while the conventional rule of the fluid momentum is used for the fluid part. In order to evaluate valve performances of the proposed system, an experimental apparatus consisting of a hydraulic circuit and the piezo-driven DDV system is established. The performance characteristics are evaluated in terms of maximum spool displacement, flow rate, frequency characteristics, and step response. In addition, in order to advocate the feasibility of the proposed dynamic model, a comparison between simulation and experiment is undertaken.

  20. Helicopter force-feel and stability augmentation system with parallel servo-actuator

    NASA Technical Reports Server (NTRS)

    Hoh, Roger H. (Inventor)

    2006-01-01

    A force-feel system is implemented by mechanically coupling a servo-actuator to and in parallel with a flight control system. The servo-actuator consists of an electric motor, a gearing device, and a clutch. A commanded cockpit-flight-controller position is achieved by pilot actuation of a trim-switch. The position of the cockpit-flight-controller is compared with the commanded position to form a first error which is processed by a shaping function to correlate the first error with a commanded force at the cockpit-flight-controller. The commanded force on the cockpit-flight-controller provides centering forces and improved control feel for the pilot. In an embodiment, the force-feel system is used as the basic element of stability augmentation system (SAS). The SAS provides a stabilization signal that is compared with the commanded position to form a second error signal. The first error is summed with the second error for processing by the shaping function.

  1. Adaptive control for a class of MIMO nonlinear time delay systems against time varying actuator failures.

    PubMed

    Hashemi, Mahnaz; Ghaisari, Jafar; Askari, Javad

    2015-07-01

    This paper investigates an adaptive controller for a class of Multi Input Multi Output (MIMO) nonlinear systems with unknown parameters, bounded time delays and in the presence of unknown time varying actuator failures. The type of considered actuator failure is one in which some inputs may be stuck at some time varying values where the values, times and patterns of the failures are unknown. The proposed approach is constructed based on a backstepping design method. The boundedness of all the closed-loop signals is guaranteed and the tracking errors are proved to converge to a small neighborhood of the origin. The proposed approach is employed for a double inverted pendulums benchmark and a chemical reactor system. The simulation results show the effectiveness of the proposed method. PMID:25792517

  2. Sensor and actuator conditioning for multiscale measurement systems on example of confocal microscopy

    NASA Astrophysics Data System (ADS)

    Lyda, W.; Zimmermann, J.; Burla, A.; Regin, J.; Osten, W.; Sawodny, O.; Westkämper, E.

    2009-06-01

    Multi-scale measurement systems utilise multiple sensors which differ in resolution and measurement field to pursue an active exploration strategy. The different sensor scales are linked by indicator algorithms for further measurement initiation. A major advantage of this strategy is a reduction of the conflict between resolution, time and field. This reduction is achieved by task specific conditioning of sensors, indicator algorithms and actuators using suitable uncertainty models. This contribution is focused on uncertainty models of sensors and actuators using the example of a prototype multi-scale measurement system. The influence of the sensor parameters, object characteristics and measurement conditions on the measurement reliability is investigated exemplary for the middle-scale sensor, a confocal microscope.

  3. H∞ fault-tolerant control for time-varied actuator fault of nonlinear system

    NASA Astrophysics Data System (ADS)

    Liu, Chunsheng; Jiang, Bin

    2014-12-01

    This paper studies H∞ fault-tolerant control for a class of uncertain nonlinear systems subject to time-varied actuator faults. A radial basis function neural network is utilised to approximate the unknown nonlinear functions; an updating rule is designed to estimate on-line time-varied fault of actuator; and the controller with the states feedback and faults estimation is applied to compensate for the effects of fault and minimise H∞ performance criteria in order to get a desired H∞ disturbance rejection constraint. Sufficient conditions are derived, which guarantees that the closed-loop system is robustly stable and satisfies the H∞ performance in both normal and fault cases. In order to reduce computing cost, a simplified algorithm of matrix Riccati inequality is given. A spacecraft model is presented to demonstrate the effectiveness of the proposed methods.

  4. Feasibility of an anticipatory noncontact precrash restraint actuation system

    SciTech Connect

    Kercel, S.W.; Dress, W.B.

    1995-12-31

    The problem of providing an electronic warning of an impending crash to a precrash restraint system a fraction of a second before physical contact differs from more widely explored problems, such as providing several seconds of crash warning to a driver. One approach to precrash restraint sensing is to apply anticipatory system theory. This consists of nested simplified models of the system to be controlled and of the system`s environment. It requires sensory information to describe the ``current state`` of the system and the environment. The models use the sensory data to make a faster-than-real-time prediction about the near future. Anticipation theory is well founded but rarely used. A major problem is to extract real-time current-state information from inexpensive sensors. Providing current-state information to the nested models is the weakest element of the system. Therefore, sensors and real-time processing of sensor signals command the most attention in an assessment of system feasibility. This paper describes problem definition, potential ``showstoppers,`` and ways to overcome them. It includes experiments showing that inexpensive radar is a practical sensing element. It considers fast and inexpensive algorithms to extract information from sensor data.

  5. Null controllable region of delta operator systems subject to actuator saturation

    NASA Astrophysics Data System (ADS)

    Yang, Hongjiu; Yan, Ce; Xia, Yuanqing; Zhang, Jinhui

    2016-07-01

    In this paper, we give exact description of null controllable regions for delta operator systems subject to actuator saturation. The null controllable region is in terms of a set of extremal trajectories of anti-stable subsystems. For the delta operator system with real eigenvalues or complex eigenvalues, the description is simplified to an explicit formula which is used to characterise the boundary of a null controllable region. The relations of null controllable regions are shown separately for continuous-time systems, discrete-time systems and delta operator systems. Two numerical examples are given to illustrate the effectiveness of the proposed techniques on null controllable regions.

  6. Sensor/actuator failure detection and isolation for airbreathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Leininger, G. G.; Behbehani, K.

    1980-01-01

    In this paper, the Generalized Likelihood Ratio (GLR) test is used to detect and isolate sensor and/or actuator failures when a digital computer simulation model of the physical system is available. The input to the GLR detector is an innovation sequence formed by subtracting the model outputs from the sensed outputs. Application of the GLR detector to the General Electric QCSEE turbofan engine demonstrates the utility of the proposed procedure.

  7. Design criteria for a self-actuated shutdown system to ensure limitation of core damage. [LMFBR

    SciTech Connect

    Deane, N.A.; Atcheson, D.B.

    1981-09-01

    Safety-based functional requirements and design criteria for a self-actuated shutdown system (SASS) are derived in accordance with LOA-2 success criteria and reliability goals. The design basis transients have been defined and evaluated for the CDS Phase II design, which is a 2550 MWt mixed oxide heterogeneous core reactor. A partial set of reactor responses for selected transients is provided as a function of SASS characteristics such as reactivity worth, trip points, and insertion times.

  8. System and method for controlling engine knock using electro-hydraulic valve actuation

    DOEpatents

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  9. Modeling and Simulation of Control Actuation System with Fuzzy-PID Logic Controlled Brushless Motor Drives for Missiles Glider Applications

    PubMed Central

    Muniraj, Murali; Arulmozhiyal, Ramaswamy

    2015-01-01

    A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system. PMID:26613102

  10. Modeling and Simulation of Control Actuation System with Fuzzy-PID Logic Controlled Brushless Motor Drives for Missiles Glider Applications.

    PubMed

    Muniraj, Murali; Arulmozhiyal, Ramaswamy

    2015-01-01

    A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system. PMID:26613102

  11. An adaptive brain actuated system for augmenting rehabilitation

    PubMed Central

    Roset, Scott A.; Gant, Katie; Prasad, Abhishek; Sanchez, Justin C.

    2014-01-01

    For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days. PMID:25565945

  12. Quantum mechanical actuation of microelectromechanical systems by the Casimir force.

    PubMed

    Chan, H B; Aksyuk, V A; Kleiman, R N; Bishop, D J; Capasso, F

    2001-03-01

    The Casimir force is the attraction between uncharged metallic surfaces as a result of quantum mechanical vacuum fluctuations of the electromagnetic field. We demonstrate the Casimir effect in microelectromechanical systems using a micromachined torsional device. Attraction between a polysilicon plate and a spherical metallic surface results in a torque that rotates the plate about two thin torsional rods. The dependence of the rotation angle on the separation between the surfaces is in agreement with calculations of the Casimir force. Our results show that quantum electrodynamical effects play a significant role in such microelectromechanical systems when the separation between components is in the nanometer range. PMID:11239149

  13. Large space structure model reduction and control system design based upon actuator and sensor influence functions

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Lang, J. H.; Johnson, T. L.; Shih, S.; Staelin, D. H.

    1983-01-01

    A model reduction procedure based on aggregation with respect to sensor and actuator influences rather than modes is presented for large systems of coupled second-order differential equations. Perturbation expressions which can predict the effects of spillover on both the aggregated and residual states are derived. These expressions lead to the development of control system design constraints which are sufficient to guarantee, to within the validity of the perturbations, that the residual states are not destabilized by control systems designed from the reduced model. A numerical example is provided to illustrate the application of the aggregation and control system design method.

  14. Strategic avionics technology definition studies. Subtask 3-1A: Electrical Actuation (ELA) systems

    NASA Technical Reports Server (NTRS)

    Lum, Ben T. F.; Pond, Charles; Dermott, William

    1993-01-01

    This interim report presents the preliminary results of an electrical actuation (ELA) system study (subtask TA3-1A) to support the NASA strategic avionics technology definition studies. The final report of this ELA study is scheduled for September 30, 1993. The topics are presented in viewgraph form and include the following ELA technology demonstration testing; ELA system baseline; power and energy requirements for shuttle effector systems; power efficiency and losses of ELA effector systems; and power and energy requirements for ELA power sources.

  15. Radio Frequency Telemetry System for Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Miranda, Felix A. (Inventor)

    2003-01-01

    The present invention discloses and teaches apparatus for combining Radio Frequency (RF) technology with novel micro-inductor antennas and signal processing circuits for RF telemetry of real time, measured data, from microelectromechanical system (MEMS) sensors, through electromagnetic coupling with a remote poweringheceiving device. Such technology has many applications, but is especially useful in the biomedical area.

  16. Radio frequency telemetry system for sensors and actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Miranda, Felix A. (Inventor)

    2003-01-01

    The present invention discloses and teaches apparatus for combining Radio Frequency (RF) technology with novel micro-inductor antennas and signal processing circuits for RF telemetry of real time, measured data, from microelectromechanical system (MEMS) sensors, through electromagnetic coupling with a remote powering/receiving device. Such technology has many applications, but is especially useful in the biomedical area.

  17. Consensus control of multi-agent systems with missing data in actuators and Markovian communication failure

    NASA Astrophysics Data System (ADS)

    Hu, Yuebing; Lam, James; Liang, Jinling

    2013-10-01

    This article investigates the consensus problem of multi-agent systems (MASs) with imperfect communication both in channels and in actuators. The data transmission among agents may fail due to limited communication capacity, and the actuators may fail to receive information owing to noisy environment. We use a Markov chain approach to characterise the occurrence of the two types missing data in a unified framework. A sufficient consensus condition is first obtained in terms of linear matrix inequalities. Then, based on this condition, a novel controller design method is further developed such that the MAS with imperfect communication reaches mean-square consensus. It is shown that the consensus problem for MASs with switching topology can be regarded as a special case of the problem considered in this article, and the related theoretical results are presented as well. Numerical examples are provided to illustrate the effectiveness of the proposed approach.

  18. Control of the unilluminated deformable mirror actuators in an altitude-conjugated adaptive optics system

    PubMed

    Veran

    2000-07-01

    Off-axis observations made with adaptive optics are severely limited by anisoplanatism errors. However, conjugating the deformable mirror to an optimal altitude can reduce these errors; it is then necessary to control, through extrapolation, actuators that are not measured by the wave-front sensor (unilluminated actuators). In this study various common extrapolation schemes are investigated, and an optimal method that achieves a significantly better performance is proposed. This extrapolation method involves a simple matrix multiplication and will be implemented in ALTAIR, the Gemini North Telescope adaptive optics system located on Mauna Kea, Hawaii. With this optimal method, the relative H-band Strehl reduction due to extrapolation errors is only 5%, 16%, and 30% when the angular distance between the guide source and the science target is 20, 40 and 60 arc sec, respectively. For a site such as Mauna Kea, these errors are largely outweighed by the increase in the size of the isoplanatic field. PMID:10883986

  19. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOEpatents

    Shafer, Scott F.

    2002-01-01

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  20. Structural integrated sensor and actuator systems for active flow control

    NASA Astrophysics Data System (ADS)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  1. Self-actuating heat switches for redundant refrigeration systems

    NASA Technical Reports Server (NTRS)

    Chan, Chung K. (Inventor)

    1988-01-01

    A dual refrigeration system for cooling a sink device is described, which automatically thermally couples the cold refrigerator to the sink device while thermally isolating the warm refrigerator from the sink device. The system includes two gas gap heat switches that each thermally couples one of the refrigerators to the sink device, and a pair of sorption pumps that are coupled through tubes to the heat switches. When the first refrigerator is operated and therefore cold, the first pump which is thermally coupled to it is also cooled and adsorbs gas to withdraw it from the second heat switch, to thereby thermally isolate the sink device from the warm second refrigerator. With the second refrigerator being warm, the second pump is also warm and desorbs gas, so the gas lies in the first switch, to close that switch and therefore thermally couple the cold first refrigerator to the sink device. Thus, the heat switches are automatically switched according to the temperature of the corresponding refrigerator.

  2. Magnetically-Actuated Escherichia coli System for Micro Lithography

    NASA Astrophysics Data System (ADS)

    Lauback, S.; Brown, E.; Pérez-Guzman, L.; Peace, C.; Pierce, C.; Lower, B. H.; Lower, S. K.; Sooryakumar, R.

    2015-03-01

    Technologies that control matter at the nano- and micro-scale are crucial for developing new engineered materials and devices. While the more traditional approaches for such manipulations often depend on lithographic fabrication, they can be expanded upon by taking advantage of the biological systems within a living cell which also operate on the nano- and micro- scale. In this study, a system is being developed to functionalize a targeted location on the surface of a chip with the protein AmCyan from transformed Escherichia coli cells. Using established methods in molecular biology where a plasmid with the amcyan gene sequence is inserted into the cell, E. coli are engineered to express the AmCyan protein on their outer surface. In order to transport the cells to the targeted location, the transformed E. coli are labeled with superparamagnetic micro-beads which exert directed forces on the cells in an external field. Preliminary results of the protein expression on E. coli, the transport of the cell through weak magnetic fields to targeted locations and the potential to transfer protein from the cell to the chip surface will be presented.

  3. Adaptive Neural Control of Nonaffine Systems With Unknown Control Coefficient and Nonsmooth Actuator Nonlinearities.

    PubMed

    Yang, Zaiyue; Yang, Qinmin; Sun, Youxian

    2015-08-01

    This brief considers the asymptotic tracking problem for a class of high-order nonaffine nonlinear dynamical systems with nonsmooth actuator nonlinearities. A novel transformation approach is proposed, which is able to systematically transfer the original nonaffine nonlinear system into an equivalent affine one. Then, to deal with the unknown dynamics and unknown control coefficient contained in the affine system, online approximator and Nussbaum gain techniques are utilized in the controller design. It is proven rigorously that asymptotic convergence of the tracking error and ultimate uniform boundedness of all the other signals can be guaranteed by the proposed control method. The control feasibility is further verified by numerical simulations. PMID:25265633

  4. A flat and cost effective actuator based on superabsorbent polymer driving a skin attachable drug delivery system

    NASA Astrophysics Data System (ADS)

    Vosseler, Michael; Clemenz, Markus; Zengerle, Roland

    2012-10-01

    We present a flat and cost effective volume displacement actuator based on superabsorbent polymer. It offers slow kinetics and is able to work against reasonable back-pressures, e.g. 0.50 ml in 235 min at 140 kPa. It is predestined for low-cost skin attachable drug delivery devices. The actuator consists of a plastic ring filled with superabsorbent polymer granulate. It is sealed with a thermoplastic elastomeric membrane on one side and a stiff filter membrane on the other side. After adding a defined amount (e.g. 2 or 10 ml) of swelling agent the actuator shows a fast initial volume displacement within a few minutes followed by a slow continuous increase of this volume within hours. Minimized initial volume displacement and maximized displaced volume after 4 h cannot be combined in one actuator. A minimized initial displacement can be as low as 0.10 ml± 0.03 ml. A maximized displaced volume after 4 h can be 1.71 ml± 0.18 ml, not considering the initial effect. The back-pressure dependency of one selected actuator design was studied. At a back-pressure of 100 kPa the displaced volume is reduced by 33%. We investigated various actuator designs with varying surface area, hardness of the elastomeric membrane and superabsorbent polymer. Finally, we demonstrate a skin attachable drug delivery system based on the employment of the superabsorbent polymer actuator.

  5. A Portable, Air-Jet-Actuator-Based Device for System Identification

    NASA Astrophysics Data System (ADS)

    Staats, Wayne; Belden, Jesse; Mazumdar, Anirban; Hunter, Ian

    2010-11-01

    System identification (ID) of human and robotic limbs could help in diagnosis of ailments and aid in optimization of control parameters and future redesigns. We present a self-contained actuator, which uses the Coanda effect to rapidly switch the direction of a high speed air jet to create a binary stochastic force input to a limb for system ID. The design of the actuator is approached with the goal of creating a portable device, which could deployed on robot or human limbs for in situ identification. The viability of the device is demonstrated by performing stochastic system ID on an underdamped elastic beam system with fixed inertia and stiffness, and variable damping. The non-parametric impulse response yielded from the stochastic system ID is modeled as a second order system, and the resultant parameters are found to be in excellent agreement with those found using more traditional system ID techniques. The current design could be further miniaturized and developed as a portable, wireless, on-site multi-axis system identification system for less intrusive and more widespread use.

  6. An innovative ultra-capacitor driven shape memory alloy actuator with an embedded control system

    NASA Astrophysics Data System (ADS)

    Li, Peng; Song, Gangbing

    2014-08-01

    In this paper, an innovative ultra-capacitor driven shape memory alloy (SMA) actuator with an embedded control system is proposed targeting high power high-duty cycle SMA applications. The ultra-capacitor, which is capable of delivering massive amounts of instantaneous current in a compact dimension for high power applications, is chosen as the main component of the power supply. A specialized embedded system is designed from the ground up to control the ultra-capacitor driven SMA system. The control of the ultra-capacitor driven SMA is different from that of a regular constant voltage powered SMA system in that the energy and the voltage of the ultra-capacitor decrease as the system load increases. The embedded control system is also different from a computer-based control system in that it has limited computational power, and the control algorithm has to be designed to be simple while effective so that it can fit into the embedded system environment. The problem of a variable voltage power source induced by the use of the ultra-capacitor is solved by using a fuzzy PID (proportional integral and derivative) control. The method of using an ultra-capacitor to drive SMA actuators enabled SMA as a good candidate for high power high-duty cycle applications. The proposed embedded control system provides a good and ready-to-use solution for SMA high power applications.

  7. Design and control of dual servo actuator for near field optical recording system

    NASA Astrophysics Data System (ADS)

    Jeong, Jaehwa; Choi, Young-Man; Lee, Jun-Hee; Yoon, Hyoung-Kil; Gweon, Dae-Gab

    2005-12-01

    Near field recording (NFR) has been introduced as a new optical data storage method to realize higher data density beyond the diffraction limit. As the data density increases, the track pitch is remarkably reduced to about 400nm. Thus, more precise actuator is required and we propose a dual servo actuator to improve the accuracy of actuator. The proposed dual servo actuator consists of a coarse actuator and a fine actuator, multisegmented magnet array (MSMA) voice coil motor (VCM) and PMN-PT actuator. In design of VCM actuator, a novel magnetic circuit of VCM with MSMA is proposed. It can generate higher air gap flux density than the magnetic circuit of VCM with the conventional magnet array. In design of fine actuator, the fine actuator including PMN-PT single crystal instead of the conventional PZT is proposed. The displacement gain of PMN-PT fine actuator is 26 nm/V and that of PZT fine actuator is 17 nm/V. The displacement gain is increased by 53 %. To evaluate tracking performance of the manufactured dual servo actuator and to assign the proper role to each actuator, the PQ method is selected. From experiment results, the total bandwidth of the dual servo actuator is increased to 2.5kHz and the resolution is 25 nm. Comparing with the resolution of one servo actuator, 70 nm, we can find that the accuracy of actuator is remarkably improved. And the proposed dual servo actuator shows satisfactory performances to be applied to NFR and it can be applied to other future disk drives.

  8. Finite Energy and Bounded Actuator Attacks on Cyber-Physical Systems

    SciTech Connect

    Djouadi, Seddik M; Melin, Alexander M; Ferragut, Erik M; Laska, Jason A; Dong, Jin; Drira, Anis

    2015-01-01

    As control system networks are being connected to enterprise level networks for remote monitoring, operation, and system-wide performance optimization, these same connections are providing vulnerabilities that can be exploited by malicious actors for attack, financial gain, and theft of intellectual property. Much effort in cyber-physical system (CPS) protection has focused on protecting the borders of the system through traditional information security techniques. Less effort has been applied to the protection of cyber-physical systems from intelligent attacks launched after an attacker has defeated the information security protections to gain access to the control system. In this paper, attacks on actuator signals are analyzed from a system theoretic context. The threat surface is classified into finite energy and bounded attacks. These two broad classes encompass a large range of potential attacks. The effect of theses attacks on a linear quadratic (LQ) control are analyzed, and the optimal actuator attacks for both finite and infinite horizon LQ control are derived, therefore the worst case attack signals are obtained. The closed-loop system under the optimal attack signals is given and a numerical example illustrating the effect of an optimal bounded attack is provided.

  9. State and actuator fault estimation observer design integrated in a riderless bicycle stabilization system.

    PubMed

    Brizuela Mendoza, Jorge Aurelio; Astorga Zaragoza, Carlos Manuel; Zavala Río, Arturo; Pattalochi, Leo; Canales Abarca, Francisco

    2016-03-01

    This paper deals with an observer design for Linear Parameter Varying (LPV) systems with high-order time-varying parameter dependency. The proposed design, considered as the main contribution of this paper, corresponds to an observer for the estimation of the actuator fault and the system state, considering measurement noise at the system outputs. The observer gains are computed by considering the extension of linear systems theory to polynomial LPV systems, in such a way that the observer reaches the characteristics of LPV systems. As a result, the actuator fault estimation is ready to be used in a Fault Tolerant Control scheme, where the estimated state with reduced noise should be used to generate the control law. The effectiveness of the proposed methodology has been tested using a riderless bicycle model with dependency on the translational velocity v, where the control objective corresponds to the system stabilization towards the upright position despite the variation of v along the closed-loop system trajectories. PMID:26708303

  10. Electropneumatic actuator, phase 1

    NASA Astrophysics Data System (ADS)

    Bloomfield, D. P.

    1989-10-01

    The program demonstrated the feasibility of an electropneumatic actuator which can be used in manufacturing applications. The electropneumatic actuator, an alternative to the electric, hydraulic, and pneumatic actuators used in industry, consists of an electrochemical compressor, a power supply, and an actuator. The electrochemical compressor working fluid is hydrogen and a solvent such as water or ammonia. The compressor has no moving parts and runs on low voltage DC. The actuator is a conventional, commercially available unit. Researchers designed, constructed, and tested the electrochemical compressor in conjunction with the actuator, power supply, and computerized control. The one inch actuator can lift a fifty pound weight a distance of ten inches in about 1.5 minutes. The electrochemically powered system is capable of driving its loaded actuator to a prescribed location at a controlled rate. A defined set of design changes will combine the compressor and actuator in the same housing, and will develop two orders of magnitude increased actuator speed at the same or higher force levels.

  11. [Study on an actuation system for matrix control of the active catheter in a minimally-invasive intervention surgery].

    PubMed

    Fu, Yi-li; Ma, Hui-hui; Li, Xian-ling

    2006-11-01

    As it is impossible for an active catheter with a very small space to accommodate overmany lead wires in minimally-invasive surgery, a matrix network system is presented, in this paper, to control SMA actuators using minimum lead wires. Pulse current is adjusted by pulse width modulation (PWM) signals from the single-chip processor. In addition, multiple SMA actuators' cooperation helps the active catheter to succeed in guiding motion. PMID:17300007

  12. Robust stabilisation and L2 -gain analysis for switched systems with actuator saturation under asynchronous switching

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Zhao, Jun

    2016-09-01

    Robust stabilisation and L2-gain analysis for a class of switched systems with actuator saturation are studied in this paper. The switching signal of the controllers lags behind that of the system modes, which leads to the asynchronous switching between the candidate controllers and the subsystems. By combining the piecewise Lyapunov function method with the convex hull technique, sufficient conditions in terms of LMIs for the solvability of the robust stabilisation and weighted L2-gain problems are presented respectively under the dwell time scheme. Finally, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed results.

  13. A Biomechanical Assessment of Hand/Arm Force with Pneumatic Nail Gun Actuation Systems

    PubMed Central

    Lowe, Brian D.; Albers, James; Hudock, Stephen D.

    2015-01-01

    A biomechanical model is presented, and combined with measurements of tip press force, to estimate total user hand force associated with two pneumatic nail gun trigger systems. The contact actuation trigger (CAT) can fire a nail when the user holds the trigger depressed first and then “bumps” the nail gun tip against the workpiece. With a full sequential actuation trigger (SAT) the user must press the tip against the workpiece prior to activating the trigger. The SAT is demonstrably safer in reducing traumatic injury risk, but increases the duration (and magnitude) of tip force exertion. Time integrated (cumulative) hand force was calculated for a single user from measurements of the tip contact force with the workpiece and transfer time between nails as inputs to a static model of the nail gun and workpiece in two nailing task orientations. The model shows the hand force dependence upon the orientation of the workpiece in addition to the trigger system. Based on standard time allowances from work measurement systems (i.e. Methods-Time Measurement - 1) it is proposed that efficient application of hand force with the SAT in maintaining tip contact can reduce force exertion attributable to the sequential actuation trigger to 2–8% (horizontal nailing) and 9–20% (vertical nailing) of the total hand/arm force. The present model is useful for considering differences in cumulative hand/arm force exposure between the SAT and CAT systems and may explain the appeal of the CAT trigger in reducing the user’s perception of muscular effort. PMID:26321780

  14. Self-powered sensory nerve system for civil structures using hybrid forisome actuators

    NASA Astrophysics Data System (ADS)

    Shoureshi, Rahmat A.; Shen, Amy

    2006-03-01

    In order to provide a true distributed sensor and control system for civil structures, we have developed a Structural Nervous System that mimics key attributes of a human nervous system. This nervous system is made up of building blocks that are designed based on mechanoreceptors as a fundamentally new approach for the development of a structural health monitoring and diagnostic system that utilizes the recently discovered plant-protein forisomes, a novel non-living biological material capable of sensing and actuation. In particular, our research has been focused on producing a sensory nervous system for civil structures by using forisomes as the mechanoreceptors, nerve fibers, neuronal pools, and spinocervical tract to the nodal and central processing units. This paper will present up to date results of our research, including the design and analysis of the structural nervous system.

  15. Progress on femtosecond laser-based system-materials: three-dimensional monolithic electrostatic micro-actuator for optomechanics

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Bellouard, Yves

    2016-03-01

    Femtosecond laser-dielectric interaction in a three-dimensional (3D) manner defines a capable platform for integrated 3D micro-devices fabricated out of a single piece of system-material. Here, we add a new function to femtosecond laserbased single monolith in amorphous fused silica by demonstrating a transparent 3D micro-actuator using non-ablative femtosecond laser micromachining with subsequent chemical etching. The actuation principle is based on dielectrophoresis (DEP), defined as the unbalanced electrostatic action on dielectrics, due to an induced dipole moment under a non-uniform electric field. An analytical model of this actuation scheme is proposed, which is capable of performance prediction, design parameter optimization and motion instability analysis. Furthermore, the static and dynamic performances are experimentally characterized using optical measurement methods. An actuation range of 30 μm is well attainable; resonances and the settling time in transient responses are measured; the quality factor and the bandwidth for the primary vertical resonance are also evaluated. Experimental results are in good consistence with theoretical analyses. The proposed actuation principle suppresses the need for electrodes on the mobile, non-conductive component and is particularly interesting for moving transparent elements. Thanks to the flexibility of femtosecond laser manufacturing process, this actuation scheme can be integrated in other functionalities within monolithic transparent Micro-Electro-Mechanical Systems (MEMS) for applications like resonators, adaptive lenses and integrated photonics circuits.

  16. Decentralized Adaptive Control of Systems with Uncertain Interconnections, Plant-Model Mismatch and Actuator Failures

    NASA Technical Reports Server (NTRS)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Decentralized adaptive control is considered for systems consisting of multiple interconnected subsystems. It is assumed that each subsystem s parameters are uncertain and the interconnection parameters are not known. In addition, mismatch can exist between each subsystem and its reference model. A strictly decentralized adaptive control scheme is developed, wherein each subsystem has access only to its own state but has the knowledge of all reference model states. The mismatch is estimated online for each subsystem and the mismatch estimates are used to adaptively modify the corresponding reference models. The adaptive control scheme is extended to the case with actuator failures in addition to mismatch.

  17. An Analytic Model for the Success Rate of a Robotic Actuator System in Hitting Random Targets

    PubMed Central

    Bradley, Stuart

    2015-01-01

    Autonomous robotic systems are increasingly being used in a wide range of applications such as precision agriculture, medicine, and the military. These systems have common features which often includes an action by an “actuator” interacting with a target. While simulations and measurements exist for the success rate of hitting targets by some systems, there is a dearth of analytic models which can give insight into, and guidance on optimization, of new robotic systems. The present paper develops a simple model for estimation of the success rate for hitting random targets from a moving platform. The model has two main dimensionless parameters: the ratio of actuator spacing to target diameter; and the ratio of platform distance moved (between actuator “firings”) to the target diameter. It is found that regions of parameter space having specified high success are described by simple equations, providing guidance on design. The role of a “cost function” is introduced which, when minimized, provides optimization of design, operating, and risk mitigation costs. PMID:26610500

  18. Numerical simulation of the actuation system for the ALDF's propulsion control valve. [Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Korte, John J.

    1990-01-01

    A numerical simulation of the actuation system for the propulsion control valve (PCV) of the NASA Langley Aircraft Landing Dynamics Facility was developed during the preliminary design of the PCV and used throughout the entire project. The simulation is based on a predictive model of the PCV which is used to evaluate and design the actuation system. The PCV controls a 1.7 million-pound thrust water jet used in propelling a 108,000-pound test carriage. The PCV can open and close in 0.300 second and deliver over 9,000 gallons of water per sec at pressures up to 3150 psi. The numerical simulation results are used to predict transient performance and valve opening characteristics, specify the hydraulic control system, define transient loadings on components, and evaluate failure modes. The mathematical model used for numerically simulating the mechanical fluid power system is described, and numerical results are demonstrated for a typical opening and closing cycle of the PCV. A summary is then given on how the model is used in the design process.

