Sample records for acute brain damage

  1. Neglect severity after left and right brain damage.

    PubMed

    Suchan, Julia; Rorden, Chris; Karnath, Hans-Otto

    2012-05-01

    While unilateral spatial neglect after left brain damage is undoubtedly less common than spatial neglect after a right hemisphere lesion, it is also assumed to be less severe. Here we directly test this latter hypothesis using a continuous measure of neglect severity: the so-called Center of Cancellation (CoC). Rorden and Karnath (2010) recently validated this index for right brain damaged neglect patients. A first aim of the present study was to evaluate this new measure for spatial neglect after left brain damage. In a group of 48 left-sided stroke patients with and without neglect, a score greater than -0.086 on the Bells Test and greater than -0.024 on the Letter Cancellation Task turned out to indicate neglect behavior for acute left brain damaged patients. A second aim was to directly compare the severity of spatial neglect after left versus right brain injury by using the new CoC measure. While neglect is less frequent following left than right hemisphere injury, we found that when this symptom occurs it is of similar severity in acute left brain injury as in patients after acute right brain injury. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Metyrapone prevents acute glucose hypermetabolism and short-term brain damage induced by intrahippocampal administration of 4-aminopyridine in rats.

    PubMed

    García-García, Luis; Fernández de la Rosa, Rubén; Delgado, Mercedes; Silván, Ágata; Bascuñana, Pablo; Bankstahl, Jens P; Gomez, Francisca; Pozo, Miguel A

    2018-02-01

    Intracerebral administration of the potassium channel blocker 4-aminopyridine (4-AP) triggers neuronal depolarization and intense acute seizure activity followed by neuronal damage. We have recently shown that, in the lithium-pilocarpine rat model of status epilepticus (SE), a single administration of metyrapone, an inhibitor of the 11β-hydroxylase enzyme, had protective properties of preventive nature against signs of brain damage and neuroinflammation. Herein, our aim was to investigate to which extent, pretreatment with metyrapone (150 mg/kg, i.p.) was also able to prevent eventual changes in the acute brain metabolism and short-term neuronal damage induced by intrahippocampal injection of 4-AP (7 μg/5 μl). To this end, regional brain metabolism was assessed by 2-deoxy-2-[ 18 F]fluoro-d-glucose ([ 18 F]FDG) positron emission tomography (PET) during the ictal period. Three days later, markers of neuronal death and hippocampal integrity and apoptosis (Nissl staining, NeuN and active caspase-3 immunohistochemistry), neurodegeneration (Fluoro-Jade C labeling), astrogliosis (glial fibrillary acidic protein (GFAP) immunohistochemistry) and microglia-mediated neuroinflammation (in vitro [ 18 F]GE180 autoradiography) were evaluated. 4-AP administration acutely triggered marked brain hypermetabolism within and around the site of injection as well as short-term signs of brain damage and inflammation. Most important, metyrapone pretreatment was able to reduce ictal hypermetabolism as well as all the markers of brain damage except microglia-mediated neuroinflammation. Overall, our study corroborates the neuroprotective effects of metyrapone against multiple signs of brain damage caused by seizures triggered by 4-AP. Ultimately, our data add up to the consistent protective effect of metyrapone pretreatment reported in other models of neurological disorders of different etiology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Leukotriene-mediated neuroinflammation, toxic brain damage, and neurodegeneration in acute methanol poisoning.

    PubMed

    Zakharov, Sergey; Kotikova, Katerina; Nurieva, Olga; Hlusicka, Jiri; Kacer, Petr; Urban, Pavel; Vaneckova, Manuela; Seidl, Zdenek; Diblik, Pavel; Kuthan, Pavel; Navratil, Tomas; Pelclova, Daniela

    2017-04-01

    The role of neuroinflammation in methanol-induced toxic brain damage has not been studied. We studied acute concentrations and the dynamics of leukotrienes (LT) in serum in hospitalized patients with acute methanol poisoning and in survivors. Series of acute cysteinyl-LT and LTB4 concentration measurements were performed in 28/101 hospitalized patients (mean observation time: 88 ± 20 h). In 36 survivors, control LT measurements were performed 2 years after discharge. The acute maximum (C max ) LT concentrations were higher than concentrations in survivors: C max for LTC4 was 80.7 ± 5.6 versus 47.9 ± 4.5 pg/mL; for LTD4, 51.0 ± 6.6 versus 23.1 ± 2.1 pg/mL; for LTE4, 64.2 ± 6.0 versus 26.2 ± 3.9 pg/mL; for LTB4, 59.8 ± 6.2 versus 27.2 ± 1.4 pg/mL (all p < 0.001). The patients who survived had higher LT concentrations than those who died (all p < 0.01). Among survivors, patients with CNS sequelae had lower LTE4 and LTB4 than did those without sequelae (both p < 0.05). The LT concentrations increased at a rate of 0.4-0.5 pg/mL/h and peaked 4-5 days after admission. The patients with better outcomes had higher cys-LTs (all p < 0.01) and LTB4 (p < 0.05). More severely poisoned patients had lower acute LT concentrations than those with minor acidemia. The follow-up LT concentrations in survivors with and without CNS sequelae did not differ (all p > 0.05). The mean decrease in LT concentration was 30.9 ± 9.0 pg/mL for LTC4, 26.3 ± 8.6 pg/mL for LTD4, 37.3 ± 6.4 pg/mL for LTE4, and 32.0 ± 8.8 pg/mL for LTB4. Our findings suggest that leukotriene-mediated neuroinflammation may play an important role in the mechanisms of toxic brain damage in acute methanol poisoning in humans. Acute elevation of LT concentrations was moderate, transitory, and was not followed by chronic neuroinflammation in survivors.

  4. Edaravone attenuates brain damage in rats after acute CO poisoning through inhibiting apoptosis and oxidative stress.

    PubMed

    Li, Qin; Bi, Ming Jun; Bi, Wei Kang; Kang, Hai; Yan, Le Jing; Guo, Yun-Liang

    2016-03-01

    Acute carbon monoxide (CO) poisoning is the most common cause of death from poisoning all over the world and may result in neuropathologic and neurophysiologic changes. Acute brain damage and delayed encephalopathy are the most serious complication, yet their pathogenesis is poorly understood. The present study aimed to evaluate the neuroprotective effects of Edaravone against apoptosis and oxidative stress after acute CO poisoning. The rat model of CO poisoning was established in a hyperbaric oxygen chamber by exposed to CO. Ultrastructure changes were observed by transmission electron microscopy (TEM). TUNEL stain was used to assess apoptosis. Immunohistochemistry and immunofluorescence double stain were used to evaluate the expression levels of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) protein and their relationship. By dynamically monitored the carboxyhemoglobin (HbCO) level in blood, we successfully established rat model of severe CO poisoning. Ultrastructure changes, including chromatin condensation, cytoplasm dissolution, vacuoles formation, nucleus membrane and cell organelles decomposition, could be observed after CO poisoning. Edaravone could improve the ultrastructure damage. CO poisoning could induce apoptosis. Apoptotic cells were widely distributed in cortex, striatum and hippocampus. Edaravone treatment attenuated neuronal apoptosis as compared with the poisoning group (P < 0.01). Basal expressions of HO-1 and Nrf-2 proteins were found in normal brain tissue. CO poisoning could activate HO-1/Nrf-2 pathway, start oxidative stress response. After the administration of Edaravone, the expression of HO-1 and Nrf-2 significantly increased (P < 0.01). These findings suggest that Edaravone may inhibit apoptosis, activate the Keapl-Nrf/ARE pathway, and thus improve the ultrastructure damage and neurophysiologic changes following acute CO poisoning. © 2014 Wiley Periodicals, Inc.

  5. Brain damage resembling acute necrotizing encephalopathy as a specific manifestation of haemophagocytic lymphohistiocytosis - induced by hypersensitivity.

    PubMed

    Dai, Dongling; Wen, Feiqiu; Liu, Sixi; Zhou, Shaoming

    2016-08-31

    Both haemophagocytic lymphohistiocytosis and acute necrotizing encephalopathy are life-threatening condition. It presents major diagnostic difficulties, since it may have a diversity in clinical picture and with many conditions leading to the same clinical presentation. So it is key important to understand the disorders. We report a pediatric case of haemophagocytic lymphohistiocytosis with specific presentation which predominantly featured as acute necrotizing encephalopathy of childhood. We discuss the diagnosis and differential diagnosis, and speculate the etiology of haemophagocytic lymphohistiocytosis is due to hypersensitivity. Haemophagocytic lymphohistiocytosis and brain damage in this case may be induced by hypersensitivity, which have good clinical outcome if diagnosed and treated early.

  6. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    PubMed Central

    Millán, Mónica; Sobrino, Tomás; Arenillas, Juan Francisco; Rodríguez-Yáñez, Manuel; García, María; Nombela, Florentino; Castellanos, Mar; de la Ossa, Natalia Pérez; Cuadras, Patricia; Serena, Joaquín; Castillo, José; Dávalos, Antoni

    2008-01-01

    Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA. Methods: Serum levels of ferritin (as index of increased cellular iron stores), glutamate, interleukin-6, matrix metalloproteinase-9 and cellular fibronectin were determined in 134 patients treated with i.v. t-PA within 3 hours from stroke onset in blood samples obtained before t-PA treatment, at 24 and 72 hours. Results: Serum ferritin levels before t-PA infusion correlated to glutamate (r = 0.59, p < 0.001) and interleukin-6 (r = 0.55, p <0.001) levels at baseline, and with glutamate (r = 0.57,p <0.001), interleukin-6 (r = 0.49,p <0.001), metalloproteinase-9 (r = 0.23, p = 0.007) and cellular fibronectin (r = 0.27, p = 0.002) levels measured at 24 hours and glutamate (r = 0.415, p < 0.001), interleukin-6 (r = 0.359, p < 0.001) and metalloproteinase-9 (r = 0.261, p = 0.004) at 72 hours. The association between ferritin and glutamate levels remained after adjustment for confounding factors in generalized linear models. Conclusions: Brain damage associated with increased iron stores in acute ischemic stroke patients treated with iv. tPA may be mediated by mechanisms linked to excitotoxic damage. The role of inflammation, blood brain barrier disruption and oxidative stress in this condition needs further research. PMID:19096131

  7. Neuroinflammation markers and methyl alcohol induced toxic brain damage.

    PubMed

    Zakharov, Sergey; Hlusicka, Jiri; Nurieva, Olga; Kotikova, Katerina; Lischkova, Lucie; Kacer, Petr; Kacerova, Tereza; Urban, Pavel; Vaneckova, Manuela; Seidl, Zdenek; Diblik, Pavel; Kuthan, Pavel; Heissigerova, Jarmila; Lesovsky, Jiri; Rulisek, Jan; Vojtova, Lucie; Hubacek, Jaroslav A; Navratil, Tomas

    2018-05-04

    Methyl alcohol intoxication is a global problem with high mortality and long-term visual sequelae and severe brain damage in survivors. The role of neuroinflammation in the mechanisms of methyl alcohol-induced toxic brain damage has not been well studied. We measured the acute concentrations and dynamics of lipoxins LxA4 and LxB4 and the interleukins IL-4, IL-5, IL-9, IL-10, and IL-13 in the serum of patients treated with methyl alcohol poisoning and the follow-up concentrations in survivors two years after discharge from the hospital. A series of acute measurements was performed in 28 hospitalized patients (mean age 54.2 ± 5.2 years, mean observation time 88 ± 20 h) and the follow-up measurements were performed in 36 subjects who survived poisoning (including 12/28 survivors from the acute group). Visual evoked potentials (VEP) and magnetic resonance imaging of the brain (MRI) were performed to detect long-term visual and brain sequelae of intoxication. The acute concentrations of inflammatory mediators were higher than the follow-up concentrations: LxA4, 62.0 ± 6.0 vs. 30.0 ± 5.0 pg/mL; LxB4, 64.0 ± 7.0 vs. 34.0 ± 4.0 pg/mL; IL-4, 29.0 ± 4.0 vs. 15.0 ± 1.0 pg/mL; IL-5, 30.0 ± 4.0 vs. 13.0 ± 1.0 pg/mL; IL-9, 30.0 ± 4.0 vs. 13.0 ± 1.0 pg/mL; IL-10, 38.0 ± 5.0 vs. 16.0 ± 1.0 pg/mL; IL-13, 35.0 ± 4.0 vs. 14.0 ± 1.0 pg/mL (all p < 0.001). The patients with higher follow-up IL-5 concentration had prolonged latency P1 (r = 0.413; p = 0.033) and lower amplitude N1P1 (r = -0.498; p = 0.010) of VEP. The higher follow-up IL-10 concentration was associated with MRI signs of brain necrotic damage (r = 0.533; p = 0.001) and brain hemorrhage (r = 0.396; p = 0.020). Our findings suggest that neuroinflammation plays an important role in the mechanisms of toxic brain damage in acute methyl alcohol intoxication. Copyright © 2018 Elsevier B.V. All

  8. Brain damage in fatal non-missile head injury without high intracranial pressure.

    PubMed Central

    Graham, D I; Lawrence, A E; Adams, J H; Doyle, D; McLellan, D R

    1988-01-01

    As part of a comprehensive study of brain damage in 635 fatal non-missile head injuries, the type and prevalence of brain damage occurring in the absence of high intracranial pressure were analysed. Of 71 such cases, 53 sustained their injury as a result of a road traffic accident; only 25 experienced a lucid interval. Thirty eight had a fractured skull, a mean total contusion index of 12.9 and diffuse axonal injury in 29: severe to moderate ischaemic damage was present in the cerebral cortex in 25, brain swelling in 13, and acute bacterial meningitis in nine. The prevalence and range of brain damage that may occur in the absence of high intracranial pressure are important to forensic pathologists in the medicolegal interpretation of cases of fatal head injury. PMID:3343378

  9. The evaluation of oxidative DNA damage in children with brain damage using 8-hydroxydeoxyguanosine levels.

    PubMed

    Fukuda, Miho; Yamauchi, Hiroshi; Yamamoto, Hitoshi; Aminaka, Masahito; Murakami, Hiroshi; Kamiyama, Noriko; Miyamoto, Yusaku; Koitabashi, Yasushi

    2008-02-01

    Urinary and cerebrospinal fluid (CSF) levels of 8-hydroxydeoxyguanosine (8-OHdG) were examined to estimate the relevance of oxidative stress in children with brain damage. Urinary 8-OHdG levels were measured in 51 children with various forms of central nervous system (CNS) disorders (status epilepticus [SE], hypoxic-ischemic encephalopathy [HIE], CNS infections and chronic epilepsy) and these levels were compared with those in 51 healthy children. CSF 8-OHdG levels were measured in 25 children with brain damage and in 19 control subjects. In addition, urinary and CSF levels of 8-OHdG were compared between the children with brain damage and healthy children. Finally, the relationship between urinary and CSF levels of 8-OHdG was determined in 12 children that provided both urinary and CSF samples. Our results showed that urinary 8-OHdG levels in children with HIE and CNS infections were higher than those of controls (Steel test; p < 0.05 and p < 0.05, respectively) and that CSF 8-OHdG levels were higher in children with SE, HIE, and CNS infections than in control subjects (Steel test; p < 0.01, 0.05 and 0.05, respectively). In addition, a positive correlation between the levels of urinary and CSF 8-OHdG was noted in the 12 children that provided both CSF and urinary samples (Spearman's rank correlation; rho = 0.82, p < 0.01). Further, we observed changes in the urinary 8-OHdG in a patient with HHV-6 encephalopathy, and found that the changes correlated well with the patient's clinical condition. These results suggest that oxidative stress is strongly related to acute brain damage in children, and that 8-OHdG is a useful marker of brain damage. Therefore, repeated measurements of urinary 8-OHdG may be helpful in estimating the extent of brain damage.

  10. Endotoxin-induced lung alveolar cell injury causes brain cell damage.

    PubMed

    Rodríguez-González, Raquel; Ramos-Nuez, Ángela; Martín-Barrasa, José Luis; López-Aguilar, Josefina; Baluja, Aurora; Álvarez, Julián; Rocco, Patricia R M; Pelosi, Paolo; Villar, Jesús

    2015-01-01

    Sepsis is the most common cause of acute respiratory distress syndrome, a severe lung inflammatory disorder with an elevated morbidity and mortality. Sepsis and acute respiratory distress syndrome involve the release of inflammatory mediators to the systemic circulation, propagating the cellular and molecular response and affecting distal organs, including the brain. Since it has been reported that sepsis and acute respiratory distress syndrome contribute to brain dysfunction, we investigated the brain-lung crosstalk using a combined experimental in vitro airway epithelial and brain cell injury model. Conditioned medium collected from an in vitro lipopolysaccharide-induced airway epithelial cell injury model using human A549 alveolar cells was subsequently added at increasing concentrations (no conditioned, 2%, 5%, 10%, 15%, 25%, and 50%) to a rat mixed brain cell culture containing both astrocytes and neurons. Samples from culture media and cells from mixed brain cultures were collected before treatment, and at 6 and 24 h for analysis. Conditioned medium at 15% significantly increased apoptosis in brain cell cultures 24 h after treatment, whereas 25% and 50% significantly increased both necrosis and apoptosis. Levels of brain damage markers S100 calcium binding protein B and neuron-specific enolase, interleukin-6, macrophage inflammatory protein-2, as well as matrix metalloproteinase-9 increased significantly after treating brain cells with ≥2% conditioned medium. Our findings demonstrated that human epithelial pulmonary cells stimulated with bacterial lipopolysaccharide release inflammatory mediators that are able to induce a translational clinically relevant and harmful response in brain cells. These results support a brain-lung crosstalk during sepsis and sepsis-induced acute respiratory distress syndrome. © 2014 by the Society for Experimental Biology and Medicine.

  11. Iron overload prevents oxidative damage to rat brain after chlorpromazine administration.

    PubMed

    Piloni, Natacha E; Caro, Andres A; Puntarulo, Susana

    2018-05-15

    The hypothesis tested is that Fe administration leads to a response in rat brain modulating the effects of later oxidative challenges such as chlorpromazine (CPZ) administration. Either a single dose (acute Fe overload) or 6 doses every second day (sub-chronic Fe overload) of 500 or 50 mg Fe-dextran/kg, respectively, were injected intraperitoneally (ip) to rats. A single dose of 10 mg CPZ/kg was injected ip 8 h after Fe treatment. DNA integrity was evaluated by quantitative PCR, lipid radical (LR · ) generation rate by electron paramagnetic resonance (EPR), and catalase (CAT) activity by UV spectrophotometry in isolated brains. The maximum increase in total Fe brain was detected after 6 or 2 h in the acute and sub-chronic Fe overload model, respectively. Mitochondrial and nuclear DNA integrity decreased after acute Fe overload at the time of maximal Fe content; the decrease in DNA integrity was lower after sub-chronic than after acute Fe overload. CPZ administration increased LR · generation rate in control rat brain after 1 and 2 h; however, CPZ administration after acute or sub-chronic Fe overload did not affect LR · generation rate. CPZ treatment did not affect CAT activity after 1-4 h neither in control rats nor in acute Fe-overloaded rats. However, CPZ administration to rats treated sub-chronically with Fe showed increased brain CAT activity after 2 or 4 h, as compared to control values. Fe supplementation prevented brain damage in both acute and sub-chronic models of Fe overload by selectively activating antioxidant pathways.

  12. Organophosphates induce distal axonal damage, but not brain oedema, by inactivating neuropathy target esterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, David J.; Li Yong; Chao, Moses V.

    2010-05-15

    Single doses of organophosphorus compounds (OP) which covalently inhibit neuropathy target esterase (NTE) can induce lower-limb paralysis and distal damage in long nerve axons. Clinical signs of neuropathy are evident 3 weeks post-OP dose in humans, cats and chickens. By contrast, clinical neuropathy in mice following acute dosing with OPs or any other toxic compound has never been reported. Moreover, dosing mice with ethyloctylphosphonofluoridate (EOPF) - an extremely potent NTE inhibitor - causes a different (subacute) neurotoxicity with brain oedema. These observations have raised the possibility that mice are intrinsically resistant to neuropathies induced by acute toxic insult, but maymore » incur brain oedema, rather than distal axonal damage, when NTE is inactivated. Here we provide the first report that hind-limb dysfunction and extensive axonal damage can occur in mice 3 weeks after acute dosing with a toxic compound, bromophenylacetylurea. Three weeks after acutely dosing mice with neuropathic OPs no clinical signs were observed, but distal lesions were present in the longest spinal sensory axons. Similar lesions were evident in undosed nestin-cre:NTEfl/fl mice in which NTE had been genetically-deleted from neural tissue. The extent of OP-induced axonal damage in mice was related to the duration of NTE inactivation and, as reported in chickens, was promoted by post-dosing with phenylmethanesulfonylfluoride. However, phenyldipentylphosphinate, another promoting compound in chickens, itself induced in mice lesions different from the neuropathic OP type. Finally, EOPF induced subacute neurotoxicity with brain oedema in both wild-type and nestin-cre:NTEfl/fl mice indicating that the molecular target for this effect is not neural NTE.« less

  13. The role of autophagy in acute brain injury: A state of flux?

    PubMed

    Wolf, Michael S; Bayır, Hülya; Kochanek, Patrick M; Clark, Robert S B

    2018-04-26

    It is established that increased autophagy is readily detectable after various types of acute brain injury, including trauma, focal and global cerebral ischemia. What remains controversial, however, is whether this heightened detection of autophagy in brain represents a homeostatic or pathologic process, or an epiphenomenon. The ultimate role of autophagy after acute brain injury likely depends upon: 1) the degree of brain injury and the overall autophagic burden; 2) the capacity of individual cell types to ramp up autophagic flux; 3) the local redox state and signaling of parallel cell death pathways; 4) the capacity to eliminate damage associated molecular patterns and toxic proteins and metabolites both intra- and extracellularly; and 5) the timing of the pro- or anti-autophagic intervention. In this review, we attempt to reconcile conflicting studies that support both a beneficial and detrimental role for autophagy in models of acute brain injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Blood Aggravates Histological and Functional Damage after Acute Subdural Hematoma in Rats.

    PubMed

    Jussen, Daniel; Krenzlin, Harald; Papaioannou, Chrysostomos; Ens, Swetlana; Kempski, Oliver; Alessandri, Beat

    2017-02-15

    Acute subdural hematoma (ASDH) is associated with high morbidity and mortality. Whether the volume effect of the hematoma and increase of intracranial pressure (ICP) or the local effect of blood are responsible for this severe pathophysiology is unclear. Therefore, we compared subdural infusion of autologous blood and paraffin oil in a rat model of ASDH. In a histological study, we investigated the effects on acute ICP, cerebral perfusion pressure (CPP), cerebral blood flow (CBF), tissue oxygen changes, and brain damage at 2, 24, and 96 h post-infusion. Inflammatory reaction was analyzed by immuno-staining for microglia (ionized calcium binding adaptor molecule 1 [Iba1]) and activated astrocytes (glial fibrillary acidic protein [GFAP]). Besides acute ICP and CBF changes, we investigated the development of behavior (neuroscore and beamwalk test) for up to 4 days after injury in a behavioral study. Despite comparably increased ICP, there was a more pronounced lesion growth in the blood infusion group during the first 96 h. Further, there was an increased peri-lesional immunoreactive area of Iba1 and GFAP 96 h post-infusion, primarily in the blood infusion group, whereas hippocampal damage was comparable in both infusion groups. In the behavioral evaluation, paraffin-infused animals showed a better recovery, compared with the blood infusion group. In conclusion, comparable acute time-course of ICP, CPP, and CBF clearly indicates that the differences in lesion size, inflammatory reaction, and behavioral deficits after blood- and paraffin oil-induced ASDH are partially due to blood constituents. Therefore, current data suggest that subdural hematomas should be completely removed as quickly as possible; decompression alone may not be sufficient to prevent secondary brain damage.

  15. Role of Interleukin-10 in Acute Brain Injuries

    PubMed Central

    Garcia, Joshua M.; Stillings, Stephanie A.; Leclerc, Jenna L.; Phillips, Harrison; Edwards, Nancy J.; Robicsek, Steven A.; Hoh, Brian L.; Blackburn, Spiros; Doré, Sylvain

    2017-01-01

    Interleukin-10 (IL-10) is an important anti-inflammatory cytokine expressed in response to brain injury, where it facilitates the resolution of inflammatory cascades, which if prolonged causes secondary brain damage. Here, we comprehensively review the current knowledge regarding the role of IL-10 in modulating outcomes following acute brain injury, including traumatic brain injury (TBI) and the various stroke subtypes. The vascular endothelium is closely tied to the pathophysiology of these neurological disorders and research has demonstrated clear vascular endothelial protective properties for IL-10. In vitro and in vivo models of ischemic stroke have convincingly directly and indirectly shown IL-10-mediated neuroprotection; although clinically, the role of IL-10 in predicting risk and outcomes is less clear. Comparatively, conclusive studies investigating the contribution of IL-10 in subarachnoid hemorrhage are lacking. Weak indirect evidence supporting the protective role of IL-10 in preclinical models of intracerebral hemorrhage exists; however, in the limited number of clinical studies, higher IL-10 levels seen post-ictus have been associated with worse outcomes. Similarly, preclinical TBI models have suggested a neuroprotective role for IL-10; although, controversy exists among the several clinical studies. In summary, while IL-10 is consistently elevated following acute brain injury, the effect of IL-10 appears to be pathology dependent, and preclinical and clinical studies often paradoxically yield opposite results. The pronounced and potent effects of IL-10 in the resolution of inflammation and inconsistency in the literature regarding the contribution of IL-10 in the setting of acute brain injury warrant further rigorously controlled and targeted investigation. PMID:28659854

  16. Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis.

    PubMed

    Singh, Shailender; Dallenga, Tobias; Winkler, Anne; Roemer, Shanu; Maruschak, Brigitte; Siebert, Heike; Brück, Wolfgang; Stadelmann, Christine

    2017-03-17

    Axonal damage and loss substantially contribute to the incremental accumulation of clinical disability in progressive multiple sclerosis. Here, we assessed the amount of Wallerian degeneration in brain tissue of multiple sclerosis patients in relation to demyelinating lesion activity and asked whether a transient blockade of Wallerian degeneration decreases axonal loss and clinical disability in a mouse model of inflammatory demyelination. Wallerian degeneration and acute axonal damage were determined immunohistochemically in the periplaque white matter of multiple sclerosis patients with early actively demyelinating lesions, chronic active lesions, and inactive lesions. Furthermore, we studied the effects of Wallerian degeneration blockage on clinical severity, inflammatory pathology, acute axonal damage, and long-term axonal loss in experimental autoimmune encephalomyelitis using Wallerian degeneration slow (Wld S ) mutant mice. The highest numbers of axons undergoing Wallerian degeneration were found in the perilesional white matter of multiple sclerosis patients early in the disease course and with actively demyelinating lesions. Furthermore, Wallerian degeneration was more abundant in patients harboring chronic active as compared to chronic inactive lesions. No co-localization of neuropeptide Y-Y1 receptor, a bona fide immunohistochemical marker of Wallerian degeneration, with amyloid precursor protein, frequently used as an indicator of acute axonal transport disturbance, was observed in human and mouse tissue, indicating distinct axon-degenerative processes. Experimentally, a delay of Wallerian degeneration, as observed in Wld S mice, did not result in a reduction of clinical disability or acute axonal damage in experimental autoimmune encephalomyelitis, further supporting that acute axonal damage as reflected by axonal transport disturbances does not share common molecular mechanisms with Wallerian degeneration. Furthermore, delaying Wallerian degeneration

  17. Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles.

    PubMed

    Nemmar, Abderrahim; Yuvaraju, Priya; Beegam, Sumaya; Yasin, Javed; Kazzam, Elsadig E; Ali, Badreldin H

    2016-01-01

    The use of amorphous silica (SiO2) in biopharmaceutical and industrial fields can lead to human exposure by injection, skin penetration, ingestion, or inhalation. However, the in vivo acute toxicity of amorphous SiO2 nanoparticles (SiNPs) on multiple organs and the mechanisms underlying these effects are not well understood. Presently, we investigated the acute (24 hours) effects of intraperitoneally administered 50 nm SiNPs (0.25 mg/kg) on systemic toxicity, oxidative stress, inflammation, and DNA damage in the lung, heart, liver, kidney, and brain of mice. Lipid peroxidation was significantly increased by SiNPs in the lung, liver, kidney, and brain, but was not changed in the heart. Similarly, superoxide dismutase and catalase activities were significantly affected by SiNPs in all organs studied. While the concentration of tumor necrosis factor α was insignificantly increased in the liver and brain, its increase was statistically significant in the lung, heart, and kidney. SiNPs induced a significant elevation in pulmonary and renal interleukin 6 and interleukin-1 beta in the lung, liver, and brain. Moreover, SiNPs caused a significant increase in DNA damage, assessed by comet assay, in all the organs studied. SiNPs caused leukocytosis and increased the plasma activities of lactate dehydrogenase, creatine kinase, alanine aminotranferase, and aspartate aminotransferase. These results indicate that acute systemic exposure to SiNPs causes oxidative stress, inflammation, and DNA damage in several major organs, and highlight the need for thorough evaluation of SiNPs before they can be safely used in human beings.

  18. Therapeutic Potential of Intravenous Immunoglobulin in Acute Brain Injury

    PubMed Central

    Thom, Vivien; Arumugam, Thiruma V.; Magnus, Tim; Gelderblom, Mathias

    2017-01-01

    Acute ischemic and traumatic injury of the central nervous system (CNS) is known to induce a cascade of inflammatory events that lead to secondary tissue damage. In particular, the sterile inflammatory response in stroke has been intensively investigated in the last decade, and numerous experimental studies demonstrated the neuroprotective potential of a targeted modulation of the immune system. Among the investigated immunomodulatory agents, intravenous immunoglobulin (IVIg) stand out due to their beneficial therapeutic potential in experimental stroke as well as several other experimental models of acute brain injuries, which are characterized by a rapidly evolving sterile inflammatory response, e.g., trauma, subarachnoid hemorrhage. IVIg are therapeutic preparations of polyclonal immunoglobulin G, extracted from the plasma of thousands of donors. In clinical practice, IVIg are the treatment of choice for diverse autoimmune diseases and various mechanisms of action have been proposed. Only recently, several experimental studies implicated a therapeutic potential of IVIg even in models of acute CNS injury, and suggested that the immune system as well as neuronal cells can directly be targeted by IVIg. This review gives further insight into the role of secondary inflammation in acute brain injury with an emphasis on stroke and investigates the therapeutic potential of IVIg. PMID:28824617

  19. Distinct effects of acute and chronic sleep loss on DNA damage in rats.

    PubMed

    Andersen, M L; Ribeiro, D A; Bergamaschi, C T; Alvarenga, T A; Silva, A; Zager, A; Campos, R R; Tufik, S

    2009-04-30

    The aim of this investigation was to evaluate genetic damage induced in male rats by experimental sleep loss for short-term (24 and 96 h) and long-term (21 days) intervals, as well as their respective recovery periods in peripheral blood, brain, liver and heart tissue by the single cell gel (comet) assay. Rats were paradoxically deprived of sleep (PSD) by the platform technique for 24 or 96 h, or chronically sleep-restricted (SR) for 21 days. We also sought to verify the time course of their recovery after 24 h of rebound sleep. The results showed DNA damage in blood cells of rats submitted to PSD for 96 h. Brain tissue showed extensive genotoxic damage in PSD rats (both 24 and 96 h), though the effect was more pronounced in the 96 h group. Rats allowed to recover from the PSD-96 h and SR-21 days treatments showed DNA damage as compared to negative controls. Liver and heart did not display any genotoxicity activity. Corticosterone concentrations were increased after PSD (24 and 96 h) relative to control rats, whereas these levels were unaffected in the SR group. Collectively, these findings reveal that sleep loss was able to induce genetic damage in blood and brain cells, especially following acute exposure. Since DNA damage is an important step in events leading to genomic instability, this study represents a relevant contribution to the understanding of the potential health risks associated with sleep deprivation.

