Sample records for actuators corrosion protection

  1. Corrosion protection

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  2. Smart Coatings for Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Li, Wendy; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  3. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...

  4. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...

  5. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...

  6. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...

  7. Corrosion Protection by Calcite-Type Coatings

    DTIC Science & Technology

    1989-10-01

    CORROSION PROTECTION BY CALCITE -TYPE COATINGS OCTOBER, 1989 Prepared by: OCEAN CITY RESEARCH CORPORATION Tennessee Avenue & Beach Thorofare Ocean...REPORT DATE OCT 1989 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Corrosion Protection by Calcite -Type Coatings 5a. CONTRACT... calcite -type coatings to segregated seawater ballast tanks. If perfected, a calcite coating approach could substantially reduce the cost of corrosion

  8. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion control...

  9. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion control...

  10. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  11. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods.Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed.The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  12. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each cathodic...

  13. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each cathodic...

  14. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each cathodic...

  15. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each cathodic...

  16. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each cathodic...

  17. Plasma polymerized hexamethyldisiloxane thin films for corrosion protection

    NASA Astrophysics Data System (ADS)

    Saloum, S.; Alkhaled, B.; Alsadat, W.; Kakhia, M.; Shaker, S. A.

    2018-01-01

    This study focused on the corrosion protection performance of plasma polymerized HMDSO thin films in two different corrosive medias, 0.3M NaCl and 0.3M H2SO4. The pp-HMDSO thin films were deposited on steel substrates for electrochemical tests using the potentiodynamic polarization technique, they were deposited also on aluminum and silicon substrates to investigate their resistance to corrosion, through the analysis of the degradation of microhardness and morphology, respectively, after immersion of the substrates for one week in the corrosive media. The results showed promising corrosion protection properties of the pp-HMDSO thin films.

  18. Corrosion and Protection of Metal in the Seawater Desalination

    NASA Astrophysics Data System (ADS)

    Hou, Xiangyu; Gao, Lili; Cui, Zhendong; Yin, Jianhua

    2018-01-01

    Seawater desalination develops rapid for it can solve water scarcity efficiently. However, corrosion problem in the seawater desalination system is more serious than that in normal water. So, it is important to pay attention to the corrosion and protection of metal in seawater desalination. The corrosion characteristics and corrosion types of metal in the seawater desalination system are introduced in this paper; In addition, corrosion protect methods and main influencing factors are stated, the latest new technologies about anti-corrosion with quantum energy assisted and magnetic inhibitor are presented.

  19. Accelerated Test Method for Corrosion Protective Coatings Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  20. Corrosion-protective coatings from electrically conducting polymers

    NASA Technical Reports Server (NTRS)

    Thompson, Karen Gebert; Bryan, Coleman J.; Benicewicz, Brian C.; Wrobleski, Debra A.

    1991-01-01

    In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  1. 46 CFR 129.210 - Protection from wet and corrosive environments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Protection from wet and corrosive environments. 129.210... ELECTRICAL INSTALLATIONS General Requirements § 129.210 Protection from wet and corrosive environments. (a... exposed to corrosive environments must be of suitable construction and must be resistant to corrosion. ...

  2. 46 CFR 129.210 - Protection from wet and corrosive environments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Protection from wet and corrosive environments. 129.210... ELECTRICAL INSTALLATIONS General Requirements § 129.210 Protection from wet and corrosive environments. (a... exposed to corrosive environments must be of suitable construction and must be resistant to corrosion. ...

  3. 46 CFR 129.210 - Protection from wet and corrosive environments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Protection from wet and corrosive environments. 129.210... ELECTRICAL INSTALLATIONS General Requirements § 129.210 Protection from wet and corrosive environments. (a... exposed to corrosive environments must be of suitable construction and must be resistant to corrosion. ...

  4. 46 CFR 129.210 - Protection from wet and corrosive environments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Protection from wet and corrosive environments. 129.210... ELECTRICAL INSTALLATIONS General Requirements § 129.210 Protection from wet and corrosive environments. (a... exposed to corrosive environments must be of suitable construction and must be resistant to corrosion. ...

  5. 46 CFR 129.210 - Protection from wet and corrosive environments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Protection from wet and corrosive environments. 129.210... ELECTRICAL INSTALLATIONS General Requirements § 129.210 Protection from wet and corrosive environments. (a... exposed to corrosive environments must be of suitable construction and must be resistant to corrosion. ...

  6. 40 CFR 280.31 - Operation and maintenance of corrosion protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Operation and maintenance of corrosion... UNDERGROUND STORAGE TANKS (UST) General Operating Requirements § 280.31 Operation and maintenance of corrosion protection. All owners and operators of steel UST systems with corrosion protection must comply with the...

  7. 40 CFR 280.31 - Operation and maintenance of corrosion protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Operation and maintenance of corrosion... UNDERGROUND STORAGE TANKS (UST) General Operating Requirements § 280.31 Operation and maintenance of corrosion protection. All owners and operators of steel UST systems with corrosion protection must comply with the...

  8. 40 CFR 280.31 - Operation and maintenance of corrosion protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Operation and maintenance of corrosion... UNDERGROUND STORAGE TANKS (UST) General Operating Requirements § 280.31 Operation and maintenance of corrosion protection. All owners and operators of steel UST systems with corrosion protection must comply with the...

  9. Multilayer graphene as an effective corrosion protection coating for copper

    NASA Astrophysics Data System (ADS)

    Ravishankar, Vasumathy; Ramaprabhu, S.; Jaiswal, Manu

    2018-04-01

    Graphene grown by chemical vapor deposition (CVD) has been studied as a protective layer against corrosion of copper. The layer number dependence on the protective nature of graphene has been investigated using techniques such as Tafel analysis and Electroimpedance Spectroscopy. Multiple layers of graphene were achieved by wet transfer above CVD grown graphene. Though this might cause grain boundaries, the sites where corrosion is initiated, to be staggered, wet transfer inherently carries the disadvantage of tearing of graphene, as confirmed by Raman spectroscopy measurements. However, Electroimpedance Spectroscopy (EIS) reflects that graphene protected copper has a layer dependent resistance to corrosion. Decrease in corrosion current (Icorr) for graphene protected copper is presented. There is only small dependence of corrosion current on the layer number, Tafel plots clearly indicate passivation in the presence of graphene, whether it be single layer or multiple layers. Notwithstanding the crystallite size, defect free layers of graphene with staggered grain boundaries combined with passivation could offer good corrosion protection for metals.

  10. 46 CFR 120.210 - Protection from wet and corrosive environments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Protection from wet and corrosive environments. 120.210... INSTALLATION General Requirements § 120.210 Protection from wet and corrosive environments. (a) Electrical... environments must be of suitable construction and corrosion-resistant. ...

  11. 46 CFR 120.210 - Protection from wet and corrosive environments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Protection from wet and corrosive environments. 120.210... INSTALLATION General Requirements § 120.210 Protection from wet and corrosive environments. (a) Electrical... environments must be of suitable construction and corrosion-resistant. ...

  12. 46 CFR 120.210 - Protection from wet and corrosive environments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Protection from wet and corrosive environments. 120.210... INSTALLATION General Requirements § 120.210 Protection from wet and corrosive environments. (a) Electrical... environments must be of suitable construction and corrosion-resistant. ...

  13. 46 CFR 120.210 - Protection from wet and corrosive environments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Protection from wet and corrosive environments. 120.210... INSTALLATION General Requirements § 120.210 Protection from wet and corrosive environments. (a) Electrical... environments must be of suitable construction and corrosion-resistant. ...

  14. 46 CFR 120.210 - Protection from wet and corrosive environments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Protection from wet and corrosive environments. 120.210... INSTALLATION General Requirements § 120.210 Protection from wet and corrosive environments. (a) Electrical... environments must be of suitable construction and corrosion-resistant. ...

  15. The corrosion protection of aluminum by various anodizing treatments

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.

    1989-01-01

    Corrosion protection to 6061-T6 aluminum, afforded by both teflon-impregnated anodized coats (Polylube and Tufram) and hard-anodized coats (water sealed and dichromate sealed), was studied at both pH 5.5 and pH 9.5, with an exposure period of 28 days in 3.5 percent NaCl solution (25 C) for each specimen. In general, corrosion protection for all specimens was better at pH 9.5 than at pH 5.5. Protection by a Tufram coat proved superior to that afforded by Polylube at each pH, with corrosion protection by the hard-anodized, water-sealed coat at pH 9.5 providing the best protection. Electrochemical work in each case was corroborated by microscopic examination of the coats after exposure. Corrosion protection by Tufram at pH 9.5 was most comparable to that of the hard-anodized samples, although pitting and some cracking of the coat did occur.

  16. Mesoporous silica nanoparticles for active corrosion protection.

    PubMed

    Borisova, Dimitriya; Möhwald, Helmuth; Shchukin, Dmitry G

    2011-03-22

    This work presents the synthesis of monodisperse, mesoporous silica nanoparticles and their application as nanocontainers loaded with corrosion inhibitor (1H-benzotriazole (BTA)) and embedded in hybrid SiOx/ZrOx sol-gel coating for the corrosion protection of aluminum alloy. The developed porous system of mechanically stable silica nanoparticles exhibits high surface area (∼1000 m2·g(-1)), narrow pore size distribution (d∼3 nm), and large pore volume (∼1 mL·g(-1)). As a result, a sufficiently high uptake and storage of the corrosion inhibitor in the mesoporous nanocontainers was achieved. The successful embedding and homogeneous distribution of the BTA-loaded monodisperse silica nanocontainers in the passive anticorrosive SiOx/ZrOx film improve the wet corrosion resistance of the aluminum alloy AA2024 in 0.1 M sodium chloride solution. The enhanced corrosion protection of this newly developed active system in comparison to the passive sol-gel coating was observed during a simulated corrosion process by the scanning vibrating electrode technique (SVET). These results, as well as the controlled pH-dependent release of BTA from the mesoporous silica nanocontainers without additional polyelectrolyte shell, suggest an inhibitor release triggered by the corrosion process leading to a self-healing effect.

  17. Beryllium fluoride film protects beryllium against corrosion

    NASA Technical Reports Server (NTRS)

    O donnell, P. M.; Odonnell, P. M.

    1967-01-01

    Film of beryllium fluoride protects beryllium against corrosion and stress corrosion cracking in water containing chloride ion concentrations. The film is formed by exposing the beryllium to fluorine gas at 535 degrees C or higher and makes beryllium suitable for space applications.

  18. The Corrosion Protection of Metals by Ion Vapor Deposited Aluminum

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1993-01-01

    A study of the corrosion protection of substrate metals by ion vapor deposited aluminum (IVD Al) coats has been carried out. Corrosion protection by both anodized and unanodized IVD Al coats has been investigated. Base metals included in the study were 2219-T87 Al, 7075-T6 Al, Titanium-6 Al-4 Vanadium (Ti-6Al-4V), 4130 steel, D6AC steel, and 4340 steel. Results reveal that the anodized IVD Al coats provide excellent corrosion protection, but good protection is also achieved by IVD Al coats that have not been anodized.

  19. Space Shuttle Corrosion Protection Performance

    NASA Technical Reports Server (NTRS)

    Curtis, Cris E.

    2007-01-01

    The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The launch pad environment can be corrosive to metallic substrates and the Space Shuttles are exposed to this environment when preparing for launch. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the thermal protection system and aging protective coatings are performing to insure structural integrity. The assessment of this cost resources and time. The information is invaluable when minimizing risk to the safety of Astronauts and Vehicle. This paper will outline a strategic sampling plan and some operational improvements made by the Orbiter Structures team and Corrosion Control Review Board.

  20. Evaluation of several corrosion protective coating systems on aluminum

    NASA Technical Reports Server (NTRS)

    Higgins, R. H.

    1981-01-01

    A study of several protective coating systems for use on aluminum in seawater/seacoast environments was conducted to review the developments made on protective coatings since early in the Space Shuttle program and to perform comparative studies on these coatings to determine their effectiveness for providing corrosion protection during exposure to seawater/seacoast environments. Panels of 2219-T87 aluminum were coated with 21 different systems and exposed to a 5 percent salt spray for 4000 hr. Application properties, adhesion measurements, heat resistance and corrosion protection were evaluated. For comparative studies, the presently specified Bostik epoxy system used on the SRB structures was included. Results of these tests indicate four systems with outstanding performance and four additional systems with protection almost as good. These systems are based on a chromated pretreatment, a chromate epoxy primer, and a polyurethane topcoat. Consideration for one of these systems should be included for those applications where superior corrosion protection for aluminum surfaces is required.

  1. Protection of Reinforcement with Corrosion Inhibitors, Phase II

    DOT National Transportation Integrated Search

    2000-12-01

    Costs due to corrosion of reinforcement in concrete caused by deicing salts have been estimated at up to $1 billion per year in the U.S. alone. For most situations, corrosion-inhibiting admixtures offer significant advantages over other protection me...

  2. Corrosion protection of reusable surgical instruments.

    PubMed

    Shah, Sadiq; Bernardo, Mildred

    2002-01-01

    To understand the corrosion properties of surgical scissors, 416 stainless steel disks and custom electrodes were used as simulated surfaces under various conditions. These simulated surfaces were exposed to tap water and 400-ppm synthetic hard water as Ca2CO3 under different conditions. The samples were evaluated by various techniques for corrosion potential and the impact of environmental conditions on the integrity of the passive film. The electrodes were used to monitor the corrosion behavior by potentiodynamic polarization technique in water both in the presence and absence of a cleaning product. The surface topography of the 416 stainless steel disks was characterized by visual observations and scanning electron microscopy (SEM), and the surface chemistry of the passive film on the surface of the scissors was characterized by x-ray photoelectron spectroscopy (XPS). The results suggest that surgical instruments made from 416 stainless steel are not susceptible to uniform corrosion; however, they do undergo localized corrosion. The use of suitable cleaning products can offer protection against localized corrosion during the cleaning step. More importantly, the use of potentiodynamic polarization techniques allowed for a quick and convenient approach to evaluate the corrosion properties of surgical instruments under a variety of simulated-use environmental conditions.

  3. Development of Anticorrosive Polymer Nanocomposite Coating for Corrosion Protection in Marine Environment

    NASA Astrophysics Data System (ADS)

    Mardare, L.; Benea, L.

    2017-06-01

    The marine environment is considered to be a highly aggressive environment for metal materials. Steels are the most common materials being used for shipbuilding. Corrosion is a major cause of structural deterioration in marine and offshore structures. Corrosion of carbon steel in marine environment becomes serious due to the highly corrosive nature of seawater with high salinity and microorganism. To protect metallic materials particularly steel against corrosion occurrence various organic and inorganic coatings are used. The most used are the polymeric protective coatings. The nanostructured TiO2 polymer coating is able to offer higher protection to steel against corrosion, and performed relatively better than other polymer coatings.

  4. CHROMIUM PLATING FOR PROTECTION AGAINST STRESS CORROSION CRACKING OF HARDENED AISI 410 STEEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suss, H.

    1958-04-22

    Because of its high corrosion resistance properties, chromium electroplate should offer protection to AISI 419 steel against stress corrosion cracking. Tests have been made (KAPL and Bettis) on chromium plates on test specimens as deposited by two different sources in conformance with Bettis and USMC specifications. These deposits either offered protection to hardened (RC36- 42) AISI 410 against stress corrosion cracking, or caused accelerated stress corrosion cracking under conditions which did not crack unplated material. At present there is no significant data which could give definite clues for these extreme differences in the corrosive protective values. The results of testsmore » so far strongly question tbe value of chromium plate as a means to protect AISI 410 against stress corrosion cracking. (A.C.)« less

  5. Corrosion protection performance of corrosion inhibitors and epoxy-coated reinforcing steel in a simulated concrete pore water solution.

    DOT National Transportation Integrated Search

    1998-06-01

    We used a simulated concrete pore water solution to evaluate the corrosion protection performance of concrete corrosion-inhibiting admixtures and epoxy-coated reinforcing bars (ECR). We evaluated three commercial corrosion inhibitors, ECR from three ...

  6. Molybdate Coatings for Protecting Aluminum Against Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.

    2005-01-01

    Conversion coatings that comprise mixtures of molybdates and several additives have been subjected to a variety of tests to evaluate their effectiveness in protecting aluminum and alloys of aluminum against corrosion. Molybdate conversion coatings are under consideration as replacements for chromate conversion coatings, which have been used for more than 70 years. The chromate coatings are highly effective in protecting aluminum and its alloys against corrosion but are also toxic and carcinogenic. Hexavalent molybdenum and, hence, molybdates containing hexavalent molybdenum, have received attention recently as replacements for chromates because molybdates mimic chromates in a variety of applications but exhibit significantly lower toxicity. The tests were performed on six proprietary formulations of molybdate conversion coatings, denoted formulations A through F, on panels of aluminum alloy 2024-T3. A bare alloy panel was also included in the tests. The tests included electrochemical impedance spectroscopy (EIS), measurements of corrosion potentials, scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and x-ray photoelectron spectroscopy (XPS).

  7. 46 CFR 183.210 - Protection from wet and corrosive environments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Protection from wet and corrosive environments. 183.210... corrosive environments. (a) Electrical equipment used in the following locations must be dripproof: (1) A.... (c) Electrical equipment exposed to corrosive environments must be of suitable construction and...

  8. 46 CFR 183.210 - Protection from wet and corrosive environments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Protection from wet and corrosive environments. 183.210... corrosive environments. (a) Electrical equipment used in the following locations must be dripproof: (1) A.... (c) Electrical equipment exposed to corrosive environments must be of suitable construction and...

  9. 46 CFR 183.210 - Protection from wet and corrosive environments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Protection from wet and corrosive environments. 183.210... corrosive environments. (a) Electrical equipment used in the following locations must be dripproof: (1) A.... (c) Electrical equipment exposed to corrosive environments must be of suitable construction and...

  10. 46 CFR 183.210 - Protection from wet and corrosive environments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Protection from wet and corrosive environments. 183.210... corrosive environments. (a) Electrical equipment used in the following locations must be dripproof: (1) A.... (c) Electrical equipment exposed to corrosive environments must be of suitable construction and...

  11. 46 CFR 183.210 - Protection from wet and corrosive environments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Protection from wet and corrosive environments. 183.210... corrosive environments. (a) Electrical equipment used in the following locations must be dripproof: (1) A.... (c) Electrical equipment exposed to corrosive environments must be of suitable construction and...

  12. Corrosion protection with eco-friendly inhibitors

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad

    2011-12-01

    Corrosion occurs as a result of the interaction of a metal with its environment. The extent of corrosion depends on the type of metal, the existing conditions in the environment and the type of aggressive ions present in the medium. For example, CO3-2 and NO-3 produce an insoluble deposit on the surface of iron, resulting in the isolation of metal and consequent decrease of corrosion. On the other hand, halide ions are adsorbed selectively on the metal surface and prevent formation of the oxide phase on the metal surface, resulting in continuous corrosion. Iron, aluminum and their alloys are widely used, both domestically and industrially. Linear alkylbenzene and linear alkylbenzene sulfonate are commonly used as detergents. They have also been found together in waste water. It is claimed that these chemicals act as inhibitors for stainless steel and aluminum. Release of toxic gases as a result of corrosion in pipelines may lead in certain cases to air pollution and possible health hazards. Therefore, there are two ways to look at the relationship between corrosion and pollution: (i) corrosion of metals and alloys due to environmental pollution and (ii) environmental pollution as a result of corrosion protection. This paper encompasses the two scenarios and possible remedies for various cases, using 'green' inhibitors obtained either from plant extracts or from pharmaceutical compounds. In the present study, the effect of piperacillin sodium as a corrosion inhibitor for mild steel was investigated using a weight-loss method as well as a three-electrode dc electrochemical technique. It was found that the corrosion rate decreased as the concentration of the inhibitor increased up to 9×10-4 M 93% efficiency was exhibited at this concentration.

  13. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Corrosion protection. 193.2625 Section 193.2625 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES...

  14. Civil Engineering Corrosion Control. Volume 3. Cathodic Protection Design

    DTIC Science & Technology

    1975-02-01

    coatings, test stations bonds, and insulation. It is certainly not a "cure-all Its economics and feasibility mus’ always be carefully studied .. An in...General Description of Cathodic Protection. Cath- odic protection, as the name signifies, is the process by which an entire surface is transformed into a...The National Asaoeiation of Corrosion Enguler "I i ,.I-11 Standard RP-Ol-69, "Recommended Practice Por ront.ol ol." Ex - ternal Corrosion on

  15. Chemical conversion coating for protecting magnesium alloys from corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhargava, Gaurang; Allen, Fred M.; Skandan, Ganesh

    A chromate-free, self-healing conversion coating solution for magnesium alloy substrates, composed of 10-20 wt. % Mg(NO.sub.3).sub.2.6H.sub.2O, 1-5 wt. % Al(NO.sub.3).sub.3.9H.sub.2O, and less than 1 wt. % of [V.sub.10O.sub.28].sup.6- or VO.sub.3.sup.- dissolved in water. The corrosion resistance offered by the resulting coating is in several hundreds of hours in salt-spray testing. This prolonged corrosion protection is attributed to the creation of a unique structure and morphology of the conversion coating that serves as a barrier coating with self-healing properties. Hydroxoaluminates form the backbone of the barrier protection offered while the magnesium hydroxide domains facilitate the "slow release" of vanadium compounds asmore » self-healing moieties to defect sites, thus providing active corrosion protection.« less

  16. Wire-Arc-Sprayed Aluminum Protects Steel Against Corrosion

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.; Poorman, Richard; Sanders, Heather L.; Mckechnie, Timothy N.; Bonds, James W., Jr.; Daniel, Ronald L., Jr.

    1995-01-01

    Aluminum coatings wire-arc sprayed onto steel substrates found effective in protecting substrates against corrosion. Coatings also satisfy stringent requirements for adhesion and flexibility, both at room temperature and at temperatures as low as liquid hydrogen. Developed as alternatives to corrosion-inhibiting primers and paints required by law to be phased out because they contain and emit such toxic substances as chromium and volatile organic compounds.

  17. Graphene coatings for protection against microbiologically induced corrosion

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Ajay

    Microbiologically induced corrosion (MIC) is a special form of electrochemical corrosion where micro-organisms affect the local environmental conditions at the metal-electrolyte interface by forming a stable biofilm. The biofilm introduces localized concentration cells, which accelerate the electrochemical corrosion rates. MIC has been found to affect many industrial systems such as sewage waste water pipes, heat exchangers, ships, underwater pipes etc. It has been traditionally eradicated by physical, biochemical and surface protection methods. The cleaning methods and the biocidal deliveries are required periodically and don't provide a permanent solution to the problem. Further, the use of biocides has been harshly criticized by environmentalists due to safety concerns associated with their usage. Surface based coatings have their own drawback of rapid degradation under harsh microbial environments. This has led to the exploration of thin, robust, inert, conformal passivation coatings for the protection of metallic surfaces from microbiologically induced corrosion. Graphene is a 2D arrangement of carbon atoms in a hexagonal honeycomb lattice. The carbon atoms are bonded to one another by sp2 hybridization and each layer of the carbon ring arrangement spans to a thickness of less than a nm. Due to its unique 2D arrangement of carbon atoms, graphene exhibits interesting in-plane and out of plane properties that have led to it being considered as the material for the future. Its excellent thermal, mechanical, electrical and optical properties are being explored in great depth to understand and realize potential applications in various technological realms. Early studies have shown the ability of bulk and monolayer graphene to protect metallic surfaces from air oxidation and solution based galvanic corrosion processes for short periods. However, the role of graphene in resisting MIC is yet to be determined, particularly over the long time spans characteristic of

  18. Chemical, Calcium Phosphate Cements for Geothermal Wells - Corrosion Protection, Bond Strength and Matrix Self-Healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, Toshifumi

    The data set shows performance of economical calcium phosphate cement (Fondu) blended with fly ash, class F (FAF) in carbon steel corrosion protection tests (corrosion rate, corrosion current and potential), bond- and matrix strength, as well as matrix strength recovery after imposed damage at 300C. The corrosion protection and lap-shear bond strength data are given for different Fondu/FAF ratios, the matrix strength data recoveries are reported for 60/40 weight % Fondu/FAF ratios. Effect of sodium phosphate on bond strength, corrosion protection and self-healing is demonstrated.

  19. Corrosion Protection of Launch Infrastructure and Hardware Through the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, has been a challenging and costly problem that has affected NASA's launch operations since the inception of the Space Program. Corrosion studies began at NASA's Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. NASA's KSC Beachside Corrosion Test Site, which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive natural conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. In the years that followed, numerous efforts at KSC identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosiye environment at the launch pads. Knowledge on materials degradation, obtained by facing the highly corrosive conditions of the Space Shuttle launch environment, as well as limitations imposed by the environmental impact of corrosion control, have led researchers at NASA's Corrosion Technology Laboratory to establish a new technology development capability in the area of corrosion prevention, detection, and mitigation at KSC that is included as one of the "highest priority" technologies identified by NASA's integrated technology roadmap. A historical perspective highlighting the challenges encountered in protecting launch infrastructure and hardware from corrosion during the life of the Space Shuttle program and the new technological advances that have resulted from facing the unique and highly corrosive conditions of the Space Shuttle launch environment will be presented.

  20. Protection of bronze artefacts through polymeric coatings based on nanocarriers filled with corrosion inhibitors

    NASA Astrophysics Data System (ADS)

    de Luna, Martina Salzano; Buonocore, Giovanna; Di Carlo, Gabriella; Giuliani, Chiara; Ingo, Gabriel M.; Lavorgna, Marino

    2016-05-01

    Protective coatings based on polymers synthesized from renewable sources (chitosan or an amorphous vinyl alcohol based polymer) have been prepared for the protection of bronze artifacts from corrosion. Besides acting as an effective barrier against corrosive species present in the environment, the efficiency of the coatings has been improved by adding corrosion inhibitor compounds (benzotriazole or mercaptobenzothiazole) to the formulations. The liquid medium of the formulations has been carefully selected looking at maximizing the wettability on the bronze substrate and optimizing the solvent evaporation rate. The minimum amount of inhibitor compounds has been optimized by performing accelerated corrosion tests on coated bronze substrates. The inhibitors have been directly dissolved in the coating-forming solutions and/or introduced by means of nanocarriers, which allow to control the release kinetics. The free dissolved inhibitor molecules immediately provide a sufficient protection against corrosion. On the other hand, the inhibitor molecules contained in the nanocarriers serve as long-term reservoir, which can be activated by external corrosion-related stimuli in case of particularly severe conditions. Particular attention has been paid to other features which affect the coating performances. Specifically, the adhesion of the protective polymer layer to the bronze substrate has been assessed, as well as its permeability properties and transparency, the latter being a fundamental feature of protective coating for cultural heritages. Finally, the protective efficiency of the produced smart coatings has been assessed through accelerated corrosion tests.

  1. Effective modern methods of protecting metal road structures from corrosion

    NASA Astrophysics Data System (ADS)

    Panteleeva, Margarita

    2017-10-01

    In the article the ways of protection of barrier road constructions from various external influences which cause development of irreversible corrosion processes are considered. The author studied modern methods of action on metal for corrosion protection and chose the most effective of them: a method of directly affecting the metal structures themselves. This method was studied in more detail in the framework of the experiment. As a result, the article describes the experiment of using a three-layer polymer coating, which includes a thermally activated primer, an elastomeric thermoplastic layer with a spatial structure, and a strong outer polyolefin layer. As a result of the experiment, the ratios of the ingredients for obtaining samples of the treated metal having the best parameters of corrosion resistance, elasticity, and strength were revealed. The author constructed a regression equation describing the main properties of the protective polymer coating using the simplex-lattice planning method in the composition-property diagrams.

  2. 40 CFR 280.31 - Operation and maintenance of corrosion protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protection. All owners and operators of steel UST systems with corrosion protection must comply with the... according to another reasonable time frame established by the implementing agency; and (2) Inspection...

  3. 40 CFR 280.31 - Operation and maintenance of corrosion protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protection. All owners and operators of steel UST systems with corrosion protection must comply with the... according to another reasonable time frame established by the implementing agency; and (2) Inspection...

  4. Replacement of chromates in paints and corrosion protection systems [Stage 1

    DOT National Transportation Integrated Search

    2004-05-01

    This technical report presents the first stage results of a multi-year project to develop chromate-free paints and corrosion protection systems. Chromate coatings and chromate-containing paints are very effective in providing corrosion resistance and...

  5. Corrosion protective coating for metallic materials

    DOEpatents

    Buchheit, Rudolph G.; Martinez, Michael A.

    1998-01-01

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

  6. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application.

    PubMed

    Slaughter, Gymama; Stevens, Brian

    2015-11-16

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed on the surface of Al/Au/ZnO anode in various electrolyte environments were examined by electrochemical methods. The presence of phosphate buffer and physiological saline (NaCl) buffer allows for the formation of aluminum hyrdroxide and zinc phosphite composite films on the surface of the Al/Au/ZnO anode that prevent further corrosion of the anode. The highly protective films formed on the Al/Au/ZnO anode during energy harvesting in a physiological saline environment resulted in 98.5% corrosion protective efficiency, thereby demonstrating that the formation of aluminum hydroxide and zinc phosphite composite films are effective in the prevention of anode corrosion during energy harvesting. A cell assembly consisting of the Al/Au/ZnO anode and platinum cathode resulted in an open circuit voltage of 1.03 V. A maximum power density of 955.3 mW/ cm² in physiological saline buffer at a cell voltage and current density of 345 mV and 2.89 mA/ cm², respectively.

  7. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application

    PubMed Central

    Slaughter, Gymama; Stevens, Brian

    2015-01-01

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed on the surface of Al/Au/ZnO anode in various electrolyte environments were examined by electrochemical methods. The presence of phosphate buffer and physiological saline (NaCl) buffer allows for the formation of aluminum hyrdroxide and zinc phosphite composite films on the surface of the Al/Au/ZnO anode that prevent further corrosion of the anode. The highly protective films formed on the Al/Au/ZnO anode during energy harvesting in a physiological saline environment resulted in 98.5% corrosion protective efficiency, thereby demonstrating that the formation of aluminum hydroxide and zinc phosphite composite films are effective in the prevention of anode corrosion during energy harvesting. A cell assembly consisting of the Al/Au/ZnO anode and platinum cathode resulted in an open circuit voltage of 1.03 V. A maximum power density of 955.3 μW/ cm2 in physiological saline buffer at a cell voltage and current density of 345 mV and 2.89 mA/ cm2, respectively. PMID:26580661

  8. The corrosion protection of 2219-T87 aluminum by anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1991-01-01

    Various types of anodizing coatings were studied for 2219-T87 aluminum. These include both type II and type III anodized coats which were water sealed and a newly developed and proprietary Magnaplate HCR (TM) coat. Results indicate that type II anodizing is not much superior to type II anodizing as far as corrosion protection for 2219-T87 aluminum is concerned. Magnaplate HCR (TM) coatings should provide superior corrosion protection over an extended period of time using a coating thickness of 51 microns (2.0 mils).

  9. Replacement of chromates in paints and corrosion protection systems [Stage 2

    DOT National Transportation Integrated Search

    2004-05-01

    This technical report presents the second stage results of a multi-year project to develop chromate-free paints and corrosion protection systems. Chromate-containing coatings and paints are very effective in providing corrosion resistance and are wid...

  10. Corrosion protection performance evaluation of low permeable concretes in exposure specimens.

    DOT National Transportation Integrated Search

    1999-01-01

    The application of a mineral admixture or a combination of a mineral admixture with corrosion inhibitor are the methods used for the corrosion protection for reinforced concrete bridges. The results of a 1.5-year study on evaluation of three concrete...

  11. Corrosion protective coating for metallic materials

    DOEpatents

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  12. Materials corrosion and protection from first principles

    NASA Astrophysics Data System (ADS)

    Johnson, Donald F.

    Materials erode under environmental stresses such as high temperature, high pressure, and mechanical shock/stress, but erosion is often exacerbated by chemical corrosion. In this dissertation, periodic density functional theory (DFT) is employed to simulate interfacial adhesion, absorption kinetics, bulk diffusion, and other material phenomena (e.g., hydrogen-enhanced decohesion and shock-induced phase changes) with the intention of understanding corrosion and subsequent failure processes and guiding the design of new protective coatings. This work examines corrosion and/or protection of materials ( i.e., Fe, Ni, W) with important applications: structural steel, gun tubes, high-pressure oil recovery vessels, jet engine turbine blades, and fusion reactor walls. We use DFT to model the pressure-induced, bcc-to-hcp phase transformation in Fe, in which a new low energy pathway is predicted exhibiting nonadiabatic behavior coupling magnetic and structural changes. Protection of steel is addressed in two aspects: interfacial adhesion of protective coatings and assessment of corrosion resistance provided by a surface alloy. First, the current chrome-coated steel system is examined where extremely strong adhesion is predicted at the Cr/Fe interface originating in strong spin correlations. A ceramic coating, SiC, is considered as a possible replacement for Cr. Strong adhesion is predicted, especially for C-Fe interfacial bonds. To assess corrosion resistance, we model ingress of two common corrosive elements, H and C, into two Fe alloys, FeAl and Fe3Si. Adsorption and absorption thermodynamics and kinetics, as well as bulk dissolution and diffusion are calculated in order to determine whether these two alloys can inhibit uptake of H and C. Relative to pure Fe, dissolved H and C are less stable in the alloys, as the dissolution enthalpy is predicted to be more endothermic. Overall, the energy barriers and rate constants for adsorbed H/C diffusing into Fe3Si subsurface layers

  13. High performance polypyrrole coating for corrosion protection and biocidal applications

    NASA Astrophysics Data System (ADS)

    Nautiyal, Amit; Qiao, Mingyu; Cook, Jonathan Edwin; Zhang, Xinyu; Huang, Tung-Shi

    2018-01-01

    Polypyrrole (PPy) coating was electrochemically synthesized on carbon steel using sulfonic acids as dopants: p-toluene sulfonic acid (p-TSA), sulfuric acid (SA), (±) camphor sulfonic acid (CSA), sodium dodecyl sulfate (SDS), and sodium dodecylbenzene sulfonate (SDBS). The effect of acidic dopants (p-TSA, SA, CSA) on passivation of carbon steel was investigated by linear potentiodynamic and compared with morphology and corrosion protection performance of the coating produced. The types of the dopants used were significantly affecting the protection efficiency of the coating against chloride ion attack on the metal surface. The corrosion performance depends on size and alignment of dopant in the polymer backbone. Both p-TSA and SDBS have extra benzene ring that stack together to form a lamellar sheet like barrier to chloride ions thus making them appropriate dopants for PPy coating in suppressing the corrosion at significant level. Further, adhesion performance was enhanced by adding long chain carboxylic acid (decanoic acid) directly in the monomer solution. In addition, PPy coating doped with SDBS displayed excellent biocidal abilities against Staphylococcus aureus. The polypyrrole coatings on carbon steels with dual function of anti-corrosion and excellent biocidal properties shows great potential application in the industry for anti-corrosion/antimicrobial purposes.

  14. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... protective coating, whether conductive or insulating, applied for the purpose of external corrosion control... or damage from supporting blocks. (e) If coated pipe is installed by boring, driving, or other...

  15. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... protective coating, whether conductive or insulating, applied for the purpose of external corrosion control... or damage from supporting blocks. (e) If coated pipe is installed by boring, driving, or other...

  16. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  17. Metallic corrosion processes reactivation sustained by iron-reducing bacteria: Implication on long-term stability of protective layers

    NASA Astrophysics Data System (ADS)

    Esnault, L.; Jullien, M.; Mustin, C.; Bildstein, O.; Libert, M.

    In deep geological environments foreseen for the disposal of radioactive waste, metallic containers will undergo anaerobic corrosion. In this context, the formation of corrosion products such as magnetite may reduce the rate of corrosion processes through the formation of a protective layer. This study aims at determining the direct impact of iron-reducing bacteria (IRB) activity on the stability of corrosion protective layers. Batch experiments investigating iron corrosion processes including the formation of secondary magnetite and its subsequent alteration in the presence of IRB show the bacteria ability to use structural Fe(III) for respiration which leads to the sustainment of a high corrosion rate. With the bio-reduction of corrosion products such as magnetite, and H 2 as electron donor, IRB promote the reactivation of corrosion processes in corrosive environments by altering the protective layer. This phenomenon could have a major impact on the long-term stability of metallic compounds involved in multi-barrier system for high-level radioactive waste containment.

  18. High temperature corrosion-resistant protective coatings in stationary gas turbines

    NASA Technical Reports Server (NTRS)

    Gruenling, H. W.

    1977-01-01

    Methods currently used to deposit protective coatings in gas turbines are reviewed, and the structure of the respective coatings is examined. The corrosion behavior of such coatings is discussed on the basis of experimental data. General trends in the preparation of protective coatings are noted.

  19. Multiple corrosion protection systems for reinforced concrete bridge components.

    DOT National Transportation Integrated Search

    2007-07-01

    Eleven systems combining epoxy-coated reinforcement with another corrosion protection system are evaluated using : the rapid macrocell, Southern Exposure, cracked beam, and linear polarization resistance tests. The systems include : bars that are pre...

  20. The corrosion protection of several aluminum alloys by chromic acid and sulfuric acid anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1994-01-01

    The corrosion protection afforded 7075-T6, 7075-T3, 6061-T6, and 2024-T3 aluminum alloys by chromic acid and sulfuric acid anodizing was examined using electrochemical techniques. From these studies, it is concluded that sulfuric acid anodizing provides superior corrosion protection compared to chromic acid anodizing.

  1. Characterization of the corrosion protection mechanism of cerium-based conversion coatings on high strength aluminum alloys

    NASA Astrophysics Data System (ADS)

    Pinc, William Ross

    The aim of the work presented in this dissertation is to investigate the corrosion protection mechanism of cerium-based conversion coatings (CeCCs) used in the corrosion protection of high strength aluminum alloys. The corrosion resistance of CeCCs involves two general mechanisms; barrier and active. The barrier protection mechanism was influenced by processing parameters, specifically surface preparation, post-treatment, and the use of gelatin. Post-treatment and the addition of gelatin to the coating solution resulted in fewer cracks and transformation of the coating to CePO4, which increased the corrosion resistance by improving the barrier aspect of CeCCs. CeCCs were found to best act as barriers when crack size was limited and CePO4 was present in the coating. CeCCs were found to protect areas of the substrate that were exposed in the coating, indicating that the coatings were more than simple barriers. CeCCs contained large cracks, underneath which subsurface crevices were connected to the surface by the cracks. Despite the observation that no cerium was present in crevices, coatings with crevices exhibited significant corrosion protection. The impedance of post-treated coatings with crevices increased during salt spray exposure. The increase in impedance was associated with the formation of protective oxides / hydroxides; however, crevice-free coatings also exhibited active protection leading to the conclusion that the formation of interfacial layers between the CeCC and the substrate also contributed to the active protection. Based on the overall results of the study, the optimal corrosion protection of CeCCs occurred when processing conditions produced coatings with morphologies and compositions that facilitated both the barrier and active protection mechanisms.

  2. Electrochemical investigation of powder coatings and their application to magnesium-rich primers for corrosion protection

    NASA Astrophysics Data System (ADS)

    Orgon, Casey Roy

    Corrosion is the decomposition of metal and metal alloys which threatens the integrity of man-made structures. One of the more efficient methods of delaying the corrosion process in metals is by coatings. In this work, the durability of two polyester powder coatings were investigated for corrosion protection of AA-2024-T3. Polyester powder coatings crosslinked by either triglycidyl isocyanurate (TGIC) or beta-hydroxyalkyl amide (HAA) compounds were prepared and investigated for barrier protection of metal substrates by electrochemical impedance spectroscopy (EIS). Polyester-TGIC coatings were found to provide better long-term protection, which can be attributed to the increased mechanical strength and higher concentration of crosslinking in the coating films. Additionally, the polyester powder coatings, along with a fusion bonded epoxy (FBE) were investigated for their compatibility as a topcoat for magnesium-rich primers (MgRP). Under proper application conditions, powder topcoats were successfully applied to cured MgRP while corrosion protection mechanisms of each system were maintained.

  3. Corrosion protection service life of epoxy-coated reinforcing steel in Virginia bridge decks.

    DOT National Transportation Integrated Search

    2003-01-01

    The corrosion protection service life extension provided by epoxy-coated reinforcement (ECR) was determined by comparing ECR and bare steel bars from 10 Virginia bridge decks built between 1981 and 1995. The objective was to determine the corrosion p...

  4. Renewal of corrosion protection of coated aluminum after welding

    NASA Technical Reports Server (NTRS)

    Higgins, R. H.

    1969-01-01

    Effectiveness of conversion coatings designed to protect aluminum alloys against atmospheric corrosion is reduced after exposure to high temperature or welding. Damaged coating should be manually stripped six inches from the weld and then recoated by sponge or spray with the original solution.

  5. The corrosion protection of 6061-T6 aluminum by a polyurethane-sealed anodized coat

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    The corrosion protection of 6061-T6 anodized aluminum afforded by a newly patented polyurethane seal was studied using the ac impedance technique. Values of the average corrosion rates over a 27-day exposure period in 3.5 percent NaCl solutions at pH 5.2 and pH 9.5 compared very favorably for Lockheed-prepared polyurethane-sealed and dichromate-sealed coats of the same thickness. Average corrosion rates for both specimens over the first 7 days of exposure compared well with those for a hard anodized, dichromate-sealed coat, but rose well above those for the hard anodized coat over the entire 27-day period. This is attributed both to the greater thickness of the hard anodized coat, and possibly to its inherently better corrosion protective capability.

  6. The effect of superhydrophobic wetting state on corrosion protection--the AKD example.

    PubMed

    Ejenstam, Lina; Ovaskainen, Louise; Rodriguez-Meizoso, Irene; Wågberg, Lars; Pan, Jinshan; Swerin, Agne; Claesson, Per M

    2013-12-15

    Corrosion is of considerable concern whenever metal is used as construction material. In this study we address whether superhydrophobic coatings could be used as part of an environmentally friendly corrosion-protective system, and specific focus is put on how the wetting regime of a superhydrophobic coating affects corrosion inhibition. Superhydrophobic alkyl ketene dimer (AKD) wax coatings were produced, using different methods resulting in hierarchical structures, where the coatings exhibit the same surface chemistry but different wetting regimes. Contact angle measurements, ESEM, confocal Raman microscopy, open circuit potential and electrochemical impedance spectroscopy were used to evaluate the surfaces. Remarkably high impedance values of 10(10)Ω cm(2) (at 10(-2) Hz) were reached for the sample showing superhydrophobic lotus-like wetting. Simultaneous open circuit potential measurements suggest that the circuit is broken, most likely due to the formation of a thin air layer at the coating-water interface that inhibits ion transport from the electrolyte to the metal substrate. The remaining samples, showing superhydrophobic wetting in the rose state and hydrophobic Wenzel-like wetting, showed less promising corrosion-protective properties. Due to the absence of air films on these surfaces the coatings were penetrated by the electrolyte, which allowed the corrosion reaction to proceed. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. The Cost Analysis of Corrosion Protection Solutions for Steel Components in Terms of the Object Life Cycle Cost

    NASA Astrophysics Data System (ADS)

    Kowalski, Dariusz; Grzyl, Beata; Kristowski, Adam

    2017-09-01

    Steel materials, due to their numerous advantages - high availability, easiness of processing and possibility of almost any shaping are commonly applied in construction for carrying out basic carrier systems and auxiliary structures. However, the major disadvantage of this material is its high corrosion susceptibility, which depends strictly on the local conditions of the facility and the applied type of corrosion protection system. The paper presents an analysis of life cycle costs of structures installed on bridges used in the road lane conditions. Three anti-corrosion protection systems were considered, analyzing their essential cost components. The possibility of reducing significantly the costs associated with anti-corrosion protection at the stage of steel barriers maintenance over a period of 30 years has been indicated. The possibility of using a new approach based on the life cycle cost estimation in the anti-corrosion protection of steel elements is presented. The relationship between the method of steel barrier protection, the scope of repair, renewal work and costs is shown. The article proposes an optimal solution which, while reducing the cost of maintenance of road infrastructure components in the area of corrosion protection, allows to maintain certain safety standards for steel barriers that are installed on the bridge.

  8. Remote switch actuator

    DOEpatents

    Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

    2013-01-29

    The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

  9. MOSFET Switching Circuit Protects Shape Memory Alloy Actuators

    NASA Technical Reports Server (NTRS)

    Gummin, Mark A.