  19. Magnetically Actuated Seal

    NASA Technical Reports Server (NTRS)

    Pinera, Alex

    2013-01-01

    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  20. System-Level Design of a Shape Memory Alloy Actuator for Active Clearance Control in the High-Pressure Turbine

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.

    2005-01-01

    This paper describes results of a numerical analysis evaluating the feasibility of high-temperature shape memory alloys (HTSMA) for active clearance control actuation in the high-pressure turbine section of a modern turbofan engine. The prototype actuator concept considered here consists of parallel HTSMA wires attached to the shroud that is located on the exterior of the turbine case. A transient model of an HTSMA actuator was used to evaluate active clearance control at various operating points in a test bed aircraft engine simulation. For the engine under consideration, each actuator must be designed to counteract loads from 380 to 2000 lbf and displace at least 0.033 inches. Design results show that an actuator comprised of 10 wires 2 inches in length is adequate for control at critical engine operating points and still exhibits acceptable failsafe operability and cycle life. A proportional-integral-derivative (PID) controller with integrator windup protection was implemented to control clearance amidst engine transients during a normal mission. Simulation results show that the control system exhibits minimal variability in clearance control performance across the operating envelope. The final actuator design is sufficiently small to fit within the limited space outside the high-pressure turbine case and is shown to consume only small amounts of bleed air to adequately regulate temperature.

  1. Improved Electrohydraulic Linear Actuators

    NASA Technical Reports Server (NTRS)

    Hamtil, James

    2004-01-01

    A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to many industrial uses, such as steam turbines, process control valves, dampers, motion control, etc. The advantageous features of the improved electrohydraulic linear actuators are best described with respect to shortcomings of prior electrohydraulic linear actuators that the improved ones are intended to supplant. The flow of hydraulic fluid to the two ports of the actuator cylinder is controlled by a servo valve that is controlled by a signal from a servo amplifier that, in turn, receives an analog position-command signal (a current having a value between 4 and 20 mA) from a supervisory control system of the facility. As the position command changes, the servo valve shifts, causing a greater flow of hydraulic fluid to one side of the cylinder and thereby causing the actuator piston to move to extend or retract a piston rod from the actuator body. A linear variable differential transformer (LVDT) directly linked to the piston provides a position-feedback signal, which is compared with the position-command signal in the servo amplifier. When the position-feedback and position-command signals match, the servo valve moves to its null position, in which it holds the actuator piston at a steady position.

  2. Design of feedback control systems for unstable plants with saturating actuators

    NASA Technical Reports Server (NTRS)

    Kapasouris, Petros; Athans, Michael; Stein, Gunter

    1988-01-01

    A new control design methodology is introduced for multi-input/multi-output systems with unstable open loop plants and saturating actuators. A control system is designed using well known linear control theory techniques and then a reference prefilter is introduced so that when the references are sufficiently small, the control system operates linearly as designated. For signals large enough to cause saturations, the control law is modified in such a way to ensure stability and to preserve, to the extent possible, the behavior of the linear control design. Key benefits of this methodology are: the modified feedback system never produces saturating control signals, integrators and/or slow dynamics in the compensator never windup, the directionaL properties of the controls are maintained, and the closed loop system has certain guaranteed stability properties. The advantages of the new design methodology are illustrated in the simulation of an approximation of the AFTI-16 (Advanced Fighter Technology Integration) aircraft multivariable longitudinal dynamics.

  3. Two-Dimensional Scramjet Inlet Unstart Model: Wind-Tunnel Blockage and Actuation Systems Test

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1994-01-01

    This supplement to NASA TM 109152 shows the Schlieren video (10 min. 52 sec., color, Beta and VHS) of the external flow field and a portion of the internal flow field of a two-dimensional scramjet inlet model in the NASA Langley 20-Inch Mach 6 Tunnel. The intent of the overall test program is to study (both experimentally and computationally) the dynamics of the inlet unstart; this (phase I) effort examines potential wind-tunnel blockage issues related to model sizing and the adequacy of the actuation systems in accomplishing the start and unstart. The model is equipped with both a moveable cowl and aft plug. Windows in the inlet sidewalls allow limited optical access to the internal shock structure. In the video, flow is from right to left, and the inlet is oriented inverted with respect to flight, i.e., with the cowl on top. The plug motion is obvious because the plug is visible in the aft window. The cowl motion, however, is not as obvious because the cowl is hidden from view by the inlet sidewall. The end of the cowl actuator arm, however, becomes visible above the inlet sidewalls between the windows when the cowl is up (see figure 1b of the primary document). The model is injected into the tunnel and observed though several actuation sequences with two plug configurations over a range of unit freestream Reynolds number at a nominal freestream Mach number of 6. The framing rate and shutter speed of the camera were too slow to fully capture the dynamics of the unstart but did prove sufficient to identify inlet start and unstart. This series of tests indicated that the model was appropriately sized for this facility and identified operability limits required first to allow the inlet to start and second to force the unstart.

  4. Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system.

    PubMed

    Mrugalski, Marcin; Luzar, Marcel; Pazera, Marcin; Witczak, Marcin; Aubrun, Christophe

    2016-03-01

    The paper is devoted to the problem of the robust actuator fault diagnosis of the dynamic non-linear systems. In the proposed method, it is assumed that the diagnosed system can be modelled by the recurrent neural network, which can be transformed into the linear parameter varying form. Such a system description allows developing the designing scheme of the robust unknown input observer within H∞ framework for a class of non-linear systems. The proposed approach is designed in such a way that a prescribed disturbance attenuation level is achieved with respect to the actuator fault estimation error, while guaranteeing the convergence of the observer. The application of the robust unknown input observer enables actuator fault estimation, which allows applying the developed approach to the fault tolerant control tasks. PMID:26838675

  5. Parameter-dependent vibration-attenuation controller design for electro-hydraulic actuated linear structural systems

    NASA Astrophysics Data System (ADS)

    Weng, Falu; Mao, Weijie

    2012-03-01

    The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping and stiffness matrices is investigated in this paper. First, by introducing a linear varying parameter, the nonlinear system is described as a linear parameter varying (LPV) model. Second, based on this LPV model, an LMI-based condition for the system to be asymptotically stabilized is deduced. By solving these LMIs, a parameter-dependent controller is established for the closedloop system to be stable with a prescribed level of disturbance attenuation. The condition is also extended to the uncertain case. Finally, some numerical simulations demonstrate the satisfying performance of the proposed controller.

  6. Robust H∞ stabilization of a hard disk drive system with a single-stage actuator

    NASA Astrophysics Data System (ADS)

    Harno, Hendra G.; Kiin Woon, Raymond Song

    2015-04-01

    This paper considers a robust H∞ control problem for a hard disk drive system with a single stage actuator. The hard disk drive system is modeled as a linear time-invariant uncertain system where its uncertain parameters and high-order dynamics are considered as uncertainties satisfying integral quadratic constraints. The robust H∞ control problem is transformed into a nonlinear optimization problem with a pair of parameterized algebraic Riccati equations as nonconvex constraints. The nonlinear optimization problem is then solved using a differential evolution algorithm to find stabilizing solutions to the Riccati equations. These solutions are used for synthesizing an output feedback robust H∞ controller to stabilize the hard disk drive system with a specified disturbance attenuation level.

  7. Electro-Mechanical Actuators

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The electro-mechanical actuator, a new electronics technology, is an electronic system that provides the force needed to move valves that control the flow of propellant to the engine. It is proving to be advantageous for the main propulsion system plarned for a second generation reusable launch vehicle. Hydraulic actuators have been used successfully in rocket propulsion systems. However, they can leak when high pressure is exerted on such a fluid-filled hydraulic system. Also, hydraulic systems require significant maintenance and support equipment. The electro-mechanical actuator is proving to be low maintenance and the system weighs less than a hydraulic system. The electronic controller is a separate unit powering the actuator. Each actuator has its own control box. If a problem is detected, it can be replaced by simply removing one defective unit. The hydraulic systems must sustain significant hydraulic pressures in a rocket engine regardless of demand. The electro-mechanical actuator utilizes power only when needed. A goal of the Second Generation Reusable Launch Vehicle Program is to substantially improve safety and reliability while reducing the high cost of space travel. The electro-mechanical actuator was developed by the Propulsion Projects Office of the Second Generation Reusable Launch Vehicle Program at the Marshall Space Flight Center.

  8. Optimal Control Modification for Robust Adaptation of Singularly Perturbed Systems with Slow Actuators

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham; Stepanyan, Vahram; Boskovic, Jovan

    2009-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. The model matching conditions in the transformed time coordinate results in increase in the feedback gain and modification of the adaptive law.

  9. Limiting vibration in systems with constant amplitude actuators through command preshaping. M.S Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Rogers, Keith Eric

    1994-01-01

    The basic concepts of command preshaping were taken and adapted to the framework of systems with constant amplitude (on-off) actuators. In this context, pulse sequences were developed which help to attenuate vibration in flexible systems with high robustness to errors in frequency identification. Sequences containing impulses of different magnitudes were approximated by sequences containing pulses of different durations. The effects of variation in pulse width on this approximation were examined. Sequences capable of minimizing loads induced in flexible systems during execution of commands were also investigated. The usefulness of these techniques in real-world situations was verified by application to a high fidelity simulation of the space shuttle. Results showed that constant amplitude preshaping techniques offer a substantial improvement in vibration reduction over both the standard and upgraded shuttle control methods and may be mission enabling for use of the shuttle with extremely massive payloads.

  10. Angular-Momentum-Compensating Actuator

    NASA Technical Reports Server (NTRS)

    Wiktor, Peter J.

    1988-01-01

    Reactionless actuator developed for instrument-pointing platforms on flexible spacecraft; by eliminating reactions, actuator changes aiming angle of platform without inducing vibrations in spacecraft, eliminateing vibrations in point angle of instrument platform. Actuator used on Earth in such systems as helicopter platforms for television cameras in law enforcement and news telecasts.

  11. Design and development of a long-travel positioning actuator and tandem constant force actuator safety system for the Hobby Eberly Telescope wide-field upgrade

    NASA Astrophysics Data System (ADS)

    Mollison, Nicholas T.; Mock, Jason R.; Soukup, Ian M.; Beets, Timothy A.; Good, John M.; Beno, Joseph H.; Kriel, Herman J.; Hinze, Sarah E.; Wardell, Douglas R.; Heisler, James T.

    2010-07-01

    The Wide Field Upgrade presents a five-fold increase in mass for the Hobby-Eberly Telescope's* tracker system. The design of the Hobby-Eberly Telescope places the Prime Focus Instrument Package (PFIP) at a thirty-five degree angle from horizontal. The PFIP and its associated hardware have historically been positioned along this uphill axis (referred to as the telescope's Y-axis) by a single screw-type actuator. Several factors, including increased payload mass and design for minimal light obscuration, have led to the design of a new and novel configuration for the Y-axis screw-drive as part of the tracker system upgrade. Typical screw-drive designs in this load and travel class (approximately 50 kilonewtons traveling a distance of 4 meters) utilize a stationary screw with the payload translating with the moving nut component. The new configuration employs a stationary nut and translating roller screw affixed to the moving payload, resulting in a unique drive system design. Additionally, a second cable-actuated servo drive (adapted from a system currently in use on the Southern African Large Telescope) will operate in tandem with the screw-drive in order to significantly improve telescope safety through the presence of redundant load-bearing systems. Details of the mechanical design, analysis, and topology of each servo drive system are presented in this paper, along with discussion of the issues such a configuration presents in the areas of controls, operational and failure modes, and positioning accuracy. Findings and results from investigations of alternative telescope safety systems, including deformable crash barriers, are also included.

  12. Creep-Fatigue Relationsihps in Electroactive Polymer Systems and Predicted Effects in an Actuator Design

    NASA Technical Reports Server (NTRS)

    Vinogradov, Aleksandra M.; Ihlefeld, Curtis M.; Henslee, Issac

    2009-01-01

    The paper concerns the time-dependent behavior of electroactive polymers (EAP) and their use in advanced intelligent structures for space exploration. Innovative actuator design for low weight and low power valves required in small plants planned for use on the moon for chemical analysis is discussed. It is shown that in-depth understanding of cyclic loading effects observed through accelerated creep rates due to creep-fatigue interaction in polymers is critical in terms of proper functioning of EAP based actuator devices. In the paper, an overview of experimental results concerning the creep properties and cyclic creep response of a thin film piezoelectric polymer polyvinylidene fluoride (PVDF) is presented. The development of a constitutive creep-fatigue interaction model to predict the durability and service life of electroactive polymers is discussed. A novel method is proposed to predict damage accumulation and fatigue life of polymers under oyclic loading conditions in the presence of creep. The study provides a basis for ongoing research initiatives at the NASA Kennedy Space Center in the pursuit of new technologies using EAP as active elements for lunar exploration systems.

  13. Desiccant-based, heat-actuated cooling assessment for DHC (District Heating and Cooling) systems

    SciTech Connect

    Patch, K.D.; DiBella, F.A.; Becker, F.E.

    1990-07-01

    An assessment has been completed of the use of desiccant-based, heat-actuated cooling for District Heating and Cooling (DHC) systems, showing that such desiccant-based cooling (DBC) systems are generally applicable to District Heating (DH) systems. Since the DH system only has to supply hot water (or steam) to its customers, systems that were designed as conventional two-pipe DH systems can now be operated as DHC systems without major additional capital expense. Desiccant-based DHC systems can be operated with low-grade DH-supplied heat, at temperatures below 180{degree}F, without significant loss in operating capacity, relative to absorption chillers. During this assessment, a systems analysis was performed, an experimental investigation was conducted, developmental requirements for commercializing DBC systems were examined, and two case studies were conducted. As a result of the case studies, it was found that the operating cost of a DBC system was competitive with or lower than the cost of purchasing DHC-supplied chilled water. However, because of the limited production volume and the current high capital costs of desiccant systems, the payback period is relatively long. In this regard, through the substitution of low-cost components specifically engineered for low-temperature DHC systems, the capital costs should be significantly reduced and overall economics made attractive to future users. 17 figs.

  14. Artificial muscle actuators for haptic displays: system design to match the dynamics and tactile sensitivity of the human fingerpad

    NASA Astrophysics Data System (ADS)

    Biggs, S. James; Hitchcock, Roger N.

    2010-04-01

    Electroactive Polymer Artificial Muscles (EPAMTM) based on dielectric elastomers have the bandwidth and the energy density required to make haptic displays that are both responsive and compact. Recent work at Artificial Muscle Inc. has been directed toward the development of thin, high-fidelity haptic modules for mobile handsets. The modules provide the brief tactile "click" that confirms key press, and the steady state "bass" effects that enhance gaming and music. To design for these capabilities we developed a model of the physical system comprised of the actuator, handset, and user. Output of the physical system was passed through a transfer function to covert vibration into an estimate of the intensity of the user's haptic sensation. A model of fingertip impedance versus button press force is calibrated to data, as is impedance of the palm holding a handset. An energy-based model of actuator performance is derived and calibrated, and the actuator geometry is tuned for good haptic performance.

  15. An evaluation plan of bus architectures and protocols using the NASA Ames intelligent redundant actuation system

    NASA Technical Reports Server (NTRS)

    Defeo, P.; Chen, M.

    1987-01-01

    Means for evaluating data bus architectures and protocols for highly integrated flight control system applications are needed. Described are the criteria and plans to do this by using the NASA/Ames Intelligent Redundant Actuation System (IRAS) experimental set-up. Candidate bus architectures differ from one another in terms of: topology, access control, message transfer schemes, message characteristics, initialization. data flow control, transmission rates, fault tolerance, and time synchronization. The evaluation criteria are developed relative to these features. A preliminary, analytical evaluation of four candidate busses (MIL-STD-1553B, DATAC, Ethernet, and HSIS) is described. A bus must be exercised in a real-time environment to evaluate its dynamic characteristics. A plan for real-time evaluation of these four busses using a combination of hardware and simulation techniques is presented.

  16. Quiet Clean Short-haul Experimental Engine (QCSEE): Hamilton Standard cam/harmonic drive variable pitch fan actuation system detail design report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A variable pitch fan actuation system was designed which incorporates a remote nacelle-mounted blade angle regulator. The regulator drives a rotating fan-mounted mechanical actuator through a flexible shaft and differential gear train. The actuator incorporates a high ratio harmonic drive attached to a multitrack spherical cam which changes blade pitch through individual cam follower arms attached to each blade trunnion. Detail design parameters of the actuation system are presented. These include the following: design philosophies, operating limits, mechanical, hydraulic and thermal characteristics, mechanical efficiencies, materials, weights, lubrication, stress analyses, reliability and failure analyses.

  17. Development of Characterization Tools for Reliability Testing of MicroElectroMechanical System Actuators

    SciTech Connect

    Allen, James J.; Eaton, William P.; Smith, Norman F.; Tanner, Danelle M.

    1999-07-26

    Characterization tools have been developed to study the performance characteristics and reliability of surface micromachined actuators. These tools include (1) the ability to electrically stimulate or stress the actuator, (2) the capability to visually inspect the devices in operation, (3) a method for capturing operational information, and (4) a method to extract performance characteristics from the operational information. Additionally, a novel test structure has been developed to measure electrostatic forces developed by a comb drive actuator.

  18. Preliminary Sizings for an Integrated SME Actuator System for the STAR system

    NASA Technical Reports Server (NTRS)

    Jardine, A. Peter

    2004-01-01

    The Star configuration consists of three legs of an aperature of total diameter of 2.5 m diameter. For the purposes of this initial study for actuator requirements, several assumptions were made. For support, we assumed that the membrane was Upilex of a thickness of 0.010 in. thick, and with a modulus of approximately YYY. Upilex was chosen as being relatively commercially available and is compatible with either TiNi or AuCd manufacture. We confined the areas in which we could apply actuators to three strips of length 2.5 meters and width of 0.1 m. This brings the problem to a solution of a strip.

  19. Development of damage monitoring system for aircraft structure using a PZT actuator/FBG sensor hybrid system

    NASA Astrophysics Data System (ADS)

    Ogisu, Toshimichi; Shimanuki, Masakazu; Kiyoshima, Satoshi; Okabe, Yoji; Takeda, Nobuo

    2004-07-01

    This paper presents a part of the research results on a damage monitoring system using PZT actuators/FBG sensors for advanced composite material structures of new-generation aircrafts. To achieve weight reduction of the aircraft structure, these advanced composite materials have gradually been employed for the primary structure. It is expected that when these materials are extensively employed, an efficient bonded structure such as a hat-shaped stringer will be utilized for the aircraft structure. However, these bonded structures have critical problems such as debonding and delamination at the interfaces of the laminate. Further, a single-step molding process of the structure elements is necessary in order to ensure low cost and thus affordability. However, this low-cost process results in an increase in the non-destructive inspection (NDI) cost. Therefore, an innovative damage monitoring system is required for structural health management. In the present study, the authors have developed a hybrid sensor system that can detect the elastic waves launched from the piezo transducer (PZT) actuator using a high-speed and high-accuracy fiber Bragg grating (FBG) sensor to resolve the issues mentioned above. In this study, the conceptual design of an aircraft that can employ this damage monitoring system was carried out. Subsequently, the application area was selected based on cases of certain kinds of damage. Further, the validity of the damage monitoring system for the verification of the structural integrity of the aircraft was discussed. Next, in order to verify the elastic wave detectability of the FBG sensor, it was confirmed that an elastic wave of 300 kHz is detectable at a distance of 5 cm between the PZT actuator and FBG sensor using an aluminum sheet and CFRP cross-ply laminate and also by considering the relationship between sensor length and sensitivity. Through the present research results, the possibility of applying the damage monitoring system to the

  20. X-Frame-actuator servo-flap acuation system for rotor control

    NASA Astrophysics Data System (ADS)

    Prechtl, Eric F.; Hall, Steven R.

    1998-07-01

    A design is presented of a 1/6 Mach scaled CH-47D rotor blade incorporating a X-Frame discrete actuator for control of a trailing edge servo-flap. The second generation design of the X-Frame actuator is described focusing on the design changes made from the actuator prototype. The function of the components that restrain the actuator to the rotor blade and connect it to the servo-flap are described. The major challenge in placing a discrete actuator into a rotor blade is in allowing the required functionality in the aggressive acceleration environment of the blade. In particular, a new centrifugal flexure is used to restrain the actuator in the spanwise direction and special fittings are incorporated into the blades to allow the required actuator degrees of freedom while reacting the out of plane vibrational accelerations of the blade. Concentric steel rods are used to transfer actuator motion to the servo-flap and to eliminate the compliant blade fairing from the actuation load path. A slotted flap design was used to reduce the required hinge moments. The aerodynamic implications of using such a flap design are described. Furthermore, retention of the flap and the pre-stress of the actuator were accomplished by a steel wire centered on the flap rotational axis. The design of this part and its influence on choosing an optimum flap length is discussed. The manufacture of the composite rotor blades is described. The diversion of composite unidirectional plies to allow access to the actuator bay within the blade spar is described.

  1. Controllable nanoscale rotating actuator system based on carbon nanotube and graphene

    NASA Astrophysics Data System (ADS)

    Huang, Jianzhang; Han, Qiang

    2016-04-01

    A controllable nanoscale rotating actuator system consisting of a double carbon nanotube and graphene driven by a temperature gradient is proposed, and its rotating dynamics performance and driving mechanism are investigated through molecular dynamics simulations. The outer tube exhibits stable pure rotation with certain orientation under temperature gradient and the steady rotational speed rises as the temperature gradient increases. It reveals that the driving torque is caused by the difference of atomic van der Waals potentials due to the temperature gradient and geometrical features of carbon nanotube. A theoretical model for driving torque is established based on lattice dynamics theory and its predicted results agree well with molecular dynamics simulations. Further discussion is taken according to the theoretical model. The work in this study would be a guide for design and application of controllable nanoscale rotating devices based on carbon nanotubes and graphene.

  2. Controllable nanoscale rotating actuator system based on carbon nanotube and graphene.

    PubMed

    Huang, Jianzhang; Han, Qiang

    2016-04-15

    A controllable nanoscale rotating actuator system consisting of a double carbon nanotube and graphene driven by a temperature gradient is proposed, and its rotating dynamics performance and driving mechanism are investigated through molecular dynamics simulations. The outer tube exhibits stable pure rotation with certain orientation under temperature gradient and the steady rotational speed rises as the temperature gradient increases. It reveals that the driving torque is caused by the difference of atomic van der Waals potentials due to the temperature gradient and geometrical features of carbon nanotube. A theoretical model for driving torque is established based on lattice dynamics theory and its predicted results agree well with molecular dynamics simulations. Further discussion is taken according to the theoretical model. The work in this study would be a guide for design and application of controllable nanoscale rotating devices based on carbon nanotubes and graphene. PMID:26934619

  3. Neural network-based adaptive consensus tracking control for multi-agent systems under actuator faults

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Jia, Yingmin

    2016-06-01

    In this paper, a distributed output feedback consensus tracking control scheme is proposed for second-order multi-agent systems in the presence of uncertain nonlinear dynamics, external disturbances, input constraints, and partial loss of control effectiveness. The proposed controllers incorporate reduced-order filters to account for the unmeasured states, and the neural networks technique is implemented to approximate the uncertain nonlinear dynamics in the synthesis of control algorithms. In order to compensate the partial loss of actuator effectiveness faults, fault-tolerant parts are included in controllers. Using the Lyapunov approach and graph theory, it is proved that the controllers guarantee a group of agents that simultaneously track a common time-varying state of leader, even when the state of leader is available only to a subset of the members of a group. Simulation results are provided to demonstrate the effectiveness of the proposed consensus tracking method.

  4. Enhanced iterative learning control for a piezoelectric actuator system using wavelet transform filtering

    NASA Astrophysics Data System (ADS)

    Chien, Chiang-Ju; Lee, Fu-Shin; Wang, Jhen-Cheng

    2007-01-01

    For trajectory tracking of a piezoelectric actuator system, an enhanced iterative learning control (ILC) scheme based on wavelet transform filtering (WTF) is proposed in this research. The enhanced ILC scheme incorporates a state compensation in the ILC formula. Combining state compensation with iterative learning, the scheme enhances tracking accuracies substantially, in comparison to the conventional D-type ILC and a proportional control-aided D-type ILC. The wavelet transform is adopted to filter learnable tracking errors without phase shift. Based on both a time-frequency analysis of tracking errors and a convergence bandwidth analysis of ILC, a two-level WTF is chosen for ILC in this study. The enhanced ILC scheme using WTF was applied to track two desired trajectories, one with a single frequency and the other with multiple frequencies, respectively. Experimental results validate the efficacy of the enhanced ILC in terms of the speed of convergence and the level of long-term tracking errors.

  5. Solid electrically tunable dual-focus lens using freeform surfaces and microelectro-mechanical-systems actuator.

    PubMed

    Zou, Yongchao; Zhang, Wei; Chau, Fook Siong; Zhou, Guangya

    2016-01-01

    In this Letter, a miniature solid tunable dual-focus (DF) lens, which is designed using freeform optical surfaces and driven by one microelectro-mechanical-systems rotary actuator, is reported. Such a lens consists of two optical elements, each having a flat surface and one freeform surface optimized by ray-tracing technology. By changing the relative rotation angle of the two lens elements, the lens configuration can form double foci with corresponding focal lengths varied simultaneously, resulting in a tunable DF effect. Results show that one of the focal lengths is tuned from about 30 to 20 mm, while the other one is varied from about 30 to 60 mm, with a maximum rotation angle of about 8.2 deg. PMID:26696143

  6. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback

    PubMed Central

    Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.

    2014-01-01

    This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N. PMID:25126446

  7. Design of a Magnetostrictive-Hydraulic Actuator Considering Nonlinear System Dynamics and Fluid-Structure Coupling

    NASA Astrophysics Data System (ADS)

    Larson, John Philip

    Smart material electro-hydraulic actuators (EHAs) utilize fluid rectification via one-way check valves to amplify the small, high-frequency vibrations of certain smart materials into large motions of a hydraulic cylinder. Although the concept has been demonstrated in previously, the operating frequency of smart material EHA systems has been limited to a small fraction of the available bandwidth of the driver materials. The focus of this work is to characterize and model the mechanical performance of a magnetostrictive EHA considering key system components: rectification valves, smart material driver, and fluid-system components, leading to an improved actuator design relative to prior work. The one-way valves were modeled using 3-D finite element analysis, and their behavior was characterized experimentally by static and dynamic experimental measurement. Taking into account the effect of the fluid and mechanical conditions applied to the valves within the pump, the dynamic response of the valve was quantified and applied to determine rectification bandwidth of different valve configurations. A novel miniature reed valve, designed for a frequency response above 10~kHz, was fabricated and tested within a magnetostrictive EHA. The nonlinear response of the magnetostrictive driver, including saturation and hysteresis effects, was modeled using the Jiles-Atherton approach to calculate the magnetization and the resulting magnetostriction based on the applied field calculated within the rod from Maxwell's equations. The dynamic pressure response of the fluid system components (pumping chamber, hydraulic cylinder, and connecting passages) was measured over a range of input frequencies. For the magnetostrictive EHA tested, the peak performance frequency was found to be limited by the fluid resonances within the system. A lumped-parameter modeling approach was applied to model the overall behavior of a magnetostrictive EHA, incorporating models for the reed valve response

  8. Wind-tunnel blockage and actuation systems test of a two-dimensional scramjet inlet unstart model at Mach 6

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1994-01-01

    The present study examines the wind-tunnel blockage and actuation systems effectiveness in starting and forcibly unstarting a two-dimensional scramjet inlet in the NASA Langley 20-Inch Mach 6 Tunnel. The intent of the overall test program is to study (both experimentally and computationally) the dynamics of the inlet unstart; however, prior to the design and fabrication of an expensive, instrumented wind-tunnel model, it was deemed necessary first to examine potential wind-tunnel blockage issues related to model sizing and to examine the adequacy of the actuation systems in accomplishing the start and unstart. The model is equipped with both a moveable cowl and aft plug. Windows in the inlet sidewalls allow limited optical access to the internal shock structure; schlieren video was used to identify inlet start and unstart. A chronology of each actuation sequence is provided in tabular form along with still frames from the schlieren video. A pitot probe monitored the freestream conditions throughout the start/unstart process to determine if there was a blockage effect due to the model start or unstart. Because the purpose of this report is to make the phase I (blockage and actuation systems) data rapidly available to the community, the data is presented largely without analysis of the internal shock interactions or the unstart process. This series of tests indicated that the model was appropriately sized for this facility and identified operability limits required first to allow the inlet to start and second to force the unstart.

  9. A Solar Energy Powered Autonomous Wireless Actuator Node for Irrigation Systems

    PubMed Central

    Lajara, Rafael; Alberola, Jorge; Pelegrí-Sebastiá, José

    2011-01-01

    The design of a fully autonomous and wireless actuator node (“wEcoValve mote”) based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close) of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered, thus eliminating the need of wires and facilitating its deployment. By using supercapacitors recharged from a specifically designed solar power module, the need to replace batteries is also eliminated and the system is completely autonomous and maintenance free. The “wEcoValve mote” firmware is based on a synchronous protocol that allows a bidirectional communication with a latency optimized for real-time work, with a synchronization time between nodes of 4 s, thus achieving a power consumption average of 2.9 mW. PMID:22346580

  10. Structure-preserving model reduction for spatially interconnected systems with experimental validation on an actuated beam

    NASA Astrophysics Data System (ADS)

    Al-Taie, Fatimah; Werner, Herbert

    2016-06-01

    A technique for model reduction of exponentially stable spatially interconnected systems is presented, where the order of the reduced model is determined by the number of truncated small generalised singular values of the structured solutions to a pair of Lyapunov inequalities. For parameter-invariant spatially interconnected systems, the technique is based on solving a pair of Lyapunov inequalities in continuous-time and -space domain with a rank constraint. Using log-det and cone complementarity methods, an improved error bound can be obtained. The approach is extended to spatially parameter-varying systems, and a balanced truncation approach using parameter-dependent Gramians is proposed to reduce the conservatism caused by the use of constant Gramians. This is done by considering two important operators, which can be used to represent multidimensional systems (temporal- and spatial-linear parameter varying interconnected systems). The results are illustrated with their application to an experimentally identified spatially interconnected model of an actuated beam; the experimentally obtained response to an excitation signal is compared with the response predicted by a reduced model.

  11. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  12. Design of virtual display and testing system for moving mass electromechanical actuator

    NASA Astrophysics Data System (ADS)

    Gao, Zhigang; Geng, Keda; Zhou, Jun; Li, Peng

    2015-12-01

    Aiming at the problem of control, measurement and movement virtual display of moving mass electromechanical actuator(MMEA), the virtual testing system of MMEA was developed based on the PC-DAQ architecture and the software platform of LabVIEW, and the comprehensive test task such as drive control of MMEA, tests of kinematic parameter, measurement of centroid position and virtual display of movement could be accomplished. The system could solve the alignment for acquisition time between multiple measurement channels in different DAQ cards, then on this basis, the researches were focused on the dynamic 3D virtual display by the LabVIEW, and the virtual display of MMEA were realized by the method of calling DLL and the method of 3D graph drawing controls. Considering the collaboration with the virtual testing system, including the hardware drive, the measurement software of data acquisition, and the 3D graph drawing controls method was selected, which could obtained the synchronization measurement, control and display. The system can measure dynamic centroid position and kinematic position of movable mass block while controlling the MMEA, and the interface of 3D virtual display has realistic effect and motion smooth, which can solve the problem of display and playback about MMEA in the closed shell.