  20. Ethyl pyruvate protects against blood-brain barrier damage and improves long-term neurological outcomes in a rat model of traumatic brain injury.

    PubMed

    Shi, Hong; Wang, Hai-Lian; Pu, Hong-Jian; Shi, Ye-Jie; Zhang, Jia; Zhang, Wen-Ting; Wang, Guo-Hua; Hu, Xiao-Ming; Leak, Rehana K; Chen, Jun; Gao, Yan-Qin

    2015-04-01

    Many traumatic brain injury (TBI) survivors sustain neurological disability and cognitive impairments due to the lack of defined therapies to reduce TBI-induced long-term brain damage. Ethyl pyruvate (EP) has shown neuroprotection in several models of acute brain injury. The present study therefore investigated the potential beneficial effect of EP on long-term outcomes after TBI and the underlying mechanisms. Male adult rats were subjected to unilateral controlled cortical impact injury. EP was injected intraperitoneally 15 min after TBI and again at 12, 24, 36, 48, and 60 h after TBI. Neurological deficits, blood-brain barrier (BBB) integrity, and neuroinflammation were assessed. Ethyl pyruvate improved sensorimotor and cognitive functions and ameliorated brain tissue damage up to 28 day post-TBI. BBB breach and brain edema were attenuated by EP at 48 h after TBI. EP suppressed matrix metalloproteinase (MMP)-9 production from peripheral neutrophils and reduced the number of MMP-9-overproducing neutrophils in the spleen, and therefore mitigated MMP-9-mediated BBB breakdown. Moreover, EP exerted potent antiinflammatory effects in cultured microglia and inhibited the elevation of inflammatory mediators in the brain after TBI. Ethyl pyruvate confers long-term neuroprotection against TBI, possibly through breaking the vicious cycle among MMP-9-mediated BBB disruption, neuroinflammation, and long-lasting brain damage. © 2014 John Wiley & Sons Ltd.

  1. Vasoparalysis associated with brain damage in asphyxiated term infants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryds, O.; Greisen, G.; Lou, H.

    1990-07-01

    The relationship of cerebral blood flow to acute changes in arterial carbon dioxide and mean arterial blood pressure (MABP) was determined during the first day of life in 19 severely asphyxiated term infants supported by mechanical ventilation. For comparison, 12 infants without perinatal asphyxia were also investigated. Global cerebral blood flow (CBF infinity) was determined by xenon 133 clearance two or three times within approximately 2 hours. During the cerebral blood flow measurement, the amplitude-integrated electroencephalogram and visual-evoked potential were recorded. Changes in arterial carbon dioxide pressure followed adjustments of the ventilator settings, whereas MABP fluctuated spontaneously. Arterial oxygen pressuremore » and blood glucose concentration were in the normal range. Five of the asphyxiated infants had isoelectric electroencephalograms and died subsequently with severe brain damage. They had a high CBF infinity (mean 30.6 ml/100 gm/min) and abolished carbon dioxide and MABP reactivity. Lower CBF infinity (mean 14.7 ml/100 gm/min) and abolished MABP reactivity were found in another five asphyxiated infants with burst-suppression electroencephalograms in whom computed tomographic or clinical signs of brain lesions developed. The carbon dioxide reactivity was preserved in these infants. In the remaining nine asphyxiated infants without signs of central nervous system abnormality, carbon dioxide and MABP reactivity were preserved, as was also the case in the control group. We conclude that abolished autoregulation is associated with cerebral damage in asphyxiated infants and that the combination of isoelectric electroencephalograms and cerebral hyperperfusion is an early indicator of very severe brain damage.« less

  2. Hyperbaric oxygen therapy ameliorates acute brain injury after porcine intracerebral hemorrhage at high altitude.

    PubMed

    Zhu, Hai-tao; Bian, Chen; Yuan, Ji-chao; Liao, Xiao-jun; Liu, Wei; Zhu, Gang; Feng, Hua; Lin, Jiang-kai

    2015-06-15

    Intracerebral hemorrhage (ICH) at high altitude is not well understood to date. This study investigates the effects of high altitude on ICH, and examines the acute neuroprotection of hyperbaric oxygen (HBO) therapy against high-altitude ICH. Minipigs were placed in a hypobaric chamber for 72 h before the operation. ICH was induced by an infusion of autologous arterial blood (3 ml) into the right basal ganglia. Animals in the high-altitude ICH group received HBO therapy (2.5 ATA for 60 min) 30 min after ICH. Blood gas, blood glucose and brain tissue oxygen partial pressure (PbtO2) were monitored continuously for animals from all groups, as were microdialysis products including glucose, lactate, pyruvate and glutamate in perihematomal tissue from 3 to 12 h post-ICH. High-altitude ICH animals showed significantly lower PbtO2, higher lactate/pyruvate ratio (LPR) and glutamate levels than low-altitude ICH animals. More severe neurological deficits, brain edema and neuronal damage were also observed in high-altitude ICH. After HBO therapy, PbtO2 was significantly increased and LPR and glutamate levels were significantly decreased. Brain edema, neurological deficits and neuronal damage were also ameliorated. The data suggested a more serious disturbance of tissue oxygenation and cerebral metabolism in the acute stage after ICH at high altitude. Early HBO treatment reduced acute brain injury, perhaps through a mechanism involving the amelioration of the derangement of cerebral oxygenation and metabolism following high-altitude ICH.

  3. Hypopituitarism after acute brain injury.

    PubMed

    Urban, Randall J

    2006-07-01

    Acute brain injury has many causes, but the most common is trauma. There are 1.5-2.0 million traumatic brain injuries (TBI) in the United States yearly, with an associated cost exceeding 10 billion dollars. TBI is the most common cause of death and disability in young adults less than 35 years of age. The consequences of TBI can be severe, including disability in motor function, speech, cognition, and psychosocial and emotional skills. Recently, clinical studies have documented the occurrence of pituitary dysfunction after TBI and another cause of acute brain injury, subarachnoid hemorrhage (SAH). These studies have consistently demonstrated a 30-40% occurrence of pituitary dysfunction involving at least one anterior pituitary hormone following a moderate to severe TBI or SAH. Growth hormone (GH) deficiency is the most common pituitary hormone disorder, occurring in approximately 20% of patients when multiple tests of GH deficiency are used. Within 7-21 days of acute brain injury, adrenal insufficiency is the primary concern. Pituitary function can fluctuate over the first year after TBI, but it is well established by 1 year. Studies are ongoing to assess the effects of hormone replacement on motor function and cognition in TBI patients. Any subject with a moderate to severe acute brain injury should be screened for pituitary dysfunction.

  4. Cortical damage following traumatic brain injury evaluated by iomazenil SPECT and in vivo microdialysis.

    PubMed

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2013-01-01

    [(123)I] iomazenil (IMZ) single photon emission computed tomography (SPECT) has been reported to be a useful marker of neuronal integrity. We evaluated cortical damage following traumatic brain injury (TBI) with IMZ SPECT at the acute stage. After conventional therapy for a cranial trauma, an IMZ SPECT re-evaluation was performed at the chronic stage. A reduction in IMZ uptake in the location of cerebral contusions was observed during the TBI acute phase; however, images of IMZ SPECT obtained during the chronic phase showed that areas with decreased IMZ distribution were remarkably reduced compared with those obtained during the acute phase. As a result of in vivo microdialysis study, the extracellular levels of glutamate in the cortex, where decreased IMZ distribution was shown during the acute phase, were increased during the 168-h monitoring period. During the chronic phase, IMZ uptake in the region with the microdialysis probes was recovered. The results suggest that this reduction in IMZ uptake might not be a sign of irreversible tissue damage in TBI.

  5. Free Radical Damage in Ischemia-Reperfusion Injury: An Obstacle in Acute Ischemic Stroke after Revascularization Therapy

    PubMed Central

    Jin, Hang; Sun, Xin; Huang, Shuo; Zhang, Fu-Liang; Guo, Zhen-Ni

    2018-01-01

    Acute ischemic stroke is a common cause of morbidity and mortality worldwide. Thrombolysis with recombinant tissue plasminogen activator and endovascular thrombectomy are the main revascularization therapies for acute ischemic stroke. However, ischemia-reperfusion injury after revascularization therapy can result in worsening outcomes. Among all possible pathological mechanisms of ischemia-reperfusion injury, free radical damage (mainly oxidative/nitrosative stress injury) has been found to play a key role in the process. Free radicals lead to protein dysfunction, DNA damage, and lipid peroxidation, resulting in cell death. Additionally, free radical damage has a strong connection with inducing hemorrhagic transformation and cerebral edema, which are the major complications of revascularization therapy, and mainly influencing neurological outcomes due to the disruption of the blood-brain barrier. In order to get a better clinical prognosis, more and more studies focus on the pharmaceutical and nonpharmaceutical neuroprotective therapies against free radical damage. This review discusses the pathological mechanisms of free radicals in ischemia-reperfusion injury and adjunctive neuroprotective therapies combined with revascularization therapy against free radical damage. PMID:29770166

  6. [Relationship between the Expression of α-syn and Neuronal Apoptosis in Brain Cortex of Acute Alcoholism Rats].

    PubMed

    Li, F; Zhang, Y; Ma, S L

    2016-12-01

    To observe the changes of expression of α-synuclein (α-syn) and neuronal apoptosis in brain cortex of acute alcoholism rats and to explore the mechanism of the damage caused by ethanol to the neurons. The model of acute alcoholism rat was established by 50% alcohol gavage. The α-syn and caspase-3 were detected by immunohistochemical staining and imaging analysis at 1 h, 3 h, 6 h and 12 h after acute alcoholism. The number of positive cell and mean of optical density were detected and the trend change was analyzed. The variance analysis and t -test were also performed. The number of α-syn positive cell and average optical density in brain cortex of acute alcoholism rat increased significantly and peaked at 6 hour with a following slight decrease at 12 h, but still higher than the groups at 1 h and 3 h. Within 12 hours after poisoning, the number of caspase-3 positive cell and average optical density in brain cortex of rats gradually increased. The abnormal aggregation of α-syn caused by brain edema and hypoxia may participate the early stage of neuronal apoptosis in brain cortex after acute alcoholism. Copyright© by the Editorial Department of Journal of Forensic Medicine

  7. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury.

    PubMed

    Zweckberger, K; Hackenberg, K; Jung, C S; Hertle, D N; Kiening, K L; Unterberg, A W; Sakowitz, O W

    2014-07-11

    Following traumatic brain injury (TBI) SUR1-regulated NCCa-ATP (SUR1/TRPM4) channels are transcriptionally up-regulated in ischemic astrocytes, neurons, and capillaries. ATP depletion results in depolarization and opening of the channel leading to cytotoxic edema. Glibenclamide is an inhibitor of SUR-1 and, thus, might prevent cytotoxic edema and secondary brain damage following TBI. Anesthetized adult Sprague-Dawley rats underwent parietal craniotomy and were subjected to controlled cortical impact injury (CCI). Glibenclamide was administered as a bolus injection 15min after CCI injury and continuously via osmotic pumps throughout 7days. In an acute trial (180min) mean arterial blood pressure, heart rate, intracranial pressure, encephalographic activity, and cerebral metabolism were monitored. Brain water content was assessed gravimetrically 24h after CCI injury and contusion volumes were measured by MRI scanning technique at 8h, 24h, 72h, and 7d post injury. Throughout the entire time of observation neurological function was quantified using the "beam-walking" test. Glibenclamide-treated animals showed a significant reduction in the development of brain tissue water content(80.47%±0.37% (glibenclamide) vs. 80.83%±0.44% (control); p<0.05; n=14). Contusion sizes increased continuously within 72h following CCI injury, but glibenclamide-treated animals had significantly smaller volumes at any time-points, like 172.53±38.74mm(3) (glibenclamide) vs. 299.20±64.02mm(3) (control) (p<0.01; n=10; 24h) or 211.10±41.03mm(3) (glibenclamide) vs. 309.76±19.45mm(3) (control) (p<0.05; n=10; 72h), respectively. An effect on acute parameters, however, could not be detected, most likely because of the up-regulation of the channel within 3-6h after injury. Furthermore, there was no significant effect on motor function assessed by the beam-walking test throughout 7days. In accordance to these results and the available literature, glibenclamide seems to have promising potency in

  8. Acute SSRI-induced anxiogenic and brain metabolic effects are attenuated 6 months after initial MDMA-induced depletion.

    PubMed

    Andó, Rómeó D; Adori, Csaba; Kirilly, Eszter; Molnár, Eszter; Kovács, Gábor G; Ferrington, Linda; Kelly, Paul A T; Bagdy, György

    2010-03-05

    To assess the functional state of the serotonergic system, the acute behavioural and brain metabolic effect of SSRI antidepressants were studied during the recovery period after MDMA-induced neuronal damage. The effects of the SSRI fluoxetine and the serotonin receptor agonist meta-chloro-phenylpiperazine (m-CPP) were investigated in the social interaction test in Dark Agouti rats, 6 months after treatment with a single dose of MDMA (15 or 30 mg kg(-1), i.p.). At earlier time points these doses of MDMA have been shown to cause 30-60% loss in axonal densities in several brain regions. Densities of the serotonergic axons were assessed using serotonin-transporter and tryptophan-hydroxylase immunohistochemistry. In a parallel group of animals, brain function was examined following an acute challenge with either fluoxetine or citalopram, using 2-deoxyglucose autoradiographic imaging. Six months after MDMA treatment the densities of serotonergic axons were decreased in only a few brain areas including hippocampus and thalamus. Basal anxiety was unaltered in MDMA-treated animals. However, the acute anxiogenic effects of fluoxetine, but not m-CPP, were attenuated in animals pretreated with MDMA. The metabolic response to both citalopram and fluoxetine was normal in most of the brain areas examined with the exception of ventromedial thalamus and hippocampal sub-fields where the response was attenuated. These data provide evidence that 6 months after MDMA-induced damage serotonergic axons show recovery in most brain areas, but serotonergic functions to challenges with SSRIs including anxiety and aggression remain altered. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    NASA Astrophysics Data System (ADS)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  10. Direct stimulation of angiotensin II type 2 receptor initiated after stroke ameliorates ischemic brain damage.

    PubMed

    Min, Li-Juan; Mogi, Masaki; Tsukuda, Kana; Jing, Fei; Ohshima, Kousei; Nakaoka, Hirotomo; Kan-No, Harumi; Wang, Xiao-Li; Chisaka, Toshiyuki; Bai, Hui-Yu; Iwanami, Jun; Horiuchi, Masatsugu

    2014-08-01

    Stroke is a leading cause of death and disability; however, meta-analysis of randomized controlled trials of blood pressure-lowering drugs in acute stroke has shown no definite evidence of a beneficial effect on functional outcome. Accumulating evidence suggests that angiotensin II type 1 receptor blockade with angiotensin II type 2 (AT2) receptor stimulation could contribute to protection against ischemic brain damage. We examined the possibility that direct AT2 receptor stimulation by compound 21 (C21) initiated even after stroke can prevent ischemic brain damage. Stroke was induced by middle cerebral artery (MCA) occlusion, and the area of cerebral infarction was measured by magnetic resonant imaging. C21 (10 µg/kg/day) treatment was initiated immediately after MCA occlusion by intraperitoneal injection followed by treatment with C21 once daily. We observed that ischemic area was enlarged in a time dependent fashion and decreased on day 5 after MCA occlusion. Treatment with C21 initiated after MCA occlusion significantly reduced the ischemic area, with improvement of neurological deficit in a time-dependent manner without affecting blood pressure. The decrease of cerebral blood flow after MCA occlusion was also ameliorated by C21 treatment. Moreover, treatment with C21 significantly attenuated superoxide anion production and expression of proinflammatory cytokines, monocyte chemoattractant protein 1, and tumor necrosis factor α. Interestingly, C21 administration significantly decreased blood-brain barrier permeability and cerebral edema on the ischemic side. These results provide new evidence that direct AT2 receptor stimulation with C21 is a novel therapeutic approach to prevent ischemic brain damage after acute stroke. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Evaluation and Education of Children with Brain Damage.

    ERIC Educational Resources Information Center

    Bortner, Morton, Ed.

    Ten papers consider brain damaged children. Brain damage is considered as an educational category, and the following aspects of evaluation are treated: disorders of oral communication, hearing impairment, psychological deficit, psychiatric factors, and neurological considerations. Educational strategies discussed include the educational methods of…

  12. Disulfiram-induced acute organic brain syndrome.

    PubMed

    Kump, J G; Flaten, P A; Greenlaw, C W

    1979-08-01

    Reversible acute organic brain syndrome is described in a patient receiving disulfiram, 250 mg daily. Slowing of the electroencephalogram (3 to 4 cycles per second) in the occipital region resolved ten days after discontinuation of disulfiram. Acute organic brain syndrome induced by disulfiram is not rare but is often not correlated, and it should always be considered a possibility in patients receiving disulfiram therapy.

  13. Functional vision in children with perinatal brain damage.

    PubMed

    Alimović, Sonja; Jurić, Nikolina; Bošnjak, Vlatka Mejaški

    2014-09-01

    Many authors have discussed the effects of visual stimulations on visual functions, but there is no research about the effects on using vision in everyday activities (i.e. functional vision). Children with perinatal brain damage can develop cerebral visual impairment with preserved visual functions (e.g. visual acuity, contrast sensitivity) but poor functional vision. Our aim was to discuss the importance of assessing and stimulating functional vision in children with perinatal brain damage. We assessed visual functions (grating visual acuity, contrast sensitivity) and functional vision (the ability of maintaining visual attention and using vision in communication) in 99 children with perinatal brain damage and visual impairment. All children were assessed before and after the visual stimulation program. Our first assessment results showed that children with perinatal brain damage had significantly more problems in functional vision than in basic visual functions. During the visual stimulation program both variables of functional vision and contrast sensitivity improved significantly, while grating acuity improved only in 2.7% of children. We also found that improvement of visual attention significantly correlated to improvement on all other functions describing vision. Therefore, functional vision assessment, especially assessment of visual attention is indispensable in early monitoring of child with perinatal brain damage.

  14. Radiation-Induced Astrogliosis and Blood-Brain Barrier Damage Can Be Abrogated Using Anti-TNF Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Christy M.; Gaber, M. Waleed; Sabek, Omaima M.

    2009-07-01

    Purpose: In this article, we investigate the role of tumor necrosis factor-alpha (TNF) in the initiation of acute damage to the blood-brain barrier (BBB) and brain tissue following radiotherapy (RT) for CNS tumors. Methods and Materials: Intravital microscopy and a closed cranial window technique were used to measure quantitatively BBB permeability to FITC-dextran 4.4-kDa molecules, leukocyte adhesion (Rhodamine-6G) and vessel diameters before and after 20-Gy cranial radiation with and without treatment with anti-TNF. Immunohistochemistry was used to quantify astrogliosis post-RT and immunofluorescence was used to visualize protein expression of TNF and ICAM-1 post-RT. Recombinant TNF (rTNF) was used to elucidatemore » the role of TNF in leukocyte adhesion and vessel diameter. Results: Mice treated with anti-TNF showed significantly lower permeability and leukocyte adhesion at 24 and 48 h post-RT vs. RT-only animals. We observed a significant decrease in arteriole diameters at 48 h post-RT that was inhibited in TNF-treated animals. We also saw a significant increase in activated astrocytes following RT that was significantly lower in the anti-TNF-treated group. In addition, immunofluorescence showed protein expression of TNF and ICAM-1 in the cerebral cortex that was inhibited with anti-TNF treatment. Finally, administration of rTNF induced a decrease in arteriole diameter and a significant increase in leukocyte adhesion in venules and arterioles. Conclusions: TNF plays a significant role in acute changes in BBB permeability, leukocyte adhesion, arteriole diameter, and astrocyte activation following cranial radiation. Treatment with anti-TNF protects the brain's microvascular network from the acute damage following RT.« less

  15. Expression of Bcl-2 and NF-κB in brain tissue after acute renal ischemia-reperfusion in rats.

    PubMed

    Zhang, Na; Cheng, Gen-Yang; Liu, Xian-Zhi; Zhang, Feng-Jiang

    2014-05-01

    To investigate the effect of acute renal ischemia reperfusion on brain tissue. Fourty eight rats were randomly divided into four groups (n=12): sham operation group, 30 min ischemia 60 min reperfusion group, 60 min ischemia 60 min reperfusion group, and 120 min ischemia 60 min reperfusion group. The brain tissues were taken after the experiment. TUNEL assay was used to detect the brain cell apoptosis, and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors. Renal ischemia-reperfusion induced apoptosis of brain tissues, and the apoptosis increased with prolongation of ischemia time. The detection at the molecular level showed decreased Bcl-2 expression, increased Bax expression, upregulated expression of NF-κB and its downstream factor COX-2/PGE2. Acute renal ischemia-reperfusion can cause brain tissue damage, manifested as induced brain tissues apoptosis and inflammation activation. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  16. Bacterial Cytolysin during Meningitis Disrupts the Regulation of Glutamate in the Brain, Leading to Synaptic Damage

    PubMed Central

    Wippel, Carolin; Maurer, Jana; Förtsch, Christina; Hupp, Sabrina; Bohl, Alexandra; Ma, Jiangtao; Mitchell, Timothy J.; Bunkowski, Stephanie; Brück, Wolfgang; Nau, Roland; Iliev, Asparouh I.

    2013-01-01

    Streptococcus pneumoniae (pneumococcal) meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage. PMID:23785278

  17. Clinical characteristics of acute encephalopathy with acute brain swelling: A peculiar type of acute encephalopathy.

    PubMed

    Nukui, Megumi; Kawawaki, Hisashi; Inoue, Takeshi; Kuki, Ichiro; Okazaki, Shin; Amo, Kiyoko; Togawa, Masao; Ishikawa, Junichi; Rinka, Hiroshi; Shiomi, Masashi

    2018-06-07

    Acute encephalopathy has been observed with acute brain swelling (ABS) that is characterized by rapid progression to whole-brain swelling. The objective of this study was to describe the clinical characteristics of ABS. We encountered four patients with ABS and retrospectively investigated their clinical data with a medical chart review. Three patients had seizure clustering or status epilepticus in the clinical course. Signs of elevated intracranial pressure (ICP) appeared 3-9 h after the first convulsive attack in three patients. In all patients, signs of brainstem involvement appeared 1-8 h after signs of elevated ICP. Mild hyponatremia that progressed after signs of elevated ICP appeared was noted in three patients. Brain CT revealed mild brain swelling in the initial phase, which rapidly progressed to whole-brain swelling. No focal abnormalities were detected on brain MRI in one patient. Continuous electroencephalography was initially normal, but in two patients, high-amplitude slow waves appeared with rapid changes before signs of brainstem involvement. Although recovery was achieved without sequelae in two patients, outcome was fatal for the other two. The pathogenesis of ABS has yet to be clarified, but clinical features in our patients are not consistent with any established subtypes of acute encephalopathy. Therefore, we believe that ABS should be recognized as a new type of acute encephalopathy. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  18. Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells

    PubMed Central

    Tóth, Andrea E.; Walter, Fruzsina R.; Bocsik, Alexandra; Sántha, Petra; Veszelka, Szilvia; Nagy, Lajos; Puskás, László G.; Couraud, Pierre-Olivier; Takata, Fuyuko; Dohgu, Shinya; Kataoka, Yasufumi; Deli, Mária A.

    2014-01-01

    Background Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal. Methodology Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging. Principal Findings Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound. Conclusion These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases. PMID:25033388

  19. Coping with brain damage

    NASA Technical Reports Server (NTRS)

    Waring, W.

    1974-01-01

    Two neurological disorders, cerebral palsy, and traumatic brain damage as from an accident, are considered. The discussion covers the incidence of disabilities, their characteristics, and what is now being done to deal with them, particularly in reference to areas in which the capabilities of the engineer can be effectively applied.

  20. The pathological role of NLRs and AIM2 inflammasome-mediated pyroptosis in damaged blood-brain barrier after traumatic brain injury.

    PubMed

    Ge, Xintong; Li, Wenzhu; Huang, Shan; Yin, Zhenyu; Xu, Xin; Chen, Fanglian; Kong, Xiaodong; Wang, Haichen; Zhang, Jianning; Lei, Ping

    2018-06-07

    Pyroptosis is a highly specific type of inflammatory programmed cell death that different from necrosis or apoptosis. It is initiated by cellular detection of acute damage via recognizing pathogen-associated molecular patterns (PAMPs) by NOD-like receptors (NLRs) or AIM2-like receptor (AIM2). NLRs and AIM2 could trigger the formation of a multi-protein complex, known as inflammasome. It also contains apoptotic speck-containing protein (ASC) and pro-Caspase-1, and could process the signals to induce a cascade of inflammatory response. Recently, growing evidence showed that inflammasome-mediated pyroptosis is involved in the pathogenesis of traumatic brain injury (TBI). However, less attention has been paid to their particular roles in regulating blood-brain barrier (BBB) damage, the central pathological change in secondary brain damage of TBI. Thus, we designed this research to explore the impact and mechanism of NLRs and AIM2 inflammasome-mediated pyroptosis in BBB after TBI. We employed the controlled cortical impact (CCI) mice model and manipulated the severity of pyroptosis in BBB using Caspase-1 inhibitor, Ac-YVAD-cmk. We found that TBI led to NLRs and AIM2 inflammasome-mediated pyroptosis in brain microvascular endothelial cells (BMVECs) from injured cerebral cortex. Ac-YVAD-cmk treatment inhibited pyroptosis in injured BMVECs by suppressing the expression of essential inflammasome subunit - Caspase-1 and pivotal downstream pro-inflammatory cytokines (IL-1β and IL-18), as well as hindering GSDMD cleavage and ASC oligomerization. In addition, inhibiting pyroptosis could alleviate TBI-induced BBB leakage, brain edema, loss of tight junction proteins, and the inflammatory response in injured BMVECs. These effects contributed to improving the neurological outcome of CCI mice. In conclusion, NLRs and AIM2 inflammasome-mediated pyroptosis could aggravate BBB damage after TBI. Targeting and controlling pyroptosis in injured BBB would be a promising therapeutic

  1. A novel application of the fluorescent dye bis-ANS for labeling neurons in acute brain slices.

    PubMed

    Mozes, Emese; Hunya, Akos; Toth, Aniko; Ayaydin, Ferhan; Penke, Botond; Datki, Zsolt L

    2011-10-10

    The cell-impermeant oligomer-(e.g. beta-amyloid-, or tubulin-) specific fluorescent dye, bis-ANS (4,4'-bis-1-anilinonaphtalene-8-sulfonate), was successfully used for labeling mechanically damaged but still viable neuron bodies, neurites and neurite cross sections in acute brain slices. Acute hippocampal brain slices of rats were co-stained with bis-ANS and the cell-impermeant, DNA-specific dye propidium iodide (PI) and were then analyzed using fluorescence and confocal microscopes. Both the neuron bodies and the neurites were found to exhibit increased fluorescence intensities, suggesting that using this method they can be detected more easily. In addition, bis-ANS showed good region - but not cell specific co-localization with the neuron-specific fluorescent dye Dil (1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate). These two dyes label different neuronal structures: Dil binds specifically to intact cell membranes while bis-ANS can enter cells with compromised cell membranes and then stain the microtubules in the cytoplasm. For a quick (10min) staining of acute brain slices with bis-ANS both HEPES and NaHCO(3) were needed in order to achieve high signal intensity. Labeling with bis-ANS fluorescent dye is an easy method for imaging the neuronal structures on the surface of acute brain slices. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. [Brain oedema and acute liver failure].

    PubMed

    Spahr, L

    2003-04-01

    Brain oedema leading to intracranial hypertension occurs in a significant proportion of patients with acute liver failure in whom it is a leading cause of death. Although precise pathogenic mechanisms associated to this severe complication remain incompletely understood, increasing evidence points to gut-derived neurotoxins including ammonia as key mediators in cerebral osmotic and perfusion disturbances. The management of brain oedema and intracranial hypertension requires a multidisciplinar approach in a center where liver transplantation is available, as this option is the only treatment modality that provides improvement in outcome. This article reviews the most common causes of acute liver failure and the standard of supportive care management, and describes future potential therapeutic aspects of brain oedema and intracranial hypertension.

  3. Repeated mild traumatic brain injury can cause acute neurologic impairment without overt structural damage in juvenile rats.

    PubMed

    Meconi, Alicia; Wortman, Ryan C; Wright, David K; Neale, Katie J; Clarkson, Melissa; Shultz, Sandy R; Christie, Brian R

    2018-01-01

    Repeated concussion is becoming increasingly recognized as a serious public health concern around the world. Moreover, there is a greater awareness amongst health professionals of the potential for repeated pediatric concussions to detrimentally alter the structure and function of the developing brain. To better study this issue, we developed an awake closed head injury (ACHI) model that enabled repeated concussions to be performed reliably and reproducibly in juvenile rats. A neurological assessment protocol (NAP) score was generated immediately after each ACHI to help quantify the cumulative effects of repeated injury on level of consciousness, and basic motor and reflexive capacity. Here we show that we can produce a repeated ACHI (4 impacts in two days) in both male and female juvenile rats without significant mortality or pain. We show that both single and repeated injuries produce acute neurological deficits resembling clinical concussion symptoms that can be quantified using the NAP score. Behavioural analyses indicate repeated ACHI acutely impaired spatial memory in the Barnes maze, and an interesting sex effect was revealed as memory impairment correlated moderately with poorer NAP score performance in a subset of females. These cognitive impairments occurred in the absence of motor impairments on the Rotarod, or emotional changes in the open field and elevated plus mazes. Cresyl violet histology and structural magnetic resonance imaging (MRI) indicated that repeated ACHI did not produce significant structural damage. MRI also confirmed there was no volumetric loss in the cortex, hippocampus, or corpus callosum of animals at 1 or 7 days post-ACHI. Together these data indicate that the ACHI model can provide a reliable, high throughput means to study the effects of concussions in juvenile rats.

  4. Fetal asphyxia induces acute and persisting changes in the ceramide metabolism in rat brain[S

    PubMed Central

    Vlassaks, Evi; Mencarelli, Chiara; Nikiforou, Maria; Strackx, Eveline; Ferraz, Maria J.; Aerts, Johannes M.; De Baets, Marc H.; Martinez-Martinez, Pilar; Gavilanes, Antonio W. D.