    2011-01-01

    A small-footprint, full surface-mount-component printed circuit board employs MOSFET (metal-oxide-semiconductor field-effect transistor) power switches to switch high currents from any input power supply from 3 to 30 V. High-force shape memory alloy (SMA) actuators generally require high current (up to 9 A at 28 V) to actuate. SMA wires (the driving element of the actuators) can be quickly overheated if power is not removed at the end of stroke, which can damage the wires. The new analog driver prevents overheating of the SMA wires in an actuator by momentarily removing power when the end limit switch is closed, thereby allowing complex control schemes to be adopted without concern for overheating. Either an integral pushbutton or microprocessor-controlled gate or control line inputs switch current to the actuator until the end switch line goes from logic high to logic low state. Power is then momentarily removed (switched off by the MOSFET). The analog driver is suited to use with nearly any SMA actuator.

  10. Corrosion Protection: Concrete Bridges

    DOT National Transportation Integrated Search

    1998-09-01

    Premature corrosion of reinforcing steel has caused many concrete bridges in the United States to deteriorate before their design life was attained. Recognizing the burden that reinforcing steel corrosion imposes on natural resources, the Federal Hig...

  11. Corrosion of connectors used in equipment protecting against falls from a height

    PubMed Central

    Jachowicz, Marcin

    2015-01-01

    Connectors are commonly found in personal equipment protecting against falls from a height. They are typically used outdoors and exposed to atmospheric factors, which can result in corrosion. This article presents the results of a study involving exposure of connectors to experimental corrosive media – neutral salt spray (NSS), acid salt spray (ASS), and seawater mist (for elements made of carbon steel and non-ferrous metals) – and to experimental conditions simulating the processes of pitting, stress, and intercrystalline corrosion (for equipment made of s`tainless steel). The results indicate that the main effects of corrosion on connectors include impaired operation and reduced strength of their mobile elements. The article presents methods of testing connector operation developed for this purpose. Corrosive damage to connectors has been presented in relation to potential hazards for their users. PMID:26647950

  12. 49 CFR 195.581 - Which pipelines must I protect against atmospheric corrosion and what coating material may I use?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Which pipelines must I protect against atmospheric... Corrosion Control § 195.581 Which pipelines must I protect against atmospheric corrosion and what coating... the prevention of atmospheric corrosion. (c) Except portions of pipelines in offshore splash zones or...

  13. 49 CFR 195.581 - Which pipelines must I protect against atmospheric corrosion and what coating material may I use?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Which pipelines must I protect against atmospheric... Corrosion Control § 195.581 Which pipelines must I protect against atmospheric corrosion and what coating... the prevention of atmospheric corrosion. (c) Except portions of pipelines in offshore splash zones or...

  14. 49 CFR 195.581 - Which pipelines must I protect against atmospheric corrosion and what coating material may I use?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Which pipelines must I protect against atmospheric... Corrosion Control § 195.581 Which pipelines must I protect against atmospheric corrosion and what coating... the prevention of atmospheric corrosion. (c) Except portions of pipelines in offshore splash zones or...

  15. State of the art in protection of erosion-corrosion on vertical axis tidal current turbine

    NASA Astrophysics Data System (ADS)

    Musabikha, Siti; Utama, I. Ketut Aria Pria; Mukhtasor

    2018-05-01

    Vertical axis tidal current turbine is main part of ocean energy devices which converts the tidal current energy into electricity. Its development is arising too due to increased interest research topic concerning climate change mitigation. Due to its rotating movement, it will be induced mechanical forces, such as shear stress and/or particle impact. Because of its natural operations, vertical axis turbine is also being exposed to harsh and corroding marine environment itself. In order to secure the vertical tidal turbine devices from mechanical wear and corrosion effects which is lead to a material loss, an appropriate erosion-corrosion protection needs to be defined. Its protection actionscan be derived such as design factors, material selections, inhibitors usage, cathodic protections, and coatings. This paper aims to analyze protection method which is necessary to control erosion-corrosion phenomenon that appears to the vertical axis tidal current turbine.

  16. Replacement of corrosion protection chromate primers and paints used in cryogenic applications on the Space Shuttle with wire arc sprayed aluminum coatings

    NASA Technical Reports Server (NTRS)

    Daniel, R. L.; Sanders, H. L.; Zimmerman, F. R.

    1995-01-01

    With the advent of new environmental laws restricting volatile organic compounds and hexavalent chrome emissions, 'environmentally safe' thermal spray coatings are being developed to replace the traditional corrosion protection chromate primers. A wire arc sprayed aluminum coating is being developed for corrosion protection of low pressure liquid hydrogen carrying ducts on the Space Shuttle Main Engine. Currently, this hardware utilizes a chromate primer to provide protection against corrosion pitting and stress corrosion cracking induced by the cryogenic operating environment. The wire are sprayed aluminum coating has been found to have good potential to provide corrosion protection for flight hardware in cryogenic applications. The coating development, adhesion test, corrosion test and cryogenic flexibility test results will be presented.

  17. Shape Memory Actuator System

    DTIC Science & Technology

    1998-07-31

    The advantage in utilizing 15 shape-memory cables made of Nitinol for size reduction of the remote control actuator system is 1 Fi well suited for...a submarine environment because of its non-magnetic and corrosion resistance 17 properties. Use of thermoelastic Nitinol introduces other...problems because of the cooling and 18 resetting properties of Nitinol cables. It is therefore an important object of the present invention 19 on to

  18. Protective effects of ursodeoxycholic acid in experimental corrosive esophagitis injury in rats.

    PubMed

    Ku Çu K, Adem; Topaloglu, Naci; Yildirim, Sule; Tekin, Mustafa; Erbas, Mesut; Kiraz, Hasan Ali; Erdem, Havva; Özkan, Aybars

    2017-01-01

    Accidental caustic ingestions are serious medical problems especially in childhood. Various treatment modalities are being used for the complications of caustic injuries such as stricture formation. The aim of this study is to establish whether ursodeoxycholic acid (UDCA) has protective effects on experimental corrosive esophagitis in rats. Twenty four Wistar-albino rats, weighing 220-240 g, were used in the study. Experimental animals were divided in three groups randomly: UDCA treatment group (Group T, n:8), control group (Group K, n: 8) and sham group (Group S, n: 8). In group T and S corrosive esophagitis was induced. UDCA (5 mg/kg) was performed to the group T for 10 days orally. All animals were sacrificed at the end of procedures and histopathological changes in esophageal tissue were scored by a single investigator who was blind to the groups. In group T inflammation was present in two rats, muscularis mucosa injury in two rats, grade 1 collagen deposition in six rats and grade 2 in two rats. In comparison with group S these were statistically significant (p value was 0.003, 0.003 and 0.015, respectively). UDCA has protective effect in experimental corrosive esophagitis. Corrosive esophagitis, Rat, Stricture, Ursodeoxycholic acid.

  19. Corrosion Protection of Copper Using Al2O3, TiO2, ZnO, HfO2, and ZrO2 Atomic Layer Deposition.

    PubMed

    Daubert, James S; Hill, Grant T; Gotsch, Hannah N; Gremaud, Antoine P; Ovental, Jennifer S; Williams, Philip S; Oldham, Christopher J; Parsons, Gregory N

    2017-02-01

    Atomic layer deposition (ALD) is a viable means to add corrosion protection to copper metal. Ultrathin films of Al 2 O 3 , TiO 2 , ZnO, HfO 2 , and ZrO 2 were deposited on copper metal using ALD, and their corrosion protection properties were measured using electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV). Analysis of ∼50 nm thick films of each metal oxide demonstrated low electrochemical porosity and provided enhanced corrosion protection from aqueous NaCl solution. The surface pretreatment and roughness was found to affect the extent of the corrosion protection. Films of Al 2 O 3 or HfO 2 provided the highest level of initial corrosion protection, but films of HfO 2 exhibited the best coating quality after extended exposure. This is the first reported instance of using ultrathin films of HfO 2 or ZrO 2 produced with ALD for corrosion protection, and both are promising materials for corrosion protection.

  20. Corrosion resistant thermal barrier coating. [protecting gas turbines and other engine parts

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Miller, R. A.; Hodge, P. E. (Inventor)

    1981-01-01

    A thermal barrier coating system for protecting metal surfaces at high temperature in normally corrosive environments is described. The thermal barrier coating system includes a metal alloy bond coating, the alloy containing nickel, cobalt, iron, or a combination of these metals. The system further includes a corrosion resistant thermal barrier oxide coating containing at least one alkaline earth silicate. The preferred oxides are calcium silicate, barium silicate, magnesium silicate, or combinations of these silicates.

  1. Corrosion protection of aluminum alloys in contact with other metals

    NASA Technical Reports Server (NTRS)

    Kuster, C. A.

    1969-01-01

    Study establishes the quality of chemical and galvanized protection afforded by anodized and aldozided coatings applied to test panels of various aluminum alloys. The test panels, placed in firm contact with panels of titanium alloys, were subjected to salt spray tests and visually examined for corrosion effect.

  2. Corrosion Protection Performance of Nano-SiO2/Epoxy Composite Coatings in Acidic Desulfurized Flue Gas Condensates

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Wang, Z. Y.; Hu, H. X.; Liu, C. B.; Zheng, Y. G.

    2016-09-01

    Five kinds of nano-SiO2/epoxy composite coatings were prepared on mild steels, and their corrosion protection performance was evaluated at room temperature (RT) and 50 °C (HT) using electrochemical methods combined with scanning electron microscopy (SEM). The effects of preparation and sealing processes on the corrosion protection performance of epoxy coatings were specially focused on. The results showed that it was favorable for the corrosion protection and durable performance to add the modified nano-SiO2 during rather than after the synthesis of epoxy coatings. Furthermore, the employment of sealer varnish also had beneficial effects. The two better coatings still exhibited higher impedance values even after immersion tests for up to 1000 h at RT and 500 h at HT. SEM revealed that the improvement of corrosion protection performance mainly resulted from the enhancement of coating density. Moreover, the evolution of electrochemical behavior of the two better coatings with immersion time was also discussed by means of fitting the electrochemical impedance spectroscopy results using equivalent circuits with different physical meanings.

  3. Corrosion control acceptance criteria for sacrificial anode type, cathodic protection systems (user guide)

    NASA Astrophysics Data System (ADS)

    Hock, Vincent F.; Noble, Michael; McLeod, Malcolm E.

    1994-07-01

    The Army currently operates and maintains more than 20,000 underground storage tanks and over 3000 miles of underground gas pipelines, all of which require some form of corrosion control. Cathodic protection is one method of corrosion control used to prevent corrosion-induced leaks when a steel structure is exposed to an aggressive soil. The corrosion control acceptance criteria for sacrificial anode type CP systems provides guidelines for the DEH/DPW cathodic protection installation inspectors whose responsibilities are to ensure that the materials and equipment specified are delivered to the job site and subsequently installed in accordance with the engineering drawings and specifications. The sacrificial anode CP acceptance criteria includes all components for the sacrificial anode system such as insulated conductors, anodes, anode backfills, and auxiliary equipment. The sacrificial anode CP acceptance criteria is composed of a checklist that lists each component and that contains a space for the inspector to either check 'yes' or 'no' to indicate whether the component complies with the job specifications. In some cases, the inspector must measure and record physical dimensions or electrical output and compare the measurements to standards shown in attached tables.

  4. Self-immunity microcapsules for corrosion protection of steel bar in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Wang, Yanshuai; Fang, Guohao; Ding, Weijian; Han, Ningxu; Xing, Feng; Dong, Biqin

    2015-12-01

    A novel microcapsule-based self-immunity system for reinforced concrete is proposed. Its feasibility for hindering the corrosion of steel rebar by means of lifting the threshold value of [Cl-]/[OH-] is discussed. Precisely controlled release behavior enables corrosion protection in the case of depassivation. The release process is characterized over a designated range of pH values, and its release characteristics of the microcapsules, triggered by decreasing pH value, are captured by observing that the core crystals are released when exposed to a signal (stimulus). The aim of corrosion protection of steel bar is achieved through the constantly-stabilized passive film, and its stability is promoted using continuous calcium hydroxide released from the microcapsule, restoring alkaline conditions. The test results exhibited that the release process of the microcapsules is a function of time. Moreover, the release rate of core materials could interact with environmental pH value, in which the release rate is found to increase remarkably with decreasing pH value, but is inhibited by high pH levels.

  5. Self-immunity microcapsules for corrosion protection of steel bar in reinforced concrete.

    PubMed

    Wang, Yanshuai; Fang, Guohao; Ding, Weijian; Han, Ningxu; Xing, Feng; Dong, Biqin

    2015-12-17

    A novel microcapsule-based self-immunity system for reinforced concrete is proposed. Its feasibility for hindering the corrosion of steel rebar by means of lifting the threshold value of [Cl(-)]/[OH(-)] is discussed. Precisely controlled release behavior enables corrosion protection in the case of depassivation. The release process is characterized over a designated range of pH values, and its release characteristics of the microcapsules, triggered by decreasing pH value, are captured by observing that the core crystals are released when exposed to a signal (stimulus). The aim of corrosion protection of steel bar is achieved through the constantly-stabilized passive film, and its stability is promoted using continuous calcium hydroxide released from the microcapsule, restoring alkaline conditions. The test results exhibited that the release process of the microcapsules is a function of time. Moreover, the release rate of core materials could interact with environmental pH value, in which the release rate is found to increase remarkably with decreasing pH value, but is inhibited by high pH levels.

  6. Extraordinary Corrosion Protection from Polymer-Clay Nanobrick Wall Thin Films.

    PubMed

    Schindelholz, Eric J; Spoerke, Erik D; Nguyen, Hai-Duy; Grunlan, Jaime C; Qin, Shuang; Bufford, Daniel C

    2018-06-20

    Metals across all industries demand anticorrosion surface treatments and drive a continual need for high-performing and low-cost coatings. Here we demonstrate polymer-clay nanocomposite thin films as a new class of transparent conformal barrier coatings for protection in corrosive atmospheres. Films assembled via layer-by-layer deposition, as thin as 90 nm, are shown to reduce copper corrosion rates by >1000× in an aggressive H 2 S atmosphere. These multilayer nanobrick wall coatings hold promise as high-performing anticorrosion treatment alternatives to costlier, more toxic, and less scalable thin films, such as graphene, hexavalent chromium, or atomic-layer-deposited metal oxides.

  7. Nanoscale coatings for erosion and corrosion protection of copper microchannel coolers for high powered laser diodes

    NASA Astrophysics Data System (ADS)

    Flannery, Matthew; Fan, Angie; Desai, Tapan G.

    2014-03-01

    High powered laser diodes are used in a wide variety of applications ranging from telecommunications to industrial applications. Copper microchannel coolers (MCCs) utilizing high velocity, de-ionized water coolant are used to maintain diode temperatures in the recommended range to produce stable optical power output and control output wavelength. However, aggressive erosion and corrosion attack from the coolant limits the lifetime of the cooler to only 6 months of operation. Currently, gold plating is the industry standard for corrosion and erosion protection in MCCs. However, this technique cannot perform a pin-hole free coating and furthermore cannot uniformly cover the complex geometries of current MCCs involving small diameter primary and secondary channels. Advanced Cooling Technologies, Inc., presents a corrosion and erosion resistant coating (ANCERTM) applied by a vapor phase deposition process for enhanced protection of MCCs. To optimize the coating formation and thickness, coated copper samples were tested in 0.125% NaCl solution and high purity de-ionized (DIW) flow loop. The effects of DIW flow rates and qualities on erosion and corrosion of the ANCERTM coated samples were evaluated in long-term erosion and corrosion testing. The robustness of the coating was also evaluated in thermal cycles between 30°C - 75°C. After 1000 hours flow testing and 30 thermal cycles, the ANCERTM coated copper MCCs showed a corrosion rate 100 times lower than the gold plated ones and furthermore were barely affected by flow rates or temperatures thus demonstrating superior corrosion and erosion protection and long term reliability.

  8. Thin Coatings of Polymeric Carbon and Carbon Nanotubes for Corrosion Protection

    DTIC Science & Technology

    2009-02-01

    Thin Coatings of Polymeric Carbon and Carbon Nanotubes for Corrosion Protection Zafar Iqbal Department of Chemistry and Environmental Science New...Department of Chemistry and Environmental Science ,Newark,NJ,07102 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND

  9. Modified corrosion protection coatings for Concrete tower of Transmission line

    NASA Astrophysics Data System (ADS)

    Guo, Kai; Jing, Xiangyang; Wang, Hongli; Yue, Zengwu; Wu, Yaping; Mi, Xuchun; Li, Xingeng; Chen, Suhong; Fan, Zhibin

    2017-12-01

    By adding nano SiO2 particles, an enhanced K-PRTV anti-pollution flashover coating had been prepared. Optical profile meter (GT-K), atomic force microscopy (AFM) and infrared spectrometer (FT-IR) characterization were carried out on the coating surface analysis. With the use of modified epoxy resin as the base material, the supplemented by phosphate as a corrosion stabilizer, to achieve a corrosion of steel and galvanized steel with rust coating. Paint with excellent adhesion, more than 10MPa (1), resistant to neutral salt spray 1000h does not appear rust point. At the same time coating a large amount of ultra-fine zinc powder can be added for the tower galvanized layer zinc repair function, while the paint in the zinc powder for the tower to provide sacrificial anode protection, to achieve self-repair function of the coating. Compared to the market with a significant reduction in the cost of rust paint, enhance the anti-corrosion properties.

  10. Using ToF-SIMS and EIS to evaluate green pretreatment reagent: Corrosion protection of aluminum alloy by silica/zirconium/cerium hybrid coating

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Chao; Wang, Chiung-Chi; Wu, Chia-Wei; Liu, Shou-Ching; Mai, Fu-Der

    2008-12-01

    Increasing environmental concern has led to the restrictive use of chromate conversion coatings to protect Al-alloys from corrosion. Our research is under way to find environmentally compliant substitute coating such as Si/Zr/Ce hybrid coating. The corrosion protection effect of green pretreatment reagent consisted of Si-containing base solution, Ce- and Zr-containing sealing solutions on the corrosion protection of Al-alloys was studied with a 3.5% NaCl aqueous testing solution. The correlation between the corrosion resistance measured by electrochemical impedance spectroscopy (EIS) and surface chemical composition of the hybrid coating measured by time-of-flight secondary ion mass spectroscopy (ToF-SIMS) was studied. The proposed green pretreatment reagent was found improve the corrosion protection of Al-alloys, presumably due to the formation of protective oxide film acting as an oxygen barrier.

  11. Corrosion protection of galvanized steels by silane-based treatments

    NASA Astrophysics Data System (ADS)

    Yuan, Wei

    The possibility of using silane coupling agents as replacements for chromate treatments was investigated on galvanized steel substrates. In order to understand the influence of deposition parameters on silane film formation, pure zinc substrates were first used as a model for galvanized steel to study the interaction between silane coupling agents and zinc surfaces. The silane films formed on pure zinc substrates from aqueous solutions were characterized by ellipsometry, contact angle measurements, reflection absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscopy. The deposition parameters studied include solution concentration, solution dipping time and pH value of the applied solution. It appears that silane film formation involved a true equilibrium of hydrolysis and condensation reactions in aqueous solutions. It has been found that the silane film thickness obtained depends primarily on the solution concentration and is almost independent of the solution dipping time. The molecular orientation of applied silane films is determined by the pH value of applied silane solutions and the isoelectric point of metal substrates. The deposition window in terms of pH value for zinc substrates is between 6.0 and 9.0. The total surface energy of the silane-coated pure zinc substrates decreases with film aging time, the decrease rate, however, is determined by the nature of silane coupling agents. Selected silane coupling agents were applied as prepaint or passivation treatments onto galvanized steel substrates. The corrosion protection provided by these silane-based treatments were evaluated by salt spray test, cyclic corrosion test, electrochemical impedance spectroscopy, and stack test. The results showed that silane coupling agents can possibly be used to replace chromates for corrosion control of galvanized steel substrates. Silane coatings provided by these silane treatments serve mainly as physical barriers. Factors that

  12. An alternate to chromate conversion coatings for the corrosion protection of aluminum 2024-T3

    NASA Astrophysics Data System (ADS)

    Guo, Ruiguang

    Corrosion of high-strength aluminum alloys used for airspace application is an expensive and serious problem. The most significant environmental factor contributing to the corrosion of these alloys is water condensed from humid air and contaminated with soluble chloride salts. The Al 2024 series used for aircraft are particularly susceptible to corrosion in aqueous chloride solutions due to alloying constituents such as copper and other impurities. Chromates are efficient inhibitors of corrosion of aluminum in near neutral aqueous environments containing aggressive anions such as chlorides. Usually, aluminum alloys are initially protected by chromate conversion coatings. Additional polymer coatings are sometimes added during exposure to corrosive atmospheres such as marine environments. Although chromate coatings are widely used, they require the use of noxious solutions, so they have always presented effluent disposal problems. There are health and safety concerns over the use of chromates due to their toxicity and carcinogenic nature and, as a consequence, the environmental and health risks associated with the use of such coatings will be restricted in the future. It was these health and safety concerns that led to the development of alternative non-toxic coating processes with comparable adhesion properties and corrosion protection. A variety of process technologies are under development and are vying for acceptance in industrial markets. As an alternate conversion coating, a new titanate conversion coating was systematically researched and developed. Research concentrated on producing passive surfaces from a simple titanate solution using an immersion process. The corrosion resistance of the treated surface has been evaluated using simple, rapid electrochemical techniques as well as a more long-term salt spray test. Passivation by titanate conversion treatment exhibits many similarities to chromate conversion treatment. Based on this study of corrosion

  13. Development of Ferrium S53 High-Strength, Corrosion-Resistant Steel

    DTIC Science & Technology

    2009-01-01

    strength steel used in landing gear, and equivalent in corrosion resistance to the lower strength 15-5PH stainless steel used in actuators. It also...5PH stainless steel used in modern aerospace actuators. These objectives were met, with two minor exceptions: (1) the tensile yield of S53 is... stainless steel used in modern aerospace actuators. The work was initially funded as a 1-year SERDP proof-of-principle project. In this first

  14. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    NASA Astrophysics Data System (ADS)

    Feliu, S.; Llorente, I.

    2015-08-01

    This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS.

  15. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    NASA Astrophysics Data System (ADS)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-12-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO2 implanted AISI 304 - examined for different implantation and annealing parameters - is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 1016 cm-2 (Ti+) and 1 × 1017 cm-2 (O+) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 1015 cm-2 (Ti+) and 1 × 1016 cm-2 (O+). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  16. Active corrosion protection performance of an epoxy coating applied on the mild steel modified with an eco-friendly sol-gel film impregnated with green corrosion inhibitor loaded nanocontainers

    NASA Astrophysics Data System (ADS)

    Izadi, M.; Shahrabi, T.; Ramezanzadeh, B.

    2018-05-01

    In this study the corrosion resistance, active protection, and cathodic disbonding performance of an epoxy coating were improved through surface modification of steel by a hybrid sol-gel system filled with green corrosion inhibitors loaded nanocontainer as intermediate layer on mild steel substrate. The green inhibitor loaded nanocontainers (GIN) were used to induce active inhibition performance in the protective coating system. The corrosion protection performance of the coated panels was investigated by electrochemical impedance spectroscopy (EIS), salt spray, and cathodic disbonding tests. It was observed that the corrosion inhibition performance of the coated mild steel panels was significantly improved by utilization of active multilayer coating system. The inhibitor release from nanocontainers at the epoxy-silane film/steel interface resulted in the anodic and cathodic reactions restriction, leading to the lower coating delamination from the substrate and corrosion products progress. Also, the active inhibition performance of the coating system was approved by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and energy dispersive X-ray (EDS) analysis on the panels with artificial defects. The inhibitive agents were released to the scratch region and blocked the active sites on the metal surface.

  17. Vacuum Sputtered and Ion-Plated Coatings for Wear and Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1982-01-01

    The plasma or ion-assisted coating techniques such as sputtering and ion plating are discussed in view of wear and corrosion protection. The basic processes and the unique features of the technique are discussed in regard to the synthesis and development of high reliability wear and corrosion resistant films. The ions of the plasma which transfer energy, momentum, and charge to the substrate and the growing films can be beneficially used. As a result, coating adherence and cohesion is improved. Favorable morphological growth such as high density and porosity-free films can be developed, and residual stresses can be reduced.

  18. Fighting Corrosion

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reinforced concrete structures such as bridges, parking decks, and balconies are designed to have a service life of over 50 years. All too often, however, many structures fall short of this goal, requiring expensive repairs and protection work earlier than anticipated. The corrosion of reinforced steel within the concrete infrastructure is a major cause for this premature deterioration. Such corrosion is a particularly dangerous problem for the facilities at NASA s Kennedy Space Center. Located near the Atlantic Ocean in Florida, Kennedy is based in one of the most corrosive-prone areas in the world. In order to protect its launch support structures, highways, pipelines, and other steel-reinforced concrete structures, Kennedy engineers developed the Galvanic Liquid Applied Coating System. The system utilizes an inorganic coating material that slows or stops the corrosion of reinforced steel members inside concrete structures. Early tests determined that the coating meets the criteria of the National Association of Corrosion Engineers for complete protection of steel rebar embedded in concrete. Testing is being continued at the Kennedy's Materials Science Beach Corrosion Test Site.

  19. Strain Compatible Oxidation and Corrosion Protection Coatings for Enhanced Thermo-Mechanical Durability of Turbine Airfoils

    DTIC Science & Technology

    2011-12-05

    Report: Grant N00014-08-0331 Technical Objectives As critical components of advanced aircraft engines , turbine airfoils require coatings for...advanced aircrafi engines , turbine airfoils require coatings for enhancement of oxidation, corrosion and thermal capabilities . Airfoil coatings ofien...Oxidation and Corrosion Protection Coatings for Enhanced Thermo-Mechanical Durability of Turbine Airfoils 5b. GRANT NUMBER N00014-08-l-0331 5c

  20. Synthesis, characterization, and corrosion protection properties of poly( N-(methacryloyloxymethyl) benzotriazole- co-methyl methacrylate) on mild steel

    NASA Astrophysics Data System (ADS)

    Srikanth, A. P.; Lavanya, A.; Nanjundan, S.; Rajendran, N.

    2006-12-01

    The copolymers from different feed ratios of N-(methacryloyloxymethyl) benzotriazole (MMBT) and methyl methacrylate (MMA) has been synthesised using free radical solution polymerization technique and characterized using FT-IR and 13C NMR spectroscopy. The thermal stability of the polymers was studied using theremogravimetrtic analysis (TGA). The corrosion behaviors of mild steel specimens dip coated with different composition of copolymers have been evaluated by potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) method. These electrochemical properties were observed in 0.1 M HCl medium. The polarization and impedance measurements showed different corrosion protection efficiency with change in composition of the copolymers. It was found that the corrosion protection properties are owing to the barrier effect of the polymer layer covered on the mild steel surfaces. However, it was observed that the copolymer obtained from 1:1 mole ratio of MMBT and MMA exhibited better protection efficiency than other combinations.

  1. Memory-Metal Electromechanical Actuators

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F.

    1984-01-01

    Electrically controlled actuator produces predetermined force, torque, or displacement without motors, solenoids, or gears. Using memory-metal elements, actuator responds to digital input without electronic digitalto-analog conversion. To prevent overheating and consequent loss of hotformed shape, each element protected by thermostat turns off current when predetermined temperature is exceeded. Memory metals used to generate fast mechanical response to electric signals.

  2. Smart Coatings for Launch Site Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    2014-01-01

    Smart, environmentally friendly paint system for early corrosion detection, mitigation, and healing that will enable supportability in KSC launch facilities and ground systems through their operational life cycles. KSC's Corrosion Technology Laboratory is developing a smart, self-healing coating that can detect and repair corrosion at an early stage. This coating is being developed using microcapsules specifically designed to deliver the contents of their core when corrosion starts.

  3. Electrochemical corrosion studies

    NASA Technical Reports Server (NTRS)

    Knockemus, W. W.

    1986-01-01

    The objective was to gain familiarity with the Model 350 Corrosion Measurement Console, to determine if metal protection by grease coatings can be measured by the polarization-resistance method, and to compare corrosion rates of 4130 steel coated with various greases. Results show that grease protection of steel may be determined electrochemically. Studies were also conducted to determine the effectiveness of certain corrosion inhibitors on aluminum and steel.

  4. Performance and Analysis of Perfluoropolyalkyl Ether Grease Used on Space Shuttle Actuators--A Case Study

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Street, Kenneth W., Jr.; Zaretsky, Erwin V.

    2013-01-01

    Actuators used on the United States space shuttle fleet are lubricated with unspecified amounts of Braycote 601 (Castrol Braycote) grease consisting of a perfluoropolyalkyl ether (PFPAE) base oil thickened with a polytetrafluoroethylene (PTFE) filler. Each shuttle has four body flap actuators (BFAs) (two on each wing) on a common segmented shaft and four rudder speed brake (RSB) actuators. The actuators were designed to operate for 10 years and 100 flights without periodic relubrication. Visible inspection of two partially disassembled RSB actuators in continuous use for 19 years raised concerns over possible grease degradation due to discoloration of the grease on several places on the surfaces of the gears. Inspection revealed fretting, micropitting, wear and corrosion of the bearings and gears. A small amount of oil dripped from the disassembled actuators. Whereas new grease is beige in appearance, the discolored grease consisted of both grey and reddish colors. Grease samples taken from the actuators together with representative off-the-shelf new and unused grease samples were analyzed by gravimetry for oil content; by inductively coupled plasma spectroscopy (ICP) for metals content; Fourier transform infrared (FTIR) spectroscopy for base oil decomposition; and by size exclusion chromatography (SEC) for determination of the molecular weight distributions of the grease oil. The Braycote 601 grease was stable after 19 years of continuous use in the sealed RSB actuators and was fit for its intended purpose. There were no significant chemical differences between the used grease samples and new and unused samples. Base oil separation was not significant within the sealed actuators. No corrosive effect in the form of iron fluoride was detected. The grey color of grease samples was due to metallic iron. The red color was due to oxidation of the metallic wear particles from the gears and the bearings comprising the actuators.

  5. Microencapsulation Technologies for Corrosion Protective Coating Applications

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, Jerry; Jolley, Scott; Calle, Luz; Pearman, Benjamin; Zhang, Xuejun

    2015-01-01

    Microencapsulation technologies for functional smart Coatings for autonomous corrosion control have been a research area of strong emphasis during the last decade. This work concerns the development of pH sensitive micro-containers (microparticles and microcapsules) for autonomous corrosion control. This paper presents an overview of the state-of-the-art in the field of microencapsulation for corrosion control applications, as well as the technical details of the pH sensitive microcontainer approach, such as selection criteria for corrosion indicators and corrosion inhibitors; the development and optimization of encapsulation methods; function evaluation before and after incorporation of the microcontainers into coatings; and further optimization to improve coating compatibility and performance.

  6. Assessment of the factors affecting protective alumina formation under hot corrosion conditions

    NASA Astrophysics Data System (ADS)

    Task, Michael Nathan

    In this study, the influence of microstructure, composition, and phase constitution on the Type I (900°C) and Type II (700°C) hot corrosion resistance of MCrAlY and β-NiAl base alloys was investigated. The Type II hot corrosion resistance of MCrAlY alloys is generally enhanced by microstructural refinement. This can be attributed to the more rapid establishment of a protective Al2O3-rich scale due to the higher density of short-circuit diffusion paths for Al (phase boundaries). However, it was shown that for a given bulk composition, the compositions of the individual phases is also extremely important. If one phase is lean in an element which is highly beneficial from a hot corrosion standpoint, e.g., Cr, Type II hot corrosion resistance is quite poor, regardless of the microstructural scale. In addition, coarse reactive-element-rich phases, which are commonly found in MCrAlY alloys, can be incorporated into the thermally grown Al2O 3 scale and act as initiation sites for Type II attack. This stresses the importance of reactive element content and distribution in MCrAlY coatings. During Type I hot corrosion exposure of β-Ni-36Al (at. %) base alloys, the incubation stage is greatly extended by the addition of 5% Pt, Co, or Cr. In each case, the beneficial effects can be linked to an enhanced ability to rapidly form a protective Al2O3 scale, and to heal this scale when it sustains damage during exposure. With regard to Type II hot corrosion, individual additions of 5 at. % Pt or Cr are beneficial, largely for the same reason; however, additions of 5 at. % Co and co-additions of 5 at. % Pt + 5 at. % Cr result in a decrease in the duration of the incubation stage. Subsurface phase transformations that occur in the latter systems prevent the alloy from maintaining the growth of the Al2O3 scale. This mechanism is discussed in detail. Finally, the influence of alloy composition and exposure environment on the kinetics of the θ→α Al2O3 transformation in scales

  7. Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline

    PubMed Central

    Ammar, Ameen Uddin; Shahid, Muhammad; Ahmed, Muhammad Khitab; Khan, Munawar; Khalid, Amir

    2018-01-01

    Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy) and electrochemical DC corrosion testing using the “three electrode system”. Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene) and TiO2/GO (graphene oxide) nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and “produce water” of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples. PMID:29495339

  8. Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline.

    PubMed

    Ammar, Ameen Uddin; Shahid, Muhammad; Ahmed, Muhammad Khitab; Khan, Munawar; Khalid, Amir; Khan, Zulfiqar Ahmad

    2018-02-25

    Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy) and electrochemical DC corrosion testing using the "three electrode system". Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene) and TiO₂/GO (graphene oxide) nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and "produce water" of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples.

  9. Electrodeposition of Ni(OH)2 reinforced polyaniline coating for corrosion protection of 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Syed, Junaid Ali; Gao, Yangzhi; Lu, Hongbin; Meng, Xiangkang

    2018-05-01

    In the present paper, polyaniline (PANI) coating was electropolymerized in the presence of phosphoric acid with subsequent deposition of Ni(OH)2 particles. The Ni(OH)2 reinforced PANI coating significantly enhances the corrosion resistance of 304 stainless steel (304SS) in comparison with the pristine PANI coating. The galvanostatically deposited Ni(OH)2 particles fill the pores of the pristine PANI coating and improves the coatings hydrophobicity which decreases the diffusion of aggressive media. Importantly, the Rp values of Ni(OH)2 reinforced PANI coating is much higher than that of pristine PANI coating and the Ni(OH)2 reinforced PANI coating presents a long-term anti-corrosive ability (360 h) in 3.5 wt% NaCl solution. The prolonged corrosion protection of Ni(OH)2 reinforced PANI coating is attributed to the improved physical barrier as well as the facile formation of passive oxide film that sustain the anodic protection of the coating.

  10. Recent Developments on Autonomous Corrosion Protection Through Encapsulation

    NASA Technical Reports Server (NTRS)

    Li, W.; Buhrow, J. W.; Calle, L. M.; Gillis, M.; Blanton, M.; Hanna, J.; Rawlins, J.

    2015-01-01

    This paper concerns recent progress in the development of a multifunctional smart coating, based on microencapsulation, for the autonomous detection and control of corrosion. Microencapsulation has been validated and optimized to incorporate desired corrosion control functionalities, such as early corrosion detection and inhibition, through corrosion-initiated release of corrosion indicators and inhibitors, as well as self-healing agent release triggered by mechanical damage. While proof-of-concept results have been previously reported, more recent research and development efforts have concentrated on improving coating compatibility and synthesis procedure scalability, with a targeted goal of obtaining easily dispersible pigment-grade type microencapsulated materials. The recent progress has resulted in the development of pH-sensitive microparticles as a corrosion-triggered delivery system for corrosion indicators and inhibitors. The synthesis and early corrosion indication results obtained with coating formulations that incorporate these microparticles are reported. The early corrosion indicating results were obtained with color changing and with fluorescent indicators.

  11. High-temperature protection of steel goods from gas corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerasimov, V.V.; Porfir`eva, R.T.; Peskov, A.V.

    The feasibility of using phosphorus-containing compounds to activate the thermal diffusion impregnation of steels with aluminum was explored and substantiated by experiment. Volatile phosphorus formed from the thermal destruction of the phosphorus-containing substances and the resulting Al/P-type complexes, which provide a gas-transportation medium to take the aluminum to the article surface, were instrumental in the mechanism. The resultant thermal diffusion coatings enabled steel to be safely protected from gas corrosion at a temperature of 950{degrees}C. As a result of research on the structure of the protective layer using electron microscopy and X-ray phase analysis, coatings formed using a mixture containingmore » 1 wt.% iron glycerophosphate exhibited the optimum operating characteristics.« less

  12. Corrosion inhibition with different protective layers in tinplate cans for food preservation.

    PubMed

    Grassino, Antonela Ninčević; Grabarić, Zorana; Pezzani, Aldo; Squitieri, Giuseppe; Berković, Katarina

    2010-11-01

    In this work the influence of essential onion oil (EOO) on the protection of tinplates was compared with dioctyl sebacate oil (DOS) and epoxy phenolic lacquers, which are frequently used in the food canning industry. When EOO as the protective layer instead of DOS oil was used, tinplate porosity, measured electrochemically (7.58 ± 1.97 µA cm(-2) and 23.0 ± 1.3 µA cm(-2), respectively), and iron coating mass, calculated from AAS data (1.52 ± 0.15 mg m(-2) and 3.14 ± 0.42, respectively), was much lower indicating better corrosion protection. At higher storing temperature (36 °C) the addition of EOO to canned tomato purée enhanced the formation of hydrogen with time. The increasing volume fraction of H(2) (from 34.0 to 90.9% for cans without nitrates, and from 33.8 to 89.2% for cans with nitrates) is an indicator that corrosion takes place. As the use of EOO improves the protection of tinplate compared with DOS oil, and is almost as effective as epoxy phenolic lacquer, the addition of EOO can be recommended due to lower cost of canned food production and enhanced organoleptic properties, but the storage temperature has to be lower then 36 °C. 2010 Society of Chemical Industry

  13. Chitosan coatings crosslinked with genipin for corrosion protection of AZ31 magnesium alloy sheets.

    PubMed

    de Y Pozzo, Ludmila; da Conceição, Thiago F; Spinelli, Almir; Scharnagl, Nico; Pires, Alfredo T N

    2018-02-01

    In this study, coatings of chitosan crosslinked with genipin were prepared on sheets of AZ31 magnesium alloy and their corrosion protection properties were characterized by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The coatings were also characterized by means of FTIR and XPS. It was observed that the crosslinking process decreases the corrosion current and shifts the corrosion potential of the alloy to less negative values. The EIS analysis demonstrated that the crosslinking process increases the maximum impedance after short and long exposure times. The superior performance of the crosslinked coatings is related to a lower degree of swelling, as observed in the swelling tests carried out on free-standing films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Recent Developments on Microencapsulation for Autonomous Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Fitzpatrick, Lilliana; Jolley, Scott T.; Surma, Jan M.; Pearman, Benjamin P.; Zhang, Xuejun

    2014-01-01

    This work concerns recent progress in the development of a multifunctional smart coating based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of desired corrosion control functionalities, such as early corrosion detection and inhibition through corrosion controlled release of corrosion indicators and inhibitors, as well as self-healing agent release when mechanical damage occurs.While proof-of-concept results have been reported previously, more recent efforts have been concentrated in technical developments to improve coating compatibility, synthesis procedure scalability, as well as fine tuning the release property of encapsulated active agents.

  15. Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.

    2012-12-01

    Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.

  16. Peptide-based biocoatings for corrosion protection of stainless steel biomaterial in a chloride solution.

    PubMed

    Muruve, Noah G G; Cheng, Y Frank; Feng, Yuanchao; Liu, Tao; Muruve, Daniel A; Hassett, Daniel J; Irvin, Randall T

    2016-11-01

    In this work, PEGylated D-amino acid K122-4 peptide (D-K122-4-PEG), derived from the type IV pilin of Pseudomonas aeruginosa, coated on 304 stainless steel was investigated for its corrosion resistant properties in a sodium chloride solution by various electrochemical measurements, surface characterization and molecular dynamics simulation. As a comparison, stainless steel electrodes coated with non-PEGylated D-amino acid retroinverso peptide (RI-K122-4) and D-amino acid K122-4 peptide (D-K122-4) were used as control variables during electrochemical tests. It was found that the D-K122-4-PEG coating is able to protect the stainless steel from corrosion in the solution. The RI-K122-4 coating shows corrosion resistant property and should be investigated further, while the D-K122-4 peptide coating, in contrast, shows little to no effect on corrosion. The morphological characterizations support the corrosion resistance of D-K122-4-PEG on stainless steel. The adsorption of D-K122-4 molecules occurs preferentially on Fe2O3, rather than Cr2O3, present on the stainless steel surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effectiveness of oil-soluble corrosion inhibitors during corrosion-mechanical breakdown in acid and neutral media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardash, N.V.; Egorov, V.V.; Forman, A.Y.

    1986-11-01

    The purpose of the present study is to ascertain the effectiveness of familiar additives and oil-soluble inhibitors under conditions of acid corrosion in comparison with their rapid action and waterreplacement efficiency, and the capacity to inhibit an electrolyte that forms in the oils, to protect against electrochemical corrosion, especially from pitting, and to reduce the mechanical-corrosion forms of wear. Characteristics of several oil-soluble corrosion inhibitors and the effectiveness of the oil-soluble inhibitors are shown. The additives M, ALOP, and MONIKA are most effective under fretting-corrosion conditions. It is shown that only the combined additives and compositions that provide for metalmore » protection in both acid and neutral media are sufficiently effective in preventing corrosion cracking, fatigue, corrosion fatigue and corrosion fretting.« less

  18. Experimental Design for the Evaluation of Detection Techniques of Hidden Corrosion Beneath the Thermal Protective System of the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Kemmerer, Catherine C.; Jacoby, Joseph A.; Lomness, Janice K.; Hintze, Paul E.; Russell, Richard W.

    2007-01-01

    The detection of corrosion beneath Space Shuttle Orbiter thermal protective system is traditionally accomplished by removing the Reusable Surface Insulation tiles and performing a visual inspection of the aluminum substrate and corrosion protection system. This process is time consuming and has the potential to damage high cost tiles. To evaluate non-intrusive NDE methods, a Proof of Concept (PoC) experiment was designed and test panels were manufactured. The objective of the test plan was three-fold: establish the ability to detect corrosion hidden from view by tiles; determine the key factor affecting detectability; roughly quantify the detection threshold. The plan consisted of artificially inducing dimensionally controlled corrosion spots in two panels and rebonding tile over the spots to model the thermal protective system of the orbiter. The corrosion spot diameter ranged from 0.100" to 0.600" inches and the depth ranged from 0.003" to 0.020". One panel consisted of a complete factorial array of corrosion spots with and without tile coverage. The second panel consisted of randomized factorial points replicated and hidden by tile. Conventional methods such as ultrasonics, infrared, eddy current and microwave methods have shortcomings. Ultrasonics and IR cannot sufficiently penetrate the tiles, while eddy current and microwaves have inadequate resolution. As such, the panels were interrogated using Backscatter Radiography and Terahertz Imaging. The terahertz system successfully detected artificially induced corrosion spots under orbiter tile and functional testing is in-work in preparation for implementation.

  19. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.

    2010-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.

  20. Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers

    NASA Astrophysics Data System (ADS)

    Oksa, M.; Metsäjoki, J.; Kärki, J.

    2015-01-01

    There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.

  1. Comparative Study on Corrosion Protection of Reinforcing Steel by Using Amino Alcohol and Lithium Nitrite Inhibitors

    PubMed Central

    Lee, Han-Seung; Ryu, Hwa-Sung; Park, Won-Jun; Ismail, Mohamed A.

    2015-01-01

    In this study, the ability of lithium nitrite and amino alcohol inhibitors to provide corrosion protection to reinforcing steel was investigated. Two types of specimens—reinforcing steel and a reinforced concrete prism that were exposed to chloride ion levels resembling the chloride attack environment—were prepared. An autoclave accelerated corrosion test was then conducted. The variables tested included the chloride-ion concentration and molar ratios of anti-corrosion ingredients in a CaOH2-saturated aqueous solution that simulated a cement-pore solution. A concentration of 25% was used for the lithium nitrite inhibitor LiNO2, and an 80% solution of dimethyl ethanolamine ((CH3)2NCH2CH2OH, hereinafter DMEA) was used for the amino alcohol inhibitor. The test results indicated that the lithium nitrite inhibitor displayed anti-corrosion properties at a molar ratio of inhibitor of ≥0.6; the amino alcohol inhibitor also displayed anti-corrosion properties at molar ratios of inhibitor greater than approximately 0.3. PMID:28787936

  2. Organosilane self-assembled layers (SAMs) and hybrid silicate magnesium-rich primers for the corrosion protection of aluminum alloy 2024 T3

    NASA Astrophysics Data System (ADS)

    Wang, Duhua

    Although current chromate coatings function very well in corrosion protection for aircraft alloys, such as aluminum alloy 2024 T3, the U.S. Environmental Protection Agency is planning to totally ban the use of chromates as coating materials in the next decade or so because of their extremely toxic effect. For this purpose, both self-assembled layers and silicate magnesium-rich primers were tested to provide the corrosion protection for aluminum alloy. The long-term goal of this research is to develop a coating system to replace the current chromate coating for aircraft corrosion protection. Aluminum alloy 2024 T3 substrates were modified with self-assembled monolayer or multilayer thin films from different alkylsilane compounds. Mono-functional silanes, such as octadecyltrichlorosilane (C18SiCl3), can form a mixed hydrophobic monolayer or multilayer thin film on the aluminum oxide surface to provide a barrier to water and other electrolytes, so the corrosion resistance of the SAMs modified surface was increased significantly. On the other hand, the bi-functional silane self-assembly could attach the aluminum surface through the silicon headgroup while using its functional tailgroup to chemically bond the polymer coating, thus improving the adhesion between the aluminum substrate and coating substantially, and seems to contribute more to corrosion protection of aluminum substrate. Organosilanes were also combined with tetraethyl orthosilicate (TEOS) in propel ratios to form a sol-gel binder to make silicate magnesium-rich primers. Analogue to the inorganic zinc-rich coatings, the silicate magnesium-rich primers also showed excellent adhesion and solvent resistance. The sacrificial magnesium pigments and the chemically inert silicate binder both contribute to the anti-corrosion properties. Future studies will be focused on the formula optimization for better toughness, chemical resistance and anticorrosion performance.