  13. Stochastic linearisation approach to performance analysis of feedback systems with asymmetric nonlinear actuators and sensors

    NASA Astrophysics Data System (ADS)

    Kabamba, P. T.; Meerkov, S. M.; Ossareh, H. R.

    2015-01-01

    This paper considers feedback systems with asymmetric (i.e., non-odd functions) nonlinear actuators and sensors. While the stability of such systems can be investigated using the theory of absolute stability and its extensions, the current paper provides a method for their performance analysis, i.e., reference tracking and disturbance rejection. Similar to the case of symmetric nonlinearities considered in earlier work, the development is based on the method of stochastic linearisation (which is akin to the describing functions, but intended to study general properties of dynamics, rather than periodic regimes). Unlike the symmetric case, however, the nonlinearities considered here must be approximated not only by a quasilinear gain, but a quasilinear bias as well. This paper derives transcendental equations for the quasilinear gain and bias, provides necessary and sufficient conditions for existence of their solutions, and, using simulations, investigates the accuracy of these solutions as a tool for predicting the quality of reference tracking and disturbance rejection. The method developed is then applied to performance analysis of specific systems, and the effect of asymmetry on their behaviour is investigated. In addition, this method is used to justify the recently discovered phenomenon of noise-induced loss of tracking in feedback systems with PI controllers, anti-windup, and sensor noise.

  14. Simultaneous fault detection and control for switched systems with actuator faults

    NASA Astrophysics Data System (ADS)

    Li, Jian; Yang, Guang-Hong

    2016-07-01

    This paper is concerned with the fault detection and control problem for discrete-time switched systems. The actuator faults, especially 'outage cases', are considered. The detector/controller is designed simultaneously such that the closed-loop system switches under an average dwell time, and when a fault is detected, an alarm is generated and then the controller is switched to allow the norm of the states of the subsystem to increase within the acceptable limits. Thus, a switching strategy which combines average dwell time switching with event-driven switching is proposed. Under this switching strategy, the attention is focused on designing the detector/controller such that estimation errors between residual signals and faults are minimised for the fulfillment of fault detection objectives; simultaneously, the closed-loop system becomes asymptotically stable for the fulfillment of control objectives. A two-step procedure is adopted to obtain the solutions through satisfying a set of linear matrix inequalities. An example comprising of three cases is considered. Through these cases, it is demonstrated that the fault detection and control for switched systems using a two-stage switching strategy and asynchronous switching are feasible.

  15. Dynamics of a pneumatic artificial muscle actuation system driving a trailing edge flap

    NASA Astrophysics Data System (ADS)

    Woods, Benjamin K. S.; Kothera, Curt S.; Wang, Gang; Wereley, Norman M.

    2014-09-01

    This study presents a time domain dynamic model of an antagonistic pneumatic artificial muscle (PAM) driven trailing edge flap (TEF) system for next generation active helicopter rotors. Active rotor concepts are currently being widely researched in the rotorcraft community as a means to provide a significant leap forward in performance through primary aircraft control, vibration mitigation and noise reduction. Recent work has shown PAMs to be a promising candidate for active rotor actuation due to their combination of high force, large stroke, light weight, and suitable bandwidth. When arranged into biologically inspired agonist/antagonist muscle pairs they can produce bidirectional torques for effectively driving a TEF. However, there are no analytical dynamic models in the literature that can accurately capture the behavior of such systems across the broad range of frequencies required for this demanding application. This work combines mechanical, pneumatic, and aerodynamic component models into a global flap system model developed for the Bell 407 rotor system. This model can accurately predict pressure, force, and flap angle response to pneumatic control valve inputs over a range of operating frequencies from 7 to 35 Hz (1/rev to 5/rev for the Bell 407) and operating pressures from 30 to 90 psi.

  16. Field emission in actuation pads of radio frequency microelectromechanical systems ohmic switches: A potential contamination mechanism

    NASA Astrophysics Data System (ADS)

    Koutsoureli, M.; Reig, B.; Papandreou, E.; Poulain, C.; Souchon, F.; Deborgies, F.; Papaioannou, G.

    2016-01-01

    The field emission current generated across the actuation pads in ohmic MEMS switches during ON state is shown to constitute an additional source of degradation. Switches with Au/Au and Au/Ru contacts have been subjected to 24 h continuous stress. In both cases the switch ohmic contact resistance and field emission current across actuation pads were monitored simultaneously. The experimental results revealed a negligible degradation in Au/Au contact devices while the Au/Ru contact devices show a fast degradation. The experimental results from Au/Au and Ru/Au contact switches have been compared taking into account the plasma generation in the actuation pads.

  17. Development of an Upper Limb Power Assist System Using Pneumatic Actuators for Farming Lift-up Motion

    NASA Astrophysics Data System (ADS)

    Yagi, Eiichi; Harada, Daisuke; Kobayashi, Masaaki

    A power assist system has lately attracted considerable attention to lifting-up an object without low back pain. We have been developing power assist systems with pneumatic actuators for the elbow and shoulder to farming support of lifting-up a bag of rice weighing 30kg. This paper describes the mechanism and control method of this power assist system. The pneumatic rotary actuator supports shoulder motion, and the air cylinder supports elbow motion. In this control method, the surface electromyogram(EMG) signals are used as input information of the controller. The joint support torques of human are calculated based on the antigravity term of necessary joint torques, which are estimated on the dynamics of a human approximated link model. The experimental results show the effectiveness of the proposed mechanism and control method of the power assist system.

  18. Monolithic integrated system with an electrowetting-on-dielectric actuator and a film-bulk-acoustic-resonator sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Menglun; Cui, Weiwei; Chen, Xuejiao; Wang, Chao; Pang, Wei; Duan, Xuexin; Zhang, Daihua; Zhang, Hao

    2015-02-01

    Although digital microfluidics has shown great potential in a wide range of applications, a lab-on-a-chip with integrated digital droplet actuators and powerful biochemical sensors is still lacking. To address the demand, a fully integrated chip with electrowetting-on-dielectric (EWOD) and a film bulk acoustic resonator (FBAR) sensor is introduced, where an EWOD actuator manipulates digital droplets and the FBAR sensor detects the presence of substances in the droplets, respectively. The piezoelectric layer of the FBAR sensor and the dielectric layer of the EWOD share the same aluminum nitride (AlN) thin film, which is a key factor to achieve the full integration of the two completely different devices. The liquid droplets are reliably managed by the EWOD actuator to sit on or move off the FBAR sensor precisely. Sessile drop experiments and limit of detection (LOD) experiments are carried out to characterize the EWOD actuator and the FBAR sensor, respectively. Taking advantage of the digital droplet operation, a ‘dry sensing mode’ of the FBAR sensor in the lab-on-a-chip microsystem is proposed, which has a much higher signal to noise ratio than the conventional ‘wet sensing mode’. Hg2+ droplets with various concentrations are transported and sensed to demonstrate the capability of the integrated system. The EWOD-FBAR chip is expected to play an important role in many complex lab-on-a-chip applications.

  19. Position control of ionic polymer metal composite actuator based on neuro-fuzzy system

    NASA Astrophysics Data System (ADS)

    Nguyen, Truong-Thinh; Yang, Young-Soo; Oh, Il-Kwon

    2009-07-01

    This paper describes the application of Neuro-Fuzzy techniques for controlling an IPMC cantilever configuration under water to improve tracking ability for an IPMC actuator. The controller was designed using an Adaptive Neuro-Fuzzy Controller (ANFC). The measured input data based including the tip-displacements and electrical signals have been recorded for generating the training in the ANFC. These data were used for training the ANFC to adjust the membership functions in the fuzzy control algorithm. The comparison between actual and reference values obtained from the ANFC gave satisfactory results, which showed that Adaptive Neuro-Fuzzy algorithm is reliable in controlling IPMC actuator. In addition, experimental results show that the ANFC performed better than the pure fuzzy controller (PFC). Present results show that the current adaptive neuro-fuzzy controller can be successfully applied to the real-time control of the ionic polymer metal composite actuator for which the performance degrades under long-term actuation.

  20. Electromechanical simulation and test of rotating systems with magnetic bearing or piezoelectric actuator active vibration control

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.; Tang, Punan; Kim, Chaesil; Manchala, Daniel; Barrett, Tim; Kascak, Albert F.; Brown, Gerald; Montague, Gerald; Dirusso, Eliseo; Klusman, Steve

    1994-01-01

    This paper contains a summary of the experience of the authors in the field of electromechanical modeling for rotating machinery - active vibration control. Piezoelectric and magnetic bearing actuator based control are discussed.

  1. Development and Evaluation of an Actuated MRI-Compatible Robotic System for MRI-Guided Prostate Intervention.

    PubMed

    Krieger, Axel; Song, Sang-Eun; Cho, Nathan B; Iordachita, Iulian; Guion, Peter; Fichtinger, Gabor; Whitcomb, Louis L

    2012-09-12

    This paper reports the design, development, and magnetic resonance imaging (MRI) compatibility evaluation of an actuated transrectal prostate robot for MRI-guided needle intervention in the prostate. The robot performs actuated needle MRI-guidance with the goals of providing (i) MRI compatibility, (ii) MRI-guided needle placement with accuracy sufficient for targeting clinically significant prostate cancer foci, (iii) reducing interventional procedure times (thus increasing patient comfort and reducing opportunity for needle targeting error due to patient motion), (iv) enabling real-time MRI monitoring of interventional procedures, and (v) reducing the opportunities for error that arise in manually actuated needle placement. The design of the robot, employing piezo-ceramic-motor actuated needle guide positioning and manual needle insertion, is reported. Results of a MRI compatibility study show no reduction of MRI signal-to-noise-ratio (SNR) with the motors disabled. Enabling the motors reduces the SNR by 80% without RF shielding, but SNR is only reduced by 40% to 60% with RF shielding. The addition of radio-frequency shielding is shown to significantly reduce image SNR degradation caused by the presence of the robotic device. An accuracy study of MRI-guided biopsy needle placements in a prostate phantom is reported. The study shows an average in-plane targeting error of 2.4 mm with a maximum error of 3.7 mm. These data indicate the system's needle targeting accuracy is similar to that obtained with a previously reported manually actuated system, and is sufficient to reliably sample clinically significant prostate cancer foci under MRI-guidance. PMID:23326181

  2. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  3. Controller Parameter Tuning for Systems with Hysteresis and Its Application to Shape Memory Alloy Actuators

    NASA Astrophysics Data System (ADS)

    Wakasa, Yuji; Kanagawa, Shinji; Tanaka, Kanya; Nishimura, Yuki

    This paper proposes a simple controller parameter tuning method that can compensate for hysteresis. The proposed method is based on the so-called fictitious reference iterative tuning (FRIT) technique which can easily tune controller parameters such as proportional-integral-derivative gains using a one-shot closed-loop experimental data. In the proposed framework, a simple hysteresis model is introduced to a control system, and its inverse is used as a hysteresis compensator. Since the hysteresis model is characterized with only three parameters, the related computational burden is moderate in the parameter tuning process. Also, the proposed FRIT method needs an only one-shot experiment as in the standard FRIT one, which implies that the feature of FRIT is well-maintained. In the optimization process, the so-called covariance matrix adaptation evolution strategy is used for simultaneously searching hysteresis parameters as well as controller parameters. The proposed FRIT method is applied to an experimental control system that comprises a shape memory alloy actuator, and its effectiveness is verified.

  4. Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy

    PubMed Central

    Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.

    2014-01-01

    This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure. PMID:26412962

  5. Development and Evaluation of an Actuated MRI-Compatible Robotic System for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Song, Sang-Eun; Cho, Nathan B.; Iordachita, Iulian; Guion, Peter; Fichtinger, Gabor; Whitcomb, Louis L.

    2012-01-01

    This paper reports the design, development, and magnetic resonance imaging (MRI) compatibility evaluation of an actuated transrectal prostate robot for MRI-guided needle intervention in the prostate. The robot performs actuated needle MRI-guidance with the goals of providing (i) MRI compatibility, (ii) MRI-guided needle placement with accuracy sufficient for targeting clinically significant prostate cancer foci, (iii) reducing interventional procedure times (thus increasing patient comfort and reducing opportunity for needle targeting error due to patient motion), (iv) enabling real-time MRI monitoring of interventional procedures, and (v) reducing the opportunities for error that arise in manually actuated needle placement. The design of the robot, employing piezo-ceramic-motor actuated needle guide positioning and manual needle insertion, is reported. Results of a MRI compatibility study show no reduction of MRI signal-to-noise-ratio (SNR) with the motors disabled. Enabling the motors reduces the SNR by 80% without RF shielding, but SNR is only reduced by 40% to 60% with RF shielding. The addition of radio-frequency shielding is shown to significantly reduce image SNR degradation caused by the presence of the robotic device. An accuracy study of MRI-guided biopsy needle placements in a prostate phantom is reported. The study shows an average in-plane targeting error of 2.4 mm with a maximum error of 3.7 mm. These data indicate the system’s needle targeting accuracy is similar to that obtained with a previously reported manually actuated system, and is sufficient to reliably sample clinically significant prostate cancer foci under MRI-guidance. PMID:23326181

  6. Parametric resonance voltage response of electrostatically actuated Micro-Electro-Mechanical Systems cantilever resonators

    NASA Astrophysics Data System (ADS)

    Caruntu, Dumitru I.; Martinez, Israel; W. Knecht, Martin

    2016-02-01

    This paper investigates the parametric resonance voltage response of nonlinear parametrically actuated Micro-Electro-Mechanical Systems (MEMS) cantilever resonators. A soft AC voltage of frequency near natural frequency is applied between the resonator and a parallel ground plate. This produces an electrostatic force that leads the structure into parametric resonance. The model consists of an Euler-Bernoulli thin cantilever under the actuation of electrostatic force to include fringe effect, and damping force. Two methods of investigation are used, namely the Method of Multiple Scales (MMS) and Reduced Order Model (ROM) method. ROM convergence of the voltage response and the limitation of MMS to small to moderate amplitudes with respect to the gap (gap-amplitudes) are reported. MMS predicts accurately both Hopf supercritical and supercritical bifurcation voltages. However, MMS overestimates the large gap-amplitudes of the resonator, and. misses completely or overestimates the saddle-node bifurcation occurring at large gap-amplitudes. ROM produces valid results for small and/or large gap-amplitudes for a sufficient number of terms (vibration modes). As the voltage is swept up at constant frequency, the resonator maintains zero amplitude until reaches the subcritical Hopf bifurcation voltage where it loses stability and jumps up to large gap-amplitudes, next the gap-amplitude decreases until it reaches the supercritical Hopf bifurcation point, and after that the gap-amplitude remains zero, for the voltage range considered in this work. As the voltage is swept down at constant frequency, the zero gap-amplitude of the resonator starts increasing continuously after reaching the supercritical Hopf bifurcation voltage until it reaches the saddle-node bifurcation voltage when a sudden jump to zero gap-amplitude occurs. Effects of frequency, damping and fringe parameters on the voltage response show that (1) the supercritical Hopf bifurcation is shifted to lower voltage

  7. Air microjet system for non-contact force application and the actuation of micro-structures

    NASA Astrophysics Data System (ADS)

    Khare, S. M.; Venkataraman, V.

    2016-01-01

    We demonstrate a non-contact technique to apply calibrated and localized forces in the micro-Newton to milli-Newton range using an air microjet. An electromagnetically actuated diaphragm controlled by a signal generator is used to generate the air microjet. With a nozzle diameter of 150 μm, the microjet diameter was maintained to a maximum of 1 mm at a distance of 5 mm from the nozzle. The force generated by the microjet was measured using a commercial force sensor to determine the velocity profile of the jet. Axial flow velocities of up to 25 m s-1 were obtained at distances as long as 6 mm. The microjet exerted a force up to 1 μN on a poly dimethyl siloxane (PDMS) micropillar (50 μm in diameter, 157 μm in height) and 415 μN on a PDMS membrane (3 mm in diameter, 28 μm thick). We also demonstrate that from a distance of 6 mm our microjet can exert a peak pressure of 187 Pa with a total force of about 84 μN on a flat surface with 8 V operating voltage. Out of the cleanroom fabrication and robust design make this system cost effective and durable.

  8. Sensing and actuation system for the University of Florida Torsion Pendulum for LISA

    NASA Astrophysics Data System (ADS)

    Chilton, Andrew; Shelley, Ryan; Olatunde, Taiwo; Ciani, Giacomo; Conklin, John; Mueller, Guido

    2014-03-01

    Space-based gravitational wave detectors like LISA are a necessity for understanding the low-frequency portion of the gravitational universe. They use test masses (TMs) which are separated by Gm and are in free fall inside their respective spacecraft. Their relative distance is monitored with laser interferometry at the pm/rtHz level in the LISA band, ranging from 0.1 to 100 mHz. Each TM is enclosed in a housing that provides isolation, capacitive sensing, and electrostatic actuation capabilities. The electronics must both be sensitive at the 1 nm/rtHz level and not induce residual acceleration noise above the requirement for LISA Pathfinder (3*10-15 m/sec2Hz1/2at 3 mHz). Testing and developing this technology is one of the roles of the University of Florida Torsion Pendulum, the only US testbed for LISA-like gravitational reference sensor technology. Our implementation of the sensing system functions by biasing our hollow LISA-like TMs with a 100 kHz sine wave and coupling a pair surrounding electrodes as capacitors to a pair of preamps and a differential amplifier; all other processing is done digitally. Here we report on the design of, implementation of, and preliminary results from the UF Torsion Pendulum.

  9. Preventing Oxide Adhesion of Liquid Metal Alloys to Enable Actuation in Microfluidic Systems

    NASA Astrophysics Data System (ADS)

    Joshipura, Ishan; Johnson, Alexander; Ayers, Hudson; Dickey, Michael

    This work explores the wetting behavior of an oxide-coated liquid metal, eutectic alloy of gallium and indium (`EGaIn'), which remains a liquid at room temperature. Liquid metals uniquely combine fluidity with metallic properties. Combined, these properties enable soft, stretchable, and shape reconfigurable electronics with `softer than skin' interfaces. Ga forms spontaneously a thin surface oxide that alters its wetting behavior and makes it difficult to move across surfaces without leaving residue behind. We examine the effects of surface roughness (i.e., Cassie-Baxter state) and lubrication to minimize adhesion of Ga oxide to surfaces. Lubricated surfaces create a `slip-layer' of liquid between the metal and surface that also inhibits wetting. This slip layer allows the metal to move reversibly through microchannels by preventing adhesion of the oxide. The metal may be pumped or moved by using low voltages or pneumatic actuation. Optical microscopy confirms the importance of the slip-layer, which enables non-stick motion of the metal through capillaries. Finally, electrochemical impedance spectroscopy characterizes the electrohydrodynanic motion of EGaIn in capillary systems.

  10. A DSP-based controller for a linear actuator system with sub-angstrom resolution and 15-millimeter travel range

    SciTech Connect

    Smolyanitskiy, A.; Shu, D.; Wong, T.; Experimental Facilities Division; IIT

    2005-01-01

    We have designed and tested a new digital signal processor (DSP)-based closed-loop feedback controller for a linear actuator system with sub-angstrom resolution and 15-mm travel range. The linear actuator system consists of a laser Doppler encoder with multiple-reflection optics [1], a high-stiffness weak-link mechanism with high driving sensitivity and stability [2], and a Texas Instruments TMS320C40 DSP-based controller for high-performance closed-loop feedback control. In this paper, we discuss the DSP-based controller design, as well as recent test results yielding step sizes below 50 picometers obtained with the atomic force microprobe setup.

  11. Piezoelectric Actuators On A Cold Finger

    NASA Technical Reports Server (NTRS)

    Kuo, Chin-Po; Garba, John A.; Glaser, Robert J.

    1995-01-01

    Developmental system for active suppression of vibrations of cold finger includes three piezoelectric actuators bonded to outer surface. Actuators used to suppress longitudinal and lateral vibrations of upper end of cold finger by applying opposing vibrations. Cold finger in question is part of a cryogenic system associated with an infrared imaging detector. When fully developed, system would be feedback sensor/control/actuator system automatically adapting to changing vibrational environment and suppresses pressure-induced vibrations by imposing compensatory vibrations via actuators.

  12. SRB/SLEEC (Solid Rocket Booster/Shingle Lap Extendible Exit Cone) feasibility study, volume 2. Appendix A: Design study for a SLEEC actuation system

    NASA Technical Reports Server (NTRS)

    Thompson, D. S.

    1986-01-01

    The results are presented of a design feasibility study of a self-contained (powered) actuation system for a Shingle Lap Extendible Exit Cone (SLEEC) for Transportation System (STS). The evolution of the SLEEC actuation system design is reviewed, the final design concept is summarized, and the results of the detailed study of the final concept of the actuation system are treated. A conservative design using proven mechanical components was established as a major program priority. The final mechanical design has a very low development risk since the components, which consist of ballscrews, gearing, flexible shaft drives, and aircraft cables, have extensive aerospace applications and a history of proven reliability. The mathematical model studies have shown that little or no power is required to deploy the SLEEC actuation system because acceleration forces and internal pressure from the rocket plume provide the required energies. A speed control brake is incorporated in the design in order to control the rate of deployment.

  13. Investigation of high frequency oscillations in the OV102 elevon actuation subsystems using continuous system modeling program simulation

    NASA Technical Reports Server (NTRS)

    Powell, W. W., Sr.

    1979-01-01

    Two theories emerged as the cause of undesired oscillations at frequencies between 40 and 60 Hz in the Orbiter Vehicle inboard and outboard elevon actuation subsystems during hardware testing. Both the "hardover feedback" and "deadspace" theories were examined using continuous system modeling program simulation. Results did not support the "hardover feedback" theory but showed that deadspace in the torque feedback spring connections to the servospools must be considered to be a possible cause of the oscillations. Further investigation is recommended.

  14. Design and control of a dual unidirectional brake hybrid actuation system for haptic devices.

    PubMed

    Rossa, Carlos; Lozada, José; Micaelli, Alain

    2014-01-01

    Hybrid actuators combining brakes and motors have emerged as an efficient solution to achieve high performance in haptic devices. In this paper, an actuation approach using two unidirectional brakes and a DC motor is proposed. The brakes are coupled to overrunning clutches and can apply a torque in only one rotational direction. The associated control laws, that are independent of the virtual environment model, calculate the control gains in real time in order limit the energy and the stiffness delivered by the motor to ensure stability. The reference torque is respected using the combination of the motor and the brake. Finally, an user experiment has been performed to evaluate the influence of passive and active torque differences in the perception of elasticity. The proposed actuator has a torque range of 0.03 Nm to 5.5 Nm with a 17.75 kNm (-2) torque density. PMID:25122593

  15. Electroactive Polymer (EAP) Actuation of Mechanisms and Robotic Devices

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Leary, S.; Harrison, J.; Smith, J.

    1999-01-01

    Actuators are responsible to the operative capability of manipulation systems and robots. In recent years, electroactive polymers (EAP) have emerged as potential alternative to conventional actuators.

  16. Miniature linear-to-rotary motion actuator

    NASA Technical Reports Server (NTRS)

    Sorokach, Michael R., Jr.

    1993-01-01

    A miniature hydraulic actuation system capable of converting linear actuator motion to control surface rotary motion has been designed for application to active controls on dynamic wind tunnel models. Due to space constraints and the torque requirements of an oscillating control surface at frequencies up to 50 Hertz, a new actuation system was developed to meet research objectives. This new actuation system was designed and developed to overcome the output torque limitations and fluid loss/sealing difficulties associated with an existing vane type actuator. Static control surface deflections and dynamic control surface oscillations through a given angle are provided by the actuation system. The actuator design has been incorporated into a transonic flutter model with an active trailing edge flap and two active spoilers. The model is scheduled for testing in the LaRC 16 Foot Transonic Dynamics Tunnel during Summer 1993. This paper will discuss the actuation system, its design, development difficulties, test results, and application to aerospace vehicles.

  17. A fuzzy-based shared controller for brain-actuated simulated robotic system.

    PubMed

    Liu, Rong; Xue, Kuang-Zheng; Wang, Yong-Xuan; Yang, Le

    2011-01-01

    The primary problems of brain-computer interface (BCI) are the low channel capacity and high error rate. Therefore, an assistive motion control method is important for the brain-actuated robot to realize real-time and reliable control. To make the brain-actuated robot respond to the external environments with more flexibility, a shared control method based on fuzzy logic is proposed. Experimental results obtained with ten healthy voluntary subjects show that the proposed fuzzy-based shared controller has improved performance compared with direct control approach. PMID:22256045

  18. Adaptive Fuzzy Tracking Control of Nonlinear Systems With Asymmetric Actuator Backlash Based on a New Smooth Inverse.

    PubMed

    Lai, Guanyu; Liu, Zhi; Zhang, Yun; Philip Chen, C L

    2016-06-01

    This paper is concentrated on the problem of adaptive fuzzy tracking control for an uncertain nonlinear system whose actuator is encountered by the asymmetric backlash behavior. First, we propose a new smooth inverse model which can approximate the asymmetric actuator backlash arbitrarily. By applying it, two adaptive fuzzy control scenarios, namely, the compensation-based control scheme and nonlinear decomposition-based control scheme, are then developed successively. It is worth noticing that the first fuzzy controller exhibits a better tracking control performance, although it recourses to a known slope ratio of backlash nonlinearity. The second one further removes the restriction, and also gets a desirable control performance. By the strict Lyapunov argument, both adaptive fuzzy controllers guarantee that the output tracking error is convergent to an adjustable region of zero asymptotically, while all the signals remain semiglobally uniformly ultimately bounded. Lastly, two comparative simulations are conducted to verify the effectiveness of the proposed fuzzy controllers. PMID:27187937

  19. Mixed H2/H∞ distributed robust model predictive control for polytopic uncertain systems subject to actuator saturation and missing measurements

    NASA Astrophysics Data System (ADS)

    Song, Yan; Fang, Xiaosheng; Diao, Qingda

    2016-03-01

    In this paper, we discuss the mixed H2/H∞ distributed robust model predictive control problem for polytopic uncertain systems subject to randomly occurring actuator saturation and packet loss. The global system is decomposed into several subsystems, and all the subsystems are connected by a fixed topology network, which is the definition for the packet loss among the subsystems. To better use the successfully transmitted information via Internet, both the phenomena of actuator saturation and packet loss resulting from the limitation of the communication bandwidth are taken into consideration. A novel distributed controller model is established to account for the actuator saturation and packet loss in a unified representation by using two sets of Bernoulli distributed white sequences with known conditional probabilities. With the nonlinear feedback control law represented by the convex hull of a group of linear feedback laws, the distributed controllers for subsystems are obtained by solving an linear matrix inequality (LMI) optimisation problem. Finally, numerical studies demonstrate the effectiveness of the proposed techniques.

  20. A Diagnostic Approach for Electro-Mechanical Actuators in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Balaban, Edward; Saxena, Abhinav; Bansal, Prasun; Goebel, Kai Frank; Stoelting, Paul; Curran, Simon

    2009-01-01

    Electro-mechanical actuators (EMA) are finding increasing use in aerospace applications, especially with the trend towards all all-electric aircraft and spacecraft designs. However, electro-mechanical actuators still lack the knowledge base accumulated for other fielded actuator types, particularly with regard to fault detection and characterization. This paper presents a thorough analysis of some of the critical failure modes documented for EMAs and describes experiments conducted on detecting and isolating a subset of them. The list of failures has been prepared through an extensive Failure Modes and Criticality Analysis (FMECA) reference, literature review, and accessible industry experience. Methods for data acquisition and validation of algorithms on EMA test stands are described. A variety of condition indicators were developed that enabled detection, identification, and isolation among the various fault modes. A diagnostic algorithm based on an artificial neural network is shown to operate successfully using these condition indicators and furthermore, robustness of these diagnostic routines to sensor faults is demonstrated by showing their ability to distinguish between them and component failures. The paper concludes with a roadmap leading from this effort towards developing successful prognostic algorithms for electromechanical actuators.

  1. Vct system having closed loop control employing spool valve actuated by a stepper motor

    SciTech Connect

    Quin, S.B. Jr.; Siemon, E.C.

    1993-06-15

    An internal combustion engine is described comprising: a crankshaft, the crankshaft being rotable about an axis; a cam shaft, the cam shaft being rotatable about a second axis, the second axis being parallel to the axis, the cam shaft being subject to torque reversals during the rotation thereof; a vane, the vane having at least one lobe, the vane being attached to the cam shaft, being rotatable with the cam shaft and being non-oscillatable with respect to the cam shaft; a housing, the housing being rotatable with the cam shaft and being oscillatable with respect to the cam shaft, the housing having at least one recess, the recess receiving the lobe, the lobe being oscillatable within the recess; rotary movement transmitting means for transmitting rotary movement from the crankshaft to the housing; actuating means for varying the position of the housing relative to the cam shaft in reaction to torque reversals in the cam shaft, the actuating means comprising a stepper motor, a lead screw and a proportional spool valve, the position of the spool valve being controlled by the position of the lead screw driven by the stepper motor, the actuating means also delivering hydraulic fluid to the vane; and processing means for controlling the position of the actuating means.

  2. 30 CFR 250.1611 - Blowout preventer systems tests, actuations, inspections, and maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-string safety valves shall be pressure tested to pipe-ram test pressures. Safety valves with proper... follows: (1) When installed; (2) Before drilling out each string of casing or before continuing operations... facility. (g) The time, date, and results of all pressure tests, actuations, inspections, and crew...

  3. Effect of Bending Stiffness of the Electroactive Polymer Element on the Performance of a Hybrid Actuator System (HYBAS)

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Zhang, Shujun; Shrout, Thomas R.; Zhang, Qiming

    2006-01-01

    An electroactive polymer (EAP)-ceramic hybrid actuation system (HYBAS) was developed recently at NASA Langley Research Center. This paper focuses on the effect of the bending stiffness of the EAP component on the performance of a HYBAS, in which the actuation of the EAP element can match the theoretical prediction at various length/thickness ratios for a constant elastic modulus of the EAP component. The effects on the bending stiffness of the elastic modulus and length/thickness ratio of the EAP component were studied. A critical bending stiffness to keep the actuation of the EAP element suitable for a rigid beam theory-based modeling was found for electron irradiated P(VDF-TrFE) copolymer. For example, the agreement of experimental data and theoretical modeling for a HYBAS with the length/thickness ratio of EAP element at 375 times is demonstrated. However, the beam based theoretical modeling becomes invalid (i.e., the profile of the HYBAS movement does not follow the prediction of theoretical modeling) when the bending stiffness is lower than a critical value.