    2013-01-01

    Fetal asphyctic preconditioning, induced by a brief episode of experimental hypoxia-ischemia, offers neuroprotection to a subsequent more severe asphyctic insult at birth. Extensive cell stress and apoptosis are important contributing factors of damage in the asphyctic neonatal brain. Because ceramide acts as a second messenger for multiple apoptotic stimuli, including hypoxia/ischemia, we sought to investigate the possible involvement of the ceramide pathway in endogenous neuroprotection induced by fetal asphyctic preconditioning. Global fetal asphyxia was induced in rats by clamping both uterine and ovarian vasculature for 30 min. Fetal asphyxia resulted in acute changes in brain ceramide/sphingomyelin metabolic enzymes, ceramide synthase 1, 2, and 5, acid sphingomyelinase, sphingosine-1-phosphate phosphatase, and the ceramide transporter. This observation correlated with an increase in neuronal apoptosis and in astrocyte number. After birth, ceramide and sphingomyelin levels remained high in fetal asphyxia brains, suggesting that a long-term regulation of the ceramide pathway may be involved in the mechanism of tolerance to a subsequent, otherwise lethal, asphyctic event. PMID:23625371

  5. Altered brain function in new onset childhood acute lymphoblastic leukemia before chemotherapy: A resting-state fMRI study.

    PubMed

    Hu, Zhanqi; Zou, Dongfang; Mai, Huirong; Yuan, Xiuli; Wang, Lihong; Li, Yue; Liao, Jianxiang; Liu, Liwei; Liu, Guosheng; Zeng, Hongwu; Wen, Feiqiu

    2017-10-01

    Cognitive impairments had been reported in childhood acute lymphoblastic leukemia, what caused the impairments needed to be demonstrated, chemotherapy-related or the disease itself. The primary aim of this exploratory investigation was to determine if there were changes in brain function of children with acute lymphoblastic leukemia before chemotherapy. In this study, we advanced a measure named regional homogeneity to evaluate the resting-state brain activities, intelligence quotient test was performed at same time. Using regional homogeneity, we first investigated the resting state brain function in patients with new onset childhood acute lymphoblastic leukemia before chemotherapy, healthy children as control. The decreased ReHo values were mainly founded in the default mode network and left frontal lobe, bilateral inferior parietal lobule, bilateral temporal lobe, bilateral occipital lobe, precentral gyrus, bilateral cerebellum in the newly diagnosed acute lymphoblastic leukemia patients compared with the healthy control. While in contrast, increased ReHo values were mainly shown in the right frontal lobe (language area), superior frontal gyrus-R, middle frontal gyrus-R and inferior parietal lobule-R for acute lymphoblastic leukemia patients group. There were no significant differences for intelligence quotient measurements between the acute lymphoblastic leukemia patient group and the healthy control in performance intelligence quotient, verbal intelligence quotient, total intelligence quotient. The altered brain functions are associated with cognitive change and language, it is suggested that there may be cognition impairment before the chemotherapy. Regional homogeneity by functional magnetic resonance image is a sensitive way for early detection on brain damage in childhood acute lymphoblastic leukemia. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  6. Oxidative damage mediated iNOS and UCP-2 upregulation in rat brain after sub-acute cyanide exposure: dose and time-dependent effects.

    PubMed

    Bhattacharya, Rahul; Singh, Poonam; John, Jebin Jacob; Gujar, Niranjan L

    2018-04-03

    Cyanide-induced chemical hypoxia is responsible for pronounced oxidative damage in the central nervous system. The disruption of mitochondrial oxidative metabolism has been associated with upregulation of uncoupling proteins (UCPs). The present study addresses the dose- and time-dependent effect of sub-acute cyanide exposure on various non-enzymatic and enzymatic oxidative stress markers and their correlation with inducible-nitric oxide synthase (iNOS) and uncoupling protein-2 (UCP-2) expression. Animals received (oral) triple distilled water (vehicle control), 0.25 LD50 potassium cyanide (KCN) or 0.50 LD50 KCN daily for 21 d. Animals were sacrificed on 7, 14 and 21 d post-exposure to measure serum cyanide and nitrite, and brain malondialdehyde (MDA), reduced glutathione (GSH), glutathione disulfide (GSSG), cytochrome c oxidase (CCO), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CA) levels, together with iNOS and UCP-2 expression, and DNA damage. The study revealed that a dose- and time-dependent increase in cyanide concentration was accompanied by corresponding CCO inhibition and elevated MDA levels. Decrease in GSH levels was not followed by reciprocal change in GSSG levels. Diminution of SOD, GPx, GR and CA activity was congruent with elevated nitrite levels and upregulation of iNOS and UCP-2 expression, without any DNA damage. It was concluded that long-term cyanide exposure caused oxidative stress, accompanied by upregulation of iNOS. The upregulation of UCP-2 further sensitized the cells to cyanide and accentuated the oxidative stress, which was independent of DNA damage.

  7. Evaluation of cerebral-cardiac syndrome using echocardiography in a canine model of acute traumatic brain injury.

    PubMed

    Qian, Rong; Yang, Weizhong; Wang, Xiumei; Xu, Zhen; Liu, Xiaodong; Sun, Bing

    2015-01-01

    Previous studies have confirmed that traumatic brain injury (TBI) can induce general adaptation syndrome (GAS), which subsequently results in myocardial dysfunction and damage in some patients with acute TBI; this condition is also termed as cerebral-cardiac syndrome. However, most clinicians ignore the detection and treatment of myocardial dysfunction, and instead concentrate only on the serious neural damage that is observed in acute TBI, which is one of the most important fatal factors. Therefore, clarification is urgently needed regarding the relationship between TBI and myocardial dysfunction. In the present study, we evaluated 18 canine models of acute TBI, by using real-time myocardial contrast echocardiography and strain rate imaging to accurately evaluate myocardial function and regional microcirculation, including the strain rate of the different myocardial segments, time-amplitude curves, mean ascending slope of the curve, and local myocardial blood flow. Our results suggest that acute TBI often results in cerebral-cardiac syndrome, which rapidly progresses to the serious stage within 3 days. This study is the first to provide comprehensive ultrasonic characteristics of cerebral-cardiac syndrome in an animal model of TBI.

  8. Effects of Cannabidiol and Hypothermia on Short-Term Brain Damage in New-Born Piglets after Acute Hypoxia-Ischemia

    PubMed Central

    Lafuente, Hector; Pazos, Maria R.; Alvarez, Antonia; Mohammed, Nagat; Santos, Martín; Arizti, Maialen; Alvarez, Francisco J.; Martinez-Orgado, Jose A.

    2016-01-01

    Hypothermia is a standard treatment for neonatal encephalopathy, but nearly 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms with hypothermia improving neuroprotection. Cannabidiol could be a good candidate. Our aim was to test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets. Hypoxic-ischemic animals were randomly divided into four groups receiving 30 min after the insult: (1) normothermia and vehicle administration; (2) normothermia and cannabidiol administration; (3) hypothermia and vehicle administration; and (4) hypothermia and cannabidiol administration. Six hours after treatment, brains were processed to quantify the number of damaged neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate) and excitotoxicity (glutamate/Nacetyl-aspartate). Western blot studies were performed to quantify protein nitrosylation (oxidative stress), content of caspase-3 (apoptosis) and TNFα (inflammation). Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels in newborn piglets subjected to hypoxic-ischemic insult. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on cell damage, was greater than either hypothermia or cannabidiol alone. The present study demonstrated that cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage if applied shortly after the insult. PMID:27462203

  9. Acute organic brain syndrome: a review of 100 cases.

    PubMed

    Purdie, F R; Honigman, B; Rosen, P

    1981-09-01

    A retrospective review of 100 admissions to Denver General Hospital with a diagnosis of acute organic brain syndrome was conducted. A total of 44% of the patients were found to have a chronic organic brain syndrome with a superimposed acute insult which caused decompensation. The other 56% of patients developed acute organic brain syndromes de novo for a variety of reasons. The most common etiologic factors producing decompensation of the chronic OBS were infections (in 23%) and environmental changes (in 17%). The most common etiologic factor causing AOBS de novo was drug-related. In most cases, a toxicologic screen, lumbar puncture, and CT scan of the brain should be a part of the investigation of any patient with AOBS.

  10. BRAIN DAMAGE IN CHILDREN, THE BIOLOGICAL AND SOCIAL ASPECTS.

    ERIC Educational Resources Information Center

    BIRCH, HERBERT G., ED.

    PAPERS AND DISCUSSION SUMMARIES ARE PRESENTED FROM A CONFERENCE ON THE BIOLOGICAL AND SOCIAL PROBLEMS OF CHILDHOOD BRAIN DAMAGE, HELD AT THE CHILDREN'S HOSPITAL OF PHILADELPHIA IN NOVEMBER 1962. A VARIETY OF DISCIPLINES IS REPRESENTED, AND THE FOLLOWING TOPICS ARE CONSIDERED--(1) "THE PROBLEM OF 'BRAIN DAMAGE' IN CHILDREN" BY HERBERT G. BIRCH, (2)…

  11. Let thy left brain know what thy right brain doeth: Inter-hemispheric compensation of functional deficits after brain damage.

    PubMed

    Bartolomeo, Paolo; Thiebaut de Schotten, Michel

    2016-12-01

    Recent evidence revealed the importance of inter-hemispheric communication for the compensation of functional deficits after brain damage. This review summarises the biological consequences observed using histology as well as the longitudinal findings measured with magnetic resonance imaging methods in brain damaged animals and patients. In particular, we discuss the impact of post-stroke brain hyperactivity on functional recovery in relation to time. The reviewed evidence also suggests that the proportion of the preserved functional network both in the lesioned and in the intact hemispheres, rather than the simple lesion location, determines the extent of functional recovery. Hence, future research exploring longitudinal changes in patients with brain damage may unveil potential biomarkers underlying functional recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Venous or arterial blood components trigger more brain swelling, tissue death after acute subdural hematoma compared to elderly atrophic brain with subdural effusion (SDE) model rats.

    PubMed

    Wajima, Daisuke; Sato, Fumiya; Kawamura, Kenya; Sugiura, Keisuke; Nakagawa, Ichiro; Motoyama, Yasushi; Park, Young-Soo; Nakase, Hiroyuki

    2017-09-01

    Acute subdural hematoma (ASDH) is a frequent complication of severe head injury, whose secondary ischemic lesions are often responsible for the severity of the disease. We focused on the differences of secondary ischemic lesions caused by the components, 0.4ml venous- or arterial-blood, or saline, infused in the subdural space, evaluating the differences in vivo model, using rats. The saline infused rats are made for elderly atrophic brain with subdural effusion (SDE) model. Our data showed that subdural blood, both venous- and arterial-blood, aggravate brain edema and lesion development more than SDE. This study is the first study, in which different fluids in rats' subdural space, ASDH or SDE are compared with the extension of early and delayed brain damage by measuring brain edema and histological lesion volume. Blood constituents started to affect the degree of ischemia underneath the subdural hemorrhage, leading to more pronounced breakdown of the blood-brain barrier and brain damage. This indicates that further strategies to treat blood-dependent effects more efficiently are in view for patients with ASDH. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Acute brain trauma

    PubMed Central

    Martin, GT

    2016-01-01

    In the 20th century, the complications of head injuries were controlled but not eliminated. The wars of the 21st century turned attention to blast, the instant of impact and the primary injury of concussion. Computer calculations have established that in the first 5 milliseconds after the impact, four independent injuries on the brain are inflicted: 1) impact and its shockwave, 2) deceleration, 3) rotation and 4) skull deformity with vibration (or resonance). The recovery, pathology and symptoms after acute brain trauma have always been something of a puzzle. The variability of these four modes of injury, along with a variable reserve of neurones, explains some of this problem. PMID:26688392

  14. Acute vitreoretinal trauma and inflammation after traumatic brain injury in mice.

    PubMed

    Evans, Lucy P; Newell, Elizabeth A; Mahajan, MaryAnn; Tsang, Stephen H; Ferguson, Polly J; Mahoney, Jolonda; Hue, Christopher D; Vogel, Edward W; Morrison, Barclay; Arancio, Ottavio; Nichols, Russell; Bassuk, Alexander G; Mahajan, Vinit B

    2018-03-01

    Limited attention has been given to ocular injuries associated with traumatic brain injury (TBI). The retina is an extension of the central nervous system and evaluation of ocular damage may offer a less-invasive approach to gauge TBI severity and response to treatment. We aim to characterize acute changes in the mouse eye after exposure to two different models of TBI to assess the utility of eye damage as a surrogate to brain injury. A model of blast TBI (bTBI) using a shock tube was compared to a lateral fluid percussion injury model (LFPI) using fluid pressure applied directly to the brain. Whole eyes were collected from mice 3 days post LFPI and 24 days post bTBI and were evaluated histologically using a hematoxylin and eosin stain. bTBI mice showed evidence of vitreous detachment in the posterior chamber in addition to vitreous hemorrhage with inflammatory cells. Subretinal hemorrhage, photoreceptor degeneration, and decreased cellularity in the retinal ganglion cell layer was also seen in bTBI mice. In contrast, eyes of LFPI mice showed evidence of anterior uveitis and subcapsular cataracts. We demonstrated that variations in the type of TBI can result in drastically different phenotypic changes within the eye. As such, molecular and phenotypic changes in the eye following TBI may provide valuable information regarding the mechanism, severity, and ongoing pathophysiology of brain injury. Because vitreous samples are easily obtained, molecular changes within the eye could be utilized as biomarkers of TBI in human patients.

  15. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage.

    PubMed

    Glushakova, Olena Y; Johnson, Danny; Hayes, Ronald L

    2014-07-01

    Traumatic brain injury (TBI) is a significant risk factor for chronic traumatic encephalopathy (CTE), Alzheimer's disease (AD), and Parkinson's disease (PD). Cerebral microbleeds, focal inflammation, and white matter damage are associated with many neurological and neurodegenerative disorders including CTE, AD, PD, vascular dementia, stroke, and TBI. This study evaluates microvascular abnormalities observed at acute and chronic stages following TBI in rats, and examines pathological processes associated with these abnormalities. TBI in adult rats was induced by controlled cortical impact (CCI) of two magnitudes. Brain pathology was assessed in white matter of the corpus callosum for 24 h to 3 months following injury using immunohistochemistry (IHC). TBI resulted in focal microbleeds that were related to the magnitude of injury. At the lower magnitude of injury, microbleeds gradually increased over the 3 month duration of the study. IHC revealed TBI-induced focal abnormalities including blood-brain barrier (BBB) damage (IgG), endothelial damage (intercellular adhesion molecule 1 [ICAM-1]), activation of reactive microglia (ionized calcium binding adaptor molecule 1 [Iba1]), gliosis (glial fibrillary acidic protein [GFAP]) and macrophage-mediated inflammation (cluster of differentiation 68 [CD68]), all showing different temporal profiles. At chronic stages (up to 3 months), apparent myelin loss (Luxol fast blue) and scattered deposition of microbleeds were observed. Microbleeds were surrounded by glial scars and co-localized with CD68 and IgG puncta stainings, suggesting that localized BBB breakdown and inflammation were associated with vascular damage. Our results indicate that evolving white matter degeneration following experimental TBI is associated with significantly delayed microvascular damage and focal microbleeds that are temporally and regionally associated with development of punctate BBB breakdown and progressive inflammatory responses. Increased

  16. The Sequelae of Acute Purulent Meningitis in Childhood

    PubMed Central

    Hutchison, Patricia A.; Kovacs, Michael C.

    1963-01-01

    Of a series of 122 children suffering from acute purulent meningitis at the Children's Hospital, Winnipeg, in the years 1952-56, 12 (9.8%) succumbed, all deaths occurring in those 12 months of age or less. Fortyone of the survivors were re-studied 2.5 to 7.5 years after their acute illness to assess the nature and incidence of sequelae, the relationship of sequelae to the severity of the acute illness, and the correlation between the various methods of identifying sequelae. Five children exhibited psychiatric evidence of organic brain damage; seven, neurological abnormality; 11, electroencephalographic abnormality. Three had defective intelligence and nine psychological test evidence of organic brain damage. Children with sequelae tended to have several abnormal test results, the total number with neuropsychiatric and/or psychological sequelae being 11 (26%). There was a positive correlation between the severity of the acute illness and the presence of neuropsychiatric sequelae; also between neuropsychiatric sequelae, defective intelligence and psychological evidence of brain damage. No correlation existed between the electroencephalographic abnormality and neuropsychiatric defect. PMID:13955939

  17. [Organic brain damage in garage workers after long-term exposure to diesel exhaust fumes].

    PubMed

    Jensen, L K; Klausen, H; Elsnab, C

    1989-09-04

    Diesel motors are employed to an increasing extent for occupational transport and fumes from diesel driven vehicles constitute an increasing problem as regards atmospheric pollution but, in particular, they constitute a considerable risk to health for the workers exposed to diesel exhaust fumes in their daily work. In the clinic for occupational medicine, The University Hospital, Copenhagen, 14 garage workers were examined. Eleven of these had been exposed to great quantities of diesel exhaust fumes for 2 to 29 years. All 11 presented acute symptoms due to diesel exhaust fumes in the form of headache, vertigo, fatigue, irritation of mucous membranes, nausea, abdominal discomfort or diarrhoea. Seven persons had been employed for more than five years as garage workers. Six complained of failure of memory, difficulty in concentration, irritability, increased sleep requirement, psychological changes or reduced libido. Neuropsychological examination was undertaken in these six persons and in five of them organic brain damage, mainly of slight extent, was demonstrated. Diesel exhaust fumes contain many toxic substances: carbon monoxide, nitrous gases, sulphur oxides, aldehydes and hydrocarbons. It is not possible to indicate a single compound which is responsible for possible brain damage and a combination effect may well be concerned. This is a casuistic material. Only few investigations have previously been available which illustrated a possible connection between the neurotoxic effects and, in particular, brain damage. It is now considered important to emphasize that this may constitute a problem on exposure to diesel exhaust fumes.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Bilirubin and its oxidation products damage brain white matter

    PubMed Central

    Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch

    2014-01-01

    Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5 mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671

  19. Acute brain herniation from lead toxicity.

    PubMed

    Berkowitz, Sheldon; Tarrago, Rod

    2006-12-01

    A 4-year-old black boy was admitted to the hospital with vomiting, low-grade fever, and dehydration that were thought to be caused by viral gastroenteritis. He proceeded over the next 12 hours to rapidly deteriorate with brain herniation leading to brain death. The ultimate cause of death was found to be acute lead intoxication from a swallowed foreign body.

  20. Performance of brain-damaged and non-brain-damaged institutionalized children on the Minnesota Percepto-Diagnostic Test.

    PubMed

    Holland, J M; Fuller, G B; Barth, C E

    1982-01-01

    Examined the performance of 64 children on the Minnesota Percepto-Diagnostic test (MPD) who were diagnosed as either Brain-Damaged (BD) or emotionally impaired Non-Brain-Damaged (NBD). There were 31 children in the NBD group and 33 in the BD group. The MPD T-score and Actuarial Table significantly differentiated between the two groups. Seventy-four percent of the combined BD-NBD groups were identified correctly. Additional discriminant analysis on this sample yielded combined BD-NBD groups classification rates that ranged from 77% with the MPD variables Separation of Circle-Diamond (SPCD), Distortion of Circle-Diamond (DCD) and Distortion of Dots (DD) to 83% with the WISC-R three IQ scores plus the MPD T-score, SPCD and DD. The MPD T-score and Actuarial Table (MPD Two-Step Diagnosis) appeared to generalize to other populations more readily than discriminant analysis formulae, which tend to be sensitive to the samples from which they are derived.

  1. Acute organic brain syndrome due to drug-induced eosinophilia.

    PubMed

    Ng, S C; Lee, M K; Teh, A

    1989-11-01

    A 72 year old man developed acute organic brain syndrome associated with marked eosinophilia following self medication with a variety of drugs. Investigations revealed no other known causes of eosinophilia. Withdrawal of drugs resulted in dramatic drop in eosinophil count paralleled by clinical resolution of neurological problems. To our knowledge drug-induced eosinophilia has not previously been associated with acute organic brain syndrome.

  2. Relation between brain temperature and white matter damage in subacute carbon monoxide poisoning

    PubMed Central

    Fujiwara, Shunrou; Yoshioka, Yoshichika; Matsuda, Tsuyoshi; Nishimoto, Hideaki; Ogawa, Akira; Ogasawara, Kuniaki; Beppu, Takaaki

    2016-01-01

    In the previous studies, carbon monoxide (CO) poisoning showed an imbalance between cerebral perfusion and metabolism in the acute phase and the brain temperature (BT) in these patients remained abnormally high from the acute to the subacute phase. As observed in chronic ischemic patients, BT can continuously remain high depending on impairments of cerebral blood flow and metabolism; this is because heat removal and production system in the brain may mainly be maintained by the balance of these two factors; thus, cerebral white matter damage (WMD) affecting normal metabolism may affect the BT in patients with CO poisoning. Here, we investigated whether the BT correlates with the degree of WMD in patients with subacute CO-poisoning. In 16 patients with subacute CO-poisoning, the BT and degree of WMD were quantitatively measured by using magnetic resonance spectroscopy and the fractional anisotropy (FA) value from diffusion tensor imaging dataset. Consequently, the BT significantly correlated with the degree of WMD. In particular, BT observed in patients with delayed neuropsychiatric sequelae, a crucial symptom with sudden-onset in the chronic phase after CO exposure, might indicate cerebral hypo-metabolism and abnormal hemodynamics like “matched perfusion,” in which the reduced perfusion matches the reduced metabolism. PMID:27819312

  3. [Disorders of emotional control in schizophrenia and unilateral brain damage].

    PubMed

    Kucharska-Pietura, K; Kopacz, G

    2001-01-01

    Although, emotions play a crucial role in schizophrenia, the changes in emotional dimension still remain controversial. The aim of our work was: 1) to compare the disorders of emotional control between the examined groups: S--non-chronic schizophrenic patients (n = 50), CS--chronic schizophrenic patients (n = 50), N--healthy controls (n = 50), R--right brain-damaged patients (n = 30), and L--left brain-damaged patients (n = 30), 2) to assess a level of impairment of emotional control, its relation to lateralised hemisphere damage and chronicity of schizophrenic process. All psychiatric subjects were diagnosed as paranoid schizophrenics according to DSM-IV criteria and were scored on the PANSS scale after four weeks of neuroleptic treatment. Brain-damaged patients were included if they experienced single-episode cerebrovascular accidents causing right or left hemisphere damage (confirmed in CT scan reports). The neurological patients were examined at least 3 weeks after the onset of cerebrovascular episode. Emotional control was assessed using Brzeziński Questionnaire of Emotional Control aimed at the evaluation of: 1) control in perception and interpretation of emotive situation, 2) emotional arousal, 3) emotional-rational motivation, and 4) acting caused by emotions. Our results revealed significantly greater impairment of emotional control in schizophrenics (chronic schizophrenics, in particular) compared to healthy volunteers. Chronicity of the schizophrenic process seemed to intensify emotional control impairment. Interestingly, no significant qualitative and quantitative differences in emotional control mechanism between unilateral brain-damaged patients and the control group were found.

  4. Acute organic brain syndrome due to drug-induced eosinophilia.

    PubMed Central

    Ng, S. C.; Lee, M. K.; Teh, A.

    1989-01-01

    A 72 year old man developed acute organic brain syndrome associated with marked eosinophilia following self medication with a variety of drugs. Investigations revealed no other known causes of eosinophilia. Withdrawal of drugs resulted in dramatic drop in eosinophil count paralleled by clinical resolution of neurological problems. To our knowledge drug-induced eosinophilia has not previously been associated with acute organic brain syndrome. PMID:2616421

  5. Resolvin D1 Halts Remote Neuroinflammation and Improves Functional Recovery after Focal Brain Damage Via ALX/FPR2 Receptor-Regulated MicroRNAs.

    PubMed

    Bisicchia, Elisa; Sasso, Valeria; Catanzaro, Giuseppina; Leuti, Alessandro; Besharat, Zein Mersini; Chiacchiarini, Martina; Molinari, Marco; Ferretti, Elisabetta; Viscomi, Maria Teresa; Chiurchiù, Valerio

    2018-01-22

    Remote damage is a secondary phenomenon that usually occurs after a primary brain damage in regions that are distant, yet functionally connected, and that is critical for determining the outcomes of several CNS pathologies, including traumatic brain and spinal cord injuries. The understanding of remote damage-associated mechanisms has been mostly achieved in several models of focal brain injury such as the hemicerebellectomy (HCb) experimental paradigm, which helped to identify the involvement of many key players, such as inflammation, oxidative stress, apoptosis and autophagy. Currently, few interventions have been shown to successfully limit the progression of secondary damage events and there is still an unmet need for new therapeutic options. Given the emergence of the novel concept of resolution of inflammation, mediated by the newly identified ω3-derived specialized pro-resolving lipid mediators, such as resolvins, we reported a reduced ability of HCb-injured animals to produce resolvin D1 (RvD1) and an increased expression of its target receptor ALX/FPR2 in remote brain regions. The in vivo administration of RvD1 promoted functional recovery and neuroprotection by reducing the activation of Iba-1+ microglia and GFAP+ astrocytes as well as by impairing inflammatory-induced neuronal cell death in remote regions. These effects were counteracted by intracerebroventricular neutralization of ALX/FPR2, whose activation by RvD1 also down-regulated miR-146b- and miR-219a-1-dependent inflammatory markers. In conclusion, we propose that innovative therapies based on RvD1-ALX/FPR2 axis could be exploited to curtail remote damage and enable neuroprotective effects after acute focal brain damage.

  6. Relating Brain Damage to Brain Plasticity in Patients With Multiple Sclerosis

    PubMed Central

    Tomassini, Valentina; Johansen-Berg, Heidi; Jbabdi, Saad; Wise, Richard G.; Pozzilli, Carlo; Palace, Jacqueline; Matthews, Paul M.

    2013-01-01

    Background Failure of adaptive plasticity with increasing pathology is suggested to contribute to progression of disability in multiple sclerosis (MS). However, functional impairments can be reduced with practice, suggesting that brain plasticity is preserved even in patients with substantial damage. Objective Here, functional magnetic resonance imaging (fMRI) was used to probe systems-level mechanisms of brain plasticity associated with improvements in visuomotor performance in MS patients and related to measures of microstructural damage. Methods 23 MS patients and 12 healthy controls underwent brain fMRI during the first practice session of a visuomotor task (short-term practice) and after 2 weeks of daily practice with the same task (longer-term practice). Participants also underwent a structural brain MRI scan. Results Patients performed more poorly than controls at baseline. Nonetheless, with practice, patients showed performance improvements similar to controls and independent of the extent of MRI measures of brain pathology. Different relationships between performance improvements and activations were found between groups: greater short-term improvements were associated with lower activation in the sensorimotor, posterior cingulate, and parahippocampal cortices for patients, whereas greater long-term improvements correlated with smaller activation reductions in the visual cortex of controls. Conclusions Brain plasticity for visuomotor practice is preserved in MS patients despite a high burden of cerebral pathology. Cognitive systems different from those acting in controls contribute to this plasticity in patients. These findings challenge the notion that increasing pathology is accompanied by an outright failure of adaptive plasticity, supporting a neuroscientific rationale for recovery-oriented strategies even in chronically disabled patients. PMID:22328685

  7. Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Wu, Honglu

    Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.

  8. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    ERIC Educational Resources Information Center

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  9. Acute liver damage and ecstasy ingestion.

    PubMed Central

    Ellis, A J; Wendon, J A; Portmann, B; Williams, R

    1996-01-01

    Eight cases of ecstasy related acute liver damage referred to a specialised liver unit are described. Two patients presented after collapse within six hours of ecstasy ingestion with hyperthermia, hypotension, fitting, and subsequently disseminated intravascular coagulation with rhabdomyolysis together with biochemical evidence of severe hepatic damage. One patient recovered and the other with evidence of hyperacute liver failure was transplanted but subsequently died, histological examination showing widespread microvesicular fatty change. Four patients presented with acute liver failure without hyperthermia. All four fulfilled criteria for transplantation, one died before a donor organ became available, and two died within one month post-transplantation of overwhelming sepsis. Histological examination showed submassive lobular collapse. Two patients presented with abdominal pain and jaundice and recovered over a period of three weeks; histological examination showed a lobular hepatitis with cholestasis. Patients developing jaundice or with evidence of hepatic failure particularly encephalopathy and prolongation of the international normalised ratio, or both, whether or not preceded by hyperthermia, should be referred to a specialised liver unit as liver transplantation probably provides the only chance of recovery. Images Figure 1 Figure 2 Figure 3 PMID:8675102

  10. Glutamate Excitoxicity Is the Key Molecular Mechanism Which Is Influenced by Body Temperature during the Acute Phase of Brain Stroke

    PubMed Central

    Campos, Francisco; Pérez-Mato, María; Agulla, Jesús; Blanco, Miguel; Barral, David; Almeida, Ángeles; Brea, David; Waeber, Christian; Castillo, José; Ramos-Cabrer, Pedro

    2012-01-01

    Glutamate excitotoxicity, metabolic rate and inflammatory response have been associated to the deleterious effects of temperature during the acute phase of stroke. So far, the association of temperature with these mechanisms has been studied individually. However, the simultaneous study of the influence of temperature on these mechanisms is necessary to clarify their contributions to temperature-mediated ischemic damage. We used non-invasive Magnetic Resonance Spectroscopy to simultaneously measure temperature, glutamate excitotoxicity and metabolic rate in the brain in animal models of ischemia. The immune response to ischemia was measured through molecular serum markers in peripheral blood. We submitted groups of animals to different experimental conditions (hypothermia at 33°C, normothermia at 37°C and hyperthermia at 39°C), and combined these conditions with pharmacological modulation of glutamate levels in the brain through systemic injections of glutamate and oxaloacetate. We show that pharmacological modulation of glutamate levels can neutralize the deleterious effects of hyperthermia and the beneficial effects of hypothermia, however the analysis of the inflammatory response and metabolic rate, demonstrated that their effects on ischemic damage are less critical than glutamate excitotoxity. We conclude that glutamate excitotoxicity is the key molecular mechanism which is influenced by body temperature during the acute phase of brain stroke. PMID:22952923

  11. Glutamate excitoxicity is the key molecular mechanism which is influenced by body temperature during the acute phase of brain stroke.