  3. Microbial Iron Respiration Can Protect Steel from Corrosion

    PubMed Central

    Dubiel, M.; Hsu, C. H.; Chien, C. C.; Mansfeld, F.; Newman, D. K.

    2002-01-01

    Microbiologically influenced corrosion (MC) of steel has been attributed to the activity of biofilms that include anaerobic microorganisms such as iron-respiring bacteria, yet the mechanisms by which these organisms influence corrosion have been unclear. To study this process, we generated mutants of the iron-respiring bacterium Shewanella oneidensis strain MR-1 that were defective in biofilm formation and/or iron reduction. Electrochemical impedance spectroscopy was used to determine changes in the corrosion rate and corrosion potential as a function of time for these mutants in comparison to the wild type. Counter to prevailing theories of MC, our results indicate that biofilms comprising iron-respiring bacteria may reduce rather than accelerate the corrosion rate of steel. Corrosion inhibition appears to be due to reduction of ferric ions to ferrous ions and increased consumption of oxygen, both of which are direct consequences of microbial respiration. PMID:11872499

  4. Corrosion Protection of Nd-Fe Magnets via Phophatization, Silanization and Electrostatic Spraying with Organic Resin Composite Coatings

    NASA Astrophysics Data System (ADS)

    Ding, Xia; Li, Jingjie; Li, Musen; Ge, Shengsong; Wang, Xiuchun; Ding, Kaihong; Cui, Shengli; Sun, Yongcong

    2014-09-01

    Nd-Fe-B permanent magnets possess excellent properties. However, they are highly sensitive to the attack of corrosive environment. The aim of this work is to improve the corrosion resistance of the magnets by phosphatization, silanization, and electrostatic spraying with organic resin composite coatings. Field emission scanning electron microscope (FE-SEM) and energy dispersive spectrometer (EDS) tests showed that uniform phosphate conversion coatings and spray layers were formed on the surface of the Nd-Fe-B magnets. Neutral salt spray tests exhibited that, after treated by either phosphating, silanization or electrostatic spraying, the protectiveness of Nd-Fe-B alloys was apparently increased. And corrosion performance of magnets treated with silane only was slightly inferior to those of phosphatized ones. However, significant improvement in corrosion protection was achieved after two-step treatments, i.e. by top-coating spray layer with phosphate or silane films underneath. Grid test indicated that the phosphate and silane coating were strongly attached to the substrate while silane film was slightly weaker than the phosphate-treated ones. Magnetic property analysis revealed phosphatization, silanization, and electrostatic spraying caused decrease in magnetism, but silanization had the relatively smaller effect.

  5. Electrodeposition and Characterization of Mn-Cu-Zn Alloys for Corrosion Protection Coating

    NASA Astrophysics Data System (ADS)

    Tsurtsumia, Gigla; Gogoli, David; Koiava, Nana; Kakhniashvili, Izolda; Jokhadze, Nunu; Lezhava, Tinatin; Nioradze, Nikoloz; Tatishvili, Dimitri

    2017-12-01

    Mn-Cu-Zn alloys were electrodeposited from sulphate bath, containing citrate or EDTA and their mixtures as complexing ligands. The influence of bath composition and deposition parameters on alloys composition, cathodic current efficiency and structural and electrochemical properties were studied. At a higher current density (≥ 37.5 A dm-2) a uniform surface deposit of Mn-Cu-Zn was obtained. Optimal pH of electrolyte (0.3 mol/dm3Mn2+ + 0.6 mol/dm3 (NH4)2SO4 +0.1 mol/dm3Zn2++0.005 mol/dm3 Cu2++ 0.05mol/dm3Na3Cit + 0.15mol/dm3 EDTA; t=300C; τ=20 min) for silvery, nonporous coating of Mn-Cu-Zn alloy was within 6.5-7.5; coating composition: 71-83% Mn, 6-7.8% Cu, 11.5-20% Zn, current efficiency up to 40%. XRD patterns revealed BCT (body centred tetragonal) γ-Mn solid phase solution (lattice constants a=2.68 Å c=3.59 Å). Corrosion measurements of deposited alloys were performed in aerated 3.5% NaCl solution. The corrosion current density (icorr) of the electrodeposited alloys on carbon steel was 10 times lower than corrosion rate of pure zinc and manganese coatings. Triple alloy coatings corrosion potential (Ecorr = -1140 mV vs. Ag/AgCl) preserved negative potential value longer (more than three months) compared to carbon steel substrate (Ecorr = -670 mV vs. Ag/AgCl). Tafel polarization curves taken on Mn-Cu-Zn alloy coating in aerated 3.5% NaCl solution did not show a typical passivation behaviour which can be explained by formation oflow solubility of adherent corrosion products on the alloy surface. Corrosion test of Mn-Cu-Zn electrocoating in chlorine environment shows that it is the best cathodic protective coating for a steel product.

  6. Design and testing of a self-actuated shut down system for the protection of liquid metal fast breeder reactors (LMFBRs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, J.; Sowa, E.S.

    1977-04-01

    The design and testing of a simple and reliable Self-Actuated Shutdown System (SASS) for the protection of Liquid Metal Fast Breeder Reactors (LMFBRs) is described. A ferromagnetic Curie temperature permanent magnet holding device has been selected for the design of the Self-Actuated Shutdown System in order to enhance the safety of liquid metal cooled fast reactors (LMFBRs). The self-actuated, self-contained device operates such that accident conditions, resulting in increased coolant temperature or neutron flux reduce the magnetic holding force suspending a neutron absorber above the core by raising the temperature of the trigger mechanism above the Curie point. Neutron absorbermore » material is then inserted into the core, under gravity, terminating the accident. Two possible design variations of the selected concept are presented.« less

  7. The Many Faces of Graphene as Protection Barrier. Performance under Microbial Corrosion and Ni Allergy Conditions

    PubMed Central

    Gentil, Dana; del Campo, Valeria; Henrique Rodrigues da Cunha, Thiago; Henríquez, Ricardo; Garín, Carolina; Ramírez, Cristian; Flores, Marcos; Seeger, Michael

    2017-01-01

    In this work we present a study on the performance of CVD (chemical vapor deposition) graphene coatings grown and transferred on Ni as protection barriers under two scenarios that lead to unwanted metal ion release, microbial corrosion and allergy test conditions. These phenomena have a strong impact in different fields considering nickel (or its alloys) is one of the most widely used metals in industrial and consumer products. Microbial corrosion costs represent fractions of national gross product in different developed countries, whereas Ni allergy is one of the most prevalent allergic conditions in the western world, affecting around 10% of the population. We found that grown graphene coatings act as a protective membrane in biological environments that decreases microbial corrosion of Ni and reduces release of Ni2+ ions (source of Ni allergic contact hypersensitivity) when in contact with sweat. This performance seems not to be connected to the strong orbital hybridization that Ni and graphene interface present, indicating electron transfer might not be playing a main role in the robust response of this nanostructured system. The observed protection from biological environment can be understood in terms of graphene impermeability to transfer Ni2+ ions, which is enhanced for few layers of graphene grown on Ni. We expect our work will provide a new route for application of graphene as a protection coating for metals in biological environments, where current strategies have shown short-term efficiency and have raised health concerns. PMID:29292763

  8. The Many Faces of Graphene as Protection Barrier. Performance under Microbial Corrosion and Ni Allergy Conditions.

    PubMed

    Parra, Carolina; Montero-Silva, Francisco; Gentil, Dana; Del Campo, Valeria; Henrique Rodrigues da Cunha, Thiago; Henríquez, Ricardo; Häberle, Patricio; Garín, Carolina; Ramírez, Cristian; Fuentes, Raúl; Flores, Marcos; Seeger, Michael

    2017-12-08

    In this work we present a study on the performance of CVD (chemical vapor deposition) graphene coatings grown and transferred on Ni as protection barriers under two scenarios that lead to unwanted metal ion release, microbial corrosion and allergy test conditions. These phenomena have a strong impact in different fields considering nickel (or its alloys) is one of the most widely used metals in industrial and consumer products. Microbial corrosion costs represent fractions of national gross product in different developed countries, whereas Ni allergy is one of the most prevalent allergic conditions in the western world, affecting around 10% of the population. We found that grown graphene coatings act as a protective membrane in biological environments that decreases microbial corrosion of Ni and reduces release of Ni 2+ ions (source of Ni allergic contact hypersensitivity) when in contact with sweat. This performance seems not to be connected to the strong orbital hybridization that Ni and graphene interface present, indicating electron transfer might not be playing a main role in the robust response of this nanostructured system. The observed protection from biological environment can be understood in terms of graphene impermeability to transfer Ni 2+ ions, which is enhanced for few layers of graphene grown on Ni. We expect our work will provide a new route for application of graphene as a protection coating for metals in biological environments, where current strategies have shown short-term efficiency and have raised health concerns.

  9. Corrosion-resistant uranium

    DOEpatents

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  10. Corrosion-resistant uranium

    DOEpatents

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  11. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    NASA Technical Reports Server (NTRS)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  12. Coatings for Oxidation and Hot Corrosion Protection of Disk Alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, Jim; Gabb, Tim; Draper, Sue; Miller, Bob; Locci, Ivan; Sudbrack, Chantal

    2017-01-01

    Increasing temperatures in aero gas turbines is resulting in oxidation and hot corrosion attack of turbine disks. Since disks are sensitive to low cycle fatigue (LCF), any environmental attack, and especially hot corrosion pitting, can potentially seriously degrade the life of the disk. Application of metallic coatings are one means of protecting disk alloys from this environmental attack. However, simply the presence of a metallic coating, even without environmental exposure, can degrade the LCF life of a disk alloy. Therefore, coatings must be designed which are not only resistant to oxidation and corrosion attack, but must not significantly degrade the LCF life of the alloy. Three different Ni-Cr coating compositions (29, 35.5, 45wt. Cr) were applied at two thicknesses by Plasma Enhanced Magnetron Sputtering (PEMS) to two similar Ni-based disk alloys. One coating also received a thin ZrO2 overcoat. The coated samples were also given a short oxidation exposure in a low PO2 environment to encourage chromia scale formation. Without further environmental exposure, the LCF life of the coated samples, evaluated at 760C, was less than that of uncoated samples. Hence, application of the coating alone degraded the LCF life of the disk alloy. Since shot peening is commonly employed to improve LCF life, the effect of shot peening the coated and uncoated surface was also evaluated. For all cases, shot peening improved the LCF life of the coated samples. Coated and uncoated samples were shot peened and given environmental exposures consisting of 500 hrs of oxidation followed by 50 hrs of hot corrosion, both at 760C). The high-Cr coating showed the best LCF life after the environmental exposures. Results of the LCF testing and post-test characterization of the various coatings will be presented and future research directions discussed.

  13. Biobased polymers for corrosion protection of metals

    USDA-ARS?s Scientific Manuscript database

    Anticorrosive biobased polymers were developed in our lab. We isolated an exopolysaccharide produced by a microbe that, when coated on metal substrates, exhibited unique corrosion inhibition. Corrosion is a worldwide problem and impacts the economy, jeopardizes human health and safety, and impedes t...

  14. Corrosion Protection Properties of PPy-ND Composite Coating: Sonoelectrochemical Synthesis and Design of Experiment

    NASA Astrophysics Data System (ADS)

    Ashassi-Sorkhabi, H.; Bagheri, R.; Rezaei-Moghadam, B.

    2016-02-01

    In this research, the nanocomposite coatings comprising the polypyrrole-nanodiamond, PPy-ND, on St-12 steel electrodes were electro-synthesized using in situ polymerization process under ultrasonic irradiation. The corrosion protection performance and morphology characterization of prepared coatings were investigated by electrochemical methods and scanning electron microscopy, SEM, respectively. Also, the experimental design was employed to determine the best values considering the effective parameters such as the concentration of nanoparticles, the applied current density and synthesis time to achieve the most protective films. A response surface methodology, RSM, involving a central composite design, CCD, was applied to the modeling and optimization of the PPy-ND nanocomposite deposition. Pareto graphic analysis of the parameters indicated that the applied current density and some of the interactions were effective on the response. The electrochemical results proved that the embedment of diamond nanoparticle, DNP, improves the corrosion resistance of PPy coatings significantly. Therefore, desirable correlation exists between predicted data and experimental results.

  15. A Multifunctional Smart Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  16. Protection of copper surface with phytic acid against corrosion in chloride solution.

    PubMed

    Peca, Dunja; Pihlar, Boris; Ingrid, Milošev

    2014-01-01

    Phytic acid (inositol hexaphosphate) was tested as a corrosion inhibitor for copper in 3% sodium chloride. Phytic acid is a natural compound derived from plants, it is not toxic and can be considered as a green inhibitor. Electrochemical methods of linear polarization and potentiodynamic polarization were used to study the electrochemical behaviour and evaluate the inhibition effectiveness. To obtain the optimal corrosion protection the following experimental conditions were investigated: effect of surface pre-treatment (abrasion and three procedures of surface roughening), pre-formation of the layer of phytic acid, time of immersion and concentration of phytic acid. To evaluate the surface pre-treatment procedures the surface roughness and contact angle were measured. Optimal conditions for formation of phytic layer were selected resulting in the inhibition effectiveness of nearly 80%. Morphology and composition of the layer were further studied by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The layer of phytic acid with thickness in the nanometer range homogeneously covers the copper surface. The obtained results show that this natural compound can be used as a mildly effective corrosion inhibitor for copper in chloride solution.

  17. Porous 'Ouzo-effect' silica-ceria composite colloids and their application to aluminium corrosion protection.

    PubMed

    Hollamby, Martin J; Borisova, Dimitriya; Möhwald, Helmuth; Shchukin, Dmitry

    2012-01-04

    By exploiting spontaneous emulsification to prepare porous SiO(2) particles, we report the formation of porous CeO(2)@SiO(2) hybrid colloids and their incorporation into a silica-zirconia coating to improve the corrosion protection of aluminium. This journal is © The Royal Society of Chemistry 2012

  18. Corrosion Embrittlement of Duralumin IV : The Use of Protective Coatings

    NASA Technical Reports Server (NTRS)

    Rawdon, Henry S

    1928-01-01

    Although the corrosion resistance of sheet duralumin can be greatly improved by suitable heat treatment, protection of the surface is still necessary if long life under varied service conditions is to be insured. The coatings used for this purpose may be grouped into three classes: the varnish type of coating, the oxide type produced by a chemical treatment of the surface, and metallic coatings, of which aluminum appears to be the most promising. Since the necessary weather exposure tests are not complete, some of the conclusions regarding the value of various surface coatings are necessarily tentative.

  19. Corrosion Control in the Aerospace Industry

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it..

  20. Self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.

    1988-01-01

    A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

  1. Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: Experiments and models

    NASA Astrophysics Data System (ADS)

    Weisenburger, A.; Schroer, C.; Jianu, A.; Heinzel, A.; Konys, J.; Steiner, H.; Müller, G.; Fazio, C.; Gessi, A.; Babayan, S.; Kobzova, A.; Martinelli, L.; Ginestar, K.; Balbaud-Célerier, F.; Martín-Muñoz, F. J.; Soler Crespo, L.

    2011-08-01

    Considering the status of knowledge on corrosion and corrosion protection and especially the need for long term compatibility data of structural materials in HLM a set of experiments to generate reliable long term data was defined and performed. The long term corrosion behaviour of the two structural materials foreseen in ADS, 316L and T91, was investigated in the design relevant temperature field, i.e. from 300 to 550 °C. The operational window of the two steels in this temperature range was identified and all oxidation data were used to develop and validate the models of oxide scale growth in PbBi. A mechanistic model capable to predict the oxidation rate applying some experimentally fitted parameters has been developed. This model assumes parabolic oxidation and might be used for design and safety relevant investigations in future. Studies on corrosion barrier development allowed to define the required Al content for the formation of thin alumina scales in LBE. These results as well as future steps and required improvements are discussed. Variation of experimental conditions clearly showed that specific care has to be taken with respect to local flow conditions and oxygen concentrations.

  2. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation.

    PubMed

    Gąsiorek, Jolanta; Szczurek, Anna; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-26

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  3. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation

    PubMed Central

    Gąsiorek, Jolanta; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-01

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented. PMID:29373540

  4. Shop fabricated corrosion-resistant underground storage tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geyer, W.B.; Stellmach, W.A.

    1995-12-31

    Integral corrosion resistance has long been incorporated into shop fabricated steel underground storage tank design. Since 1969, an industry standard has been the sti-P{sub 3}{reg_sign} (P3) tank. However, the past decade has seen the development of several alternative corrosion resistant and secondary containment technologies. Fiberglass-coated steel composite tanks, and jacketed tanks utilizing various materials as a secondary wall, provide corrosion resistance without the cathodic protection monitoring requirements mandated by the EPA for single-wall P3 tanks. On the other hand, the P3 tank is the only tank technology commonly marketed today with an integral ability to verify its corrosion resistance overmore » the life of the tank. Many existing USTs remain to be replaced or upgraded with corrosion resistance (and other requirements) by the end of 1998. Steel tanks built and installed prior to the advent of pre-engineered, factory-supplied protection against corrosion can be retrofitted with cathodic protection or can be internally lined. Specific installation standards developed by the steel tank industry and the petroleum industry must be followed so as to assure the integrity of the various corrosion resistant technologies developed by the Steel Tank Institute. The technologies describes in this paper will ensure compliance with the corrosion protection requirements of new storage tanks.« less

  5. Corrosion Protection of Aluminum

    DOEpatents

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  6. Investigation of corrosion protection performance of sol-gel surface treatments on AA2024-T3

    NASA Astrophysics Data System (ADS)

    Voevodin, Natalia Nikolajevna

    The dissertation research project addresses the technologically important problem of replacement of chromate based coatings for corrosion protection of aircraft. A review of corrosion processes in high-strength aluminum alloys indicated that the strengthening intermetallic precipitates provide local cathodic areas, which may initiate surface pitting. The mechanisms of chromate inhibition in these localized corrosion processes were identified. The environmental hazard of chromates was also highlighted, serves as the impetus for chromate coating replacement. Sol-gel coatings are shown as an excellent alternative, based on environment compliance, flexibility in the composition control, and reasonable costs. Several sol-gel coatings were formulated and applied to the surface of an AA2024-T3 alloy. The coating composition and bonding were analyzed with XPS and FTIR, surface morphology was studied with SEM and AFM, and corrosion protection properties were tested with EIS, PDS, salt water immersion, and salt-fog exposure. The results demonstrated that epoxy-zirconate sol-gel coatings can provide excellent barrier properties. A novel SVET technique was applied for studies of local electrochemical processes in the pitting formation. This technique was further refined in model studies of aluminum surfaces with artificially created local cathodic regions, experimental studies of chromate inhibition with pit formation, and pitting development studies in sol-gel coatings with artificially introduced defects. Mechanisms of pitting development and inhibition with the pit initiation and growth kinetics were established. The Zr-epoxy coatings are subjected to the pit development and undercutting in the absence of the corrosion inhibitors. Several organic and non-organic inhibitors were evaluated in the sol-gel coating composition. Organic inhibitors had a better compliance with sol-gel chemistry and were identified for future studies. Experiments were performed to verify that sol

  7. Environmentally Friendly Corrosion Preventative Compounds

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Montgomery, Eliza; Kolody, Mark; Curran, Jerry; Back, Teddy; Balles, Angela

    2012-01-01

    The objective of the Ground Systems Development and Operations Program Environmentally Friendly Corrosion Protective Coatings and Corrosion Preventive Compounds (CPCs) project is to identify, test, and develop qualification criteria for the use of environmentally friendly corrosion protective coatings and CPCs for flight hardware and ground support equipment. This document is the Final Report for Phase I evaluations, which included physical property, corrosion resistance, and NASA spaceport environment compatibility testing and analysis of fifteen CPC types. The CPCs consisted of ten different oily film CPCs and five different wax or grease CPC types. Physical property testing encompassed measuring various properties of the bulk CPCs, while corrosion resistance testing directly measured the ability of each CPC material to protect various metals against corrosion. The NASA spaceport environment compatibility testing included common tests required by NASA-STD-6001, "Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion". At the end of Phase I, CPC materials were down-selected for inclusion in the next test phases. This final report includes all data and analysis of results obtained by following the experimental test plan that was developed as part of the project. Highlights of the results are summarized by test criteria type.

  8. A Survey of Corrosion and Conditions of Corrosion Protection Systems in Civil Works Structures of the U.S. Army Corps of Engineers

    DTIC Science & Technology

    2014-09-01

    corrosion: coatings and cathodic protection (CP). Coatings consist of paints, epoxies, enamels , metalizing, and other coatings. CP is a chem- ical means...environmental factors such as water quality and resistivity. One of the major problems associated with lock gates is structural cracking in the...One of the problems described by Mr. Davis is fatigue crack growth resulting from the poor welding usually associated with stress risers and

  9. CORROSION PROTECTION OF ALUMINUM

    DOEpatents

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  10. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    NASA Astrophysics Data System (ADS)

    Pham, Gia Vu; Truc Trinh, Anh; To, Thi Xuan Hang; Duong Nguyen, Thuy; Trang Nguyen, Thu; Hoan Nguyen, Xuan

    2014-09-01

    In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix.

  11. Effects of aging temperature and time on the corrosion protection provided by trivalent chromium process coatings on AA2024-T3.

    PubMed

    Li, Liangliang; Swain, Greg M

    2013-08-28

    The effects of aging temperature and time on the physical structure of and corrosion protection provided by trivalent chromium process (TCP) coatings on AA2024-T3 are reported. The TCP coating forms a partially blocking barrier layer on the alloy surface that consists of hydrated channels and or defects. It is through these channels and defects that ions and dissolved O2 can be transported to small areas of the underlying alloy. Reactions initiate at these sites, which can ultimately lead to undercutting of the coating and localized corrosion. We tested the hypothesis that collapsing the channels and or reducing the number of defects in the coating might be possible through post-deposition heat treatment, and that this would enhance the corrosion protection provided by the coating. This was tested by aging the TCP-coated AA2024 alloys in air overnight at room temperature (RT), 55, 100, or 150 °C. The TCP coating became dehydrated and thinner at the high temperatures (55 and 100 °C). This improved the corrosion protection as evidenced by a 2× increase in the charge transfer resistance. Aging at 150 °C caused excessive coating dehydration and shrinkage. This led to severe cracking and detachment of the coating from the surface. The TCP-coated AA2024 samples were also aged in air at RT from 1 to 7 days. There was no thinning of the coating, but the corrosion protection was enhanced with a longer aging period as evidenced by a 4× increase in the charge transfer resistance. The coating became more hydrophobic after aging at elevated temperature (up to 100 °C) and with aging time at RT as evidenced by an increased water contact angle from 7 to 100 °C.

  12. HVOF Thermal Spray TiC/TiB 2 Coatings for AUSC Boiler/Turbine Components for Enhanced Corrosion Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, Kanchan; Koc, Rasit; Fan, Chinbay

    The high temperatures of operations still pose significant risk of degradation and fatigue from oxidizing, corroding and eroding environment. In addition to unused O 2, water from combustion and SO x from the coal sulfur oxidation that result in highly corrosive environment, acid gases such as HCl and other sulfur compounds may also be present. These adverse effects are further accelerated due to the elevated temperatures. In addition, ash particulates and unburnt carbon and pyritic sulfur can cause erosion of the surface and thus loss of material. Unburnt carbon and pyritic sulfur may also cause localized reduction sites. Thus, firesidemore » corrosion protection and steam oxidation protection alternatives to currently used Ni-Cr overlays need to be identified and evaluated. Titanium carbide (TiC) is a suitable alternative on account of the material features such as the high hardness, the high melting point, the high strength and the low density for the substitution or to be used in conjunction with NiCr for enhancing the fireside corrosion and erosion of the materials. Another alternative is the use of titanium boride as a coating for chemical stability required for long-term service and high erosion resistance over the state-of-the-art, high fracture toughness (K 1C ~12 MPam 1/2) and excellent corrosion resistance (kp~1.9X10 -11 g 2/cm 4/s at 800°C in air). The overarching aim of the research endeavor was to synthesize oxidation, corrosion and wear resistant TiC and TiB 2 coating powders, apply thermal spray coating on existing boiler materials and characterize the coated substrates for corrosion resistance for applications at high temperatures (500 -750 °C) and high pressures (~350 bars) using the HVOF process and to demonstrate the feasibility of these coating to be used in AUSC boilers and turbines.« less

  13. Indium oxide thin film as potential photoanodes for corrosion protection of stainless steel under visible light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yan; Yu, Jianqiang, E-mail: jianqyu@qdu.edu.cn; Sun, Kai

    Graphical abstract: If the conduction band potential of In{sub 2}O{sub 3} is more negative than the corrosion potential of stainless steel, photo-induced electrons will be transferred from In{sub 2}O{sub 3} to the steel, thus shifting the potential of the steel into a corrosion immunity region and preventing the steel from the corrosion. - Highlights: • Indium oxide performed novel application under visible light. • Indium oxide by sol–gel method behaved better photoelectrochemical properties. • Electrons were transferred to stainless steel from indium oxide once light on. - Abstract: This paper reports the photoelectrochemical cathodic protection of 304 stainless steel bymore » In{sub 2}O{sub 3} thin-film under visible-light. The films were fabricated with In{sub 2}O{sub 3} powders, synthesized by both sol–gel (In{sub 2}O{sub 3}-sg) and solid-state (In{sub 2}O{sub 3}-ss) processes. The photo-induced open circuit potential and the photo-to-current efficiency measurements suggested that In{sub 2}O{sub 3} could be a promising candidate material for photoelectrochemical cathodic protection of metallic alloys under visible light. Moreover, the polarization curve experimental results indicated that In{sub 2}O{sub 3}-sg thin-film can mitigate the corrosion potential of 304 stainless steel to much more negative values with a higher photocurrent density than the In{sub 2}O{sub 3}-ss film under visible-light illumination. All the results demonstrated that the In{sub 2}O{sub 3}-sg thin-film provides a better photoelectrochemical cathodic protection for 304 stainless steel than In{sub 2}O{sub 3}-ss thin-film under visible-light illumination. The higher photoelectrochemical efficiency is possibly due to the uniform thin films produced with the smaller particle size of In{sub 2}O{sub 3}-sg, which facilitates the transfer of the photo-induced electrons from bulk to the surface and suppresses the charge recombination of the electrons and holes.« less

  14. 49 CFR 193.2631 - Internal corrosion control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Internal corrosion control. 193.2631 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2631 Internal corrosion control. Each component that is subject to internal corrosive attack must be protected from internal corrosion by— (a...

  15. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  16. 40 CFR 261.22 - Characteristic of corrosivity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 261.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Characteristic of corrosivity. (a) A solid waste exhibits the characteristic of corrosivity if a representative... Methods for Evaluating Solid Waste, Physical/Chemical Methods,” EPA Publication SW-846, as incorporated by...

  17. Improvement of corrosion protection property of Mg-alloy by DLC and Si-DLC coatings with PBII technique and multi-target DC-RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Masami, Ikeyama; Setsuo, Nakao; Tsutomu, Sonoda; Junho, Choi

    2009-05-01

    Magnesium alloys have been considered as one of the most promising light weight materials with potential applications for automobile and aircraft components. Their poor corrosion resistance, however, has to date prevented wider usage. Diamond-like carbon (DLC) and silicon-incorporated DLC (Si-DLC) coatings are known to provide a high degree of corrosion protection, and hold accordingly promise for enhancing the corrosion resistance of the magnesium alloys. In this work we have studied the effect of coating conditions of DLC coatings as well as Si incorporation into coating on corrosion resistance, deposited onto AZ91 magnesium alloy substrates by plasma based ion implantation (PBII). The influences of a Ti interlayer beneath the DLC, Si-DLC and Ti incorporated DLC (Ti-DLC) coatings fabricated by multi-target direct-current radio-frequency (DC-RF) magnetron sputtering were also examined on both the adhesion strength and corrosion resistance of the materials. We have also examined the effect of the Si content in the Si-DLC coatings made by magnetron sputtering on the alloys' corrosion resistance. The results of potentiodynamic polarization measurements demonstrate that Si-DLC coating deposited by PBII exhibits the highest corrosion resistance in an aqueous 0.05 M NaCl solution. Although Ti layer is helpful in increasing adhesion between DLC coating and AZ91 substrate, it also influences adversely corrosion protection. The ozone treatment of the magnesium alloy's surface before the formation of coatings has been found to improve both adhesion strength and corrosion resistance.

  18. The relationship between corrosion protection and hydrogen embrittlement properties of HAZ in flux cored are welding

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Jong; Moon, Kyung-Man

    2002-07-01

    The cathodic protection method is being widely used in marine structural steel. However, a high tensile steel such as RE 36 steel used for marine structural steel is easily susceptible to hydrogen embrittlement due to overprotection as well as the preferential corrosion of the heat affected zone (HAZ). In this paper, corrosion resistance and mechanical properties were investigated from the electrochemical view and mechanical view in as-wedded and post-weld heat treated specimens. Fracture surface was analyzed by SEM. The corrosion resistance in post-weld heat treated at 550°C was superior to that at other post-weld heat treatment (PWHT) temperature. On the other hand, elongation was decreased with a shift to the low potential direction which may cause hydrogen embrittlement. And a quasi-cleavage (Q.C) fracture mode was also observed significantly with a potential increase to the active direction.

  19. Comparative Behaviour of Nitrite and Nitrate for the Protection of Rebar Corrosion

    NASA Astrophysics Data System (ADS)

    Ahmad, Altaf; Kumar, Anil

    2017-10-01

    Corrosion of rebar steel due to environmental causes has been studied through various approaches, and among the protection techniques use of inhibitors has gained encouragement. Nitrites and nitrates of sodium have gained sufficient scientific coverage. Recently, nitrites and nitrates of calcium have been verified in some studies, which, however, needs further experimentation through different angles. Simple polarization technique has been utilized in the present study to compare inhibitive efficiency of these salts of sodium and calcium, which indicate that calcium salts are more efficient.

  20. Corrosion Resistance Characterization of Coating Systems Used to Protect Aluminum Alloys Using Electrochemical Impedance Spectroscopy and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Gambina, Federico

    In this study, the corrosion protection provided by of a number of chromate and chromate-free coatings systems was characterized in detail. High-solids SrCrO4-pigmented epoxy primers applied to 2024 and 7075 substrates were subject to salt spray exposure testing for 30 days. Samples were removed periodically and an electrochemical impedance measurement (EIS) was made. Although none of the coatings tested showed visual evidence of corrosion, the total impedance of the samples decreased by as much as two orders of magnitude. An analysis of capacitance showed that the primer coatings rapidly took up water from the exposure environment, but the coating-metal remained passive despite the fact that it was wet. These results support the idea that chromate coatings protect by creating a chromate-rich electrolyte within the coating that is passivating to the underlying metal substrate. They also suggest that indications of metal substrate passivity found in the low-frequency capacitive reactance of the impedance spectra are a better indicator of corrosion protection than the total impedance. The low-frequency capacitive reactance from EIS measurements is also good at assessing the protectiveness of chromate-free coatings systems. Fifteen different coatings systems comprising high-solids, chromate-free primers and chromate-free conversion coatings were applied to 2024 and 7075 substrates. These coatings were subject to salt spray exposure and EIS measurements. All coatings were inferior to coating systems containing chromate, but changes in the capacitive reactance measured in EIS was shown to anticipate visual indications of coating failure. A predictive model based on neural networks was trained to recognize the pattern in the capacitive reactance in impedance spectra measured after 48 hours of exposure and make an estimate of remaining coating life. A sensitivity analysis was performed to prune the impedance inputs. As a result of this analysis, a very simple but highly

  1. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; actuation of fire...

  2. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...

  3. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...

  4. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...

  5. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...

  6. Ballast Water Treatment Corrosion Scoping Study

    DTIC Science & Technology

    2011-10-01

    measurements can only be indicative and are seldom conclusive. For the maritime industry , corrosion and corrosion protection is a considerable cost element...8  Table 4. Corrosion rates of several alloys in natural and chlorinated seawater...10  Table 5. Corrosion rates of selected marine alloys in untreated seawater and seawater with 0, 0.1, 0.25, and 0.50 mg L-1 residual

  7. The corrosion protection of AA2024-T3 aluminium alloy by leaching of lithium-containing salts from organic coatings.

    PubMed

    Visser, Peter; Liu, Yanwen; Zhou, Xiaorong; Hashimoto, Teruo; Thompson, George E; Lyon, Stuart B; van der Ven, Leendert G J; Mol, Arjan J M C; Terryn, Herman A

    2015-01-01

    Lithium carbonate and lithium oxalate were incorporated as leachable corrosion inhibitors in model organic coatings for the protection of AA2024-T3. The coated samples were artificially damaged with a scribe. It was found that the lithium-salts are able to leach from the organic coating and form a protective layer in the scribe on AA2024-T3 under neutral salt spray conditions. The present paper shows the first observation and analysis of these corrosion protective layers, generated from lithium-salt loaded organic coatings. The scribed areas were examined by scanning and transmission electron microscopy before and after neutral salt spray exposure (ASTM-B117). The protective layers typically consist of three different layered regions, including a relatively dense layer near the alloy substrate, a porous middle layer and a flake-shaped outer layer, with lithium uniformly distributed throughout all three layers. Scanning electron microscopy and white light interferometry surface roughness measurements demonstrate that the formation of the layer occurs rapidly and, therefore provides an effective inhibition mechanism. Based on the observation of this work, a mechanism is proposed for the formation of these protective layers.

  8. The Corrosion Protection of Magnesium Alloy AZ31B

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Mendrek, M. J.; Mitchell, M. L.; Torres, P. D.

    1997-01-01

    Corrosion rates for bare and coated Magnesium alloy AZ31B have been measured. Two coatings, Dow-23(Trademark) and Tagnite(Trademark), have been tested by electrochemical methods and their effectiveness determined. Electrochemical methods employed were the scanning reference electrode technique (SRET), the polarization resistance technique (PR) and the electrochemical impedance spectroscopy technique (EIS). In addition, general corrosion and stress corrosion methods were employed to examine the effectiveness of the above coatings in 90 percent humidity. Results from these studies are presented.

  9. Hybrid organic-inorganic coatings including nanocontainers for corrosion protection of magnesium alloy ZK30

    NASA Astrophysics Data System (ADS)

    Kartsonakis, I. A.; Koumoulos, E. P.; Charitidis, C. A.; Kordas, G.

    2013-08-01

    This study is focused on the fabrication, characterization, and application of corrosion protective coatings to magnesium alloy ZK30. Hybrid organic-inorganic coatings were synthesized using organic-modified silicates together with resins based on bisphenol A diglycidyl ether. Cerium molybdate nanocontainers (ncs) with diameter 100 ± 20 nm were loaded with corrosion inhibitor 2-mercaptobenzothiazole and incorporated into the coatings in order to improve their anticorrosion properties. The coatings were investigated for their anticorrosion and nanomechanical properties. The morphology of the coatings was examined by scanning electron microscopy. The composition was estimated by energy-dispersive X-ray analysis. The mechanical integrity of the coatings was studied through nanoindentation and nanoscratch techniques. Scanning probe microscope imaging of the coatings revealed that the addition of ncs creates surface incongruity; however, the hardness to modulus ratio revealed significant strengthening of the coating with increase of ncs. Studies on their corrosion behavior in 0.5 M sodium chloride solutions at room temperature were made using electrochemical impedance spectroscopy. Artificial defects were formatted on the surface of the films in order for possible self-healing effects to be evaluated. The results showed that the coated magnesium alloys exhibited only capacitive response after exposure to corrosive environment for 16 months. This behavior denotes that the coatings have enhanced barrier properties and act as an insulator. Finally, the scratched coatings revealed a partial recovery due to the increase of charge-transfer resistance as the immersion time elapsed.

  10. Graphene: corrosion-inhibiting coating.

    PubMed

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I

    2012-02-28

    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  11. Integrated sensing and actuation of dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Ye, Zhihang; Chen, Zheng

    2017-04-01

    Dielectric elastomer (DE) is a type of soft actuating material, the shape of which can be changed under electrical voltage stimuli. DE materials have great potential in applications involving energy harvesters, micro-manipulators, and adaptive optics. In this paper, a stripe DE actuator with integrated sensing and actuation is designed and fabricated, and characterized through several experiments. Considering the actuator's capacitor-like structure and its deform mechanism, detecting the actuator's displacement through the actuator's circuit feature is a potential approach. A self-sensing scheme that adds a high frequency probing signal into actuation signal is developed. A fast Fourier transform (FFT) algorithm is used to extract the magnitude change of the probing signal, and a non-linear fitting method and artificial neural network (ANN) approach are utilized to reflect the relationship between the probing signal and the actuator's displacement. Experimental results showed this structure has capability of performing self-sensing and actuation, simultaneously. With an enhanced ANN, the self-sensing scheme can achieve 2.5% accuracy.

  12. The corrosion protection of AISI(TM) 1010 steel by organic and inorganic zinc-rich primers

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Mendrek, M. J.

    1995-01-01

    The behavior of zinc-rich primer-coated AISI 1010 steel in 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electrochemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR), were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electromechanical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 1010 steel cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. The galvanic test results demonstrated a very high current between the steel cathode and both zinc-rich primer anodes (38.8 and 135.2 microns A/sq cm for the organic and inorganic primers, respectively). The results of corrosion rate determinations demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. EIS equivalent circuit parameters confirmed this conclusion. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application on solid rocket booster steel hardware.

  13. KENNEDY SPACE CENTER, FLA. - Workers, covered in protective clothing and breathing apparatus, continue sandblasting on the Mobile Launcher Platform on Launch Pad 39A to remove corrosion before repainting. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

    NASA Image and Video Library

    2003-09-12

    KENNEDY SPACE CENTER, FLA. - Workers, covered in protective clothing and breathing apparatus, continue sandblasting on the Mobile Launcher Platform on Launch Pad 39A to remove corrosion before repainting. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

  14. NASA's Beachside Corrosion Test Site and Current Environmentally Friendly Corrosion Control Initiatives

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.; Calle, Luz Marina; Johnston, Frederick; Montgomery, Eliza L.; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    NASA began corrosion studies at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term corrosion protective coatings for carbon steel. KSC's Beachside Corrosion Test Site (BCTS), which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring, environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acid ic exhaust from the solid rocket boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. This paper presents a historical overview of over 45 years of corrosion and coating evaluation studies and a description of the BCTS's current capabilities. Additionally, current research and testing programs involving chromium free coatings, environmentally friendly corrosion preventative compounds, and alternates to nitric acid passivation will be discussed.

  15. Super-Hydrophobic Green Corrosion Inhibitor On Carbon Steel

    NASA Astrophysics Data System (ADS)

    Hassan, H.; Ismail, A.; Ahmad, S.; Soon, C. F.

    2017-06-01

    There are many examples of organic coatings used for corrosion protection. In particular, hydrophobic and super-hydrophobic coatings are shown to give good protection because of their enhanced ability to slow down transport of water and ions through the coating. The purpose of this research is to develop water repellent coating to avoid direct contact between metal and environment corrosive and mitigate corrosion attack at pipeline system. This water repellent characteristic on super-hydrophobic coating was coated by electrodeposition method. Wettability of carbon steel with super-hydrophobic coating (cerium chloride and myristic acid) and oxidized surface was investigated through contact angle and inhibitor performance test. The inhibitor performance was studied in 25% tannin acid corrosion test at 30°C and 3.5% sodium chloride (NaCl). The water contact angle test was determined by placing a 4-μL water droplet of distilled water. It shows that the wettability of contact angle super-hydrophobic with an angle of 151.60° at zero minute can be classified as super-hydrophobic characteristic. By added tannin acid as inhibitor the corrosion protection on carbon steel becomes more consistent. This reveals that the ability of the coating to withstand with the corrosion attack in the seawater at different period of immersions. The results elucidate that the weight loss increased as the time of exposure increased. However, the corrosion rates for uncoated carbon steel is high compared to coated carbon steel. As a conclusion, from both samples it can be seen that the coated carbon steel has less corrosion rated compared to uncoated carbon steel and addition of inhibitor to the seawater provides more protection to resist corrosion attack on carbon steel.

  16. Corrosion avoidance with new wood preservatives

    Treesearch

    Samuel L. Zelinka; Douglas R. Rammer

    2007-01-01

    This article focuses on considerations that need to be made when choosing products, other than stainless steel, to minimize corrosion of metals in contact with treated wood. With so many ?corrosion-resistant? alternative products on the market, it is important to know the fundamental principles of corrosion protection to make informed decisions when designing...

  17. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion control. Each exposed component that is subject to atmospheric corrosive attack must be protected from...

  18. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion control. Each exposed component that is subject to atmospheric corrosive attack must be protected from...

  19. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion control. Each exposed component that is subject to atmospheric corrosive attack must be protected from...

  20. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give early...

  1. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give early...

  2. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give early...

  3. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give early...

  4. Corrosion potential analysis system

    NASA Astrophysics Data System (ADS)

    Kiefer, Karl F.

    1998-03-01

    Many cities in the northeastern U.S. transport electrical power from place to place via underground cables, which utilize voltages from 68 kv to 348 kv. These cables are placed in seamless steel pipe to protect the conductors. These buried pipe-type-cables (PTCs) are carefully designed and constantly pressurized with transformer oil to prevent any possible contamination. A protective coating placed on the outside diameter of the pipe during manufacture protects the steel pipe from the soil environment. Notwithstanding the protection mechanisms available, the pipes remain vulnerable to electrochemical corrosion processes. If undetected, corrosion can cause the pipes to leak transformer oil into the environment. These leaks can assume serious proportions due to the constant pressure on the inside of the pipe. A need exists for a detection system that can dynamically monitor the corrosive potential on the length of the pipe and dynamically adjust cathodic protection to counter local and global changes in the cathodic environment surrounding the pipes. The northeastern United States contains approximately 1000 miles of this pipe. This milage is critical to the transportation and distribution of power. So critical, that each of the pipe runs has a redundant double running parallel to it. Invocon, Inc. proposed and tested a technically unique and cost effective solution to detect critical corrosion potential and to communicate that information to a central data collection and analysis location. Invocon's solution utilizes the steel of the casing pipe as a communication medium. Each data gathering station on the pipe can act as a relay for information gathered elsewhere on the pipe. These stations must have 'smart' network configuration algorithms that constantly test various communication paths and determine the best and most power efficient route through which information should flow. Each network station also performs data acquisition and analysis tasks that ultimately

  5. Investigation of weldable iron-aluminum alloys for corrosion protection in high temperature oxidizing-sulfidizing environments

    NASA Astrophysics Data System (ADS)

    Banovic, Stephen William

    The objective of the present study was to investigate the corrosion behavior of weldable Fe-Al alloys in environments representative of low NOx gas compositions, i.e., high partial pressures of sulfur [p(S2)] and low partial pressures of oxygen [p(O2)]. Through an integrated experimental approach involving thermogravimetric techniques, post-exposure metallographic examination of the corroded samples, and detailed chemical microanalyses of the reaction scales, the effects of aluminum content, temperature, and gas composition on the corrosion behavior were observed. The corrosion behavior of Fe-Al alloys was found to be directly related to the type and morphology of corrosion product that formed during high temperature exposure in the oxidizing/sulfidizing environment. The inhibition stage was characterized by growth of a thin, gamma alumina scale that suppressed excessive degradation of the substrate at all temperatures. Localized mechanical failure of the initial passive scale, in combination with the inability to re-establish itself, was found to result in nodular growth of non-protective sulfide phases across the sample face due to short circuit diffusion through the gamma alumina layer. With the remnants of the initial gamma scale found between the outer and inner scale, it was concluded that these layers grew by iron diffusion outward and sulfur diffusion inward, respectively. The corrosion rate observed during development of these morphologies was directly related to the density of the nodules on the surface and the exposure temperature. The final period observed was the steady-state stage. This behavior was encountered from the onset of exposure for all Fe-5 wt% Al alloys tested, or upon coalescence of the nodular growths. After initially high corrosion rates, the weight gains were found to increase at a steady rate as subsequent growth occurred via diffusion through the continuous scale. Determination of the corrosion product growth mechanism could not be

  6. Corrosion Protection of Phenolic-Epoxy/Tetraglycidyl Metaxylediamine Composite Coatings in a Temperature-Controlled Borax Environment

    NASA Astrophysics Data System (ADS)

    Xu, Wenhua; Wang, Zhenyu; Han, En-Hou; Liu, Chunbo

    2017-12-01

    The failure behavior for two kinds of phenolic-epoxy/tetraglycidyl metaxylediamine composite coatings in 60 °C borax aqueous solution was evaluated using electrochemical methods (EIS) combined with scanning electron microscopy, confocal laser scanning microscope, water immersion test, and Raman spectrum. The main focus was on the effect of curing agent on the corrosion protection of coatings. Results revealed that the coating cured by phenolic modified aromatic amine possessed more compact cross-linked structure, better wet adhesion, lower water absorption (0.064 mg h-1 cm-2) and its impedance values was closed to 108 Ω cm2 after immersion for 576 h, while the coating cured by modified aromatic ring aliphatic amine was lower than 105 Ω cm2. The corrosion mechanism of the two coatings is discussed.