  4. Actuated atomizer

    NASA Technical Reports Server (NTRS)

    Tilton, Charles (Inventor); Weiler, Jeff (Inventor); Palmer, Randall (Inventor); Appel, Philip (Inventor)

    2008-01-01

    An actuated atomizer is adapted for spray cooling or other applications wherein a well-developed, homogeneous and generally conical spray mist is required. The actuated atomizer includes an outer shell formed by an inner ring; an outer ring; an actuator insert and a cap. A nozzle framework is positioned within the actuator insert. A base of the nozzle framework defines swirl inlets, a swirl chamber and a swirl chamber. A nozzle insert defines a center inlet and feed ports. A spool is positioned within the coil housing, and carries the coil windings having a number of turns calculated to result in a magnetic field of sufficient strength to overcome the bias of the spring. A plunger moves in response to the magnetic field of the windings. A stop prevents the pintle from being withdrawn excessively. A pintle, positioned by the plunger, moves between first and second positions. In the first position, the head of the pintle blocks the discharge passage of the nozzle framework, thereby preventing the atomizer from discharging fluid. In the second position, the pintle is withdrawn from the swirl chamber, allowing the atomizer to release atomized fluid. A spring biases the pintle to block the discharge passage. The strength of the spring is overcome, however, by the magnetic field created by the windings positioned on the spool, which withdraws the plunger into the spool and further compresses the spring.

  5. An Optical Actuation System and Curvature Sensor for a MR-compatible Active Needle

    PubMed Central

    Ryu, Seok Chang; Quek, Zhan Fan; Renaud, Pierre; Black, Richard J.; Daniel, Bruce L.; Cutkosky, Mark R.

    2015-01-01

    A side optical actuation method is presented for a slender MR-compatible active needle. The needle includes an active region with a shape memory alloy (SMA) wire actuator, where the wire generates a contraction force when optically heated by a laser delivered though optical fibers, producing needle tip bending. A prototype, with multiple side heating spots, demonstrates twice as fast an initial response compared to fiber tip heating when 0.8 W of optical power is applied. A single-ended optical sensor with a gold reflector is also presented to measure the curvature as a function of optical transmission loss. Preliminary tests with the sensor prototype demonstrate approximately linear response and a repeatable signal, independent of the bending history. PMID:26509099

  6. Actuator-valve interface optimization. [Explosive actuators

    SciTech Connect

    Burchett, O.L.; Jones, R.L.

    1987-02-01

    The interface of explosive actuator driven valves can be optimized to maximize the velocity of the valve plunger by using the computer code Actuator-Valve Response. Details of the AVR model of the actuator driven valve plunger and the results of optimizing an actuator-valve interface with AVR are presented. 5 refs., 5 figs., 3 tabs.

  7. Tool actuation and force feedback on robot-assisted microsurgery system

    NASA Technical Reports Server (NTRS)

    Das, Hari (Inventor); Ohm, Tim R. (Inventor); Boswell, Curtis D. (Inventor); Steele, Robert D. (Inventor)

    2002-01-01

    An input control device with force sensors is configured to sense hand movements of a surgeon performing a robot-assisted microsurgery. The sensed hand movements actuate a mechanically decoupled robot manipulator. A microsurgical manipulator, attached to the robot manipulator, is activated to move small objects and perform microsurgical tasks. A force-feedback element coupled to the robot manipulator and the input control device provides the input control device with an amplified sense of touch in the microsurgical manipulator.

  8. Inflated Soft Actuators with Reversible Stable Deformations.

    PubMed

    Hines, Lindsey; Petersen, Kirstin; Sitti, Metin

    2016-05-01

    Most soft robotic systems are currently dependent on bulky compressors or pumps. A soft actuation method is presented combining hyperelastic membranes and dielectric elastomer actuators to switch between stable deformations of sealed chambers. This method is capable of large repeatable deformations, and has a number of stable states proportional to the number of actuatable membranes in the chamber. PMID:27008455

  9. Performance of Optimized Actuator and Sensor Arrays in an Active Noise Control System

    NASA Technical Reports Server (NTRS)

    Palumbo, D. L.; Padula, S. L.; Lyle, K. H.; Cline, J. H.; Cabell, R. H.

    1996-01-01

    Experiments have been conducted in NASA Langley's Acoustics and Dynamics Laboratory to determine the effectiveness of optimized actuator/sensor architectures and controller algorithms for active control of harmonic interior noise. Tests were conducted in a large scale fuselage model - a composite cylinder which simulates a commuter class aircraft fuselage with three sections of trim panel and a floor. Using an optimization technique based on the component transfer functions, combinations of 4 out of 8 piezoceramic actuators and 8 out of 462 microphone locations were evaluated against predicted performance. A combinatorial optimization technique called tabu search was employed to select the optimum transducer arrays. Three test frequencies represent the cases of a strong acoustic and strong structural response, a weak acoustic and strong structural response and a strong acoustic and weak structural response. Noise reduction was obtained using a Time Averaged/Gradient Descent (TAGD) controller. Results indicate that the optimization technique successfully predicted best and worst case performance. An enhancement of the TAGD control algorithm was also evaluated. The principal components of the actuator/sensor transfer functions were used in the PC-TAGD controller. The principal components are shown to be independent of each other while providing control as effective as the standard TAGD.

  10. System and choke valve actuator mechanism for operating a plunger lift well

    SciTech Connect

    Abel, T.E.

    1986-10-21

    An actuator mechanism is described for selective positioning of a choke valve element relative to a valve seat within a piping flow tee for regulating the flow of gas and oil from a producing wellhead. The flow tee has an opening to receive and connect the actuator mechanism, an inlet opening for conducting gas and oil toward the choke valve seat and an outlet opening for conducting gas and oil beyond the choke valve seat: the actuator mechanism comprises a closed body member with a base end adapted for connection with the flow tee opening, a control shaft positioning collar housed within the body member and a cylinder member connected to the upper end of the body member. It also has a control piston housed within the cylinder member, a cap member connected to the upper end of the cylinder member, a control piston stop sleeve carried by the cap member and an elongated control shaft; the control shaft extending coaxially through the body member, the control shaft positioning collar, the cylinder member, the control piston, the cylinder cap member and the stop sleeve; the body member, the cylinder member and the stop sleeve each having a small diameter axial bore for rotatable and slidable mounting of the control shaft; and the control shaft having an upper end projecting above the stop sleeve and adapted for carrying a handwheel thereon and a lower end projecting below the body member and into the flow tee and adapted for carrying the choke valve element thereon.

  11. Performance of Optimized Actuator and Sensor Arrays in an Active Noise Control System

    NASA Technical Reports Server (NTRS)

    Palumbo, D. L.; Padula, S. L.; Lyle, K. H.; Cline, J. H.; Cabell, R. H.

    1996-01-01

    Experiments have been conducted in NASA Langley s Acoustics and Dynamics Laboratory to determine the effectiveness of optimized actuator/sensor architectures and controller algorithms for active control of harmonic interior noise. Tests were conducted in a large scale fuselage model - a composite cylinder which simulates a commuter class aircraft fuselage with three sections of trim panel and a floor. Using an optimization technique based on the component transfer functions, combinations of 4 out of 8 piezoceramic actuators and 8 out of 462 microphone locations were evaluated against predicted performance. A combinatorial optimization technique call tabu search was employed to select the optimum transducer arrays. Three test frequencies represent the cases of a strong acoustic and strong structural response, a weak acoustic and strong structural response and a strong acoustic and weak structural response. Noise reduction was obtained using a Time Averaged/Gradient Descent (TAGD) controller. Results indicate that the optimization technique successfully predicted best and worst case performance. An enhancement of the TAGD control algorithm was also evaluated. The principal components of the actuator/sensor transfer functions were used in the PC-TAGD controller. The principal components are shown to be independent of each other while providing control as effective as the standard TAGD.

  12. A Control Allocation System for Automatic Detection and Compensation of Phase Shift Due to Actuator Rate Limiting

    NASA Technical Reports Server (NTRS)

    Yildiz, Yidiray; Kolmanovsky, Ilya V.; Acosta, Diana

    2011-01-01

    This paper proposes a control allocation system that can detect and compensate the phase shift between the desired and the actual total control effort due to rate limiting of the actuators. Phase shifting is an important problem in control system applications since it effectively introduces a time delay which may destabilize the closed loop dynamics. A relevant example comes from flight control where aggressive pilot commands, high gain of the flight control system or some anomaly in the system may cause actuator rate limiting and effective time delay introduction. This time delay can instigate Pilot Induced Oscillations (PIO), which is an abnormal coupling between the pilot and the aircraft resulting in unintentional and undesired oscillations. The proposed control allocation system reduces the effective time delay by first detecting the phase shift and then minimizing it using constrained optimization techniques. Flight control simulation results for an unstable aircraft with inertial cross coupling are reported, which demonstrate phase shift minimization and recovery from a PIO event.

  13. Rotary actuator

    NASA Technical Reports Server (NTRS)

    Brudnicki, Myron (Inventor)

    1995-01-01

    Rotary actuators and other mechanical devices incorporating shape memory alloys are provided herein. Shape memory alloys are a group of metals which when deformed at temperatures below their martensite temperatures, resume the shapes which they had prior to the deformation if they are heated to temperatures above their austensite temperatures. Actuators in which shape memory alloys are employed include bias spring types, in which springs deform the shape memory alloy (SMA), and differential actuators, which use two SMA members mechanically connected in series. Another type uses concentric cylindrical members. One member is in the form of a sleeve surrounding a cylinder, both being constructed of shape memory alloys. Herein two capstans are mounted on a shaft which is supported in a framework. Each capstan is capable of rotating the shaft. Shape memory wire, as two separate lengths of wire, is wrapped around each capstan to form a winding around that capstan. The winding on one capstan is so wrapped that the wire is in a prestretched state. The winding on the other capstan is so wrapped that the wire is in a taut, but not a prestretched, state. Heating one performs work in one direction, thus deforming the other one. When the other SMA is heated the action is reversed.

  14. Water cooling system using a piezoelectrically actuated flow pump for a medical headlight system

    NASA Astrophysics Data System (ADS)

    Pires, Rogério F.; Vatanabe, Sandro L.; de Oliveira, Amaury R.; Nakasone, Paulo H.; Silva, Emílio C.

    2007-04-01

    The microchips inside modern electronic equipment generate heat and demand, each day, the use of more advanced cooling techniques as water cooling systems, for instance. These systems combined with piezoelectric flow pumps present some advantages such as higher thermal capacity, lower noise generation and miniaturization potential. The present work aims at the development of a water cooling system based on a piezoelectric flow pump for a head light system based on LEDs. The cooling system development consists in design, manufacturing and experimental characterization steps. In the design step, computational models of the pump, as well as the heat exchanger were built to perform sensitivity studies using ANSYS finite element software. This allowed us to achieve desired flow and heat exchange rates by varying the frequency and amplitude of the applied voltage. Other activities included the design of the heat exchanger and the dissipation module. The experimental tests of the cooling system consisted in measuring the temperature difference between the heat exchanger inlet and outlet to evaluate its thermal cooling capacity for different values of the flow rate. Comparisons between numerical and experimental results were also made.

  15. Design of a smart optically controlled high-power switch for fly-by-light motor actuation systems

    NASA Astrophysics Data System (ADS)

    Bhadri, Prashant; Sukumaran, Deepti; Dasgupta, Samhita; Beyette, Fred R., Jr.

    2001-12-01

    In avionic systems, data integrity and high data rates are necessary for stable flight control. Unfortunately, conventional electronic control systems are susceptible to electromagnetic interference (EMI) that can reduce the clarity of flight control signals. Fly-by-Light systems that use optical signals to actuate the flight control surfaces of an aircraft have been suggested as a solution to the EMI problem in avionic systems. Fly-by-Light in avionic systems reduces electromagnetic interference hence improving the clarity of the control signals. A hybrid approach combining a silicon photoreceiver module with a SiC power transistor is proposed. The resulting device uses a 5 mW optical control signal to produce a 150 A current suitable for driving an electric motor.

  16. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  17. Pointwise Stabilization of a Hybrid System and Optimal Location of Actuator

    SciTech Connect

    Ammari, Kais Saidi, Abdelkader

    2007-06-15

    We consider a pointwise stabilization problem for a model arising in the control of noise. We prove that we have exponential stability for the low frequencies but not for the high frequencies. Thus, we give an explicit polynomial decay estimation at high frequencies that is valid for regular initial data while clarifying that the behavior of the constant which intervenes in this estimation there, functions as the frequency of cut. We propose a numerical approximation of the model and study numerically the best location of the actuator at low frequencies.

  18. Phase lag deduced information in photo-thermal actuation for nano-mechanical systems characterization

    SciTech Connect

    Bijster, R. J. F. Vreugd, J. de; Sadeghian, H.

    2014-08-18

    In photo-thermal actuation, heat is added locally to a micro-cantilever by means of a laser. A fraction of the irradiation is absorbed, yielding thermal stresses and deformations in the structure. Harmonic modulation of the laser power causes the cantilever to oscillate. Moreover, a phase lag is introduced which is very sensitive to the spot location and the cantilever properties. This phase lag is theoretically predicted and experimentally verified. Combined with thermo-mechanical properties of the cantilever and its geometry, the location of the laser spot, the thermal diffusivity, and the layer thicknesses of the cantilever can be extracted.

  19. Low-Power, Low-Voltage Electroosmotic Actuator for an Implantable Micropumping System Intended for Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Getpreecharsawas, Jirachai

    An electroosmotic (EO) actuator offers a low-power, low-voltage alternative in a diaphragm-based periodic displacement micropump intended for an implantable drug delivery system. The actuator utilizes an electroosmosis mechanism to transport liquid across a membrane to deflect the pumping diaphragms in a reciprocating manner. In the study, the membrane made of porous nanocrystalline silicon (pnc-Si) tens of nanometers in thickness was used as the promising EO generator with low power consumption and small package size. This ultrathin membrane provides the opportunity for electrode integration such that the very high electric field can be generated across the membrane with the applied potential under 1 volt for low flow rate applications like drug delivery. Due to such a low applied voltage, the challenge, however, imposes on the capability of generating the pumping pressure high enough to deflect the pumping diaphragms and overcome the back pressure normally encountered in the biological tissue and organ. This research identified the cause of weak pumping pressure that the electric field inside the orifice-like nanopores of the ultrathin membrane is weaker than conventional theory would predict. It no longer scales uniformly with the thickness of membrane, but with the pore length-to-diameter aspect ratio for each nanopore. To enhance the pumping performance, the pnc-Si membrane was coated with an ultrathin Nafion film. As a result, the induced concentration difference across the Nafion film generates the osmotic pressure against the back pressure allowing the EO actuator to maintain the target pumping flow rate under 1 volt.

  20. Adaptive fuzzy decentralised fault-tolerant control for nonlinear large-scale systems with actuator failures and unmodelled dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Yinyin; Tong, Shaocheng; Li, Yongming

    2015-09-01

    This paper discusses the adaptive fuzzy decentralised fault-tolerant control (FTC) problem for a class of nonlinear large-scale systems in strict-feedback form. The systems under study contain the unknown nonlinearities, unmodelled dynamics, actuator faults and without the direct measurements of state variables. With the help of fuzzy logic systems identifying the unknown functions and a fuzzy adaptive observer is designed to estimate the unmeasured states. By using the backstepping design technique and the dynamic surface control approach and combining with the changing supply function technique, a fuzzy adaptive FTC scheme is developed. The main features of the proposed control approach are that it can guarantee the closed-loop system to be input-to-state practically stable, and also has the robustness to the unmodelled dynamics. Moreover, it can overcome the so-called problem of 'explosion of complexity' existing in the previous literature. Finally, simulation studies are provided to illustrate the effectiveness of the proposed approach.

  1. System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems

    DOEpatents

    Brennan, Daniel G; Marriott, Craig D; Cowgill, Joel; Wiles, Matthew A; Patton, Kenneth James

    2014-09-23

    A control system for an engine includes a first lift control module and a second lift control module. The first lift control module increases lift of M valves of the engine to a predetermined valve lift during a period before disabling or re-enabling N valves of the engine. The second lift control module decreases the lift of the M valves to a desired valve lift during a period after enabling or re-enabling the N valves of the engine, wherein N and M are integers greater than or equal to one.

  2. Control system design for a dielectric elastomer actuator: the sensory subsystem

    NASA Astrophysics Data System (ADS)

    Toth, Landy A.; Goldenberg, Andrew A.

    2002-07-01

    The development of a sensory subsystem for use in the position control of a dielectric elastomer transducer (DET) is reported. In this study, the dielectric elastomer serves as both a source of sensory feedback and as the primary actuator. Specifically, stretched film DETs are considered to test the sensory subsystem. The capacitance of the film is measured in real-time using a low-voltage carrier signal that is superimposed on the control signal for actuation of the film. The relationship between the capacitance of the DET and applied voltage is presented for operating conditions outside of the elastic-buckling mode. The inference of strain made by the sensory subsystem is compared to that measured from digital images of the DET taken during operation and close correlation between the two measurements is confirmed. The capacitance measured during operation within the elastic-buckling mode shows a surprising drop under conditions of low frequency excitation and aged carbon grease electrodes. The measured capacitance in the elastic-buckling mode shows a dramatic increase during high-frequency excitation and with newly fabricated carbon grease electrodes.

  3. Memory metal actuator

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F. (Inventor)

    1985-01-01

    A mechanical actuator can be constructed by employing a plurality of memory metal actuator elements in parallel to control the amount of actuating force. In order to facilitate direct control by digital control signals provided by a computer or the like, the actuating elements may vary in stiffness according to a binary relationship. The cooling or reset time of the actuator elements can be reduced by employing Peltier junction cooling assemblies in the actuator.

  4. Favorable locations for piezo actuators in plates with good control effectiveness and minimal change in system dynamics

    NASA Astrophysics Data System (ADS)

    Dhuri, K. D.; Seshu, P.

    2007-12-01

    Placement and sizing of piezo actuators is normally based on control effectiveness. However, retrofitting of piezoelectric actuators alters the inherent stiffness/mass properties of the parent structure. In rotating structures, the additional mass due to piezo patches contributes to the centrifugal stiffening force. The parent structure is originally designed to have a certain natural frequency spectrum in relation to the disturbance excitation. In the event of failure of the active system, the dynamics of the structure with piezos (now rendered passive) will therefore become significant. Thus it will be helpful to determine locations for mounting piezo patches based on minimal natural frequency change yet with good control authority. In this study, a finite element based procedure for plate structures is presented. Favorable locations for mounting piezos based on minimal natural frequency changes are iteratively evolved from an initial configuration wherein the whole plate is covered with piezos. A modal controllability approach has been used for finding piezo mounting locations from a good controllability perspective. The procedure is demonstrated for simply supported square, swept-back, circular and rotating rectangular plates considering the first four modes.

  5. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Arifur; Al Mamun, Abdullah; Yao, Kui

    2015-08-01

    The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results.

  6. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system.

    PubMed

    Rahman, Md Arifur; Al Mamun, Abdullah; Yao, Kui

    2015-08-01

    The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results. PMID:26329224

  7. Gear-Driven Turnbuckle Actuator

    NASA Technical Reports Server (NTRS)

    Rivera, Ricky N.

    2010-01-01

    This actuator design allows the extension and contraction of turnbuckle assemblies. It can be operated manually or remotely, and is extremely compact. It is ideal for turnbuckles that are hard to reach by conventional tools. The tool assembly design solves the problem of making accurate adjustments to the variable geometry guide vanes without having to remove and reinstall the actuator system back on the engine. The actuator does this easily by adjusting the length of the turnbuckles while they are still attached to the engine.

  8. Electrical Actuation Technology Bridging

    NASA Technical Reports Server (NTRS)

    Hammond, Monica (Compiler); Sharkey, John (Compiler)

    1993-01-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  9. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off

  10. Structural Sizing Methodology for the Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN) System

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Dorsey, John T.; Doggett, William R.

    2015-01-01

    The Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN) is a versatile long-reach robotic manipulator that is currently being tested at NASA Langley Research Center. TALISMAN is designed to be highly mass-efficient and multi-mission capable, with applications including asteroid retrieval and manipulation, in-space servicing, and astronaut and payload positioning. The manipulator uses a modular, periodic, tension-compression design that lends itself well to analytical modeling. Given the versatility of application for TALISMAN, a structural sizing methodology was developed that could rapidly assess mass and configuration sensitivities for any specified operating work space, applied loads and mission requirements. This methodology allows the systematic sizing of the key structural members of TALISMAN, which include the truss arm links, the spreaders and the tension elements. This paper summarizes the detailed analytical derivations and methodology that support the structural sizing approach and provides results from some recent TALISMAN designs developed for current and proposed mission architectures.

  11. Microelectromechanical Systems (MEMS) Actuator-Based, Polarization Reconfigurable Patch Antenna Demonstrated

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2002-01-01

    A nearly square patch antenna with a contact actuator along a radiating edge for polarization reconfiguration was demonstrated at Ka-band frequencies at the NASA Glenn Research Center. The layout of the antenna is shown in the following sketch. This antenna has the following advantages: 1) It can be dynamically reconfigured to receive and transmit a linearly polarized signal or a circularly polarized signal. This feature allows the substitution of multiple antennas on a satellite by a single antenna, thereby resulting in significant cost savings. 2) In our approach, the polarization is switched between the two states without affecting the frequency of operation; thus, valuable frequency spectrum is conserved. 3) The ability to switch polarization also helps mitigate propagation effects due to adverse weather on the performance of a satellite-to-ground link. Hence, polarization reconfigurability enhances link reliability.

  12. A Reconfiguration Scheme for Accommodating Actuator Failures in Multi-Input, Multi-Output Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Siwakosit, W.; Hess, R. A.; Bacon, Bart (Technical Monitor); Burken, John (Technical Monitor)

    2000-01-01

    A multi-input, multi-output reconfigurable flight control system design utilizing a robust controller and an adaptive filter is presented. The robust control design consists of a reduced-order, linear dynamic inversion controller with an outer-loop compensation matrix derived from Quantitative Feedback Theory (QFT). A principle feature of the scheme is placement of the adaptive filter in series with the QFT compensator thus exploiting the inherent robustness of the nominal flight control system in the presence of plant uncertainties. An example of the scheme is presented in a pilot-in-the-loop computer simulation using a simplified model of the lateral-directional dynamics of the NASA F18 High Angle of Attack Research Vehicle (HARV) that included nonlinear anti-wind up logic and actuator limitations. Prediction of handling qualities and pilot-induced oscillation tendencies in the presence of these nonlinearities is included in the example.

  13. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of

  14. Biomimetic actuator

    NASA Astrophysics Data System (ADS)

    Bouda, Vaclav; Boudova, Lea; Haluzikova, Denisa

    2005-05-01

    The aim of the presentation is to propose an alternative model of mammalian skeletal muscle function, which reflects the simplicity of nature and can be applied in engineering. Van der Waals attractive and repulsive electrostatic forces are assumed to control the design of internal structures and functions of contractile units of the muscles - sarcomere. The role of myosin heads is crucial for the higher order formation. The model of the myosin head lattice is the working model for the sarcomere contraction interpretation. The contraction is interpreted as a calcium induced phase transition of the lattice, which results in relative actin-myosin sliding and/or force generation. The model should provide the engineering science with a simple analogy to technical actuators of high performance.

  15. Fluidic self-actuating control assembly

    DOEpatents

    Grantz, Alan L.

    1979-01-01

    A fluidic self-actuating control assembly for use in a reactor wherein no external control inputs are required to actuate (scram) the system. The assembly is constructed to scram upon sensing either a sudden depressurization of reactor inlet flow or a sudden increase in core neutron flux. A fluidic control system senses abnormal flow or neutron flux transients and actuates the system, whereupon assembly coolant flow reverses, forcing absorber balls into the reactor core region.

  16. Design of high performance piezo composites actuators

    NASA Astrophysics Data System (ADS)

    Almajid, Abdulhakim A.

    Design of high performance piezo composites actuators are developed. Functionally Graded Microstructure (FGM) piezoelectric actuators are designed to reduce the stress concentration at the middle interface existed in the standard bimorph actuators while maintaining high actuation performance. The FGM piezoelectric laminates are composite materials with electroelastic properties varied through the laminate thickness. The elastic behavior of piezo-laminates actuators is developed using a 2D-elasticity model and a modified classical lamination theory (CLT). The stresses and out-of-plane displacements are obtained for standard and FGM piezoelectric bimorph plates under cylindrical bending generated by an electric field throughout the thickness of the laminate. The analytical model is developed for two different actuator geometries, a rectangular plate actuator and a disk shape actuator. The limitations of CLT are investigated against the 2D-elasticity model for the rectangular plate geometry. The analytical models based on CLT (rectangular and circular) and 2D-elasticity are compared with a model based on Finite Element Method (FEM). The experimental study consists of two FGM actuator systems, the PZT/PZT FGM system and the porous FGM system. The electroelastic properties of each layer in the FGM systems were measured and input in the analytical models to predict the FGM actuator performance. The performance of the FGM actuator is optimized by manipulating the thickness of each layer in the FGM system. The thickness of each layer in the FGM system is made to vary in a linear or non-linear manner to achieve the best performance of the FGM piezoelectric actuator. The analytical and FEM results are found to agree well with the experimental measurements for both rectangular and disk actuators. CLT solutions are found to coincide well with the elasticity solutions for high aspect ratios while the CLT solutions gave poor results compared to the 2D elasticity solutions for

  17. Development of a micro-step voltage-fed actuator with a novel stepper motor for automobile AGS systems.

    PubMed

    Rhyu, Se-Hyun; Lee, Jeong-Jong; Gu, Bon-Gwan; Choi, Byung-Dae; Lim, Jung-Hyuk

    2014-01-01

    This paper presents an improved micro-step voltage-fed actuator for an automobile active grill shutter (AGS) system. A novel structured stepper motor, which contains both the main and auxiliary teeth in the stator, is proposed for the actuator. In a normal permanent magnet (PM) motor coils are generally wound on all the stator teeth, however, in the proposed motor, the winding is only on the main teeth. Because of the absence of coils in the auxiliary teeth, the proposed stepper motor possesses the following advantages: simple structure, lighter weight, smaller volume, and less time consumption. The unique auxiliary poles in the stepper motor supply the flux path to increase the step resolution even without any coils. The characteristics of the proposed stepper motor were investigated using finite element analysis. In particular, the effect of the magnetization distribution of the PM on the motor performance was investigated during the analysis. Cogging torque, which causes noise and vibration issues, was minimized by the tooth-shape optimization. In addition, a micro-step voltage-fed algorithm was implemented for a high-resolution position control. By employing a current close to a sine wave using space vector pulse-width modulation, a high-quality current waveform with a high resolution was obtained. Finally, the proposed prototype was fabricated, and the cogging torque, back-electromotive force, and current characteristics were measured by mounting the prototype on the AGS system. Both the analysis and experimental results validate the performance improvement from the proposed motor and its possible application for the flap control of the AGS system. PMID:24803193

  18. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.

    PubMed

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot's end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H(∞) tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to

  19. Apu/hydraulic/actuator Subsystem Computer Simulation. Space Shuttle Engineering and Operation Support, Engineering Systems Analysis. [for the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Major developments are examined which have taken place to date in the analysis of the power and energy demands on the APU/Hydraulic/Actuator Subsystem for space shuttle during the entry-to-touchdown (not including rollout) flight regime. These developments are given in the form of two subroutines which were written for use with the Space Shuttle Functional Simulator. The first subroutine calculates the power and energy demand on each of the three hydraulic systems due to control surface (inboard/outboard elevons, rudder, speedbrake, and body flap) activity. The second subroutine incorporates the R. I. priority rate limiting logic which limits control surface deflection rates as a function of the number of failed hydraulic. Typical results of this analysis are included, and listings of the subroutines are presented in appendicies.

  20. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator that provides incremental linear movements to large object and holds its position against heavy loads. Electromechanical actuator cleaner and simpler, and needs less maintenance. Two principal innovative features that distinguish new actuator are use of shaft-angle resolver as source of position feedback to electronic control subsystem and antibacklash gearing arrangement.

  1. Interferometry system for out-of-plane microdisplacement measurement: application to mechanical expertise of scratch drive actuators

    NASA Astrophysics Data System (ADS)

    Jozwik, Michal; Gorecki, Christophe; Le Moal, Patrice; Joseph, Eric; Minotti, Patrice

    2003-10-01

    The material properties of silicon, as well as the planar and monolithic nature of the microstructures make electrostatic field energy conversion the most suitable driving principle on the micrometer scale. Moreover, compared with most other actuation principles, the scaling of electrostatic forces is particularly suitable for actuator downsizing. In spite of the advantages, it is still difficult to obtain appropriate driving characteristics because of silicon based actuator limitations such as small structural height, micrometer gap requirements and material limitations in the shaping process. Actuators require specific tools to verify that their mechanical properties and motions obey the designer's intent. In this paper capabilities of future direct-drive electrostatic actuators SDA (Scratch Drive Actuators) are investigated through the characterisation of their out-of-plane displacements by interferometry. The actuation involves contact interactions by using flexible polysilicon elementary actuator plate. The region of the physical contact is measured using Twyman-Green interferometer incorporated within a metallurgical microscope. The shapes and out-of-plane displacements of microstructures are extracted from interferograms by temporal phase shift method (TPS). Additionally, the results from interferometric method are compared with numerical simulations given by finite elements software - ANSYS.

  2. Dynamics simulation of pyro actuated "Ball Lock" separation system for micro-satellites to evaluate release shock

    NASA Astrophysics Data System (ADS)

    Somanath, S.; Krishnan Kutty, V. K.; Francis, E. J.

    2001-09-01

    Micro-satellite separation systems based on 'Ball Lock' release mechanism developed by ISRO for deploying microsatellites up to 150 kg mass has been successfully used in PSLV. Three varieties of such designs have been realised and qualified. They are designated as IBL230, IBL298 and IBL358. IBL stands for ISRO Ball Lock and the number stands for the interface diameter in mm. The system functions by releasing a preloaded ball locked joint between two rings by rotating a ball retainer ring using pyro assisted thrusters. This system is characterised by good joint stiffness, lightweight construction, tuneable jettisoning velocity, debris free actuation and redundancy in initiation. The system generates low release shock. To reduce the release shock further for sensitive spacecraft applications, the shock sources needs to be identified and suitable methods for attenuation to be chosen. The difficulty in identifying the contribution of shock from various sources was due to lack of complete understanding of system dynamics. Experimental verification was attempted to understand the dynamics of the release operations. Dynamic model of this system is generated for complete understanding of the release function and to quantify the impact forces that generate the shock. A dynamics model of the IBL298 system was generated. The pyro thrusters are the source of energy for release function. It is powered by ISRO standard cartridge with squib based electrical initiation. The firing of the cartridge generates pressure inside the thruster, which moves a piston and rotates the retainer ring. The pressure time relationship used for modelling is generated from the test data from a closed bomb test and used in the simulation by applying constituent equations. The system is modelled using second order dynamical equations. This model is made to capture the multiple contact losses that are likely to occur between the thruster and the lug of the ring during the movement. Magnitudes of the

  3. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  4. Evaluation of control laws and actuator locations for control systems applicable to deformable astronomical telescope mirrors

    NASA Technical Reports Server (NTRS)

    Ostroff, A. J.