    PubMed

    Campos, Francisco; Pérez-Mato, María; Agulla, Jesús; Blanco, Miguel; Barral, David; Almeida, Angeles; Brea, David; Waeber, Christian; Castillo, José; Ramos-Cabrer, Pedro

    2012-01-01

    Glutamate excitotoxicity, metabolic rate and inflammatory response have been associated to the deleterious effects of temperature during the acute phase of stroke. So far, the association of temperature with these mechanisms has been studied individually. However, the simultaneous study of the influence of temperature on these mechanisms is necessary to clarify their contributions to temperature-mediated ischemic damage. We used non-invasive Magnetic Resonance Spectroscopy to simultaneously measure temperature, glutamate excitotoxicity and metabolic rate in the brain in animal models of ischemia. The immune response to ischemia was measured through molecular serum markers in peripheral blood. We submitted groups of animals to different experimental conditions (hypothermia at 33°C, normothermia at 37°C and hyperthermia at 39°C), and combined these conditions with pharmacological modulation of glutamate levels in the brain through systemic injections of glutamate and oxaloacetate. We show that pharmacological modulation of glutamate levels can neutralize the deleterious effects of hyperthermia and the beneficial effects of hypothermia, however the analysis of the inflammatory response and metabolic rate, demonstrated that their effects on ischemic damage are less critical than glutamate excitotoxity. We conclude that glutamate excitotoxicity is the key molecular mechanism which is influenced by body temperature during the acute phase of brain stroke.

  12. PREDICTING APHASIA TYPE FROM BRAIN DAMAGE MEASURED WITH STRUCTURAL MRI

    PubMed Central

    Yourganov, Grigori; Smith, Kimberly G.; Fridriksson, Julius; Rorden, Chris

    2015-01-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca’s, Wernicke’s, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery. Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients’ aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. PMID:26465238

  13. Predicting aphasia type from brain damage measured with structural MRI.

    PubMed

    Yourganov, Grigori; Smith, Kimberly G; Fridriksson, Julius; Rorden, Chris

    2015-12-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca's, Wernicke's, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery (WAB). Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients' aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine - SVM) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Postconditioning with repeated mild hypoxia protects neonatal hypoxia-ischemic rats against brain damage and promotes rehabilitation of brain function.

    PubMed

    Deng, Qingqing; Chang, Yanqun; Cheng, Xiaomao; Luo, Xingang; Zhang, Jing; Tang, Xiaoyuan

    2018-05-01

    Mild hypoxia conditioning induced by repeated episodes of transient ischemia is a clinically applicable method for protecting the brain against injury after hypoxia-ischemic brain damage. To assess the effect of repeated mild hypoxia postconditioning on brain damage and long-term neural functional recovery after hypoxia-ischemic brain damage. Rats received different protocols of repeated mild hypoxia postconditioning. Seven-day-old rats with hypoxia ischemic brain damage (HIBD) from the left carotid ligation procedure plus 2 h hypoxic stress (8% O 2 at 37 °C) were further receiving repeated mild hypoxia intermittently. The gross anatomy, functional analyses, hypoxia inducible factor 1 alpha (HIF-1a) expression, and neuronal apoptosis of the rat brains were subsequently examined. Compared to the HIBD group, rats postconditioned with mild hypoxia had elevated HIF-1a expression, more Nissl-stain positive cells in their brain tissue and their brains functioned better in behavioral analyses. The recovery of the brain function may be directly linked to the inhibitory effect of HIF-1α on neuronal apoptosis. Furthermore, there were significantly less neuronal apoptosis in the hippocampal CA1 region of the rats postconditioned with mild hypoxia, which might also be related to the higher HIF-1a expression and better brain performance. Overall, these results suggested that postconditioning of neonatal rats after HIBD with mild hypoxia increased HIF-1a expression, exerted a neuroprotective effect and promoted neural functional recovery. Repeated mild hypoxia postconditioning protects neonatal rats with HIBD against brain damage and improves neural functional recovery. Our results may have clinical implications for treating infants with HIBD. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. The structural basis of moderate disability after traumatic brain damage

    PubMed Central

    Adams, J; Graham, D; Jennett, B

    2001-01-01

    The objective was to discover the nature of brain damage in survivors of head injury who are left with moderate disability. Macroscopic and microscopic examination was carried out on the brains of 20 persons who had died long after a head injury that had been treated in a neurosurgical unit. All had become independent but had various disabilities (moderate disability on the Glasgow outcome scale) Most deaths had been sudden, which had led to their referral from forensic pathologists. Post-traumatic epilepsy was a feature in 75%. An intracranial haematoma had been evacuated in 75%, and in 11 of the 15 with epilepsy. Diffuse axonal injury was found in six patients, five of the mildest type (grade 1) and one of grade 2. No patient had diffuse thalamic damage but one had a small focal ischaemic lesion in the thalamus. No patient had severe ischaemic brain damage, but three had moderate lesions which were bilateral in only one. No patient had severe cortical contusions. In conclusion, the dominant lesion was focal damage from an evacuated intracranial haematoma. Severe diffuse damage was not found, with diffuse axonal injury only mild and thalamic damage in only one patient.

 PMID:11561038

  16. Sex Differences in the Effects of Unilateral Brain Damage on Intelligence

    NASA Astrophysics Data System (ADS)

    Inglis, James; Lawson, J. S.

    1981-05-01

    A sexual dimorphism in the functional asymmetry of the damaged human brain is reflected in a test-specific laterality effect in male but not in female patients. This sex difference explains some contradictions concerning the effects of unilateral brain damage on intelligence in studies in which the influence of sex was overlooked.

  17. Interhemispheric and Intrahemispheric Control of Emotion: A Focus on Unilateral Brain Damage.

    ERIC Educational Resources Information Center

    Borod, Joan C.

    1992-01-01

    Discusses neocortical contributions to emotional processing. Examines parameters critical to neuropsychological study of emotion: interhemispheric and intrahemispheric factors, processing mode, and communication channel. Describes neuropsychological theories of emotion. Reviews studies of right-brain-damaged, left-brain-damaged, and normal adults,…

  18. Induction of acute brain injury in mice by irradiation with high-LET charged particles

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Hong

    The present study was performed to evaluate the induction of acute brain injury in mice after 235 Mev/u carbon ion irradiation. In our study, young outbred Kunming mice were divided into four treatment groups according to the penetration depth of carbon ions. Animals were irradiated with a sublethal dose of carbon ion beams prior to the Bragg curve. An experiment was performed to evaluate the acute alterations in histology, DNA double-strand breaks (DNA DSBs) as well as p53and Bax expression in the brain 96 h post-irradiation. The results demonstrated that various histopathological changes, a significant number of DNA DSBs and elevated p53 and Bax protein expression were induced in the brain following exposure to carbon ions. This was particularly true for mice irradiated with ions having a 9.1 cm-pentration depth, indicating that carbon ions can led to deleterious lesions in the brain of young animals within 96 h. Moreover, there was a remarkable increase in DNA DSBs and in the severity of histopathological changes as the penetration depths of ions increased, which may be associated with the complex track structure of heavy ions. These data reveal that carbon ions can promote serious neuropathological degeneration in the cerebral cortex of young mice. Given that damaged neurons cannot regenerate, these findings warrant further investigation of the adverse effects of the space radiation and the passage of a therapeutic heavy ion beam in the plateau region of the Bragg curve through healthy brain tissue.

  19. FREQUENCY CONTENT OF CARTILAGE IMPACT FORCE SIGNAL REFLECTS ACUTE HISTOLOGIC STRUCTURAL DAMAGE.

    PubMed

    Heiner, Anneliese D; Martin, James A; McKinley, Todd O; Goetz, Jessica E; Thedens, Daniel R; Brown, Thomas D

    2012-10-01

    The objective of this study was to determine if acute cartilage impact damage could be predicted by a quantification of the frequency content of the impact force signal. Osteochondral specimens excised from bovine lateral tibial plateaus were impacted with one of six impact energies. Each impact force signal underwent frequency analysis, with the amount of higher-frequency content (percent of frequency spectrum above 1 KHz) being registered. Specimens were histologically evaluated to assess acute structural damage (articular surface cracking and cartilage crushing) resulting from the impact. Acute histologic structural damage to the cartilage had higher concordance with the high-frequency content measure than with other mechanical impact measures (delivered impact energy, impact maximum stress, and impact maximum stress rate of change). This result suggests that the frequency content of an impact force signal, specifically the proportion of higher-frequency components, can be used as a quick surrogate measure for acute structural cartilage injury. Taking advantage of this relationship could reduce the time and expense of histological processing needed to morphologically assess cartilage damage, especially for purposes of initial screening when evaluating new impaction protocols.

  20. The influence of victim characteristics on potential jurors' perceptions of brain damage in mild traumatic brain injury.

    PubMed

    Guilmette, T J; Temple, R O; Kennedy, M L; Weiler, M D; Ruffolo, L F; Dufresne, E

    2005-11-01

    To determine the influence of victim/plaintiff sex, occupation and intoxication status at the time of injury on potential jurors' judgement about the presence of brain damage in mild traumatic brain injury (MTBI). Survey. One of eight scenarios describing a MTBI from a motor vehicle accident was presented to 460 participants at a Department of Motor Vehicles. Victim sex, occupation (accountant or cafeteria worker) and alcohol intoxication status at the time of injury (sober or intoxicated) were manipulated across eight scenarios. Participants rated whether the victim's complaints at 6 months post-injury were the result of brain damage. Ratings were influenced by victim occupation and intoxication status (chi2>5.3, p<0.03), but not the sex of the victim. The occupational and intoxication status of MTBI victims may influence potential jurors' decision about the presence of brain damage.

  1. Air pollution and brain damage.

    PubMed

    Calderón-Garcidueñas, Lilian; Azzarelli, Biagio; Acuna, Hilda; Garcia, Raquel; Gambling, Todd M; Osnaya, Norma; Monroy, Sylvia; DEL Tizapantzi, Maria Rosario; Carson, Johnny L; Villarreal-Calderon, Anna; Rewcastle, Barry

    2002-01-01

    Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.

  2. Stress hormonal changes in the brain and plasma after acute noise exposure in mice.

    PubMed

    Jin, Sang Gyun; Kim, Min Jung; Park, So Young; Park, Shi Nae

    2017-06-01

    To investigate the effects of acute noise stress on two amine stress hormones, norepinephrine (NE) and 5-hydroxyindoleacetic acid (5-HIAA) in the brain and plasma of mice after noise exposure. Mice were grouped into the control and noise groups. Mice in the noise group were exposed to white noise of 110dB sound pressure level for 60min. Auditory brainstem response thresholds, distortion product otoacoustic emissions, the organ of Corti grading scores, western blots of NE/5-HIAA in the whole brain and hippocampus, and the plasma levels of NE/5-HIAA were compared between the two groups. Significant hearing loss and cochlear damage were demonstrated in the noise group. NE and 5-HIAA in the hippocampus were elevated in the noise group (p=0.019/0.022 for NE/5-HIAA vs. the control). Plasma levels of NE and 5-HIAA were not statistically different between the groups (p=0.052/0.671 for NE/5-HIAA). Hearing loss with outer hair cell dysfunction and morphological changes of the organ of Corti after noise exposure in C57BL/6 mice proved the reliability of our animal model as an acute noise stress model. NE and 5-HIAA are suggested to be the potential biomarkers for acute noise stress in the hippocampus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Categorization skills and recall in brain damaged children: a multiple case study.

    PubMed

    Mello, Claudia Berlim de; Muszkat, Mauro; Xavier, Gilberto Fernando; Bueno, Orlando Francisco Amodeo

    2009-09-01

    During development, children become capable of categorically associating stimuli and of using these relationships for memory recall. Brain damage in childhood can interfere with this development. This study investigated categorical association of stimuli and recall in four children with brain damages. The etiology, topography and timing of the lesions were diverse. Tasks included naming and immediate recall of 30 perceptually and semantically related figures, free sorting, delayed recall, and cued recall of the same material. Traditional neuropsychological tests were also employed. Two children with brain damage sustained in middle childhood relied on perceptual rather than on categorical associations in making associations between figures and showed deficits in delayed or cued recall, in contrast to those with perinatal lesions. One child exhibited normal performance in recall despite categorical association deficits. The present results suggest that brain damaged children show deficits in categorization and recall that are not usually identified in traditional neuropsychological tests.

  4. Brain Damage in School Age Children.

    ERIC Educational Resources Information Center

    Haywood, H. Carl, Ed.

    The product of a professional workshop, 10 papers discuss brain damage. An introduction to clinical neuropsychology is presented by H. Carl Haywood. A section on neurological foundations includes papers on the organization of the central nervous system by Jack T. Tapp and Lance L. Simpson, on epilepsy by Angela T. Folsom, and on organic language…

  5. Zebrafish is a predictive model for identifying compounds that protect against brain toxicity in severe acute organophosphorus intoxication.

    PubMed

    Faria, Melissa; Prats, Eva; Padrós, Francesc; Soares, Amadeu M V M; Raldúa, Demetrio

    2017-04-01

    Acute organophosphorus (OP) intoxication is a worldwide clinical and public health problem. In addition to cholinergic crisis, neurodegeneration and brain damage are hallmarks of the severe form of this toxidrome. Recently, we generated a chemical model of severe acute OP intoxication in zebrafish that is characterized by altered head morphology and brain degeneration. The pathophysiological pathways resulting in brain toxicity in this model are similar to those described in humans. The aim of this study was to assess the predictive power of this zebrafish model by testing the effect of a panel of drugs that provide protection in mammalian models. The selected drugs included "standard therapy" drugs (atropine and pralidoxime), reversible acetylcholinesterase inhibitors (huperzine A, galantamine, physostigmine and pyridostigmine), N-methyl-D-aspartate (NMDA) receptor antagonists (MK-801 and memantine), dual-function NMDA receptor and acetylcholine receptor antagonists (caramiphen and benactyzine) and anti-inflammatory drugs (dexamethasone and ibuprofen). The effects of these drugs on zebrafish survival and the prevalence of abnormal head morphology in the larvae exposed to 4 µM chlorpyrifos oxon [1 × median lethal concentration (LC 50 )] were determined. Moreover, the neuroprotective effects of pralidoxime, memantine, caramiphen and dexamethasone at the gross morphological level were confirmed by histopathological and transcriptional analyses. Our results demonstrated that the zebrafish model for severe acute OP intoxication has a high predictive value and can be used to identify new compounds that provide neuroprotection against severe acute OP intoxication.

  6. RADIATION DAMAGE TO THE BRAIN--A NEW SYNDROME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rider, W.D.

    1963-06-01

    Three cases of postirradiation brain damage considered to be a new clinical and pathological entity are described. Three women were irradiated for tumors in and around the left middle ear. Treatment plans and isodose distributions show that a maximum tissue dose of about 5500 rad of Co/sup 60/ gamma radiation was delivered to each patient. The treatment time was approximates 1 month, but the fractionation was different. In the first case there were 20, the second 27, and the third 16 fractions. The clinical course was similar. Clinical examination showed gross cerebellar ataxia, horizontal nystagmus, and Romberg's sign. In themore » first case there was also paralysis of the 6th cranial nerve and an extensor plantar response. The first patient died four weeks after the onset of symptoms, while the other two started to show signs of recovery after four weeks, made a complete recovery in about 8-8 weeks, and are alive and well six years later. An autopsy on the first patient showed disseminsted demyelination in a patchy fashion. Plaques were found in the white matter of the cerebrum, cerebellum, and brain stem, where the dose was highest, but there were lesions on the opposite side also where the dose was much lower. There was only a minor degree of blood vessel change, and it was of an early kind, unlike the more commonly seen fibrinoid necrosis of arterial walls. Secondiy, passing through the areas of demyelination were normal neurons and axons. Around the plaques, astrocytic proliferation and clasmatodendrosis were seen, and around this a wall of microglial cells. It was considered that radiation might have invoked an allergic or autoimmune response. In view of the very marked similarity, it is not unreasonable to assume that all 3 patients had similar pathological processes and that some, as yet unknown, factor permitted two to live and allowed one to die. The points of difference from previously defined syndrome are as follows: the latent period between

  7. [Experimental study of acute brain swelling under acute intracranial hypertension (author's transl)].

    PubMed

    Shigemori, M; Watanabe, M; Kuramoto, S

    1976-12-01

    There are many problems about the cause, pathophysiology and treatment of acute brain swelling under intracranial hypertension frequently encountered in the neurosurgical clinics. Generally, rapid increase of the cerebral vasoparesis caused by unknown etiology is thought to be the main cause of acute brain swelling under intracranial hypertension. Moreover, disturbance of the cerebral venous circulatory system is discussed recently by many authors. But, research from the point of systemic respiration and hemodynamics is necessary for resolving these problems. This experiment was designed to study the effects of respiration and hemodynamics on the cerebral vasoparesis. Using 22 adult dogs, acute intracranial hypertension was produced by epidural balloon inflation sustained at the level of 300 - 400 mmH2O. Simultaneously with measurement of intracranial pressure at the epidural space, superior sagittal sinus pressure, respirogram, systemic blood pressure (femoral artery), central venous pressure, common carotid blood flow, EKG and bipolar lead EEG were monitored continuously. The experimental group was divided by the respiratory loading into 5 groups as follows: control (6 cases), 10% CO2 hypercapnia (4 cases), 10% O2 hypoxia (4 cases), stenosis of airway (5 cases), 100% O2-controled respiration (3 cases). 1) Cerebral vasoparesis under acute intracranial hypertension took place earlier and showed more rapid progression in groups of stenosis of airway, hypercapnia and hypoxia than control group of spontaneous respiration in room air. No occurrence of cerebral vasoparesis was found out in a group of 100% O2 controlled respiration. It is proved that increased airway resistance or asphyxia, hypercapnia and hypoxia have strictly reference to the occurrence and progression of cerebral vasoparesis and for the prevention of cerebral vasoparesis, correct 100% O2 cont rolled respiration is effective. 2) From the hemodynamic change, the progression of rapid increase of cerebral

  8. Blocking NMDA receptors delays death in rats with acute liver failure by dual protective mechanisms in kidney and brain.

    PubMed

    Cauli, Omar; González-Usano, Alba; Cabrera-Pastor, Andrea; Gimenez-Garzó, Carla; López-Larrubia, Pilar; Ruiz-Sauri, Amparo; Hernández-Rabaza, Vicente; Duszczyk, Malgorzata; Malek, Michal; Lazarewicz, Jerzy W; Carratalá, Arturo; Urios, Amparo; Miguel, Alfonso; Torregrosa, Isidro; Carda, Carmen; Montoliu, Carmina; Felipo, Vicente

    2014-06-01

    Treatment of patients with acute liver failure (ALF) is unsatisfactory and mortality remains unacceptably high. Blocking NMDA receptors delays or prevents death of rats with ALF. The underlying mechanisms remain unclear. Clarifying these mechanisms will help to design more efficient treatments to increase patient's survival. The aim of this work was to shed light on the mechanisms by which blocking NMDA receptors delays rat's death in ALF. ALF was induced by galactosamine injection. NMDA receptors were blocked by continuous MK-801 administration. Edema and cerebral blood flow were assessed by magnetic resonance. The time course of ammonia levels in brain, muscle, blood, and urine; of glutamine, lactate, and water content in brain; of glomerular filtration rate and kidney damage; and of hepatic encephalopathy (HE) and intracranial pressure was assessed. ALF reduces kidney glomerular filtration rate (GFR) as reflected by reduced inulin clearance. GFR reduction is due to both reduced renal perfusion and kidney tubular damage as reflected by increased Kim-1 in urine and histological analysis. Blocking NMDA receptors delays kidney damage, allowing transient increased GFR and ammonia elimination which delays hyperammonemia and associated changes in brain. Blocking NMDA receptors does not prevent cerebral edema or blood-brain barrier permeability but reduces or prevents changes in cerebral blood flow and brain lactate. The data show that dual protective effects of MK-801 in kidney and brain delay cerebral alterations, HE, intracranial pressure increase and death. NMDA receptors antagonists may increase survival of patients with ALF by providing additional time for liver transplantation or regeneration.

  9. Analysis of brain and spinal cord lesions to occult brain damage in seropositive and seronegative neuromyelitis optica.

    PubMed

    Sun, Jie; Sun, Xianting; Zhang, Ningnannan; Wang, Qiuhui; Cai, Huanhuan; Qi, Yuan; Li, Ting; Qin, Wen; Yu, Chunshui

    2017-09-01

    According to aquaporin-4 antibody (AQP4-Ab), neuromyelitis optica (NMO) can be divided into seropositive and seronegative subgroups. The purpose of this study was to a) compare the distribution of spinal cord and brain magnetic resonance imaging (MRI) lesions between seropositive and seronegative NMO patients; b) explore occult brain damage in seropositive and seronegative NMO patients; and c) explore the contribution of visible lesions to occult grey and white matter damage in seropositive and seronegative NMO patients. Twenty-two AQP4-Ab seropositive and 14 seronegative NMO patients and 30 healthy controls were included in the study. Two neuroradiologists independently measured the brain lesion volume (BLV) and the length of spinal cord lesion (LSCL) and recorded the region of brain lesions. The normal-appearing grey matter volume (NAGM-GMV) and white matter fractional anisotropy (NAWM-FA) were calculated for each subject to evaluate occult brain damage. The seropositive patients displayed more extensive damage in the spinal cord than the seronegative patients, and the seronegative group had a higher proportion of patients with brainstem lesions (28.57%) than the seropositive group (4.55%, P=0.064). Both NMO subgroups exhibited reduced NAGM-GMV and NAWM-FA compared with the healthy controls. NAGM-GMV was negatively correlated with LSCL in the seropositive group (r s =-0.444, P=0.044) and with BLV in the seronegative group (r s =-0.768, P=0.002). NAWM-FA was also negatively correlated with BLV in the seropositive group (r s =-0.682, P<0.001). Our findings suggest that the occult brain damage in these two NMO subgroups may be due to different mechanisms, which need to be further clarified. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Childhood Aphasia and Brain Damage: Volume II, Differential Diagnosis.

    ERIC Educational Resources Information Center

    Rappaport, Sheldon R., Ed.

    Addressing itself to factors leading to the misdiagnosis of the brain damaged child and the aphasic child, the Pathway School's Second Annual Institute considered the differences between the following: the aphasic and the aphasoid child; the sensory aphasic and the deaf child; the psychotic and the psychotic aphasic child; childhood brain damage…

  11. Preinduction of HSP70 promotes hypoxic tolerance and facilitates acclimatization to acute hypobaric hypoxia in mouse brain

    PubMed Central

    Zhang, Kuan; Zhao, Tong; Huang, Xin; Liu, Zhao-hui; Xiong, Lei; Li, Ming-ming; Wu, Li-ying; Zhao, Yong-qi

    2008-01-01

    It has been shown that induction of HSP70 by administration of geranylgeranylacetone (GGA) leads to protection against ischemia/reperfusion injury. The present study was performed to determine the effect of GGA on the survival of mice and on brain damage under acute hypobaric hypoxia. The data showed that the mice injected with GGA survived significantly longer than control animals (survival time of 9.55 ± 3.12 min, n = 16 vs. controls at 4.28 ± 4.29 min, n = 15, P < 0.005). Accordingly, the cellular necrosis or degeneration of the hippocampus and the cortex induced by sublethal hypoxia for 6 h could be attenuated by preinjection with GGA, especially in the CA2 and CA3 regions of the hippocampus. In addition, the activity of nitric oxide synthase (NOS) of the hippocampus and the cortex was increased after exposure to sublethal hypoxia for 6 h but could be inhibited by the preinjection of GGA. Furthermore, the expression of HSP70 was significantly increased at 1 h after GGA injection. These results suggest that administration of GGA improved survival rate and prevented acute hypoxic damage to the brain and that the underlying mechanism involved induction of HSP70 and inhibition of NOS activity. PMID:19105051

  12. Sirtuin 5 as a novel target to blunt blood-brain barrier damage induced by cerebral ischemia/reperfusion injury.

    PubMed

    Diaz-Cañestro, Candela; Merlini, Mario; Bonetti, Nicole R; Liberale, Luca; Wüst, Patricia; Briand-Schumacher, Sylvie; Klohs, Jan; Costantino, Sara; Miranda, Melroy; Schoedon-Geiser, Gabriele; Kullak-Ublick, Gerd A; Akhmedov, Alexander; Paneni, Francesco; Beer, Jürg H; Lüscher, Thomas F; Camici, Giovanni G

    2018-06-01

    In acute ischemic stroke (AIS) patients, impaired blood-brain barrier (BBB) integrity is associated with hemorrhagic transformation and worsened outcome. Yet, the mechanisms underlying these relationships are poorly understood and consequently therapeutic strategies are lacking. This study sought to determine whether SIRT5 contributes to BBB damage following I/R brain injury. SIRT5 knockout (SIRT5 -/- ) and wild type (WT) mice underwent transient middle cerebral artery (MCA) occlusion (tMCAO) followed by 48h of reperfusion. Genetic deletion of SIRT5 decreased infarct size, improved neurological function and blunted systemic inflammation following stroke. Similar effects were also achieved by in vivo SIRT5 silencing. Immunohistochemical analysis revealed decreased BBB leakage and degradation of the tight junction protein occludin in SIRT5 -/- mice exposed to tMCAO as compared to WT. In primary human brain microvascular endothelial cells (HBMVECs) exposed to hypoxia/reoxygenation (H/R), SIRT5 silencing decreased endothelial permeability and upregulated occludin and claudin-5; this effect was prevented by the PI3K inhibitor wortmannin. Lastly, SIRT5 gene expression was increased in peripheral blood monocytes (PBMCs) of AIS patients at 6h after onset of stroke compared to sex- and age-matched healthy controls. SIRT5 is upregulated in PBMCs of AIS patients and in the MCA of WT mice exposed to tMCAO; SIRT5 mediates I/R-induced brain damage by increasing BBB permeability through degradation of occludin. This effect was reproduced in HBMVECs exposed to H/R, mediated by the PI3K/Akt pathway. Our findings shed new light on the mechanisms of I/R-dependent brain damage and suggest SIRT5 as a novel therapeutic target. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms.

    PubMed

    Skelly, Donal T; Griffin, Éadaoin W; Murray, Carol L; Harney, Sarah; O'Boyle, Conor; Hennessy, Edel; Dansereau, Marc-Andre; Nazmi, Arshed; Tortorelli, Lucas; Rawlins, J Nicholas; Bannerman, David M; Cunningham, Colm

    2018-06-06

    Systemic inflammation can impair cognition with relevance to dementia, delirium and post-operative cognitive dysfunction. Episodes of delirium also contribute to rates of long-term cognitive decline, implying that these acute events induce injury. Whether systemic inflammation-induced acute dysfunction and acute brain injury occur by overlapping or discrete mechanisms remains unexplored. Here we show that systemic inflammation, induced by bacterial LPS, produces both working-memory deficits and acute brain injury in the degenerating brain and that these occur by dissociable IL-1-dependent processes. In normal C57BL/6 mice, LPS (100 µg/kg) did not affect working memory but impaired long-term memory consoliodation. However prior hippocampal synaptic loss left mice selectively vulnerable to LPS-induced working memory deficits. Systemically administered IL-1 receptor antagonist (IL-1RA) was protective against, and systemic IL-1β replicated, these working memory deficits. Dexamethasone abolished systemic cytokine synthesis and was protective against working memory deficits, without blocking brain IL-1β synthesis. Direct application of IL-1β to ex vivo hippocampal slices induced non-synaptic depolarisation and irrevesible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI -/- -dependent fashion. The data suggest that LPS induces working memory dysfunction via circulating IL-1β but direct hippocampal action of IL-1β causes neuronal dysfunction and may drive neuronal death. The data suggest that acute systemic inflammation produces both reversible cognitive deficits, resembling delirium, and acute brain injury contributing to long-term cognitive impairment but that these events are mechanistically dissociable. These data have significant implications for management of cognitive dysfunction during acute illness.

  14. Fluid Intake Related to Brain Edema in Acute Middle Cerebral Artery Infarction.

    PubMed

    Dharmasaroja, Pornpatr A

    2016-02-01

    Evidence of the appropriate amount of fluid intake during the first few days after acute stroke was scarce. Concerns were raised in patients with acute malignant middle cerebral infarction, who tended to have malignant brain edema later. The purpose of the study was to evaluate the effect of fluid intake on the occurrence of malignant brain edema in patients with acute middle cerebral artery infarction. Patients with acute middle cerebral artery infarction who had National Institute of Health Stroke Scale (NIHSS) score of at least 15 were included. Baseline characteristics and amount of fluid intake during the first few days were compared in patients with and without malignant brain edema. One hundred ninety-three patients were studied. Mean NIHSS score was 20. Malignant brain edema occurred in 69 patients (36%). Higher amount of fluid intake (>1650 ml or >28 ml/kg/day or >93% of daily maintenance fluid) showed a significant association with malignant brain edema (OR = 13.86, 95% CI 5.11-37.60, p value <0.001). Decompressive surgery was performed in 35 patients (18%). With mean follow-up of 12 months, 49 patients (49/184, 27%) had favorable outcomes (modified Rankin scale (mRS) 0-2) at final follow-up. Seventy-nine patients (79/184, 43%) died. In the subgroup of patients with malignant brain edema, 39 patients (39/65, 60%) died and only 11% (7/65 patients) had favorable outcome. High amount of fluid intake in the first few days of acute middle cerebral infarction was related to the occurrence of malignant brain edema.

  15. Mechanisms of neurotoxicity induced in the developing brain of mice and rats by DNA-damaging chemicals.

    PubMed

    Doi, Kunio

    2011-01-01

    It is not widely known how the developing brain responds to extrinsic damage, although the developing brain is considered to be sensitive to diverse environmental factors including DNA-damaging agents. This paper reviews the mechanisms of neurotoxicity induced in the developing brain of mice and rats by six chemicals (ethylnitrosourea, hydroxyurea, 5-azacytidine, cytosine arabinoside, 6-mercaptopurine and etoposide), which cause DNA damage in different ways, especially from the viewpoints of apoptosis and cell cycle arrest in neural progenitor cells. In addition, this paper also reviews the repair process following damage in the developing brain.

  16. Prevention of Severe Hypoglycemia-Induced Brain Damage and Cognitive Impairment with Verapamil.

    PubMed

    Jackson, David A; Michael, Trevin; Vieira de Abreu, Adriana; Agrawal, Rahul; Bortolato, Marco; Fisher, Simon J

    2018-05-03

    People with insulin-treated diabetes are uniquely at risk for severe hypoglycemia-induced brain damage. Since calcium influx may mediate brain damage, we tested the hypothesis that the calcium channel blocker, verapamil, would significantly reduce brain damage and cognitive impairment caused by severe hypoglycemia. Ten-week-old Sprague-Dawley rats were randomly assigned to one of three treatments; 1) control hyperinsulinemic (200 mU.kg -1 min -1 ) euglycemic (80-100mg/dl) clamps (n=14), 2) hyperinsulinemic hypoglycemic (10-15mg/dl) clamps (n=16), or 3) hyperinsulinemic hypoglycemic clamps followed by a single treatment with verapamil (20mg/kg) (n=11). As compared to euglycemic controls, hypoglycemia markedly increased dead/dying neurons in the hippocampus and cortex, by 16-fold and 14-fold, respectively. Verapamil treatment strikingly decreased hypoglycemia-induced hippocampal and cortical damage, by 87% and 94%, respectively. Morris Water Maze probe trial results demonstrated that hypoglycemia induced a retention, but not encoding, memory deficit (noted by both abolished target quadrant preference and reduced target quadrant time). Verapamil treatment significantly rescued spatial memory as noted by restoration of target quadrant preference and target quadrant time. In summary, a one-time treatment with verapamil following severe hypoglycemia prevented neural damage and memory impairment caused by severe hypoglycemia. For people with insulin treated diabetes, verapamil may be a useful drug to prevent hypoglycemia-induced brain damage. © 2018 by the American Diabetes Association.