  7. Corrosion Mitigation Strategies - an Introduction

    DTIC Science & Technology

    2009-02-05

    formed • Stress corrosion cracking Leaders in Corrosion Control Technology • Overpressure • Pressure of a gas over a liquid- solubility of gases in...Power surges • Crack protective films, fretting, fatique Design – Chemistry • Used to eliminate candidate materials • pH acidic (H+) basic (OH...Technology • Laboratory tests • Published data Mechanical Properties • Strength • Ductility • Environmental cracking Methods of Corrosion Control–Materials

  8. Corrosion protection of steel in ammonia/water heat pumps

    DOEpatents

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  9. Method for inhibiting corrosion of nickel-containing alloys

    DOEpatents

    DeVan, J.H.; Selle, J.E.

    Nickel-containing alloys are protected against corrosion by contacting the alloy with a molten alkali metal having dissolved therein aluminum, silicon or manganese to cause the formation of a corrosion-resistant intermetallic layer. Components can be protected by applying the coating after an apparatus is assembled.

  10. Corrosion Protection Of Mild Steel In Sea Water Using Chemical Inhibitor

    NASA Astrophysics Data System (ADS)

    Araoyinbo, Alaba O.; Salleh, Mohd Arif Anuar Mohd; Zulerwan Jusof, Muhammad

    2018-03-01

    The effect of sodium nitrite as a corrosion inhibitor of mild steel in sea water (i.e ASTM standard prepared sea water and sea water obtained from a local river) was investigated, using the weight loss technique. Different amount of sodium nitrite were prepared (i.e 2 % to 10 %) in the inhibition of the mild steel corrosion in sea water exposed to irradiation condition from sunlight exposure. The cut samples of mild steel were exposed to these corrosive media and the corresponding weight loss subsequently obtained was recorded at intervals of 1 to 4 weeks. It was observed that corrosion rate increases with the time of exposure to the corrosive medium exposed to sunlight and that sodium nitrite that was used at the chemical inhibitor was able to retard the corrosion rate of mild steel if the appropriate concentration is applied. The results obtained from the weight loss analysis shows that the optimum percentage of sodium nitrate in sea water that gives the optimum corrosion inhibition of mild steel is 4 %.

  11. Dealloying, Microstructure and the Corrosion/Protection of Cast Magnesium Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieradzki, Karl; Aiello, Ashlee; McCue, Ian

    The purpose of this project was to develop a greater understanding of micro-galvanic corrosion effects in cast magnesium alloys using both experimental and computational methods. Experimental accomplishments have been made in the following areas of interest: characterization, aqueous free-corrosion, atmospheric corrosion, ionic liquid dissolution, rate kinetics of oxide dissolution, and coating investigation. Commercial alloys (AZ91D, AM60, and AZ31B), binary-phase alloys (αMg-2at.%Al, αMg-5at.%Al, and Mg-8at.%Al), and component phases (Mg, Al, β-Mg, β-1%Zn, MnAl3) were obtained and characterized using energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Full immersion in aqueous chloride was used to characterize the corrosionmore » behavior of alloys. Rotating disc electrodes (RDEs) were used to observe accelerated long-term corrosion behavior. Al surface redistribution for freely corroded samples was analyzed using SEM, EDS, and lithium underpotential deposition (Li UPD). Atmospheric corrosion was observed using contact angle evolution, overnight pH monitoring, and surface pH evolution studies. Ionic liquid corrosion characterization was performed using linear sweep voltammetry and potentiostatic dissolution in 150° choline chloride-urea (cc-urea). Two surface coatings were investigated: (1) Li-carbonate and (2) cc-urea. Li-carbonate coatings were characterized using X-ray photoelectron spectroscopy (XPS), SEM, and aqueous free corrosion potential monitoring. Hydrophobic cc-urea coatings were characterized using contact angle measurements and electrochemical impedance spectroscopy. Oxide dissolution rate kinetics were studied using inductively coupled plasma mass spectroscopy (ICP-MS). Computational accomplishments have been made through the development of Kinetic Monte Carlo (KMC) simulations which model time- and composition-dependent effects on the microstructure due to spatial redistribution of alloying

  12. Combined Effect of Alternating Current Interference and Cathodic Protection on Pitting Corrosion and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in Near-Neutral pH Environment.

    PubMed

    Wang, Liwei; Cheng, Lianjun; Li, Junru; Zhu, Zhifu; Bai, Shuowei; Cui, Zhongyu

    2018-03-22

    Influence of alternating current (AC) on pitting corrosion and stress corrosion cracking (SCC) behavior of X70 pipeline steel in the near-neutral pH environment under cathodic protection (CP) was investigated. Both corrosion and SCC are inhibited by -0.775 V SCE CP without AC interference. With the superimposition of AC current (1-10 mA/cm²), the direct current (DC) potential shifts negatively under the CP of -0.775 V SCE and the cathodic DC current decreases and shifts to the anodic direction. Under the CP potential of -0.95 V SCE and -1.2 V SCE , the applied AC current promotes the cathodic reaction and leads to the positive shift of DC potential and increase of cathodic current. Local anodic dissolution occurs attributing to the generated anodic current transients in the positive half-cycle of the AC current, resulting in the initiation of corrosion pits (0.6-2 μm in diameter). AC enhances the SCC susceptibility of X70 steel under -0.775 V SCE CP, attributing to the promotion of anodic dissolution and hydrogen evolution. Even an AC current as low as 1 mA/cm² can enhance the SCC susceptibility.

  13. Hybrid layers deposited by an atmospheric pressure plasma process for corrosion protection of galvanized steel.

    PubMed

    Del Frari, D; Bour, J; Bardon, J; Buchheit, O; Arnoult, C; Ruch, D

    2010-04-01

    Finding alternative treatments to reproduce anticorrosion properties of chromated coatings is challenging since both physical barrier and self-healing effects are needed. Siloxane based treatments are known to be a promising way to achieve physical barrier coatings, mainly plasma polymerized hexamethyldisiloxane (ppHMDSO). In addition, it is known that cerium-based coatings can also provide corrosion protection of metals by means of self-healing effect. In this frame, innovative nanoAlCeO3/ppHMDSO layers have thus been deposited and studied. These combinations allow to afford a good physical barrier effect and active properties. Liquid siloxane and cerium-based particles mixture is atomized and introduced as precursors into a carrier gas. Gas mixture is then injected into an atmospheric pressure dielectric barrier discharge (DBD) where plasma polymerization of the siloxane precursor occurs. The influence of cerium concentration on the coating properties is investigated: coating structure and topography have been studied by scanning electron microscopy (SEM) and interferometry, and corrosion resistance of these different coatings is compared by electrochemistry techniques: polarization curves and electrochemical impedance spectroscopy (EIS). Potential self-healing property afforded by cerium in the layer was studied by associating EIS measurements and nanoscratch controlled damaging. Among the different combinations investigated, mixing of plasma polymerized HMDSO and AICeO3 nanoparticles seems to give promising results with a good physical barrier and interesting electroactive properties. Indeed, corrosion currents measured on such coatings are almost as low as those measured with the chromated film. Combination of nanoscratch damaging of layers with EIS experiments to investigate self-healing also allow to measure the active protection property of such layers.

  14. Evaluation of NDOR's actuated advance warning systems.

    DOT National Transportation Integrated Search

    2011-12-01

    "Driver behavior within the dilemma zone can be a major safety concern at high-speed signalized intersections. The : Nebraska Department of Roads (NDOR) has developed and implemented an actuated advance warning (AAW) dilemma : zone protection system....

  15. Parylene coated carbon nanotube actuators for tactile stimulation

    NASA Astrophysics Data System (ADS)

    Bubak, Grzegorz; Ansaldo, Alberto; Gendron, David; Brayda, Luca; Ceseracciu, Luca; Ricci, Davide

    2015-04-01

    Ionic liquid/carbon nanotube based actuators have been constantly improved in recent years owing to their suitability for applications related to human-machine interaction and robotics thanks to their light-weight and low voltage operation. However, while great attention has been paid to the development of better electrodes and electrolytes, no adequate efforts were made to develop actuators to be used in direct contact with the human skin. Herein, we present our approach, based on the use of parylene-C coating. Indeed, owning to its physicochemical properties such as high dielectric strength, resistance to solvents, biological and chemical inactivity/inertness, parylene fulfils the requirements for use in biocompatible actuator fabrication. In this paper, we study the influence of the parylene coating on the actuator performance. To do so, we analyzed its mechanical and electrochemical properties. We looked into the role of parylene as a protection layer that can prevent alteration of the actuator performance likely caused by external conditions. In order to complete our study, we designed a haptic device and investigated the generated force, displacement and energy usage.

  16. pH Responsive Microcapsules for Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Li, Wenyan; Muehlberg, Aaron; Boraas, Samuel; Webster, Dean; JohnstonGelling, Victoria; Croll, Stuart; Taylor, S Ray; Contu, Francesco

    2008-01-01

    The best coatings for corrosion protection provide not only barriers to the environment, but also a controlled release of a corrosion inhibitor, as demanded by the presence of corrosion or mechanical damage. NASA has developed pH sensitive microcapsules (patent pending) that can release their core contents when corrosion starts. The objectives of the research presented here were to encapsulate non-toxic corrosion inhibitors, to incorporate the encapsulated inhibitors into paint formulations, and to test the ability of the paints to control corrosion. Results showed that the encapsulated corrosion inhibitors, specifically Ce(NO3)3 , are effective to control corrosion over long periods of time when incorporated at relatively high pigment volume concentrations into a paint formulation.

  17. Evaluation and control of environmental corrosion for aluminum and steel alloys

    NASA Technical Reports Server (NTRS)

    Franklin, D. B.

    1977-01-01

    Corrosion protection systems for aerospace application and the effects of surface treatments and methods of controlling stress corrosion are evaluated. Chromate pigmented systems were found to be most effective for aluminum alloys; zinc-rich coatings gave the greatest protection to steel alloys. Various steel and aluminum alloys are rated for stress corrosion resistance.

  18. Corrosion Protection for Space and Beyond

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2007-01-01

    Florida is home to NASA's Launch Operations Center. Since its establishment in July 1962, the spaceport has served as the departure gate for every American manned mission and hundreds of advanced scientific spacecraft under the Launch Services Program. The center was renamed the John F. Kennedy Space Center in late 1963 to honor the president who put America on the path to the moon. Today, NASA is on the edge of a bold new chaIlenge: the ConsteIlation Program. ConsteIlation is a NASA program to create a new generation of spacecraft for human spaceflight, consisting primarily of the Ares I and Ares V launch vehicles, the Orion crew capsule, the Earth Departure stage and the Lunar access module. These spacecraft will be capable of performing a variety of missions, from Space Station resupply to lunar landings. The ambitious new endeavor caIls for NASA to return human explorers to the moon and then venture even farther, to Mars and beyond. As the nation's premier spaceport, Kennedy Space Center (KSC) will playa critical role in this new chapter in exploration, particularly in the conversion of the launch facilities to accommodate the new launch vehicles. To prepare for this endeavor, the launch site and facilities for the next generation of crew and cargo vehicles must be redesigned, assembled and tested. One critical factor that is being carefuIly considered during the renovation is protecting the new facilities and structures from corrosion and deterioration.

  19. Characterization of Encapsulated Corrosion Inhibitors Containing Microparticles for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, Benjamin Pieter; Calle, Luz M.

    2015-01-01

    This poster presents the results obtained from experiments designed to evaluate the release properties, as well as the corrosion inhibition effectiveness, of several encapsulated corrosion inhibitors. Microencapsulation has been used in the development of environmentally friendly multifunctional smart coatings. This technique enables the incorporation of autonomous corrosion detection, inhibition and self-healing functionalities into many commercially available coating systems. Select environmentally friendly corrosion inhibitors were encapsulated in organic and inorganic pH-sensitive microparticles and their release in basic solutions was studied. The release rate results showed that the encapsulation can be tailored from fast, for immediate corrosion protection, to slow, which will provide continued long-term corrosion protection. The incorporation of several corrosion inhibitor release profiles into a coating provides effective corrosion protection properties. To investigate the corrosion inhibition efficiency of the encapsulated inhibitors, electrochemical techniques were used to obtain corrosion potential, polarization curve and polarization resistance data. These measurements were performed using the free as well as the encapsulated inhibitors singly or in combinations. Results from these electrochemical tests will be compared to those obtained from weight loss and other accelerated corrosion experiments.

  20. Biocompatibility and Corrosion Protection Behaviour of Hydroxyapatite Sol-Gel-Derived Coatings on Ti6Al4V Alloy.

    PubMed

    El Hadad, Amir A; Peón, Eduardo; García-Galván, Federico R; Barranco, Violeta; Parra, Juan; Jiménez-Morales, Antonia; Galván, Juan Carlos

    2017-01-24

    The aim of this work was to prepare hydroxyapatite coatings (HAp) by a sol-gel method on Ti6Al4V alloy and to study the bioactivity, biocompatibility and corrosion protection behaviour of these coatings in presence of simulated body fluids (SBFs). Thermogravimetric/Differential Thermal Analyses (TG/DTA) and X-ray Diffraction (XRD) have been applied to obtain information about the phase transformations, mass loss, identification of the phases developed, crystallite size and degree of crystallinity of the obtained HAp powders. Fourier Transformer Infrared Spectroscopy (FTIR) has been utilized for studying the functional groups of the prepared structures. The surface morphology of the resulting HAp coatings was studied by Scanning Electron Microscopy (SEM). The bioactivity was evaluated by soaking the HAp-coatings/Ti6Al4V system in Kokubo's Simulated Body Fluid (SBF) applying Inductively Coupled Plasma (ICP) spectrometry. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and Alamar blue cell viability assays were used to study the biocompatibility. Finally, the corrosion behaviour of HAp-coatings/Ti6Al4V system was researched by means of Electrochemical Impedance Spectroscopy (EIS). The obtained results showed that the prepared powders were nanocrystalline HAp with little deviations from that present in the human bone. All the prepared HAp coatings deposited on Ti6Al4V showed well-behaved biocompatibility, good bioactivity and corrosion protection properties.

  1. Durable Corrosion and Ultraviolet-Resistant Silver Mirror

    DOEpatents

    Jorgensen, G. J.; Gee, R.

    2006-01-24

    A corrosion and ultra violet-resistant silver mirror for use in solar reflectors; the silver layer having a film-forming protective polymer bonded thereto, and a protective shield overlay comprising a transparent multipolymer film that incorporates a UV absorber. The corrosion and ultraviolet resistant silver mirror retains spectral hemispherical reflectance and high optical clarity throughout the UV and visible spectrum when used in solar reflectors.

  2. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  3. Improvement of the linear polarization resistance method for testing steel corrosion inhibitors

    NASA Astrophysics Data System (ADS)

    Faritov, A. T.; Rozhdestvenskii, Yu. G.; Yamshchikova, S. A.; Minnikhanova, E. R.; Tyusenkov, A. S.

    2016-11-01

    The linear polarization resistance method is used to improve the technique of corrosion control in liquid conducting according to GOST 9.514-99 (General Corrosion and Aging Protection System. Corrosion Inhibitors for Metals in Water Systems. Electrochemical Method of Determining the Protective Ability). Corrosion monitoring is shown to be performed by electronic devices with real-time data transfer to industrial controllers and SCADA systems.

  4. Corrosion protection and steel-concrete bond improvement of prestressing strand.

    DOT National Transportation Integrated Search

    2012-12-01

    Corrosion can lead to the premature deterioration and failure of transportation structures. In pre-stressed bridge structures corrosion is more severe, : leading to sudden failures when cracking is induced at pitting sites by tensile or compressive s...

  5. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete.

    PubMed

    Simescu, Florica; Idrissi, Hassane

    2008-12-01

    We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 . After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  6. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Simescu, Florica; Idrissi, Hassane

    2008-12-01

    We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO4)6(OH)2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  7. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete

    PubMed Central

    Simescu, Florica; Idrissi, Hassane

    2008-01-01

    We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO4)6(OH)2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating. PMID:27878037

  8. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides.

    PubMed

    Finkenstadt, Victoria L; Côté, Gregory L; Willett, J L

    2011-06-01

    Corrosion of metals is a serious and challenging problem faced worldwide by industry. Purified Leuconostoc mesenteroides exopolysaccharide (EPS) coatings, cast from aqueous solution, inhibited the corrosion of low-carbon steel as determined by electrochemical impedance spectroscopy (EIS). There were two different corrosion behaviors exhibited when EPS films from different strains were cast onto the steel. One EPS coating reacted immediately with the steel substrate to form an iron (III) oxide layer ("rust") during the drying process while another did not. The samples that did not flash corrode had higher corrosion inhibition and formed an iron (II) passivation layer during EIS testing that persisted after the cells were disassembled. Corrosion inhibition was strain-specific as polysaccharides with similar structure did not have the same corrosion potential.

  9. Corrosion inhibitors for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1978-01-01

    Inhibitors which appeared promising in previous tests and additional inhibitors including several proprietary products were evaluated. Evaluation of the inhibitors was based on corrosion protection afforded an aluminum-mild steel-copper-stainless steel assembly in a hot corrosive water. Of the inhibitors tested two were found to be effective and show promise for protecting multimetallic solar heating systems.

  10. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2015-01-01

    The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  11. 78 FR 25488 - Qualification Tests for Safety-Related Actuators in Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0079] Qualification Tests for Safety-Related Actuators in... regulatory guide (DG), DG-1235, ``Qualification Tests for Safety-Related Actuators in Nuclear Power Plants...-251- 7495, email: [email protected] . Both of the Office of Nuclear Regulatory Research, U.S. Nuclear...

  12. Natural Corrosion Inhibitors for Steel Reinforcement in Concrete — a Review

    NASA Astrophysics Data System (ADS)

    Raja, Pandian Bothi; Ghoreishiamiri, Seyedmojtaba; Ismail, Mohammad

    2015-04-01

    Reinforced concrete is one of the widely used construction materials for bridges, buildings, platforms and tunnels. Though reinforced concrete is capable of withstanding a large range of severe environments including marine, industrial and alpine conditions, there are still a large number of failures in concrete structures for many reasons. Either carbonation or chloride attack is the main culprit which is due to depassivation of reinforced steel and subsequently leads to rapid steel corrosion. Among many corrosion prevention measures, application of corrosion inhibitors play a vital role in metal protection. Numerous range of corrosion inhibitors were reported for concrete protection that were also used commercially in industries. This review summarizes the application of natural products as corrosion inhibitors for concrete protection and also scrutinizes various factors influencing its applicability.

  13. Effect of flow velocity on erosion-corrosion behaviour of QSn6 alloy

    NASA Astrophysics Data System (ADS)

    Huang, Weijiu; Zhou, Yongtao; Wang, Zhenguo; Li, Zhijun; Zheng, Ziqing

    2018-05-01

    The erosion-corrosion behaviour of QSn6 alloy used as propellers in marine environment was evaluated by erosion-corrosion experiments with/without cathodic protection, electrochemical tests and scanning electron microscope (SEM) observations. The analysis was focused on the effect of flow velocity. The dynamic polarization curves showed that the corrosion rate of the QSn6 alloy increased as the flow velocity increased, due to the protective surface film removal at higher velocities. The lowest corrosion current densities of 1.26 × 10‑4 A cm‑2 was obtained at the flow velocity of 7 m s‑1. Because of the higher particle kinetic energies at higher flow velocity, the mass loss rate of the QSn6 alloy increased as the flow velocity increased. The mass loss rate with cathodic protection was lower than that without cathodic protection under the same conditions. Also, the lowest mass loss rate of 0.7 g m‑2 · h‑1 was acquired at the flow velocity of 7 m s‑1 with cathodic protection. However, the increase rate of corrosion rate and mass loss were decreased with increasing the flow velocity. Through observation the SEM morphologies of the worn surfaces, the main wear mechanism was ploughing with/without cathodic protection. The removal rates of the QSn6 alloy increased as the flow velocity increased in both pure erosion and erosion-corrosion, whereas the erosion and corrosion intensified each other. At the flow velocity of 7 m s‑1, the synergy rate (ΔW) exceeded by 5 times the erosion rate (Wwear). Through establishment and observation the erosion-corrosion mechanism map, the erosion-corrosion was the dominant regime in the study due to the contribution of erosion on the mass loss rate exceeded the corrosion contribution. The QSn6 alloy with cathodic protection is feasible as propellers, there are higher security at lower flow velocity, such as the flow velocity of 7 m s‑1 in the paper.

  14. Practical Implications of the Use of Aluminide Coatings for the Corrosion Protection of Superalloys in Gas Turbines

    DTIC Science & Technology

    1984-04-01

    Strategic Materials Usage. Practical Implications of the Use of Aluminide Coatings for the Corrosion Protection of Superalloys in Gas Turbines. Coatings...requirements of using aluminide coatings, the processes currently commercially available, the compatabi1ity of aluminide coatings with...components, it is the intention of this paper to concentrate on those ed by reaction or diffusion type processes, In particular the aluminides

  15. Characterization of iron carbonate scales developed under carbon dioxide corrosion conditions

    NASA Astrophysics Data System (ADS)

    de Moraes, Flavio Dias

    1999-11-01

    Carbon steel CO2 corrosion is a common and very serious problem in the oil industry. It often results in severe damage to pipes and equipment. Besides controlling direct costs associated with loss of production and replacement or repair to the equipment damaged by corrosion, life and environmental safety must be protected with the thorough study of this type of corrosion. For a given type of steel, the CO2 corrosion rates are strongly influenced by many mechanical and environmental factors, such as flow velocity, temperature, gas-liquid ratio, oil-water ratio, CO2 partial pressure, and the chemical composition of the produced water. Under specific conditions, a corrosion product, the iron carbonate (FeCO3), can deposit over the corroding metal as a scale and dramatically reduce the CO2 corrosion rates on carbon steels. The ability to reliably predict the protective characteristics of such scales so that this knowledge may be used to mitigate the CO2 corrosion problem is the main objective of this research. CO2 corrosion tests performed under various CO2 corrosion flowing conditions in a flow loop were used to generate and study FeCO3 scales. In situ Electrochemical Impedance Spectroscopy (EIS) techniques were successfully used to monitor the development of the scales throughout the duration of the tests. The EIS monitoring enabled the identification of the type of scales being formed and the quantification of the protection they give. A procedure using EIS, SEM and X-ray diffraction was developed to electrochemically and morphologically characterize the scales formed. In this work, morphology of the scales was proved to be the most important characteristic related to CO2 corrosion protection, and temperature was found to be the main environmental parameter controlling the morphology of the scales. For the environmental conditions tested, a correlation was developed to predict the type of iron carbonate scales that would be formed and the amount of CO2 corrosion

  16. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides

    USDA-ARS?s Scientific Manuscript database

    Corrosion is one of the most serious and challenging problems faced worldwide by industry. This research investigates the inhibition of corrosive behavior of SAE1010 steel by bacterial exopolysaccharides. Electrochemical Impedance Spectroscopy was used to evaluate the corrosion inhibition of diffe...

  17. Architectural optimization of an epoxy-based hybrid sol-gel coating for the corrosion protection of a cast Elektron21 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Murillo-Gutiérrez, N. V.; Ansart, F.; Bonino, J.-P.; Kunst, S. R.; Malfatti, C. F.

    2014-08-01

    An epoxy-based hybrid sol-gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol-gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol-gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.

  18. Biocompatibility and Corrosion Protection Behaviour of Hydroxyapatite Sol-Gel-Derived Coatings on Ti6Al4V Alloy

    PubMed Central

    El Hadad, Amir A.; Peón, Eduardo; García-Galván, Federico R.; Barranco, Violeta; Parra, Juan; Jiménez-Morales, Antonia; Galván, Juan Carlos

    2017-01-01

    The aim of this work was to prepare hydroxyapatite coatings (HAp) by a sol-gel method on Ti6Al4V alloy and to study the bioactivity, biocompatibility and corrosion protection behaviour of these coatings in presence of simulated body fluids (SBFs). Thermogravimetric/Differential Thermal Analyses (TG/DTA) and X-ray Diffraction (XRD) have been applied to obtain information about the phase transformations, mass loss, identification of the phases developed, crystallite size and degree of crystallinity of the obtained HAp powders. Fourier Transformer Infrared Spectroscopy (FTIR) has been utilized for studying the functional groups of the prepared structures. The surface morphology of the resulting HAp coatings was studied by Scanning Electron Microscopy (SEM). The bioactivity was evaluated by soaking the HAp-coatings/Ti6Al4V system in Kokubo’s Simulated Body Fluid (SBF) applying Inductively Coupled Plasma (ICP) spectrometry. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and Alamar blue cell viability assays were used to study the biocompatibility. Finally, the corrosion behaviour of HAp-coatings/Ti6Al4V system was researched by means of Electrochemical Impedance Spectroscopy (EIS). The obtained results showed that the prepared powders were nanocrystalline HAp with little deviations from that present in the human bone. All the prepared HAp coatings deposited on Ti6Al4V showed well-behaved biocompatibility, good bioactivity and corrosion protection properties. PMID:28772455

  19. Interaction of Benzimidazoles and Benzotriazole: Its Corrosion Protection Properties on Mild Steel in Hydrochloric Acid

    NASA Astrophysics Data System (ADS)

    Ramya, K.; Mohan, Revathi; Joseph, Abraham

    2014-11-01

    Synergistic hydrogen-bonded interaction of alkyl benzimidazoles and 1,2,3-benzotrizole and its corrosion protection properties on mild steel in hydrochloric acid at different temperatures have been studied using polarization, EIS, adsorption, surface studies, and computational methods. The extent of synergistic interaction increases with temperature. Quantum chemical approach is used to calculate some electronic properties of the molecules and to ascertain the synergistic interaction, inhibitive effect, and molecular structures. The corrosion inhibition efficiencies and the global chemical reactivity relate to some parameters, such as total energy, E HOMO, E LUMO, and gap energy (Δ E). 1,2,3-Benzotrizole interacts with benzimidazoles derivatives up to a bond length of approximately 1.99 Å. This interaction represents the formation of a hydrogen bond between the 1,2,3-benzotrizole and benzimidazoles. This synergistic interaction of 1,2,3-benzotrizole and benzimidazole derivatives offers extended inhibition efficiency toward mild steel in hydrochloric acid.

  20. Field investigation of the corrosion protection performance of bridge decks and piles constructed with epoxy-coated reinforcing steel in Virginia.

    DOT National Transportation Integrated Search

    1997-10-01

    The corrosion protection performance of epoxy-coated reinforcing steel (ECR) was assessed in three bridge decks and the piles : in three marine structures in Virginia in 1996. The decks were 17 years old, two of the marine structures were 8 years old...

  1. Restraint deformation and corrosion protection of gold deposited aluminum mirrors for cold optics of mid-infrared instruments

    NASA Astrophysics Data System (ADS)

    Uchiyama, Mizuho; Miyata, Takashi; Sako, Shigeyuki; Kamizuka, Takafumi; Nakamura, Tomohiko; Asano, Kentaro; Okada, Kazushi; Onaka, Takashi; Sakon, Itsuki; Kataza, Hirokazu; Sarugaku, Yuki; Kirino, Okiharu; Nakagawa, Hiroyuki; Okada, Norio; Mitsui, Kenji

    2014-07-01

    We report the restraint deformation and the corrosion protection of gold deposited aluminum mirrors for mid-infrared instruments. To evaluate the deformation of the aluminum mirrors by thermal shrinkage, monitoring measurement of the surface of a mirror has been carried out in the cooling cycles from the room temperature to 100 K. The result showed that the effect of the deformation was reduced to one fourth if the mirror was screwed with spring washers. We have explored an effective way to prevent the mirror from being galvanically corroded. A number of samples have been prepared by changing the coating conditions, such as inserting an insulation layer, making a multi-layer and overcoating water blocking layer, or carrying out precision cleaning before coating. Precision cleaning before the deposition and protecting coat with SiO over the gold layer seemed to be effective in blocking corrosion of the aluminum. The SiO over-coated mirror has survived the cooling test for the mid-infrared use and approximately 1 percent decrease in the reflectance has been detected at 6-25 microns compared to gold deposited mirror without coating.

  2. Note: A novel rotary actuator driven by only one piezoelectric actuator.

    PubMed

    Huang, Hu; Fu, Lu; Zhao, Hongwei; Shi, Chengli; Ren, Luquan; Li, Jianping; Qu, Han

    2013-09-01

    This paper presents a novel piezo-driven rotary actuator based on the parasitic motion principle. Output performances of the rotary actuator were tested and discussed. Experiment results indicate that using only one piezoelectric actuator and simple sawtooth wave control, the rotary actuator reaches the rotation velocity of about 20,097 μrad/s when the driving voltage is 100 V and the driving frequency is 90 Hz. The actuator can rotate stably with the minimum resolution of 0.7 μrad. This paper verifies feasibility of the parasitic motion principle for applications of rotary actuators, providing new design ideas for precision piezoelectric rotary actuators.

  3. Naval Air Warfare Center Aircraft Division Patent Portfolio

    DTIC Science & Technology

    2012-01-01

    the use of said composition to protect metal from corrosion and mildew. The composition comprises, in parts by weight, from about 20 to 60 parts of...composition (NAVGUARD™) Abstract: The invention relates to an oleaginous corrosion -inhibiting composition, and the use of said composition to protect...electric motors or actuators of the robotic device to thereby control same. In addition, a computer software program is provided for use in the gesture

  4. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...

  5. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...

  6. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...

  7. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...

  8. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...

  9. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  10. Liquid Coatings for Reducing Corrosion of Steel in Concrete

    NASA Technical Reports Server (NTRS)

    MacDowell, Louis G.; Curran, Joseph

    2003-01-01

    Inorganic coating materials are being developed to slow or stop corrosion of reinforcing steel members inside concrete structures. It is much simpler and easier to use these coating materials than it is to use conventional corrosion-inhibiting systems based on impressed electric currents. Unlike impressed electrical corrosion-inhibiting systems, these coatings do not require continuous consumption of electrical power and maintenance of power-supply equipment. Whereas some conventional systems involve the use of expensive arc-spray equipment to apply the metallic zinc used as the sacrificial anode material, the developmental coatings can be applied by use of ordinary paint sprayers. A coating material of the type under development is formulated as a liquid containing blended metallic particles and/or moisture-attracting compounds. The liquid mixture is sprayed onto a concrete structure. Experiments have shown that even though such a coat resides on the exterior surface, it generates a protective galvanic current that flows to the interior reinforcing steel members. By effectively transferring the corrosion process from the steel reinforcement to the exterior coating, the protective current slows or stops corrosion of the embedded steel. Specific formulations have been found to meet depolarization criteria of the National Association of Corrosion Engineers (NACE) for complete protection of steel reinforcing bars ("rebar") embedded in concrete.

  11. The Corrosion Protection of 2219-T87 Aluminum by Organic and Inorganic Zinc-Rich Primers

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Mendrek, M. J.; Walsh, D. W.

    1995-01-01

    The behavior of zinc-rich primer-coated 2219-T87 aluminum in a 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electrochemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR) were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electrochemical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 2219-T87 aluminum cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. The galvanic test results demonstrated a very high galvanic current between the aluminum cathode and both zinc-rich primer anodes (37.9 pA/CM2 and 23.7 pA/CM2 for the organic and inorganic primers, respectively). The PR results demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application in the solid rocket booster aft skirt.

  12. The corrosion protection of 2219-T87 aluminum by organic and inorganic zinc-rich primers

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Mendrek, M. J.; Walsh, D. W.

    1995-01-01

    The behavior of zinc-rich primer-coated 2219-T87 aluminum in a 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electro-chemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR) were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electrochemical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 2219-T87 aluminum cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. the galvanic test results demonstrated a very high galvanic current between the aluminum cathode and both zinc-rich primer anodes (37.9 micro A/cm(exp 2) and 23.7 micro A/cm(exp 2) for the organic and inorganic primers, respectively). The PR results demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application in the solid rocket booster aft skirt.

  13. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  14. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  15. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.

    2015-01-01

    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  16. Exopolysaccharides from lactic acid bacteria as corrosion inhibitors

    NASA Astrophysics Data System (ADS)

    Ignatova-Ivanova, Tsveteslava; Ivanov, Radoslav

    2016-03-01

    Bacterial EPSs (exopolysaccharides) are believed to play an important role in the environment by promoting survival strategies such as bacterial attachment to surfaces and nutrient trapping, which facilitate processes of biofilm formation and development. These microbial biofilms have been implicated in corrosion of metals, bacterial attachment to prosthetic devices, fouling of heat exchange surfaces, toxicant immobilization, and fouling of ship hulls. In this paper, data on EPS production and the effect of EPS on corrosion of steel produced by Lactobacillus sp. are presented and discussed. Lactobacillus delbrueckii K27, Lactobacillus delbrueckii B8, Lactobacillus delbrueckii KO43, Lactobacillus delbrueckii K3, Lactobacillus delbrueckii K15 and Lactobacillus delbrueckii K17 was obtained from Collection of Department of General and Applied Microbiology, Sofia University. It was tested for its ability to produce exopolysaccharides when cultivated in a media containing 10% sucrose, 10% lacose and 10% maltose. The study of the corrosive stability of steel samples was conducted on the gravimetrique method. The rate of corrosion, the degree of protection, and coefficient of protection have been calculated. The structure of layer over steel plates was analysed by SEM (scanning electron microscopy) JSM 5510. It could be underlined that 10% sucrose, 10% lactose and 10% maltose in the media stimulated the process of protection of corrosion.

  17. Soft Robotic Actuators

    NASA Astrophysics Data System (ADS)

    Godfrey, Juleon Taylor

    In this thesis a survey on soft robotic actuators is conducted. The actuators are classified into three main categories: Pneumatic Artificial Muscles (PAM), Electronic Electroactive Polymers (Electric EAP), and Ionic Electroactive Polymers (Ionic EAP). Soft robots can have many degrees and are more compliant than hard robots. This makes them suitable for applications that are difficult for hard robots. For each actuator background history, build materials, how they operate, and modeling are presented. Multiple actuators in each class are reviewed highlighting both their use and their mathematical formulation. In addition to the survey the McKibben actuator was chosen for fabrication and in-depth experimental analysis. Four McKibben actuators were fabricated using mesh sleeve, barbed hose fittings, and different elastic bladders. All were actuated using compressed air. Tensile tests were performed for each actuator to measure the tension force as air pressure increased from 20 to 100 psi in 10 psi increments. To account for material relaxation properties eleven trials for each actuator were run for 2-3 days. In conclusion, the smallest outer diameter elastic bladder was capable of producing the highest force due to the larger gap between the bladder and the sleeve.

  18. Environmentally Friendly Corrosion Preventative Compounds for Ground Support Structures

    NASA Technical Reports Server (NTRS)

    Montgomery Eliza L.; Calle, Luz, Marina; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based Corrosion Preventive Compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.

  19. Environmentally friendly corrosion preventive compounds for ground support structures

    NASA Astrophysics Data System (ADS)

    Montgomery, Eliza; Curran, Jerome; Calle, Luz Marina; Kolody, Mark

    The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based corrosion preventive compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.

  20. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2014-01-01

    Corrosion is the degradation of a material that results from its interaction with the environment. The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the United States. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the 70 tons of highly corrosive hydrochloric acid that were generated by the solid rocket boosters. Numerous failures at the launch pads are caused by corrosion.The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. As a result of fifty years of experience with launch and ground operations in a natural marine environment that is highly corrosive, NASAs Corrosion Technology Laboratory at KSC is a major source of corrosion control expertise in the launch and other environments. Throughout its history, the Laboratory has evolved from what started as an atmospheric exposure facility near NASAs launch pads into a world-wide recognized capability that provides technical innovations and engineering services in all areas of corrosion for NASA and external customers.This presentation will provide a historical overview of the role of NASAs Corrosion Technology in anticipating, managing, and preventing corrosion. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  1. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...

  2. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...

  3. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...

  4. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...

  5. Magnetically-induced solid-phase microextraction fiber actuation system for quantitative headspace and liquid sampling

    DOEpatents

    Harvey, Chris; Carter, Jerry; Chambers, David M.

    2017-05-23

    A magnetically-induced SPME fiber actuation system includes a SPME fiber holder and a SPME fiber holder actuator, for holding and magnetically actuating a SPME fiber assembly. The SPME fiber holder has a plunger with a magnetic material to which the SPME fiber assembly is connected, and the magnetic SPME fiber holder actuator has an elongated barrel with a loading chamber for receiving the SPME fiber assembly-connected SPME fiber holder, and an external magnet which induces axial motion of the magnetic material of the plunger to extend/retract the SPME fiber from/into the protective needle of the SPME fiber assembly.

  6. Defense Infrastructure: DOD Should Improve Reporting and Communication on Its Corrosion Prevention and Control Activities

    DTIC Science & Technology

    2013-05-01

    Cycle Prediction for Equipment and Facilities 33.1 33.1 12 FAR16 Corrosion Prevention of Rebar in Concrete in Critical Facilities Located in Coastal...through 2007. 16 N-F-229 Integrated Concrete Pier Piling Repair and Corrosion Protection System 1.9 1.9 2006 17 FNV01 Corrosion Protection...Protection System 3.4 3.0 2007 21 F07NV03 Corrosion Inhibitor Evaluation for Concrete Repairs 16.8 16.8 22 F07NV04 Satellite Based Remote Monitoring

  7. Marine corrosion of mild steel at Lumut, Perak

    NASA Astrophysics Data System (ADS)

    Ting, Ong Shiou; Potty, Narayanan Sambu; Liew, Mohd. Shahir

    2012-09-01

    The corrosion rate of structural steels in the adverse marine and offshore environments affects the economic interest of offshore structures since the loss of steel may have significant impact on structural safety and performance. With more emphasis to maintain existing structures in service for longer time and hence to defer replacement costs, there is increasing interest in predicting corrosion rate at a given location for a given period of exposure once the protection coating or cathodic protection is lost. The immersion depth, salinity, steel composition and water pollution will be taken into account. Various corrosion allowances are prescribed for structural members by different standards. There are no studies to determine the appropriate corrosion allowance for steel structures in marine environment in Malaysia. The objectives of the research are to determine the nature and rate of corrosion in mm/year for steel structures in marine environment. It also tries to identify whether the corrosion rate is affected by differences in the chemical composition of the steels, and microalgae. Two sets of corrosion coupons of Type 3 Steel consisting of mild steel were fabricated and immersed in seawater using steel frames. The corrosion rate of the coupon in mm/ per year is estimated based on the material weight loss with time in service. The results are compared with recommendations of the code.

  8. Treatment Prevents Corrosion in Steel and Concrete Structures

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In the mid-1990s, to protect rebar from corrosion, NASA developed an electromigration technique that sends corrosion-inhibiting ions into rebar to prevent rust, corrosion, and separation from the surrounding concrete. Kennedy Space Center worked with Surtreat Holding LLC, of Pittsburgh, Pennsylvania, a company that had developed a chemical option to fight structural corrosion, combining Surtreat's TPS-II anti-corrosive solution and electromigration. Kennedy's materials scientists reviewed the applicability of the chemical treatment to the electromigration process and determined that it was an effective and environmentally friendly match. Ten years later, NASA is still using this approach to fight concrete corrosion, and it has also developed a new technology that will further advance these efforts-a liquid galvanic coating applied to the outer surface of reinforced concrete to protect the embedded rebar from corrosion. Surtreat licensed this new coating technology and put it to use at the U.S. Army Naha Port, in Okinawa, Japan. The new coating prevents corrosion of steel in concrete in several applications, including highway and bridge infrastructures, piers and docks, concrete balconies and ceilings, parking garages, cooling towers, and pipelines. A natural compliment to the new coating, Surtreat's Total Performance System provides diagnostic testing and site analysis to identify the scope of problems for each project, manufactures and prescribes site-specific solutions, controls material application, and verifies performance through follow-up testing and analysis.

  9. Environmental Friendly Coatings and Corrosion Prevention For Flight Hardware Project

    NASA Technical Reports Server (NTRS)

    Calle, Luz

    2014-01-01

    Identify, test and develop qualification criteria for environmentally friendly corrosion protective coatings and corrosion preventative compounds (CPC's) for flight hardware an ground support equipment.

  10. Metal Oxide Solubility and Molten Salt Corrosion.

    DTIC Science & Technology

    1982-03-29

    METAL OXIDE SOLUBILITY AND MOLTEN SALT CORROSION .(U) MAR 82 K H STERN UNCLASSI E DL R L-4772NL EL .2. MICROCOPY RESOLUTION TEST CHART NATIONAL BURALU...21 l 7 3 ..... l DTIC NSPECT I" ’I cCPY INSECE( METAL OXIDE SOLUBILITY AND MOLTEN SALT CORROSION I. INTRODUCTION Molten ...discussed in terms of its importance to the understanding of molten salt corrosion . II. PROTECTIVE COATINGS Since most structural metals and alloys are

  11. Development of corrosion resistant heat exchangers for flue gas desulfurization

    NASA Astrophysics Data System (ADS)

    Ernst, E.; Lorentz, R.

    1984-12-01

    A glass lining as protection against corrosion in flue gas desulfurization plants was developed. Glasses were evaluated under corrosive attack of fluoride-containing acids. The corrosion properties of one-layer and two-layer glass enamels are optimized. Two-layer systems always show better resistance and longer life. The optimized glass linings were tested in a power plant. Manufacturing principles for glass-lined heat exchanger elements are derived. The optimized glasses may be used as protective lining design for heat exchangers or parts of them.

  12. Corrosion protection of copper by polypyrrole film studied by electrochemical impedance spectroscopy and the electrochemical quartz microbalance

    NASA Astrophysics Data System (ADS)

    Lei, Yanhua; Ohtsuka, Toshiaki; Sheng, Nan

    2015-12-01

    Polypyrrole (PPy) films were synthesized on copper in solution of sodium di-hydrogen phosphate and phytate for corrosion protection. The protection properties of PPy films were comparatively investigated in NaCl solution. During two months immersion, the PPy film doped with phytate anions, working as a cationic perm-selective membrane, inhibited the dissolution of copper to 1% of bare copper. Differently, the PPy film doped with di-hydrogen phosphate anions, possessing anionic perm-selectivity, was gradually reduced, and inhibited the dissolution to 7.8% of bare copper. Degradation of the PPy films was studied by comparing the electrochemical impedance spectroscopy change at different immersion time and Raman spectra change after immersion.

  13. Spherically Actuated Motor

    NASA Technical Reports Server (NTRS)

    Peeples, Steven

    2015-01-01

    A three degree of freedom (DOF) spherical actuator is proposed that will replace functions requiring three single DOF actuators in robotic manipulators providing space and weight savings while reducing the overall failure rate. Exploration satellites, Space Station payload manipulators, and rovers requiring pan, tilt, and rotate movements need an actuator for each function. Not only does each actuator introduce additional failure modes and require bulky mechanical gimbals, each contains many moving parts, decreasing mean time to failure. A conventional robotic manipulator is shown in figure 1. Spherical motors perform all three actuation functions, i.e., three DOF, with only one moving part. Given a standard three actuator system whose actuators have a given failure rate compared to a spherical motor with an equal failure rate, the three actuator system is three times as likely to fail over the latter. The Jet Propulsion Laboratory reliability studies of NASA robotic spacecraft have shown that mechanical hardware/mechanism failures are more frequent and more likely to significantly affect mission success than are electronic failures. Unfortunately, previously designed spherical motors have been unable to provide the performance needed by space missions. This inadequacy is also why they are unavailable commercially. An improved patentable spherically actuated motor (SAM) is proposed to provide the performance and versatility required by NASA missions.