    1973-01-01

    Some of the major difficulties associated with large orbiting astronomical telescopes are the cost of manufacturing the primary mirror to precise tolerances and the maintaining of diffraction-limited tolerances while in orbit. One successfully demonstrated approach for minimizing these problem areas is the technique of actively deforming the primary mirror by applying discrete forces to the rear of the mirror. A modal control technique, as applied to active optics, has previously been developed and analyzed. The modal control technique represents the plant to be controlled in terms of its eigenvalues and eigenfunctions which are estimated via numerical approximation techniques. The report includes an extension of previous work using the modal control technique and also describes an optimal feedback controller. The equations for both control laws are developed in state-space differential form and include such considerations as stability, controllability, and observability. These equations are general and allow the incorporation of various mode-analyzer designs; two design approaches are presented. The report also includes a technique for placing actuator and sensor locations at points on the mirror based upon the flexibility matrix of the uncontrolled or unobserved modes of the structure. The locations selected by this technique are used in the computer runs which are described. The results are based upon three different initial error distributions, two mode-analyzer designs, and both the modal and optimal control laws.

  5. Design and Performance Evaluation of Sensors and Actuators for Advanced Optical Systems

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2011-01-01

    Current state-of-the-art commercial sensors and actuators do not meet many of NASA s next generation spacecraft and instrument needs. Nor do they satisfy the DoD needs for satellite missions, especially micro/nano satellite missions. In an effort to develop advanced optical devices and instruments that meet mission requirements, NASA Langley recently completed construction of a new cleanroom housing equipment capable of fabricating high performance active optic and adaptive optic technologies including deformable mirrors, reconfigurable lenses (both refractive and diffractive), spectrometers, spectro-polarimeters, tunable filters and many other active optic devices. In addition to performance, these advanced optic technologies offer advantages in speed, size, weight, power consumption, and radiation tolerance. The active optic devices described in this paper rely on birefringent liquid crystal materials to alter either the phase or the polarization of the incoming light. Design considerations and performance evaluation results for various NASA applications are presented. Applications presented will include large space telescopes, optical communications, spacecraft windows, coronagraphs, and star trackers. Keywords: Photonics, Adaptive Optics, Tunable Filters, MEMs., MOEMs, Coronagraph, Star Tracker

  6. Piezoelectric actuator based phase locking system to improve the dynamics of the control scheme for a heavy ion superconducting linac

    NASA Astrophysics Data System (ADS)

    Sahu, B. K.; Ahuja, R.; Kumar, Rajesh; Suman, S. K.; Mathuria, D. S.; Rai, A.; Patra, P.; Pandey, A.; Karmakar, J.; Chowdhury, G. K.; Dutt, R. N.; Joshi, G.; Ghosh, S.; Kanjilal, D.; Roy, A.

    2015-03-01

    The superconducting heavy ion linear accelerator at Inter-University Accelerator Centre Delhi has been in operation since 2007. Initially, the superconducting niobium Quarter Wave Resonators (QWRs) in the linac were phase locked using a combination of electronic and mechanical controls which operated in fast (~10 μsec) and slow (~sec) time scales respectively. In this scheme, fast control was achieved through dynamic phase control whereas slow control of the frequency was done through the niobium tuner bellows installed at the drift tube end of the resonator and flexed using helium gas to change the resonance frequency. In order to improve the dynamics of this control system, an alternate scheme using piezoelectric actuator, instead of helium gas, to flex the same niobium bellows, has been implemented in the QWRs of the second and third accelerating modules of the linac. The piezoelectric actuator is used in closed loop along with the fast dynamic phase control scheme. The feedback loop of the piezoelectric control includes a dual control scheme - an integral control loop to arrest the slow drift, and the positive position feedback (PPF) based control loop to damp the microphonics. This control scheme has been found to arrest slow drifts in the resonator frequency more tightly along with damping of low frequency microphonics (~few tens of Hz) picked up by the resonator from its surrounding environment. This has substantially eased the load from the fast electronic control, resulting in the reduction of the radio frequency (RF) power requirement during operation. In addition, it has improved the stability of phase and amplitude of the QWRs. The details of the new scheme along with results obtained during the online run of the linac for beam acceleration are presented.

  7. Thermally actuated piston micromirror arrays

    NASA Astrophysics Data System (ADS)

    Cowan, William D.; Bright, Victor M.

    1997-07-01

    This paper reports design and characterization testing of thermally actuated piston micromirror arrays. The micromirrors were fabricated in the DARPA-sponsored MUMPs polysilicon surface micromachining process. The power averaging characteristic of thermal actuation is exploited in a novel line addressing scheme which reduces wiring for an n2 array to 2n wires. Mirror deflections were measured with a microscope laser interferometer system equipped with a vacuum chamber. Data presented includes device uniformity, frequency response, and deflection versus drive power for varied ambient pressure. Initial test results confirm that thermally actuated piston micromirrors offer several advantages over more common electrostatic designs. Thermally actuated micromirrors offer greater deflections at drive voltages compatible with CMOS circuitry. Measured thermal piston micromirror deflection versus drive voltage is nonlinear, but does not exhibit the 'snap through instability' characteristic of electrostatic devices. Operation of thermally actuated devices in rarefied ambient significantly decreases power dissipation. For a given deflection range, the power reduction facilitated by vacuum operation makes large arrays feasible. Frequency response of thermally actuated devices is limited by the ability of the device to dissipate heat, but operation at 1 kHz rates is feasible.

  8. Characterization of a smartphone size haptic rendering system based on thin-film AlN actuators on glass substrates

    NASA Astrophysics Data System (ADS)

    Bernard, F.; Casset, F.; Danel, J. S.; Chappaz, C.; Basrour, S.

    2016-08-01

    This paper presents for the first time the characterization of a smartphone-size haptic rendering system based on the friction modulation effect. According to previous work and finite element modeling, the homogeneous flexural modes are needed to get the haptic feedback effect. The device studied consists of a thin film AlN transducers deposited on an 110  ×  65 mm2 glass substrate. The transducer’s localization on the glass plate allows a transparent central area of 90  ×  49 mm2. Electrical and mechanical parameters of the system are extracted from measurement. From this extraction, the electrical impedance matching reduced the applied voltage to 17.5 V AC and the power consumption to 1.53 W at the resonance frequency of the vibrating system to reach the haptic rendering specification. Transient characterizations of the actuation highlight a delay under the dynamic tactile detection. The characterization of the AlN transducers used as sensors, including the noise rejection, the delay or the output charge amplitude allows detections with high accuracy of any variation due to external influences. Those specifications are the first step to a low-power-consumption feedback-looped system.

  9. Control System Design Implementation and Preliminary Demonstration for a Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN)

    NASA Technical Reports Server (NTRS)

    Komendera, Erik E.; Doggett, William R.; Dorsey, John T.; Debus, Thomas J.; Holub, Kris; Dougherty, Sean P.

    2015-01-01

    Satellite servicing is a high priority task for NASA and the space industry, addressing the needs of a variety of missions, and potentially lowering the overall cost of missions through refurbishment and reuse. However, the ability to service satellites is severely limited by the lack of long reach manipulation capability and inability to launch new devices due the end of the Space Transport System, or Space Shuttle Program. This paper describes the design and implementation of a control system for a Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN), including; defining the forward and inverse kinematics, endpoint velocity to motor velocity, required cable tensions, and a proportional-integral-derivative (PID) controller. The tensions and velocities necessary to maneuver and capture small and large payloads are also discussed. To demonstrate the utility of the TALISMAN for satellite servicing, this paper also describes a satellite servicing demonstration using two TALISMAN prototypes to grasp and inspect a satellite mockup. Potential avenues for improving the control system are discussed.

  10. An intelligent sensor array distributed system for vibration analysis and acoustic noise characterization of a linear switched reluctance actuator.

    PubMed

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications. PMID:22969364

  11. Aggregation of magnetic microparticles in the context of targeted therapies actuated by a magnetic resonance imaging system

    NASA Astrophysics Data System (ADS)

    Mathieu, Jean-Baptiste; Martel, Sylvain

    2009-08-01

    A study of magnetic aggregation in the context of magnetic resonance imaging (MRI) based actuated targeting is proposed. MRI systems can induce displacement forces on magnetized particles as they flow through the blood vessels. Magnetic aggregation of the particles happens when they are placed within the magnetic field of the MRI system and can greatly influence the MRI steering dynamics of magnetic particles. In this paper, a review of the different parameters that can be used to tailor the size, geometry, stiffness, and density of magnetic aggregates is proposed. Then, magnetic aggregation experiments on a suspension of Fe3O4 microparticles ranging from 0.1 to 100 μm in diameter are described. The effects of particle concentration, flow rate, and magnetic field amplitude were evaluated. Field amplitudes of 1.5 mT, 0.4 T, and 1.5 T fields were applied without any magnetic steering gradients and caused aggregates that could sometimes exceed 1 mm in length. Since magnetic aggregates can reach higher magnetophoretic velocities than individual particles, large aggregates could be exploited in larger arteries with important blood flows. A few strategies are discussed to assist in the design of MRI steering experiments by enhancing the positive effects of magnetic aggregation over its negative effects.

  12. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    PubMed Central

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications. PMID:22969364

  13. Smart composite material system with sensor, actuator, and processor functions: a model of holding and releasing a ball

    NASA Astrophysics Data System (ADS)

    Oishi, Ryutaro; Yoshida, Hitoshi; Nagai, Hideki; Xu, Ya; Jang, Byung-Koog

    2002-07-01

    A smart composite material system which has three smart functions of sensor, actuator and processor has been developed intend to apply to structure of house for controlling ambient temperature and humidity, hands of robot for holding and feeling an object, and so on. A carbon fiber reinforced plastics (CFRP) is used as matrix in the smart composite. The size of the matrix is 120mm x 24mm x 0.45mm. The CFRP plate is combined two Ni-Ti shape memory alloy (SMA) wires with an elastic rubber to construct a composite material. The composite material has a characteristic of reversible response with respect to temperature. A photo-sensor and temperature sensor are embedded in the composite material. The composite material has a processor function to combine with a simple CPU (processor) unit. For demonstrating the capability of the composite material system, a model is built up for controlling certain behaviors such as gripping and releasing a spherical object. The amplitude of gripping force is (3.0 plus/minus 0.3) N in the measurement, which is consistent with our calculation of 2.7 N. Out of a variety of functions to be executed by the CPU, it is shown to exert calculation and decision making in regard to object selection, object holding, and ON-OFF control of action by external commands.

  14. Reliable Mixed H∞ and Passivity-Based Control for Fuzzy Markovian Switching Systems With Probabilistic Time Delays and Actuator Failures.

    PubMed

    Sakthivel, Rathinasamy; Selvi, Subramaniam; Mathiyalagan, Kalidass; Shi, Peng

    2015-12-01

    This paper is concerned with the problem of reliable mixed H ∞ and passivity-based control for a class of stochastic Takagi-Sugeno (TS) fuzzy systems with Markovian switching and probabilistic time varying delays. Different from the existing works, the H∞ and passivity control problem with probabilistic occurrence of time-varying delays and actuator failures is considered in a unified framework, which is more general in some practical situations. The main aim of this paper is to design a reliable mixed H∞ and passivity-based controller such that the stochastic TS fuzzy system with Markovian switching is stochastically stable with a prescribed mixed H∞ and passivity performance level γ > 0 . Based on the Lyapunov-Krasovskii functional (LKF) involving lower and upper bound of probabilistic time delay and convex combination technique, a new set of delay-dependent sufficient condition in terms of linear matrix inequalities (LMIs) is established for obtaining the required result. Finally, a numerical example based on the modified truck-trailer model is given to demonstrate the effectiveness and applicability of the proposed design techniques. PMID:25576589

  15. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  16. Hub-mounted actuators for blade pitch collective control

    NASA Technical Reports Server (NTRS)

    Jeffery, Philip A. E. (Inventor); Luecke, Greg R. (Inventor)

    1985-01-01

    Blade collective pitch control is provided for a rotor system by rotary actuators located between adjacent blades. Each actuator is connected to the leading edge of one adjacent blade and the trailing edge of the other adjacent blade.

  17. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  18. Strain actuated aeroelastic control

    NASA Technical Reports Server (NTRS)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  19. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  20. Dual drive actuators

    NASA Technical Reports Server (NTRS)

    Packard, D. T.

    1982-01-01

    A new class of electromechanical actuators is described. These dual drive actuators were developed for the NASA-JPL Galileo Spacecraft. The dual drive actuators are fully redundant and therefore have high inherent reliability. They can be used for a variety of tasks, and they can be fabricated quickly and economically.

  1. Electro-optic architecture for servicing sensors and actuators in advanced aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.

    1989-01-01

    A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.

  2. Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system

    NASA Astrophysics Data System (ADS)

    Pawar, Prashant M.; Jung, Sung Nam

    2008-12-01

    In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades.

  3. Omnidirectional Actuator Handle

    NASA Technical Reports Server (NTRS)

    Moetteli, John B.

    1995-01-01

    Proposed actuator handle comprises two normally concentric rings, cables, and pulleys arranged such that relative displacement of rings from concentricity results in pulling of cable and consequent actuation of associated mechanism. Unlike conventional actuator handles like levers on farm implements, actuated from one or two directions only, proposed handle reached from almost any direction and actuated by pulling or pushing inner ring in any direction with respect to outer ring. Flanges installed on inner ring to cover gap between inner ring and housing to prevent clothing from being caught.

  4. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  5. Cryogenic actuator for subnanometer positioning

    NASA Astrophysics Data System (ADS)

    Bree, B. v.; Janssen, H.; Paalvast, S.; Albers, R.

    2012-09-01

    This paper discusses the development, realization, and qualification of a positioning actuator concept specifically for cryogenic environments. Originally developed for quantum physics research, the actuator also has many applications in astronomic cryogenic instruments to position optical elements with nanometer level accuracy and stability. Typical applications include the correction of thermally induced position errors of optical components after cooling down from ambient to cryogenic temperatures or sample positioning in microscopes. The actuator is nicknamed the ‘PiezoKnob’ because it is piezo based and it is compatible with the typical manipulator knob often found in standard systems for optical benches, such as linear stages or tip/tilt lens holders. Actuation with high stiffness piezo elements enables the Piezoknob to deliver forces up to 50 Newton which allows relatively stiff guiding mechanisms or large pre-loads. The PiezoKnob has been qualified at 77 Kelvin and was shown to work down to 2 Kelvin. As part of the qualification program, the custom developed driving electronics and set point profile have been fine-tuned, by combing measurements with predictions from a dynamic model, thus maximizing efficiency and minimizing power dissipation. Furthermore, the actuator holds its position without power and thanks to its mechanical layout it is absolutely insensitive to drift of the piezo elements or the driving electronics.

  6. A wirelessly programmable actuation and sensing system for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Long, James; Büyüköztürk, Oral

    2016-04-01

    Wireless sensor networks promise to deliver low cost, low power and massively distributed systems for structural health monitoring. A key component of these systems, particularly when sampling rates are high, is the capability to process data within the network. Although progress has been made towards this vision, it remains a difficult task to develop and program 'smart' wireless sensing applications. In this paper we present a system which allows data acquisition and computational tasks to be specified in Python, a high level programming language, and executed within the sensor network. Key features of this system include the ability to execute custom application code without firmware updates, to run multiple users' requests concurrently and to conserve power through adjustable sleep settings. Specific examples of sensor node tasks are given to demonstrate the features of this system in the context of structural health monitoring. The system comprises of individual firmware for nodes in the wireless sensor network, and a gateway server and web application through which users can remotely submit their requests.

  7. Systems, methods, and products for graphically illustrating and controlling a droplet actuator

    NASA Technical Reports Server (NTRS)

    Paik, Philip Y. (Inventor); Pollack, Michael G. (Inventor); Sturmer, Ryan A. (Inventor); Smith, Gregory F. (Inventor); Brafford, Keith R. (Inventor); Pamula, Vamsee K. (Inventor)

    2010-01-01

    Systems for controlling a droplet microactuator are provided. According to one embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, and a display device displaying a user interface electronically coupled to the controller, wherein the system is programmed and configured to permit a user to effect a droplet manipulation by interacting with the user interface. According to another embodiment, a system is provided and includes a processor, a display device electronically coupled to the processor, and software loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller and programmed to display an interactive map of a droplet microactuator. According to yet another embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, a display device displaying a user interface electronically coupled to the controller, and software for executing a protocol loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller.

  8. Machine Protection System for the Stepper Motor Actuated SyLMAND Mirrors

    NASA Astrophysics Data System (ADS)

    Subramanian, V. R.; Achenbach, S.; Dolton, W.; Wells, G.; Hallin, E.; Klymyshyn, D. M.; Augustin, M.

    2010-06-01

    SyLMAND, the Synchrotron Laboratory for Micro and Nano Devices at the Canadian Light Source, consists of a dedicated X-ray lithography beamline on a bend magnet port, and process support laboratories in a clean room environment. The beamline includes a double mirror system with flat, chromium-coated silicon mirrors operated at varying grazing angles of incidence (4 mrad to 45 mrad) for spectral adjustment by high energy cut-off. Each mirror can be independently moved by two stepper motors to precisely control the pitch and vertical position. We present in this paper the machine protection system implemented in the double mirror system to allow for safe operation of the two mirrors and to avoid consequences of potential stepper motor malfunction.

  9. Robust adaptive tracking control of MIMO nonlinear systems in the presence of actuator hysteresis

    NASA Astrophysics Data System (ADS)

    Fu, Guiyuan; Ou, Linlin; Zhang, Weidong

    2016-07-01

    Adaptive tracking control of a class of MIMO nonlinear system preceded by unknown hysteresis is investigated. Based on dynamic surface control, an adaptive robust control law is developed and compensators are designed to mitigate the influences of both the unknown bounded external uncertainties and the unknown Prandtl-Islinskii hysteresis. By adopting the low-pass filters, the explosion of complexity caused by tedious computation of the time derivatives of the virtual control laws is overcome. With the proposed control scheme, the closed-loop system is proved to be semi-globally ultimately bounded by the Lyapunov stability theory, and the output of the controlled system can track the desired trajectories with an arbitrarily small error. Finally, numerical simulations are given to verify the effectiveness of the proposed approach.

  10. Machine Protection System for the Stepper Motor Actuated SyLMAND Mirrors

    SciTech Connect

    Subramanian, V. R.; Dolton, W.; Wells, G.; Hallin, E.; Achenbach, S.; Klymyshyn, D. M.; Augustin, M.

    2010-06-23

    SyLMAND, the Synchrotron Laboratory for Micro and Nano Devices at the Canadian Light Source, consists of a dedicated X-ray lithography beamline on a bend magnet port, and process support laboratories in a clean room environment. The beamline includes a double mirror system with flat, chromium-coated silicon mirrors operated at varying grazing angles of incidence (4 mrad to 45 mrad) for spectral adjustment by high energy cut-off. Each mirror can be independently moved by two stepper motors to precisely control the pitch and vertical position. We present in this paper the machine protection system implemented in the double mirror system to allow for safe operation of the two mirrors and to avoid consequences of potential stepper motor malfunction.

  11. Out-of-Plane Translational PZT Bimorph Actuator with Archimedes’ Spiral Actuating Tethers

    NASA Astrophysics Data System (ADS)

    Yang, Chenye; Liu, Sanwei; Livermore, Carol

    2015-12-01

    The design, finite element analysis (FEA), and experimental characterization of a MEMS out-of-plane (vertical) translational lead-zirconate-titanate (PZT) bimorph actuator supported on Archimedes’ spiral tethers are presented. Two types of bimorph actuators with different electrode patterns (with spiral tethers half actuated or fully actuated) are designed and fabricated. Both designs are fabricated by commercial processes and are compatible with integration into more complex MEMS systems. Finite element analysis (FEA) was used to analyze and predict the displacements of both types of actuators. The deflections of both fully- actuated and half-actuated devices were measured experimentally to validate the design. At an applied voltage of 110V, the out-of-plane deflections of the actuators with half-actuated and fully-actuated tethers were measured at about 17 μm and 29 μm respectively, in good agreement with FEA predictions of 17.1 μm and 25.8 μm. The corresponding blocking forces are predicted as 10 mN and 17 mN by FEA.

  12. Asymmetrical booster guidance and control system design study. Volume 3: Space shuttle vehicle SRB actuator failure study. [space shuttle development

    NASA Technical Reports Server (NTRS)

    Williams, F. E.; Lemon, R. S.

    1974-01-01

    The investigation of single actuator failures on the space shuttle solid rocket booster required the analysis of both square pattern and diamond pattern actuator configurations. It was determined that for failures occuring near or prior to the region of maximum dynamic pressure, control gain adjustments can be used to achieve virtually nominal mid-boost vehicle behavior. A distinct worst case failure condition was established near staging that could significantly delay staging. It is recommended that the square pattern be retained as a viable alternative to the baseline diamond pattern because the staging transient is better controlled resulting in earlier staging.

  13. A miniature ultrasonic actuator-control system for plant stem diameter micro-variation measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of micro-variations in plant stem diameter are potentially useful to optimize irrigation decision support systems that are based on plant physiological responses. However, for this technology to be suitable for field applications, problems associated with stem softness and micro variati...

  14. HYBRID ACTUATORS FOR ENHANCED AUTOMATION IN D&D REMOTE SYSTEMS TASKS

    EPA Science Inventory

    Revolutionary changes in both the design and control of manipulation systems are required to enable autonomous operations in unstructured environments, as those defined for D&D tasks. Many researchers are exploring issues associated with the control of existing manipulation syste...

  15. Torsional actuation with extension-torsion composite coupling and a magnetostrictive actuator

    NASA Astrophysics Data System (ADS)

    Bothwell, Christopher M.; Chandra, Ramesh; Chopra, Inderjit

    1995-04-01

    An analytical-experimental study of using magnetostrictive actuators in conjunction with an extension-torsion coupled composite tube to actuate a rotor blade trailing-edge flap to actively control helicopter vibration is presented. Thin walled beam analysis based on Vlasov theory was used to predict the induced twist and extension in a composite tube with magnetostrictive actuation. The study achieved good correlation between theory and experiment. The Kevlar-epoxy systems showed good correlation between measured and predicted twist values.

  16. Deformable mirror based on piezoelectric actuators for the adaptive system of the Iskra-6 facility

    SciTech Connect

    Bokalo, S Yu; Zhupanov, V G; Lyakhov, D M; Mizin, P P; Smekalin, V P; Shanin, Oleg I; Shchipalkin, V I; Garanin, Sergey G; Grigorovich, S V; Koltygin, M O; Kulikov, S M; Manachinckii, A N; Ogorodnikov, A V; Smyshlyaev, S P; Sukharev, Stanislav A

    2007-08-31

    The main problem in developing high-power pulsed laser facilities (NIF, LMJ, and Iskra-6) is to provide the required quality of their output radiation. For this purpose, adaptive optical systems (AOSs) are used in all these facilities. The present research is devoted to determining the characteristics and working out the most troublesome elements of the AOS - the wavefront sensor and wide-aperture adaptive mirror for the Iskra-6 facility. (selected papers reported at the conference 'laser optics 2006')

  17. Performance study of a hydrogen powered metal hydride actuator

    NASA Astrophysics Data System (ADS)

    Mainul Hossain Bhuiya, Md; Kim, Kwang J.

    2016-04-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C-50 °C. Stress-strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress-strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future.

  18. Ball Aerospace Actuator Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Kingsbury, Lana; Lightsey, Paul; Quigley, Phil; Rutkowski, Joel; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The ambient testing characterizing step size and repeatability for the Ball Aerospace Cryogenic Nano-Positioner actuators for the AMSD (Advanced Mirror System Demonstrator) program has been completed and are presented. Current cryogenic testing is underway. Earlier cryogenic test results for a pre-cursor engineering model are presented.

  19. Redundancy of hydraulic flight control actuators

    NASA Technical Reports Server (NTRS)

    Chenoweth, C. C.; Ryder, D. R.

    1976-01-01

    The constraint of requiring airplanes to have inherent aerodynamic stability can be removed by using active control systems. The resulting airplane requires control system reliability approaching that of the basic airframe. Redundant control actuators can be used to achieve the required reliability, but create mechanization and operational problems. Of numerous candidate systems, two different approaches to solving the problems associated with redundant actuators which appear the most likely to be used in advanced airplane control systems are described.

  20. Design of feedback control systems for stable plants with saturating actuators

    NASA Technical Reports Server (NTRS)

    Kapasouris, Petros; Athans, Michael; Stein, Gunter

    1988-01-01

    A systematic control design methodology is introduced for multi-input/multi-output stable open loop plants with multiple saturations. This new methodology is a substantial improvement over previous heuristic single-input/single-output approaches. The idea is to introduce a supervisor loop so that when the references and/or disturbances are sufficiently small, the control system operates linearly as designed. For signals large enough to cause saturations, the control law is modified in such a way as to ensure stability and to preserve, to the extent possible, the behavior of the linear control design. Key benefits of the methodology are: the modified compensator never produces saturating control signals, integrators and/or slow dynamics in the compensator never windup, the directional properties of the controls are maintained, and the closed loop system has certain guaranteed stability properties. The advantages of the new design methodology are illustrated in the simulation of an academic example and the simulation of the multivariable longitudinal control of a modified model of the F-8 aircraft.

  1. Motorized actuation system to perform droplet operations on printed plastic sheets.

    PubMed

    Kong, Taejoon; Brien, Riley; Njus, Zach; Kalwa, Upender; Pandey, Santosh

    2016-05-21

    We developed an open microfluidic system to dispense and manipulate discrete droplets on planar plastic sheets. Here, a superhydrophobic material is spray-coated on commercially-available plastic sheets followed by the printing of hydrophilic symbols using an inkjet printer. The patterned plastic sheets are taped to a two-axis tilting platform, powered by stepper motors, that provides mechanical agitation for droplet transport. We demonstrate the following droplet operations: transport of droplets of different sizes, parallel transport of multiple droplets, merging and mixing of multiple droplets, dispensing of smaller droplets from a large droplet or a fluid reservoir, and one-directional transport of droplets. As a proof-of-concept, a colorimetric assay is implemented to measure the glucose concentration in sheep serum. Compared to silicon-based digital microfluidic devices, we believe that the presented system is appealing for various biological experiments because of the ease of altering design layouts of hydrophilic symbols, relatively faster turnaround time in printing plastic sheets, larger area to accommodate more tests, and lower operational costs by using off-the-shelf products. PMID:27080172

  2. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  3. An airjet actuator system for identification of the human arm joint mechanical properties.

    PubMed

    Xu YMj; Hunter, I W; Hollerbach, J M; Bennett, D J

    1991-11-01

    A system is described for determining the mechanical properties of the human arm during unconstrained posture and movement. An airjet perturbation device is attached to the wrist with a special cuff, and provides high-frequency stochastic perturbations in potentially three orthogonal directions. The airjet operates as a fluidic flip-flop utilizing the Coanda effect, and generates binary force sequences with a steady-state thrust of 4 N, a flat frequency response to 75 Hz, usable thrust to 150 Hz, and a rise time of 1 ms, when the static pressure at the nozzle inlet is 5.5 x 10(5) Pa (80 psi). These operating characteristics are adequate to identify the arm's mechanical properties efficiently and robustly. PMID:1748446

  4. Electrostatic micromembrane actuator arrays as motion generator

    NASA Astrophysics Data System (ADS)

    Wu, X. T.; Hui, J.; Young, M.; Kayatta, P.; Wong, J.; Kennith, D.; Zhe, J.; Warde, C.

    2004-05-01

    A rigid-body motion generator based on an array of micromembrane actuators is described. Unlike previous microelectromechanical systems (MEMS) techniques, the architecture employs a large number (typically greater than 1000) of micron-sized (10-200 μm) membrane actuators to simultaneously generate the displacement of a large rigid body, such as a conventional optical mirror. For optical applications, the approach provides optical design freedom of MEMS mirrors by enabling large-aperture mirrors to be driven electrostatically by MEMS actuators. The micromembrane actuator arrays have been built using a stacked architecture similar to that employed in the Multiuser MEMS Process (MUMPS), and the motion transfer from the arrayed micron-sized actuators to macro-sized components was demonstrated.

  5. MEMS Electrostatic Actuation in Conducting Biological Media

    PubMed Central

    Mukundan, Vikram; Pruitt, Beth L.

    2009-01-01

    We present design and experimental implementation of electrostatic comb-drive actuators in solutions of high conductivity relevant for biological cells. The actuators are operated in the frequency range 1–10 MHz in ionic and biological cell culture media, with ionic strengths up to 150 mMoles/L. Typical displacement is 3.5 μm at an applied peak-to-peak signal of 5V. Two different actuation schemes are presented and tested for performance at high frequency. A differential drive design is demonstrated to overcome the attenuation due to losses in parasitic impedances. The frequency dependence of the electrostatic force has been characterized in media of different ionic strengths. Circuit models for the electric double layer phenomena are used to understand and predict the actuator behavior. The actuator is integrated into a planar force sensing system to measure the stiffness of cells cultured on suspended structures. PMID:20161046

  6. Electro-optic architecture (EOA) for sensors and actuators in aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Glomb, W. L., Jr.

    1989-01-01

    Results of a study to design an optimal architecture for electro-optical sensing and control in advanced aircraft and space systems are described. The propulsion full authority digital Electronic Engine Control (EEC) was the focus for the study. The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors on the engine. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pair of optical fibers to common electro-optical interfaces. The architecture contains common, multiplex interfaces to seven sensor groups: (1) self luminous sensors; (2) high temperatures; (3) low temperatures; (4) speeds and flows; (5) vibration; (6) pressures; and (7) mechanical positions. Nine distinct fiber-optic sensor types were found to provide these sensing functions: (1) continuous wave (CW) intensity modulators; (2) time division multiplexing (TDM) digital optic codeplates; (3) time division multiplexing (TDM) analog self-referenced sensors; (4) wavelength division multiplexing (WDM) digital optic code plates; (5) wavelength division multiplexing (WDM) analog self-referenced intensity modulators; (6) analog optical spectral shifters; (7) self-luminous bodies; (8) coherent optical interferometers; and (9) remote electrical sensors. The report includes the results of a trade study including engine sensor requirements, environment, the basic sensor types, and relevant evaluation criteria. These figures of merit for the candidate interface types were calculated from the data supplied by leading manufacturers of fiber-optic sensors.

  7. Silicon Membrane Mirrors with Electrostatic Shape Actuators

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    Efforts are under way to develop deformable mirrors equipped with microscopic electrostatic actuators that would be used to maintain their reflective surfaces in precise shapes required for their intended applications. Unlike actuators that depend on properties of materials (e.g., piezoelectric and electrostrictive actuators), electrostatic actuators are effective over a wide temperature range. A mirror of the present type would be denoted a MEMSDM (for microelectromechanical system deformable mirror). The reflective surface of such a mirror would be formed on a single-crystal silicon membrane that would be attached by posts to a silicon actuator membrane that would, in turn, be attached by posts to a rigid silicon base (see figure). The actuator membrane would serve as the upper electrode of a capacitor. Multiple lower electrodes, each occupying a conveniently small fraction of the total area, would be formed on an electrically insulating oxide layer on the base, thereby defining a multiplicity of actuator pixels. The actuator membrane would be corrugated in a pattern that would impart mechanical compliance needed for relaxation of operational and fabrication-induced stresses and to minimize the degree of nonlinearity of deformations. The compliance afforded by the corrugations would also help to minimize the undesired coupling of deformations between adjacent pixels (a practical goal being to keep the influence coefficient between adjacent pixels below 10 percent).