  17. Novel neuroprotective and hepatoprotective effects of citric acid in acute malathion intoxication.

    PubMed

    Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Yassen, Noha N; Khadrawy, Yasser A; El-Toukhy, Safinaz Ebrahim; Sleem, Amany A

    2016-12-01

    To study the effect of citric acid given alone or combined with atropine on brain oxidative stress, neuronal injury, liver damage, and DNA damage of peripheral blood lymphocytes induced in the rat by acute malathion exposure. Rats were received intraperitoneal (i.p.) injection of malathion 150 mg/kg along with citric acid (200 or 400 mg/kg, orally), atropine (1 mg/kg, i.p.) or citric acid 200 mg/kg + atropine 1 mg/kg and euthanized 4 h later. Malathion resulted in increased lipid peroxidation (malondialdehyde) and nitric oxide concentrations accompanied with a decrease in brain reduced glutathione, glutathione peroxidase (GPx) activity, total antioxidant capacity (TAC) and glucose concentrations. Paraoxonase-1, acetylcholinesterase (AChE) and butyrylcholinesterase activities decreased in brain as well. Liver aspartate aminotransferase and alanine aminotransferase activities were raised. The comet assay showed increased DNA damage of peripheral blood lymphocytes. Histological damage and increased expression of inducible nitric oxide synthase (iNOS) were observed in brain and liver. Citric acid resulted in decreased brain lipid peroxidation and nitric oxide. Meanwhile, glutathione, GPx activity, TAC capacity and brain glucose level increased. Brain AChE increased but PON1 and butyrylcholinesterase activities decreased by citric acid. Liver enzymes, the percentage of damaged blood lymphocytes, histopathological alterations and iNOS expression in brain and liver was decreased by citric acid. Meanwhile, rats treated with atropine showed decreased brain MDA, nitrite but increased GPx activity, TAC, AChE and glucose. The drug also decreased DNA damage of peripheral blood lymphocytes, histopathological alterations and iNOS expression in brain and liver. The study demonstrates a beneficial effect for citric acid upon brain oxidative stress, neuronal injury, liver and DNA damage due to acute malathion exposure. Copyright © 2016 Hainan Medical University. Production

  18. Postural abnormalities and contraversive pushing following right hemisphere brain damage.

    PubMed

    Lafosse, C; Kerckhofs, E; Vereeck, L; Troch, M; Van Hoydonck, G; Moeremans, M; Sneyers, C; Broeckx, J; Dereymaeker, L

    2007-06-01

    We investigated the presence of postural abnormalities in a consecutive sample of stroke patients, with either left or right brain damage, in relation to their perceived body position in space. The presence or absence of posture-related symptoms was judged by two trained therapists and subsequently analysed by hierarchical classes analysis (HICLAS). The subject classes resulting from the HICLAS model were further validated with respect to posture-related measurements, such as centre of gravity position and head position, as well as measurements related to the postural body scheme, such as the perception of postural and visual verticality. The results of the classification analysis clearly demonstrated a relation between the presence of right brain damage and abnormalities in body geometry. The HICLAS model revealed three classes of subjects: The first class contained almost all the patients without neglect and without any signs of contraversive pushing. They were mainly characterised by a normal body axis in any position. The second class were all neglect patients but predominantly without any contraversive pushing. The third class contained right brain damaged patients, all showing neglect and mostly exhibiting contraversive pushing. The patients in the third class showed a clear resistance to bringing the weight over to the ipsilesional side when the therapist attempted to make the subject achieve a vertical posture across the midline. The clear correspondence between abnormalities of the observed body geometry and the tilt of the subjective postural and visual vertical suggests that a patient's postural body geometry is characterised by leaning towards the side of space where he/she feels aligned with an altered postural body scheme. The presence of contraversive pushing after right brain damage points in to a spatial higher-order processing deficit underlying the higher frequency and severity of the axial postural abnormalities found after right brain lesions.

  19. Structure changes of human brain gray matter neurons and astrocytes in acute local ischemic injury.

    PubMed

    Sergeeva, S P; Shishkina, L V; Litvitskiy, P F; Breslavich, I D; Vinogradov, E V

    2016-01-01

    The purpose to identify key morphological features of the Astrocytes and Neurons in the acute local cerebral ischemia human cortex. Left middle cerebral artery ischemic stroke died persons (n = 9) brain tissue samples from 3 zones: 1st - contiguous to the tissue necrotic damage site zone, 2nd - 5-10 cm distant from the previous one, 3rd - the damage site symmetrical zone of the contralateral hemisphere. For GFAP, MAP-2, NSE, p53 detection indirect immunoperoxidase immunohistochemical staining method has been used. Also, the samples were Nissl and Hematoxylin-Eosin stained. The most pronounced changes in the quantity and morphological structure of astrocytes and neurons are found in directly adjacent to the necrotic core region of theleft middle cerebral artery ischemic stroke brain. This indicates the prevalence of the inflammation processes around the area of nerve tissueischemic destruction. Morphological changes of neurons and astrocytes, apoptosis, enhanced neuron-astrocyte interaction found in the area bordering on necrotic core (5-10 cm from it), as well as ischemic hearth symmetrical sites of the contralateral hemisphere. This interaction is essential for the neuroplasticityrealization in the local ischemic brain injury. The results obtained were shown the nerve tissue morphological characteristics changes occur in local cerebral cortex ischemic injury not only in the lesion, but also in the contralateral hemisphere. These changes are probably related to the implementation of neuroplasticity.

  20. Singing ability after right and left sided brain damage. A research note.

    PubMed

    Kinsella, G; Prior, M R; Murray, G

    1988-03-01

    Capacity to sing following brain damage was investigated in a series of 15 right sided and 15 left sided lesioned subjects and 15 normal control subjects. All subjects were asked to sing the same well-known song and performance was judged by independent expert musicians using criteria of ability to pitch the melody, accurately produce the rhythm, and overall quality of the production. There was a lack of support for differential effect of right and left cerebral damage on pitch and rhythm aspects of singing, but a generalized effect of brain damage was found.

  1. Diffusion-weighted imaging score of the brain stem: A predictor of outcome in acute basilar artery occlusion treated with the Solitaire FR device.

    PubMed

    Mourand, I; Machi, P; Nogué, E; Arquizan, C; Costalat, V; Picot, M-C; Bonafé, A; Milhaud, D

    2014-06-01

    The prognosis for ischemic stroke due to acute basilar artery occlusion is very poor: Early recanalization remains the main factor that can improve outcomes. The baseline extent of brain stem ischemic damage can also influence outcomes. We evaluated the validity of an easy-to-use DWI score to predict clinical outcome in patients with acute basilar artery occlusion treated by mechanical thrombectomy. We analyzed the baseline clinical and DWI parameters of 31 patients with acute basilar artery occlusion, treated within 24 hours of symptom onset by using a Solitaire FR device. The DWI score of the brain stem was assessed with a 12-point semiquantitative score that separately considered each side of the medulla, pons, and midbrain. Clinical outcome was assessed at 180 days by using the mRS. According to receiver operating characteristic analyses, the cutoff score determined the optimal positive predictive value for outcome. The Spearman rank correlation coefficient assessed the correlation between the DWI brain stem score and baseline characteristics. Successful recanalization (Thrombolysis in Cerebral Infarction 3-2b) was achieved in 23 patients (74%). A favorable outcome (mRS ≤ 2) was observed in 11 patients (35%). An optimal DWI brain stem score of <3 predicted a favorable outcome. The probability of a very poor outcome (mRS ≥ 5) if the DWI brain stem score was ≥5 reached 80% (positive predictive value) and 100% if this score was ≥6. Interobserver reliability of the DWI brain stem score was excellent, with an intraclass correlation coefficient of 0.97 (95% CI, 0.96-0.99). The DWI brain stem score was significantly associated with baseline tetraplegia (P = .001) and coma (P = .005). In patients with acute basilar artery occlusion treated by mechanical thrombectomy, the baseline DWI brain lesion score seems to predict clinical outcome. © 2014 by American Journal of Neuroradiology.

  2. Microglial activation as a measure of stress in mouse brains exposed acutely (60 minutes) and long-term (2 years) to mobile telephone radiofrequency fields.

    PubMed

    Finnie, John W; Cai, Zhao; Manavis, Jim; Helps, Stephen; Blumbergs, Peter C

    2010-02-01

    To determine whether acute or long-term exposure of the brain to mobile telephone radiofrequency (RF) fields produces activation of microglia, which normally respond rapidly to any change in their microenvironment. Using a purpose designed exposure system at 900 MHz, mice were given a single, far-field whole body exposure at a specific absorption rate (SAR) of 4 W/kg for 60 min (acute) or on five successive days per week for 104 weeks (long-term). Control mice were sham-exposed or freely mobile in a cage to control for any stress caused by immobilisation in the exposure module. Positive control brains subjected to a stab wound were also included to confirm the ability of microglia to react to any neural stress. Brains were perfusion-fixed with 4% paraformaldehyde and representative regions of the cerebral cortex and hippocampus immunostained for ionised calcium binding adaptor molecule (Iba1), a specific microglial marker. There was no increase in microglial Iba1 expression in brains short or long-term exposed to mobile telephony microwaves compared to control (sham-exposed or freely moving caged mice) brains, while substantial microglial activation occurred in damaged positive control neural tissue. Acute (60 minutes) or longer duration (2 years) exposure of murine brains to mobile telephone RF fields did not produce any microglial activation detectable by Iba1 immunostaining.

  3. Cognitive Development in Children with Brain Damage.

    ERIC Educational Resources Information Center

    Bortner, Morton

    Presented is a report on a cross-sectional and longitudinal study concerned with the course of intellectual development in 210 children (6-12 years old) educationally designated as brain damaged (learning disabled and/or behavior problems) and assigned to special school placement. The report is divided into four sections which focus on…

  4. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke.

    PubMed

    Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.

  5. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    PubMed Central

    Zavaglia, Melissa; Forkert, Nils D.; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C.

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’. PMID:26448908

  6. Neuroimmune Basis of Alcoholic Brain Damage

    PubMed Central

    Crews, Fulton T.; Vetreno, Ryan P.

    2017-01-01

    Alcohol-induced brain damage likely contributes to the dysfunctional poor decisions associated with alcohol dependence. Human alcoholics have a global loss of brain volume that is most severe in the frontal cortex. Neuroimmune gene induction by binge drinking increases neurodegeneration through increased oxidative stress, particularly NADPH oxidase-induced oxidative stress. In addition, HMGB1-TLR4 and innate immune NF-κB target genes are increased leading to persistent and sensitized neuroimmune responses to ethanol and other agents that release HMGB1 or directly stimulate TLR receptors and/or NMDA receptors. Neuroimmune signaling and glutamate excitotoxicity are linked to alcoholic neurodegeneration. Models of adolescent alcohol abuse lead to significant frontal cortical degeneration and show the most severe loss of hippocampal neurogenesis. Adolescence is a period of high risk for ethanol-induced neurodegeneration and alterations in brain structure, gene expression, and maturation of adult phenotypes. Together, these findings support the hypothesis that adolescence is a period of risk for persistent and long-lasting increases in brain neuroimmune gene expression that promote persistent and long-term increases in alcohol consumption, neuroimmune gene induction, and neurodegeneration that we find associated with alcohol use disorders. PMID:25175868

  7. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  8. A new look on brain mechanisms of acute illness anorexia.

    PubMed

    Asarian, Lori; Langhans, Wolfgang

    2010-07-14

    Bacterial lipopolysaccharide (LPS) and other microbial substances trigger the organism's acute phase response and cause acute illness anorexia. Pro-inflammatory cytokines are major endogenous mediators of acute illness anorexia, but how LPS or cytokines stimulate the brain to inhibit eating is not fully resolved. One emerging mechanism involves the activation of the enzyme cyclooxygenase-2 (COX-2) in blood-brain barrier endothelial cells and the subsequent release of prostaglandin E2 (PGE2). Serotonin neurons in the midbrain raphe are targets of PGE2, and serotonergic projections from the midbrain raphe to the hypothalamus appear to be crucial for LPS anorexia. That is, raphe projections activate (1) the corticotrophin-releasing hormone neurons in the paraventricular nucleus which then elicit the stress response and (2) the pro-opiomelanocortin neurons in the arcuate nucleus which then release alphaMSH and elicit anorexia. Here we review available data to support a role for this brain mechanism in acute illness anorexia by center staging PGE2 signaling pathways that converge on central neural circuits that control normal eating. In addition, we review interactions between gonadal hormones and immune function that lead to sex differences in acute illness anorexia. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009. 2010 Elsevier Inc. All rights reserved.

  9. Systems approach to the study of brain damage in the very preterm newborn

    PubMed Central

    Leviton, Alan; Gressens, Pierre; Wolkenhauer, Olaf; Dammann, Olaf

    2015-01-01

    Background: A systems approach to the study of brain damage in very preterm newborns has been lacking. Methods: In this perspective piece, we offer encephalopathy of prematurity as an example of the complexity and interrelatedness of brain-damaging molecular processes that can be initiated inflammatory phenomena. Results: Using three transcription factors, nuclear factor-kappa B (NF-κB), Notch-1, and nuclear factor erythroid 2 related factor 2 (NRF2), we show the inter-connectedness of signaling pathways activated by some antecedents of encephalopathy of prematurity. Conclusions: We hope that as biomarkers of exposures and processes leading to brain damage in the most immature newborns become more readily available, those who apply a systems approach to the study of neuroscience can be persuaded to study the pathogenesis of brain disorders in the very preterm newborn. PMID:25926780

  10. Damage to the Left Precentral Gyrus Is Associated With Apraxia of Speech in Acute Stroke.

    PubMed

    Itabashi, Ryo; Nishio, Yoshiyuki; Kataoka, Yuka; Yazawa, Yukako; Furui, Eisuke; Matsuda, Minoru; Mori, Etsuro

    2016-01-01

    Apraxia of speech (AOS) is a motor speech disorder, which is clinically characterized by the combination of phonemic segmental changes and articulatory distortions. AOS has been believed to arise from impairment in motor speech planning/programming and differentiated from both aphasia and dysarthria. The brain regions associated with AOS are still a matter of debate. The aim of this study was to address this issue in a large number of consecutive acute ischemic stroke patients. We retrospectively studied 136 patients with isolated nonlacunar infarcts in the left middle cerebral artery territory (70.5±12.9 years old, 79 males). In accordance with speech and language assessments, the patients were classified into the following groups: pure form of AOS (pure AOS), AOS with aphasia (AOS-aphasia), and without AOS (non-AOS). Voxel-based lesion-symptom mapping analysis was performed on T2-weighted images or fluid-attenuated inversion recovery images. Using the Liebermeister method, group-wise comparisons were made between the all AOS (pure AOS plus AOS-aphasia) and non-AOS, pure AOS and non-AOS, AOS-aphasia and non-AOS, and pure AOS and AOS-aphasia groups. Of the 136 patients, 22 patients were diagnosed with AOS (7 patients with pure AOS and 15 patients with AOS-aphasia). The voxel-based lesion-symptom mapping analysis demonstrated that the brain regions associated with AOS were centered on the left precentral gyrus. Damage to the left precentral gyrus is associated with AOS in acute to subacute stroke patients, suggesting a role of this brain region in motor speech production. © 2015 American Heart Association, Inc.

  11. Optical monitoring of spinal cord subcellular damage after acute spinal cord injury

    NASA Astrophysics Data System (ADS)

    Shadgan, Babak; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Fong, Allan; Streijger, Femke; Macnab, Andrew; Kwon, Brian K.

    2018-02-01

    Introduction: Sudden physical trauma to the spinal cord results in acute spinal cord injury (SCI), leading to spinal cord (SC) tissue destruction, acute inflammation, increased SC intraparenchymal pressure, and tissue ischemia, hypoxia, and cellular necrosis. The ability to monitor SC tissue viability at subcellular level, using a real-time noninvasive method, would be extremely valuable to clinicians for estimating acute SCI damage, and adjusting and monitoring treatment in the intensive care setting. This study examined the feasibility and sensitivity of a custommade near infrared spectroscopy (NIRS) sensor to monitor the oxidation state of SC mitochondrial cytochrome aa3 (CCO), which reflects the subcellular damage of SC tissue in an animal model of SCI. Methods: Six anesthetized Yorkshire pigs were studied using a custom-made multi-wavelength NIRS system with a miniaturized optical sensor applied directly on the surgically exposed SC at T9. The oxidation states of SC tissue hemoglobin and CCO were monitored before, during and after acute SCI, and during mean arterial pressure alterations. Results: Non-invasive NIRS monitoring reflected changes in SC tissue CCO, simultaneous but independent of changes in hemoglobin saturation following acute SCI. A consistent decrease in SC tissue CCO chromophore concentration (-1.98 +/- 2.1 ab, p<0.05) was observed following SCI, indicating progressive SC cellular damage at the injury site. Elevation of mean arterial pressure can reduce SC tissue damage as suggested by different researchers and observed by significant increase in SC tissue CCO concentration (1.51 +/- 1.7 ab, p<0.05) in this study. Conclusions: This pilot study indicates that a novel miniaturized multi-wave NIRS sensor has the potential to monitor post-SCI changes of SC cytochrome aa3 oxygenation state in real time. Further development of this method may offer new options for improved SCI care.

  12. Hypoxia-ischemia brain damage disrupts brain cholesterol homeostasis in neonatal rats.

    PubMed

    Yu, Z; Li, S; Lv, S H; Piao, H; Zhang, Y H; Zhang, Y M; Ma, H; Zhang, J; Sun, C K; Li, A P

    2009-08-01

    The first 3 weeks of life is the peak time of oligodendrocytes development and also the critical period of cholesterol increasing dramatically in central nervous system in rats. Neonatal hypoxia-ischemia (HI) brain damage happening in this period may disturb the brain cholesterol balance as well as white matter development. To test this hypothesis, postnatal day 7 (P7) Sprague-Dawley rats were subjected to HI insult. Cholesterol concentrations from brain and plasma were measured. White matter integrity was evaluated by densitometric analysis of myelin basic protein (MBP) immunostaining and electron microscopy. Brain TNF-alpha and IL-6 levels were also measured. HI-induced brain cholesterol, but not the plasma cholesterol, levels decreased significantly during the first three days after HI compared with naïve and sham operated rats (p<0.05). Obvious hypomyelination was indicated by marked reductions in MBP immunostaining on both P10 and P14 (p<0.01) and less and thinner myelinated axons were detected on P21 by electron microscopy observation. High expressions of brain TNF-alpha and IL-6 12 h after HI (p<0.05) were also observed. The present work provides evidence that HI insult destroyed brain cholesterol homeostasis, which might be important in the molecular pathology of hypoxic-ischemic white matter injury. Proinflammatory cytokines insulting oligodendrocytes, may cause cholesterol unbalance. Furthermore, specific therapeutic interventions to maintain brain cholesterol balance may be effective for the recovery of white matter function. Georg Thieme Verlag KG Stuttgart New York.

  13. The impact of unilateral brain damage on anticipatory grip force scaling when lifting everyday objects.

    PubMed

    Eidenmüller, S; Randerath, J; Goldenberg, G; Li, Y; Hermsdörfer, J

    2014-08-01

    The scaling of our finger forces according to the properties of manipulated objects is an elementary prerequisite of skilled motor behavior. Lesions of the motor-dominant left brain may impair several aspects of motor planning. For example, limb-apraxia, a tool-use disorder after left brain damage is thought to be caused by deficient recall or integration of tool-use knowledge into an action plan. The aim of the present study was to investigate whether left brain damage affects anticipatory force scaling when lifting everyday objects. We examined 26 stroke patients with unilateral brain damage (16 with left brain damage, ten with right brain damage) and 21 healthy control subjects. Limb apraxia was assessed by testing pantomime of familiar tool-use and imitation of meaningless hand postures. Participants grasped and lifted twelve randomly presented everyday objects. Grip force was measured with help of sensors fixed on thumb, index and middle-finger. The maximum rate of grip force was determined to quantify the precision of anticipation of object properties. Regression analysis yielded clear deficits of anticipation in the group of patients with left brain damage, while the comparison of patient with right brain damage with their respective control group did not reveal comparable deficits. Lesion-analyses indicate that brain structures typically associated with a tool-use network in the left hemisphere play an essential role for anticipatory grip force scaling, especially the left inferior frontal gyrus (IFG) and the premotor cortex (PMC). Furthermore, significant correlations of impaired anticipation with limb apraxia scores suggest shared representations. However, the presence of dissociations, implicates also independent processes. Overall, our findings suggest that the left hemisphere is engaged in anticipatory grip force scaling for lifting everyday objects. The underlying neural substrate is not restricted to a single region or stream; instead it may rely on

  14. Amelioration of ischemic brain damage by peritoneal dialysis

    PubMed Central

    Godino, María del Carmen; Romera, Victor G.; Sánchez-Tomero, José Antonio; Pacheco, Jesus; Canals, Santiago; Lerma, Juan; Vivancos, José; Moro, María Angeles; Torres, Magdalena; Lizasoain, Ignacio; Sánchez-Prieto, José

    2013-01-01

    Ischemic stroke is a devastating condition, for which there is still no effective therapy. Acute ischemic stroke is associated with high concentrations of glutamate in the blood and interstitial brain fluid. The inability of the tissue to retain glutamate within the cells of the brain ultimately provokes neuronal death. Increased concentrations of interstitial glutamate exert further excitotoxic effects on healthy tissue surrounding the infarct zone. We developed a strategy based on peritoneal dialysis to reduce blood glutamate levels, thereby accelerating brain-to-blood glutamate clearance. In a rat model of stroke, this simple procedure reduced the transient increase in glutamate, consequently decreasing the size of the infarct area. Functional magnetic resonance imaging demonstrated that the rescued brain tissue remained functional. Moreover, in patients with kidney failure, peritoneal dialysis significantly decreased glutamate concentrations. Our results suggest that peritoneal dialysis may represent a simple and effective intervention for human stroke patients. PMID:23999426

  15. Acute and chronic changes in brain activity with deep brain stimulation for refractory depression.

    PubMed

    Conen, Silke; Matthews, Julian C; Patel, Nikunj K; Anton-Rodriguez, José; Talbot, Peter S

    2018-04-01

    Deep brain stimulation is a potential option for patients with treatment-refractory depression. Deep brain stimulation benefits have been reported when targeting either the subgenual cingulate or ventral anterior capsule/nucleus accumbens. However, not all patients respond and optimum stimulation-site is uncertain. We compared deep brain stimulation of the subgenual cingulate and ventral anterior capsule/nucleus accumbens separately and combined in the same seven treatment-refractory depression patients, and investigated regional cerebral blood flow changes associated with acute and chronic deep brain stimulation. Deep brain stimulation-response was defined as reduction in Montgomery-Asberg Depression Rating Scale score from baseline of ≥50%, and remission as a Montgomery-Asberg Depression Rating Scale score ≤8. Changes in regional cerebral blood flow were assessed using [ 15 O]water positron emission tomography. Remitters had higher relative regional cerebral blood flow in the prefrontal cortex at baseline and all subsequent time-points compared to non-remitters and non-responders, with prefrontal cortex regional cerebral blood flow generally increasing with chronic deep brain stimulation. These effects were consistent regardless of stimulation-site. Overall, no significant regional cerebral blood flow changes were apparent when deep brain stimulation was acutely interrupted. Deep brain stimulation improved treatment-refractory depression severity in the majority of patients, with consistent changes in local and distant brain regions regardless of target stimulation. Remission of depression was reached in patients with higher baseline prefrontal regional cerebral blood flow. Because of the small sample size these results are preliminary and further evaluation is necessary to determine whether prefrontal cortex regional cerebral blood flow could be a predictive biomarker of treatment response.

  16. Brain damage and the moral significance of consciousness.

    PubMed

    Kahane, Guy; Savulescu, Julian

    2009-02-01

    Neuroimaging studies of brain-damaged patients diagnosed as in the vegetative state suggest that the patients might be conscious. This might seem to raise no new ethical questions given that in related disputes both sides agree that evidence for consciousness gives strong reason to preserve life. We question this assumption. We clarify the widely held but obscure principle that consciousness is morally significant. It is hard to apply this principle to difficult cases given that philosophers of mind distinguish between a range of notions of consciousness and that is unclear which of these is assumed by the principle. We suggest that the morally relevant notion is that of phenomenal consciousness and then use our analysis to interpret cases of brain damage. We argue that enjoyment of consciousness might actually give stronger moral reasons not to preserve a patient's life and, indeed, that these might be stronger when patients retain significant cognitive function.

  17. Acute stress promotes post-injury brain regeneration in fish.

    PubMed

    Sinyakov, Michael S; Haimovich, Amihai; Avtalion, Ramy R

    2017-12-01

    The central nervous system and the immune system, the two major players in homeostasis, operate in the ongoing bidirectional interaction. Stress is the third player that exerts strong effect on these two 'supersystems'; yet, its impact is studied much less. In this work employing carp model, we studied the influence of preliminary stress on neural and immune networks involved in post-injury brain regeneration. The relevant in vivo models of air-exposure stress and precisely directed cerebellum injury have been developed. Neuronal regeneration was evaluated by using specific tracers of cell proliferation and differentiation. Involvement of immune networks was accessed by monitoring the expression of selected T cells markers. Contrast difference between acute and chronic stress manifested in the fact that chronically stressed fish did not survive the brain injury. Neuronal regeneration appeared as a biphasic process whereas involvement of immune system proceeded as a monophasic route. In stressed fish, immune response was fast and accompanied or even preceded neuronal regeneration. In unstressed subjects, immune response took place on the second phase of neuronal regeneration. These findings imply an intrinsic regulatory impact of acute stress on neuronal and immune factors involved in post-injury brain regeneration. Stress activates both neuronal and immune defense mechanisms and thus contributes to faster regeneration. In this context, paradoxically, acute preliminary stress might be considered a distinct asset in speeding up the following post-injury brain regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Neural Stability, Sparing, and Behavioral Recovery Following Brain Damage

    ERIC Educational Resources Information Center

    LeVere, T. E.

    1975-01-01

    The present article discusses the possibility that behavioral recovery following brain damage is not dependent on the functional reorganization of neural tissue but is rather the result of the continued normal operation of spared neural mechanisms. (Editor)

  19. [Causes and management of severe acute liver damage during pregnancy].

    PubMed

    Sepulveda-Martinez, Alvaro; Romero, Carlos; Juarez, Guido; Hasbun, Jorge; Parra-Cordero, Mauro

    2015-05-01

    Abnormalities in liver function tests appear in 3% of pregnancies. Severe acute liver damage can be an exclusive condition of pregnancy (dependent or independent of pre-eclampsia) or a concomitant disease. HELLP syndrome and acute fatty liver of pregnancy are the most severe liver diseases associated with pregnancy. Both appear during the third trimester and have a similar clinical presentation. Acute fatty liver may be associated with hypoglycemia and HELLP syndrome is closely linked with pre-eclampsia. Among concomitant conditions, fulminant acute hepatitis caused by medications or virus is the most severe disease. Its clinical presentation may be hyper-acute with neurological involvement and severe coagulation disorders. It has a high mortality and patients should be transplanted. Fulminant hepatic failure caused by acetaminophen overdose can be managed with n-acetyl cysteine. Because of the high fetal mortality rate, the gestational age at diagnosis is crucial.

  20. Increased oxidative phosphorylation in response to acute and chronic DNA damage

    PubMed Central

    Brace, Lear E; Vose, Sarah C; Stanya, Kristopher; Gathungu, Rose M; Marur, Vasant R; Longchamp, Alban; Treviño-Villarreal, Humberto; Mejia, Pedro; Vargas, Dorathy; Inouye, Karen; Bronson, Roderick T; Lee, Chih-Hao; Neilan, Edward; Kristal, Bruce S; Mitchell, James R

    2016-01-01

    Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa−/−|Xpa−/− mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes. PMID:28721274

  1. DNA damage in an animal model of maple syrup urine disease.

    PubMed

    Scaini, Giselli; Jeremias, Isabela C; Morais, Meline O S; Borges, Gabriela D; Munhoz, Bruna P; Leffa, Daniela D; Andrade, Vanessa M; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2012-06-01

    Maple syrup urine disease is an inborn error of metabolism caused by a severe deficiency of the branched chain alpha-ketoacid dehydrogenase complex. Neurological dysfunction is a common finding in patients with maple syrup urine disease. However, the mechanisms underlying the neuropathology of brain damage in this disorder are poorly understood. In this study, we investigated whether acute or chronic administration of a branched chain amino acid pool (leucine, isoleucine and valine) causes transient DNA damage, as determined by the alkaline comet assay, in the brain and blood of rats during development and whether antioxidant treatment prevented the alterations induced by branched chain amino acids. Our results showed that the acute administration of branched chain amino acids increased the DNA damage frequency and damage index in the hippocampus. However, the chronic administration of branched chain amino acids increased the DNA damage frequency and damage index in both the hippocampus and the striatum, and the antioxidant treatment was able to prevent DNA damage in the hippocampus and striatum. The present study demonstrated that metabolite accumulation in MSUD induces DNA damage in the hippocampus and striatum and that it may be implicated in the neuropathology observed in the affected patients. We demonstrated that the effect of antioxidant treatment (N-acetylcysteine plus deferoxamine) prevented DNA damage, suggesting the involvement of oxidative stress in DNA damage. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Distribution of Clostridium perfringens epsilon toxin in the brains of acutely intoxicated mice and its effect upon glial cells.

    PubMed

    Soler-Jover, Alex; Dorca, Jonatan; Popoff, Michel R; Gibert, Maryse; Saura, Josep; Tusell, Josep Maria; Serratosa, Joan; Blasi, Juan; Martín-Satué, Mireia

    2007-09-15

    Epsilon toxin (epsilon-toxin), produced by Clostridium perfringens types B and D, causes fatal enterotoxaemia in livestock. The disease is principally manifested as severe and often fatal neurological disturbance. Oedema of several organs, including the brain, is also a clinical sign related to microvascular damage. Recombinant epsilon-toxin-green fluorescence protein (epsilon-toxin-GFP) and epsilon-prototoxin-GFP have already been characterised as useful tools to track their distribution in intravenously injected mice, by means of direct fluorescence microscopy detection. The results shown here, using an acutely intoxicated mouse model, strongly suggest that epsilon-toxin-GFP, but not epsilon-prototoxin-GFP, not only causes oedema but is also able to cross the blood-brain barrier and accumulate in brain tissue. In some brain areas, epsilon-toxin-GFP is found bound to glial cells, both astrocytes and microglia. Moreover, cytotoxicity assays, performed with mixed glial primary cultures, demonstrate the cytotoxic effect of epsilon-toxin upon both astrocytes and microglial cells.