  14. 30 CFR 75.1107-4 - Automatic fire sensors and manual actuators; installation; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., there shall be in addition, a manual actuator installed to operate the system. Where sprinklers are used... “Local Protective Signaling Systems” (NFPA No. 72A-1967). (c) On unattended equipment the fire... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensors and manual actuators...

  15. 30 CFR 75.1107-4 - Automatic fire sensors and manual actuators; installation; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., there shall be in addition, a manual actuator installed to operate the system. Where sprinklers are used... “Local Protective Signaling Systems” (NFPA No. 72A-1967). (c) On unattended equipment the fire... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire sensors and manual actuators...

  16. 30 CFR 75.1107-4 - Automatic fire sensors and manual actuators; installation; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., there shall be in addition, a manual actuator installed to operate the system. Where sprinklers are used... “Local Protective Signaling Systems” (NFPA No. 72A-1967). (c) On unattended equipment the fire... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensors and manual actuators...

  17. 30 CFR 75.1107-4 - Automatic fire sensors and manual actuators; installation; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., there shall be in addition, a manual actuator installed to operate the system. Where sprinklers are used... “Local Protective Signaling Systems” (NFPA No. 72A-1967). (c) On unattended equipment the fire... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensors and manual actuators...

  18. 40 CFR 141.82 - Description of corrosion control treatment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...

  19. 40 CFR 141.82 - Description of corrosion control treatment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...

  20. 40 CFR 141.82 - Description of corrosion control treatment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...

  1. 40 CFR 141.82 - Description of corrosion control treatment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...

  2. 40 CFR 141.82 - Description of corrosion control treatment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...

  3. Corrosion Activities at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2002-01-01

    This report documents summer faculty fellow efforts in the corrosion test bed at the NASA Kennedy Space Center. During the summer of 2002 efforts were concentrated on three activities: a short course on corrosion control for KSC personnel, evaluation of commercial wash additives used for corrosion control on Army aircraft, and improvements in the testing of a new cathodic protection system under development at KSC.

  4. Smart Multifunctional Coatings for Corrosion Detection and Control in the Aerospace Industry

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2015-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  5. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K [Albuquerque, NM; Johnston, Gabriel A [Trophy Club, TX; Rohrer, Brandon R [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  6. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  7. Corrosion Protection of Steel by Thin Coatings of Starch-oil Emulsions

    USDA-ARS?s Scientific Manuscript database

    Corrosion of materials is one of the most serious and challenging problems faced worldwide by industry. This research investigated the inhibition of corrosive behavior by jet-cooked starch-soybean oil composites on SAE 1010 steel. Electrochemical Impedance Spectroscopy (EIS) was used to evaluate t...

  8. Bi-directional series-parallel elastic actuator and overlap of the actuation layers.

    PubMed

    Furnémont, Raphaël; Mathijssen, Glenn; Verstraten, Tom; Lefeber, Dirk; Vanderborght, Bram

    2016-01-27

    Several robotics applications require high torque-to-weight ratio and energy efficient actuators. Progress in that direction was made by introducing compliant elements into the actuation. A large variety of actuators were developed such as series elastic actuators (SEAs), variable stiffness actuators and parallel elastic actuators (PEAs). SEAs can reduce the peak power while PEAs can reduce the torque requirement on the motor. Nonetheless, these actuators still cannot meet performances close to humans. To combine both advantages, the series parallel elastic actuator (SPEA) was developed. The principle is inspired from biological muscles. Muscles are composed of motor units, placed in parallel, which are variably recruited as the required effort increases. This biological principle is exploited in the SPEA, where springs (layers), placed in parallel, can be recruited one by one. This recruitment is performed by an intermittent mechanism. This paper presents the development of a SPEA using the MACCEPA principle with a self-closing mechanism. This actuator can deliver a bi-directional output torque, variable stiffness and reduced friction. The load on the motor can also be reduced, leading to a lower power consumption. The variable recruitment of the parallel springs can also be tuned in order to further decrease the consumption of the actuator for a given task. First, an explanation of the concept and a brief description of the prior work done will be given. Next, the design and the model of one of the layers will be presented. The working principle of the full actuator will then be given. At the end of this paper, experiments showing the electric consumption of the actuator will display the advantage of the SPEA over an equivalent stiff actuator.

  9. Magnetic strength and corrosion of rare earth magnets.

    PubMed

    Ahmad, Khalid A; Drummond, James L; Graber, Thomas; BeGole, Ellen

    2006-09-01

    Rare earth magnets have been used in orthodontics, but their corrosion tendency in the oral cavity limits long-term clinical application. The aim of this project was to evaluate several; magnet coatings and their effects on magnetic flux density. A total of 60 neodymium-iron-boron magnets divided into 6 equal groups--polytetrafluoroethylene-coated (PTFE), parylene-coated, and noncoated--were subjected to 4 weeks of aging in saline solution, ball milling, and corrosion testing. A significant decrease in magnet flux density was recorded after applying a protective layer of parylene, whereas a slight decrease was found after applying a protective layer of PTFE. After 4 weeks of aging, the coated magnets were superior to the noncoated magnets in retaining magnetism. The corrosion-behavior test showed no significant difference between the 2 types of coated magnets, and considerable amounts of iron-leached ions were seen in all groups. Throughout the processes of coating, soaking, ball milling, and corrosion testing, PTFE was a better coating material than parylene for preserving magnet flux density. However, corrosion testing showed significant metal leaching in all groups.

  10. Nanocontainer-based corrosion sensing coating.

    PubMed

    Maia, F; Tedim, J; Bastos, A C; Ferreira, M G S; Zheludkevich, M L

    2013-10-18

    The present paper reports on the development of new sensing active coating on the basis of nanocontainers containing pH-indicating agent. The coating is able to detect active corrosion processes on different metallic substrates. The corrosion detection functionality based on the local colour change in active cathodic zones results from the interaction of hydroxide ions with phenolphthalein encapsulated in mesoporous nanocontainers which function as sensing nanoreactors. The mesoporous silica nanocontainers are synthesized and loaded with pH indicator phenolphthalein in a one-stage process. The resulting system is mesoporous, which together with bulkiness of the indicator molecules limits their leaching. At the same time, penetration of water molecules and ions inside the container is still possible, allowing encapsulated phenolphthalein to be sensitive to the pH in the surrounding environment and outperforming systems when an indicator is directly dispersed in the coating layer.The performed tests demonstrate the pH sensitivity of the developed nanocontainers being dispersed in aqueous solutions. The corrosion sensing functionality of the protective coatings with nanocontainers are proven for aluminium- and magnesium-based metallic substrates. As a result, the developed nanocontainers show high potential to be used in a new generation of active protective coatings with corrosion-sensing coatings.

  11. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    PubMed Central

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  12. Monitoring corrosion of steel bars in reinforced concrete structures.

    PubMed

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  13. Soft, Rotating Pneumatic Actuator.

    PubMed

    Ainla, Alar; Verma, Mohit S; Yang, Dian; Whitesides, George M

    2017-09-01

    This article describes a soft pneumatic actuator that generates cyclical motion. The actuator consists of several (three, four, or five) chambers (arranged around the circumference of a circle surrounding a central rod) that can be actuated independently using negative pressure (or partial vacuum). Sequential actuation of the four-chamber device using reduced pressure moves the central rod cyclically in an approximately square path. We characterize the trajectory of the actuator and the force exerted by it, as we vary the material used for fabrication, the number of chambers, and the size of the actuator. We demonstrate two applications of this actuator: to deliver fluid while stirring (by replacing the central rod with a needle) and for locomotion that mimics a reptilian gait (by combining four actuators together).

  14. Soft buckling actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dian; Whitesides, George M.

    A soft actuator is described, including: a rotation center having a center of mass; a plurality of bucklable, elastic structural components each comprising a wall defining an axis along its longest dimension, the wall connected to the rotation center in a way that the axis is offset from the center of mass in a predetermined direction; and a plurality of cells each disposed between two adjacent bucklable, elastic structural components and configured for connection with a fluid inflation or deflation source; wherein upon the deflation of the cell, the bucklable, elastic structural components are configured to buckle in the predeterminedmore » direction. A soft actuating device including a plurality of the soft actuators and methods of actuation using the soft actuator or soft actuating device disclosed herein are also described.« less

  15. Non-collinear valve actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2012-01-01

    A non-collinear valve actuator includes a primary actuating system and a return spring system with each applying forces to a linkage system in order to regulate the flow of a quarter-turn valve. The primary actuating system and return spring system are positioned non-collinearly, which simply means the primary actuating system and return spring system are not in line with each other. By positioning the primary actuating system and return spring system in this manner, the primary actuating system can undergo a larger stroke while the return spring system experiences significantly less displacement. This allows the length of the return spring to be reduced due to the minimization of displacement thereby reducing the weight of the return spring system. By allowing the primary actuating system to undergo longer strokes, the weight of the primary actuating system may also be reduced. Accordingly, the weight of the non-collinear valve actuator is reduced.

  16. Preparing and Study the effects of Composite Coatings in Protection of Oil Pipes from the Risk of Corrosion that resulting from Associated water with Petroleum Products

    NASA Astrophysics Data System (ADS)

    – Sarraf, A. R. Al; Yaseen, M. A.

    2018-05-01

    In order to inhibit the metallic corrosion in the oil pipelines,the protection method with composite coating of unsaturated polyester and reinforced by Caolin at weight percentage (20%) was studied. Where, the work samples were classified into two groups according to internal composite coatings layers for all groups of these samples. The first group is nitrocellulose coating reinforced by nano and micro powder of Mgo, the second group is sodium silicate coating reinforced by nano powder of Mgo. The following weight percentages (0%, 1%, 3% and 5%) were adopted as reinforcement ratios for nano powders, as well as the weight percentages (0%, 3%, 5% and 7%) as reinforcement ratios for micro powders Tribology properties and Electrochemical Corrosion Resistance by Polarization method (Tafel) and Adhesion Strength were studied. The results showed an improvement in the corrosion resistance of protected steel by coatings compare with uncoated steel, as well as improvement in mechanical properties and adhesion strength of composite coatings.

  17. Collision Welding of Dissimilar Materials by Vaporizing Foil Actuator: A Breakthrough Technology for Dissimilar Metal Joining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daehn, Glenn S.; Vivek, Anupam; Liu, Bert C.

    This work demonstrated and further developed Vaporizing Foil Actuator Welding (VFAW) as a viable technique for dissimilar-metal joining for automotive lightweighting applications. VFAW is a novel impact welding technology, which uses the pressure developed from electrically-assisted rapid vaporization of a thin aluminum foil (the consumable) to launch and ultimately collide two of more pieces of metal to create a solid-state bond between them. 18 dissimilar combinations of automotive alloys from the steel, aluminum and magnesium alloy classes were screened for weldability and characterized by metallography of weld cross sections, corrosion testing, and mechanical testing. Most combinations, especially a good numbermore » of Al/Fe pairs, were welded successfully. VFAW was even able to weld combinations of very high strength materials such as 5000 and 6000 series aluminum alloys to boron and dual phase steels, which is difficult to impossible by other joining techniques such as resistance spot welding, friction stir welding, or riveting. When mechanically tested, the samples routinely failed in a base metal rather than along the weld interface, showing that the weld was stronger than either of the base metals. As for corrosion performance, a polymer-based protective coating was used to successfully combat galvanic corrosion of 5 Al/Fe pairs through a month-long exposure to warm salt fog. In addition to the technical capabilities, VFAW also consumes little energy compared to conventional welding techniques and requires relatively light, flexible tooling. Given the technical and economic advantages, VFAW can be a very competitive joining technology for automotive lightweighting. The success of this project and related activities has resulted in substantial interest not only within the research community but also various levels of automotive supply chain, which are collaborating to bring this technology to commercial use.« less

  18. Parametric study and characterization of the isobaric thermomechanical transformation fatigue of nickel-rich NiTi SMA actuators

    NASA Astrophysics Data System (ADS)

    Bertacchini, Olivier W.; Schick, Justin; Lagoudas, Dimitris C.

    2009-03-01

    The recent development of various aerospace applications utilizing Ni-rich NiTi Shape memory Alloys (SMAs) as actuators motivated the need to characterize the cyclic response and the transformation fatigue behavior of such alloys. The fatigue life validation and certification of new designs is required in order to be implemented and used in future applications. For that purpose, a custom built fatigue test frame was designed to perform isobaric thermally induced transformation cycles on small dogbones SMA actuators (test gauge cross-section up to: 1.270 x 0.508 mm2). A parametric study on the cyclic response and transformation fatigue behavior of Ni-rich NiTi SMAs led to the optimization of several material/process and test parameters, namely: the applied stress range, the heat treatment, the heat treatment environment and the specimen thickness. However, fatigue testing was performed in a chilled waterless glycol environment maintained at a temperature of 5°C that showed evidence of corrosion-assisted transformation fatigue failure. Therefore, it was necessary to build a fatigue test frame that would employ a dry and inert cooling methodology to get away from any detrimental interactions between the specimens and the cooling medium (corrosion). The selected cooling method was gaseous nitrogen, sprayed into a thermally insulated chamber, maintaining a temperature of -20°C. The design of the gaseous nitrogen cooling was done in such a way that the actuation frequency is similar to the one obtained using the original design (~ 0.1 Hz). For both cooling methods, Joule resistive heating was used to heat the specimens. In addition and motivated by the difference in surface quality resulting from different material processing such as EDM wire cutting and heat treatments, EDM recast layer and oxide layer were removed. The removal was followed by an ultra-fine polish (0.05 μm) that was performed on a subset of the fatigue specimens. Experimental results are presented

  19. Laser anti-corrosion treatment of metal surfaces

    NASA Astrophysics Data System (ADS)

    Iakovlev, Alexey; Ruzankina, Julia; Kascheev, Sergey; Vasilyev, Oleg; Parfenov, V.; Grishkanich, Alexsandr

    2017-02-01

    Metal corrosion is the main problem of all metal constructions and buildings. Annual losses resulting from corrosion in industrialized countries are estimated in the range from 2% to 4 % of gross national product. We used a CW fiber laser with the wavelength of 1064 nm and a power up to 18,4 W for laser irradiation of metal surfaces. We report on the optimal treatment of the metal corrosion with laser power density in the range of 93,3÷ 95,5 W/cm2. After the process of laser treatment of steel surface we observe decreased roughness of steel and a small change in its chemical composition. There was an active research of new ways to improve the surface properties of metals and to increase the corrosion resistance. One of the breakthrough methods to protect the material against corrosion is laser treatment. We used a CW fiber laser operating at 1064 nm with up to 18,4 W output power. Experimentally, the samples (steel plates) were irradiated by laser for 35 seconds. Surface treatment of metal was provided at a room temperature and a relative air humidity of 55%. The impact of laser radiation on the surface has contributed to a small change of its chemical composition. It forms protective fluoride coating on the metal surface. The laser radiation significantly increased the concentration of fluorine in the metal from 0.01 atom. % to 5.24 atom. %. The surface roughness of steel has changed from 3.66 μ to 2.66 μ. Protective coatings with best resistance to corrosion were obtained with laser power density in a range of 93.3 W/cm2 to 95.5 W/cm2.

  20. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 2: Corrosion and protection mechanisms

    NASA Astrophysics Data System (ADS)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the deposition current density. The corrosion resistance of the deposits was studied and compared with that of monolayers of Ni-P and Zn-Ni alloys via Tafel polarization, EIS and salt spray tests. Characterization of corrosion products by means of EDS and XRD revealed more details from the corrosion mechanism of the monolayers and multilayers. The corrosion current density of Ni-P/Zn-Ni CMMCs were around one tenth of Zn-Ni monolayer. The CMMC with incomplete layers performed lower polarization resistance and higher corrosion current density compared to the CMMC with complete layers. The electrical circuit that was proposed for modeling the corrosion process based on the EIS spectrum, proved that layering reduces the porosity and consequently improves the barrier properties. Although, layering of Zn-Ni layers with Ni-P deposits increased the time to red rust in salt spray test, the time for white rust formation decreased. The corrosion mechanism of both Zn-Ni and Ni-P (containing small amount of Zn) was preferential dissolution of Zn and the corrosion products were comprised of mainly Zn hydroxychloride and Zn hydroxycarbonate. Also, Ni and P did not take part in the corrosion products. Based on the electrochemical character of the layers and the morphology of the corroded surface, the corrosion mechanism of multilayers was discussed.

  1. Corrosion inhibitors for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Deramus, G. E., Jr.

    1977-01-01

    Problems dealing with corrosion and corrosion protection of solar heating and cooling systems are discussed. A test program was conducted to find suitable and effective corrosion inhibitors for systems employing either water or antifreeze solutions for heat transfer and storage. Aluminum-mild-steel-copper-stainless steel assemblies in electrical contact were used to simulate a multimetallic system which is the type most likely to be employed. Several inhibitors show promise for this application.

  2. Plasma Sprayed Bondable Stainless Surface (BOSS) Coatings for Corrosion Protection and Adhesion Treatments

    NASA Technical Reports Server (NTRS)

    Davis, G. D.; Groff, G. B.; Rooney, M.; Cooke, A. V.; Boothe, R.

    1995-01-01

    Plasma-sprayed Bondable Stainless Surface (BOSS) coatings are being developed under the Solid Propulsion Integrity Program's (SPIP) Bondlines Package. These coatings are designed as a steel case preparation treatment prior to insulation lay-up. Other uses include the exterior of steel cases and bonding surfaces of nozzle components. They provide excellent bondability - rubber insulation and epoxy bonds fail cohesively within the polymer - for both fresh surfaces and surfaces having undergone natural and accelerated environmental aging. They have passed the MSFC requirements for protection of inland and sea coast environment. Because BOSS coatings are inherently corrosion resistant, they do not require preservation by greases or oils. The reduction/elimination of greases and oils, known bondline degraders, can increase SRM reliability, decrease costs by reducing the number of process steps, and decrease environmental pollution by reducing the amount of methyl chloroform used for degreasing and thus reduce release of the ozone-depleting chemical in accordance with the Clean Air Act and the Montreal Protocol. The coatings can potential extend the life of RSRM case segments and nozzle components by eliminating erosion due to multiple grit blasting during each use cycle and corrosion damage during marine recovery. Concurrent work for the Air Force show that other BOSS coatings give excellent bondline strength and durability for high-performance structures of aluminum and titanium.

  3. Smart Coating for Corrosion Indication and Prevention: Recent Progress

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Hintze, Paul; Calle, Luz M.; Buhrow, Jerry; Curran, Jerry; Muehlberg, A. J.; Gelling, V. J.; Webster, D. C.; Croll, S. G.; Contu, F.; hide

    2009-01-01

    The authors are developing a smart coating system based on pH-triggered release microcapsules. These microcapsules can be incorporated into various coating systems for corrosion detection, protection and self-repair of mechanical coating damage. This paper will present the results from progress made to date in the controlled release properties of these microcapsules as well as in their corrosion indication and corrosion inhibition function.

  4. Micromachined electrostatic vertical actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less

  5. Micromachined electrostatic vertical actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.P.; Sommargren, G.E.; McConaghy, C.F.

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion, micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less

  6. Launch Pad Coatings for Smart Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  7. Nano-engineering of superhydrophobic aluminum surfaces for anti-corrosion

    NASA Astrophysics Data System (ADS)

    Jeong, Chanyoung

    Metal corrosion is a serious problem, both economically and operationally, for engineering systems such as aircraft, automobiles, pipelines, and naval vessels. In such engineering systems, aluminum is one of the primary materials of construction due to its light weight compared to steel and good general corrosion resistance. However, because of aluminum's relatively lower resistance to corrosion in salt water environments, protective measures such as thick coatings, paints, or cathodic protection must be used for satisfactory service life. Unfortunately, such anti-corrosion methods can create other concerns, such as environmental contamination, protection durability, and negative impact on hydrodynamic efficiency. Recently, a novel approach to preventing metal corrosion has emerged, using superhydrophobic surfaces. Superhydrophobic surfaces create a composite interface to liquid by retaining air within the surface structures, thus minimizing the direct contact of the liquid environment to the metal surface. The result is a highly non-wetting and anti-adherent surface that can offer other benefits such as biofouling resistance and hydrodynamic low friction. Prior research with superhydrophobic surfaces for corrosion applications was based on irregular surface roughening and/or chemical coatings, which resulted in random surface features, mostly on the micrometer scale. Such microscale surface roughness with poor controllability of structural dimensions and shapes has been a critical limitation to deeper understanding of the anti-corrosive effectiveness and optimized application of this approach. The research reported here provides a novel approach to producing controlled superhydrophobic nanostructures on aluminum that allows a systematic investigation of the superhydrophobic surface parameters on the corrosion resistance and hence can provide a route to optimization of the surface. Electrochemical anodization is used to controllably modulate the oxide layer

  8. Application of electrochemical methods in corrosion and battery research

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoli

    Various electrochemical methods have been applied in the development of corrosion protection methods for ammonia/water absorption heat pumps and the evaluation of the stability of metallic materials in Li-ion battery electrolyte. Rare earth metal salts (REMSs) and organic inhibitors have been evaluated for corrosion protection of mild steel in the baseline solution of 5 wt% NH 3 + 0.2 wt% NaOH to replace the conventionally used toxic chromate salt inhibitors. Cerium nitrate provided at least comparable corrosion inhibition efficiency as dichromate in the baseline solution at 100°C. The cerium (IV) oxide formed on mild steel through the cerating process exhibited increasing corrosion protection for mild steel with prolonged exposure time in the hot baseline solution. The optimum cerating process was found to be first cerating in a solution of 2.3 g/L CeCl3 + 4.4 wt% H2O2 + appropriate additives for 20 minutes at pH 2.2 at room temperature with 30 minutes solution aging prior to use, then sealing in 10% sodium (meta) silicate or sodium molybdate at 50°C for 30 minutes. Yttrium salts provided less corrosion protection for mild steel in the baseline solution than cerium salts. Glycerophosphate was found to be a promising chromate-free organic inhibitor for mild steel; however, its thermostability in hot ammonia/water solutions has not been confirmed yet. The stability of six metallic materials used in Li-ion batteries has been evaluated in 1M lithium hexafluorophosphate (LiPF6) dissolved in a 1:1 volume mixture of ethylene carbonate and diethyl carbonate at 37°C in a dry-box. Aluminum is the most stable material, while Copper is active under anodic potentials and susceptible to localized corrosion and galvanic corrosion. The higher the concentration of the alloying elements Al and/or V in a titanium alloy, the higher was the stability of the titanium alloy in the battery electrolyte. 90Pt-10Ir can cause decomposition of the electrolyte resulting in a low stable

  9. Progress on Shape Memory Alloy Actuator Development for Active Clearance Control

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan; Melcher, Kevin; Noebe, Ronald

    2006-01-01

    Results of a numerical analysis evaluating the feasibility of high-temperature shape memory alloys (HTSMA) for active clearance control actuation in the high-pressure turbine section of a modern turbofan engine has been conducted. The prototype actuator concept considered here consists of parallel HTSMA wires attached to the shroud that is located on the exterior of the turbine case. A transient model of an HTSMA actuator was used to evaluate active clearance control at various operating points in a test bed aircraft engine simulation. For the engine under consideration, each actuator must be designed to counteract loads from 380 to 2000 lbf and displace at least 0.033 in. Design results show that an actuator comprised of 10 wires 2 in. in length is adequate for control at critical engine operating points and still exhibit acceptable failsafe operability and cycle life. A proportional-integral-derivative (PID) controller with integrator windup protection was implemented to control clearance amidst engine transients during a normal mission. Simulation results show that the control system exhibits minimal variability in clearance control performance across the operating envelope. The final actuator design is sufficiently small to fit within the limited space outside the high-pressure turbine case and is shown to consume only small amounts of bleed air to adequately regulate temperature.

  10. Finite Energy and Bounded Actuator Attacks on Cyber-Physical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djouadi, Seddik M; Melin, Alexander M; Ferragut, Erik M

    As control system networks are being connected to enterprise level networks for remote monitoring, operation, and system-wide performance optimization, these same connections are providing vulnerabilities that can be exploited by malicious actors for attack, financial gain, and theft of intellectual property. Much effort in cyber-physical system (CPS) protection has focused on protecting the borders of the system through traditional information security techniques. Less effort has been applied to the protection of cyber-physical systems from intelligent attacks launched after an attacker has defeated the information security protections to gain access to the control system. In this paper, attacks on actuator signalsmore » are analyzed from a system theoretic context. The threat surface is classified into finite energy and bounded attacks. These two broad classes encompass a large range of potential attacks. The effect of theses attacks on a linear quadratic (LQ) control are analyzed, and the optimal actuator attacks for both finite and infinite horizon LQ control are derived, therefore the worst case attack signals are obtained. The closed-loop system under the optimal attack signals is given and a numerical example illustrating the effect of an optimal bounded attack is provided.« less

  11. Microprocessor controlled force actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1986-01-01

    The mechanical and electrical design of a prototype force actuator for vibration control of large space structures (LSS) is described. The force actuator is an electromagnetic system that produces a force by reacting against a proof-mass. The actuator has two colocated sensors, a digital microcontroller, and a power amplifier. The total weight of actuator is .998 kg. The actuator has a steady state force output of approximately 2.75 N from approximately 2 Hz to well beyond 1000 Hz.

  12. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2001-07-17

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  13. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2002-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  14. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen J.; Doll, Gary L.

    1997-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  15. Investigation of the weldability of iron-aluminum-chromium overlay coatings for corrosion protection in oxidizing/sulfidizing environments

    NASA Astrophysics Data System (ADS)

    Regina, Jonathan R.

    The current study investigated the effect of chromium additions on the hydrogen cracking susceptibility of Fe-Al weld overlay claddings containing chromium additions. It was found that the weldability of FeAlCr claddings was a function of both the aluminum and chromium concentrations of the weld coatings. Weld overlay compositions that were not susceptible to hydrogen cracking were identified and the underlying mechanism behind the hydrogen cracking phenomenon was investigated further. It was concluded that the cracking behavior of the FeAlCr welds depended strongly on the microstructure of the weld fusion zone. Although it was found that the cracking susceptibility was influenced by the presence of Fe-Al intermetallic phases (namely Fe3 Al and FeAl), the cracking behavior of FeAlCr weld overlay claddings also depended on the size and distribution of carbide and oxide particles present within the weld structure. These particles acted as hydrogen trapping sites, which are areas where free hydrogen segregates and can no longer contribute to the hydrogen embrittlement of the metal. It was determined that in practical applications of these FeAlCr weld overlay coatings, carbon should be present within these welds to reduce the amount of hydrogen available for hydrogen cracking. Based on the weldability results of the FeAlCr weld claddings, coating compositions that were able to be deposited crack-free were used for long-term corrosion testing in a simulated low NOx environment. These alloys were compared to a Ni-based superalloy (622), which is commonly utilized as boiler tube coatings in power plant furnaces for corrosion protection. It was found that the FeAlCr alloys demonstrated superior corrosion resistance when compared to the Ni-based superalloy. Due to the excellent long-term corrosion behavior of FeAlCr weld overlays that were immune to hydrogen cracking, it was concluded that select FeAlCr weld overlay compositions would make excellent corrosion resistant

  16. Backed Bending Actuator

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Su, Ji

    2004-01-01

    Bending actuators of a proposed type would partly resemble ordinary bending actuators, but would include simple additional components that would render them capable of exerting large forces at small displacements. Like an ordinary bending actuator, an actuator according to the proposal would include a thin rectangular strip that would comprise two bonded layers (possibly made of electroactive polymers with surface electrodes) and would be clamped at one end in the manner of a cantilever beam. Unlike an ordinary bending actuator, the proposed device would include a rigid flat backplate that would support part of the bending strip against backward displacement; because of this feature, the proposed device is called a backed bending actuator. When an ordinary bending actuator is inactive, the strip typically lies flat, the tip displacement is zero, and the force exerted by the tip is zero. During activation, the tip exerts a transverse force and undergoes a bending displacement that results from the expansion or contraction of one or more of the bonded layers. The tip force of an ordinary bending actuator is inversely proportional to its length; hence, a long actuator tends to be weak. The figure depicts an ordinary bending actuator and the corresponding backed bending actuator. The bending, the tip displacement (d(sub t)), and the tip force (F) exerted by the ordinary bending actuator are well approximated by the conventional equations for the loading and deflection of a cantilever beam subject to a bending moment which, in this case, is applied by the differential expansion or contraction of the bonded layers. The bending, displacement, and tip force of the backed bending actuator are calculated similarly, except that it is necessary to account for the fact that the force F(sub b) that resists the displacement of the tip could be sufficient to push part of the strip against the backplate; in such a condition, the cantilever beam would be effectively shortened

  17. Dual actuation micro-mirrors

    NASA Astrophysics Data System (ADS)

    Alneamy, A. M.; Khater, M. E.; Al-Ghamdi, M. S.; Park, S.; Heppler, G. R.; Abdel-Rahman, E. M.

    2018-07-01

    This paper investigates the performance of cantilever-type micro-mirrors under electromagnetic, electrostatic and dual actuation. We developed and validated a two-DOFs model of the coupled bending-torsion motions of the mirror and used it in conjunction with experiments in air and in vacuum to compare all three actuation methods. We found that electromagnetic actuation is the most effective delivering a scanning range of  ± out of a geometrically allowable range of  ± at a current amplitude i  =  3 mA and a magnetic field of B  =  30 mT. Electrostatic actuation, whether alone or in conjunction with electromagnetic actuation, limited the stable angular range to smaller values (as small as ) due to the presence of spurious piston motions. This is an innate characteristic of micro-scale electrostatic actuation, the electrostatic force and the undesirable piston motion grow faster than the electrostatic torque and the desired angular displacement as the voltage is increased and they limit the stable angular range. Finally, we found that the dual actuation can be used to design two-DOF mirrors where electromagnetic actuation drives angular motion for optical beam steering and electrostatic actuation drives piston motion to control the mirror focus.

  18. Hot corrosion of ceramic engine materials

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Jacobson, Nathan S.; Smialek, James L.

    1988-01-01

    A number of commercially available SiC and Si3N4 materials were exposed to 1000 C in a high velocity, pressurized burner rig as a simulation of a turbine engine environment. Sodium impurities added to the burner flame resulted in molten Na2SO4 deposition, attack of the SiC and Si4N4 and formation of substantial Na2O-x(SiO2) corrosion product. Room temperature strength of the materials decreased. This was a result of the formation of corrosion pits in SiC, and grain boundary dissolution and pitting in Si3N4. Corrosion regimes for such Si-based ceramics have been predicted using thermodynamics and verified in rig tests of SiO2 coupons. Protective mullite coatings are being investigated as a solution to the corrosion problem for SiC and Si3N4. Limited corrosion occurred to cordierite (Mg2Al4Si5O18) but some cracking of the substrate occurred.

  19. Corrosion protected, multi-layer fuel cell interface

    DOEpatents

    Feigenbaum, Haim; Pudick, Sheldon; Wang, Chiu L.

    1986-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. The multi-layer configuration for the interface comprises a non-cupreous metal-coated metallic element to which is film-bonded a conductive layer by hot pressing a resin therebetween. The multi-layer arrangement provides bridging electrical contact.

  20. Corrosion protection of steel by thin coatings of starch-oil dry lubricants

    USDA-ARS?s Scientific Manuscript database

    Corrosion of materials is one of the most serious and challenging problems faced worldwide by industry. Dry lubricants reduce friction between two metal surfaces. This research investigated the inhibition of corrosive behavior a dry lubricant formulation consisting of jet-cooked corn starch and soyb...

  1. An Optimized Integrator Windup Protection Technique Applied to a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Watts, Stephen R.; Garg, Sanjay

    1995-01-01

    This paper introduces a new technique for providing memoryless integrator windup protection which utilizes readily available optimization software tools. This integrator windup protection synthesis provides a concise methodology for creating integrator windup protection for each actuation system loop independently while assuring both controller and closed loop system stability. The individual actuation system loops' integrator windup protection can then be combined to provide integrator windup protection for the entire system. This technique is applied to an H(exp infinity) based multivariable control designed for a linear model of an advanced afterburning turbofan engine. The resulting transient characteristics are examined for the integrated system while encountering single and multiple actuation limits.

  2. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, T.; Pyatina, T.

    2014-11-01

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na 2O-Al 2O 3-SiO 2-H 2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS wasmore » crystalline analcime.« less

  3. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, T.; Pyatina, T.

    2014-11-14

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na 2O-Al 2O 3-SiO 2-H 2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS wasmore » crystalline analcime.« less

  4. Microencapsulation of Self Healing Agents for Corrosion Control Coatings

    NASA Technical Reports Server (NTRS)

    Jolley, S. T.; Li, W.; Buhrow, J. W.; Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, is a very costly problem that has a major impact on the global economy. Results from a 2-year breakthrough study released in 2002 by the U.S. Federal Highway Administration (FHWA) showed that the total annual estimated direct cost associated with metallic corrosion in nearly every U.S. industry sector was a staggering $276 billion, approximately 3.1% of the nation's Gross Domestic Product (GOP). Corrosion protective coatings are widely used to protect metallic structures from the detrimental effects of corrosion but their effectiveness can be seriously compromised by mechanical damage, such as a scratch, that exposes the metallic substrate. The incorporation of a self healing mechanism into a corrosion control coating would have the potential to significantly increase its effectiveness and useful lifetime. This paper describes work performed to incorporate a number of microcapsule-based self healing systems into corrosion control coatings. The work includes the preparation and evaluation of self-healing systems based on curable epoxy, acrylate, and siloxane resins, as well as, microencapsulated systems based on passive, solvent born, healing agent delivery. The synthesis and optimization of microcapsule-based self healing systems for thin coating (less than 100 micron) will be presented.

  5. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator that provides incremental linear movements to large object and holds its position against heavy loads. Electromechanical actuator cleaner and simpler, and needs less maintenance. Two principal innovative features that distinguish new actuator are use of shaft-angle resolver as source of position feedback to electronic control subsystem and antibacklash gearing arrangement.

  6. Self-Latching Piezocomposite Actuator

    NASA Technical Reports Server (NTRS)

    Wilkie, William K. (Inventor); Lynch, Christopher S. (Inventor); Bryant, Robert G. (Inventor)

    2017-01-01

    A self-latching piezocomposite actuator includes a plurality of shape memory ceramic fibers. The actuator can be latched by applying an electrical field to the shape memory ceramic fibers. The actuator remains in a latched state/shape after the electrical field is no longer present. A reverse polarity electric field may be applied to reset the actuator to its unlatched state/shape. Applied electric fields may be utilized to provide a plurality of latch states between the latched and unlatched states of the actuator. The self-latching piezocomposite actuator can be used for active/adaptive airfoils having variable camber, trim tabs, active/deformable engine inlets, adaptive or adjustable vortex generators, active optical components such as mirrors that change shapes, and other morphing structures.

  7. Aircraft Corrosion

    DTIC Science & Technology

    1981-08-01

    protective coating between the plates, the reduction in frictional effects caused by the fluid did cause a significant reduction in fatigue life ... surface treatments for aluminum alloys , there has been a return to anodizing for new weapons systems rather than chromate conversion coatings . Both sulfuric...good alternate coating material in many applications requiring good corrosion resistance and minimal effect on fatigue properties. Only two aluminum

  8. Corrosion protection of steel by thin coatings of starch-oil dry lubricants

    USDA-ARS?s Scientific Manuscript database

    Corrosion of materials is one of the most serious and challenging problems faced 3 worldwide by industry. This research investigated the inhibition of corrosive behavior a 4 dry lubricant formulation consisting of jet-cooked corn starch and soybean oil on SAE 5 1010 steel. Electrochemical Impedance ...

  9. Chemically activated nanodiamonds for aluminum alloy corrosion protection and monitoring

    NASA Astrophysics Data System (ADS)

    Hannstein, Inga; Adler, Anne-Katrin; Lapina, Victoria; Osipov, Vladimir; Opitz, Jörg; Schreiber, Jürgen; Meyendorf, Norbert

    2009-03-01

    In the present study, a smart coating for light metal alloys was developed and investigated. Chemically activated nanodiamonds (CANDiT) were electrophoretically deposited onto anodized aluminum alloy AA2024 substrates in order to increase corrosion resistance, enhance bonding properties and establish a means of corrosion monitoring based on the fluorescence behavior of the particles. In order to create stable aqueous CANDiT dispersions suitable for electrophoretic deposition, mechanical milling had to be implemented under specific chemical conditions. The influence of the CANDiT volume fraction and pH of the dispersion on the electrochemical properties of the coated samples was investigated. Linear voltammetry measurements reveal that the chemical characteristics of the CANDiT dispersion have a distinct influence on the quality of the coating. The fluorescence spectra as well as fluorescence excitation spectra of the samples show that corrosion can be easily detected by optical means. Furthermore, an optimization on the basis of "smart" - algorithms for the data processing of a surface analysis by the laser-speckle-method is presented.

  10. Effects of temperature on the corrosion behavior of coated carbon steel in 1 wt.% sodium chloride (NaCl) solution

    NASA Astrophysics Data System (ADS)

    Razak, Khalil Abdul; Fuad, Mohd Fazril Irfan Ahmad; Alias, Nur Hashimah; Othman, Nur Hidayati; Zahari, Muhammad Imran

    2017-12-01

    Special attention has been paid in the past decade on the use of metal corrosion protection to conserve natural resources and to improve the performance of engine, build structures and other equipment. Coating is considered as one of the promising methods that can be used to protect the metal against corrosion. However, not many attentions have been given on the evaluation of coating mechanism towards corrosion protection. In this work, the performance of zinc-rich paint (ZRP) was investigated under saltwater environment as to simulate the nature of corrosion in seawater. The adhesion of the coated steel was also studied to determine the adherence of the coatings to the metal substrate. Results obtained from the immersion test was then used to determine the corrosion rate of the coatings. The mechanisms and the function of ZRP as a protection layer were also investigated. By using 3 coated system of ZRP, the corrosion rate of the steel was observed to decrease thus provide better protection in seawater environment.

  11. Inter-relationships between corrosion and mineral-scale deposition in aqueous systems.

    PubMed

    Hodgkiess, T

    2004-01-01

    The processes of corrosion and scale deposition in natural and process waters are often linked and this paper considers a number of instances of interactions between the two phenomena. In some circumstances a scale layer (e.g. calcium carbonate) can be advantageously utilised as a corrosion-protection coating on components and this feature has been exploited for many decades in the conditioning of water to induce spontaneous precipitation of a scale layer upon the surfaces of engineering equipment. The electrochemical mechanisms associated with some corrosion and corrosion-control processes can promote alkaline-scale deposition directly upon component surfaces. This is a feature that can be exploited in the operation of cathodic protection (CP) of structures and components submerged in certain types of water (e.g. seawater). Similar phenomena can occur during bi-metallic corrosion and a case study, involving carbon steel/stainless steel couples in seawater, is presented. Additional complexities pertain during cyclic loading of submerged reinforced concrete members in which scale deposition may reduce the severity of fatigue stresses but can be associated with severe corrosion damage to embedded reinforcing steel. Also considered are scale-control/corrosion interactions in thermal desalination plant and an indirect consequence of the scale-control strategy on vapourside corrosion is discussed.

  12. The Behavior of Environmentally Friendly Corrosion Preventative Compounds in an Aggressive Coastal Marine Environment

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran Jerome C.; Kolody, Mark R.

    2013-01-01

    The shift to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based Corrosion Preventive Compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. The CPCs, while a temporary protective coating, must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different soft film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. The CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing . The initial results for the fifteen CPC systems are reported : Key words: corrosion preventive compound, CPC, spaceport, environmentally friendly, atmospheric exposure, marine, carbon steel, aluminum alloy, galvanic corrosion, wire on bolt.

  13. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Y.; Meng, W.J.; Swathirajan, S.; Harris, S.J.; Doll, G.L.

    1997-04-29

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell`s operating environment. Stainless steels rich in Cr, Ni, and Mo are particularly effective protective interlayers. 6 figs.

  14. Poly (3,4-ethylenedioxythiophene) graphene oxide composite coatings for controlling magnesium implant corrosion.

    PubMed

    Catt, Kasey; Li, Huaxiu; Cui, X Tracy

    2017-01-15

    Magnesium (Mg) is a promising biodegradable implant material because of its appropriate mechanical properties and safe degradation products. However, in vivo corrosion speed and hydrogen gas production need to be controlled for uses in biomedical applications. Here we report the development of a conducting polymer 3,4-ethylenedioxythiphene (PEDOT) and graphene oxide (GO) composite coating as a corrosion control layer. PEDOT/GO was electropolymerized on Mg samples in ethanol media. The coated Mg samples were subjected to various corrosion tests. The PEDOT/GO coating significantly reduced the rate of corrosion as evidenced by lower Mg ion concentration and pH of the corrosion media. In addition, the coating decreased the evolved hydrogen. Electrochemical analysis of the corroding samples showed more positive corrosion potential, a decreased corrosion current, and an increase in the polarization resistance. PEDOT/GO corrosion protection is attributed to three factors; an initial passive layer preventing solution ingress, buildup of negative charges in the film, and formation of corrosion protective Mg phosphate layer through redox coupling with Mg corrosion. To explore the biocompatibility of the coated implants in vitro, corrosion media from PEDOT/GO coated or uncoated Mg samples were exposed to cultured neurons where PEDOT/GO coated samples showed decreased toxicity. These results suggest that PEDOT/GO coating will be an effective treatment for controlling corrosion of Mg based medical implants. Coating Mg substrates with a PEDOT/GO composite coating showed a significant decrease in corrosion rate. While conducting polymer coatings have been used to prevent corrosion on various metals, there has been little work on the use of these coatings for Mg. Additionally, to our knowledge, there has not been a report of the combined used of conducting polymer and GO as a corrosion control layer. Corrosion control is attributed to an initial barrier layer followed by

  15. Electro-Active Polymer (EAP) Actuators for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Leary, S.; Shahinpoor, M.; Harrison, J. O.; Smith, J.

    1999-01-01

    NASA is seeking to reduce the mass, size, consumed power, and cost of the instrumentation used in its future missions. An important element of many instruments and devices is the actuation mechanism and electroactive polymers (EAP) are offering an effective alternative to current actuators. In this study, two families of EAP materials were investigated, including bending ionomers and longitudinal electrostatically driven elastomers. These materials were demonstrated to effectively actuate manipulation devices and their performance is being enhanced in this on-going study. The recent observations are reported in this paper, include the operation of the bending-EAP at conditions that exceed the harsh environment on Mars, and identify the obstacles that its properties and characteristics are posing to using them as actuators. Analysis of the electrical characteristics of the ionomer EAP showed that it is a current driven material rather than voltage driven and the conductivity distribution on the surface of the material greatly influences the bending performance. An accurate equivalent circuit modeling of the ionomer EAP performance is essential for the design of effective drive electronics. The ionomer main limitations are the fact that it needs to be moist continuously and the process of electrolysis that takes place during activation. An effective coating technique using a sprayed polymer was developed extending its operation in air from a few minutes to about four months. The coating technique effectively forms the equivalent of a skin to protect the moisture content of the ionomer. In parallel to the development of the bending EAP, the development of computer control of actuated longitudinal EAP has been pursued. An EAP driven miniature robotic arm was constructed and it is controlled by a MATLAB code to drop and lift the arm and close and open EAP fingers of a 4-finger gripper. Keywords: Miniature Robotics, Electroactive Polymers, Electroactive Actuators, EAP

  16. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  17. Thermal spray coating for corrosion under insulation (CUI) prevention

    NASA Astrophysics Data System (ADS)

    Fuad, Mohd Fazril Irfan Ahmad; Razak, Khalil Abdul; Alias, Nur Hashimah; Othman, Nur Hidayati; Lah, Nik Khairul Irfan Nik Ab

    2017-12-01

    Corrosion under insulation (CUI) is one of the predominant issues affecting process of Oil and Gas and Petrochemical industries. CUI refers to external corrosion, but it is difficult to be detected as the insulation cover masks the corrosion problem. One of the options to prevent CUI is by utilizing the protective coating systems. Thermal spray coating (TSC) is an advanced coating system and it shows promising performance in harsh environment, which could be used to prevent CUI. However, the application of TSC is not attractive due to the high initial cost. This work evaluates the potential of TSC based on corrosion performance using linear polarization resistance (LPR) method and salt spray test (SST). Prior to the evaluation, the mechanical performance of TSC was first investigated using adhesion test and bend test. Microstructure characterization of the coating was investigated using Scanning Electron Microscope (SEM). The LPR test results showed that low corrosion rate of 0.05 mm/years was obtained for TSC in compared to the bare steel especially at high temperature of 80 °C, where usually normal coating would fail. For the salt spray test, there was no sign of corrosion products especially at the center (fully coated region) was observed. From SEM images, no corrosion defects were observed after 336 hours of continuous exposure to salt fog test. This indicates that TSC protected the steel satisfactorily by acting as a barrier from a corrosive environment. In conclusion, TSC can be a possible solution to minimize the CUI in a long term. Further research should be done on corrosion performance and life cycle cost by comparing TSC with other conventional coating technology.