  8. Integrated piezoelectric actuators in deep drawing tools

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Mainda, P.; Drossel, W.-G.; Kerschner, M.; Wolf, K.

    2011-04-01

    The production of car body panels are defective in succession of process fluctuations. Thus the produced car body panel can be precise or damaged. To reduce the error rate, an intelligent deep drawing tool was developed at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in cooperation with Audi and Volkswagen. Mechatronic components in a closed-loop control is the main differentiating factor between an intelligent and a conventional deep drawing tool. In correlation with sensors for process monitoring, the intelligent tool consists of piezoelectric actuators to actuate the deep drawing process. By enabling the usage of sensors and actuators at the die, the forming tool transform to a smart structure. The interface between sensors and actuators will be realized with a closed-loop control. The content of this research will present the experimental results with the piezoelectric actuator. For the analysis a production-oriented forming tool with all automotive requirements were used. The disposed actuators are monolithic multilayer actuators of the piezo injector system. In order to achieve required force, the actuators are combined in a cluster. The cluster is redundant and economical. In addition to the detailed assembly structures, this research will highlight intensive analysis with the intelligent deep drawing tool.

  9. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  10. Thermostatic Valves Containing Silicone-Oil Actuators

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard

    2009-01-01

    Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.

  11. Shape memory actuated release devices

    NASA Astrophysics Data System (ADS)

    Carpenter, Bernie F.; Clark, Cary R.; Weems, Weyman

    1996-05-01

    Spacecraft require a variety of separation and release devices to accomplish mission related functions. Current off-the-shelf devices such as pyrotechnics, gas-discharge systems, paraffin wax actuators, and other electro-mechanical devices may not be able to meet future design needs. The use of pyrotechnics on advanced lightweight spacecraft, for example, will expose fragile sensors and electronics to high shock levels and sensitive optics might be subject to contamination. Other areas of consideration include reliability, safety, and cost reduction. Shape memory alloys (SMA) are one class of actuator material that provides a solution to these design problems. SMA's utilize a thermally activated reversible phase transformation to recover their original heat treated shape (up to 8% strain) or to generate high recovery stresses (> 700 Mpa) when heated above a critical transition temperature. NiTiCu alloy actuators have been fabricated to provide synchronized, shockless separation within release mechanisms. In addition, a shape memory damper has been incorporated to absorb the elastic energy of the preload bolt and to electrically reset the device during ground testing. Direct resistive heating of the SMA actuators was accomplished using a programmable electric control system. Release times less than 40 msec have been determined using 90 watt-sec of power. Accelerometer data indicate less than 500 g's of shock were generated using a bolt preload of 1350 kgs.

  12. Status of Electrical Actuator Applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Taylor, Linda M.; Hansen, Irving G.

    1996-01-01

    An ever increasing number of actuation functions historically performed by hydraulics or pneumatics are being accomplished by electric actuation. If 'end to end' systems are considered, electric actuators (EA's) are potentially lighter and more efficient. In general, system redundancies may be more easily implemented and operationally monitored. Typically, electrical components exhibit longer mean times to failure and projected lifetime costs of EA's are potentially much lower than those of other options. EA's have certain characteristics which must be considered in their application. The actual mechanical loadings must be established, for the more easily controlled EA may be operated much closer to its full capabilities. At higher rates of motion, EA's are operating as constant power devices. Therefore, it may be possible to start a movement that can not be stopped. The incorporation of high power electronics into remote locations introduces new concerns of EMI and thermal control. It is the management of these and other characteristics that forms the engineering design challenges. Work is currently in progress on EA's for aircraft and expendable launch vehicles. These applications span from ten to 40+ horsepower. The systematics and status of these actuators will be reported along with current technical trends in this area.

  13. Comprehensive piezoceramic actuator review

    NASA Astrophysics Data System (ADS)

    Taylor, Chris J.; Washington, Gregory N.

    2002-07-01

    Piezoceramic actuation has become an area of increased interest in the past ten years. Having been used for many years as sensors in such applications as pressure transducers and smoke detectors, piezoceramics are now being used as prime movers in fuel injectors and valve lifters. In an effort to aid the engineering community, this paper will conduct a comprehensive review of several piezoceramic actuators. Classical design parameters will be derived for each actuator such as blocked force and free stroke. In addition, more esoteric entities such as mechanical efficiency and energy density will also be derived. The result will be design metrics of popular piezoceramic actuators containing vital design equations, validated with empirical data. Of the many different configurations of piezoceramic actuators, this paper will investigate the bimorph and unimorph bender. These actuator types are finding increased use in semi-active structural damping, energy harvesting and vibration control. The work in this paper will show experimental verification of various actuator types as well as theoretical derivations. In addition to unimorphs, bimorphs and stack actuators a novel type of unimorph bender, the THUNDER actuator (developed and licensed by NASA) will be included in the review.

  14. Self-actuated nuclear reactor shutdown system using induction pump to facilitate sensing of core coolant temperature

    DOEpatents

    Sievers, Robert K.; Cooper, Martin H.; Tupper, Robert B.

    1987-01-01

    A self-actuated shutdown system incorporated into a reactivity control assembly in a nuclear reactor includes pumping means for creating an auxiliary downward flow of a portion of the heated coolant exiting from the fuel assemblies disposed adjacent to the control assembly. The shutdown system includes a hollow tubular member which extends through the outlet of the control assembly top nozzle so as to define an outer annular flow channel through the top nozzle outlet separate from an inner flow channel for primary coolant flow through the control assembly. Also, a latching mechanism is disposed in an inner duct of the control assembly and is operable for holding absorber bundles in a raised position in the control assembly and for releasing them to drop them into the core of the reactor for shutdown purposes. The latching mechanism has an inner flow passage extending between and in flow communication with the absorber bundles and the inner flow channel of the top nozzle for accommodating primary coolant flow upwardly through the control assembly. Also, an outer flow passage separate from the inner flow passage extends through the latching mechanism between and in flow communication with the inner duct and the outer flow channel of the top nozzle for accommodating inflow of a portion of the heated coolant from the adjacent fuel assemblies. The latching mechanism contains a magnetic material sensitive to temperature and operable to cause mating or latching together of the components of the latching mechanism when the temperature sensed is below a known temperature and unmating or unlatching thereof when the temperature sensed is above a given temperature. The temperature sensitive magnetic material is positioned in communication with the heated coolant flow through the outer flow passage for directly sensing the temperature thereof. Finally, the pumping means includes a jet induction pump nozzle and diffuser disposed adjacent the bottom nozzle of the control assembly

  15. Robust model reference adaptive output feedback tracking for uncertain linear systems with actuator fault based on reinforced dead-zone modification.

    PubMed

    Bagherpoor, H M; Salmasi, Farzad R

    2015-07-01

    In this paper, robust model reference adaptive tracking controllers are considered for Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) linear systems containing modeling uncertainties, unknown additive disturbances and actuator fault. Two new lemmas are proposed for both SISO and MIMO, under which dead-zone modification rule is improved such that the tracking error for any reference signal tends to zero in such systems. In the conventional approach, adaption of the controller parameters is ceased inside the dead-zone region which results tracking error, while preserving the system stability. In the proposed scheme, control signal is reinforced with an additive term based on tracking error inside the dead-zone which results in full reference tracking. In addition, no Fault Detection and Diagnosis (FDD) unit is needed in the proposed approach. Closed loop system stability and zero tracking error are proved by considering a suitable Lyapunov functions candidate. It is shown that the proposed control approach can assure that all the signals of the close loop system are bounded in faulty conditions. Finally, validity and performance of the new schemes have been illustrated through numerical simulations of SISO and MIMO systems in the presence of actuator faults, modeling uncertainty and output disturbance. PMID:25744053

  16. Nuclear radiation actuated valve

    DOEpatents

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  17. Multilayer Piezoelectric Stack Actuator Characterization

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  18. Placing dynamic sensors and actuators on flexible space structures

    NASA Technical Reports Server (NTRS)

    Norris, Gregory A.; Skelton, Robert E.

    1988-01-01

    Input/Output Cost Analysis involves decompositions of the quadratic cost function into contributions from each stochastic input and each weighted output. In the past, these suboptimal cost decomposition methods of sensor and actuator selection (SAS) have been used to locate perfect (infinite bandwidth) sensor and actuators on large scale systems. This paper extends these ideas to the more practical case of imperfect actuators and sensors with dynamics of their own. NASA's SCOLE examples demonstrate that sensor and actuator dynamics affect the optimal selection and placement of sensors and actuators.

  19. Active Damping Using Distributed Anisotropic Actuators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.

    2010-01-01

    A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.

  20. Simulated dynamic response of a servovalve controlled hydraulic actuator

    NASA Technical Reports Server (NTRS)

    Babcock, Dale A.

    1990-01-01

    A general purpose math model of a servovalve controlled hydraulic actuator system is derived. The system consists of a linear actuator with unequal piston areas, a single stage servovalve, a gas charged hydraulic accumulator, and the interconnecting piping. The state equations are integrated using the Advanced Continuous Simulation Language (ACSL) for determining the system's dynamic response characteristics. Using this generalized hydraulic actuator system model, response characteristics were determined for various servovalve commands.

  1. Remote control thermal actuator

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Harrigill, W. T.; Krsek, A.

    1969-01-01

    Thermal actuator makes precise changes in the position of one object with respect to another. Expansion of metal tubes located in the actuator changes the position of the mounting block. Capacitance probe measures the change in position of the block relative to the fixed target plate.

  2. Self-actuated device

    DOEpatents

    Hecht, Samuel L.

    1984-01-01

    A self-actuated device, of particular use as a valve or an orifice for nuclear reactor fuel and blanket assemblies, in which a gas produced by a neutron induced nuclear reaction gradually accumulates as a function of neutron fluence. The gas pressure increase occasioned by such accumulation of gas is used to actuate the device.

  3. Control surface actuator

    NASA Technical Reports Server (NTRS)

    Seidel, Gerhard E. (Inventor)

    1988-01-01

    A device which actuates aircraft control surfaces is disclosed. The actuator is disposed entirely within the control surface structure. This allows the gap between the wing structural box and the control surface to be reduced. Reducing the size of the gap is especially desirable for wings with high aspect ratio, wherein the volume of the structural box is at a premium.

  4. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  5. Sensors and actuators inherent in biological species

    NASA Astrophysics Data System (ADS)

    Taya, Minoru; Stahlberg, Rainer; Li, Fanghong; Zhao, Ying Joyce

    2007-04-01

    This paper addresses examples of sensing and active mechanisms inherent in some biological species where both plants and animals cases are discussed: mechanosensors and actuators in Venus Fly Trap and cucumber tendrils, chemosensors in insects, two cases of interactions between different kingdoms, (i) cotton plant smart defense system and (ii) bird-of-paradise flower and hamming bird interaction. All these cases lead us to recognize how energy-efficient and flexible the biological sensors and actuators are. This review reveals the importance of integration of sensing and actuation functions into an autonomous system if we make biomimetic design of a set of new autonomous systems which can sense and actuate under a number of different stimuli and threats.

  6. Membrane Mirrors With Bimorph Shape Actuators

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    Deformable mirrors of a proposed type would be equipped with relatively-large-stroke microscopic piezoelectric actuators that would be used to maintain their reflective surfaces in precise shapes. These mirrors would be members of the class of MEMS-DM (for microelectromechanical system deformable mirror) devices, which offer potential for a precise optical control in adaptive-optics applications in such diverse fields as astronomy and vision science. The proposed mirror would be fabricated, in part, by use of a membrane-transfer technique. The actuator design would contain bimorph-type piezoelectric actuators.

  7. Piezoelectric multilayer actuator life test.

    PubMed

    Sherrit, Stewart; Bao, Xiaoqi; Jones, Christopher M; Aldrich, Jack B; Blodget, Chad J; Moore, James D; Carson, John W; Goullioud, Renaud

    2011-04-01

    Potential NASA optical missions such as the Space Interferometer Mission require actuators for precision positioning to accuracies of the order of nanometers. Commercially available multilayer piezoelectric stack actuators are being considered for driving these precision mirror positioning mechanisms. These mechanisms have potential mission operational requirements that exceed 5 years for one mission life. To test the feasibility of using these commercial actuators for these applications and to determine their reliability and the redundancy requirements, a life test study was undertaken. The nominal actuator requirements for the most critical actuators on the Space Interferometry Mission (SIM) in terms of number of cycles was estimated from the Modulation Optics Mechanism (MOM) and Pathlength control Optics Mechanism (POM) and these requirements were used to define the study. At a nominal drive frequency of 250 Hz, one mission life is calculated to be 40 billion cycles. In this study, a set of commercial PZT stacks configured in a potential flight actuator configuration (pre-stressed to 18 MPa and bonded in flexures) were tested for up to 100 billion cycles. Each test flexure allowed for two sets of primary and redundant stacks to be mechanically connected in series. The tests were controlled using an automated software control and data acquisition system that set up the test parameters and monitored the waveform of the stack electrical current and voltage. The samples were driven between 0 and 20 V at 2000 Hz to accelerate the life test and mimic the voltage amplitude that is expected to be applied to the stacks during operation. During the life test, 10 primary stacks were driven and 10 redundant stacks, mechanically in series with the driven stacks, were open-circuited. The stroke determined from a strain gauge, the temperature and humidity in the chamber, and the temperature of each individual stack were recorded. Other properties of the stacks, including the

  8. Position and torque tracking: series elastic actuation versus model-based-controlled hydraulic actuation.

    PubMed

    Otten, Alexander; van Vuuren, Wieke; Stienen, Arno; van Asseldonk, Edwin; Schouten, Alfred; van der Kooij, Herman

    2011-01-01

    Robotics used for diagnostic measurements on, e.g. stroke survivors, require actuators that are both stiff and compliant. Stiffness is required for identification purposes, and compliance to compensate for the robots dynamics, so that the subject can move freely while using the robot. A hydraulic actuator can act as a position (stiff) or a torque (compliant) actuator. The drawback of a hydraulic actuator is that it behaves nonlinear. This article examines two methods for controlling a nonlinear hydraulic actuator. The first method that is often applied uses an elastic element (i.e. spring) connected in series with the hydraulic actuator so that the torque can be measured as the deflection of the spring. This torque measurement is used for proportional integral control. The second method of control uses the inverse of the model of the actuator as a linearizing controller. Both methods are compared using simulation results. The controller designed for the series elastic hydraulic actuator is faster to implement, but only shows good performance for the working range for which the controller is designed due to the systems nonlinear behavior. The elastic element is a limiting factor when designing a position controller due to its low torsional stiffness. The model-based controller linearizes the nonlinear system and shows good performance when used for torque and position control. Implementing the model-based controller does require building and validating of the detailed model. PMID:22275654

  9. Elastomeric actuator devices for magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.

  10. Variable Valve Actuation

    SciTech Connect

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation is a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the

  11. Enzyme actuated bioresponsive hydrogels

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew Nolan

    Bioresponsive hydrogels are emerging with technological significance in targeted drug delivery, biosensors and regenerative medicine. Conferred with the ability to respond to specific biologically derived stimuli, the design challenge is in effectively linking the conferred biospecificity with an engineered response tailored to the needs of a particular application. Moreover, the fundamental phenomena governing the response must support an appropriate dynamic range and limit of detection. The design of these systems is inherently complicated due to the high interdependency of the governing phenomena that guide the sensing, transduction, and the actuation response of hydrogels. To investigate the dynamics of these materials, model systems may be used which seek to interrogate the system dynamics by uni-variable experimentation and limit confounding phenomena such as: polymer-solute interactions, polymer swelling dynamics and biomolecular reaction-diffusion concerns. To this end, a model system, alpha-chymotrypsin (Cht) (a protease) and a cleavable peptide-chromogen (pro-drug) covalently incorporated into a hydrogel, was investigated to understand the mechanisms of covalent loading and release by enzymatic cleavage in bio-responsive delivery systems. Using EDC and Sulfo-NHS, terminal carboxyl groups of N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide, a cleavable chromogen, were conjugated to primary amines of a hydrated poly(HEMA)-based hydrogel. Hydrogel discs were incubated in buffered Cht causing enzyme-mediated cleavage of the peptide and concomitant release of the chromophore for monitoring. To investigate substrate loading and the effects of hydrogel morphology on the system, the concentration of the amino groups (5, 10, 20, and 30 mol%) and the cross-linked density (1, 5, 7, 9 and 12 mol%) were independently varied. Loading-Release Efficiency of the chromogen was shown to exhibit a positive relation to increasing amino groups (AEMA). The release rates demonstrated a

  12. Sleeve muscle actuator and its application in transtibial prostheses.

    PubMed

    Zheng, Hao; Shen, Xiangrong

    2013-06-01

    This paper describes the concept of a new sleeve muscle actuator, and a transtibial prosthesis design powered by this novel actuator. Inspired by the functioning mechanism of the traditional pneumatic muscle actuator, the sleeve muscle actuator incorporates a cylindrical insert to the center of the pneumatic muscle, which eliminates the central portion of the internal volume. As a result of this change, the sleeve muscle provides multiple advantages over the traditional pneumatic muscle, including the increased force capacity over the entire range of motion, reduced energy consumption, and faster dynamic response. Furthermore, utilizing the load-bearing tube as the insert, the sleeve muscle enables an innovative "actuation-load bearing" structure, which has a potential of generating a highly compact actuation system suitable for prosthetic use. Utilizing this new actuator, the preliminary design of a transtibial prosthesis is presented, which is able to provide sufficient torque output and range of motion for a 75 Kg amputee user in level walking. PMID:24187262

  13. Actuator placement in prestressed adaptive trusses for vibration control

    NASA Technical Reports Server (NTRS)

    Jalihal, P.; Utku, Senol; Wada, Ben K.

    1993-01-01

    This paper describes the optimal location selection of actuators for vibration control in prestressed adaptive trusses. Since prestressed adaptive trusses are statically indeterminate, the actuators to be used for vibration control purposes must work against (1) existing static axial prestressing forces, (2) static axial forces caused by the actuation, and (3) dynamic axial forces caused by the motion of the mass. In statically determinate adaptive trusses (1) and (2) are non - existing. The actuator placement problem in statically indeterminate trusses is therefore governed by the actuation energy and the actuator strength requirements. Assuming output feedback type control of selected vibration modes in autonomous systems, a procedure is given for the placement of vibration controlling actuators in prestressed adaptive trusses.

  14. Re-shaping graphene hydrogels for effectively enhancing actuation responses.

    PubMed

    Xue, Jiangli; Hu, Chuangang; Lv, Lingxiao; Dai, Liming; Qu, Liangti

    2015-08-01

    The development of actuation-enabled materials is important for smart devices and systems. Among them, graphene with outstanding electric, thermal, and mechanical properties holds great promise as a new type of stimuli-responsive material. In this study, we developed a re-shaping strategy to construct structure-controlled graphene hydrogels for highly enhanced actuation responses. Actuators based on the re-shaped graphene hydrogel showed a much higher actuation response than that of the common graphene counterparts. On the other hand, once composited with a conducting polymer (e.g., polypyrrole), the re-shaped hybrid actuator exhibits excellent actuation behavior in response to electrochemical potential variation. Even under stimulation at a voltage as low as 0.8 V, actuators based on the re-shaped graphene-polypyrrole composite hydrogel exhibit a maximum strain response of up to 13.5%, which is the highest value reported to date for graphene-based materials. PMID:26130158

  15. Tension Stiffened and Tendon Actuated Manipulator

    NASA Technical Reports Server (NTRS)

    Doggett, William R. (Inventor); Dorsey, John T. (Inventor); Ganoe, George G. (Inventor); King, Bruce D. (Inventor); Jones, Thomas C. (Inventor); Mercer, Charles D. (Inventor); Corbin, Cole K. (Inventor)

    2015-01-01

    A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.

  16. Actuators Based on Liquid Crystalline Elastomer Materials

    PubMed Central

    Jiang, Hongrui; Li, Chensha; Huang, Xuezhen

    2013-01-01

    Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCEs materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic field, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the property of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described. PMID:23648966

  17. Nylon-muscle-actuated robotic finger

    NASA Astrophysics Data System (ADS)

    Wu, Lianjun; Jung de Andrade, Monica; Rome, Richard S.; Haines, Carter; Lima, Marcio D.; Baughman, Ray H.; Tadesse, Yonas

    2015-04-01

    This paper describes the design and experimental analysis of novel artificial muscles, made of twisted and coiled nylon fibers, for powering a biomimetic robotic hand. The design is based on circulating hot and cold water to actuate the artificial muscles and obtain fast finger movements. The actuation system consists of a spring and a coiled muscle within a compliant silicone tube. The silicone tube provides a watertight, expansible compartment within which the coiled muscle contracts when heated and expands when cooled. The fabrication and characterization of the actuating system are discussed in detail. The performance of the coiled muscle fiber in embedded conditions and the related characteristics of the actuated robotic finger are described.

  18. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  19. Another Lesson from Plants: The Forward Osmosis-Based Actuator

    PubMed Central

    Sinibaldi, Edoardo; Argiolas, Alfredo; Puleo, Gian Luigi; Mazzolai, Barbara

    2014-01-01

    Osmotic actuation is a ubiquitous plant-inspired actuation strategy that has a very low power consumption but is capable of generating effective movements in a wide variety of environmental conditions. In light of these features, we aimed to develop a novel, low-power-consumption actuator that is capable of generating suitable forces during a characteristic actuation time on the order of a few minutes. Based on the analysis of plant movements and on osmotic actuation modeling, we designed and fabricated a forward osmosis-based actuator with a typical size of 10 mm and a characteristic time of 2–5 minutes. To the best of our knowledge, this is the fastest osmotic actuator developed so far. Moreover, the achieved timescale can be compared to that of a typical plant cell, thanks to the integrated strategy that we pursued by concurrently addressing and solving design and material issues, as paradigmatically explained by the bioinspired approach. Our osmotic actuator produces forces above 20 N, while containing the power consumption (on the order of 1 mW). Furthermore, based on the agreement between model predictions and experimental observations, we also discuss the actuator performance (including power consumption, maximum force, energy density and thermodynamic efficiency) in relation to existing actuation technologies. In light of the achievements of the present study, the proposed osmotic actuator holds potential for effective exploitation in bioinspired robotics systems. PMID:25020043

  20. Handbook of actuators and edge alignment sensors

    SciTech Connect

    Krulewich, D A

    1992-11-01

    This actuator and sensor handbook was developed during a cooperative project between the NASA-Marshall Space Flight Center, the SDI-Directed Energy Program and LLNL. The common purpose of the joint effort was to develop precision actuators and sensors for the NASA initiated SpacE Laser ENE-rgy Program (SELENE). The purpose of the SELENE Program is to develop a highly cost effective segmented adaptive optics system for beaming laser power directly to spacecraft in earth orbit.

  1. Unusual and Superfast Temperature-Triggered Actuators.

    PubMed

    Jiang, Shaohua; Liu, Fangyao; Lerch, Arne; Ionov, Leonid; Agarwal, Seema

    2015-09-01

    A superfast actuator based on a bilayer fibrous mat shows folding/unfolding and the formation of 3D structures in a fraction of a second. The actuation is reversible for many cycles without losing its form and size, with unfolding at room temperature and folding above 35 °C. The system is promising for making 3D bioscaffolds, electrodes, and micro-/macroactuators. PMID:26186175

  2. Surface chemistry driven actuation in nanoporous gold

    SciTech Connect

    Biener, J; Wittstock, A; Zepeda-Ruiz, L; Biener, M M; Zielasek, V; Kramer, D; Viswanath, R N; Weissmuller, J; Baumer, M; Hamza, A V

    2008-04-14

    Although actuation in biological systems is exclusively powered by chemical energy, this concept has not been realized in man-made actuator technologies, as these rely on generating heat or electricity first. Here, we demonstrate that surface-chemistry driven actuation can be realized in high surface area materials such as nanoporous gold. For example, we achieve reversible strain amplitudes in the order of a few tenths of a percent by alternating exposure of nanoporous Au to ozone and carbon monoxide. The effect can be explained by adsorbate-induced changes of the surface stress, and can be used to convert chemical energy directly into a mechanical response thus opening the door to surface-chemistry driven actuator and sensor technologies.

  3. Electromechanically active polymer blends for actuation

    NASA Astrophysics Data System (ADS)

    Su, Ji; Ounaies, Zoubeida; Harrison, Joycelyn S.; Bar-Cohen, Yoseph; Leary, Sean P.

    2000-06-01

    Actuator mechanisms that are lightweight, durable, and efficient are needed to support telerobotic requirements, for future NASA missions. In this work, we present a series of electromechanically active polymer blends that can potentially be used as actuators for a variety of applications. This polymer blend combines an electrostrictive graft-elastomer with a ferroelectric poly (vinylidene fluoride-trifluoroethylene) polymer. Mechanical and piezoelectric properties of the blends as a function of temperature, frequency and relative composition of the two constituents in the blends have been studied. Electric field induced strain response of the blend films has also been studied as a function of the relative composition. A bending actuator device was developed incorporating the use of the polymer blend materials. The results and the possible effects of the combination of piezoelectricity and electrostriction in a material system are presented and discussed. This type of analysis may enable the design of blend compositions with optimal strain, mechanical, and dielectric properties for specific actuator applications.

  4. Rotary Series Elastic Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2013-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  5. Rotary series elastic actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2012-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  6. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  7. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  8. Robust reliable guaranteed cost piecewise fuzzy control for discrete-time nonlinear systems with time-varying delay and actuator failures

    NASA Astrophysics Data System (ADS)

    Kchaou, Mourad; Souissi, Mansour; Toumi, Ahmed

    2011-07-01

    In this paper, we investigate the delay-dependent robust reliable guaranteed cost (RRGC) fuzzy control problem for discrete-time nonlinear systems with time-varying delays. The delays may simultaneously appear in the state and in the control input. Also, both parametric uncertainties and control component failure may exist. Through Takagi-Sugeno fuzzy modelling of nonlinear delayed-systems and based on an appropriate piecewise Lyapunov-Krasovskii functional, a piecewise fuzzy controller is designed. Sufficient conditions for the existence of a RRGC controller are derived in terms of linear matrix inequalities (LMIs). Furthermore, a suboptimal RRGC fuzzy controller is given by means of a convex optimization procedure with LMI constraints which can not only guarantee the stability of the closed-loop fuzzy system, but also provides an optimized upper bound of the given cost performance despite possible actuator faults. Two numerical examples are presented in this paper to illustrate the feasibility of the theoretical developments.

  9. Hydraulically amplified PZT mems actuator

    DOEpatents

    Miles, Robin R.

    2004-11-02

    A hydraulically amplified microelectromechanical systems actuator. A piece of piezoelectric material or stacked piezo bimorph is bonded or deposited as a thin film. The piece is operatively connected to a primary membrane. A reservoir is operatively connected to the primary membrane. The reservoir contains a fluid. A membrane is operatively connected to the reservoir. In operation, energizing the piezoelectric material causing the piezoelectric material to bow. Bowing of the piezoelectric material causes movement of the primary membrane. Movement of the primary membrane results in a force in being transmitted to the liquid in the reservoir. The force in the liquid causes movement of the membrane. Movement of the membrane results in an operating actuator.

  10. Laser Initiated Actuator study

    SciTech Connect

    Watson, B.

    1991-06-27

    The program task was to design and study a laser initiated actuator. The design of the actuator is described, it being comprised of the fiber and body subassemblies. The energy source for all experiments was a Spectra Diode 2200-H2 laser diode. The diode is directly coupled to a 100 micron core, 0.3 numerical aperture fiber optic terminated with an SMA connector. The successful testing results are described and recommendations are made.

  11. Inertial Linear Actuators

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren

    1995-01-01

    Inertial linear actuators developed to suppress residual accelerations of nominally stationary or steadily moving platforms. Function like long-stroke version of voice coil in conventional loudspeaker, with superimposed linear variable-differential transformer. Basic concept also applicable to suppression of vibrations of terrestrial platforms. For example, laboratory table equipped with such actuators plus suitable vibration sensors and control circuits made to vibrate much less in presence of seismic, vehicular, and other environmental vibrational disturbances.

  12. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  13. Actuators for a space manipulator

    NASA Technical Reports Server (NTRS)

    Chun, W.; Brunson, P.

    1987-01-01

    The robotic manipulator can be decomposed into distinct subsytems. One particular area of interest of mechanical subsystems is electromechanical actuators (or drives). A drive is defined as a motor with an appropriate transmission. An overview is given of existing, as well as state-of-the-art drive systems. The scope is limited to space applications. A design philosophy and adequate requirements are the initial steps in designing a space-qualified actuator. The focus is on the d-c motor in conjunction with several types of transmissions (harmonic, tendon, traction, and gear systems). The various transmissions will be evaluated and key performance parameters will be addressed in detail. Included in the assessment is a shuttle RMS joint and a MSFC drive of the Prototype Manipulator Arm. Compound joints are also investigated. Space imposes a set of requirements for designing a high-performance drive assembly. Its inaccessibility and cryogenic conditions warrant special considerations. Some guidelines concerning these conditions are present. The goal is to gain a better understanding in designing a space actuator.

  14. Design and application of shape memory actuators

    NASA Astrophysics Data System (ADS)

    Mertmann, M.; Vergani, G.

    2008-05-01

    The use of shape memory alloys in actuators allows the development of robust, simple and lightweight elements for application in a multitude of different industries. Over the years, the intermetallic compound Nickel-Titanium (NiTi or Nitinol) together with its ternary and quaternary derivates has gained general acceptance as a standard alloy. Even though as many as 99% of all shape memory actuator applications make use of Nitinol there are certain properties of this alloy system which require further research in order to find improvements and new markets: • Lack of higher transformation temperatures in the available alloys in order to open the field of automotive applications (Mf temperature > 80 °C) • Non-linearity in the electrical resistivity in order to improve the controllability of the actuator, • Wide hysteresis in the temperature-vs.-strain behaviour, which has a signi-ficant effect on both, the dynamics of the actuator and its controllability. Hence, there is a constant strive in the field towards an improvement of the related properties. However, these improvements are not always just alloy composition related. There is also a tremendous potential in the thermomechanical treatment of the material and in the design of the actuator. Significant improvement steps are already possible if the usage of the existent materials is optimized for the projected application and if the actuator system is designed in the most efficient way. This paper provides an overview about existent designs, applications and alloys for use in actuators, as well as examples of new shape memory actuator application with improved performance. It also gives an overview about general design rules and reflects about the strengths of the material and the related opportunities for its application.

  15. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  16. Tubular dielectric elastomer actuator for active fluidic control

    NASA Astrophysics Data System (ADS)

    McCoul, David; Pei, Qibing

    2015-10-01

    We report a novel low-profile, biomimetic dielectric elastomer tubular actuator capable of actively controlling hydraulic flow. The tubular actuator has been established as a reliable tunable valve, pinching a secondary silicone tube completely shut in the absence of a fluidic pressure bias or voltage, offering a high degree of resistance against fluidic flow, and able to open and completely remove this resistance to flow with an applied low power actuation voltage. The system demonstrates a rise in pressure of ∼3.0 kPa when the dielectric elastomer valve is in the passive, unactuated state, and there is a quadratic fall in this pressure with increasing actuation voltage, until ∼0 kPa is reached at 2.4 kV. The device is reliable for at least 2000 actuation cycles for voltages at or below 2.2 kV. Furthermore, modeling of the actuator and fluidic system yields results consistent with the observed experimental dependence of intrasystem pressure on input flow rate, actuator prestretch, and actuation voltage. To our knowledge, this is the first actuator of its type that can control fluid flow by directly actuating the walls of a tube. Potential applications may include an implantable artificial sphincter, part of a peristaltic pump, or a computerized valve for fluidic or pneumatic control.