  3. Discourse Impairments Following Right Hemisphere Brain Damage: A Critical Review

    PubMed Central

    Johns, Clinton L.; Tooley, Kristen M.; Traxler, Matthew J.

    2015-01-01

    Right hemisphere brain damage (RHD) rarely causes aphasias marked by clear and widespread failures of comprehension or extreme difficulty producing fluent speech. Nonetheless, subtle language comprehension deficits can occur following unilateral RHD. In this article, we review the empirical record on discourse function following right hemisphere damage, as well as relevant work on non-brain damaged individuals that focuses on right hemisphere function. The review is divided into four sections that focus on discourse processing, inferencing, humor, and non-literal language. While the exact role that the right hemisphere plays in language processing, and the exact way that the two cerebral hemispheres coordinate their linguistic processes are still open to debate, our review suggests that the right hemisphere plays a critical role in managing inferred or implied information by maintaining relevant information and/or suppressing irrelevant information. Deficits in one or both of these mechanisms may account for discourse deficits following RHD. PMID:26085839

  4. The Use of Computers and Video Games in Brain Damage Therapy.

    ERIC Educational Resources Information Center

    Lorimer, David

    The use of computer assisted therapy (CAT) in the rehabilitation of individuals with brain damage is examined. Hardware considerations are explored, and the variety of software programs available for brain injury rehabilitation is discussed. Structured testing and treatment programs in time measurement, memory, and direction finding are described,…

  5. [Neuroendocrine dysfunction and brain damage. A consensus statement].

    PubMed

    Leal-Cerro, Alfonso; Rincón, María Dolores; Domingo, Manel Puig

    2009-01-01

    This consensus statement aims to enhance awareness of the incidence and risks of hypopituitarism in patients with traumatic brain injury (TBI) and/or brain hemorrhages among physicians treating patients with brain damage. The importance of this problem is related not only to the frequency of TBI but also to its prevalence in younger populations. The consequences of TBI are characterized by a series of symptoms that depend on the type of sequels related to neuroendocrine dysfunction. The signs and symptoms of hypopituitarism are often confused with those of other sequels of TBI. Consequently, patients with posttraumatic hypopituitarism may receive suboptimal rehabilitation unless the underlying hormone deficiency is identified and treated. This consensus is based on the recommendation supported by expert opinion that patients with a TBI and/or brain hemorrhage should undergo endocrine evaluation in order to assess pituitary function and, if deficiency is detected, should receive hormone replacement therapy.

  6. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat

    PubMed Central

    Wattanathorn, Jintanaporn; Jittiwat, Jinatta; Tongun, Terdthai; Muchimapura, Supaporn; Ingkaninan, Kornkanok

    2011-01-01

    Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO). Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia. PMID:21197427

  7. Impact of obstructive sleep apnea on cardiac organ damage in patients with acute ischemic stroke.

    PubMed

    Mattaliano, Paola; Lombardi, Carolina; Sangalli, Davide; Faini, Andrea; Corrà, Barbara; Adobbati, Laura; Branzi, Giovanna; Mariani, Davide; Silani, Vincenzo; Parati, Gianfranco

    2018-06-01

    Both obstructive sleep apnea (OSA) and cardiac organ damage have a crucial role in acute ischemic stroke. Our aim is to explore the relationship between OSA and cardiac organ damage in acute stroke patients. A total of 130 consecutive patients with acute ischemic stroke were enrolled. Patients underwent full multichannel 24-h polysomnography for evaluation of OSA and echocardiography to evaluate left ventricle (LV) mass index (LV mass/BSA, LV mass/height), thickness of interventricular septum (IVS) and posterior wall (LVPW), LV ejection fraction and left atrium enlargement. Information on occurrence of arterial hypertension and its treatment before stroke was obtained from patients' history. 61.9% (70) of patients, mostly men (67.1%), with acute stroke had OSA (AHI > 10). Patients with acute stroke and OSA showed a significant increase (P < 0.05) of LV mass index, IVS and LVPW thickness and a significant left atrial enlargement as compared with patients without OSA. LV ejection fraction was not significantly different in stroke patients with and without OSA and was within normal limits. No relationship was found among cardiac alterations, occurrence of OSA and history of hypertension. Acute stroke patients with OSA had higher LV mass and showed greater left atrial enlargement than patients without OSA. This study confirms the high prevalence of OSA in stroke patients, suggesting also an association between OSA and cardiac target organ damage. Our finding of structural LV abnormalities in acute stroke patients with OSA suggests a potential role of OSA as contributing factor in determining both cerebrovascular and cardiac damage, even in absence of clear link with a history of blood pressure elevation.

  8. Exacerbation of Acute Traumatic Brain Injury by Circulating Extracellular Vesicles.

    PubMed

    Hazelton, Isla; Yates, Abi; Dale, Ashley; Roodselaar, Jay; Akbar, Naveed; Ruitenberg, Marc J; Anthony, Daniel C; Couch, Yvonne

    2018-02-15

    Inflammatory lesions in the brain activate a systemic acute-phase response (APR), which is dependent on the release of extracellular vesicles (EVs) into the circulation. The resulting APR is responsible for regulating leukocyte mobilization and subsequent recruitment to the brain. Factors that either exacerbate or inhibit the APR will also exacerbate or inhibit central nervous system (CNS) inflammation as a consequence and have the potential to influence ongoing secondary damage. Here, we were interested to discover how the circulating EV population changes after traumatic brain injury (TBI) and how manipulation of the circulating EV pool impacts on the outcome of TBI. We found the number of circulating EVs increased rapidly post-TBI, and this was accompanied by an increase in CNS and hepatic leukocyte recruitment. In an adoptive transfer study, we then evaluated the outcomes of TBI after administering EVs derived from either in vitro macrophage or endothelial cell lines stimulated with lipopolysaccharide (LPS), or from murine plasma from an LPS challenge using the air-pouch model. By manipulating the circulating EV population, we were able to demonstrate that each population of transferred EVs increased the APR. However, the characteristics of the response were dependent on the nature of the EVs; specifically, it was significantly increased when animals were challenged with macrophage-derived EVs, suggesting that the cellular origins of EVs may determine their function. Selectively targeting EVs from macrophage/monocyte populations is likely to be of value in reducing the impact of the systemic inflammatory response on the outcome of traumatic CNS injury.

  9. Gender differences in alcohol-induced neurotoxicity and brain damage.

    PubMed

    Alfonso-Loeches, Silvia; Pascual, María; Guerri, Consuelo

    2013-09-06

    Considerable evidence has demonstrated that women are more vulnerable than men to the toxic effects of alcohol, although the results as to whether gender differences exist in ethanol-induced brain damage are contradictory. We have reported that ethanol, by activating the neuroimmune system and Toll-like receptors 4 (TLR4), can cause neuroinflammation and brain injury. However, whether there are gender differences in alcohol-induced neuroinflammation and brain injury are currently controversial. Using the brains of TLR4(+/+) and TLR4(-/-) (TLR4-KO) mice, we report that chronic ethanol treatment induces inflammatory mediators (iNOS and COX-2), cytokines (IL-1β, TNF-α), gliosis processes, caspase-3 activation and neuronal loss in the cerebral cortex of both female and male mice. Conversely, the levels of these parameters tend to be higher in female than in male mice. Using an in vivo imaging technique, our results further evidence that ethanol treatment triggers higher GFAP levels and lower MAP-2 levels in female than in male mice, suggesting a greater effect of ethanol-induced astrogliosis and less MAP-2(+) neurons in female than in male mice. Our results further confirm the pivotal role of TLR4 in alcohol-induced neuroinflammation and brain damage since the elimination of TLR4 protects the brain of males and females against the deleterious effects of ethanol. In short, the present findings demonstrate that, during the same period of ethanol treatment, females are more vulnerable than males to the neurotoxic/neuroinflammatory effects of ethanol, thus supporting the view that women are more susceptible than men to the medical consequences of alcohol abuse. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Chronic Neuropsychological Sequelae of Cholinesterase Inhibitors in the Absence of Structural Brain Damage: Two Cases of Acute Poisoning

    PubMed Central

    Roldán-Tapia, Lola; Leyva, Antonia; Laynez, Francisco; Santed, Fernando Sánchez

    2005-01-01

    Here we describe two cases of carbamate poisoning. Patients AMF and PVM were accidentally poisoned by cholinesterase inhibitors. The medical diagnosis in both cases was overcholinergic syndrome, as demonstrated by exposure to cholinesterase inhibitors. The widespread use of cholinesterase inhibitors, especially as pesticides, produces a great number of human poisoning events annually. The main known neurotoxic effect of these substances is cholinesterase inhibition, which causes cholinergic overstimulation. Once AMF and PVM had recovered from acute intoxication, they were subjected to extensive neuropsychological evaluation 3 and 12 months after the poisoning event. These assessments point to a cognitive deficit in attention, memory, perceptual, and motor domains 3 months after intoxication. One year later these sequelae remained, even though the brain magnetic resonance imaging (MRI) and computed tomography (CT) scans were interpreted as being within normal limits. We present these cases as examples of neuropsychological profiles of long-term sequelae related to acute poisoning by cholinesterase inhibitor pesticides and show the usefulness of neuropsychological assessment in detecting central nervous system dysfunction in the absence of biochemical or structural markers. PMID:15929901

  11. Thalamic inflammation after brain trauma is associated with thalamo-cortical white matter damage.

    PubMed

    Scott, Gregory; Hellyer, Peter J; Ramlackhansingh, Anil F; Brooks, David J; Matthews, Paul M; Sharp, David J

    2015-12-01

    Traumatic brain injury can trigger chronic neuroinflammation, which may predispose to neurodegeneration. Animal models and human pathological studies demonstrate persistent inflammation in the thalamus associated with axonal injury, but this relationship has never been shown in vivo. Using [(11)C]-PK11195 positron emission tomography, a marker of microglial activation, we previously demonstrated thalamic inflammation up to 17 years after traumatic brain injury. Here, we use diffusion MRI to estimate axonal injury and show that thalamic inflammation is correlated with thalamo-cortical tract damage. These findings support a link between axonal damage and persistent inflammation after brain injury.

  12. Mangiferin decreases inflammation and oxidative damage in rat brain after stress.

    PubMed

    Márquez, Lucía; García-Bueno, Borja; Madrigal, José L M; Leza, Juan C

    2012-09-01

    Stress exposure elicits neuroinflammation and oxidative damage in brain, and stress-related neurological and neuropsychiatric diseases have been associated with cell damage and death. Mangiferin (MAG) is a polyphenolic compound abundant in the stem bark of Mangifera indica L. with antioxidant and anti-inflammatory properties in different experimental settings. In this study, the capacity of MAG to prevent neuroinflammation and brain oxidative damage induced by stress exposure was investigated. Young-adult male Wistar rats immobilized during 6 h were administered by oral gavage with increasing doses of MAG (15, 30, and 60 mg/Kg), respectively, 7 days before stress. Prior treatment with MAG prevented all of the following stress-induced effects: (1) increase in glucocorticoids (GCs) and interleukin-1β (IL-1β) plasma levels, (2) loss of redox balance and reduction in catalase brain levels, (3) increase in pro-inflammatory mediators, such as tumor necrosis factor alpha TNF-α and its receptor TNF-R1, nuclear factor-kappa B (NF-κB) and synthesis enzymes, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), (4) increase in lipid peroxidation. These multifaceted protective effects suggest that MAG administration could be a new therapeutic strategy in neurological/neuropsychiatric pathologies in which hypothalamic/pituitary/adrenal (HPA) stress axis dysregulation, neuroinflammation, and oxidative damage take place in their pathophysiology.

  13. From the Cover: Magnetic Resonance Imaging Reveals Progressive Brain Injury in Rats Acutely Intoxicated With Diisopropylfluorophosphate

    PubMed Central

    Hobson, Brad A.; Sisó, Sílvia; Rowland, Douglas J.; Harvey, Danielle J.; Bruun, Donald A.; Garbow, Joel R.

    2017-01-01

    Abstract Acute intoxication with organophosphates (OPs) can trigger seizures that progress to status epilepticus, and survivors often exhibit chronic neuropathology, cognitive impairment, affective disorders, and/or electroencephalographic abnormalities. Understanding how acute injury transitions to persistent neurological sequelae is critical to developing medical countermeasures for mitigating damage following OP-induced seizures. Here, we used in vivo magnetic resonance imaging (MRI) to monitor the spatiotemporal patterns of neuropathology for 1 month after acute intoxication with diisopropylfluorophosphate (DFP). Adult male Sprague Dawley rats administered pyridostigmine bromide (0.1 mg/kg, im) 30 min prior to successive administration of DFP (4 mg/kg, sc), atropine sulfate (2 mg/kg, im), and 2-pralidoxime (25 mg/kg, im) exhibited moderate-to-severe seizure behavior. T2-weighted and diffusion-weighted MR imaging prior to DFP exposure and at 3, 7, 14, 21, or 28 days postexposure revealed prominent lesions, tissue atrophy, and ventricular enlargement in discrete brain regions. Lesions varied in intensity and/or extent over time, with the overall magnitude of injury strongly influenced by seizure severity. Importantly, lesions detected by MRI correlated spatially and temporally with histological evidence of brain pathology. Analysis of histogram parameters extracted from frequency distributions of regional apparent diffusion coefficient (ADC) values identified the standard deviation and 90th percentile of the ADC as robust metrics for quantifying persistent and progressive neuropathological changes. The interanimal and interregional variations observed in lesion severity and progression, coupled with potential reinjury following spontaneous recurrent seizures, underscore the advantages of using in vivo imaging to longitudinally monitor neuropathology and, ultimately, therapeutic response, following acute OP intoxication. PMID:28329842

  14. Inferencing Processes after Right Hemisphere Brain Damage: Effects of Contextual Bias

    ERIC Educational Resources Information Center

    Blake, Margaret Lehman

    2009-01-01

    Purpose: Comprehension deficits associated with right hemisphere brain damage (RHD) have been attributed to an inability to use context, but there is little direct evidence to support the claim. This study evaluated the effect of varying contextual bias on predictive inferencing by adults with RHD. Method: Fourteen adults with no brain damage…

  15. Corticosterone and dehydroepiandrosterone in songbird plasma and brain: effects of season and acute stress

    PubMed Central

    Newman, Amy E. M.; Soma, Kiran K.

    2010-01-01

    Prolonged increases in plasma glucocorticoids can exacerbate neurodegeneration. In rats, these neurodegenerative effects can be reduced by dehydroepiandrosterone (DHEA), an androgen precursor with anti-glucocorticoid actions. In song sparrows, season and acute restraint stress affect circulating levels of corticosterone and DHEA, and the effects of stress differ in plasma collected from the brachial and jugular veins. Jugular plasma is an indirect index of the neural steroidal milieu. Here, we directly measured corticosterone and DHEA in several brain regions and jugular plasma, and examined the effects of season and acute restraint stress (30 min) (n = 571 samples). Corticosterone levels were up to 10× lower in brain than in jugular plasma. In contrast, DHEA levels were up to 5× higher in brain than in jugular plasma and were highest in the hippocampus. Corticosterone and DHEA concentrations were strongly seasonally regulated in plasma but, surprisingly, not seasonally regulated in brain. Acute stress increased corticosterone levels in plasma and brain, except during the molt, when stress unexpectedly decreased corticosterone levels in the hippocampus. Acute stress increased DHEA levels in plasma during the molt but had no effects on DHEA levels in brain. This is the first study to measure (i) corticosterone or DHEA levels in the brain of adult songbirds and (ii) seasonal changes in corticosterone or DHEA levels in the brain of any species. These results highlight several critical differences between systemic and local steroid concentrations and the difficulty of using circulating steroid levels to infer local steroid levels within the brain. PMID:19473242

  16. Auditory Temporal Processing Deficits in Chronic Stroke: A Comparison of Brain Damage Lateralization Effect.

    PubMed

    Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H

    2016-06-01

    There have been a few reports about the effects of chronic stroke on auditory temporal processing abilities and no reports regarding the effects of brain damage lateralization on these abilities. Our study was performed on 2 groups of chronic stroke patients to compare the effects of hemispheric lateralization of brain damage and of age on auditory temporal processing. Seventy persons with normal hearing, including 25 normal controls, 25 stroke patients with damage to the right brain, and 20 stroke patients with damage to the left brain, without aphasia and with an age range of 31-71 years were studied. A gap-in-noise (GIN) test and a duration pattern test (DPT) were conducted for each participant. Significant differences were found between the 3 groups for GIN threshold, overall GIN percent score, and DPT percent score in both ears (P ≤ .001). For all stroke patients, performance in both GIN and DPT was poorer in the ear contralateral to the damaged hemisphere, which was significant in DPT and in 2 measures of GIN (P ≤ .046). Advanced age had a negative relationship with temporal processing abilities for all 3 groups. In cases of confirmed left- or right-side stroke involving auditory cerebrum damage, poorer auditory temporal processing is associated with the ear contralateral to the damaged cerebral hemisphere. Replication of our results and the use of GIN and DPT tests for the early diagnosis of auditory processing deficits and for monitoring the effects of aural rehabilitation interventions are recommended. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  17. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    NASA Astrophysics Data System (ADS)

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-06-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries.

  18. Effect of acute hypoxic shock on the rat brain morphology and tripeptidyl peptidase I activity.

    PubMed

    Petrova, Emilia B; Dimitrova, Mashenka B; Ivanov, Ivaylo P; Pavlova, Velichka G; Dimitrova, Stella G; Kadiysky, Dimitar S

    2016-06-01

    Hypoxic events are known to cause substantial damage to the hippocampus, cerebellum and striatum. The impact of hypoxic shock on other brain parts is not sufficiently studied. Recent studies show that tripeptidyl peptidase I (TPPI) activity in fish is altered after a hypoxic stress pointing out at a possible enzyme involvement in response to hypoxia. Similar studies are not performed in mammals. In this work, the effect of sodium nitrite-induced acute hypoxic shock on the rat brain was studied at different post-treatment periods. Morphological changes in cerebral cortex, cerebellum, medulla oblongata, thalamus, mesencephalon and pons were assessed using silver-copper impregnation for neurodegeneration. TPPI activity was biochemically assayed and localized by enzyme histochemistry. Although less vulnerable to oxidative stress, the studied brain areas showed different histopathological changes, such as neuronal loss and tissue vacuolization, dilatation of the smallest capillaries and impairment of neuronal processes. TPPI activity was strictly regulated following the hypoxic stress. It was found to increase 12-24h post-treatment, then decreased followed by a slow process of recovery. The enzyme histochemistry revealed a temporary enzyme deficiency in all types of neurons. These findings indicate a possible involvement of the enzyme in rat brain response to hypoxic stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Patterns of poststroke brain damage that predict speech production errors in apraxia of speech and aphasia dissociate.

    PubMed

    Basilakos, Alexandra; Rorden, Chris; Bonilha, Leonardo; Moser, Dana; Fridriksson, Julius

    2015-06-01

    Acquired apraxia of speech (AOS) is a motor speech disorder caused by brain damage. AOS often co-occurs with aphasia, a language disorder in which patients may also demonstrate speech production errors. The overlap of speech production deficits in both disorders has raised questions on whether AOS emerges from a unique pattern of brain damage or as a subelement of the aphasic syndrome. The purpose of this study was to determine whether speech production errors in AOS and aphasia are associated with distinctive patterns of brain injury. Forty-three patients with history of a single left-hemisphere stroke underwent comprehensive speech and language testing. The AOS Rating Scale was used to rate speech errors specific to AOS versus speech errors that can also be associated with both AOS and aphasia. Localized brain damage was identified using structural magnetic resonance imaging, and voxel-based lesion-impairment mapping was used to evaluate the relationship between speech errors specific to AOS, those that can occur in AOS or aphasia, and brain damage. The pattern of brain damage associated with AOS was most strongly associated with damage to cortical motor regions, with additional involvement of somatosensory areas. Speech production deficits that could be attributed to AOS or aphasia were associated with damage to the temporal lobe and the inferior precentral frontal regions. AOS likely occurs in conjunction with aphasia because of the proximity of the brain areas supporting speech and language, but the neurobiological substrate for each disorder differs. © 2015 American Heart Association, Inc.

  20. Effects of the Acute and Chronic Ethanol Intoxication on Acetate Metabolism and Kinetics in the Rat Brain.

    PubMed

    Hsieh, Ya-Ju; Wu, Liang-Chih; Ke, Chien-Chih; Chang, Chi-Wei; Kuo, Jung-Wen; Huang, Wen-Sheng; Chen, Fu-Du; Yang, Bang-Hung; Tai, Hsiao-Ting; Chen, Sharon Chia-Ju; Liu, Ren-Shyan

    2018-02-01

    Ethanol (EtOH) intoxication inhibits glucose transport and decreases overall brain glucose metabolism; however, humans with long-term EtOH consumption were found to have a significant increase in [1- 11 C]-acetate uptake in the brain. The relationship between the cause and effect of [1- 11 C]-acetate kinetics and acute/chronic EtOH intoxication, however, is still unclear. [1- 11 C]-acetate positron emission tomography (PET) with dynamic measurement of K 1 and k 2 rate constants was used to investigate the changes in acetate metabolism in different brain regions of rats with acute or chronic EtOH intoxication. PET imaging demonstrated decreased [1- 11 C]-acetate uptake in rat brain with acute EtOH intoxication, but this increased with chronic EtOH intoxication. Tracer uptake rate constant K 1 and clearance rate constant k 2 were decreased in acutely intoxicated rats. No significant change was noted in K 1 and k 2 in chronic EtOH intoxication, although 6 of 7 brain regions showed slightly higher k 2 than baseline. These results indicate that acute EtOH intoxication accelerated acetate transport and metabolism in the rat brain, whereas chronic EtOH intoxication status showed no significant effect. In vivo PET study confirmed the modulatory role of EtOH, administered acutely or chronically, in [1- 11 C]-acetate kinetics and metabolism in the rat brain. Acute EtOH intoxication may inhibit the transport and metabolism of acetate in the brain, whereas chronic EtOH exposure may lead to the adaptation of the rat brain to EtOH in acetate utilization. [1- 11 C]-acetate PET imaging is a feasible approach to study the effect of EtOH on acetate metabolism in rat brain. Copyright © 2017 by the Research Society on Alcoholism.

  1. Injury-Related Production of Cysteinyl Leukotrienes Contributes to Brain Damage following Experimental Traumatic Brain Injury

    PubMed Central

    Farias, Santiago; Frey, Lauren C.; Murphy, Robert C.

    2009-01-01

    Abstract The leukotrienes belong to a family of biologically active lipids derived from arachidonate that are often involved in inflammatory responses. In the central nervous system, a group of leukotrienes, known as the cysteinyl leukotrienes, is generated in brain tissue in response to a variety of acute brain injuries. Although the exact clinical significance of this excess production remains unclear, the cysteinyl leukotrienes may contribute to injury-related disruption of the brain-blood barrier and exacerbate secondary injury processes. In the present study, the formation and role of cysteinyl leukotrienes was explored in the fluid percussion injury model of traumatic brain injury in rats. The results showed that levels of the cysteinyl leukotrienes were elevated after fluid percussion injury with a maximal formation 1 hour after the injury. Neutrophils contributed to cysteinyl leukotriene formation in the injured brain hemisphere, potentially through a transcellular biosynthetic mechanism. Furthermore, pharmacological reduction of cysteinyl leukotriene formation after the injury, using MK-886, resulted in reduction of brain lesion volumes, suggesting that the cysteinyl leukotrienes play an important role in traumatic brain injury. PMID:19886806

  2. DNA damage in the oligodendrocyte lineage and its role in brain aging.

    PubMed

    Tse, Kai-Hei; Herrup, Karl

    2017-01-01

    Myelination is a recent evolutionary addition that significantly enhances the speed of transmission in the neural network. Even slight defects in myelin integrity impair performance and enhance the risk of neurological disorders. Indeed, myelin degeneration is an early and well-recognized neuropathology that is age associated, but appears before cognitive decline. Myelin is only formed by fully differentiated oligodendrocytes, but the entire oligodendrocyte lineage are clear targets of the altered chemistry of the aging brain. As in neurons, unrepaired DNA damage accumulates in the postmitotic oligodendrocyte genome during normal aging, and indeed may be one of the upstream causes of cellular aging - a fact well illustrated by myelin co-morbidity in premature aging syndromes arising from deficits in DNA repair enzymes. The clinical and experimental evidence from Alzheimer's disease, progeroid syndromes, ataxia-telangiectasia and other conditions strongly suggest that oligodendrocytes may in fact be uniquely vulnerable to oxidative DNA damage. If this damage remains unrepaired, as is increasingly true in the aging brain, myelin gene transcription and oligodendrocyte differentiation is impaired. Delineating the relationships between early myelin loss and DNA damage in brain aging will offer an additional dimension outside the neurocentric view of neurodegenerative disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Imaging Sex Differences in Regional Brain Metabolism during Acute Opioid Withdrawal

    PubMed Central

    Santoro, Giovanni C; Carrion, Joseph; Dewey, Stephen L

    2017-01-01

    The rate of opioid overdose continues to rise, necessitating improved treatment options. Current therapeutic approaches rely on administration of either a blocking agent, such as naloxone, or chronic treatment with replacement drugs, including methadone and/or buprenorphine. Recent findings suggest that males and females respond to these treatments uniquely. In an effort to better understand this sex-specific variation in treatment efficacy, we investigated the effects of acute opioid withdrawal in male and female rats using 18FDG and microPET. These data demonstrate that acute opioid withdrawal produces metabolic alterations in brain regions associated with reward and drug dependence, namely corpus striatum, thalamic nuclei, septum, and frontal cortex. Furthermore, certain changes are unique to males. Specifically, males demonstrated increased metabolism in the anterior cingulate cortex and the ventral hippocampus (CA3) following acute opioid withdrawal. If males and females exhibit sex-specific changes in regional brain metabolism following acute opioid withdrawal, then perhaps it is not surprising that they respond to treatment differently. PMID:29046888

  4. Assessment of the usefulness of magnetic resonance brain imaging in patients presenting with acute seizures.

    PubMed

    Olszewska, D A; Costello, D J

    2014-12-01

    Magnetic Resonance Imaging (MRI) is increasingly available as a tool for assessment of patients presenting to acute services with seizures. We set out to prospectively determine the usefulness of early MRI brain in a cohort of patients presenting with acute seizures. We examined the MR imaging studies performed in patients admitted solely because of acute seizures to Cork University Hospital over a 12-month period. The main aim of the study was to determine if the MRI established the proximate cause for the patient's recent seizure. We identified 91 patients who underwent MRI brain within 48 h of admission for seizures. Of the 91 studies, 51 were normal (56 %). The remaining 40 studies were abnormal as follows: microvascular disease (usually moderate/severe) (n = 19), post-traumatic gliosis (n = 7), remote symptomatic lesion (n = 6), primary brain tumour (n = 5), venous sinus thrombosis (n = 3), developmental lesion (n = 3), post-surgical gliosis (n = 3) and single cases of demyelination, unilateral hippocampal sclerosis, lobar haemorrhage and metastatic malignant melanoma. Abnormalities in diffusion-weighted sequences that were attributable to prolonged ictal activity were seen in nine patients, all of who had significant ongoing clinical deficits, most commonly delirium. Of the 40 patients with abnormal MRI studies, seven patients had unremarkable CT brain. MR brain imaging revealed the underlying cause for acute seizures in 44 % of patients. CT brain imaging failed to detect the cause of the acute seizures in 19 % of patients in whom subsequent MRI established the cause. This study emphasises the importance of obtaining optimal imaging in people admitted with acute seizures.

  5. In situ FTIR microspectroscopy of extravasated blood-damaged brain tissue

    NASA Astrophysics Data System (ADS)

    Wetzel, David L.; Le Vine, Steven M.

    1994-01-01

    Fourier transform infrared (FT-IR) microspectroscopy enables the collection of infrared spectra from microscopic regions of tissue sections. The objectives of this study were to utilize FT-IR microspectroscopy to analyze the spatial distribution of chemical changes that result from the extravasation of blood into the brain and to determine if products of free radical damage are associated with the damaged areas. An animal model that involves the injection of blood into the white matter of rat brains was used. Maps depicting the relative concentrations of chemical functional groups of lesioned sites and surrounding areas were made. Significant decreases were observed for CH2, C equals O, P equals O, and HO-C-H functional groups at the lesioned site and penumbra regions compared to the neighboring normal tissue areas.

  6. Sleep loss and acute drug abuse can induce DNA damage in multiple organs of mice.

    PubMed

    Alvarenga, T A; Ribeiro, D A; Araujo, P; Hirotsu, C; Mazaro-Costa, R; Costa, J L; Battisti, M C; Tufik, S; Andersen, M L

    2011-09-01

    The purpose of the present study was to characterize the genetic damage induced by paradoxical sleep deprivation (PSD) in combination with cocaine or ecstasy (3,4-methylenedioxymethamphetamine; MDMA) in multiple organs of male mice using the single cell gel (comet) assay. C57BL/6J mice were submitted to PSD by the platform technique for 72 hours, followed by drug administration and evaluation of DNA damage in peripheral blood, liver and brain tissues. Cocaine was able to induce genetic damage in the blood, brain and liver cells of sleep-deprived mice at the majority of the doses evaluated. Ecstasy also induced increased DNA migration in peripheral blood cells for all concentrations tested. Analysis of damaged cells by the tail moment data suggests that ecstasy is a genotoxic chemical at the highest concentrations tested, inducing damage in liver or brain cells after sleep deprivation in mice. Taken together, our results suggest that cocaine and ecstasy/MDMA act as potent genotoxins in multiple organs of mice when associated with sleep loss.

  7. The role of the immune system in central nervous system plasticity after acute injury.

    PubMed

    Peruzzotti-Jametti, Luca; Donegá, Matteo; Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano

    2014-12-26

    Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Brain MRI findings in acute hepatic encephalopathy in liver transplant recipients.

    PubMed

    Guo, Ruo-Mi; Li, Qing-Ling; Zhong, Li-Ru; Guo, Yu; Jiao, Ju; Chen, Shao-Qiong; Wang, Jin; Zhang, Yong

    2018-06-01

    Acute hepatic encephalopathy has significant morbidity and mortality in liver transplant recipients unless it is promptly treated. We evaluated the brain magnetic resonance (MR) imaging findings associated with acute hepatic encephalopathy in transplant recipients. We retrospectively reviewed the clinical and imaging data and outcomes of twenty-five liver transplant patients (16 male; mean age, 49.3 years) with clinically diagnosed acute hepatic encephalopathy and forty liver transplant patients (20 males; mean age, 45.5 years) without neurological symptoms suggestive of hepatic encephalopathy at our institution. Bilateral symmetric hyperintensities of the insular cortex and cingulate gyrus were observed in twenty-one patients (84.00%), bilateral symmetric extensive increased cortical signal intensity (involving two or more regions) was observed in 72.00% of the patients, leptomeningeal enhancement in 73.68%, and visualization of prominent venules in 52.00%. The most common symptom at diagnosis was rigidity (n = 14), and the plasma ammonia levels ranged from 68.63 to 192.16 μmol/L. After active treatment, 17 patients gradually recovered, four patients suffered from mild or moderate neurologic deficits, and four patients with widespread brain edema died. The specific brain MR imaging features were bilateral symmetric increased cortical signal intensity, especially in the insular cortex and cingulate gyrus, leptomeningeal enhancement, visualization of the prominent venules, and widespread brain edema. These features may indicate poor prognosis and should alert radiologists to the possibility of acute hepatic encephalopathy in liver transplant recipients and encourage clinicians to prepare appropriate treatment in advance.