  18. Refractory Materials for Flame Deflector Protection System Corrosion Control: Flame Deflector Protection System Life Cycle Cost Analysis Report

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Coffman, Brekke E.; Kolody, Mark R.; Curran, Jerome P.; Trejo, David; Reinschmidt, Ken; Kim, Hyung-Jin

    2009-01-01

    A 20-year life cycle cost analysis was performed to compare the operational life cycle cost, processing/turnaround timelines, and operations manpower inspection/repair/refurbishment requirements for corrosion protection of the Kennedy Space Center launch pad flame deflector associated with the existing cast-in-place materials and a newer advanced refractory ceramic material. The analysis compared the estimated costs of(1) continuing to use of the current refractory material without any changes; (2) completely reconstructing the flame trench using the current refractory material; and (3) completely reconstructing the flame trench with a new high-performance refractory material. Cost estimates were based on an analysis of the amount of damage that occurs after each launch and an estimate of the average repair cost. Alternative 3 was found to save $32M compared to alternative 1 and $17M compared to alternative 2 over a 20-year life cycle.

  19. Corrosion fatigue of 2219-T87 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Mcmillan, V. C.

    1986-01-01

    Corrosion fatigue studies were conducted on bare, chemical conversion coated, and anodized 2219-T87 aluminum alloy. These tests were performed using a rotating beam machine running at a velocity of 2500 rpm. The corrosive environments tested were distilled water, 100 ppm NaCl, and 3.5 percent NaCl. Results were compared to the endurance limit in air. An evaluation of the effect of protective coatings on corrosion fatigue was made by comparing the fatigue properties of specimens with coatings to those without.

  20. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  1. Grease Inhibits Stress-Corrosion Cracking In Bearing Race

    NASA Technical Reports Server (NTRS)

    Beatty, Robert F.; Mcvey, Scott E.

    1991-01-01

    Coating with suitable grease found to inhibit stress-corrosion cracking in bore of inner race of ball-bearing assembly operating in liquid oxygen. Protects bore and its corner radii from corrosion-initiating and -accelerating substances like moisture and contaminants, which enter during assembly. Operating life extended at low cost, and involves very little extra assembly time.

  2. Corrosion processes of physical vapor deposition-coated metallic implants.

    PubMed

    Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes

    2009-01-01

    Protecting metallic implants from the harsh environment of physiological fluids is essential to guaranteeing successful long-term use in a patient's body. Chemical degradation may lead to the failure of an implant device in two different ways. First, metal ions may cause inflammatory reactions in the tissues surrounding the implant and, in extreme cases, these reactions may inflict acute pain on the patient and lead to loosening of the device. Therefore, increasing wear strength is beneficial to the performance of the metallic implant. Second, localized corrosion processes contribute to the nucleation of fatigue cracks, and corrosion fatigue is the main reason for the mechanical failure of metallic implants. Common biomedical alloys such as stainless steel, cobalt-chrome alloys, and titanium alloys are prone to at least one of these problems. Vapor-deposited hard coatings act directly to improve corrosion, wear, and fatigue resistances of metallic materials. The effectiveness of the corrosion protection is strongly related to the structure of the physical vapor deposition layer. The aim of this paper is to present a comprehensive review of the correlation between the structure of physical vapor deposition layers and the corrosion properties of metallic implants.

  3. Hot corrosion and high temperature corrosion behavior of a new gas turbine material -- alloy 603GT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, D.C.; Brill, U.; Klower, J.

    1998-12-31

    Salt deposits encountered in a variety of high temperature processes have caused premature failures in heat exchangers and superheater tubes in pulp and paper recovery boilers, waste incinerators and coal gasifiers. Molten salt corrosion studies in both land based and air craft turbines have been the subject of intense study by many researchers. This phenomenon referred to as ``hot corrosion`` has primarily been attributed to corrosion by alkali sulfates, and there is somewhat general agreement in the literature that this is caused by either basic or acidic dissolution (fluxing) of the protective metal oxide layers by complex salt deposits containingmore » both sulfates and chlorides. This paper describes experimental studies conducted on the hot corrosion behavior of a new Ni-Cr-Al alloy 603GT (UNS N06603) in comparison to some commercially established alloys used in gas turbine components.« less

  4. Digital Actuator Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ken Thomas; Ted Quinn; Jerry Mauck

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs duemore » to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  5. Preparation and Corrosion Resistance of Trivalent Chromium-Zirconium Composite Coating

    NASA Astrophysics Data System (ADS)

    Huang, J. Z.

    2018-05-01

    Aluminum alloys are widely used in the various industries because of its superior advantages. However there will be a thin oxide layer on the surface of the pure aluminum to inhibit corrosion, when adding some other elements, the obtained aluminum alloy is easy to be corroded. Surface protection is an important means to improve the corrosion resistance of aluminum alloys. The formal research had already confirmed that the trivalent chromium conversion coating can significantly improve the corrosion resistance, and the usage of the zirconium solution can also protect the aluminum alloy from corrosion. In this study, we constructed the binary conversion coating with the Cr2(SO4)3 and the K2ZrF6. The optimum reaction conditions are as follows: 10g/L H3PO4, 2g/L K2ZrF6, 28g/L Cr2(SO4)3, pH=2.5∼3.5, temperature 40°C, and reaction time 10 min. Copper sulfate titration experiment confirmed that the corrosion resistance was significantly improved.

  6. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of

  7. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  8. Dynamic actuation of a novel laser-processed NiTi linear actuator

    NASA Astrophysics Data System (ADS)

    Pequegnat, A.; Daly, M.; Wang, J.; Zhou, Y.; Khan, M. I.

    2012-09-01

    A novel laser processing technique, capable of locally modifying the shape memory effect, was applied to enhance the functionality of a NiTi linear actuator. By altering local transformation temperatures, an additional memory was imparted into a monolithic NiTi wire to enable dynamic actuation via controlled resistive heating. Characterizations of the actuator load, displacement and cyclic properties were conducted using a custom-built spring-biased test set-up. Monotonic tensile testing was also implemented to characterize the deformation behaviour of the martensite phase. Observed differences in the deformation behaviour of laser-processed material were found to affect the magnitude of the active strain. Furthermore, residual strain during cyclic actuation testing was found to stabilize after 150 cycles while the recoverable strain remained constant. This laser-processed actuator will allow for the realization of new applications and improved control methods for shape memory alloys.

  9. Castable cements to prevent corrosion of metals in molten salts

    DOE PAGES

    Gomez-Vidal, Judith C.; Morton, E.

    2016-04-22

    Castable cements on metals form a protective barrier that is able to prevent permeation of molten salts towards metallic surfaces. Silica-based castable cements are capable of protecting containment metallic alloys from the corrosive attack of molten chlorides at temperatures as high as 650 °C. Boron nitride (BN) blocking the pores in the cured cement prevents permeation of the molten chloride towards the metal surface. The cements tested are not chemically stable in molten carbonates, because the bonding components dissolved into molten carbonates salt. The corrosion rate is 7.72±0.32 mm/year for bare stainless steel 347 in molten eutectic NaCl – 65.58more » wt% LiCl at 650 °C, which is the baseline used for determining how well the cement protects the metallic surfaces from corrosion. In particular the metal fully encapsulated with Aremco 645-N with pores filled with boron nitride immersed in molten eutectic NaCl – 65.58 wt% LiCl at 650 °C shows a corrosion rate of 9E-04 mm/year. Here, the present study gives initial corrosion rates. Long-term tests are required to determine if Aremco 645-N with BN coating on metal has long term chemical stability for blocking salt permeation through coating pores.« less

  10. Electroactive polymer (EAP) actuators for planetary applications

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Leary, Sean P.; Shahinpoor, Mohsen; Harrison, Joycelyn S.; Smith, J.

    1999-05-01

    NASA is seeking to reduce the mass, size, consumed power, and cost of the instrumentation used in its future missions. An important element of many instruments and devices is the actuation mechanism and electroactive polymers (EAP) are offering an effective alternative to current actuators. In this study, two families of EAP materials were investigated, including bending ionomers and longitudinal electrostatically driven elastomers. These materials were demonstrated to effectively actuate manipulation devices and their performance is being enhanced in this on-going study. The recent observations are reported in this paper, include the operation of the bending-EAP at conditions that exceed the harsh environment on Mars, and identify the obstacles that its properties and characteristics are posing to using them as actuators. Analysis of the electrical characteristics of the ionomer EAP showed that it is a current driven material rather than voltage driven and the conductivity distribution on the surface of the material greatly influences the bending performance. An accurate equivalent circuit modeling of the ionomer EAP performance is essential for the design of effective drive electronics. The ionomer main limitations are the fact that it needs to be moist continuously and the process of electrolysis that takes place during activation. An effective coating technique using a sprayed polymer was developed extending its operation in air from a few minutes to about four months. The coating technique effectively forms the equivalent of a skin to protect the moisture content of the ionomer. In parallel to the development of the bending EAP, the development of computer control of actuated longitudinal EAP has been pursued. An EAP driven miniature robotic arm was constructed and it is controlled by a MATLAB code to drop and lift the arm and close and open EAP fingers of a 4-finger gripper.

  11. Evaluation of corrosion products formed by sulfidation as inhibitors of the naphthenic corrosion of AISI-316 steel

    NASA Astrophysics Data System (ADS)

    Sanabria-Cala, J. A.; Montañez, N. D.; Laverde Cataño, D.; Y Peña Ballesteros, D.; Mejía, C. A.

    2017-12-01

    Naphthenic acids present in oil from most regions worldwide currently stand as the main responsible for the naphthenic corrosion problems, affecting the oil-refining industry. The phenomenon of sulfidation, accompanying corrosion processes brought about by naphthenic acids in high-temperature refining plant applications, takes place when the combination of sulfidic acid (H2S) with Fe forms layers of iron sulphide (FeS) on the material surface, layers with the potential to protect the material from attack by other corrosive species like naphthenic acids. This work assessed corrosion products formed by sulfidation as inhibitors of naphthenic corrosion rate in AISI-316 steel exposed to processing conditions of simulated crude oil in a dynamic autoclave. Calculation of the sulfidation and naphthenic corrosion rates were determined by gravimetry. The surfaces of the AISI-316 gravimetric coupons exposed to acid systems; were characterized morphologically by X-Ray Diffraction (XRD) and X-ray Fluorescence by Energy Dispersive Spectroscopy (EDS) combined with Scanning Electron Microscopy (SEM). One of the results obtained was the determination of an inhibiting effect of corrosion products at 250 and 300°C, where lower corrosion rate levels were detected. For the temperature of 350°C, naphthenic corrosion rates increased due to deposition of naphthenic acids on the areas where corrosion products formed by sulfidation have lower homogeneity and stability on the surface, thus accelerating the destruction of AISI-316 steel. The above provides an initial contribution to oil industry in search of new alternatives to corrosion control by the attack of naphthenic acids, from the formation of FeS layers on exposed materials in the processing of heavy crude oils with high sulphur content.

  12. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off

  13. Fabrication and actuation of electro-active polymer actuator based on PSMI-incorporated PVDF

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Kim, Sang-Gyun; Lee, Sunwoo; Oh, Il-Kwon

    2008-08-01

    In this study, an ionic networking membrane (INM) of poly(styrene-alt-maleimide) (PSMI)-incorporated poly(vinylidene fluoride) (PVDF) was applied to fabricate electro-active polymer. Based on the same original membrane of PSMI-incorporated PVDF, various samples of INM actuator were prepared for different reduction times with the electroless-plating technique. The as-prepared INM actuators were tested in terms of surface resistance, platinum morphology, resonance frequency, tip displacement, current and blocked force, and their performances were compared to those of the widely used traditional Nafion actuator. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that much smaller and more uniform platinum particles were formed on the surfaces of the INM actuators as well as within their polymer matrix. Although excellent harmonic responses were observed for the newly developed INM actuators, they were found to be sensitive to the applied reduction times during the fabrication. The mechanical displacement of the INM actuator fabricated after the optimum reduction times was much larger than that of its Nafion counterpart of comparable thickness under the stimulus of constant and alternating current voltage. The PSMI-incorporated PVDF actuator can become a promising smart material to be used in the fields of biomimetic robots, biomedical devices, sensors and actuator, haptic interfaces, energy harvesting and so on.

  14. Corrosion Prevention and Control Planning Guidebook for Military Systems and Equipment

    DTIC Science & Technology

    2014-04-02

    corrosion to applying advanced materials, coatings, inhibitors, and cathodic protection for corrosion control over many years, well before the DoD...requiring the delivery of the Contractor CPCP. Further, MIL-HDBK-1568 is for aerospace systems. Consider this when tailoring your Contract Data...Corrosion personnel from the user command; o Information Analysis Center personnel, such as Advanced Materials, Manufacturing, and Testing Information

  15. Flexure-based nanomagnetic actuators

    NASA Astrophysics Data System (ADS)

    Vasquez, Daniel James

    Nanometer-scale actuators powered through applied-magnetic fields have been designed, fabricated, and tested. These actuators consist of one or more ferromagnetic elements attached to a mechanical flexure. Two types of flexures were studied including a cantilever beam that is fixed on one end, and free on the other. The free end of the cantilever is attached to a, ferromagnetic element allowing a bending torque to be applied by a magnetic field. The second type of actuator design uses a set of torsion beams that are each anchored on one end, and attached to the magnetic element on the other end. The torsion beams are designed such that the application of a magnetic field will result in a twist along the long axis of the beam with little to no bending. The smallest fabricated and tested device is a cantilever-based ferromagnetic actuator that consists of a single 1.5-mum-long, 338-nm-wide, and 50-nm-thick nickel element, and a 2.2-mum-long, 110-nm-wide, and 30-nm-thick gold cantilever beam. A deflection of over 17° was measured for this actuator, while a similar one with a 10.1-mum long cantilever beam experienced measured deflections up to 57°. Torsion-based ferromagnetic actuators have been fabricated and tested with 110-nm-wide, and 50-rim-thick magnetic elements. Such magnetic elements contain only a single saturated magnetic domain. The ultimate scalability of ferromagnetic actuation is limited by the ability of thermal noise to affect the temporal stability of a nanometer-scale magnet. Theory to describe thermal noise and ultimate scalability of the ferromagnetic actuators has been developed. The size of the ferromagnetic actuators studied in this manuscript are smaller than most plant and animal cells. This enables the possibility of such actuators to manipulate a, living cell on an intracellular level. Other potential applications of such small actuators include MHz, to GHz frequency resonators, and tunable optical filters.

  16. Corrosion protection of prestressing strand in transportation structures and strand-concrete bond improvement.

    DOT National Transportation Integrated Search

    2012-12-01

    Corrosion can lead to the premature deterioration and failure of transportation structures. In pre-stressed bridge structures corrosion is more severe, : leading to sudden failures when cracking is induced at pitting sites by tensile or compressive s...

  17. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Hintze, P. E.; Li, W.; Buhrow, J. W.; Jolley, S. T.

    2011-01-01

    This slide presentation reviews the effects of corrosion on various structures at the Kennedy Space Center, and the work to discover a corrosion control coating that will be autonomous and will indicate corrosion at an early point in the process. Kennedy Space Center has many environmental conditions that are corrosive: ocean salt spray, heat, humidity, sunlight and acidic exhaust from the Solid Rocket Boosters (SRBs). Presented is a chart which shows the corrosion rates of carbon steel at various locations. KSC has the highest corrosion rates with 42.0 mils/yr, leading the next highest Galeta Point Beach, in the Panama Canal Zone with 27 mils/yr corrosion. A chart shows the changes in corrosion rate with the distance from the ocean. The three types of corrosion protective coatings are described: barrier (passive), Barrier plus active corrosion inhibiting components, and smart. A smart coating will detect and respond actively to changes in its environment in a functional and predictable manner and is capable of adapting its properties dynamically. The smart coating uses microcapsules, particles or liquid drops coated in polymers, that can detect and control the corrosion caused by the environment. The mechanism for a pH sensitive microcapsule and the hydrophobic core microcapsule are demonstrated and the chemistry is reviewed. When corrosion begins, the microcapsule will release the contents of the core (indicator, inhibitor, and self healing agent) in close proximity to the corrosion. The response to a pH increase is demonstrated by a series of pictures that show the breakdown of the microcapsule and the contents release. An example of bolt corrosion is used, as an example of corrosion in places that are difficult to ascertain. A comparison of various coating systems is shown.

  18. Corrosion of titanium: Part 1: aggressive environments and main forms of degradation.

    PubMed

    Prando, Davide; Brenna, Andrea; Diamanti, Maria Vittoria; Beretta, Silvia; Bolzoni, Fabio; Ormellese, Marco; Pedeferri, MariaPia

    2017-11-11

    Titanium has outstanding corrosion resistance due to the external natural oxide protective layer formed when it is exposed to an aerated environment. Despite this, titanium may suffer different forms of corrosion in severe environments: uniform corrosion, pitting and crevice corrosion, hydrogen embrittlement, stress-corrosion cracking, fretting corrosion and erosion. In this first review, forms of corrosion affecting titanium are analyzed based on a wide literature review. For each form of corrosion, the mechanism and most severe environment are reported according to the current understanding.In the second part, this review will address the possible surface treatments that can increase corrosion resistance on commercially pure titanium: Electrochemical anodizing, thermal oxidation, chemical oxidation and bulk treatments such as alloying will be considered, highlighting the advantages of each technique.

  19. pH Sensitive Microcapsules for Delivery of Corrosion Inhibitors

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Calle, Luz M.

    2006-01-01

    A considerable number of corrosion problems can be solved by coatings. However, even the best protective coatings can fail by allowing the slow diffusion of oxygen and moisture to the metal surface. Corrosion accelerates when a coating delaminates. Often, the problems start when microscopic nicks or pits on the surface develop during manufacturing or through wear and tear. This problem can be solved by the incorporation of a self-healing function into the coating. Several new concepts are currently under development to incorporate this function into a coating. Conductive polymers, nanoparticles, and microcapsules are used to release corrosion-inhibiting ions at a defect site. The objective of this investigation is to develop a smart coating for the early detection and inhibition of corrosion. The dual function of this new smart coating system is performed by pH-triggered release microcapsules. The microcapsules can be used to deliver healing agents to terminate the corrosion process at its early stage or as corrosion indicators by releasing dyes at the localized corrosion sites. The dyes can be color dyes or fluorescent dyes, with or without pH sensitivity. Microcapsules were formed through the interfacial polymerization process. The average size of the microcapsules can be adjusted from 1 to 100 micron by adjusting the emulsion formula and the microcapsule forming conditions. A typical microcapsule size is around 10 microns with a narrow size distribution. The pH sensitivity of the microcapsule can also be controlled by adjusting the emulsion formula and the polymerization reaction time. Both corrosion indicator (pH indicator) and corrosion inhibitor containing microcapsules were formed and incorporated into paint systems. Test panels of selected steels and aluminum alloys were painted using these paints. Testing of compatibility between the microcapsule system and different paint systems are in progress. Initial experiments with the microcapsule containing paint

  20. Low toxic corrosion inhibitors for aluminum in fresh water

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1978-01-01

    Combinations of chemical compounds that reportedly reduce the corrosion of aluminum in fresh water were evaluated. These included combinations of borates, nitrates, nitrites, phosphates, silicates, and mercaptobenzothiazole. Eight of fifty inhibitor combinations evaluated gave excellent corrosion protection and compared favorably with sodium chromate, which has generally been considered standard for many years.

  1. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); hide

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  2. ENVIRONMENTALLY COMPLIANT CORROSION-ACTIVATED INHIBITOR SYSTEM FOR ALUMINUM ALLOYS - PHASE I

    EPA Science Inventory

    The federal government is estimated to spend $1 billion on painting/repainting aircraft annually. Aircraft have surfaces composed of aluminum alloys that are highly susceptible to corrosion and must be protected with corrosion-preventative treatments that typically conta...

  3. Evaluation of annual corrosion tests for aggressive water

    NASA Astrophysics Data System (ADS)

    Dubová, V.; Ilavský, J.; Barloková, D.

    2011-12-01

    Internal corrosion has a significant effect on the useful life of pipes, the hydraulic conditions of a distribution system and the quality of the water transported. All water is corrosive under some conditions, and the level of this corrosion depends on the physical and chemical properties of the water and properties of the pipe material. Galvanic treatment is an innovation for protecting against corrosion, and this method is also suitable for removal of water stone too. This method consists of the electrogalvanic principle, which is generated by the flowing of water between a zinc anode and the cupro-alloy cover of a column. This article presents experimental corrosion tests at water resource Pernek (This water resource-well marked as HL-1 is close to the Pernek of village), where the device is operating based on this principle.

  4. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2629 External... external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...

  5. Electrostatically Driven Nanoballoon Actuator.

    PubMed

    Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex

    2016-11-09

    We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

  6. Characterization of Magnetite Scale Formed in Naphthenic Acid Corrosion

    NASA Astrophysics Data System (ADS)

    Jin, Peng; Robbins, Winston; Bota, Gheorghe; Nesic, Srdjan

    2017-02-01

    Naphthenic acid corrosion (NAC) is one of the major concerns for corrosion engineers in refineries. Traditionally, the iron sulfide (FeS) scale, formed when sulfur compounds in crudes corrode the metal, is expected to be protective and limit the NAC. Nevertheless, no relationship has been found between protectiveness and the characteristics of FeS scale. In this study, lab scale tests with model sulfur compounds and naphthenic acids replicated corrosive processes of refineries with real crude fractions behavior. The morphology and chemical composition of scales were analyzed with scanning electron microscopy and transmission electron microscopy. These high-resolution microscopy techniques revealed the presence of an iron oxide (Fe3O4 or magnetite) scale and discrete particulates on metal surfaces under FeS scales, especially on a low chrome steel. The presence of the iron oxide was correlated with the naphthenic acid activity during the experiments. It is postulated that the formation of the magnetite scale resulted from the decomposition of iron naphthenates at high temperatures. It is further postulated that a nano-particulate form of magnetite may be providing corrosion resistance.

  7. 49 CFR 192.455 - External corrosion control: Buried or submerged pipelines installed after July 31, 1971.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.455 External corrosion control: Buried or... against external corrosion, including the following: (1) It must have an external protective coating...

  8. 49 CFR 192.455 - External corrosion control: Buried or submerged pipelines installed after July 31, 1971.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.455 External corrosion control: Buried or... against external corrosion, including the following: (1) It must have an external protective coating...

  9. 49 CFR 192.455 - External corrosion control: Buried or submerged pipelines installed after July 31, 1971.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.455 External corrosion control: Buried or... against external corrosion, including the following: (1) It must have an external protective coating...

  10. 49 CFR 192.455 - External corrosion control: Buried or submerged pipelines installed after July 31, 1971.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.455 External corrosion control: Buried or... against external corrosion, including the following: (1) It must have an external protective coating...

  11. A road to practical dielectric elastomer actuators based robotics and mechatronics: discrete actuation

    NASA Astrophysics Data System (ADS)

    Plante, Jean-Sébastien; Devita, Lauren M.; Dubowsky, Steven

    2007-04-01

    Fundamental studies of Dielectric Elastomer Actuators (DEAs) using viscoelastic materials such as VHB 4905/4910 from 3M showed significant advantages at high stretch rates. The film's viscous forces increase actuator life and the short power-on times minimize energy losses through current leakage. This paper presents a design paradigm that exploits these fundamental properties of DEAs called discrete actuation. Discrete actuation uses DEAs at high stretch rates to change the states of robotic or mechatronic systems in discrete steps. Each state of the system is stable and can be maintained without actuator power. Discrete actuation can be used in robotic and mechatronic applications such as manipulation and locomotion. The resolution of such systems increases with the number of discrete states, 10 to 100 being sufficient for many applications. An MRI-guided needle positioning device for cancer treatments and a space exploration robot using hopping for locomotion are presented as examples of this concept.

  12. Active Joint Mechanism Driven by Multiple Actuators Made of Flexible Bags: A Proposal of Dual Structural Actuator

    PubMed Central

    Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input. PMID:24385868

  13. Active joint mechanism driven by multiple actuators made of flexible bags: a proposal of dual structural actuator.

    PubMed

    Kimura, Hitoshi; Matsuzaki, Takuya; Kataoka, Mokutaro; Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input.

  14. Enhanced Actuation Performance and Reduced Heat Generation in Shear-Bending Mode Actuator at High Temperature.

    PubMed

    Chen, Jianguo; Liu, Guoxi; Cheng, Jinrong; Dong, Shuxiang

    2016-08-01

    The actuation performance, strain hysteresis, and heat generation of the shear-bending mode actuators based on soft and hard BiScO3-PbTiO3 (BS-PT) ceramics were investigated under different thermal (from room temperature to 300 °C) and electrical loadings (from 2 to 10 kV/cm and from 1 to 1000 Hz). The actuator based on both soft and hard BS-PT ceramics worked stably at the temperature as high as 300 °C. The maximum working temperature of this shear-bending actuators is 150 °C higher than those of the traditional piezoelectric actuators based on commercial Pb(Zr, Ti)O3 materials. Furthermore, although the piezoelectric properties of soft-type ceramics based on BS-PT ceramics were superior to those of hard ceramics, the maximum displacement of the actuator based on hard ceramics was larger than that fabricated by soft ceramics at high temperature. The maximum displacement of the actuator based on hard ceramics was [Formula: see text] under an applied electric field of 10 kV/cm at 300 °C. The strain hysteresis and heat generation of the actuator based on hard ceramics was smaller than those of the actuator based on soft ceramics in the wide temperature range. These results indicated that the shear-bending actuator based on hard piezoelectric ceramics was more suitable for high-temperature piezoelectric applications.

  15. Torsional actuation with extension-torsion composite coupling and a magnetostrictive actuator

    NASA Astrophysics Data System (ADS)

    Bothwell, Christopher M.; Chandra, Ramesh; Chopra, Inderjit

    1995-04-01

    An analytical-experimental study of using magnetostrictive actuators in conjunction with an extension-torsion coupled composite tube to actuate a rotor blade trailing-edge flap to actively control helicopter vibration is presented. Thin walled beam analysis based on Vlasov theory was used to predict the induced twist and extension in a composite tube with magnetostrictive actuation. The study achieved good correlation between theory and experiment. The Kevlar-epoxy systems showed good correlation between measured and predicted twist values.

  16. Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plants.

    PubMed

    Dicker, M P M; Rossiter, J M; Bond, I P; Weaver, P M

    2014-09-01

    Although the actuation mechanisms that drive plant movement have been investigated from a biomimetic perspective, few studies have looked at the wider sensing and control systems that regulate this motion. This paper examines photo-actuation-actuation induced by, and controlled with light-through a review of the sun-tracking functions of the Cornish Mallow. The sun-tracking movement of the Cornish Mallow leaf results from an extraordinarily complex-yet extremely elegant-process of signal perception, generation, filtering and control. Inspired by this process, a concept for a simplified biomimetic analogue of this leaf is proposed: a multifunctional structure employing chemical sensing, signal transmission, and control of composite hydrogel actuators. We present this multifunctional structure, and show that the success of the concept will require improved selection of materials and structural design. This device has application in the solar-tracking of photovoltaic panels for increased energy yield. More broadly it is envisaged that the concept of chemical sensing and control can be expanded beyond photo-actuation to many other stimuli, resulting in new classes of robust solid-state devices.

  17. Performance evaluation of corrosion inhibitors and galvanized steel in concrete exposure specimens.

    DOT National Transportation Integrated Search

    1999-01-01

    Corrosion inhibitor admixtures (CIA) and galvanized reinforcing steel (GS) are used for the corrosion protection for reinforced concrete bridges. The results of a 3.5-year evaluation of exposure specimens containing CIA from three different manufactu...

  18. Faraday Cage Protects Against Lightning

    NASA Technical Reports Server (NTRS)

    Jafferis, W.; Hasbrouck, R. T.; Johnson, J. P.

    1992-01-01

    Faraday cage protects electronic and electronically actuated equipment from lightning. Follows standard lightning-protection principles. Whether lightning strikes cage or cables running to equipment, current canceled or minimized in equipment and discharged into ground. Applicable to protection of scientific instruments, computers, radio transmitters and receivers, and power-switching equipment.

  19. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  20. Microhydraulic Electrowetting Actuators

    DTIC Science & Technology

    2015-06-26

    inkjet  printers4, and microrobots5 tend to use other  forms of actuation.   The alternatives can be widely divided  into  resistive and capacitive...actuators, based on  the primary  impedance mode.   Some examples of  resistive actuators are  thermal  inkjet  printers, electro‐osmotic pumps6, and shape

  1. Application of Terahertz Radiation to the Detection of Corrosion Under the Shuttle's Thermal Protection System

    NASA Astrophysics Data System (ADS)

    Madaras, Eric I.; Anastasi, Robert F.; Smith, Stephen W.; Seebo, Jeffrey P.; Walker, James L.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2008-02-01

    There is currently no method for detecting corrosion under Shuttle tiles except for the expensive process of tile removal and replacement; hence NASA is investigating new NDE methods for detecting hidden corrosion. Time domain terahertz radiation has been applied to corrosion detection under tiles in samples ranging from small lab samples to a Shuttle with positive results. Terahertz imaging methods have been able to detect corrosion at thicknesses of 5 mils or greater under 1" thick Shuttle tiles and 7-12 mils or greater under 2" thick Shuttle tiles.

  2. Application of Terahertz Radiation to the Detection of Corrosion under the Shuttle's Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.; Smith, Stephen W.; Seebo, Jeffrey P.; Walker, James L.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-01-01

    There is currently no method for detecting corrosion under Shuttle tiles except for the expensive process of tile removal and replacement; hence NASA is investigating new NDE methods for detecting hidden corrosion. Time domain terahertz radiation has been applied to corrosion detection under tiles in samples ranging from small lab samples to a Shuttle with positive results. Terahertz imaging methods have been able to detect corrosion at thicknesses of 5 mils or greater under 1" thick Shuttle tiles and 7-12 mils or greater under 2" thick Shuttle tiles.

  3. Corrosion behaviour of laser-cleaned AA7024 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Zhang, F. D.; Liu, H.; Suebka, C.; Liu, Y. X.; Liu, Z.; Guo, W.; Cheng, Y. M.; Zhang, S. L.; Li, L.

    2018-03-01

    Laser cleaning has been considered as a promising technique for the preparation of aluminium alloy surfaces prior to joining and welding and has been practically used in the automotive industry. The process is based on laser ablation to remove surface contaminations and aluminium oxides. However the change of surface chemistry and oxide status may affect corrosion behaviour of aluminium alloys. Until now, no work has been reported on the corrosion characteristics of laser cleaned metallic surfaces. In this study, we investigated the corrosion behaviour of laser-cleaned AA7024-T4 aluminium alloy using potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET). The results showed that the laser-cleaned surface exhibited higher corrosion resistance in 3.5 wt.% NaCl solution than as-received hot-rolled alloy, with significant increase in impedance and decrease in capacitance, while SVET revealed that the active anodic points appeared on the as-received surface were not presented on the laser-cleaned surfaces. Such corrosion behaviours were correlated to the change of surface oxide status measured by glow discharge optical emission spectrometry (GDOES) and X-ray photoelectron spectroscopy (XPS). It was suggested that the removal of the original less protective oxide layer consisting of MgO and MgAl2O4 on the as-received surfaces and the newly formed more protective oxide layer containing mainly Al2O3 and MgO by laser cleaning were responsible for the improvement of the corrosion performance.

  4. Protecting Stored Critical Parts from Corrosion and Heat Damage

    DTIC Science & Technology

    2010-02-01

    contraction. THE GREENHOUSE The corrosive effects of heat, moisture, and other chemical contaminants, are greatly EFFECT amplified in a trapped/enclosed...active spaces), maintain between 60 and 85 degrees with dehumidification 13 13 Chip Crotty CocoonInc.com 603-964-9421 Clean Air/Environment: • Salts

  5. Sputter-ion plating of coatings for protection of gas-turbine blades against high-temperature oxidation and corrosion

    NASA Technical Reports Server (NTRS)

    Coad, J. P.; Restall, J. E.

    1982-01-01

    Considerable effort is being devoted to the development of overlay coatings for protecting critical components such as turbine blades against high-temperature oxidation, corrosion, and erosion damage in service. The most commercially advanced methods for depositing coatings are electron-beam evaporation and plasma spraying. Sputter-ion plating (SIP) offers a potentially cheaper and simpler alternative method for depositing overlays. Experimental work on SIP of Co-Cr-Al-Y and Ni-Cr-Al-Ti alloy coatings is described. Results are presented of metallographic assessment of these coatings, and of the results obtained from high-velocity testing using a gas-turbine simulator rig.

  6. Hot corrosion of the B2 nickel aluminides

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    1993-01-01

    The hot corrosion behavior of the B2 nickel aluminides was studied to determine the inherent hot corrosion resistance of the beta nickel aluminides and to develop a mechanism for the hot corrosion of the beta nickel aluminides. The effects of the prior processing of the material, small additions of zirconium, stoichiometry of the materials, and preoxidation of the samples were also examined. Additions of 2, 5, and 15 w/o chromium were used to determine the effect of chromium on the hot corrosion of the beta nickel aluminides and the minimum amount of chromium necessary for good hot corrosion resistance. The results indicate that the beta nickel aluminides have inferior inherent hot corrosion resistance despite their excellent oxidation resistance. Prior processing and zirconium additions had no discernible effect on the hot corrosion resistance of the alloys. Preoxidation extended the incubation period of the alloys only a few hours and was not considered to be an effective means of stopping hot corrosion. Stoichiometry was a major factor in determining the hot corrosion resistance of the alloys with the higher aluminum alloys having a definitely superior hot corrosion resistance. The addition of chromium to the alloys stopped the hot corrosion attack in the alloys tested. From a variety of experimental results, a complex hot corrosion mechanism was proposed. During the early stages of the hot corrosion of these alloys the corrosion is dominated by a local sulphidation/oxidation form of attack. During the intermediate stages of the hot corrosion, the aluminum depletion at the surface leads to a change in the oxidation mechanism from a protective external alumina layer to a mixed nickel-aluminum spinel and nickel oxide that can occur both externally and internally. The material undergoes extensive cracking during the later portions of the hot corrosion.

  7. AMSD Cryo Actuator Testing

    NASA Technical Reports Server (NTRS)

    Mullette, Mark; Matthews, Gary; Russell, Kevin (Technical Monitor)

    2002-01-01

    The actuator technology required for AMSD and subsequently NGST are critical in the successful development for future cryogenic systems. Kodak has undertaken an extensive test plan to determine the performance of the force actuators developed under the AMSD program. These actuators are currently in testing at MSFC and are expected to finish this test cycle in early June 2002.

  8. Corrosion and protection of NdFeB type magnets

    NASA Astrophysics Data System (ADS)

    Cavalloti, P.; Bozzini, B.; Cecchini, R.; Bava, G. F.; Davies, H. A.; Hoggarth, C.

    1992-02-01

    A general mechanism for the corrosion behaviour of NdFeB magnets is presented, related to the magnet heterogeneity with the presence of different phases. Cathodic control is outlined. An electrochemical method to assess the corrosion resistance of magnets, with and without coatings, is proposed; it is based on the study of the transient voltage at the magnet surface after a second cathodic current pulse in a suitable aggressive solution and its dependence on the amount of cathodic current circulating. Suitable pretreatments have been tried and interesting results obtained with passivation pretreatments, giving phosphorous Nd at grain boundaries. Coatings if sintered and plastic magnets have been tried using several methods. Good results are obtained with Zn-Co layers on sintered magnets and a sol-gel glass on powders for plastic magnets. Improved ACS (Autocatalytic Chemical Deposition) Ni=P coatings have been realized, with an alkaline brass flash plating to start ACD deposition.

  9. Pulsed-DC DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Duong, Alan; Corke, Thomas; Thomas, Flint

    2017-11-01

    A power system for dielectric barrier discharge (DBD) plasma actuators that utilizes a pulsed-DC waveform is presented. The plasma actuator arrangement is identical to most typical AC-DBD designs with staggered electrodes that are separated by a dielectric insulator. A key difference is that the pulsed-DC actuator utilizes a DC voltage source to drive the actuator instead of an AC voltage input. The DC source is supplied to both electrodes. The exposed electrode remains constant in time while the encapsulated electrode is periodically grounded for short instances then is allowed to rise to the source DC level. Further investigation of the pulsed-DC plasma actuator was conducted. Time-resolved velocity measurements were done to characterize the induced velocity field generated by the pulsed-DC plasma actuator. A model of the pulsed-DC plasma actuator is developed in LTspice for further study. The work presented are intended in developing a model to be used in CFD flow control simulations. NASA SBIR NNX14CC12C.

  10. Corrosion resistant coating

    DOEpatents

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1997-08-19

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  11. Corrosion resistant coating

    DOEpatents

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  12. Release Properties and Electrochemical Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.

    2015-01-01

    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows for the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The total inhibitor content and the release of one of the inhibitors from the microparticles in basic solution was measured. Particles with inhibitor contents of up 60 wt% were synthesized. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, both as the pure materials and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  13. Influence of bovine serum albumin in Hanks' solution on the corrosion and stress corrosion cracking of a magnesium alloy.

    PubMed

    Harandi, Shervin Eslami; Banerjee, Parama Chakraborty; Easton, Christopher D; Singh Raman, R K

    2017-11-01

    It is essential for any temporary implant to possess adequate strength to maintain their mechanical integrity under the synergistic effects of mechanical loading characteristics of human body and the corrosive physiological environment. Such synergistic effects can cause stress corrosion cracking (SCC). The aim of the present study is to investigate the effect of the addition of bovine serum albumin (BSA) to Hanks' solution in corrosion and SCC susceptibility of AZ91D magnesium alloy. The electrochemical impedance spectroscopy (EIS) results indicated that the addition of BSA increased corrosion resistance of the alloy during the first 48h of immersion and then decreased it rapidly. The energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analyses indicated adsorption of BSA on the alloy surface during initial hours of immersion. However, with the increasing immersion time, BSA chelated with the corrosion products causing disruption of the protective film; thus, it accelerated the corrosion of the alloy. Both the mechanical data and fractographic evidence have confirmed susceptibility of the alloy to SCC. However, in the presence of BSA, the alloy suffered greater SCC which was attributed to its increased susceptibility towards localized corrosion. Copyright © 2017. Published by Elsevier B.V.

  14. Adhesive Bonding and Corrosion Protection of a Die Cast Magnesium Automotive Door

    NASA Astrophysics Data System (ADS)

    Bretz, G. T.; Lazarz, K. A.; Hill, D. J.; Blanchard, P. J.

    It is well known that magnesium alloys, in close proximity to other alloys, are susceptible to galvanic corrosion. Combined with this fact, in automotive applications, it is rare that magnesium will be present in the absence of other alloys such as steel or aluminum. Therefore, in wet applications, where the galvanic cell is completed, it is necessary to isolate the magnesium in order to prevent accelerated corrosion. There are numerous commercial pre-treatments available for magnesium, however this paper focuses on conversion coatings in conjunction with a spray powder coat. By means of example, results for a hem flange joint on an AM50 die cast magnesium door structure will be presented. The outer door skin is an aluminum alloy hemmed around a cast magnesium flange. An adhesive is used between the inner and outer to help with stiffness and NVH (Noise, Vibration and Harshness). Results from bonded lap-shear coupon tests that have been exposed to accelerated corrosion cycles are presented. A second phase of this work considered a surrogate hem flange coupon, which was similarly exposed to the same accelerated corrosion cycle. Results from both of these tests are presented within this paper along with a discussion as to their suitability for use within automotive applications.

  15. Valve system incorporating single failure protection logic

    DOEpatents

    Ryan, Rodger; Timmerman, Walter J. H.

    1980-01-01

    A valve system incorporating single failure protective logic. The system consists of a valve combination or composite valve which allows actuation or de-actuation of a device such as a hydraulic cylinder or other mechanism, integral with or separate from the valve assembly, by means of three independent input signals combined in a function commonly known as two-out-of-three logic. Using the input signals as independent and redundant actuation/de-actuation signals, a single signal failure, or failure of the corresponding valve or valve set, will neither prevent the desired action, nor cause the undesired action of the mechanism.

  16. Electrochemical Investigation of Corrosion in the Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.

    2004-01-01

    Corrosion studies began at NASA/Kennedy Space Center in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. An outdoor exposure facility on the beach near the launch pad was established for this purpose at that time. The site has provided over 35 years of technical information on the evaluation of the long-term corrosion performance of many materials and coatings as well as on maintenance procedures. Results from these evaluations have helped NASA find new materials and processes that increase the safety and reliability of our flight hardware, launch structures, and ground support equipment. The launch environment at the Kennedy Space Center (KSC) is extremely corrosive due to the combination of ocean salt spray, heat, humidity, and sunlight. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. It has been estimated that 70 tons of hydrochloric acid (HC1) are produced during a launch. The Corrosion Laboratory at NASA/KSC was established in 1985 to conduct electrochemical studies of corrosion on materials and coatings under conditions similar to those encountered at the launch pads. I will present highlights of some of these investigations.

  17. Anti-Corrosive Powder Particles

    NASA Technical Reports Server (NTRS)

    Parker, Donald; MacDowell, Louis, III

    2005-01-01

    The National Aeronautics and Space Administration (NASA) seeks partners for a new approach in protecting embedded steel surfaces from corrosion. Corrosion of reinforced steel in concrete structures is a significant problem for NASA structures at Kennedy Space Center (KSC) because of the close proximity of the structures to salt spray from the nearby Atlantic Ocean. In an effort to minimize the damage to such structures, coatings were developed that could be applied as liquids to the external surfaces of a substrate in which the metal structures were embedded. The Metallic Pigment Powder Particle technology was developed by NASA at KSC. This technology combines the metallic materials into a uniform particle. The resultant powder can be sprayed simultaneously with a liquid binder onto the surface of concrete structures with a uniform distribution of the metallic pigment for optimum cathodic protection of the underlying steel in the concrete. Metallic Pigment Powder Particle technology improves upon the performance of an earlier NASA technology Liquid Galvanic Coating (U.S. Patent No. 6,627,065).

  18. Lifetime of dielectric elastomer stack actuators

    NASA Astrophysics Data System (ADS)

    Lotz, Peter; Matysek, Marc; Schlaak, Helmut F.

    2011-04-01

    Dielectric elastomer stack actuators (DESA) are well suited for the use in mobile devices, fluidic applications and small electromechanical systems. Despite many improvements during the last years the long term behavior of dielectric elastomer actuators in general is not known or has not been published. The first goal of the study is to characterize the overall lifetime under laboratory conditions and to identify potential factors influencing lifetime. For this we have designed a test setup to examine 16 actuators at once. The actuators are subdivided into 4 groups each with a separate power supply and driving signal. To monitor the performance of the actuators driving voltage and current are measured continuously and additionally, the amplitude of the deformations of each actuator is measured sequentially. From our first results we conclude that lifetime of these actuators is mainly influenced by the contact material between feeding line and multilayer electrodes. So far, actuators themselves are not affected by long term actuation. With the best contact material actuators can be driven for more than 2700 h at 200 Hz with an electrical field strength of 20 V/μm. This results in more than 3 billion cycles. Actually, there are further actuators driven at 10 Hz for more than 4000 hours and still working.

  19. Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate.

    PubMed

    Kaabi Falahieh Asl, Sara; Nemeth, Sandor; Tan, Ming Jen

    2016-11-01

    Ceramic type coatings on metallic implants, such as calcium phosphate (Ca-P), are generally stiff and brittle, potentially leading to the early failure of the bone-implant interface. To reduce material brittleness, polyacrylic acid and carboxymethyl cellulose were used in this study to deposit two types of novel Ca-P/polymer composite coatings on AZ31 magnesium alloy using a one-step hydrothermal process. X-ray diffraction and scanning electron microscopy showed that the deposited Ca-P crystal phase and morphology could be controlled by the type and concentration of polymer used. Incorporation of polymer in the Ca-P coatings reduced the coating elastic modulus bringing it close to that of magnesium and that of human bone. Nanoindentation test results revealed significantly decreased cracking tendency with the incorporation of polymer in the Ca-P coating. Apart from mechanical improvements, the protective composite layers had also enhanced the corrosion resistance of the substrate by a factor of 1000 which is sufficient for implant application. Cell proliferation studies indicated that the composite coatings induced better cell attachment compared with the purely inorganic Ca-P coating, confirming that the obtained composite materials could be promising candidates for surface protection of magnesium for implant application with the multiple functions of corrosion protection, interfacial stress reduction, and cell attachment/cell growth promotion. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1643-1657, 2016. © 2015 Wiley Periodicals, Inc.