  17. Efficient Hybrid Actuation Using Solid-State Actuators

    NASA Technical Reports Server (NTRS)

    Leo, Donald J.; Cudney, Harley H.; Horner, Garnett (Technical Monitor)

    2001-01-01

    Piezohydraulic actuation is the use of fluid to rectify the motion of a piezoelectric actuator for the purpose of overcoming the small stroke limitations of the material. In this work we study a closed piezohydraulic circuit that utilizes active valves to rectify the motion of a hydraulic end affector. A linear, lumped parameter model of the system is developed and correlated with experiments. Results demonstrate that the model accurately predicts the filtering of the piezoelectric motion caused by hydraulic compliance. Accurate results are also obtained for predicting the unidirectional motion of the cylinder when the active valves are phased with respect to the piezoelectric actuator. A time delay associated with the mechanical response of the valves is incorporated into the model to reflect the finite time required to open or close the valves. This time delay is found to be the primary limiting factor in achieving higher speed and greater power from the piezohydraulic unit. Experiments on the piezohydraulic unit demonstrate that blocked forces on the order of 100 N and unloaded velocities of 180 micrometers/sec are achieved.

  18. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix C: Battery report for the liquid rocket booster TVC actuators

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The actuators for control of engine valves and gimbals for a booster require 165 kW or more peak power at 270 volts direct current (VDC) during the 2 or 3 minutes of first stage ascent; other booster devices require much less power at 28 VDC. It is desired that a booster supply its own electrical power and satisfy redundancy requirements of the Solid Rocket Booster Shuttle, when applicable. The power of a Liquid Rocket Booster is therefore provided by two subsystems: Actuator Battery Power (270 VDC) Subsystem for the engine actuators, and Electrical Power and Distribution (28 VDC) Subsystem, to power everything else. Boosters will receive no electrical power from Orbiter, only commands and data, according to current plans. It was concluded that nine 30 volt silver-zinc batteries-in-series be used to provide the 270 volt, 37 kW average (165 kW peak).

  19. Fluid film force control in lubricated journal bearings by means of a travelling wave generated with a piezoelectric actuators' system

    NASA Astrophysics Data System (ADS)

    Iula, Antonio; Lamberti, Nicola; Savoia, Alessandro; Caliano, Giosue

    2012-05-01

    In this work an experimental evaluation of the possiblity to influence and control the fluid film forces in the gap of a lubricated journal bearing by means of a rotating travelling wave is carried out. The travellig wave is generated by two power actuators opportunely positioned on the outer surface of the bearing and electrically driven with a phase shift of 90°. Each transducer is designed to work at the natural frequency of the radial nonaxisymmetrical mode 0-5 (23.6 kHz). Experimental results show that the travelling wave is capable to control the motion of an oil drop on the inner surface of the bearing and that it is capable to put in rotation a rotor layed on the drop oil via the viscous forces in the oil drop itself.

  20. Actuation and transduction of resonant vibrations in GaAs/AlGaAs-based nanoelectromechanical systems containing two-dimensional electron gas

    SciTech Connect

    Shevyrin, A. A. Pogosov, A. G.; Bakarov, A. K.; Rodyakina, E. E.; Shklyaev, A. A.; Budantsev, M. V.; Toropov, A. I.

    2015-05-04

    Driven vibrations of a nanoelectromechanical system based on GaAs/AlGaAs heterostructure containing two-dimensional electron gas are experimentally investigated. The system represents a conductive cantilever with the free end surrounded by a side gate. We show that out-of-plane flexural vibrations of the cantilever are driven when alternating signal biased by a dc voltage is applied to the in-plane side gate. We demonstrate that these vibrations can be on-chip linearly transduced into a low-frequency electrical signal using the heterodyne down-mixing method. The obtained data indicate that the dominant physical mechanism of the vibrations actuation is capacitive interaction between the cantilever and the gate.

  1. Geographic information systems supporting the solution of emergencies and their connection to self-actuated notification systems

    NASA Astrophysics Data System (ADS)

    Reil, Adam; Bureš, Luděk; Roub, Radek; Hejduk, Tomáš; Novák, Pavel

    2015-04-01

    Geographic information systems represent an important tool in supporting the operation and crisis management of Integrated Rescue System (IRS) branches. The technology of geographic information systems makes it possible to localize specific information directly in the concerned area. A basic pre-requisite for efficient IRS functioning is the identification of so-called critical points in the given territory. The next step is the identification of endangered persons and properties. In these issues, emphasis is put particularly on the time scale, which represents a key aspect of the crisis management. In case of flood danger, the Early Flood Warning Service would inform flood authorities responsible for warning the population, declaring flood activity degrees, IRS activation and organization. For their decision-making, the flood authorities need data on level heights, current discharge rates and inundation areas. The information about discharge rates and height levels can be obtained from the network of recording stream gauge stations operated by the Czech Hydrometeorological Institute. Inundation areas are plotted in the flood control plans of municipalities, which however contain default information about areas flooded at the N-year flood discharges Q5, Q20 and Q100. Because of large intervals, these three scenarios are insufficient for the crisis management of larger communities and towns. Therefore, a data store was suggested that would include maps showing flow rate fields and inundation areas for a finer scale of flood discharges at regular intervals. The scale should be based on the N-year flood discharges with a possibility of extension if required by flood authorities. The discharge interval size should be selected with regard to the dynamics of level height change in the given watercourse. The inundation areas will be then established by way of calculation using the MIKE 21C 2D hydrodynamic model. The novel approach was applied recently in the cadastral

  2. Control of a flexible planar truss using proof mass actuators

    NASA Technical Reports Server (NTRS)

    Minas, Constantinos; Garcia, Ephrahim; Inman, Daniel J.

    1989-01-01

    A flexible structure was modeled and actively controlled by using a single space realizable linear proof mass actuator. The NASA/UVA/UB actuator was attached to a flexible planar truss structure at an optimal location and it was considered as both passive and active device. The placement of the actuator was specified by examining the eigenvalues of the modified model that included the actuator dynamics, and the frequency response functions of the modified system. The electronic stiffness of the actuator was specified, such that the proof mass actuator system was tuned to the fourth structural mode of the truss by using traditional vibration absorber design. The active control law was limited to velocity feedback by integrating of the signals of two accelerometers attached to the structure. The two lower modes of the closed-loop structure were placed further in the LHS of the complex plane. The theoretically predicted passive and active control law was experimentally verified.

  3. Large stroke actuators for adaptive optics

    NASA Astrophysics Data System (ADS)

    Fernández, B.; Kubby, J. A.

    2006-01-01

    In this paper we review the use of a 3-dimensional MEMS fabrication process to prototype long stroke (>10 μm) actuators as are required for use in future adaptive optics systems in astronomy and vision science. The Electrochemical Fabrication (EFAB TM) process that was used creates metal micro-structures by electroplating multiple, independently patterned layers. The process has the design freedom of rapid prototyping where multiple patterned layers are stacked to build structures with virtually any desired geometry, but in contrast has much greater precision, the capability for batch fabrication and provides parts in engineering materials such as nickel. The design freedom enabled by this process has been used to make both parallel plate and comb drive actuator deformable mirror designs that can have large vertical heights of up to 1 mm. As the thickness of the sacrificial layers used to release the actuator is specified by the designer, rather than by constraints of the fabrication process, the design of large-stroke actuators is straightforward and does not require any new process development. Since the number of material layers in the EFAB TM process is also specified by the designer it has been possible to gang multiple parallel plate actuators together to decrease the voltage required for long-stroke actuators.

  4. Nanotube Nano-actuators

    NASA Astrophysics Data System (ADS)

    Jennifer, Sippel; Arnason, Steve; Baughman, Ray; Rinzler, Andrew

    2002-03-01

    In 1999 it was found that a thin sheet of single wall carbon nanotubes (buckypaper) can act as an electromechanical transducer (an actuator), converting an applied voltage into a dimensional change, with the potential to do work.[1] The mechanism proposed for the effect is quite fundamental, relying on modification of the nearest neighbor carbon-carbon distance due to charge injected into the nanotube pi-orbital system. Because the experiment relied on buckypaper, which possesses nanoscale pores (where gas generation might also account for dimensional changes), as well as creep (where ropes sliding against one another make it difficult to determine the magnitude of the effect in the fundamental unit), the demonstration was less than ideal. Using an atomic force microscope for detection, we have now performed corresponding measurements on individual ropes of nanotubes tethered across micromachined trenches in silicon substrates. The experiment and results will be described. 1. R. H. Baughman, C. X. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D DeRossi, A. G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Science, 284, 1340 (1999).

  5. Experimental flutter and buffeting suppression using piezoelectric actuators and sensors

    NASA Astrophysics Data System (ADS)

    Suleman, Afzal; Costa, Pedro A.; Moniz, Paulo A.

    1999-07-01

    This experimental investigation focuses on the application of piezoelectric sensors/actuators for wing flutter and vertical tail buffet suppression. The test article consists of a foam airfoil shell enveloped around an aluminum plate support structure with bonded piezoelectric actuators and sensors. Wind-tunnel test results for the wind are presented for the open- and closed-loop systems. Piezoelectric actuators were effective in suppressing flutter and the wake-induced buffet vibration over the range of parameters investigated.

  6. Design of a Power-Assisted Spacesuit Glove Actuator

    NASA Technical Reports Server (NTRS)

    Howard, Russell D.

    2000-01-01

    This paper presents the details of the design and implementation of an electromechanical power-assisted spacesuit glove actuator. The project was a joint effort by the University of Maryland's Space Systems Laboratory and ILC Dover, Inc., and involved innovative approaches to power augmentation and compact actuator packaging. The first actuator built validated several basic design concepts, and the second demonstrated improved performance and met many of the goals for flight qualification of the technology.

  7. Digital Actuator Technology

    SciTech Connect

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  8. Larger-Stroke Piezoelectrically Actuated Microvalve

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    A proposed normally-closed microvalve would contain a piezoelectric bending actuator instead of a piezoelectric linear actuator like that of the microvalve described in the preceding article. Whereas the stroke of the linear actuator of the preceding article would be limited to approximately equal to 6 micrometers, the stroke of the proposed bending actuator would lie in the approximate range of 10 to 15 micrometers-large enough to enable the microvalve to handle a variety of liquids containing suspended particles having sizes up to 10 m. Such particulate-laden liquids occur in a variety of microfluidic systems, one example being a system that sorts cells or large biomolecules for analysis. In comparison with the linear actuator of the preceding article, the bending actuator would be smaller and less massive. The combination of increased stroke, smaller mass, and smaller volume would be obtained at the cost of decreased actuation force: The proposed actuator would generate a force in the approximate range of 1 to 4 N, the exact amount depending on operating conditions and details of design. This level of actuation force would be too low to enable the valve to handle a fluid at the high pressure level mentioned in the preceding article. The proposal encompasses two alternative designs one featuring a miniature piezoelectric bimorph actuator and one featuring a thick-film unimorph piezoelectric actuator (see figure). In either version, the valve would consume a power of only 0.01 W when actuated at a frequency of 100 Hz. Also, in either version, it would be necessary to attach a soft elastomeric sealing ring to the valve seat so that any particles that settle on the seat would be pushed deep into the elastomeric material to prevent or reduce leakage. The overall dimensions of the bimorph version would be 7 by 7 by 1 mm. The actuator in this version would generate a force of 1 N and a stroke of 10 m at an applied potential of 150 V. The actuation force would be

  9. Effect of actuation sequence on flow rates of peristaltic micropumps with PZT actuators.

    PubMed

    Jang, Ling-Sheng; Shu, Kuan; Yu, Yung-Chiang; Li, Yuan-Jie; Chen, Chiun-Hsun

    2009-02-01

    Many biomedical applications require the administration of drugs at a precise and preferably programmable rate. The flow rate generated by the peristaltic micropumps used in such applications depends on the actuation sequence. Accordingly, the current study performs an analytical and experimental investigation to determine the correlation between the dynamic response of the diaphragms in the micropump and the actuation sequence. A simple analytical model of a peristaltic micropump is established to analyze the shift in the resonant frequency of the diaphragms caused by the viscous damping effect. The analytical results show that this damping effect increases as the oscillation frequency of the diaphragm increases. A peristaltic micropump with three piezoelectric actuators is fabricated on a silicon substrate and is actuated using 2-, 3-, 4- and 6-phase actuation sequences via a driving system comprising a microprocessor and a phase controller. A series of experiments is conducted using de-ionized water as the working fluid to determine the diaphragm displacement and the flow rates induced by each of the different actuation sequences under phase frequencies ranging from 50 Hz to 1 MHz. The results show that the damping effect of actuation sequences influences diaphragm resonant frequency, which in turn affects the profiles of flow rates. PMID:18821016

  10. Miniaturized auto-focusing VCM actuator with zero holding current.

    PubMed

    Liu, Chien-Sheng; Lin, Psang Dain

    2009-06-01

    In keeping with consumers' preferences for electronic products of ever smaller size and enhanced functionality, it is necessary to reduce the profile of the auto-focusing actuators used in camera phones without sacrificing their performance. Accordingly, this study modifies the Voice Coil Motor (VCM) actuator proposed by the current group in a previous study (C. S. Liu and P. D. Lin, Opt. Express, 16, 2533-2540, 2008) to accomplish a miniaturized auto-focusing actuator for cell phone camera modules with minimal power consumption. The proposed device comprises a VCM, a closed-loop position control system, a magnetoconductive plate, and a lens support structure to drive the lens to the optimal focusing position. The experimental results show that the actuator has a zero holding current when maintaining the lens in the specified focusing position. Overall, it is shown that compared to existing VCM actuators, the proposed actuator has bo a higher power efficiency and an improved positioning repeatability. PMID:19506625

  11. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2007-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  12. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2006-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  13. Shape memory alloy actuated adaptive exhaust nozzle for jet engine

    NASA Technical Reports Server (NTRS)

    Song, Gangbing (Inventor); Ma, Ning (Inventor)

    2009-01-01

    The proposed adaptive exhaust nozzle features an innovative use of the shape memory alloy (SMA) actuators for actively control of the opening area of the exhaust nozzle for jet engines. The SMA actuators remotely control the opening area of the exhaust nozzle through a set of mechanism. An important advantage of using SMA actuators is the reduction of weight of the actuator system for variable area exhaust nozzle. Another advantage is that the SMA actuator can be activated using the heat from the exhaust and eliminate the need of other energy source. A prototype has been designed and fabricated. The functionality of the proposed SMA actuated adaptive exhaust nozzle is verified in the open-loop tests.

  14. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2004-11-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  15. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2005-01-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  16. Low-Stroke Actuation for a Serial Robot

    NASA Technical Reports Server (NTRS)

    Gao, Dalong (Inventor); Ihrke, Chris A. (Inventor)

    2014-01-01

    A serial robot includes a base, first and second segments, a proximal joint joining the base to the first segment, and a distal joint. The distal joint that joins the segments is serially arranged and distal with respect to the proximal joint. The robot includes first and second actuators. A first tendon extends from the first actuator to the proximal joint and is selectively moveable via the first actuator. A second tendon extends from the second actuator to the distal joint and is selectively moveable via the second actuator. The robot includes a transmission having at least one gear element which assists rotation of the distal joint when an input force is applied to the proximal and/or distal joints by the first and/or second actuators. A robotic hand having the above robot is also disclosed, as is a robotic system having a torso, arm, and the above-described hand.

  17. Stable electroosmotically driven actuators

    NASA Astrophysics Data System (ADS)

    Sritharan, Deepa; Motsebo, Mylene; Tumbic, Julia; Smela, Elisabeth

    2013-04-01

    We have previously presented "nastic" actuators based on electroosmotic (EO) pumping of fluid in microchannels using high electric fields for potential application in soft robotics. In this work we address two challenges facing this technology: applying EO to meso-scale devices and the stability of the pumping fluid. The hydraulic pressure achieved by EO increases with as 1/d2, where d is the depth of the microchannel, but the flow rate (which determines the stroke and the speed) is proportional to nd, where n is the number of channels. Therefore to get high force and high stroke the device requires a large number of narrow channels, which is not readily achievable using standard microfabrication techniques. Furthermore, for soft robotics the structure must be soft. In this work we present a method of fabricating a three-dimensional porous elastomer to serve as the array of channels based on a sacrificial sugar scaffold. We demonstrate the concept by fabricating small pumps. The flexible devices were made from polydimethylsiloxane (PDMS) and comprise the 3D porous elastomer flanked on either side by reservoirs containing electrodes. The second issue addressed here involves the pumping fluid. Typically, water is used for EO, but water undergoes electrolysis even at low voltages. Since EO takes place at kV, these systems must be open to release the gases. We have recently reported that propylene carbonate (PC) is pumped at a comparable rate as water and is also stable for over 30 min at 8 kV. Here we show that PC is, however, degraded by moisture, so future EO systems must prevent water from reaching the PC.

  18. Scalability of Localized Arc Filament Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2008-01-01

    Temporal flow control of a jet has been widely studied in the past to enhance jet mixing or reduce jet noise. Most of this research, however, has been done using small diameter low Reynolds number jets that often have little resemblance to the much larger jets common in real world applications because the flow actuators available lacked either the power or bandwidth to sufficiently impact these larger higher energy jets. The Localized Arc Filament Plasma Actuators (LAFPA), developed at the Ohio State University (OSU), have demonstrated the ability to impact a small high speed jet in experiments conducted at OSU and the power to perturb a larger high Reynolds number jet in experiments conducted at the NASA Glenn Research Center. However, the response measured in the large-scale experiments was significantly reduced for the same number of actuators compared to the jet response found in the small-scale experiments. A computational study has been initiated to simulate the LAFPA system with additional actuators on a large-scale jet to determine the number of actuators required to achieve the same desired response for a given jet diameter. Central to this computational study is a model for the LAFPA that both accurately represents the physics of the actuator and can be implemented into a computational fluid dynamics solver. One possible model, based on pressure waves created by the rapid localized heating that occurs at the actuator, is investigated using simplified axisymmetric simulations. The results of these simulations will be used to determine the validity of the model before more realistic and time consuming three-dimensional simulations are conducted to ultimately determine the scalability of the LAFPA system.

  19. Elastomeric contractile actuators for hand rehabilitation splints

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Mannini, Andrea; De Rossi, Danilo

    2008-03-01

    The significant electromechanical performances typically shown by dielectric elastomer actuators make this polymer technology particularly attractive for possible active orthoses for rehabilitation. Folded contractile actuators made of dielectric elastomers were recently described as a simple configuration, suitable to easily implement linear contractile devices. This paper describes an application of folded actuators for so-called hand splints: they consist of orthotic systems for hand rehabilitation. The dynamic versions of the state-of-the-art splints typically include elastic bands, which exert a passive elastic resistance to voluntary elongations of one or more fingers. In order to provide such splints with the possibility of electrically modulating the compliance of the resistive elements, the substitution of the passive elastic bands with the contractile actuators is here described. The electrical activation of the actuators is used to vary the compliance of the system; this enables modulations of the force that acts as an antagonist to voluntary finger movements, according to programmable rehabilitation exercises. The paper reports results obtained from the first prototype implementations of such a type of system.

  20. Tetherless thermobiochemically actuated microgrippers

    PubMed Central

    Leong, Timothy G.; Randall, Christina L.; Benson, Bryan R.; Bassik, Noy; Stern, George M.; Gracias, David H.

    2009-01-01

    We demonstrate mass-producible, tetherless microgrippers that can be remotely triggered by temperature and chemicals under biologically relevant conditions. The microgrippers use a self-contained actuation response, obviating the need for external tethers in operation. The grippers can be actuated en masse, even while spatially separated. We used the microgrippers to perform diverse functions, such as picking up a bead on a substrate and the removal of cells from tissue embedded at the end of a capillary (an in vitro biopsy). PMID:19139411

  1. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  2. Hydraulic involute cam actuator

    DOEpatents

    Love, Lonnie J.; Lind, Randall F.

    2011-11-01

    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  3. Evaluation of New Actuators in a Buffet Loads Environment

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Wieseman, Carol D.; Bent, Aaron A.; Pizzochero, Alessandro E.

    2001-01-01

    Ongoing research in buffet loads alleviation has provided an application for recently developed piezoelectric actuators capable of higher force output than previously existing actuators could provide and that can be embedded within the vehicle s structure. These new actuators, having interdigitated electrodes, promise increased performance over previous piezoelectric actuators that were tested on the fin of an F/A-18 aircraft. Two new actuators being considered by the United States Air Force to reduce buffet loads on high performance aircraft were embedded into the fins of an F/A-18 wind-tunnel model and tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center. The purpose of this test program, called ENABLE (Evaluation of New Actuators in a Buffet Loads Environment), was to examine the performance of the new actuators in alleviating fin buffeting, leading to a systems -level study of a fin buffet loads alleviation system architecture being considered by the USAF, Boeing, and NASA for implementation on high performance aircraft. During this windtunnel test, the two actuators performed superbly in alleviating fin buffeting. Peak values of the power spectral density functions for tip acceleration were reduced by as much as 85%. RMS values of tip acceleration were reduced by as much as 40% while using less than 50% of the actuators capacity. Details of the wind-tunnel model and results of the wind-tunnel test are provided herein.

  4. Evaluation of new actuators in a buffet loads environment

    NASA Astrophysics Data System (ADS)

    Moses, Robert W.; Wieseman, Carol D.; Bent, Aaron A.; Pizzochero, Alessandro E.

    2001-06-01

    Ongoing research in buffet loads alleviation has provided an application for recently developed piezoelectric actuators capable of higher force output than previously existing actuators could provide and that can be embedded within the vehicle's structure. These new actuators, having interdigitated electrodes, promise increased performance over previous piezoelectric actuators that were tested on the fin of an F/A-18 aircraft. Two new actuators being considered by the United States Air Force to reduce buffet loads on high performance aircraft were embedded into the fins of an F/A-18 wind-tunnel model and tested in the transonic Dynamics Tunnel at the NASA Langley Research Center. The purpose of this test program, called ENABLE (Evaluation of New Actuators in a Buffet Loads Environment), was to examine the performance of the new actuators in alleviating fin buffeting, leading to a systems-level study of a fin buffet loads alleviation system architecture being considered by the USAF, Boeing, and NASA for implementation on high performance aircraft. During this wind-tunnel test, the two actuators performed superbly in alleviating fin buffeting. Peak values of the power spectral density functions for tip acceleration were reduced by as much as 85%. RMS values of tip acceleration were reduced by as much as 40% while using less than 50% of the actuator's capacity. Details of the wind-tunnel model and results of the wind- tunnel test are provided herein.

  5. Design, dynamics and control of an Adaptive Singularity-Free Control Moment Gyroscope actuator for microspacecraft Attitude Determination and Control System

    NASA Astrophysics Data System (ADS)

    Viswanathan, Sasi Prabhakaran

    how they lead to CMG singularities, are described. General ideas on control of the angular momentum of the spacecraft using changes in the momentum variables of a finite number of ASCMGs, are provided. Control schemes for agile and precise attitude maneuvers using ASCMG cluster in the absence of external torques and when the total angular momentum of the spacecraft is zero, is presented for both constant speed and variable speed modes. A Geometric Variational Integrator (GVI) that preserves the geometry of the state space and the conserved norm of the total angular momentum is constructed for numerical simulation and microcontroller implementation of the control scheme. The GVI is obtained by discretizing the Lagrangian of the rnultibody systems, in which the rigid body attitude is globally represented on the Lie group of rigid body rotations. Hardware and software architecture of a novel spacecraft Attitude Determination and Control System (ADCS) based on commercial smartphones and a bare minimum hardware prototype of an ASCMG using low cost COTS components is also described. A lightweight, dynamics model-free Variational Attitude Estimator (VAE) suitable for smartphone implementation is employed for attitude determination and the attitude control is performed by ASCMG actuators. The VAE scheme presented here is implemented and validated onboard an Unmanned Aerial Vehicle (UAV) platform and the real time performance is analyzed. On-board sensing, data acquisition, data uplink/downlink, state estimation and real-time feedback control objectives can be performed using this novel spacecraft ADCS. The mechatronics realization of the attitude determination through variational attitude estimation scheme and control implementation using ASCMG actuators are presented here. Experimental results of the attitude estimation (filtering) scheme using smartphone sensors as an Inertial Measurement Unit (IMU) on the Hardware In the Loop (HIL) simulator testbed are given. These

  6. Conceptual hermetically sealed elbow actuator

    NASA Technical Reports Server (NTRS)

    Wuenscher, H. F.

    1968-01-01

    Electrically or hydraulically powered, hermetically sealed angular or rotary actuator deflects mechanical members over a range of plus or minus 180 degrees. The actuator design provides incremental flexures which keep the local deflection rate within elastic limits.

  7. Low-Shock Pyrotechnic Actuator

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.

    1984-01-01

    Miniature 1-ampere, 1-watt pyrotechnic actuator enclosed in flexible metal bellows. Bellows confines outgassing products, and pyrotechnic shock reduction achieved by action of bellows, gas cushion within device, and minimum use of pyrotechnic material. Actuator inexpensive, compact, and lightweight.

  8. Applications of dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Pelrine, Ron; Sommer-Larsen, Peter; Kornbluh, Roy D.; Heydt, Richard; Kofod, Guggi; Pei, Qibing; Gravesen, Peter

    2001-07-01

    Dielectric elastomer actuators, based on the field-induced deformation of elastomeric polymers with compliant electrodes, can produce a large strain response, combined with a fast response time and high electromechanical efficiency. This unique performance, combined with other factors such as low cost, suggests many potential applications, a wide range of which are under investigation. Applications that effectively exploit the properties of dielectric elastomers include artificial muscle actuators for robots; low-cost, lightweight linear actuators; solid- state optical devices; diaphragm actuators for pumps and smart skins; acoustic actuators; and rotary motors. Issues that may ultimately determine the success or failure of the actuation technology for specific applications include the durability of the actuator, the performance of the actuator under load, operating voltage and power requirements, and electronic driving circuitry, to name a few.

  9. Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies.

    PubMed

    Veale, Allan Joshua; Xie, Shane Quan

    2016-04-01

    Robotic orthoses, or exoskeletons, have the potential to provide effective rehabilitation while overcoming the availability and cost constraints of therapists. However, current orthosis actuation systems use components designed for industrial applications, not specifically for interacting with humans. This can limit orthoses' capabilities and, if their users' needs are not adequately considered, contribute to their abandonment. Here, a user centered review is presented on: requirements for orthosis actuators; the electric, hydraulic, and pneumatic actuators currently used in orthoses and their advantages and limitations; the potential of new actuator technologies, including smart materials, to actuate orthoses; and the future of orthosis actuator research. PMID:26923385

  10. Actuators, biomedicine, and cell-biology

    NASA Astrophysics Data System (ADS)

    Jager, Edwin W. H.

    2012-04-01

    Conducting polymers such as polypyrrole are well-known for their volume changing capacity and their use as actuating material. Actuators based on polypyrrole have been demonstrated in dimensions ranging from centimetres down to micrometres as well as in linear strain and bending beam actuation modes. The polypyrrole (micro-)actuators can be operated in salt solutions including cell culture media and blood. In addition, polypyrrole is known to be biocompatible making them a good choice for applications within cell biology and medicine. Applications of polypyrrole actuators within micromechanical devices, such as microrobotics and valves, will be presented. Opportunities and devices for the medical device industry, especially vascular surgery will be shown. This includes a rotating PCTA balloon system, a steerable guide wire, and an implantable drug delivery system. In addition, novel mechanostimulation chips for cell biology will be introduced. Using these devices, we can stretch cells and show the cellular response to this mechanical stimulation. Since the dawn of eukaryotic cells many parallel molecular mechanisms that respond to mechanical stimuli have evolved. This technology allows us to begin the investigation of these mechanisms on a single cell level.

  11. Modeling actuation forces and strains in nastic structures

    NASA Astrophysics Data System (ADS)

    Matthews, Luke A.; Giurgiutiu, Victor

    2006-03-01

    Nastic structures are capable of three dimensional shape change using biological principles borrowed from plant motion. The plant motor cells increase or decrease in size through a change in osmotic pressure. When nonuniform cell swelling occurs, it causes the plant tissue to warp and change shape, resulting it net movement, known as nastic motion, which is the same phenomena that causes plants to angle their broad leaf and flower surfaces to face light sources. The nastic structures considered in this paper are composed of a bilayer of microactuator arrays with a fluid reservoir in between the two layers. The actuators are housed in a thin plate and expand when water from the fluid reservoir is pumped into the actuation chamber through a phospholipid bilayer with embedded active transport proteins, which move the water from the low pressure fluid reservoir into a high pressure actuation chamber. Increasing water pressure inside the actuator causes lateral expansion and axial bulging, and the non-uniform net volume change of actuators throughout the nastic structure results in twisting or bending shape change. Modifying the actuation displacement allows controlled volume change. This paper presents an analytical model of the driving and blocking forces involved in actuation, as well as stress and strain that occurs due to the pressure changes. Actuation is driven by increasing osmotic pressure, and blocking forces are taken into consideration to plan actuator response so that outside forces do not counteract the displacement of actuation. Nastic structures are designed with use in unmanned aerial vehicles in mind, so blocking forces are modeled to be similar to in-flight conditions. Stress in the system is modeled so that any residual strain or lasting deformation can be determined, as well as a lifespan before failure from repeated actuation. The long-term aim of our work is to determine the power and energy efficiency of nastic structures actuation mechanism.

  12. Effects of noise variance model on optimal feedback design and actuator placement

    NASA Technical Reports Server (NTRS)

    Ruan, Mifang; Choudhury, Ajit K.

    1994-01-01

    In optimal placement of actuators for stochastic systems, it is commonly assumed that the actuator noise variances are not related to the feedback matrix and the actuator locations. In this paper, we will discuss the limitation of that assumption and develop a more practical noise variance model. Various properties associated with optimal actuator placement under the assumption of this noise variance model are discovered through the analytical study of a second order system.

  13. Active-standby servovalue/actuator development

    NASA Technical Reports Server (NTRS)

    Masm, R. K.

    1973-01-01

    A redundant, fail/operate fail/fixed servoactuator was constructed and tested along with electronic models of a servovalve. It was found that a torque motor switch is satisfactory for the space shuttle main engine hydraulic actuation system, and that this system provides an effective failure monitoring technique.

  14. Shape memory polymer actuator and catheter

    DOEpatents

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.

    2007-11-06

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  15. Shape memory polymer actuator and catheter

    DOEpatents

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.

    2004-05-25

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  16. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  17. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, J.G.

    1999-02-02

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing. 49 figs.

  18. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  19. Actuators Acting without Actin.