  9. In situ rat brain and liver spontaneous chemiluminescence after acute ethanol intake.

    PubMed

    Boveris, A; Llesuy, S; Azzalis, L A; Giavarotti, L; Simon, K A; Junqueira, V B; Porta, E A; Videla, L A; Lissi, E A

    1997-09-19

    The influence of acute ethanol administration on the oxidative stress status of rat brain and liver was assessed by in situ spontaneous organ chemiluminescence (CL). Brain and liver CL was significantly increased after acute ethanol administration to fed rats, a response that is time-dependent and evidenced at doses higher than 1 g/kg. Ethanol-induced CL development is faster in liver compared with brain probably due to the greater ethanol metabolic capacity of the liver, whereas the net enhancement in brain light emission at 3 h after ethanol treatment is higher than that of the liver, which could reflect the greater susceptibility of brain to oxidative stress. The effect of ethanol on brain and liver CL seems to be mediated by acetaldehyde, due to its abolishment by the alcohol dehydrogenase inhibitor 4-methylpyrazole and exacerbation by the aldehyde dehydrogenase inhibitor disulfiram. In brain, these findings were observed in the absence of changes in the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase. However, the content of brain glutathione was significantly decreased by 31%, by ethanol, thus establishing an enhanced oxidative stress in this tissue.

  10. Transcranial amelioration of inflammation and cell death after brain injury

    NASA Astrophysics Data System (ADS)

    Roth, Theodore L.; Nayak, Debasis; Atanasijevic, Tatjana; Koretsky, Alan P.; Latour, Lawrence L.; McGavern, Dorian B.

    2014-01-01

    Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function. At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.

  11. Judo as a possible cause of anoxic brain damage. A case report.

    PubMed

    Owens, R G; Ghadiali, E J

    1991-12-01

    The rules of judo provide for strangulation techniques in which the blood supply to the brain is blocked by pressure on the carotid arteries; such techniques produce anoxia and possible unconsciousness if the victim fails to submit. A case is presented of a patient with signs of anoxic brain damage, with psychometric investigation showing memory disturbance consistent with a left temporal lobe lesion. This patient had been frequently strangled during his career as a judo player; it is suggested that such frequent strangulation was the cause of the damage. Such an observation indicates the need for caution in the use of such techniques.

  12. Blood-brain barrier dysfunction in brain diseases: clinical experience.

    PubMed

    Schoknecht, Karl; Shalev, Hadar

    2012-11-01

    The blood-brain barrier, a unique feature of the cerebral vasculature, is gaining attention as a feature in common neurologic disorders including stroke, traumatic brain injury, epilepsy, and schizophrenia. Although acute blood-brain barrier dysfunction can induce cerebral edema, seizures, or neuropsychiatric symptoms, epileptogenesis and cognitive decline are among the chronic effects. The mechanisms underlying blood-brain barrier dysfunction are diverse and may range from physical endothelial damage in traumatic brain injury to degradation of extracellular matrix proteins via matrix metalloproteinases as part of an inflammatory response. Clinically, blood-brain barrier dysfunction is often detected using contrast-enhanced imaging. However, these techniques do not give any insights into the underlying mechanism. Elucidating the specific pathways of blood-brain barrier dysfunction at different time points and in different brain diseases using novel imaging techniques promises a more accurate blood-brain barrier terminology as well as new treatment options and personalized treatment. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  13. Retinal ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury.

    PubMed

    Mohan, Kabhilan; Kecova, Helga; Hernandez-Merino, Elena; Kardon, Randy H; Harper, Matthew M

    2013-05-15

    To evaluate retina and optic nerve damage following experimental blast injury. Healthy adult mice were exposed to an overpressure blast wave using a custom-built blast chamber. The effects of blast exposure on retina and optic nerve function and structure were evaluated using the pattern electroretinogram (pERG), spectral domain optical coherence tomography (OCT), and the chromatic pupil light reflex. Assessment of the pupil response to light demonstrated decreased maximum pupil constriction diameter in blast-injured mice using red light or blue light stimuli 24 hours after injury compared with baseline in the eye exposed to direct blast injury. A decrease in the pupil light reflex was not observed chronically following blast exposure. We observed a biphasic pERG decrease with the acute injury recovering by 24 hours postblast and the chronic injury appearing at 4 months postblast injury. Furthermore, at 3 months following injury, a significant decrease in the retinal nerve fiber layer was observed using OCT compared with controls. Histologic analysis of the retina and optic nerve revealed punctate regions of reduced cellularity in the ganglion cell layer and damage to optic nerves. Additionally, a significant upregulation of proteins associated with oxidative stress was observed acutely following blast exposure compared with control mice. Our study demonstrates that decrements in retinal ganglion cell responses can be detected after blast injury using noninvasive functional and structural tests. These objective responses may serve as surrogate tests for higher CNS functions following traumatic brain injury that are difficult to quantify.

  14. Retinal Ganglion Cell Damage in an Experimental Rodent Model of Blast-Mediated Traumatic Brain Injury

    PubMed Central

    Mohan, Kabhilan; Kecova, Helga; Hernandez-Merino, Elena; Kardon, Randy H.; Harper, Matthew M.

    2013-01-01

    Purpose. To evaluate retina and optic nerve damage following experimental blast injury. Methods. Healthy adult mice were exposed to an overpressure blast wave using a custom-built blast chamber. The effects of blast exposure on retina and optic nerve function and structure were evaluated using the pattern electroretinogram (pERG), spectral domain optical coherence tomography (OCT), and the chromatic pupil light reflex. Results. Assessment of the pupil response to light demonstrated decreased maximum pupil constriction diameter in blast-injured mice using red light or blue light stimuli 24 hours after injury compared with baseline in the eye exposed to direct blast injury. A decrease in the pupil light reflex was not observed chronically following blast exposure. We observed a biphasic pERG decrease with the acute injury recovering by 24 hours postblast and the chronic injury appearing at 4 months postblast injury. Furthermore, at 3 months following injury, a significant decrease in the retinal nerve fiber layer was observed using OCT compared with controls. Histologic analysis of the retina and optic nerve revealed punctate regions of reduced cellularity in the ganglion cell layer and damage to optic nerves. Additionally, a significant upregulation of proteins associated with oxidative stress was observed acutely following blast exposure compared with control mice. Conclusions. Our study demonstrates that decrements in retinal ganglion cell responses can be detected after blast injury using noninvasive functional and structural tests. These objective responses may serve as surrogate tests for higher CNS functions following traumatic brain injury that are difficult to quantify. PMID:23620426

  15. Patterns of Post-Stroke Brain Damage that Predict Speech Production Errors in Apraxia of Speech and Aphasia Dissociate

    PubMed Central

    Basilakos, Alexandra; Rorden, Chris; Bonilha, Leonardo; Moser, Dana; Fridriksson, Julius

    2015-01-01

    Background and Purpose Acquired apraxia of speech (AOS) is a motor speech disorder caused by brain damage. AOS often co-occurs with aphasia, a language disorder in which patients may also demonstrate speech production errors. The overlap of speech production deficits in both disorders has raised questions regarding if AOS emerges from a unique pattern of brain damage or as a sub-element of the aphasic syndrome. The purpose of this study was to determine whether speech production errors in AOS and aphasia are associated with distinctive patterns of brain injury. Methods Forty-three patients with history of a single left-hemisphere stroke underwent comprehensive speech and language testing. The Apraxia of Speech Rating Scale was used to rate speech errors specific to AOS versus speech errors that can also be associated with AOS and/or aphasia. Localized brain damage was identified using structural MRI, and voxel-based lesion-impairment mapping was used to evaluate the relationship between speech errors specific to AOS, those that can occur in AOS and/or aphasia, and brain damage. Results The pattern of brain damage associated with AOS was most strongly associated with damage to cortical motor regions, with additional involvement of somatosensory areas. Speech production deficits that could be attributed to AOS and/or aphasia were associated with damage to the temporal lobe and the inferior pre-central frontal regions. Conclusion AOS likely occurs in conjunction with aphasia due to the proximity of the brain areas supporting speech and language, but the neurobiological substrate for each disorder differs. PMID:25908457

  16. Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms.

    PubMed

    Miksys, Sharon; Wadji, Fariba Baghai; Tolledo, Edgor Cole; Remington, Gary; Nobrega, Jose N; Tyndale, Rachel F

    2017-08-01

    Risk for side-effects after acute (e.g. parkinsonism) or chronic (e.g. tardive dyskinesia) treatment with antipsychotics, including haloperidol, varies substantially among people. CYP2D can metabolize many antipsychotics and variable brain CYP2D metabolism can influence local drug and metabolite levels sufficiently to alter behavioral responses. Here we investigated a role for brain CYP2D in acutely and chronically administered haloperidol levels and side-effects in a rat model. Rat brain, but not liver, CYP2D activity was irreversibly inhibited with intracerebral propranolol and/or induced by seven days of subcutaneous nicotine pre-treatment. The role of variable brain CYP2D was investigated in rat models of acute (catalepsy) and chronic (vacuous chewing movements, VCMs) haloperidol side-effects. Selective inhibition and induction of brain, but not liver, CYP2D decreased and increased catalepsy after acute haloperidol, respectively. Catalepsy correlated with brain, but not hepatic, CYP2D enzyme activity. Inhibition of brain CYP2D increased VCMs after chronic haloperidol; VCMs correlated with brain, but not hepatic, CYP2D activity, haloperidol levels and lipid peroxidation. Baseline measures, hepatic CYP2D activity and plasma haloperidol levels were unchanged by brain CYP2D manipulations. Variable rat brain CYP2D alters side-effects from acute and chronic haloperidol in opposite directions; catalepsy appears to be enhanced by a brain CYP2D-derived metabolite while the parent haloperidol likely causes VCMs. These data provide novel mechanistic evidence for brain CYP2D altering side-effects of haloperidol and other antipsychotics metabolized by CYP2D, suggesting that variation in human brain CYP2D may be a risk factor for antipsychotic side-effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Brain MRI fiber-tracking reveals white matter alterations in hypertensive patients without damage at conventional neuroimaging.

    PubMed

    Carnevale, Lorenzo; D'Angelosante, Valentina; Landolfi, Alessandro; Grillea, Giovanni; Selvetella, Giulio; Storto, Marianna; Lembo, Giuseppe; Carnevale, Daniela

    2018-06-12

    Hypertension is one of the main risk factor for dementia. The subtle damage provoked by chronic high blood pressure in the brain is usually evidenced by conventional magnetic resonance imaging (MRI), in terms of white matter (WM) hyperintensities or cerebral atrophy. However, it is clear that by the time brain damage is visible, it may be too late hampering neurodegeneration. Aim of this study was to characterize a signature of early brain damage induced by hypertension, before the neurodegenerative injury manifests. This work was conducted on hypertensive and normotensive subjects with no sign of structural damage at conventional neuroimaging and no diagnosis of dementia revealed by neuropsychological assessment. All individuals underwent cardiological clinical examination in order to define the hypertensive status and the related target organ damage. Additionally, patients were subjected to DTI-MRI scan to identify microstructural damage of WM by probabilistic fiber-tracking. To gain insights in the neurocognitive profile of patients a specific battery of tests was administered. As primary outcome of the study we aimed at finding any specific signature of fiber-tracts alterations in hypertensive patients, associated with an impairment of the related cognitive functions. Hypertensive patients showed significant alterations in three specific WM fiber-tracts: the anterior thalamic radiation, the superior longitudinal fasciculus and the forceps minor. Hypertensive patients also scored significantly worse in the cognitive domains ascribable to brain regions connected through those WM fiber-tracts, showing decreased performances in executive functions, processing speed, memory, and paired associative learning tasks. Overall, WM fiber-tracking on MRI evidenced an early signature of damage in hypertensive patients when otherwise undetectable by conventional neuroimaging. In perspective, this approach could allow identifying those patients that are in initial stages of

  18. Animal imaging studies of potential brain damage

    NASA Astrophysics Data System (ADS)

    Gatley, S. J.; Vazquez, M. E.; Rice, O.

    To date, animal studies have not been able to predict the likelihood of problems in human neurological health due to HZE particle exposure during space missions outside the Earth's magnetosphere. In ongoing studies in mice, we have demonstrated that cocaine stimulated locomotor activity is reduced by a moderate dose (120 cGy) of 1 GeV 56Fe particles. We postulate that imaging experiments in animals may provide more sensitive and earlier indicators of damage due to HZE particles than behavioral tests. Since the small size of the mouse brain is not well suited to the spatial resolution offered by microPET, we are now repeating some of our studies in a rat model. We anticipate that this will enable us to identify imaging correlates of behavioral endpoints. A specific hypothesis of our studies is that changes in the metabolic rate for glucose in striatum of animals will be correlated with alterations in locomotor activity. We will also evaluate whether the neuroprotective drug L-deprenyl reduces the effect of radiation on locomotor activity. In addition, we will conduct microPET studies of brain monoamine oxidase A and monoamine oxidase B in rats before and at various times after irradiation with HZE particles. The hypothesis is that monoamine oxidase A, which is located in nerve terminals, will be unchanged or decreased after irradiation, while monoamine oxidase B, which is located in glial cells, will be increased after irradiation. Neurochemical effects that could be measured using PET could in principle be applied in astronauts, in terms of detecting and monitoring subtle neurological damage that might have occurred during long space missions. More speculative uses of PET are in screening candidates for prolonged space missions (for example, for adequate reserve in critical brain circuits) and in optimizing medications to treat impairments after missions.

  19. Mapping connectivity damage in the case of Phineas Gage.

    PubMed

    Van Horn, John Darrell; Irimia, Andrei; Torgerson, Carinna M; Chambers, Micah C; Kikinis, Ron; Toga, Arthur W

    2012-01-01

    White matter (WM) mapping of the human brain using neuroimaging techniques has gained considerable interest in the neuroscience community. Using diffusion weighted (DWI) and magnetic resonance imaging (MRI), WM fiber pathways between brain regions may be systematically assessed to make inferences concerning their role in normal brain function, influence on behavior, as well as concerning the consequences of network-level brain damage. In this paper, we investigate the detailed connectomics in a noted example of severe traumatic brain injury (TBI) which has proved important to and controversial in the history of neuroscience. We model the WM damage in the notable case of Phineas P. Gage, in whom a "tamping iron" was accidentally shot through his skull and brain, resulting in profound behavioral changes. The specific effects of this injury on Mr. Gage's WM connectivity have not previously been considered in detail. Using computed tomography (CT) image data of the Gage skull in conjunction with modern anatomical MRI and diffusion imaging data obtained in contemporary right handed male subjects (aged 25-36), we computationally simulate the passage of the iron through the skull on the basis of reported and observed skull fiducial landmarks and assess the extent of cortical gray matter (GM) and WM damage. Specifically, we find that while considerable damage was, indeed, localized to the left frontal cortex, the impact on measures of network connectedness between directly affected and other brain areas was profound, widespread, and a probable contributor to both the reported acute as well as long-term behavioral changes. Yet, while significantly affecting several likely network hubs, damage to Mr. Gage's WM network may not have been more severe than expected from that of a similarly sized "average" brain lesion. These results provide new insight into the remarkable brain injury experienced by this noteworthy patient.

  20. Subchronic treatment with acai frozen pulp prevents the brain oxidative damage in rats with acute liver failure.

    PubMed

    de Souza Machado, Fernanda; Kuo, Jonnsin; Wohlenberg, Mariane Farias; da Rocha Frusciante, Marina; Freitas, Márcia; Oliveira, Alice S; Andrade, Rodrigo B; Wannmacher, Clovis M D; Dani, Caroline; Funchal, Claudia

    2016-12-01

    Acai has been used by the population due to its high nutritional value and its benefits to health, such as its antioxidant properties. The aim of this study was to evaluate the protective effect of acai frozen pulp on oxidative stress parameters in cerebral cortex, hippocampus and cerebellum of Wistar rats treated with carbon tetrachloride (CCl 4 ). Thirty male Wistar rats (90-day-old) were orally treated with water or acai frozen pulp for 14 days (7 μL/g). On the 15th day, half of the animals received treatment with mineral oil and the other half with CCl 4 (3.0 mL/kg). The cerebral cortex, hippocampus and cerebellum were dissected and used for analysis of creatine kinase activity (CK), thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, and the activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). Statistical analysis was performed by ANOVA followed by Tukey's post-test. CCl 4 was able to inhibit CK activity in all tissues tested and to provoke lipid damage in cerebral cortex and cerebellum, and protein damage in the three tissues tested. CCl 4 enhanced CAT activity in the cerebral cortex, and inhibited CAT activity in the hippocampus and cerebellum and reduced SOD activity in all tissues studied. Acai frozen pulp prevented the inhibition of CK, TBARS, carbonyl and CAT activity in all brain structures and only in hippocampus for SOD activity. Therefore, acai frozen pulp has antioxidant properties and maybe could be useful in the treatment of some diseases that affect the central nervous system that are associated with oxidative damage.

  1. Perceptual Asymmetry for Chimeric Stimuli in Children with Early Unilateral Brain Damage

    ERIC Educational Resources Information Center

    Bava, Sunita; Ballantyne, Angela O.; May, Susanne J.; Trauner, Doris A.

    2005-01-01

    The present study used a chimeric stimuli task to assess the magnitude of the left-hemispace bias in children with congenital unilateral brain damage (n=46) as compared to typically developing matched controls (n=46). As would be expected, controls exhibited a significant left-hemispace bias. In the presence of left hemisphere (LH) damage, the…

  2. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones.

    PubMed

    Salford, Leif G; Brun, Arne E; Eberhardt, Jacob L; Malmgren, Lars; Persson, Bertil R R

    2003-06-01

    The possible risks of radio-frequency electromagnetic fields for the human body is a growing concern for our society. We have previously shown that weak pulsed microwaves give rise to a significant leakage of albumin through the blood-brain barrier. In this study we investigated whether a pathologic leakage across the blood-brain barrier might be combined with damage to the neurons. Three groups each of eight rats were exposed for 2 hr to Global System for Mobile Communications (GSM) mobile phone electromagnetic fields of different strengths. We found highly significant (p< 0.002) evidence for neuronal damage in the cortex, hippocampus, and basal ganglia in the brains of exposed rats.

  3. Studies on cerebral protection of digoxin against hypoxic-ischemic brain damage in neonatal rats.

    PubMed

    Peng, Kaiwei; Tan, Danfeng; He, Miao; Guo, Dandan; Huang, Juan; Wang, Xia; Liu, Chentao; Zheng, Xiangrong

    2016-08-17

    Hypoxic-ischemic brain damage (HIBD) is a major cause of neonatal acute deaths and chronic nervous system damage. Our present study was designed to investigate the possible neuroprotective effect of digoxin-induced pharmacological preconditioning after hypoxia-ischemia and underlying mechanisms. Neonatal rats were assigned randomly to control, HIBD, or HIBD+digoxin groups. Pharmacological preconditioning was induced by administration of digoxin 72 h before inducing HIBD by carotid occlusion+hypoxia. Behavioral assays, and neuropathological and apoptotic assessments were performed to examine the effects; the expression of Na/K ATPase was also assessed. Rats in the HIBD group showed deficiencies on the T-maze, radial water maze, and postural reflex tests, whereas the HIBD+digoxin group showed significant improvements on all behavioral tests. The rats treated with digoxin showed recovery of pathological conditions, increased number of neural cells and proliferative cells, and decreased number of apoptotic cells. Meanwhile, an increased expression level of Na/K ATPase was observed after digoxin preconditioning treatment. The preconditioning treatment of digoxin contributed toward an improved functional recovery and exerted a marked neuroprotective effect including promotion of cell proliferation and reduction of apoptosis after HIBD, and the neuroprotective action was likely associated with increased expression of Na/K ATPase.

  4. Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment

    PubMed Central

    Irimia, Andrei; Goh, S.-Y. Matthew; Torgerson, Carinna M.; Stein, Nathan R.; Chambers, Micah C.; Vespa, Paul M.; Van Horn, John D.

    2013-01-01

    Objective To inverse-localize epileptiform cortical electrical activity recorded from severe traumatic brain injury (TBI) patients using electroencephalography (EEG). Methods Three acute TBI cases were imaged using computed tomography (CT) and multimodal magnetic resonance imaging (MRI). Semi-automatic segmentation was performed to partition the complete TBI head into 25 distinct tissue types, including 6 tissue types accounting for pathology. Segmentations were employed to generate a finite element method model of the head, and EEG activity generators were modeled as dipolar currents distributed over the cortical surface. Results We demonstrate anatomically faithful localization of EEG generators responsible for epileptiform discharges in severe TBI. By accounting for injury-related tissue conductivity changes, our work offers the most realistic implementation currently available for the inverse estimation of cortical activity in TBI. Conclusion Whereas standard localization techniques are available for electrical activity mapping in uninjured brains, they are rarely applied to acute TBI. Modern models of TBI-induced pathology can inform the localization of epileptogenic foci, improve surgical efficacy, contribute to the improvement of critical care monitoring and provide guidance for patient-tailored treatment. With approaches such as this, neurosurgeons and neurologists can study brain activity in acute TBI and obtain insights regarding injury effects upon brain metabolism and clinical outcome. PMID:24011495

  5. Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment.

    PubMed

    Irimia, Andrei; Goh, S-Y Matthew; Torgerson, Carinna M; Stein, Nathan R; Chambers, Micah C; Vespa, Paul M; Van Horn, John D

    2013-10-01

    To inverse-localize epileptiform cortical electrical activity recorded from severe traumatic brain injury (TBI) patients using electroencephalography (EEG). Three acute TBI cases were imaged using computed tomography (CT) and multimodal magnetic resonance imaging (MRI). Semi-automatic segmentation was performed to partition the complete TBI head into 25 distinct tissue types, including 6 tissue types accounting for pathology. Segmentations were employed to generate a finite element method model of the head, and EEG activity generators were modeled as dipolar currents distributed over the cortical surface. We demonstrate anatomically faithful localization of EEG generators responsible for epileptiform discharges in severe TBI. By accounting for injury-related tissue conductivity changes, our work offers the most realistic implementation currently available for the inverse estimation of cortical activity in TBI. Whereas standard localization techniques are available for electrical activity mapping in uninjured brains, they are rarely applied to acute TBI. Modern models of TBI-induced pathology can inform the localization of epileptogenic foci, improve surgical efficacy, contribute to the improvement of critical care monitoring and provide guidance for patient-tailored treatment. With approaches such as this, neurosurgeons and neurologists can study brain activity in acute TBI and obtain insights regarding injury effects upon brain metabolism and clinical outcome. Published by Elsevier B.V.

  6. Nrf2-ARE activator carnosic acid decreases mitochondrial dysfunction, oxidative damage and neuronal cytoskeletal degradation following traumatic brain injury in mice.

    PubMed

    Miller, Darren M; Singh, Indrapal N; Wang, Juan A; Hall, Edward D

    2015-02-01

    The importance of free radical-induced oxidative damage after traumatic brain injury (TBI) has been well documented. Despite multiple clinical trials with radical-scavenging antioxidants that are neuroprotective in TBI models, none is approved for acute TBI patients. As an alternative antioxidant target, Nrf2 is a transcription factor that activates expression of antioxidant and cytoprotective genes by binding to antioxidant response elements (AREs) within DNA. Previous research has shown that neuronal mitochondria are susceptible to oxidative damage post-TBI, and thus the current study investigates whether Nrf2-ARE activation protects mitochondrial function when activated post-TBI. It was hypothesized that administration of carnosic acid (CA) would reduce oxidative damage biomarkers in the brain tissue and also preserve cortical mitochondrial respiratory function post-TBI. A mouse controlled cortical impact (CCI) model was employed with a 1.0mm cortical deformation injury. Administration of CA at 15 min post-TBI reduced cortical lipid peroxidation, protein nitration, and cytoskeletal breakdown markers in a dose-dependent manner at 48 h post-injury. Moreover, CA preserved mitochondrial respiratory function compared to vehicle animals. This was accompanied by decreased oxidative damage to mitochondrial proteins, suggesting the mechanistic connection of the two effects. Lastly, delaying the initial administration of CA up to 8h post-TBI was still capable of reducing cytoskeletal breakdown, thereby demonstrating a clinically relevant therapeutic window for this approach. This study demonstrates that pharmacological Nrf2-ARE induction is capable of neuroprotective efficacy when administered after TBI. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. AMBIENT PARTICULATE MATTER STIMULATES OXIDATIVE STRESS IN BRAIN MICROGLIA AND DAMAGES NEURONS IN CULTURE.

    EPA Science Inventory

    Ambient particulate matter (PM) damages biological targets through oxidative stress (OS) pathways. Several reports indicate that the brain is one of those targets. Since microglia (brain macrophage) are critical to OS-mediated neurodegeneration, their response to concentrated amb...

  8. Epileptic encephalopathy in children with risk factors for brain damage.

    PubMed

    Ricardo-Garcell, Josefina; Harmony, Thalía; Porras-Kattz, Eneida; Colmenero-Batallán, Miguel J; Barrera-Reséndiz, Jesús E; Fernández-Bouzas, Antonio; Cruz-Rivero, Erika

    2012-01-01

    In the study of 887 new born infants with prenatal and perinatal risk factors for brain damage, 11 children with West syndrome that progressed into Lennox-Gastaut syndrome and another 4 children with Lennox-Gastaut syndrome that had not been preceded by West syndrome were found. In this study we present the main findings of these 15 subjects. In all infants multifactor antecedents were detected. The most frequent risk factors were prematurity and severe asphyxia; however placenta disorders, sepsis, and hyperbilirubinemia were also frequent. In all infants MRI direct or secondary features of periventricular leukomalacia were observed. Followup of all infants showed moderate to severe neurodevelopmental delay as well as cerebral palsy. It is concluded that prenatal and perinatal risk factors for brain damage are very important antecedents that should be taken into account to follow up those infants from an early age in order to detect and treat as early as possible an epileptic encephalopathy.

  9. Central diabetes insipidus in children with acute brain insult.

    PubMed

    Yang, Yun-Hsuan; Lin, Jainn-Jim; Hsia, Shao-Hsuan; Wu, Chang-Teng; Wang, Huei-Shyong; Hung, Po-Cheng; Chou, Min-Liang; Hsieh, Meng-Ying; Lin, Kuang-Lin

    2011-12-01

    Central diabetes insipidus occurs in patients with overwhelming central nervous system injuries, and may be associated with brain death. The clinical picture of children with acquired central diabetes insipidus after acute brain insult is seldom reported. We retrospectively reviewed cases dating from January 2000-February 2008 at a tertiary pediatric intensive care unit. Fifty-four patients (28 girls, 26 boys), aged 3 months to 18 years, were enrolled. Etiologies included severe central nervous system infection (35.2%), hypoxic-ischemic events (31.5%), head injury (18.5%), and vascular lesions (14.8%). In 39 (72.2%) patients, diabetes insipidus was diagnosed during the first 2 days after acute central nervous system injury, and 40 (74.0%) developed maximum serum sodium concentrations of >160 mEq/L. In 16, sequential cerebral salt wasting syndrome developed after their initial diabetes insipidus presentation. Overall mortality at 2 months after admission was 77.8%. Our results demonstrate that patients who develop central diabetes insipidus after acute central nervous system injury manifest high mortality. Development of central diabetes insipidus within the first 2 days and a maximum plasma sodium >160 mEq/L were significant predictors of outcomes. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Assessment of outcome after severe brain damage.

    PubMed

    Jennett, B; Bond, M

    1975-03-01

    Persisting disability after brain damage usually comprises both mental and physical handicap. The mental component is often the more important in contributing to overall social disability. Lack of an objective scale leads to vague and over-optimistic estimates of outcome, which obscure the ultimate results of early management. A five-point scale is described--death, persistent vegetative state, severe disability, moderate disability, and good recovery. Duration as well as intensity of disability should be included in an index of ill-health; this applies particularly after head injury, because many disabled survivors are young.

  11. Blockade and knock-out of CALHM1 channels attenuate ischemic brain damage.

    PubMed

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Ruiz, Asier; Chara, Juan C; Pérez-Samartín, Alberto; Marambaud, Philippe; Matute, Carlos

    2018-06-01

    Overactivation of purinergic receptors during cerebral ischemia results in a massive release of neurotransmitters, including adenosine triphosphate (ATP), to the extracellular space which leads to cell death. Some hypothetical pathways of ATP release are large ion channels, such as calcium homeostasis modulator 1 (CALHM1), a membrane ion channel that can permeate ATP. Since this transmitter contributes to postischemic brain damage, we hypothesized that CALHM1 activation may be a relevant target to attenuate stroke injury. Here, we analyzed the contribution of CALHM1 to postanoxic depolarization after ischemia in cultured neurons and in cortical slices. We observed that the onset of postanoxic currents in neurons in those preparations was delayed after its blockade with ruthenium red or silencing of Calhm1 gene by short hairpin RNA, as well as in slices from CALHM1 knockout mice. Subsequently, we used transient middle cerebral artery occlusion and found that ruthenium red, a blocker of CALHM1, or the lack of CALHM1, substantially attenuated the motor symptoms and reduced significantly the infarct volume. These results show that CALHM1 channels mediate postanoxic depolarization in neurons and brain damage after ischemia. Therefore, targeting CALHM1 may have a high therapeutic potential for treating brain damage after ischemia.

  12. Immediate, but Not Delayed, Microsurgical Skull Reconstruction Exacerbates Brain Damage in Experimental Traumatic Brain Injury Model

    PubMed Central

    Lau, Tsz; Kaneko, Yuji; van Loveren, Harry; Borlongan, Cesario V.

    2012-01-01

    Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI. PMID:22438975

  13. The oxidative damage and disbalance of calcium homeostasis in brain of chicken induced by selenium deficiency.

    PubMed

    Xu, Shi-Wen; Yao, Hai-Dong; Zhang, Jian; Zhang, Zi-Wei; Wang, Jin-Tao; Zhang, Jiu-Li; Jiang, Zhi-Hui

    2013-02-01

    Dietary selenium (Se) deficiency can influence the function of the brain. Our objective was to investigate the effects of Se deficiency on oxidative damage and calcium (Ca) homeostasis in brain of chicken. In the present study, 1-day-old chickens were fed either a commercial diet (as control group) with 0.15 mg/kg Se or a Se-deficient diet (as L group) with 0.033 mg/kg Se for 75 days. Then, brain injury biomarkers were examined, including histological analysis, ultrastructure assay, and apoptosis assay. We also examined the effect of Se deficiency on the Se-containing antioxidative enzyme glutathione peroxidase (GSH-Px), the level of glutathione (GSH), and the Ca homeostasis in brain of chicken. The results showed that the levels of Se and GSH and activity of GSH-Px are seriously reduced by 33.8-96 % (P < 0.001), 24.51-27.84 % (P < 0.001), and 20.70-64.24 % (P < 0.01), respectively. In the present study, we also perform histological analysis and ultrastructure assay and find that Se deficiency caused disorganized histological structure, damage to the mitochondria, fusion of nuclear membrane and nucleus shrinkage, higher apoptosis rate (P < 0.001), and increase of Ca homeostasis (P < 0.05 or P < 0.01 or P < 0.001) in the brain of chicken. In conclusion, the results demonstrated that Se deficiency induced oxidative damage and disbalance of Ca homeostasis in the brain of chicken. Similar to mammals, chickens brain is also extremely susceptible to oxidative damage and selenium deficiency.