  20. Impact of Soil Composition and Electrochemistry on Corrosion of Rock-cut Slope Nets along Railway Lines in China.

    PubMed

    Chen, Jiao; Chen, Zhaoqiong; Ai, Yingwei; Xiao, Jingyao; Pan, Dandan; Li, Wei; Huang, Zhiyu; Wang, Yumei

    2015-10-09

    Taking the slope of Suiyu Railway to study, the research separately studied soil resistivity, soil electrochemistry (corrosion potential, oxidization reduction potential, electric potential gradient and pH), soil anions (total soluble salt, Cl(-), SO4(2-) and ), and soil nutrition (moisture content, organic matter, total nitrogen, alkali-hydrolysable nitrogen, available phosphorus, and available potassium) at different slope levels, and conducted corrosion grade evaluation on artificial soil according to its single index and comprehensive indexes. Compared with other factors, water has the biggest impact on the corrosion of slope protection net, followed by anion content. Total soluble salt has the moderate impact on the corrosion of slope protection net, and stray current has the moderate impact on the corrosion of mid-slope protection net. Comprehensive evaluation on the corrosive degree of soil samples indicates that the corrosion of upper slope is moderate, and the corrosion of mid-slope and lower slope is strong. Organic matter in soil is remarkably relevant to electric potential gradient. Available nitrogen, available potassium and available phosphorus are remarkably relevant to anions. The distribution of soil nutrient is indirectly relevant to slope type.

  1. Impact of Soil Composition and Electrochemistry on Corrosion of Rock-cut Slope Nets along Railway Lines in China

    PubMed Central

    Chen, Jiao; Chen, Zhaoqiong; Ai, Yingwei; Xiao, Jingyao; Pan, Dandan; Li, Wei; Huang, Zhiyu; Wang, Yumei

    2015-01-01

    Taking the slope of Suiyu Railway to study, the research separately studied soil resistivity, soil electrochemistry (corrosion potential, oxidization reduction potential, electric potential gradient and pH), soil anions (total soluble salt, Cl−, SO42− and ), and soil nutrition (moisture content, organic matter, total nitrogen, alkali-hydrolysable nitrogen, available phosphorus, and available potassium) at different slope levels, and conducted corrosion grade evaluation on artificial soil according to its single index and comprehensive indexes. Compared with other factors, water has the biggest impact on the corrosion of slope protection net, followed by anion content. Total soluble salt has the moderate impact on the corrosion of slope protection net, and stray current has the moderate impact on the corrosion of mid-slope protection net. Comprehensive evaluation on the corrosive degree of soil samples indicates that the corrosion of upper slope is moderate, and the corrosion of mid-slope and lower slope is strong. Organic matter in soil is remarkably relevant to electric potential gradient. Available nitrogen, available potassium and available phosphorus are remarkably relevant to anions. The distribution of soil nutrient is indirectly relevant to slope type. PMID:26450811

  2. Microprocessor controlled proof-mass actuator

    NASA Technical Reports Server (NTRS)

    Horner, Garnett C.

    1987-01-01

    The objective of the microprocessor controlled proof-mass actuator is to develop the capability to mount a small programmable device on laboratory models. This capability will allow research in the active control of flexible structures. The approach in developing the actuator will be to mount all components as a single unit. All sensors, electronic and control devices will be mounted with the actuator. The goal for the force output capability of the actuator will be one pound force. The programmable force actuator developed has approximately a one pound force capability over the usable frequency range, which is above 2 Hz.

  3. Method for inhibiting alkali metal corrosion of nickel-containing alloys

    DOEpatents

    DeVan, Jackson H.; Selle, James E.

    1983-01-01

    Structural components of nickel-containing alloys within molten alkali metal systems are protected against corrosion during the course of service by dissolving therein sufficient aluminum, silicon, or manganese to cause the formation and maintenance of a corrosion-resistant intermetallic reaction layer created by the interaction of the molten metal, selected metal, and alloy.

  4. Electromechanical rotary actuator

    NASA Technical Reports Server (NTRS)

    Smith, S. P.; Mcmahon, W. J.

    1995-01-01

    An electromechanical rotary actuator has been developed as the prime mover for a liquid oxygen modulation valve on the Centaur Vehicle Rocket Engine. The rotary actuator requirements, design, test, and associated problems and their solutions are discussed in this paper.

  5. Electromechanical rotary actuator

    NASA Astrophysics Data System (ADS)

    Smith, S. P.; McMahon, W. J.

    1995-05-01

    An electromechanical rotary actuator has been developed as the prime mover for a liquid oxygen modulation valve on the Centaur Vehicle Rocket Engine. The rotary actuator requirements, design, test, and associated problems and their solutions are discussed in this paper.

  6. Numerical model of RC beam response to corrosion

    NASA Astrophysics Data System (ADS)

    German, Magdalena; Pamin, Jerzy

    2018-01-01

    The chloride-induced corrosion of reinforcement used to be represented by Tuutti's model with initiation and propagation phases. During the initiation phase chlorides penetrate the concrete cover and accumulate around reinforcement bars. The chloride concentration in concrete increases until it reaches a chloride threshold value, causing deterioration of the passive layer of reinforcement. Then the propagation phase begins. During the propagation phase steel has no natural anti-corrosion protection, a corrosion current flows and this induces the production of rust. A growing volume of corrosion products generates stresses in concrete, which leads to cracking, splitting, delamination and loss of strength. The mechanical response of RC elements to reinforcement corrosion has mostly been examined on the basis of a 2D cross-section analysis. However, with this approach it is not possible to represent both corrosion and static loading. In the paper a 3D finite element model of an RC beam with the two actions applied is presented. Rust is represented as an interface between steel and concrete, considering the volumetric expansion of rust.

  7. Mechanism of Corrosion by Naphthenic Acids and Organosulfur Compounds at High Temperatures

    NASA Astrophysics Data System (ADS)

    Jin, Peng

    Due to the law of supply and demand, the last decade has witnessed a skyrocketing in the price of light sweet crude oil. Therefore, refineries are increasingly interested in "opportunity crudes", characterized by their discounted price and relative ease of procurement. However, the attractive economics of opportunity crudes come with the disadvantage of high acid/organosulfur compound content, which could lead to corrosion and even failure of facilities in refineries. However, it is generally accepted that organosulfur compounds may form protective iron sulfide layers on the metal surface and decrease the corrosion rate. Therefore, it is necessary to investigate the corrosive property of crudes at high temperatures, the mechanism of corrosion by acids (naphthenic acids) in the presence of organosulfur compounds, and methods to mitigate its corrosive effect. In 2004, an industrial project was initiated at the Institute for Corrosion and Multiphase Technology to investigate the corrosion by naphthenic acids and organosulfur compounds. In this project, for each experiment there were two experimentation phases: pretreatment and challenge. In the first pretreatment phase, a stirred autoclave was filled with a real crude oil fraction or model oil of different acidity and organosulfur compound concentration. Then, the stirred autoclave was heated to high temperatures to examine the corrosivity of the oil to different materials (specimens made from CS and 5% Cr containing steel were used). During the pretreatment, corrosion product layers were formed on the metal surface. In the second challenge phase, the steel specimens pretreated in the first phase were inserted into a rotating cylinder autoclave, called High Velocity Rig (HVR). The HVR was fed with a high-temperature oil solution of naphthenic acids to attack the iron sulfide layers. Based on the difference of specimen weight loss between the two steps, the net corrosion rate could be calculated and the protectiveness

  8. Cruise and turning performance of an improved fish robot actuated by piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Quang Sang; Heo, Seok; Park, Hoon Cheol; Goo, Nam Seo; Byun, Doyoung

    2009-03-01

    The purpose of this study is improvement of a fish robot actuated by four light-weight piezocomposite actuators (LIPCAs). In the fish robot, we developed a new actuation mechanism working without any gear and thus the actuation mechanism was simple in fabrication. By using the new actuation mechanism, cross section of the fish robot became 30% smaller than that of the previous model. Performance tests of the fish robot in water were carried out to measure tail-beat angle, thrust force, swimming speed and turning radius for tail-beat frequencies from 1Hz to 5Hz. The maximum swimming speed of the fish robot was 7.7 cm/s at 3.9Hz tail-beat frequency. Turning experiment showed that swimming direction of the fish robot could be controlled with 0.41 m turning radius by controlling tail-beat angle.

  9. Recent developments on SMA actuators: predicting the actuation fatigue life for variable loading schemes

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert W.; Lagoudas, Dimitris C.

    2017-04-01

    Shape memory alloys (SMAs), due to their ability to repeatably recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method for predicting actuator lifetimes. In recent years, multiple research efforts have increased our understanding of the actuation fatigue process of SMAs. These advances can be utilized to predict the fatigue lives and failure loads in SMA actuators. Additionally, these prediction methods can be implemented in order to intelligently design actuators in accordance with their fatigue and failure limits. In the following paper, both simple and complex thermomechanical loading paths have been considered. Experimental data was utilized from two material systems: equiatomic Nickel-Titanium and Nickelrich Nickel-Titanium.

  10. Cathodic Protection Deployment on Space Shuttle Solid Rocket Boosters

    NASA Technical Reports Server (NTRS)

    Zook, Lee M.

    1998-01-01

    Corrosion protection of the space shuttle solid rocket boosters incorporates the use of cathodic protection(anodes) in concert with several coatings systems. The SRB design has large carbon/carbon composites(motor nozzle) electrically connected to an aluminum alloy structure. Early in the STS program, the aluminum structures incurred tremendous corrosive attack due primarily to the galvanic couple to the carbon/carbon nozzle at coating damage locations. Also contributing to the galvanic corrosion problem were stainless steel and titanium alloy components housed within the aluminum structures and electrically connected to the aluminum structures. This paper will highlight the evolution in the protection of the aluminum structures, providing historical information and summary data from the operation of the corrosion protection systems. Also, data and information will be included regarding the evaluation and deployment of inorganic zinc rich primers as anode area on the aluminum structures.

  11. Electrothermally-Actuated Micromirrors with Bimorph Actuators--Bending-Type and Torsion-Type.

    PubMed

    Tsai, Cheng-Hua; Tsai, Chun-Wei; Chang, Hsu-Tang; Liu, Shih-Hsiang; Tsai, Jui-Che

    2015-06-22

    Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA). A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved a large angular movement in the micromirrors. Application of an external electric current 0.04 A to the bending-type, restricted-torsion-type, and free-torsion-type mirrors achieved rotation angles of 1.69°, 3.28°, and 3.64°, respectively.

  12. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  13. Less-toxic corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1981-01-01

    Combinations of borates, nitrates, phosphates, silicates, and sodium MBT protect aluminum from corrosion in fresh water. Most effective combinations contained sodium phosphate and were alkaline. These inhibitors replace toxic chromates which are subject to governmental restrictions, but must be used in larger quantities. Experimental exposure times varied from 1 to 14 months depending upon nature of submersion solution.

  14. [Effect of various anions on the rate of microbe-induced corrosion].

    PubMed

    Piliashenko-Novokhatnyĭ, A I; Asaulenko, L G

    2002-01-01

    Experimental corroboration of correctness of theoretical thermodynamic calculations of e.m.f. of corrosion reactions induced by soil microorganisms is obtained in the work. A hypothesis is put forward on possible mechanism for stimulation of microbe-induced corrosion by chloride ions. The results obtained permit revealing the reasons of low efficiency conditions of cathode protection in cases of active involvement of soil microorganisms into corrosion processes which are used for maintenance of underground constructions.

  15. Chloride Sensitivity of the Corrosion Rate of Zinc-Coated Reinforcing Bars

    DTIC Science & Technology

    1976-09-01

    wide use of deicing salts on highway pavements and bridges also represents a major source of concrete deterioration induced by rebar corrosion . Adding...cm] Cover in the Spall Zones 11 3a Underlayment of Trestle Showing Spalling of Concrete and Corrosion of Steel Supports 12 3b Deterioration of...Statement Concrete , when placed in cor.act with metals, may be corrosive , neutral, or protective. ihe response of metal to concrete depends on the alloy

  16. Control of metallic corrosion through microbiological route.

    PubMed

    Maruthamuthu, S; Ponmariappan, S; Mohanan, S; Palaniswamy, N; Palaniappan, R; Rengaswamy, N S

    2003-09-01

    Involvement of biofilm or microorganisms in corrosion processes is widely acknowledged. Although majority of the studies on microbiologically induced corrosion (MIC) have concentrated on aerobic/anaerobic bacteria. There are numerous aerobic bacteria, which could hinder the corrosion process. The microbiologically produced exopolymers provide the structural frame work for the biofilm. These polymers combine with dissolved metal ions and form organometallic complexes. Generally heterotrophic bacteria contribute to three major processes: (i) synthesis of polymers (ii) accumulation of reserve materials like poly-beta-hydroxy butrate (iii) production of high molecular weight extracellular polysaccharides. Poly-beta-hydroxy butyrate is a polymer of D(-)beta-hydroxy butrate and has a molecular weight between 60,000 and 2,50,000. Some extracellular polymers also have higher molecular weights. It seems that higher molecular weight polymer acts as biocoating. In the present review, role of biochemistry on corrosion inhibition and possibilities of corrosion inhibition by various microbes are discussed. The role of bacteria on current demand during cathodic protection is also debated. In addition, some of the significant contributions made by CECRI in this promising area are highlighted.

  17. Initial Corrosion Behavior and Mechanism of PCB-HASL in Typical Outdoor Environments in China

    NASA Astrophysics Data System (ADS)

    Ding, Kangkang; Xiao, Kui; Dong, Chaofang; Zou, Shiwen; Yi, Pan; Li, Xiaogang

    2015-11-01

    A long-term (1, 3, and 6 months) outdoor exposure test was performed for lead-free hot air solder leveling printed circuit boards (PCB-HASL) in typical environments in China and the corrosion behavior and mechanism of outdoor PCB-HASL were investigated. In a dry environment PCB-HASL corroded slightly, because of the protective effect of surface oxide films. Corrosion spread from places where dust particles were deposited or mold spores were adsorbed. Under the combined effects of humidity and contamination, large amounts of granular corrosion products with a loose structure were generated, greatly reducing the protective effect of the Sn layer. Furthermore, protection of the edges of the plates was poor, and corrosion products from these regions migrated rapidly on the FR-4 board. When a 12 V electrical bias was applied, Sn and Cu migrated simultaneously. In the electrochemical migration process the effect of humidity was much more critical than that of contamination.

  18. Fault-tolerant rotary actuator

    DOEpatents

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  19. Thermionic switched self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.; Brummond, William A.

    1989-01-01

    A self-actuating reactor shutdown system incorporating a thermionic switched electromagnetic latch arrangement which is responsive to reactor neutron flux changes and to reactor coolant temperature changes. The system is self-actuating in that the sensing thermionic device acts directly to release (scram) the control rod (absorber) without reference or signal from the main reactor plant protective and control systems. To be responsive to both temperature and neutron flux effects, two detectors are used, one responsive to reactor coolant temperatures, and the other responsive to reactor neutron flux increase. The detectors are incorporated into a thermionic diode connected electrically with an electromagnetic mechanism which under normal reactor operating conditions holds the the control rod in its ready position (exterior of the reactor core). Upon reaching either a specified temperature or neutron flux, the thermionic diode functions to short-circuit the electromagnetic mechanism causing same to lose its holding power and release the control rod, which drops into the reactor core region under gravitational force.

  20. Efficient Hybrid Actuation Using Solid-State Actuators

    NASA Technical Reports Server (NTRS)

    Leo, Donald J.; Cudney, Harley H.; Horner, Garnett (Technical Monitor)

    2001-01-01

    Piezohydraulic actuation is the use of fluid to rectify the motion of a piezoelectric actuator for the purpose of overcoming the small stroke limitations of the material. In this work we study a closed piezohydraulic circuit that utilizes active valves to rectify the motion of a hydraulic end affector. A linear, lumped parameter model of the system is developed and correlated with experiments. Results demonstrate that the model accurately predicts the filtering of the piezoelectric motion caused by hydraulic compliance. Accurate results are also obtained for predicting the unidirectional motion of the cylinder when the active valves are phased with respect to the piezoelectric actuator. A time delay associated with the mechanical response of the valves is incorporated into the model to reflect the finite time required to open or close the valves. This time delay is found to be the primary limiting factor in achieving higher speed and greater power from the piezohydraulic unit. Experiments on the piezohydraulic unit demonstrate that blocked forces on the order of 100 N and unloaded velocities of 180 micrometers/sec are achieved.

  1. Ceria nanoparticles vis-à-vis cerium nitrate as corrosion inhibitors for silica-alumina hybrid sol-gel coating

    NASA Astrophysics Data System (ADS)

    Lakshmi, R. V.; Aruna, S. T.; Sampath, S.

    2017-01-01

    The present work provides a comparative study on the corrosion protection efficiency of defect free sol-gel hybrid coating containing ceria nanoparticles and cerium nitrate ions as corrosion inhibitors. Less explored organically modified alumina-silica hybrid sol-gel coatings are synthesized from 3-glycidoxypropyltrimethoxysilane and aluminium-tri-sec-butoxide. The microemulsion derived nanoparticles and the hybrid coatings are characterized and compared with coatings containing cerium nitrate. Corrosion inhibiting capability is assessed using electrochemical impedance spectroscopy. Scanning Kelvin probe measurements are also conducted on the coatings for identifying the apparent corrosion prone regions. Detailed X-ray photoelectron spectroscopy (XPS) analysis is carried out to comprehend the bonding and corrosion protection rendered by the hybrid coatings.

  2. Design of an Active Bumper with a Series Elastic Actuator for Pedestrian Protection of Small Unmanned Vehicles

    NASA Astrophysics Data System (ADS)

    Terumasa, Narukawa; Tomoki, Tsuge; Hiroshi, Yamamoto; Takahiro, Suzuki

    2016-09-01

    When autonomous unmanned vehicles are operated on sidewalks, the vehicles must have high safety standards such as avoiding injury when they come in contact with pedestrians. In this study, we established a design for preventing serious injury when such collisions occur. We designed an active bumper with a series elastic actuator, with the goal of avoiding serious injury to a pedestrian in a collision with a small unmanned vehicle. The series elastic actuator comprised an elastic element in series with a table driven by a ball screw and servo motor. The active bumper was used to control the contact force between a vehicle and a pedestrian. The optimal force for minimizing the deflection of the object of the collision was derived, and the actuator controlled to apply this optimal force. Numerical simulations showed that the active bumper was successful in improving the collision safety of small unmanned vehicles.

  3. Silver deposition on polypyrrole films electrosynthesised onto Nitinol alloy. Corrosion protection and antibacterial activity.

    PubMed

    Saugo, M; Flamini, D O; Brugnoni, L I; Saidman, S B

    2015-11-01

    The electrosynthesis of polypyrrole films onto Nitinol from sodium salicylate solutions of different concentrations is reported. The morphology and corrosion protection properties of the resulting coatings were examined and they both depend on the sodium salicylate concentration. The immobilisation of silver species in PPy films constituted by hollow rectangular microtubes was studied as a function of the polymer oxidation degree. The highest amount of silver was deposited when the coated electrode was prepolarised at -1.00V (SCE) before silver deposition, suggesting an increase in the amount of non-oxidised segments in the polymer. Finally, the antibacterial activity of the coating against the Gram positive Staphylococcus aureus and Staphylococcus epidermidis bacteria was evaluated. Both strains resulted sensitive to the modified coatings, obtaining a slightly better result against S. aureus. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Corrosion protection for silver reflectors

    DOEpatents

    Arendt, Paul N.; Scott, Marion L.

    1991-12-31

    A method of protecting silver reflectors from damage caused by contact with gaseous substances which are often present in the atmosphere and a silver reflector which is so protected. The inventive method comprises at least partially coating a reflector with a metal oxide such as aluminum oxide to a thickness of 15 .ANG. or less.

  5. Design of membrane actuators based on ferromagnetic shape memory alloy composite for the synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Liang, Yuanchang; Taya, Minoru; Kuga, Yasuo

    2004-07-01

    A new membrane actuator based on our previous diaphragm actuator was designed and constructed to improve the dynamic performance. The finite element analysis was used to estimate the frequency response of the composite membrane which will be driven close to its resonance to obtain a large stroke. The membrane is made of ferromagnetic shape memory alloy (FSMA) composite including a ferromagnetic soft iron pad and a superelastic grade of NiTi shape memory alloy (SMA). The actuation mechanism for the FSMA composite membrane of the actuator is the hybrid mechanism that we proposed previously. This membrane actuator is designed for a new synthetic jet actuator package that will be used for active flow control technology on airplane wings. Based on the FEM results, the new membrane actuator system was assembled and its static and dynamic performance was experimentally evaluated including the dynamic magnetic response of the hybrid magnet.

  6. Rotary Series Elastic Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2013-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  7. Rotary series elastic actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2012-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  8. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  9. Nanocontainer-Enhanced Self-Healing for Corrosion-Resistant Ni Coating on Mg Alloy.

    PubMed

    Xie, Zhi-Hui; Li, Dan; Skeete, Zakiya; Sharma, Anju; Zhong, Chuan-Jian

    2017-10-18

    The ability to manipulate the functionalization of Ni coating is of great importance in improving the corrosion resistance of magnesium (Mg) alloy for many industrial applications. In the present work, MCM-41 type mesoporous silica nanocontainers (MSNs) loaded with corrosion inhibitor (NaF) were synthesized and employed as smart reinforcements to enhance the integrity and corrosion inhibition of the Ni coating. The incorporation of the F-loaded MSNs (F@MSNs) to enhance the corrosion resistant capacity of a metallic coating is reported for the first time. The mesoporous structures of the as-prepared MSNs and F@MSNs were confirmed by transmission electron microscopy (TEM), small angle X-rays scattering (SAXS), and N 2 adsorption-desorption isotherms. The X-ray photoelectron spectroscopy (XPS) data demonstrated the successful immobilization of fluoride ion on the MSNs and formation of a magnesium fluoride (MgF 2 ) protective film at the corrosion sites of the Mg alloy upon soaking in a F@MSNs-containing NaCl solution. The results from potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) for both bare Mg alloy and Ni coatings with and without F@MSNs have revealed a clear decrease in corrosion rate in a corrosive solution for a long-time immersion due to the introduction of F@MSNs. These findings open new opportunities in the exploration of self-healing metallic coatings for highly enhanced anticorrosion protection of Mg alloy.

  10. Study on the electrochemical corrosion behavior of industrial boilers

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyang; Huang, Song; Zhang, Wenpin; Feng, Qiang; Huang, Yong

    2018-06-01

    In this paper, industrial boilers are used as the research object, and Boilerentiodynamic polarization analysis of boiler steel is used to study the electrochemical corrosion behavior in the boiler water. The electrochemical corrosion nature and morphology of the samples were tested through experiments. The study shows: the corrosion resistance of the samples will decrease significantly with the increase of the operating time of boilers. Dissolved solids and Cl- in the boiler water will destroy the original protective film, of which the increase of its content is the main reason for the deterioration of the material properties.

  11. Modeling and Synthesis Methods for Retrofit Design of Submarine Actuation Systems. Energy Storage for Electric Actuators

    DTIC Science & Technology

    2011-12-15

    for Retrofit Design of Submarine Actuation Systems 5b. GRANT NUMBER Energy Storage for Electric Actuators NOOO 14-08-1-0424 5c. PROGRAM ELEMENT...are used to derive power and energy storage requirements for control surface actuation during extreme submarine maneuvers, such as emergency...and for initially sizing system components. 15. SUBJECT TERMS Submarines, electromagnetic actuators, energy storage, simulation-based design

  12. Corrosion on Mars: An Investigation of Corrosion Mechanisms Under Relevant Simulated Martian Environments

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Johansen, Michael R.; Buhrow, Jerry W.; Calle, Carlos I.

    2017-01-01

    , showed that there is an interaction between the small amount of oxygen present in the Mars gas and the alloy when there is a scratch that removes the protective aluminum oxide film. Further studies are needed to consider many other important components of the Mars environment that can affect this interaction such as: the effect of oxidants, the effect of radiation on their oxidizing properties and the possible catalytic effects of the clays present in the Martian regolith. The results of this one-year project provide strong justification for further investigation of the corrosion mechanism of materials relevant to long-term surface operations in support of future human exploration missions on Mars.

  13. Performance evaluation of an improved fish robot actuated by piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. S.; Heo, S.; Park, H. C.; Byun, D.

    2010-03-01

    This paper presents an improved fish robot actuated by four lightweight piezocomposite actuators. Our newly developed actuation mechanism is simple to fabricate because it works without gears. With the new actuation mechanism, the fish robot has a 30% smaller cross section than our previous model. Performance tests of the fish robot in water were carried out to measure the tail-beat angle, the thrust force, the swimming speed for various tail-beat frequencies from 1 to 5 Hz and the turning radius at the optimal frequency. The maximum swimming speed of the fish robot is 7.7 cm s - 1 at a tail-beat frequency of 3.9 Hz. A turning experiment shows that the swimming direction of the fish robot can be controlled by changing the duty ratio of the driving voltage; the fish robot has a turning radius of 0.41 m for a left turn and 0.68 m for a right turn.

  14. Optimization of In-Situ Shot-Peening-Assisted Cold Spraying Parameters for Full Corrosion Protection of Mg Alloy by Fully Dense Al-Based Alloy Coating

    NASA Astrophysics Data System (ADS)

    Wei, Ying-Kang; Luo, Xiao-Tao; Li, Cheng-Xin; Li, Chang-Jiu

    2017-01-01

    Magnesium-based alloys have excellent physical and mechanical properties for a lot of applications. However, due to high chemical reactivity, magnesium and its alloys are highly susceptible to corrosion. In this study, Al6061 coating was deposited on AZ31B magnesium by cold spray with a commercial Al6061 powder blended with large-sized stainless steel particles (in-situ shot-peening particles) using nitrogen gas. Microstructure and corrosion behavior of the sprayed coating was investigated as a function of shot-peening particle content in the feedstock. It is found that by introducing the in-situ tamping effect using shot-peening (SP) particles, the plastic deformation of deposited particles is significantly enhanced, thereby resulting in a fully dense Al6061 coating. SEM observations reveal that no SP particle is deposited into Al6061 coating at the optimization spraying parameters. Porosity of the coating significantly decreases from 10.7 to 0.4% as the SP particle content increases from 20 to 60 vol.%. The electrochemical corrosion experiments reveal that this novel in-situ SP-assisted cold spraying is effective to deposit fully dense Al6061 coating through which aqueous solution is not permeable and thus can provide exceptional protection of the magnesium-based materials from corrosion.

  15. Polystyrene films as barrier layers for corrosion protection of copper and copper alloys.

    PubMed

    Románszki, Loránd; Datsenko, Iaryna; May, Zoltán; Telegdi, Judit; Nyikos, Lajos; Sand, Wolfgang

    2014-06-01

    Dip-coated polystyrene layers of sub-micrometre thickness (85-500nm) have been applied on copper and copper alloys (aluminium brass, copper-nickel 70/30), as well as on stainless steel 304, and produced an effective barrier against corrosion and adhesion of corrosion-relevant microorganisms. According to the dynamic wettability measurements, the coatings exhibited high advancing (103°), receding (79°) and equilibrium (87°) contact angles, low contact angle hysteresis (6°) and surface free energy (31mJ/m(2)). The corrosion rate of copper-nickel 70/30 alloy samples in 3.5% NaCl was as low as 3.2μm/a (44% of that of the uncoated samples), and in artificial seawater was only 0.9μm/a (29% of that of the uncoated samples). Cell adhesion was studied by fluorescence microscopy, using monoculture of Desulfovibrio alaskensis. The coatings not only decreased the corrosion rate but also markedly reduced the number of bacterial cells adhered to the coated surfaces. The PS coating on copper gave the best result, 2×10(3)cells/cm(2) (1% of that of the uncoated control). © 2013 Elsevier B.V. All rights reserved.

  16. Evaluation of corrosion inhibitor simulating conditions of operation

    NASA Astrophysics Data System (ADS)

    Gómez, O.; Aponte, H.; Vera, E.; Pineda, Y.

    2017-12-01

    Operating conditions at the head of oil wells are critical, in addition to injecting water to increase the pressure while maintaining production cause deterioration in the metallic structures that transport fluids. One way to maintain integrity is the injection of inhibitors which plays an important role in protecting the pipes. In this study a molecule N-PHENYL NITRONE was obtained, which was evaluated by electrochemical tests (LPR) and Tafel Polarization Curves in a reactor controlling environments containing different dosages, pressure values, temperatures and flow velocity using working electrodes tubing API N 80, the reactor was connected to a potentiostat to determine corrosion rates, allowing the analysis of the influence of each variable on the protective behaviour of the inhibitor, and its efficiency against the decrease of the deterioration of the pipes. Corrosion products are analysed by X-Ray Diffraction (XRD). Photographic records of the surface verify the formation of iron carbonate (FeCO3). In addition, a mathematical analysis of the independent variables is performed to evaluate the effect that it has on the efficiency of corrosion inhibition.

  17. Larger-Stroke Piezoelectrically Actuated Microvalve

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    A proposed normally-closed microvalve would contain a piezoelectric bending actuator instead of a piezoelectric linear actuator like that of the microvalve described in the preceding article. Whereas the stroke of the linear actuator of the preceding article would be limited to approximately equal to 6 micrometers, the stroke of the proposed bending actuator would lie in the approximate range of 10 to 15 micrometers-large enough to enable the microvalve to handle a variety of liquids containing suspended particles having sizes up to 10 m. Such particulate-laden liquids occur in a variety of microfluidic systems, one example being a system that sorts cells or large biomolecules for analysis. In comparison with the linear actuator of the preceding article, the bending actuator would be smaller and less massive. The combination of increased stroke, smaller mass, and smaller volume would be obtained at the cost of decreased actuation force: The proposed actuator would generate a force in the approximate range of 1 to 4 N, the exact amount depending on operating conditions and details of design. This level of actuation force would be too low to enable the valve to handle a fluid at the high pressure level mentioned in the preceding article. The proposal encompasses two alternative designs one featuring a miniature piezoelectric bimorph actuator and one featuring a thick-film unimorph piezoelectric actuator (see figure). In either version, the valve would consume a power of only 0.01 W when actuated at a frequency of 100 Hz. Also, in either version, it would be necessary to attach a soft elastomeric sealing ring to the valve seat so that any particles that settle on the seat would be pushed deep into the elastomeric material to prevent or reduce leakage. The overall dimensions of the bimorph version would be 7 by 7 by 1 mm. The actuator in this version would generate a force of 1 N and a stroke of 10 m at an applied potential of 150 V. The actuation force would be

  18. Evaluation of atomic layer deposited alumina as a protective layer for domestic silver articles: Anti-corrosion test in artificial sweat

    NASA Astrophysics Data System (ADS)

    Park, Suk Won; Han, Gwon Deok; Choi, Hyung Jong; Prinz, Fritz B.; Shim, Joon Hyung

    2018-05-01

    This study evaluated the effectiveness of alumina fabricated by atomic layer deposition (ALD) as a protective coating for silver articles against the corrosion caused by body contact. An artificial sweat solution was used to simulate body contact. ALD alumina layers of varying thicknesses ranging from 20 to 80 nm were deposited on sputtered silver samples. The stability of the protective layer was evaluated by immersing the coated samples in the artificial sweat solution at 25 and 35 °C for 24 h. We confirmed that a sufficiently thick layer of ALD alumina is effective in protecting the shape and light reflectance of the underlying silver, whereas the uncoated bare silver is severely degraded by the artificial sweat solution. Inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy were used for in-depth analyses of the chemical stability of the ALD-coated silver samples after immersion in the sweat solution.

  19. Susceptibility of nitinol to localized corrosion.

    PubMed

    Pound, Bruce G

    2006-04-01

    The effect of different conditions on the susceptibility of nitinol to localized corrosion was examined using the cyclic potentiodynamic polarization technique. Tests were performed on mechanically polished (MP) and electropolished (EP) nitinol wire in 0.9 wt % NaCl and phosphate-buffered saline (PBS). A polarization curve was also obtained for an EP stent in the NaCl. Differences between the breakdown potential and the corrosion potential (E(corr)) and between the protection potential and E(corr) were used to evaluate the susceptibility to pitting corrosion and crevice corrosion, respectively. The type of solution and, particularly, the surface condition affected the resistance of nitinol to pitting corrosion. Both EP and MP nitinol were more susceptible to breakdown in the NaCl than in PBS, indicating that the NaCl provides a more severe test environment than does PBS. Electropolishing increased the breakdown resistance of nitinol in PBS and the NaCl, as found in previous studies with Hank's solution. Surface condition, however, did not have a significant effect on the repassivation behavior of nitinol, as is also the case with titanium. The EP wire and stent showed similar breakdown and repassivation behavior in the NaCl, suggesting that the nature of the EP surface was similar in both cases. (c) 2005 Wiley Periodicals, Inc.

  20. Corrosion control of cement-matrix and aluminum-matrix composites

    NASA Astrophysics Data System (ADS)

    Hou, Jiangyuan

    Corrosion control of composite materials, particularly aluminum-matrix and cement-matrix composites, was addressed by surface treatment, composite formulation and cathodic protection. Surface treatment methods studied include anodization in the case of aluminum-matrix composites and oxidation treatment (using water) in the case of steel rebar for reinforcing concrete. The effects of reinforcement species (aluminum nitride (AIN) versus silicon carbide (SiC) particles) in the aluminum-matrix composites and of admixtures (carbon fibers, silica fume, latex and methylcellulose) in concrete on the corrosion resistance of composites were addressed. Moreover, the effect of admixtures in concrete and of admixtures in mortar overlay (as anode on concrete) on the efficiency of cathodic protection of steel reinforced concrete was studied. For SiC particle filled aluminum, anodization was performed successfully in an acid electrolyte, as for most aluminum alloys. However, for AlN particle filled aluminum, anodization needs to be performed in an alkaline (0.7 N NaOH) electrolyte instead. The concentration of NaOH in the electrolyte was critical. It was found that both silica fume and latex improved the corrosion resistance of rebar in concrete in both Ca(OH)sb2 and NaCl solutions, mainly because these admixtures decreased the water absorptivity. Silica fume was more effective than latex. Methylcellulose improved the corrosion resistance of rebar in concrete a little in Ca(OH)sb2 solution. Carbon fibers decreased the corrosion resistance of rebar in concrete, but this effect could be made up for by either silica fume or latex, such that silica fume was more effective than latex. Surface treatment in the form of water immersion for two days was found to improve the corrosion resistance of rebar in concrete. This treatment resulted in a thin uniform layer of black iron oxide (containing Fesp{2+}) on the entire rebar surface except on the cross-sectional surface. Prior to the

  1. Thermal expansion as a precision actuator

    NASA Astrophysics Data System (ADS)

    Miller, Chris; Montgomery, David; Black, Martin; Schnetler, Hermine

    2016-07-01

    The UK ATC has developed a novel thermal actuator design as part of an OPTICON project focusing on the development of a Freeform Active Mirror Element (FAME). The actuator uses the well understood concept of thermal expansion to generate the required force and displacement. As heat is applied to the actuator material it expands linearly. A resistance temperature device (RTD) is embedded in the centre of the actuator and is used both as a heater and a sensor. The RTD temperature is controlled electronically by injecting a varying amount of current into the device whilst measuring the voltage across it. Temperature control of the RTD has been achieved to within 0.01°C. A 3D printed version of the actuator is currently being used at the ATC to deform a mirror but it has several advantages that may make it suitable to other applications. The actuator is cheap to produce whilst obtaining a high accuracy and repeatability. The actuator design would be suitable for applications requiring large numbers of actuators with high precision.

  2. Corrosion and corrosion prevention in gas turbines

    NASA Technical Reports Server (NTRS)

    Mom, A. J. A.; Kolkman, H. J.

    1985-01-01

    The conditions governing the corrosion behavior in gas turbines are surveyed. Factors such as temperature, relative humidity, the presence of sulfur and nitrogen dioxide, and fuel quality are discussed. Electromechanical corrosion at relatively low temperature in compressors; oxidation; and hot corrosion (sulfidation) at high temperature in turbines are considered. Corrosion prevention by washing and rinsing, fueld additives, and corrosion resistant materials and coatings are reviewed.

  3. Development of new corrosion inhibitor tested on mild steel supported by electrochemical study

    NASA Astrophysics Data System (ADS)

    Habeeb, Hussein Jwad; Luaibi, Hasan Mohammed; Dakhil, Rifaat Mohammed; Kadhum, Abdul Amir H.; Al-Amiery, Ahmed A.; Gaaz, Tayser Sumer

    2018-03-01

    Mild steel is a metal which is commonly used in industrials and manufacturing of equipment for most industries round the world. It is cheaper cost compared with the other metals and its durable, hard and easy-to-wear physical properties make it a major choice in the manufacture of equipment parts. The main problem through the uses of mild steel in industry is its resistance against corrosion, especially in acidic solutions. This case led to raise the cost of maintenance of equipment that used mild steel and as a result increased costs for the company. Organic corrosive inhibitors that also act as green chemicals, 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol have been synthesized. This inhibitor is tested as corrosion inhibitor on a mild steel sample MS in 1 M hydrochloric acid solution (HCl) using electrochemical measurements test includes PD (Potentiodynamic), EIS (Electrochemical impedance spectroscopy), OCP (Open circuit potential) and EFM (electrochemical frequency modulation). The obtained results indicate that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol acts as a good corrosion inhibitor for mild steel sample in HCl solution with efficiency above 90%. Changes in the impedance parameters postulated adsorption on the mild steel specimens' surfaces of, which it going to the formation of protective coating layer. It also shows that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol corrosion inhibitors are effective in helping to reduce and slow down the corrosion process that occurs on mild steel surface in hydrochloric acid solution. Increase of corrosion inhibitor concentration provides a protective layer of mild steel. However, this protective layer becomes weak when the temperature of the solution increases.

  4. Cellular Pressure-Actuated Joint

    NASA Technical Reports Server (NTRS)

    McGuire, John R.

    2003-01-01

    A modification of a pressure-actuated joint has been proposed to improve its pressure actuation in such a manner as to reduce the potential for leakage of the pressurizing fluid. The specific joint for which the modification is proposed is a field joint in a reusable solid-fuel rocket motor (RSRM), in which the pressurizing fluid is a mixture of hot combustion gases. The proposed modification could also be applicable to other pressure-actuated joints of similar configuration.

  5. Linear Proof-Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III; Crossley, Edward A.; Miller, James B.; Jones, Irby W.; Davis, C. Calvin; Behun, Vaughn D.; Goodrich, Lewis R., Sr.

    1995-01-01

    Linear proof-mass actuator (LPMA) is friction-driven linear mass actuator capable of applying controlled force to structure in outer space to damp out oscillations. Capable of high accelerations and provides smooth, bidirectional travel of mass. Design eliminates gears and belts. LPMA strong enough to be used terrestrially where linear actuators needed to excite or damp out oscillations. High flexibility designed into LPMA by varying size of motors, mass, and length of stroke, and by modifying control software.

  6. Synergistic Effect of Polypyrrole-Intercalated Graphene for Enhanced Corrosion Protection of Aqueous Coating in 3.5% NaCl Solution.

    PubMed

    Qiu, Shihui; Li, Wei; Zheng, Wenru; Zhao, Haichao; Wang, Liping

    2017-10-04

    Dispersion of graphene in water and its incorporation into waterborne resin have been rarely researched and hardly achieved owing to its hydrophobicity. Furthermore, it has largely been reported that graphene with impermeability contributed to the improved anticorrosion property. Here, we show that highly concentrated graphene aqueous solution up to 5 mg/mL can be obtained by synthesizing hydrophilic polypyrrole (PPy) nanocolloids as intercalators and ultrasonic vibration. On the basis of π-π interaction between PPy and graphene, stacked graphene sheets are exfoliated to the thickness of three to five layers without increasing defects. The corrosion performance of coatings without and with PPy and graphene is obtained by potential and impedance measurements, Tafel curves, and fitted pore resistance by immersing in a 3.5 wt % NaCl solution. It turns out that composite coating with 0.5 wt % graphene additive exhibits superior anticorrosive ability. The mechanism of intercalated graphene-based coating is interpreted as the synergistic protection of impermeable graphene sheets and self-healing PPy and proved by the identification of corrosion products and the scanning vibrating electrode technique.

  7. Investigation of the Degradation Mechanisms of Particulate Reinforced Epoxy Coatings and Zinc-Rich Coatings Under an Erosion and Corrosion Environment for Oil and Gas Industry Applications

    NASA Astrophysics Data System (ADS)

    Wang, Dailin

    During oil and gas production and transportation, the presence of an oil-sand slurry, together with the presence of CO2, H2S, oxygen, and seawater, create an erosive/abrasive and corrosive environment for the interior surfaces of undersea pipelines transporting oil and gas from offshore platforms. Erosion/wear and corrosion are often synergic processes leading to a much greater material loss of pipeline cross-section than that caused by each individual process alone. Both organic coatings and metallic sacrificial coatings have been widely employed to provide protection to the pipeline steels against corrosion through barrier protection and cathodic protection, and these protection mechanisms have been well studied. However, coating performance under the synergic processes of erosion/wear and corrosion have been much less researched and coating degradation mechanisms when erosion/wear and corrosion are both going on has not been well elucidated. In the work presented in this dissertation, steel panels coated with filler reinforced epoxy coatings and carbon nanotubes (CNTs) reinforced zinc-rich coatings have been evaluated under erosion/wear followed by an exposure to a corrosive environment. Electrochemical tests and material characterization methods have been applied to study the degradation mechanisms of the coatings during the tests and coating degradation mechanisms have been proposed. While organic coatings with a lower amount of filler particles provided better protection in a corrosive environment alone and in solid particle impingement erosion testing alone, organic coatings with a higher amount of filler particles showed better performance during wear testing alone. A higher amount of filler particles was also beneficial in providing protection against wear and corrosion environment, and erosion and corrosion environment. Coating thickness played a significant role in the barrier properties of the coatings under both erosion and corrosion tests. When the

  8. Dielectric elastomer actuators for facial expression

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhe; Zhu, Jian

    2016-04-01

    Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.

  9. Self-actuated device

    DOEpatents

    Hecht, Samuel L.

    1984-01-01

    A self-actuated device, of particular use as a valve or an orifice for nuclear reactor fuel and blanket assemblies, in which a gas produced by a neutron induced nuclear reaction gradually accumulates as a function of neutron fluence. The gas pressure increase occasioned by such accumulation of gas is used to actuate the device.

  10. The effect of zinc thickness on corrosion film breakdown of Colombian galvanized steel

    NASA Astrophysics Data System (ADS)

    Sandoval-Amador, A.; E Torres Ramirez, J.; Cabrales-Villamizar, P. A.; Laverde Cataño, D.; Y Peña-Ballesteros, D.

    2017-12-01

    This work studies the corrosion behaviour of Colombian galvanized steel in solutions of chloride and sulphate ions. The effect of the thickness and exposure time on the film’s breakdown susceptibility and protectiveness of the corrosion products were studied using potentiodynamic polarization curves and electrochemical impedance spectroscopy. The corrosion products were analysed using SEM-EDS and XRD. The samples with a higher thickness level in the zinc film (Z180) have the lowest corrosion rate. In this case, one of the products that was formed by the chemical reactions that occurred was Zinc hydroxide, which exhibits a passive behaviour as observed in the Pourbaix curves of the obtained potentials and in how the different Ph levels of the solutions worked. The sheets with the highest thickness (Z180) had the best performance, since at the end of the study they showed the least amount of damage on the surface of the zinc layer. This is because the thickness of the zinc layer favours the formation of simonkolleite, which is the corrosion product that protects the material under the conditions of the study.

  11. Analysis of the sweeped actuator line method

    DOE PAGES

    Nathan, Jörn; Masson, Christian; Dufresne, Louis; ...