    PubMed

    Geitmann, Anja

    2016-06-30

    Plant actuators move organs, allowing the plant to respond to environmental cues or perform other mechanical tasks. In Cardamine hursuta the dispersal of seeds is accomplished by explosive opening of the fruit. The biomechanical mechanism relies on a complex interplay between turgor regulation and cell wall mechanical properties. PMID:27368097

  20. "Mighty Worm" Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.; Wada, Ben K.; Moore, Donald M.

    1994-01-01

    "Mighty Worm" piezoelectric actuator used as adjustable-length structural member, active vibrator or vibration suppressor, and acts as simple (fixed-length) structural member when inactive. Load force not applied to piezoelectric element in simple-structural-member mode. Piezoelectric element removed from load path when not in use.

  1. Frequency-dependent electrostatic actuation in microfluidic MEMS.

    SciTech Connect

    Zavadil, Kevin Robert; Michalske, Terry A.; Sounart, Thomas L.

    2003-09-01

    Electrostatic actuators exhibit fast response times and are easily integrated into microsystems because they can be fabricated with standard IC micromachining processes and materials. Although electrostatic actuators have been used extensively in 'dry' MEMS, they have received less attention in microfluidic systems probably because of challenges such as electrolysis, anodization, and electrode polarization. Here we demonstrate that ac drive signals can be used to prevent electrode polarization, and thus enable electrostatic actuation in many liquids, at potentials low enough to avoid electrochemistry. We measure the frequency response of an interdigitated silicon comb-drive actuator in liquids spanning a decade of dielectric permittivities and four decades of conductivity, and present a simple theory that predicts the characteristic actuation frequency. The analysis demonstrates the importance of the native oxide on silicon actuator response, and suggests that the actuation frequency can be shifted by controlling the thickness of the oxide. For native silicon devices, actuation is predicted at frequencies less than 10 MHz, in electrolytes of ionic strength up to 100 mmol/L, and thus electrostatic actuation may be feasible in many bioMEMS and other microfluidic applications.

  2. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  3. The influence of eddy currents on magnetic actuator performance

    NASA Technical Reports Server (NTRS)

    Zmood, R. B.; Anand, D. K.; Kirk, J. A.

    1987-01-01

    The present investigation of the effects of eddy currents on EM actuators' transient performance notes that a transfer function representation encompassing a first-order model of the eddy current influence can be useful in control system analysis. The method can be extended to represent the higher-order effects of eddy currents for actuators that cannot be represented by semiinfinite planes.

  4. Active Control of Fan Noise by Vane Actuators

    NASA Technical Reports Server (NTRS)

    Curtis, Alan R. D.

    1999-01-01

    An active noise control system for ducted fan noise was built that uses actuators located in stator vanes. The actuators were piezoelectric benders manufactured using the THUNDER technology and were custom designed for the application. The active noise control system was installed in the NASA ANCF rig. Four actuator array with a total of 168 actuators in 28 stator vanes were used. Simultaneous reductions of acoustic power in both the inlet and exhaust duct were demonstrated for a fan disturbance that contained two radial mode orders in both inlet and exhaust. Total power levels in the target modes were reduced by up to 9 dB in the inlet and total tone levels by over 6 dB while exhaust power levels were reduced by up to 3 dB. Far field sound pressure level reductions of up to 17 dB were observed. A simpler control system, matched to the location of the disturbance with two radial actuator arrays, was demonstrated to control total acoustic power in four disturbance modes simultaneously in inlet and exhaust. The vane actuator met the requirements given for the ANCF, although in practice the performance of the system was limited by the constraints of the power amplifiers and the presence of control spillover. The vane actuators were robust. None of the 168 vane actuators failed during the tests.

  5. Design and Testing of Three-Axis Satellite Attitude Determination and Stabilization Systems That Are Based on Magnetic Sensing and Actuation

    NASA Astrophysics Data System (ADS)

    Psiaki, Mark L.; Guelman, Moshe

    2002-11-01

    Three-axis satellite attitude determination and active stabilization systems have been designed and tested using both flight experiments and simulation studies. These are being developed for use on low-Earth-orbiting name- satellites. Such satellites can be used as elements of constellations that implement synthetic aperture radar or that serve as nudes in a communications network. The research has addressed the problems of under-sensing and under-actuation that are present in magnetic-based systems. Magnetometer outputs are insensitive to rotation about the local Earth magnetic field, and magnetic torque coils cannot produce torque slump the field direction. A new attitude representation and a special globally-convergent extended Kalman filter have been used to solve the 3-axis attitude estimation problem. The efficacy of this system has been demonstrated using data from the missions, the Hubble Space Telescope and the Far-Ultraviolet Spectroscopic Explorer. Semi-active global 3-axis stabilization has been demonstrated using a simplified magnetometer output feedback control law in combination with weak passive stabilization of the axes. The passive stabilization can come from a very small momentum wheel or from a new aerodynamic system. The momentum-wheel-based concept has been successfully tested on the TechSat Gurwin II spacecraft.

  6. Evolutionary flight and enabling smart actuator devices

    NASA Astrophysics Data System (ADS)

    Manzo, Justin; Garcia, Ephrahim

    2007-04-01

    Recent interest in morphing vehicles with multiple, optimized configurations has led to renewed research on biological flight. The flying vertebrates - birds, bats, and pterosaurs - all made or make use of various morphing devices to achieve lift to suit rapidly changing flight demands, including maneuvers as complex as perching and hovering. The first part of this paper will discuss these devices, with a focus on the morphing elements and structural strong suits of each creature. Modern flight correlations to these devices will be discussed and analyzed as valid adaptations of these evolutionary traits. The second part of the paper will focus on the use of active joint structures for use in morphing aircraft devices. Initial work on smart actuator devices focused on NASA Langley's Hyper-Elliptical Cambered Span (HECS) wing platform, which led to development of a discretized spanwise curvature effector. This mechanism uses shape memory alloy (SMA) as the sole morphing actuator, allowing fast rotation with lightweight components at the expense of energy inefficiency. Phase two of morphing actuator development will add an element of active rigidity to the morphing structure, in the form of shape memory polymer (SMP). Employing a composite structure of polymer and alloy, this joint will function as part of a biomimetic morphing actuator system in a more energetically efficient manner. The joint is thermally actuated to allow compliance on demand and rigidity in the nominal configuration. Analytical and experimental joint models are presented, and potential applications on a bat-wing aircraft structure are outlined.

  7. Waveguiding Actuators Based on Photothermally Responsive Hydrogels

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Hauser, Adam; Bende, Nakul; Kuzyk, Mark; Hayward, Ryan

    A simple means to achieve rapid and highly reversible photo-responsiveness in a hydrogel is to combine a thermally-responsive gel such as poly(N-isopropyl acrylamide) (PNIPAM), with the photothermal effect of gold nanoparticles. Relying on such composite gels, we fabricate micro-scale bilayer photoactuators by photolithographic patterning, and demonstrate their controlled bending/unbending behavior in response to visible light. In addition to actuation by flood exposure, 532 nm laser light can be waveguided through a plastic optical fiber to direct it into the photoactuator, providing the possibility for remotely controllable actuators that do not require line-of-sight access. The actuators show large magnitude responses within time-scales of ~1 s, consistent with the small dimensions of the actuators, but also exhibit smaller-scale responses over much longer times, suggesting the possibility of slow internal relaxations within the network. Based on our study on this bilayer system, we further explore fabrication methods for cylindrical actuators that are able to bend in arbitrary directions.

  8. Proprioceptive Actuation Design for Dynamic Legged locomotion

    NASA Astrophysics Data System (ADS)

    Kim, Sangbae; Wensing, Patrick; Biomimetic Robotics Lab Team

    Designing an actuator system for highly-dynamic legged locomotion exhibited by animals has been one of the grand challenges in robotics research. Conventional actuators designed for manufacturing applications have difficulty satisfying challenging requirements for high-speed locomotion, such as the need for high torque density and the ability to manage dynamic physical interactions. It is critical to introduce a new actuator design paradigm and provide guidelines for its incorporation in future mobile robots for research and industry. To this end, we suggest a paradigm called proprioceptive actuation, which enables highly- dynamic operation in legged machines. Proprioceptive actuation uses collocated force control at the joints to effectively control contact interactions at the feet under dynamic conditions. In the realm of legged machines, this paradigm provides a unique combination of high torque density, high-bandwidth force control, and the ability to mitigate impacts through backdrivability. Results show that the proposed design provides an impact mitigation factor that is comparable to other quadruped designs with series springs to handle impact. The paradigm is shown to enable the MIT Cheetah to manage the application of contact forces during dynamic bounding, with results given down to contact times of 85ms and peak forces over 450N. As a result, the MIT Cheetah achieves high-speed 3D running up to 13mph and jumping over an 18-inch high obstacle. The project is sponsored by DARPA M3 program.

  9. Fabrication and reliable implementation of an ionic polymer-metal composite (IPMC) biaxial bending actuator

    NASA Astrophysics Data System (ADS)

    Lee, Gil-Yong; Choi, Jung-Oh; Kim, Myeungseon; Ahn, Sung-Hoon

    2011-10-01

    Ionic polymer-metal composites (IPMCs) are one of the most popular types of electro-active polymer actuator, due to their low electric driving potential, large deformation range, and light weight. IPMCs have been used as actuators or sensors in many areas of biomedical and robotic engineering. In this research, IPMCs were studied as a biaxial bending actuator capable of smart and flexible motion. We designed and fabricated this bending actuator and implemented it to have a reliable actuating motion using a systematic approach. The resulting device was bar shaped with a square cross section and had four insulated electrodes on its surface. By applying different voltages to these four electrodes, a biaxial bending motion can be induced. To construct this actuator, several fabrication processes were considered. We modified the Nafion stacking method, and established a complete sequence of actuator fabrication processes. Using these processes, we were able to fabricate an IPMC biaxial bending actuator with both high actuating force and high flexibility. Several experiments were conducted to investigate and verify the performance of the actuator. The IPMC actuator system was modeled from experimentally measured data, and using this actuator model, a closed-loop proportional integral (PI) controller was designed. Reference position tracking performances of open-loop and closed-loop systems were compared. Finally, circular motion tracking performances of the actuator tip were tested under different rotation frequencies and radii of a reference trajectory circle.

  10. 40 HP Electro-Mechanical Actuator

    NASA Technical Reports Server (NTRS)

    Fulmer, Chris

    1996-01-01

    This report summarizes the work performed on the 40 BP electro-mechanical actuator (EMA) system developed on NASA contract NAS3-25799 for the NASA National Launch System and Electrical Actuation (ELA) Technology Bridging Programs. The system was designed to demonstrate the capability of large, high power linear ELA's for applications such as Thrust Vector Control (TVC) on rocket engines. It consists of a motor controller, high frequency power source, drive electronics and a linear actuator. The power source is a 25kVA 20 kHz Mapham inverter. The drive electronics are based on the pulse population modulation concept and operate at a nominal frequency of 40 kHz. The induction motor is a specially designed high speed, low inertia motor capable of a 68 peak HP. The actuator was originally designed by MOOG Aerospace under an internal R & D program to meet Space Shuttle Main Engine (SSME) TVC requirements. The design was modified to meet this programs linear rate specification of 7.4 inches/second. The motor and driver were tested on a dynamometer at the Martin Marietta Space Systems facility. System frequency response and step response tests were conducted at the Marshall Space Flight Center facility. A complete description of the system and all test results can be found in the body of the report.

  11. Acoustofluidic actuation of in situ fabricated microrotors.

    PubMed

    Kaynak, Murat; Ozcelik, Adem; Nama, Nitesh; Nourhani, Amir; Lammert, Paul E; Crespi, Vincent H; Huang, Tony Jun

    2016-09-21

    We have demonstrated in situ fabricated and acoustically actuated microrotors. A polymeric microrotor with predefined oscillating sharp-edge structures is fabricated in situ by applying a patterned UV light to polymerize a photocrosslinkable polyethylene glycol solution inside a microchannel around a polydimethylsiloxane axle. To actuate the microrotors by oscillating the sharp-edge structures, we employed piezoelectric transducers which generate tunable acoustic waves. The resulting acoustic streaming flows rotate the microrotors. The rotation rate is tuned by controlling the peak-to-peak voltage applied to the transducer. A 6-arm microrotor can exceed 1200 revolutions per minute. Our technique is an integration of single-step microfabrication, instant assembly around the axle, and easy acoustic actuation for various applications in microfluidics and microelectromechanical systems (MEMS). PMID:27466140

  12. Actuator Grouping Optimization on Flexible Space Reflectors

    NASA Technical Reports Server (NTRS)

    Hill, Jeffrey R.; Wang, K. W.; Fang, Houfei; Quijano, Ubaldo

    2011-01-01

    With the rapid advances in deployable membrane and mesh antenna technologies, the feasibility of developing large, lightweight reflectors has greatly improved. In order to achieve the required surface accuracy, precision surface control is needed on these lightweight reflectors. For this study, an analytical model is shown which combines a flexible Kapton reflector with Polyvinylidene fluoride (PVDF) actuators for surface control. Surface errors are introduced that are similar to real world scenarios, and a least squares control algorithm is developed for surface control. Experimental results on a 2.4 meter reflector show that while the analytical reflector model is generally correct, due to idiosyncrasies in the reflector it cannot be used for online control. A new method called the En Mass Elimination algorithm is used to determine the optimal grouping of actuators when the number of actuators in the system exceeds the number of power supplies available.

  13. Anticipating electrical breakdown in dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Muffoletto, Daniel P.; Burke, Kevin M.; Zirnheld, Jennifer L.

    2013-04-01

    The output strain of a dielectric elastomer actuator is directly proportional to the square of its applied electric field. However, since the likelihood of electric breakdown is elevated with an increased applied field, the maximum operating electric field of the dielectric elastomer is significantly derated in systems employing these actuators so that failure due to breakdown remains unlikely even as the material ages. In an effort to ascertain the dielectric strength so that stronger electric fields can be applied, partial discharge testing is used to assess the health of the actuator by detecting the charge that is released when localized instances of breakdown partially bridge the insulator. Pre-stretched and unstretched samples of VHB4910 tape were submerged in dielectric oil to remove external sources of partial discharges during testing, and the partial discharge patterns were recorded just before failure of the dielectric sample.

  14. Electrically actuatable temporal tristimulus-color device

    DOEpatents

    Koehler, Dale R.

    1992-01-01

    The electrically actuated light filter operates in a cyclical temporal mode to effect a tristimulus-color light analyzer. Construction is based on a Fabry-Perot interferometer comprised of a high-speed movable mirror pair and cyclically powered electrical actuators. When combined with a single vidicon tube or a monochrome solid state image sensor, a temporally operated tristimulus-color video camera is effected. A color-generated is accomplished when constructed with a companion light source and is a flicker-free colored-light source for transmission type display systems. Advantages of low cost and small physical size result from photolithographic batch-processing manufacturability.

  15. Actuated Hybrid Mirrors for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Ealey, Mark; Redding, David

    2010-01-01

    This paper describes new, large, ultra-lightweight, replicated, actively controlled mirrors, for use in space telescopes. These mirrors utilize SiC substrates, with embedded solid-state actuators, bonded to Nanolaminate metal foil reflective surfaces. Called Actuated Hybrid Mirrors (AHMs), they use replication techniques for high optical quality as well as rapid, low cost manufacturing. They enable an Active Optics space telescope architecture that uses periodic image-based wavefront sensing and control to assure diffraction-limited performance, while relaxing optical system fabrication, integration and test requirements. The proposed International Space Station Observatory seeks to demonstrate this architecture in space.

  16. High Performance Piezoelectric Actuated Gimbal (HIERAX)

    SciTech Connect

    Charles Tschaggeny; Warren Jones; Eberhard Bamberg

    2007-04-01

    This paper presents a 3-axis gimbal whose three rotational axes are actuated by a novel drive system: linear piezoelectric motors whose linear output is converted to rotation by using drive disks. Advantages of this technology are: fast response, high accelerations, dither-free actuation and backlash-free positioning. The gimbal was developed to house a laser range finder for the purpose of tracking and guiding unmanned aerial vehicles during landing maneuvers. The tilt axis was built and the test results indicate excellent performance that meets design specifications.

  17. Control Software for Piezo Stepping Actuators

    NASA Technical Reports Server (NTRS)

    Shields, Joel F.

    2013-01-01

    A control system has been developed for the Space Interferometer Mission (SIM) piezo stepping actuator. Piezo stepping actuators are novel because they offer extreme dynamic range (centimeter stroke with nanometer resolution) with power, thermal, mass, and volume advantages over existing motorized actuation technology. These advantages come with the added benefit of greatly reduced complexity in the support electronics. The piezo stepping actuator consists of three fully redundant sets of piezoelectric transducers (PZTs), two sets of brake PZTs, and one set of extension PZTs. These PZTs are used to grasp and move a runner attached to the optic to be moved. By proper cycling of the two brake and extension PZTs, both forward and backward moves of the runner can be achieved. Each brake can be configured for either a power-on or power-off state. For SIM, the brakes and gate of the mechanism are configured in such a manner that, at the end of the step, the actuator is in a parked or power-off state. The control software uses asynchronous sampling of an optical encoder to monitor the position of the runner. These samples are timed to coincide with the end of the previous move, which may consist of a variable number of steps. This sampling technique linearizes the device by avoiding input saturation of the actuator and makes latencies of the plant vanish. The software also estimates, in real time, the scale factor of the device and a disturbance caused by cycling of the brakes. These estimates are used to actively cancel the brake disturbance. The control system also includes feedback and feedforward elements that regulate the position of the runner to a given reference position. Convergence time for smalland medium-sized reference positions (less than 200 microns) to within 10 nanometers can be achieved in under 10 seconds. Convergence times for large moves (greater than 1 millimeter) are limited by the step rate.

  18. Fabrication of silicon-based shape memory alloy micro-actuators

    NASA Technical Reports Server (NTRS)

    Johnson, A. David; Busch, John D.; Ray, Curtis A.; Sloan, Charles L.

    1992-01-01

    Thin film shape memory alloy has been integrated with silicon in a new actuation mechanism for microelectromechanical systems. This paper compares nickel-titanium film with other actuators, describes recent results of chemical milling processes developed to fabricate shape memory alloy microactuators in silicon, and describes simple actuation mechanisms which have been fabricated and tested.

  19. Microfabricated therapeutic actuators

    SciTech Connect

    Lee, Abraham P.; Northrup, M. Allen; Ciarlo, Dino R.; Krulevitch, Peter A.; Benett, William J.

    1999-01-01

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use.

  20. Microfabricated therapeutic actuators

    DOEpatents

    Lee, A.P.; Northrup, M.A.; Ciarlo, D.R.; Krulevitch, P.A.; Benett, W.J.

    1999-06-15

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use. 8 figs.

  1. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, Milton A.; Ciarlo, Dino R.; Lee, Abraham P.; Krulevitch, Peter A.

    1997-01-01

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The "micro" size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed.

  2. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, M.A.; Ciarlo, D.R.; Lee, A.P.; Krulevitch, P.A.

    1997-07-08

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The ``micro`` size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed. 22 figs.

  3. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  4. Thermally actuated thermionic switch

    DOEpatents

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  5. Thermally actuated thermionic switch

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  6. Passively actuated valve

    SciTech Connect

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  7. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  8. Dissolution actuated sample container

    DOEpatents

    Nance, Thomas A.; McCoy, Frank T.

    2013-03-26

    A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

  9. Pulley With Active Antifriction Actuator And Control

    NASA Technical Reports Server (NTRS)

    Ih, Che-Hang C.; Vivian, Howard C.

    1994-01-01

    Torque actuator and associated control system minimizes effective friction of rotary bearing. Motor exerts compensating torque in response to feedback from external optical sensor. Compensation torque nearly cancels frictional torque of shaft bearings. Also useful in reducing bearing friction in gyro-scopes, galvanometers, torquemeters, accelerometers, earth-motion detectors, and balances.

  10. Hydraulic actuator motion limiter ensures operator safety

    NASA Technical Reports Server (NTRS)

    Steinmetz, C. P.

    1971-01-01

    Device regulates action of hydraulic linkage to control column to minimize hazard to operator. Primary components of device are flow rate control valve, limiter accumulator, and shutoff valve. Limiter may be incorporated into other hydraulic systems to prevent undue wear on hydraulic actuators and associated components.

  11. Carbon nanotube based NEMS actuators and sensors

    NASA Astrophysics Data System (ADS)

    Forney, Michael; Poler, Jordan

    2011-03-01

    Single-walled carbon nanotubes (SWNTs) have been widely studied due to superior mechanical and electrical properties. We have grown vertically aligned SWNTs (VA-SWNTs) onto microcantilever (MC) arrays, which provides an architecture for novel actuators and sensors. Raman spectroscopy confirms that the CVD-grown nanotubes are SWNTs and SEM confirms aligned growth. As an actuator, this hybrid MC/VA-SWNT system can be electrostatically modulated. SWNTs are excellent electron acceptors, so we can charge up the VA-SWNT array by applying a voltage. The electrostatic repulsion among the charged SWNTs provides a surface stress that induces MC deflection. Simulation results show that a few electrons per SWNT are needed for measureable deflections, and experimental actuators are being characterized by SEM, Raman, and an AFM optical lever system. The applied voltage is sinusoidally modulated, and deflection is measured with a lock-in amplifier. These actuators could be used for nano-manipulation, release of drugs from a capsule, or nano-valves. As a sensor, this MC/VA-SWNT system offers an improved sensitivity for chemical and bio-sensing compared to surface functionalized MC-based sensors. Those sensors only have a 2D sensing surface, but a MC/VA-SWNT system has significantly more sensing surface because the VA-SWNTs extend microns off the MC surface.

  12. Microelectromechanical (MEM) thermal actuator

    DOEpatents

    Garcia, Ernest J.; Fulcher, Clay W. G.

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  13. Active Flow Control Using Sweeping Jet Actuators on a Semi-Span Wing Model

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Koklu, Mehti

    2016-01-01

    Wind tunnel experiments were performed using active flow control on an unswept semispan wing model with a 30% chord trailing edge flap to aid in the selection of actuators for a planned high Reynolds number experiment. Two sweeping jet actuator sizes were investigated to determine the influence of actuator size on the active flow control system efficiency. Sweeping jet actuators with orifice sizes of 1 mm x 2 mm and 2 mm x 4 mm were selected because of the differences in actuator jet sweep angle. The parameters that were varied include actuator momentum, freestream velocity, and trailing edge flap deflection angle. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the two actuators. In addition to the wind tunnel experiments, benchtop studies of the actuators were performed to characterize the jets produced by each actuator. Benchtop investigations of the smaller actuator reveal that the jet exiting the actuator has a reduced sweep angle compared to published data for larger versions of this type of actuator. The larger actuator produces an oscillating jet that attaches to the external di?user walls at low supply pressures and produces the expected sweep angles. The AFC results using the smaller actuators show that while the actuators can control flow separation, the selected spacing of 3.3 cm may be too large due to the reduced sweep angle. In comparison, the spacing for the larger actuators, 6.6 cm, appears to be optimal for the Mach numbers investigated. Particle Image Velocimetry results are presented and show how the wall jets produced by the actuators cause the flow to attach to the flap surface.

  14. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  15. Mechanisms and actuators for rotorcraft blade morphing

    NASA Astrophysics Data System (ADS)

    Vocke, Robert D., III

    The idea of improved fight performance through changes in the control surfaces dates back to the advent of aviation with the Wright brothers' pioneering work on "wing warping," but it was not until the recent progress in material and actuator development that such control surfaces seemed practical for modern aircraft. This has opened the door to a new class of aircraft that have the ability to change shape or morph, which are being investigated due to the potential to have a single platform serve multiple mission objectives, as well as improve performance characteristics. While the majority of existing research for morphing aircraft has focused on fixedwing aircraft, rotary-wing aircraft have begun to receive more attention. The purpose of this body of work is to investigate the current state of morphing actuation technology for rotorcraft and improve upon it. Specifically, this work looks at two types of morphing: Pneumatic Artificial Muscle (PAM) actuated trailing edge flaps and conformal variable diameter morphing. First, active camber changes through the use of PAM powered trailing edge flaps were investigated due to the potential for reductions in power requirements and vibration/noise levels. A PAM based antagonistic actuation system was developed utilizing a novel combination of mechanism geometry and PAM bias contraction optimization to overcome the natural extension stiffening characteristics of PAMs. In open-loop bench-top testing against a "worst-case" constant torsional loading, the system demonstrated actuation authority suitable for both primary control and vibration/noise reduction. Additionally, closed-loop test data indicated that the system was capable of tracking complex waveforms consistent with those needed for rotorcraft control. This system demonstrated performance on-par with the state of the art pneumatic trailing edge flap actuators, yet with a much smaller footprint and impact on the rotor-blade. The second morphing system developed in

  16. Induced shear piezoelectric actuators for smart rotor blades

    NASA Astrophysics Data System (ADS)

    Centolanza, Louis Richard

    In the present work, an induced-shear piezoelectric tube actuator is used in conjunction with a simple lever/cusp hinge amplification device to generate a useful combination of trailing edge flap (or blade tip) deflections and hinge moments. A finite element model of the actuator tube and trailing edge flap (including aerodynamic and inertial loading) was used to guide the design of the actuator/flap system. Both a full scale and small scale tube actuator flap systems and a small scale tube actuator blade tip system were fabricated and experimental bench top testing was conducted to validate the analysis. Hinge moments that corresponded to various rotor speeds were applied to the actuator using mechanical springs. The experimental testing revealed that for an applied electric field of 3 kV/cm, the tube actuator deflected a representative full scale 12 inch flap +/-2.8° at 0 RPM and +/-1.4° for a hinge moment simulating a 400 RPM condition. The percent error between the predicted and experimental full scale flap deflections ranged from 4% (low RPM) to 12.5% (large RPM). Based on the design analysis, the tube actuator can deflect a 12 inch long flap +/-2.5° at a rotation speed of 400 RPM for an electric field of 4 kV/cm. In the experimental testing at an applied electric field of 4 kV/cm of the small scale induced shear tube actuator, a 1.5 inch long flap was deflected +/-12° in a no-load condition and +/-8.5° for a hinge moment simulating a rotor speed of 2000 RPM. The percent error between the predicted and experimental flap deflections ranged from 2% (low RPM) to 8% (large RPM). In addition, a small scale 10% radius blade tip (3.6 inches) was deflected +/-3.15° and +/-2.50° for hinge moments that simulated the 0 and 2000 RPM rotor speed conditions. A numerical analysis was also conducted to investigate the induced shear tube as an active blade twist actuator. Finally, a trade study was conducted to compare the performance of the piezoelectric tube actuator

  17. A Global System of in situ Sensors, Communication Satellites and in situ Actuators Dedicated to the Nearly-Real-Time Detection and Mitigation of Natural Disasters

    NASA Astrophysics Data System (ADS)

    Bevis, M.

    2009-05-01

    Most of the ~ 230,000 lives lost in the Indian Ocean Tsunami of December 2004 could have been saved if the victims had had 5 - 15 minutes notice of the tsunami's arrival, provided that the local authorities had had some evacuation plan in place, e.g. running up hill when a klaxon sounded, or retreating to low cost shelters constructed to provide a vertical escape from inundation. Similar structures, equipped with supplies of drinking water, food, blankets, etc., could save countless thousands of people from drowning in flood-prone locations such as Bangladesh or the delta region of Burma, or dying in the aftermath of such events. Given sufficiently rapid communications, a disaster nowcasting system could also order the closing of gas mains, or the powering down of electricity networks, as well as the sounding of klaxons, only tens of seconds before an earthquake wave strikes a major city such as Los Angeles. The central and critical requirement for mitigating natural disasters is two-way communication. Imagine a globally accessible internet collecting event-triggered messages from arrays of sensors (that detect inundation, for example) so they can be analyzed by centralized computer systems in nearly real-time, which then send instructions to alarm systems and actuators in the areas at risk. (Of course, local authorities would have to be involved in planning the local responses to alarms, in constructing rescue facilities, and in educating their populations accordingly). Only a constellation of satellites could provide a communications system with global accessibility and the required robustness. Such an infrastructure would allow the international community to exploit the many common elements in the detection, assessment and response to unfolding disasters. I shall describe some of the elements of such a system, for which I propose the working name CELERITY.

  18. Polymeric blends for sensor and actuation dual functionality

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L. (Inventor); Harrison, Joycelyn S. (Inventor); Su, Ji (Inventor); Ounaies, Zoubeida (Inventor)

    2004-01-01

    The invention described herein supplies a new class of electroactive polymeric blend materials which offer both sensing and actuation dual functionality. The blend comprises two components, one component having a sensing capability and the other component having an actuating capability. These components should be co-processable and coexisting in a phase separated blend system. Specifically, the materials are blends of a sensing component selected from the group consisting of ferroelectric, piezoelectric, pyroelectric and photoelectric polymers and an actuating component that responds to an electric field in terms of dimensional change. Said actuating component includes, but is not limited to, electrostrictive graft elastomers, dielectric electroactive elastomers, liquid crystal electroactive elastomers and field responsive polymeric gels. The sensor functionality and actuation functionality are designed by tailoring the relative fraction of the two components. The temperature dependence of the piezoelectric response and the mechanical toughness of the dual functional blends are also tailored by the composition adjustment.

  19. Controller modeling and evaluation for PCV electro-mechanical actuator

    NASA Astrophysics Data System (ADS)

    Parker, Joey K.

    1993-11-01

    Hydraulic actuators are currently used to operate the propellant control valves (PCV) for the space shuttle main engine (SSME) and other rocket engines. These actuators are characterized by large power to weight ratios, large force capabilities, and rapid accelerations, which favor their use in control valve applications. However, hydraulic systems are also characterized by susceptibility to contamination, which leads to frequent maintenance requirements. The Control Mechanisms Branch (EP34) of the Component Development Division of the Propulsion Laboratory at the Marshall Space Flight Center (MSFC) has been investigating the application of electromechanical actuators as replacements for the hydraulic units in PCV's over the last few years. This report deals with some testing and analysis of a PCV electromechanical actuator (EMA) designed and fabricated by HR Textron, Inc. This prototype actuator has undergone extensive testing by EP34 personnel since early 1993. At this time, the performance of the HR Textron PCV EMA does not meet requirements for position tracking.

  20. Controller modeling and evaluation for PCV electro-mechanical actuator

    NASA Technical Reports Server (NTRS)

    Parker, Joey K.

    1993-01-01

    Hydraulic actuators are currently used to operate the propellant control valves (PCV) for the space shuttle main engine (SSME) and other rocket engines. These actuators are characterized by large power to weight ratios, large force capabilities, and rapid accelerations, which favor their use in control valve applications. However, hydraulic systems are also characterized by susceptibility to contamination, which leads to frequent maintenance requirements. The Control Mechanisms Branch (EP34) of the Component Development Division of the Propulsion Laboratory at the Marshall Space Flight Center (MSFC) has been investigating the application of electromechanical actuators as replacements for the hydraulic units in PCV's over the last few years. This report deals with some testing and analysis of a PCV electromechanical actuator (EMA) designed and fabricated by HR Textron, Inc. This prototype actuator has undergone extensive testing by EP34 personnel since early 1993. At this time, the performance of the HR Textron PCV EMA does not meet requirements for position tracking.