    2015-10-16

    The actuator line method made it possible to describe the near wake of a wind turbine more accurately than with the actuator disk method. Whereas the actuator line generates the helicoidal vortex system shed from the tip blades, the actuator disk method sheds a vortex sheet from the edge of the rotor plane. But with the actuator line come also temporal and spatial constraints, such as the need for a much smaller time step than with actuator disk. While the latter one only has to obey the Courant-Friedrichs-Lewy condition, the former one is also restricted by the grid resolution andmore » the rotor tip-speed. Additionally the spatial resolution has to be finer for the actuator line than with the actuator disk, for well resolving the tip vortices. Therefore this work is dedicated to examining a method in between of actuator line and actuator disk, which is able to model the transient behavior, such as the rotating blades, but which also relaxes the temporal constraint. Therefore a larger time-step is used and the blade forces are swept over a certain area. As a result, the main focus of this article is on the aspect of the blade tip vortex generation in comparison with the standard actuator line and actuator disk.« less

  12. Analysis of the sweeped actuator line method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathan, Jörn; Masson, Christian; Dufresne, Louis

    The actuator line method made it possible to describe the near wake of a wind turbine more accurately than with the actuator disk method. Whereas the actuator line generates the helicoidal vortex system shed from the tip blades, the actuator disk method sheds a vortex sheet from the edge of the rotor plane. But with the actuator line come also temporal and spatial constraints, such as the need for a much smaller time step than with actuator disk. While the latter one only has to obey the Courant-Friedrichs-Lewy condition, the former one is also restricted by the grid resolution andmore » the rotor tip-speed. Additionally the spatial resolution has to be finer for the actuator line than with the actuator disk, for well resolving the tip vortices. Therefore this work is dedicated to examining a method in between of actuator line and actuator disk, which is able to model the transient behavior, such as the rotating blades, but which also relaxes the temporal constraint. Therefore a larger time-step is used and the blade forces are swept over a certain area. As a result, the main focus of this article is on the aspect of the blade tip vortex generation in comparison with the standard actuator line and actuator disk.« less

  13. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  14. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, J.G.

    1999-02-02

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing. 49 figs.

  15. Design and demonstration of a fish robot actuated by a SMA-driven actuation system

    NASA Astrophysics Data System (ADS)

    Le, Chan H.; Nguyen, Quang S.; Park, Hoon C.

    2010-04-01

    This paper presents a concept of a fish robot actuated by an SMA-based actuator. The bending-type actuator system is composed of a 0.1mm diameter SMA wire and a 0.5mm thick glass/epoxy strip. The SMA wire is installed to the bent composite strip. The actuator can produce about 200gf of blocking force and 3.5mm displacement at the center of the glass/epoxy strip. The bending motion of the actuator is converted into the tail-beat motion of a fish robot through a linkage system. The fish robot is evaluated by measuring the tail-beat angle, swimming speed and thrust produced by the fish robot. The tail-beat angle is about 20° and the maximum swimming speed is about 1.6cm/s. The measured thrust is about 0.4gf when the fish robot is operated at 0.9Hz.

  16. Piezoelectric actuators for active optics

    NASA Astrophysics Data System (ADS)

    Le Letty, R.; Barillot, F.; Fabbro, H.; Guay, Ph.; Cadiergues, L.

    2017-11-01

    Piezoelectric actuators find their first applications in active space optics. The purpose of this paper is to describe the state of the art and some applications. Piezo actuators display attractive features for space applications, such as precise positioning, unlubricated, non magnetic and compact features, and low power consumption. However, piezo mechanisms cannot be considered separately from their driving and control electronic. Piezo actuators, such as Amplified Piezo Actuators or Parallel Pre-stressed Actuators, initially designed under CNES contracts, shall find their first space flight applications in optics on the PHARAO Laser bench: • fine pointing of the laser beams, • laser cavity tuning. Breadboard mechanisms based on piezo actuators have also been tested for refocusing purposes. Other applications includes the improvement of the CCD resolution through an oversampling technique, such as in the SOHO/LASCO instrument, fast optical shutter operation, optical filter in combination with a Fabry - Perot interferometer, such as in future LIDAR for earth observation. The first applications shall be described and an overview of the future potential applications shall be given.

  17. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  18. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    PubMed

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The corrosion mechanisms for primer coated 2219-T87 aluminum

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.; Knockemus, Ward W.

    1987-01-01

    To investigate metal surface corrosion and the breakdown of metal protective coatings, the ac Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The EG&GPARC Model 368 ac Impedance Measurement System, along with dc measurements with the same system using the Polarization Resistance Method, was used to monitor changing properties of coated aluminum disks immersed in 3.5 percent NaCl solutions buffered at pH 5.5 and pH 8.2 over periods of 40 days each. The corrosion system can be represented by an electronic analog called an equivalent circuit consisting of resistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacitances, that can be assigned in the equivalent circuit following a least squares analysis of the data, describe changes occurring on the corroding metal surface and in the protective coatings. A suitable equivalent circuit has been determined which predicts the correct Bode phase and magnitude for the experimental sample. The dc corrosion current density data are related to equivalent circuit element parameters.

  20. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator. Cleaner, simpler, and needs less maintenance. Features rotary-to-linear-motion converter with antibacklash gearing and position feedback via shaft-angle resolvers, which measure rotary motion.

  1. Axenic aerobic biofilms inhibit corrosion of copper and aluminum.

    PubMed

    Jayaraman, A; Ornek, D; Duarte, D A; Lee, C C; Mansfeld, F B; Wood, T K

    1999-11-01

    The corrosion behavior of unalloyed copper and aluminum alloy 2024 in modified Baar's medium has been studied with continuous reactors using electrochemical impedance spectroscopy. An axenic aerobic biofilm of either Pseudomonas fragi K or Bacillus brevis 18 was able to lessen corrosion as evidenced by a consistent 20-fold increase in the low-frequency impedance value of copper as well as by a consistent four- to seven-fold increase in the polarization resistance of aluminum 2024 after six days exposure compared to sterile controls. This is the first report of axenic aerobic biofilms inhibiting generalized corrosion of copper and aluminum. Addition of the representative sulfate-reducing bacterium (SRB) Desulfovibrio vulgaris (to simulate consortia corrosion behavior) to either the P. fragi K or B. brevis 18 protective biofilm on copper increased the corrosion to that of the sterile control unless antibiotic (ampicillin) was added to inhibit the growth of SRB in the biofilm.

  2. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas [Denver, CO; Raffaelle, Ryne P [Honeoye Falls, NY; Landi, Brian J [Rochester, NY; Heben, Michael J [Denver, CO

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  3. 3D printed soft parallel actuator

    NASA Astrophysics Data System (ADS)

    Zolfagharian, Ali; Kouzani, Abbas Z.; Khoo, Sui Yang; Noshadi, Amin; Kaynak, Akif

    2018-04-01

    This paper presents a 3-dimensional (3D) printed soft parallel contactless actuator for the first time. The actuator involves an electro-responsive parallel mechanism made of two segments namely active chain and passive chain both 3D printed. The active chain is attached to the ground from one end and constitutes two actuator links made of responsive hydrogel. The passive chain, on the other hand, is attached to the active chain from one end and consists of two rigid links made of polymer. The actuator links are printed using an extrusion-based 3D-Bioplotter with polyelectrolyte hydrogel as printer ink. The rigid links are also printed by a 3D fused deposition modelling (FDM) printer with acrylonitrile butadiene styrene (ABS) as print material. The kinematics model of the soft parallel actuator is derived via transformation matrices notations to simulate and determine the workspace of the actuator. The printed soft parallel actuator is then immersed into NaOH solution with specific voltage applied to it via two contactless electrodes. The experimental data is then collected and used to develop a parametric model to estimate the end-effector position and regulate kinematics model in response to specific input voltage over time. It is observed that the electroactive actuator demonstrates expected behaviour according to the simulation of its kinematics model. The use of 3D printing for the fabrication of parallel soft actuators opens a new chapter in manufacturing sophisticated soft actuators with high dexterity and mechanical robustness for biomedical applications such as cell manipulation and drug release.

  4. Metallized coatings for corrosion control of Naval ship structures and components

    NASA Technical Reports Server (NTRS)

    1983-01-01

    In attempting to improve corrosion control, the U.S. Navy has undertaken a program of coating corrosion-susceptible shipboard components with thermally sprayed aluminum. In this report the program is reviewed in depth, including examination of processes, process controls, the nature and properties of the coatings, nondestructive examination, and possible hazards to personnel. The performance of alternative metallic coating materials is also discussed. It is concluded that thermally sprayed aluminum can provide effective long-term protection against corrosion, thereby obviating the need for chipping of rust and repainting by ship personnel. Such coatings are providing excellent protection to below-deck components such as steam valves, but improvements are needed to realize the full potential of coatings for above-deck service. Several recommendations are made regarding processes, materials, and research and development aimed at upgrading further the performance of these coatings.

  5. Deep ocean corrosion research in support of Oman India gas pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, F.W.; McKeehan, D.S.

    1995-12-01

    The increasing interest in deepwater exploration and production has motivated the development of technologies required to accomplish tasks heretofore possible only onshore and in shallow water. The tremendous expense of technology development and the cost of specialized equipment has created concerns that the design life of these facilities may be compromised by corrosion. The requirements to develop and prove design parameters to meet these demands will require an ongoing environmental testing and materials evaluation and development program. This paper describes a two-fold corrosion testing program involving: (1) the installation of two corrosion test devices installed in-situ, and (2) a laboratorymore » test conducted in simulated site-specific seawater. These tests are expected to qualify key parameters necessary to design a cathodic protection system to protect the Oman-to-India pipeline.« less

  6. Evaluation of soil corrosivity and aquifer protective capacity using geoelectrical investigation in Bwari basement complex area, Abuja

    NASA Astrophysics Data System (ADS)

    Adeniji, A. E.; Omonona, O. V.; Obiora, D. N.; Chukudebelu, J. U.

    2014-04-01

    Bwari is one of the six municipal area councils of the Federal Capital Territory (FCT), Abuja with its attendant growing population and infrastructural developments. Groundwater is the main source of water supply in the area, and urbanization and industrialization are the predominant contributors of contaminants to the hydrological systems. In order to guarantee a continuous supply of potable water, there is a need to investigate the vulnerability of the aquifers to contaminants emanating from domestic and industrial wastes. A total of 20 vertical electrical soundings using Schlumberger electrode array with a maximum half current electrodes separation of 300 m was employed. The results show that the area is characterized by 3-6 geoelectric subsurface layers. The measured overburden thickness ranges from 1.0 to 24.3 m, with a mean value of 7.4 m. The resistivity and longitudinal conductance of the overburden units range from 18 to 11,908 Ωm and 0.047 to 0.875 mhos, respectively. Areas considered as high corrosivity are the central parts with ρ < 180 Ωm. The characteristic longitudinal unit conductance was used to classify the area into zones of good (0.7-4.49 mhos), moderate (0.2-0.69 mhos), weak (0.1-0.19 mhos), and poor (<0.1) aquifer protective capacity. Zones characterized by materials of moderate to good protective capacity serve as sealing potential for the underlying hydrogeological system in the area. This study is aimed at delineating zones that are very prone to groundwater contamination from surface contaminants and subsurface soils that are corrosive to utility pipes buried underground. Hence the findings of this work will constitute part of the tools for groundwater development and management and structural/infrastructural development planning of the area.

  7. Corrosion and Corrosion Control in Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Gordon, Barry M.

    2013-08-01

    Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.

  8. Silicone based dielectric elastomer strip actuators coupled with nonlinear biasing elements for large actuation strains

    NASA Astrophysics Data System (ADS)

    Hau, S.; Bruch, D.; Rizzello, G.; Motzki, P.; Seelecke, S.

    2018-07-01

    There are two major categories of dielectric elastomer actuators (DEAs), which differ from the way in which the actuation is exploited: stack DEAs, using the thickness compression, and membrane DEAs, which exploit the expansion in area. In this work we focus on a specific type of membrane DEAs, i.e., silicone-based strip-in-plane (SIP) DEAs with screen printed electrodes. The performance of such actuators strongly depends on their geometry and on the adopted mechanical biasing system. Typically, the biasing is based on elastomer pre-stretch or on dead loads, which results in relatively low actuation strain. Biasing systems characterized by a negative rate spring have proven to significantly increase the performance of circular out-of-plane DEAs. However, this kind of biasing has never been systematically applied to silicone SIP DEAs. In this work, the biasing design based on negative rate springs is extended to strip DEAs as well, allowing to improve speed, strain, and force of the resulting actuator. At first, the DEAs are characterized under electrical and mechanical loading. Afterwards, two actuator systems are studied and compared in terms of actuation strain, force output, and actuation speed. In a first design stage, the DEA is coupled with a linear spring. Subsequently, the membrane is loaded with a combination of linear and nonlinear spring (working in a negative stiffness region). The resulting stroke output of the second systems is more than 9 times higher in comparison to the first one. An actuation strain of up to 45% (11.2 millimeter) and a force output of 0.38 Newton are measured. A maximum speed of 0.29 m s‑1 is achieved, which is about 60 times faster than the one typically measured for similar systems based on VHB.

  9. Stimuli-Responsive Polymers for Actuation.

    PubMed

    Zhang, Qiang Matthew; Serpe, Michael J

    2017-06-02

    A variety of stimuli-responsive polymers have been developed and used as actuators and/or artificial muscles, with the movement being driven by an external stimulus, such as electrical potential. This Review highlights actuators constructed from liquid-crystal elastomers, dielectric elastomers, ionic polymers, and conducting polymers. The Review covers recent examples of a variety of actuators generated from these materials and their utility. The mechanism of actuation will be detailed for most examples in order to stimulate possible future research, and lead to new applications and advanced applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thermoelectric-Driven Sustainable Sensing and Actuation Systems for Fault-Tolerant Nuclear Incidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longtin, Jon

    2016-02-08

    The Fukushima Daiichi nuclear incident in March 2011 represented an unprecedented stress test on the safety and backup systems of a nuclear power plant. The lack of reliable information from key components due to station blackout was a serious setback, leaving sensing, actuation, and reporting systems unable to communicate, and safety was compromised. Although there were several independent backup power sources for required safety function on site, ultimately the batteries were drained and the systems stopped working. If, however, key system components were instrumented with self-powered sensing and actuation packages that could report indefinitely on the status of the system,more » then critical system information could be obtained while providing core actuation and control during off-normal status for as long as needed. This research project focused on the development of such a self-powered sensing and actuation system. The electrical power is derived from intrinsic heat in the reactor components, which is both reliable and plentiful. The key concept was based around using thermoelectric generators that can be integrated directly onto key nuclear components, including pipes, pump housings, heat exchangers, reactor vessels, and shielding structures, as well as secondary-side components. Thermoelectric generators are solid-state devices capable of converting heat directly into electricity. They are commercially available technology. They are compact, have no moving parts, are silent, and have excellent reliability. The key components to the sensor package include a thermoelectric generator (TEG), microcontroller, signal processing, and a wireless radio package, environmental hardening to survive radiation, flooding, vibration, mechanical shock (explosions), corrosion, and excessive temperature. The energy harvested from the intrinsic heat of reactor components can be then made available to power sensors, provide bi-directional communication, recharge batteries

  11. AC-Induced Bias Potential Effect on Corrosion of Steels

    DTIC Science & Technology

    2009-02-05

    induction, variable conduction Experimental Setup Super- martensitic stainless steel composition Analysis: C Mn Si Cr Ni Mo Cu N Typical 13 Cr ɘ.01 0.6... stainless steel used in pipelines. •Low carbon (ɘ.01): allows the formation of a “soft” martensite that is more resistant than standard martensitic ...Proposed AC Corrosion Models  AC Simulated Corrosion testing  Stainless steel pipe and coating  Cathodic protection  Experimental Setup  Preliminary

  12. Corrosion Embrittlement of Duralumin III Effect of the Previous Treatment of Sheet Material on the Susceptibility to This Type of Corrosion

    NASA Technical Reports Server (NTRS)

    Rawdon, Henry S

    1928-01-01

    As a result of testing, it was determined that control of the rate of quenching and the avoidance of accelerated aging by heating are the only means of modifying duralumin itself so as to minimize the intercrystalline form of corrosive attack. It is so simple a means that it should be adopted even though it may not completely prevent, but only reduce, this form of corrosive attack. By so doing, the need for protection of the surface is less urgent.

  13. Galvanic coupling between D6AC steel, 6061-T6 aluminum, Inconel 718 and graphite-epoxy composite material: Corrosion occurrence and prevention

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Higgins, R. H.

    1983-01-01

    The effects of galvanic coupling between D6AC steel, 6061-T6 aluminum, Inconel 718, and graphite-epoxy composite material (G/E) in 3.5% NaCl were studied. Measurements of corrosion potentials, galvanic currents and corrosion rates of the bare metals using weight-loss methods served to establish the need for corrosion protection in cases where D6AC steel and 6061-T6 aluminum are galvanically coupled to G/E in salt water while Inconel 718 was shown to be compatible with G/E. Six tests were made to study corrosion protective methods for eliminating galvanic corrosion in the cases of D6AC steel and 6061-T6 aluminum coupled to G/E. These results indicate that, when the G/E is completely coated with paint or a paint/polyurethane resin combination, satisfactory protection of the D6AC steel is achieved with either a coat of zinc-rich primer or a primer/topcoat combination. Likewise, satisfactory corrosion protection of the aluminum is achieved by coating it with an epoxy coating system.

  14. Nanostructured carbon materials based electrothermal air pump actuators

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Liu, Luqi; Kuang, Jun; Dai, Zhaohe; Han, Jinhua; Zhang, Zhong

    2014-05-01

    Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (<10 V), large generated stress (tens of MPa), high gravimetric density (tens of J kg-1), and short response time (few hundreds of milliseconds). Besides that, the pump actuators exhibited excellent stability under cyclic actuation tests. Among these actuators, a relatively larger actuation strain was obtained for the r-GO film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg-1, respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (~0.4 MPa).Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid

  15. Plasma actuators for bluff body flow control

    NASA Astrophysics Data System (ADS)

    Kozlov, Alexey V.

    The aerodynamic plasma actuators have shown to be efficient flow control devices in various applications. In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. This work is motivated by the need to reduce landing gear noise for commercial transport aircraft via an effective streamlining created by the actuators. The experiments are performed at Re D = 20,000...164,000. Circular cylinders in cross-flow are chosen for study since they represent a generic flow geometry that is similar in all essential aspects to a landing gear oleo or strut. The minimization of the unsteady flow separation from the models and associated large-scale wake vorticity by using actuators reduces the radiated aerodynamic noise. Using either steady or unsteady actuation at ReD = 25,000, Karman shedding is totally eliminated, turbulence levels in the wake decrease significantly and near-field sound pressure levels are reduced by 13.3 dB. Unsteady actuation at an excitation frequency of St D = 1 is found to be most effective. The unsteady actuation also has the advantage that total suppression of shedding is achieved for a duty cycle of only 25%. However, since unsteady actuation is associated with an unsteady body force and produces a tone at the actuation frequency, steady actuation is more suitable for noise control applications. Two actuation strategies are used at ReD = 82,000: spanwise and streamwise oriented actuators. Near field microphone measurements in an anechoic wind tunnel and detailed study of the near wake using LDA are presented in the study. Both spanwise and streamwise actuators give nearly the same noise reduction level of 11.2 dB and 14.2 dB, respectively, and similar changes in the wake velocity profiles. The contribution of the actuator induced noise is found to be small compared to the natural shedding

  16. Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel.

    PubMed

    Fayyad, Eman M; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali

    2016-10-20

    An anticorrosion coating film based on the formation of nanocomposite coating is reported in this study. The composite consisted of chitosan (green matrix), oleic acid, and graphene oxide (nano filler). The nanocomposite coating was arranged on the surface of carbon steel, and the corrosion resistance was monitored using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). Compared to the pure chitosan (CS) coating, the corrosion resistance of oleic acid-modified chitosan/graphene oxide film (CS/GO-OA) is increased by 100 folds. Since the well-dispersed smart grafted nanolayers delayed the penetration rate of corrosive species and thus maintained long term anticorrosive stability which is correlated with hydrophobicity and permeability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Stress corrosion cracking of an aluminum alloy used in external fixation devices.

    PubMed

    Cartner, Jacob L; Haggard, Warren O; Ong, Joo L; Bumgardner, Joel D

    2008-08-01

    Treatment for compound and/or comminuted fractures is frequently accomplished via external fixation. To achieve stability, the compositions of external fixators generally include aluminum alloy components due to their high strength-to-weight ratios. These alloys are particularly susceptible to corrosion in chloride environments. There have been several clinical cases of fixator failure in which corrosion was cited as a potential mechanism. The aim of this study was to evaluate the effects of physiological environments on the corrosion susceptibility of aluminum 7075-T6, since it is used in orthopedic external fixation devices. Electrochemical corrosion curves and alternate immersion stress corrosion cracking tests indicated aluminum 7075-T6 is susceptible to corrosive attack when placed in physiological environments. Pit initiated stress corrosion cracking was the primary form of alloy corrosion, and subsequent fracture, in this study. Anodization of the alloy provided a protective layer, but also caused a decrease in passivity ranges. These data suggest that once the anodization layer is disrupted, accelerated corrosion processes occur. (c) 2007 Wiley Periodicals, Inc.

  18. Micro-mechanics of ionic electroactive polymer actuators

    NASA Astrophysics Data System (ADS)

    Punning, Andres; Põldsalu, Inga; Kaasik, Friedrich; Vunder, Veiko; Aabloo, Alvo

    2015-04-01

    Commonly, modeling of the bending behavior of the ionic electroactive polymer (IEAP) actuators is based on the classical mechanics of cantilever beam. It is acknowledged, that the actuation of the ionic electroactive polymer (IEAP) actuators is symmetric about the centroid - the convex side of the actuator is expanding and the concave side is contracting for exactly the same amount, while the thickness of the actuator remains invariant. Actuating the IEAP actuators and sensors under scanning electron microscope (SEM), in situ, reveals that for some types of them this approach is incorrect. Comparison of the SEM micrographs using the Digital Image Correction (DIC) method results with the precise strain distribution of the IEAP actuators in two directions: in the axial direction, and in the direction of thickness. This information, in turn, points to the physical processes taking place within the electrodes as well as membrane of the trilayer laminate of sub-millimeter thickness. Comparison of the EAP materials, engaged as an actuator as well as a sensor, reveals considerable differences between the micro-mechanics of the two modes.

  19. The Corrosion Behavior of Stainless Steel 316L in Novel Quaternary Eutectic Molten Salt System

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Mantha, Divakar; Reddy, Ramana G.

    2017-03-01

    In this article, the corrosion behavior of stainless steel 316L in a low melting point novel LiNO3-NaNO3-KNO3-NaNO2 eutectic salt mixture was investigated at 695 K which is considered as thermally stable temperature using electrochemical and isothermal dipping methods. The passive region in the anodic polarization curve indicates the formation of protective oxides layer on the sample surface. After isothermal dipping corrosion experiments, samples were analyzed using SEM and XRD to determine the topography, corrosion products, and scale growth mechanisms. It was found that after long-term immersion in the LiNO3-NaNO3-KNO3-NaNO2 molten salt, LiFeO2, LiFe5O8, Fe3O4, (Fe, Cr)3O4 and (Fe, Ni)3O4 oxides were formed. Among these corrosion products, LiFeO2 formed a dense and protective layer which prevents the SS 316L from severe corrosion.

  20. Galvanic Protection Of 2219 Al By Al/Li Powder

    NASA Technical Reports Server (NTRS)

    Daech, Alfred

    1995-01-01

    Coatings consisting of aluminum/lithium powders incorporated into acrylic resin found to protect panels of 2219 aluminum from corrosion by salt spray better than coating consisting of 2219 aluminum in same acrylic resin. Exact mechanism by which aluminum/lithium coatings protect against corrosion unknown, although galvanic mechanism suspected. These coatings (instead of chromium) applied to fasteners and bars to provide cathodic protection, both with and without impressed electrical current.

  1. Shop primer as part of the corrosion protective coating for submerged steel structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjordal, M.; Steinsmo, U.

    In Norwegian workshops the standard pre-treatment procedures for steel structures intended for sub-sea use, normally include removal of shop primer by blast cleaning to Sa 2 1/2 before application of corrosion protective coatings. This is also stated in the Norwegian offshore standard NORSOK. Omitting this stage in fabrication will represent large reductions in both time consumption and costs, and reduce the volume of waste from the blast cleaning. This report presents results from investigations of how a shop primer will influence on the coating properties. The aim of the investigation was to test whether the systems are good enough ifmore » the shop primer is left on the surface. Two different zinc silicate shop primers have been included in the investigation. As protective coatings the authors have used three different epoxy mastic systems with Al pigments. In addition to panels with original shop primer, they have also tested shop primed panels pre-treated in various ways, such as heated, corroded and blast cleaned to various degrees before coating. The coatings have been tested in the ASTM-G8 121 test and in a long term test in sea water polarized with a Zn anode. They have found that coatings including the zinc silicate shop primer are more susceptible to cathodic disbonding than the coating applied directly on blast cleaned steel. It is however possible to meet the NORSOK criteria with a zinc silicate shop primer as first coat.« less

  2. Synthesis of hybrid sol-gel coatings for corrosion protection of we54-ae magnesium alloy

    NASA Astrophysics Data System (ADS)

    Hernández-Barrios, C. A.; Duarte, N. Z.; Hernández, L. M.; Peña, D. Y.; Coy, A. E.; Viejo, F.

    2013-11-01

    The present work shows some preliminary results related to the synthesis, characterization and corrosion evaluation of different hybrid sol-gel coatings applied on the WE54-AE magnesium alloy attending to the two experimental variables, i.e. the precursors ratio and the aging time, which may affect the quality and the electrochemical properties of the coatings resultant. The experimental results confirmed that, under some specific experimental conditions, it was possible to obtain homogeneous and uniform, porous coatings with good corrosion resistance that also permit to accommodate corrosion inhibitors.

  3. Robotic Arm Actuated by Electroactie Polymers

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Xue, T.; Shaninpoor, M.; Simpson, J. O.; Smith, J.

    1998-01-01

    Actuators are used for many planetary and space applications. To meet the NASA goal to reduce the actuators size, mass, cost and power consumption, electroactie polymers (EAP) are being developed to induce large bending and longitudinal actuation strains.

  4. Low-Shock Pyrotechnic Actuator

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.

    1984-01-01

    Miniature 1-ampere, 1-watt pyrotechnic actuator enclosed in flexible metal bellows. Bellows confines outgassing products, and pyrotechnic shock reduction achieved by action of bellows, gas cushion within device, and minimum use of pyrotechnic material. Actuator inexpensive, compact, and lightweight.

  5. High-displacement spiral piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Mohammadi, F.; Kholkin, A. L.; Jadidian, B.; Safari, A.

    1999-10-01

    A high-displacement piezoelectric actuator, employing spiral geometry of a curved piezoelectric strip is described. The monolithic actuators are fabricated using a layered manufacturing technique, fused deposition of ceramics, which is capable of prototyping electroceramic components with complex shapes. The spiral actuators (2-3 cm in diameter) consisted of 4-5 turns of a lead zirconate titanate ceramic strip with an effective length up to 28 cm. The width was varied from 0.9 to 1.75 mm with a height of 3 mm. When driven by the electric field applied across the width of the spiral wall, the tip of the actuator was found to displace in both radial and tangential directions. The tangential displacement of the tip was about 210 μm under the field of 5 kV/cm. Both the displacement and resonant frequency of the spirals could be tailored by changing the effective length and wall width. The blocking force of the actuator in tangential direction was about 1 N under the field of 5 kV/cm. These properties are advantageous for high-displacement low-force applications where bimorph or monomorph actuators are currently employed.

  6. Influence of calcareous deposit on corrosion behavior of Q235 carbon steel with sulfate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Li, Xiaolong; Wang, Jiangwei; Xu, Weichen; Duan, Jizhou; Chen, Shougang; Hou, Baorong

    2017-12-01

    Cathodic protection is a very effective method to protect metals, which can form calcareous deposits on metal surface. Research on the interrelationship between fouling organism and calcareous deposits is very important but very limited, especially sulfate-reducing bacteria (SRB). SRB is a kind of very important fouling organism that causes microbial corrosion of metals. A study of the influence of calcareous deposit on corrosion behavior of Q235 carbon steel in SRB-containing culture medium was carried out using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface spectroscopy (EDS). The calcareous deposit was formed with good crystallinity and smooth surface under the gradient current density of -30 μA cm-2 in natural seawater for 72 h. Our results can help elucidate the formation of calcareous deposits and reveal the interrelationship between SRB and calcareous deposits under cathodic protection. The results indicate that the corrosion tendency of carbon steel was obviously affected by Sulfate-reducing Bacteria (SRB) metabolic activity and the calcareous deposit formed on the surface of carbon steel under cathodic protection was favourable to reduce the corrosion rate. Calcareous deposits can promote bacterial adhesion before biofilm formation. The results revealed the interaction between biofouling and calcareous deposits, and the anti-corrosion ability was enhanced by a kind of inorganic and organic composite membranes formed by biofilm and calcareous deposits.

  7. A two-way architectural actuator using NiTi SE wire and SME spring

    NASA Astrophysics Data System (ADS)

    Nematollahi, Mohammadreza; Mehrabi, Reza; Callejas, Miguel A.; Elahinia, Hedyeh; Elahinia, Mohammad

    2018-03-01

    This paper presents a bio-inspired continuously adapting architectural element, to enable a smart canopy that provides shade to buildings that need protection from sunlight. The smart actuator consists of two elements: one NiTi shape memory (SME) spring and one NiTi superelastic (SE) wire. The SE wire is deformed to a `U' shape and then the SME spring is attached to it. Due to the force of SE wire exerted on SME spring, the smart canopy is in its open position. When the environment's temperature increases, the actuator activates and shrinks the SME spring and hence it closes the canopy. In continues, when the temperature decreases at evening, the actuator inactive and SE wire will open the smart fabric. This unique activation provides different advantages like silent actuation, maintenance free, eco-friendly, and no or low energy consumption. Here, the conceptual design of the smart canopy actuator will be discussed. Then, a simulation study, using finite element method, is used to investigate components' behavior. The extracted material parameters are implemented in the subroutine, to simulate the behavior of the shape memory alloy elements. Simulation's results predict superelastic behavior for the SE wire and shape memory effect for the NiTi spring. For further studies, a prototype will be fabricated to confirm simulation's results, as well as performing some experimental tests.

  8. Corrosion Protection for Military Construction in the Middle East

    DTIC Science & Technology

    1985-09-01

    parts being inspected; and (6) reference standards are needed both for calibrating the equipment and characterizing flaws and defects . The need for...reference standard for that flaw or defect , the problem may go totally undetected by even a skilled operator. 3 OD. Knofel, Corrosion of Building...This, in turn, decreases the chance of paint defects caused by too high a surface alkalinity. Epoxy Coating If required by the manufacturer, the

  9. Environmental protection to 922K (1200 F) for titanium alloys

    NASA Technical Reports Server (NTRS)

    Groves, M. T.

    1973-01-01

    Evaluations are presented of potential coating systems for protection of titanium alloys from hot-salt stress-corrosion up to temperatures of 755 K (900 F) and from oxidation embrittlement up to temperature of 922 K (1200 F). Diffusion type coatings containing Si, Al, Cr, Ni or Fe as single coating elements or in various combinations were evaluated for oxidation protection, hot-salt stress-corrosion (HSSC) resistance, effects on tensile properties, fatigue properties, erosion resistance and ballistic impact resistance on an alpha and beta phase titanium alloy (Ti-6Al-2Sn-4Zr-2Mo). All of the coatings investigated demonstrated excellent oxidation protectiveness, but none of the coatings provided protection from hot-salt stress-corrosion. Experimental results indicated that both the aluminide and silicide types of coatings actually decreased the HSSC resistance of the substrate alloy. The types of coatings which have typically been used for oxidation protection of refractory metals and nickel base superalloys are not suitable for titanium alloys because they increase the susceptibility to hot-salt stress-corrosion, and that entirely new coating concepts must be developed for titanium alloy protection in advanced turbine engines.

  10. An electrochemical study of the corrosion behavior of primer coated 2219-T87 aluminum

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Higgins, R. H.

    1985-01-01

    The corrosion behavior for 2219-T87 aluminum coated with various primers, including those used for the external tank and solid rocket boosters of the Space Shuttle Transportation System, were investigated using electrochemical techniques. Corrosion potential time, polarization resistance time, electrical resistance time, and corrosion rate time measurements were all investigated. It was found that electrical resistance time and corrosion rate time measurement were most useful for studying the corrosion behavior of painted aluminum. Electrical resistance time determination give useful information concerning the porosity of paint films, while corrosion rate time curves give important information concerning overall corrosion rates and corrosion mechanisms. In general, the corrosion rate time curves all exhibited at least one peak during the 30 day test period, which was attributed, according to the proposed mechanisms, to the onset of the hydrogen evolution reaction and the beginning of destruction of the protective properties of the paint film.

  11. Research on A3 steel corrosion behavior of basic magnesium sulfate cement

    NASA Astrophysics Data System (ADS)

    Xing, Sainan; Wu, Chengyou; Yu, Hongfa; Jiang, Ningshan; Zhang, Wuyu

    2017-11-01

    In this paper, Tafel polarization technique is used to study the corrosion behavior of A3 steel basic magnesium sulfate, and then analyzing the ratio of raw materials cement, nitrites rust inhibitor and wet-dry cycle of basic magnesium sulfate corrosion of reinforced influence, and the steel corrosion behavior of basic magnesium sulfate compared with magnesium oxychloride cement and Portland cement. The results show that: the higher MgO/MgSO4 mole ratio will reduce the corrosion rate of steel; Too high and too low H2O/MgSO4 mole ratio may speed up the reinforcement corrosion effect; Adding a small amount of nitrite rust and corrosion inhibitor, not only can obviously reduce the alkali type magnesium sulfate in the early hydration of cement steel bar corrosion rate, but also can significantly reduce dry-wet circulation under the action of alkali type magnesium sulfate cement corrosion of reinforcement effect. Basic magnesium sulfate cement has excellent ability to protect reinforced, its long-term corrosion of reinforcement effect and was equal to that of Portland cement. Basic magnesium sulfate corrosion of reinforced is far below the level in the MOC in the case.

  12. A Model of the THUNDER Actuator

    NASA Technical Reports Server (NTRS)

    Curtis, Alan R. D.

    1997-01-01

    A THUNDER actuator is a composite of three thin layers, a metal base, a piezoelectric wafer and a metal top cover, bonded together under pressure and at high temperature with the LaRC SI polyimid adhesive. When a voltage is applied between the metal layers across the PZT the actuator will bend and can generate a force. This document develops and describes an analytical model the transduction properties of THUNDER actuators. The model development is divided into three sections. First, a static model is described that relates internal stresses and strains and external displacements to the thermal pre-stress and applied voltage. Second, a dynamic energy based model is described that allows calculation of the resonance frequencies, developed force and electrical input impedance. Finally, a fully coupled electro-mechanical transducer model is described. The model development proceeds by assuming that both the thermal pre-stress and the piezoelectric actuation cause the actuator to deform in a pure bend in a single plane. It is useful to think of this as a two step process, the actuator is held flat, differential stresses induce a bending moment, the actuator is released and it bends. The thermal pre-stress is caused by the different amounts that the constituent layers shrink due to their different coefficients of thermal expansion. The adhesive between layers sets at a high temperature and as the actuator cools, the metal layers shrink more than the PZT. The PZT layer is put into compression while the metal layers are in tension. The piezoelectric actuation has a similar effect. An applied voltage causes the PZT layer to strain, which in turn strains the two metal layers. If the PZT layer expands it will put the metal layers into tension and PZT layer into compression. In both cases, if shear force effects are neglected, the actuator assembly will experience a uniform in-plane strain. As the materials each have a different elastic modulus, different stresses will

  13. Experimental Investigation of the Effect of the Driving Voltage of an Electroadhesion Actuator.

    PubMed

    Koh, Keng Huat; Sreekumar, M; Ponnambalam, S G

    2014-06-25

    This paper investigates the effect of driving voltage on the attachment force of an electroadhesion actuator, as the existing literature on the saturation of the adhesive force at a higher electric field is incomplete. A new type of electroadhesion actuator using normally available materials, such as aluminum foil, PVC tape and a silicone rubber sheet used for keyboard protection, has been developed with a simple layered structure that is capable of developing adhesive force consistently. The developed actuator is subjected to the experiment for the evaluation of various test surfaces; aluminum, brick, ceramic, concrete and glass. The driving high voltage is varied in steps to determine the characteristics of the output holding force. Results show a quadratic relation between F (adhesion force) and V (driving voltage) within the 2 kV range. After this range, the F - V responses consistently show a saturation trend at high electric fields. Next, the concept of the leakage current that can occur in the dielectric material and the corona discharge through air has been introduced. Results show that the voltage level, which corresponds to the beginning of the supply current, matches well with the beginning of the force saturation. With the confirmation of this hypothesis, a working model for electroadhesion actuation is proposed. Based on the experimental results, it is proposed that such a kind of actuator can be driven within a range of optimum high voltage to remain electrically efficient. This practice is recommended for the future design, development and characterization of electroadhesion actuators for robotic applications.

  14. Experimental Investigation of the Effect of the Driving Voltage of an Electroadhesion Actuator

    PubMed Central

    Koh, Keng Huat; Sreekumar, M.; Ponnambalam, S. G.

    2014-01-01

    This paper investigates the effect of driving voltage on the attachment force of an electroadhesion actuator, as the existing literature on the saturation of the adhesive force at a higher electric field is incomplete. A new type of electroadhesion actuator using normally available materials, such as aluminum foil, PVC tape and a silicone rubber sheet used for keyboard protection, has been developed with a simple layered structure that is capable of developing adhesive force consistently. The developed actuator is subjected to the experiment for the evaluation of various test surfaces; aluminum, brick, ceramic, concrete and glass. The driving high voltage is varied in steps to determine the characteristics of the output holding force. Results show a quadratic relation between F (adhesion force) and V (driving voltage) within the 2 kV range. After this range, the F-V responses consistently show a saturation trend at high electric fields. Next, the concept of the leakage current that can occur in the dielectric material and the corona discharge through air has been introduced. Results show that the voltage level, which corresponds to the beginning of the supply current, matches well with the beginning of the force saturation. With the confirmation of this hypothesis, a working model for electroadhesion actuation is proposed. Based on the experimental results, it is proposed that such a kind of actuator can be driven within a range of optimum high voltage to remain electrically efficient. This practice is recommended for the future design, development and characterization of electroadhesion actuators for robotic applications. PMID:28788114

  15. Mirrors Containing Biomimetic Shape-Control Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mouroulis, Pantazis; Bao, Xiaoqi; Sherrit, Stewart

    2003-01-01

    Curved mirrors of a proposed type would comprise lightweight sheets or films containing integral, biologically inspired actuators for controlling their surface figures. These mirrors could be useful in such applications as collection of solar energy, focusing of radio beams, and (provided sufficient precision could be achieved) imaging. These mirrors were originally intended for use in outer space, but it should also be possible to develop terrestrial versions. Several prior NASA Tech Briefs articles have described a variety of approaches to the design of curved, lightweight mirrors containing integral shape-control actuators. The primary distinction between the present approach and the prior approaches lies in the actuator design concept, which involves shapes and movements reminiscent of those of a variety of small, multi-armed animals. The shape and movement of an actuator of this type can also be characterized as reminiscent of that of an umbrella. This concept can be further characterized as a derivative of that of multifinger grippers, the fingers of which are bimorph bending actuators (see Figure 1). The fingers of such actuators can be strips containing any of a variety of materials that have been investigated for use as actuators, including such electroactive polymers as ionomeric polymer/metal composites (IPMCs), ferroelectric polymers, and grafted elastomers. A mirror according to this proposal would be made from a sheet of one of the actuator composites mentioned above. The design would involve many variables, including the pre-curvature and stiffness of the mirror sheet, the required precision of figure control, the required range of variation in focal length (see Figure 2), the required precision of figure control for imaging or non-imaging use, the bending and twisting moments needed to effect the required deformations, and voltage-tomoment coefficients of the actuators, and the voltages accordingly required for actuation. A typical design would call

  16. Corrosion

    ERIC Educational Resources Information Center

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  17. Biomimetic photo-actuation: progress and challenges

    NASA Astrophysics Data System (ADS)

    Dicker, Michael P. M.; Weaver, Paul M.; Rossiter, Jonathan M.; Bond, Ian P.; Faul, Charl F. J.

    2016-04-01

    Photo-actuation, such as that observed in the reversible sun-tracking movements of heliotropic plants, is produced by a complex, yet elegant series of processes. In the heliotropic leaf movements of the Cornish Mallow, photo-actuation involves the generation, transport and manipulation of chemical signals from a distributed network of sensors in the leaf veins to a specialized osmosis driven actuation region in the leaf stem. It is theorized that such an arrangement is both efficient in terms of materials use and operational energy conversion, as well as being highly robust. We concern ourselves with understanding and mimicking these light driven, chemically controlled actuating systems with the aim of generating intelligent structures which share the properties of efficiency and robustness that are so important to survival in Nature. In this work we present recent progress in mimicking these photo-actuating systems through remote light exposure of a metastable state photoacid and the resulting signal and energy transfer through solution to a pH-responsive hydrogel actuator. Reversible actuation strains of 20% were achieved from this arrangement, with modelling then employed to reveal the critical influence hydrogel pKa has on this result. Although the strong actuation achieved highlights the progress that has been made in replicating the principles of biomimetic photo-actuation, challenges such as photoacid degradation were also revealed. It is anticipated that current work can directly lead to the development of high-performance and low-cost solartrackers for increased photovoltaic energy capture and to the creation of new types of intelligent structures employing chemical control systems.

  18. Hanford Double Shell Waste Tank Corrosion Studies - Final Report FY2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuentes, R. E.; Wyrwas, R. B.

    2016-05-01

    During FY15, SRNL performed corrosion testing that supported Washington River Protection Solutions (WRPS) with their double shell tank (DST) integrity program. The testing investigated six concerns including, 1) the possibility of corrosion of the exterior of the secondary tank wall; 2) the effect of ammonia on vapor space corrosion (VSC) above waste simulants; 3) the determination of the minimum required nitrite and hydroxide concentrations that prevent pitting in concentrated nitrate solutions (i.e., waste buffering); 4) the susceptibility to liquid air interface (LAI) corrosion at proposed stress corrosion cracking (SCC) inhibitor concentrations; 5) the susceptibility of carbon steel to pitting inmore » dilute solutions that contain significant quantities of chloride and sulfate; and 6) the effect of different heats of A537 carbon steel on the corrosion response. For task 1, 2, and 4, the effect of heat treating and/ or welding of the materials was also investigated.« less

  19. The Corrosion of High Performance Steel in Adverse Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Desmond C.

    The corrosion products that have formed on weathering steel bridges exposed to different weather conditions in the United States have been evaluated. They have been analyzed by spectroscopic techniques to determine the relationship between protective and non-protective rust coatings, and their relationship to the exposure conditions. Bridges constructed recently using High Performance Steel, as well as older bridges built with Type A588B weathering steel, were evaluated for corrosion performance of the rust coatings. In locations where the steel is subjected to regular wet-dry cycling, where the surface is wet for less than about 20% of the time, a protective patinamore » starts to form after a few months exposure, and continues to an adherent, impervious coating after a decade. The protective patina is characterized by the formation of only goethite and lepidocrocite. The goethite makes up about 80% of the rust, and itself consists of a nanophase component, < 15 nm, making up about 70% of the goethite. The nanophase goethite is basically undetected by X-ray diffraction. In the presence of high time-of-wetness, >40%, or infrequent drying cycles (regions close to waterways, fog or having high humidity), the weathering steel forms a rust coating that consists of a large amount of maghemite, and goethite that contains very little of the nanophase component. The rust coating ex-foliates from the steel and is not protective. Under exposure conditions in which chlorides are deposited onto the weathering steel surface (marine or de-icing salt locations), the protective patina also does not form. Instead, the rust coating consists of a large fraction of akaganeite that forms at the expense of the lepidocrocite and nanophase goethite. The bridges exposed to high chloride concentrations, 1.5 wt%, and therefore having no protective patina, have corrosion rates measured to be 6 times larger than expected for weathering steel with the protective patina.« less

  20. Piezoelectric Actuator/Sensor Technology at Rockwell

    NASA Technical Reports Server (NTRS)

    Neurgaonkar, Ratnakar R.

    1996-01-01

    We describe the state-of-the art of piezoelectric materials based on perovskite and tungsten bronze families for sensor, actuator and smart structure applications. The microstructural defects in these materials have been eliminated to a large extent and the resulting materials exhibit exceedingly high performance for various applications. The performance of Rockwell actuators/sensors is at least 3 times better than commercially available products. These high performance actuators are being incorporated into various applications including, DOD, NASA and commercial. The multilayer actuator stacks fabricated from our piezoceramics are advantageous for sensing and high capacitance applications. In this presentation, we will describe the use of our high performance piezo-ceramics for actuators and sensors, including multilayer stacks and composite structures.