  14. Acute interstitial pneumonia (AIP): relationship to Hamman-Rich syndrome, diffuse alveolar damage (DAD), and acute respiratory distress syndrome (ARDS).

    PubMed

    Mukhopadhyay, Sanjay; Parambil, Joseph G

    2012-10-01

    Acute interstitial pneumonia (AIP) is a term used for an idiopathic form of acute lung injury characterized clinically by acute respiratory failure with bilateral lung infiltrates and histologically by diffuse alveolar damage (DAD), a combination of findings previously known as the Hamman-Rich syndrome. This review aims to clarify the diagnostic criteria of AIP, its relationship with DAD and acute respiratory distress syndrome (ARDS), key etiologies that need to be excluded before making the diagnosis, and the salient clinical features. Cases that meet clinical and pathologic criteria for AIP overlap substantially with those that fulfill clinical criteria for ARDS. The main differences between AIP and ARDS are that AIP requires a histologic diagnosis of DAD and exclusion of known etiologies. AIP should also be distinguished from "acute exacerbation of IPF," a condition in which acute lung injury (usually DAD) supervenes on underlying usual interstitial pneumonia (UIP)/idiopathic pulmonary fibrosis (IPF). Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Quantification of vascular damage in acute kidney injury with fluorine magnetic resonance imaging and spectroscopy.

    PubMed

    Moore, Jeremy K; Chen, Junjie; Pan, Hua; Gaut, Joseph P; Jain, Sanjay; Wickline, Samuel A

    2018-06-01

    To design a fluorine MRI/MR spectroscopy approach to quantify renal vascular damage after ischemia-reperfusion injury, and the therapeutic response to antithrombin nanoparticles (NPs) to protect kidney function. A total of 53 rats underwent 45 min of bilateral renal artery occlusion and were treated at reperfusion with either plain perfluorocarbon NPs or NPs functionalized with a direct thrombin inhibitor (PPACK:phenyalanine-proline-arginine-chloromethylketone). Three hours after reperfusion, kidneys underwent ex vivo fluorine MRI/MR spectroscopy at 4.7 T to quantify the extent and volume of trapped NPs, as an index of vascular damage and ischemia-reperfusion injury. Microscopic evaluation of structural damage and NP trapping in non-reperfused renal segments was performed. Serum creatinine was quantified serially over 7 days. The damaged renal cortico-medullary junction trapped a significant volume of NPs (P = 0.04), which correlated linearly (r = 0.64) with the severity of kidney injury 3 h after reperfusion. Despite global large vessel reperfusion, non-reperfusion in medullary peritubular capillaries was confirmed by MRI and microscopy, indicative of continuing hypoxia due to vascular compromise. Treatment of animals with PPACK NPs after acute kidney injury did not accelerate kidney functional recovery. Quantification of ischemia-reperfusion injury after acute kidney injury with fluorine MRI/MR spectroscopy of perfluorocarbon NPs objectively depicts the extent and severity of vascular injury and its linear relationship to renal dysfunction. The lack of kidney function improvement after early posttreatment thrombin inhibition confirms the rapid onset of ischemia-reperfusion injury as a consequence of vascular damage and non-reperfusion. The prolongation of medullary ischemia renders cortico-medullary tubular structures susceptible to continued necrosis despite restoration of large vessel flow, which suggests limitations to acute interventions after

  16. Damage to Arousal-Promoting Brainstem Neurons with Traumatic Brain Injury

    PubMed Central

    Valko, Philipp O.; Gavrilov, Yuri V.; Yamamoto, Mihoko; Noaín, Daniela; Reddy, Hasini; Haybaeck, Johannes; Weis, Serge; Baumann, Christian R.; Scammell, Thomas E.

    2016-01-01

    Study Objectives: Coma and chronic sleepiness are common after traumatic brain injury (TBI). Here, we explored whether injury to arousal-promoting brainstem neurons occurs in patients with fatal TBI. Methods: Postmortem examination of 8 TBI patients and 10 controls. Results: Compared to controls, TBI patients had 17% fewer serotonergic neurons in the dorsal raphe nucleus (effect size: 1.25), but the number of serotonergic neurons did not differ in the median raphe nucleus. TBI patients also had 29% fewer noradrenergic neurons in the locus coeruleus (effect size: 0.96). The number of cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT) was similar in TBI patients and controls. Conclusions: TBI injures arousal-promoting neurons of the mesopontine tegmentum, but this injury is less severe than previously observed in hypothalamic arousal-promoting neurons. Most likely, posttraumatic arousal disturbances are not primarily caused by damage to these brainstem neurons, but arise from an aggregate of injuries, including damage to hypothalamic arousal nuclei and disruption of other arousal-related circuitries. Citation: Valko PO, Gavrilov YV, Yamamoto M, Noain D, Reddy H, Haybaeck J, Weis S, Baumann CR, Scammell TE. Damage to arousal-promoting brainstem neurons with traumatic brain injury. SLEEP 2016;39(6):1249–1252. PMID:27091531

  17. Brain-peripheral cell crosstalk in white matter damage and repair.

    PubMed

    Hayakawa, Kazuhide; Lo, Eng H

    2016-05-01

    White matter damage is an important part of cerebrovascular disease and may be a significant contributing factor in vascular mechanisms of cognitive dysfunction and dementia. It is well accepted that white matter homeostasis involves multifactorial interactions between all cells in the axon-glia-vascular unit. But more recently, it has been proposed that beyond cell-cell signaling within the brain per se, dynamic crosstalk between brain and systemic responses such as circulating immune cells and stem/progenitor cells may also be important. In this review, we explore the hypothesis that peripheral cells contribute to damage and repair after white matter damage. Depending on timing, phenotype and context, monocyte/macrophage can possess both detrimental and beneficial effects on oligodendrogenesis and white matter remodeling. Endothelial progenitor cells (EPCs) can be activated after CNS injury and the response may also influence white matter repair process. These emerging findings support the hypothesis that peripheral-derived cells can be both detrimental or beneficial in white matter pathology in cerebrovascular disease. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Diagnostic usefulness of the oedema-infarct ratio to differentiate acute from chronic myocardial damage using magnetic resonance imaging.

    PubMed

    Yamada, Kiyoyasu; Isobe, Satoshi; Suzuki, Susumu; Kinoshita, Kousuke; Yokouchi, Kazuhiko; Iwata, Hirokazu; Ohshima, Satoru; Hirai, Makoto; Sawada, Ken; Murohara, Toyoaki

    2012-04-01

    To differentiate acute from chronic damage to the myocardium in patients with myocardial infarction (MI) using DE and T2w MR. Short-axis T2w and DE MR images were acquired twice after the onset of MI in 36 patients who successfully underwent emergency coronary revascularisation. The areas of infarct and oedema were measured. The oedema-infarct ratio (O/I) of the left ventricular area was calculated by dividing the oedema by the infarct area. The oedema size on T2w MR was significantly larger than the infarct size on DE MR in the acute phase. Both the oedema size on T2w MR and the infarct size on DE MR in the acute phase were significantly larger than those in the chronic phase. The O/I was significantly greater in the acute phase compared with that in the chronic phase (P < 0.05). An analysis of relative cumulative frequency distributions revealed an O/I of 1.4 as a cut-off value for differentiating acute from chronic myocardial damage with the sensitivity, specificity, and accuracy of 85.1%, 82.7% and 83.9%, respectively. The oedema-infarct ratio may be a useful index in differentiating acute from chronic myocardial damage in patients with MI. MR can differentiate reversible from irreversible myocardial damage after myocardial infarction. MR is a useful modality to noninvasively differentiate the infarct stages. The O/I is an important index to decide therapeutic strategies.

  19. Processing of Basic Speech Acts Following Localized Brain Damage: A New Light on the Neuroanatomy of Language

    ERIC Educational Resources Information Center

    Soroker, N.; Kasher, A.; Giora, R.; Batori, G.; Corn, C.; Gil, M.; Zaidel, E.

    2005-01-01

    We examined the effect of localized brain lesions on processing of the basic speech acts (BSAs) of question, assertion, request, and command. Both left and right cerebral damage produced significant deficits relative to normal controls, and left brain damaged patients performed worse than patients with right-sided lesions. This finding argues…

  20. Change in brain magnetic resonance spectroscopy after treatment during acute HIV infection.

    PubMed

    Sailasuta, Napapon; Ross, William; Ananworanich, Jintanat; Chalermchai, Thep; DeGruttola, Victor; Lerdlum, Sukalaya; Pothisri, Mantana; Busovaca, Edgar; Ratto-Kim, Silvia; Jagodzinski, Linda; Spudich, Serena; Michael, Nelson; Kim, Jerome H; Valcour, Victor

    2012-01-01

    Single voxel proton magnetic resonance spectroscopy (MRS) can be used to monitor changes in brain inflammation and neuronal integrity associated with HIV infection and its treatments. We used MRS to measure brain changes during the first weeks following HIV infection and in response to antiretroviral therapy (ART). Brain metabolite levels of N-acetyl aspartate (NAA), choline (tCHO), creatine (CR), myoinositol (MI), and glutamate and glutamine (GLX) were measured in acute HIV subjects (n = 31) and compared to chronic HIV+individuals (n = 26) and HIV negative control subjects (n = 10) from Bangkok, Thailand. Metabolites were measured in frontal gray matter (FGM), frontal white matter (FWM), occipital gray matter (OGM), and basal ganglia (BG). Repeat measures were obtained in 17 acute subjects 1, 3 and 6 months following initiation of ART. After adjustment for age we identified elevated BG tCHO/CR in acute HIV cases at baseline (median 14 days after HIV infection) compared to control (p = 0.0014), as well as chronic subjects (p = 0.0023). A similar tCHO/CR elevation was noted in OGM; no other metabolite abnormalities were seen between acute and control subjects. Mixed longitudinal models revealed resolution of BG tCHO/CR elevation after ART (p = 0.022) with tCHO/CR similar to control subjects at 6 months. We detected cellular inflammation in the absence of measurable neuronal injury within the first month of HIV infection, and normalization of this inflammation following acutely administered ART. Our findings suggest that early ART may be neuroprotective in HIV infection by mitigating processes leading to CNS injury.

  1. Contrasting Acute and Slow-Growing Lesions: A New Door to Brain Plasticity

    ERIC Educational Resources Information Center

    Desmurget, Michel; Bonnetblanc, FranCois; Duffau, Hugues

    2007-01-01

    The concept of plasticity describes the mechanisms that rearrange cerebral organization following a brain injury. During the last century, plasticity has been mainly investigated in humans with acute strokes. It was then shown: (i) that the brain is organized into highly specialized functional areas, often designated "eloquent" areas and (ii) that…

  2. Clinical Relevance of Discourse Characteristics after Right Hemisphere Brain Damage

    ERIC Educational Resources Information Center

    Blake, Margaret Lehman

    2006-01-01

    Purpose: Discourse characteristics of adults with right hemisphere brain damage are similar to those reported for healthy older adults, prompting the question of whether changes are due to neurological lesions or normal aging processes. The clinical relevance of potential differences across groups was examined through ratings by speech-language…

  3. Frequency and Type of Situational Awareness Errors Contributing to Death and Brain Damage: A Closed Claims Analysis.

    PubMed

    Schulz, Christian M; Burden, Amanda; Posner, Karen L; Mincer, Shawn L; Steadman, Randolph; Wagner, Klaus J; Domino, Karen B

    2017-08-01

    Situational awareness errors may play an important role in the genesis of patient harm. The authors examined closed anesthesia malpractice claims for death or brain damage to determine the frequency and type of situational awareness errors. Surgical and procedural anesthesia death and brain damage claims in the Anesthesia Closed Claims Project database were analyzed. Situational awareness error was defined as failure to perceive relevant clinical information, failure to comprehend the meaning of available information, or failure to project, anticipate, or plan. Patient and case characteristics, primary damaging events, and anesthesia payments in claims with situational awareness errors were compared to other death and brain damage claims from 2002 to 2013. Anesthesiologist situational awareness errors contributed to death or brain damage in 198 of 266 claims (74%). Respiratory system damaging events were more common in claims with situational awareness errors (56%) than other claims (21%, P < 0.001). The most common specific respiratory events in error claims were inadequate oxygenation or ventilation (24%), difficult intubation (11%), and aspiration (10%). Payments were made in 85% of situational awareness error claims compared to 46% in other claims (P = 0.001), with no significant difference in payment size. Among 198 claims with anesthesia situational awareness error, perception errors were most common (42%), whereas comprehension errors (29%) and projection errors (29%) were relatively less common. Situational awareness error definitions were operationalized for reliable application to real-world anesthesia cases. Situational awareness errors may have contributed to catastrophic outcomes in three quarters of recent anesthesia malpractice claims.Situational awareness errors resulting in death or brain damage remain prevalent causes of malpractice claims in the 21st century.

  4. Caffeine restores regional brain activation in acute hypoglycaemia in healthy volunteers.

    PubMed

    Rosenthal, M J; Smith, D; Yaguez, L; Giampietro, V; Kerr, D; Bullmore, E; Brammer, M; Williams, S C R; Amiel, S A

    2007-07-01

    Caffeine enhances counterregulatory responses to acute hypoglycaemia. Our aim was to explore its effects on cortical function, which are not known at present. Regional brain activation during performance of the four-choice reaction time (4CRT) at different levels of complexity was measured using functional magnetic resonance imaging (fMRI) at euglycaemia (5 mmol/l) and hypoglycaemia (2.6 mmol/l) in the presence and absence of caffeine in six healthy right-handed men. During hypoglycaemia, caffeine enhanced adrenaline responses to hypoglycaemia (2.5 +/- 0.7 nmol/l to 4.0 +/- 1.0 nmol/l, P = 0.01) and restored the brain activation response to the non-cued 4CRT, the linear increases in regional brain activation associated with increased task complexity and the ability to respond to a cue that were lost in hypoglycaemia alone. Caffeine can sustain regional brain activation patterns lost in acute hypoglycaemia, with some restoration of cortical function and enhanced adrenaline responsiveness. A methodology has been established that may help in the development of therapies to protect against severe hypoglycaemia in insulin therapy for patients with diabetes and problematic hypoglycaemia.

  5. Acute pathophysiological processes after ischaemic and traumatic brain injury.

    PubMed

    Kunz, Alexander; Dirnagl, Ulrich; Mergenthaler, Philipp

    2010-12-01

    Ischaemic stroke and brain trauma are among the leading causes of mortality and long-term disability in the western world. Enormous endeavours have been made to elucidate the complex pathophysiology of ischaemic and traumatic brain injury with the intention of developing new therapeutic strategies for patients suffering from these devastating diseases. This article reviews the current knowledge on cascades that are activated after ischaemic and traumatic brain injury and that lead to progression of tissue damage. Main attention will be on pathophysiological events initiated after ischaemic stroke including excitotoxicity, oxidative/nitrosative stress, peri-infarct depolarizations, apoptosis and inflammation. Additionally, specific pathophysiological aspects after traumatic brain injury will be discussed along with their similarities and differences to ischaemic brain injury. This article provides prerequisites for understanding the therapeutic strategies for stroke and trauma patients which are addressed in other articles of this issue. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Immoral behaviour following brain damage: A review.

    PubMed

    Roberts, Stefanie; Henry, Julie D; Molenberghs, Pascal

    2018-04-16

    Despite the apparent sociability of human kind, immoral behaviour is ever present in society. The term 'immoral behaviour' represents a complex array of conduct, ranging from insensitivity to topics of conversation through to violent assault and murder. To better understand the neuroscience of immoral behaviour, this review investigates two clinical populations that commonly present with changes in moral behaviour - behavioural-variant frontotemporal dementia and acquired brain injuries. Based on evidence from these groups, it is argued that rather than a single underlying cause, immoral behaviour can result from three distinct types of cognitive failure: (1) problems understanding others; (2) difficulties controlling behaviour; or (3) deficits in the capacity to make appropriate emotional contributions. Each of these failures is associated with damage to different brain regions. A more nuanced approach to the neuroscience of immoral behaviour has important implications for our understanding of immoral behaviour in a wide range of clinical groups, as well as human society more broadly. © 2018 The British Psychological Society.

  7. Psychotherapy of the child with true brain damage.

    PubMed

    Christ, Adolph E

    1978-07-01

    Psychotherapy of the child with true brain damage presents special problems and requires special approaches. Those who are cognitively primitive--at the sensorimotor or preoperational stage of development--require a crisis approach; those at the concrete or formal operational stage can be treated with a modified insight-oriented approach. Development of a therapeutic alliance, establishment of workable defense mechanisms, identification and clarification of unalterable cognitive defects and issues of termination unique to this special population are discussed.

  8. The Effects of Brain Damage on Visual Functioning in Children.

    ERIC Educational Resources Information Center

    Alexander, P. K.

    1990-01-01

    The review of research concluded that, although brain damage affects visual functioning, the prognosis for good functional vision after remedial intervention is better than previously thought. Although electrodiagnostic testing was found to be valuable, use of a combination of tests is recommended to obtain the most complete picture of brain…

  9. Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat

    PubMed Central

    Williams, Anthony J; Wei, Hans H; Dave, Jitendra R; Tortella, Frank C

    2007-01-01

    Background Neuroinflammation following acute brain trauma is considered to play a prominent role in both the pathological and reconstructive response of the brain to injury. Here we characterize and contrast both an acute and delayed phase of inflammation following experimental penetrating ballistic brain injury (PBBI) in rats out to 7 days post-injury. Methods Quantitative real time PCR (QRT-PCR) was used to evaluate changes in inflammatory gene expression from the brain tissue of rats exposed to a unilateral frontal PBBI. Brain histopathology was assessed using hematoxylin and eosin (H&E), silver staining, and immunoreactivity for astrocytes (GFAP), microglia (OX-18) and the inflammatory proteins IL-1β and ICAM-1. Results Time course analysis of gene expression levels using QRT-PCR indicated a peak increase during the acute phase of the injury between 3–6 h for the cytokines TNF-α (8–11 fold), IL-1β (11–13 fold), and IL-6 (40–74 fold) as well as the cellular adhesion molecules VCAM (2–3 fold), ICAM-1 (7–15 fold), and E-selectin (11–13 fold). Consistent with the upregulation of pro-inflammatory genes, peripheral blood cell infiltration was a prominent post-injury event with peak levels of infiltrating neutrophils (24 h) and macrophages (72 h) observed throughout the core lesion. In regions of the forebrain immediately surrounding the lesion, strong immunoreactivity for activated astrocytes (GFAP) was observed as early as 6 h post-injury followed by prominent microglial reactivity (OX-18) at 72 h and resolution of both cell types in cortical brain regions by day 7. Delayed thalamic inflammation (remote from the primary lesion) was also observed as indicated by both microglial and astrocyte reactivity (72 h to 7 days) concomitant with the presence of fiber degeneration (silver staining). Conclusion In summary, PBBI induces both an acute and delayed neuroinflammatory response occurring in distinct brain regions, which may provide useful diagnostic

  10. The osmotic/calcium stress theory of brain damage: are free radicals involved?

    PubMed

    Pazdernik, T L; Layton, M; Nelson, S R; Samson, F E

    1992-01-01

    This overview presents data showing that glucose use increases and that excitatory amino acids (i.e., glutamate, aspartate), taurine and ascorbate increase in the extracellular fluid during seizures. During the cellular hyperactive state taurine appears to serve as an osmoregulator and ascorbate may serve as either an antioxidant or as a pro-oxidant. Finally, a unifying hypothesis is given for seizure-induced brain damage. This unifying hypothesis states that during seizures there is a release of excitatory amino acids which act on glutamatergic receptors, increasing neuronal activity and thereby increasing glucose use. This hyperactivity of cells causes an influx of calcium (i.e., calcium stress) and water movements (i.e., osmotic stress) into the cells that culminate in brain damage mediated by reactive oxygen species.

  11. Identifying the brain regions associated with acute spasticity in patients diagnosed with an ischemic stroke.

    PubMed

    Barlow, Susan J

    2016-06-01

    Spasticity is a common impairment found in patients that have been diagnosed with a stroke. Little is known about the pathophysiology of spasticity at the level of the brain. This retrospective study was performed to identify an association between the area of the brain affected by an ischemic stroke and the presence of acute spasticity. Physical and occupational therapy assessments from all patients (n = 441) that had suffered a stroke and were admitted into a local hospital over a 4-year period were screened for inclusion in this study. Subjects that fit the inclusion criteria were grouped according to the presence (n = 42) or absence (n = 129) of acute spasticity by the Modified Ashworth Scale score given during the hospital admission assessment. Magnetic resonance images from 20 subjects in the spasticity group and 52 from the control group were then compared using lesion density plots and voxel-based lesion-symptom mapping. An association of acute spasticity with the gray matter regions of the insula, basal ganglia, and thalamus was found in this study. White matter tracts including the pontine crossing tract, corticospinal tract, internal capsule, corona radiata, external capsule, and the superior fronto-occipital fasciculus were also found to be significantly associated with acute spasticity. This is the first study to describe an association between a region of the brain affected by an infarct and the presence of acute spasticity. Understanding the regions associated with acute spasticity will aid in understanding the pathophysiology of this musculoskeletal impairment at the level of the brain.

  12. Reversing brain damage in former NFL players: implications for traumatic brain injury and substance abuse rehabilitation.

    PubMed

    Amen, Daniel G; Wu, Joseph C; Taylor, Derek; Willeumier, Kristen

    2011-01-01

    Brain injuries are common in professional American football players. Finding effective rehabilitation strategies can have widespread implications not only for retired players but also for patients with traumatic brain injury and substance abuse problems. An open label pragmatic clinical intervention was conducted in an outpatient neuropsychiatric clinic with 30 retired NFL players who demonstrated brain damage and cognitive impairment. The study included weight loss (if appropriate); fish oil (5.6 grams a day); a high-potency multiple vitamin; and a formulated brain enhancement supplement that included nutrients to enhance blood flow (ginkgo and vinpocetine), acetylcholine (acetyl-l-carnitine and huperzine A), and antioxidant activity (alpha-lipoic acid and n-acetyl-cysteine). The trial average was six months. Outcome measures were Microcog Assessment of Cognitive Functioning and brain SPECT imaging. In the retest situation, corrected for practice effect, there were statistically significant increases in scores of attention, memory, reasoning, information processing speed and accuracy on the Microcog. The brain SPECT scans, as a group, showed increased brain perfusion, especially in the prefrontal cortex, parietal lobes, occipital lobes, anterior cingulate gyrus and cerebellum. This study demonstrates that cognitive and cerebral blood flow improvements are possible in this group with multiple interventions.

  13. The Effect of Cannabis on the Brain: Can it cause brain anomalies that lead to increased risk for Schizophrenia?

    PubMed Central

    DeLisi, Lynn E.

    2015-01-01

    Purpose of This Review This review explores what is known about cannabis’s association with schizophrenia, cannabis’s effects on the brain, and whether the brain changes known to be present in schizophrenia could be caused by cannabis and thus lead to a psychosis. Recent Findings The heavy use of cannabis is known to be associated with some adverse consequences, such as the occurrence of acute psychotic episodes and the development of chronic schizophrenia in some people even after its use has terminated. Recent studies have produced controversy about whether cannabis in heavy use can cause irreversible brain damage, particularly to adolescents and thus, whether a chronic psychosis could be a result of brain changes caused by cannabis. Summary From the evidence that exists, it appears that the above view is unlikely and that cannabis may even have benign effects on brain structure, not producing deleterious damage. However, its neurochemical interactions with the dopaminergic pathway may, particularly in genetically vulnerable individuals, have adverse consequences. PMID:18332661

  14. Driving safety after brain damage: follow-up of twenty-two patients with matched controls.

    PubMed

    Katz, R T; Golden, R S; Butter, J; Tepper, D; Rothke, S; Holmes, J; Sahgal, V

    1990-02-01

    Driving after brain damage is a vital issue, considering the large number of patients who suffer from cerebrovascular and traumatic encephalopathy. The ability to operate a motor vehicle is an integral part of independence for most adults and so should be preserved whenever possible. The physician may estimate a patient's ability to drive safely based on his own examination, the evaluation of a neuropsychologist, and a comprehensive driving evaluation--testing, driving simulation, behind-the-wheel observation--with a driving specialist. This study sought to evaluate the ability of brain-damaged individuals to operate a motor vehicle safely at follow-up. These patients had been evaluated (by a physician, a neuropsychologist, and a driving specialist) and were judged able to operate a motor vehicle safely after their cognitive insult. Twenty-two brain-damaged patients who were evaluated at our institution were successfully followed up to five years (mean interval of 2.67 years). Patients were interviewed by telephone. Their driving safely was compared with a control group consisting of a close friend or spouse of each patient. Statistical analysis revealed no difference between patient and control groups in the type of driving, the incidence of speeding tickets, near accidents, and accidents, and the cost of vehicle damage when accidents occurred. The patient group was further divided into those who had, and those who had not experienced driving difficulties so that initial neuropsychologic testing could be compared. No significant differences were noted in any aspect of the neuropsychologic test battery. We conclude that selected brain-damaged patients who have passed a comprehensive driving assessment as outlined were as fit to drive as were their normal matched controls.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Change in Brain Magnetic Resonance Spectroscopy after Treatment during Acute HIV Infection

    PubMed Central

    Sailasuta, Napapon; Ross, William; Ananworanich, Jintanat; Chalermchai, Thep; DeGruttola, Victor; Lerdlum, Sukalaya; Pothisri, Mantana; Busovaca, Edgar; Ratto-Kim, Silvia; Jagodzinski, Linda; Spudich, Serena; Michael, Nelson; Kim, Jerome H.; Valcour, Victor

    2012-01-01

    Objective Single voxel proton magnetic resonance spectroscopy (MRS) can be used to monitor changes in brain inflammation and neuronal integrity associated with HIV infection and its treatments. We used MRS to measure brain changes during the first weeks following HIV infection and in response to antiretroviral therapy (ART). Methods Brain metabolite levels of N-acetyl aspartate (NAA), choline (tCHO), creatine (CR), myoinositol (MI), and glutamate and glutamine (GLX) were measured in acute HIV subjects (n = 31) and compared to chronic HIV+individuals (n = 26) and HIV negative control subjects (n = 10) from Bangkok, Thailand. Metabolites were measured in frontal gray matter (FGM), frontal white matter (FWM), occipital gray matter (OGM), and basal ganglia (BG). Repeat measures were obtained in 17 acute subjects 1, 3 and 6 months following initiation of ART. Results After adjustment for age we identified elevated BG tCHO/CR in acute HIV cases at baseline (median 14 days after HIV infection) compared to control (p = 0.0014), as well as chronic subjects (p = 0.0023). A similar tCHO/CR elevation was noted in OGM; no other metabolite abnormalities were seen between acute and control subjects. Mixed longitudinal models revealed resolution of BG tCHO/CR elevation after ART (p = 0.022) with tCHO/CR similar to control subjects at 6 months. Interpretation We detected cellular inflammation in the absence of measurable neuronal injury within the first month of HIV infection, and normalization of this inflammation following acutely administered ART. Our findings suggest that early ART may be neuroprotective in HIV infection by mitigating processes leading to CNS injury. PMID:23229129

  16. Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway.

    PubMed

    Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei

    2018-06-01

    Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Long-term prehypertension treatment with losartan effectively prevents brain damage and stroke in stroke-prone spontaneously hypertensive rats.

    PubMed

    He, De-Hua; Zhang, Liang-Min; Lin, Li-Ming; Ning, Ruo-Bing; Wang, Hua-Jun; Xu, Chang-Sheng; Lin, Jin-Xiu

    2014-02-01

    Prehypertension has been associated with adverse cerebrovascular events and brain damage. The aims of this study were to investigate ⅰ) whether short‑ and long-term treatments with losartan or amlodipine for prehypertension were able to prevent blood pressure (BP)-linked brain damage, and ⅱ) whether there is a difference in the effectiveness of treatment with losartan and amlodipine in protecting BP-linked brain damage. In the present study, prehypertensive treatment with losartan and amlodipine (6 and 16 weeks treatment with each drug) was performed on 4-week‑old stroke-prone spontaneously hypertensive rats (SHRSP). The results showed that long-term (16 weeks) treatment with losartan is the most effective in lowering systolic blood pressure in the long term (up to 40 weeks follow-up). Additionally, compared with the amlodipine treatment groups, the short‑ and long-term losartan treatments protected SHRSP from stroke and improved their brains structurally and functionally more effectively, with the long-term treatment having more benefits. Mechanistically, the short‑ and long-term treatments with losartan reduced the activity of the local renin-angiotensin-aldosterone system (RAAS) in a time-dependent manner and more effectively than their respective counterpart amlodipine treatment group mainly by decreasing AT1R levels and increasing AT2R levels in the cerebral cortex. By contrast, the amlodipine treatment groups inhibited brain cell apoptosis more effectively as compared with the losartan treatment groups mainly through the suppression of local oxidative stress. Taken together, the results suggest that long-term losartan treatment for prehypertension effectively protects SHRSP from stroke-induced brain damage, and this protection is associated with reduced local RAAS activity than with brain cell apoptosis. Thus, the AT1R receptor blocker losartan is a good candidate drug that may be used in the clinic for long-term treatment on prehypertensive

  18. Do acute phase markers explain body temperature and brain temperature after ischemic stroke?

    PubMed Central

    Whiteley, William N.; Thomas, Ralph; Lowe, Gordon; Rumley, Ann; Karaszewski, Bartosz; Armitage, Paul; Marshall, Ian; Lymer, Katherine; Dennis, Martin

    2012-01-01

    Objective: Both brain and body temperature rise after stroke but the cause of each is uncertain. We investigated the relationship between circulating markers of inflammation with brain and body temperature after stroke. Methods: We recruited patients with acute ischemic stroke and measured brain temperature at hospital admission and 5 days after stroke with multivoxel magnetic resonance spectroscopic imaging in normal brain and the acute ischemic lesion (defined by diffusion-weighted imaging [DWI]). We measured body temperature with digital aural thermometers 4-hourly and drew blood daily to measure interleukin-6, C-reactive protein, and fibrinogen, for 5 days after stroke. Results: In 44 stroke patients, the mean temperature in DWI-ischemic brain soon after admission was 38.4°C (95% confidence interval [CI] 38.2–38.6), in DWI-normal brain was 37.7°C (95% CI 37.6–37.7), and mean body temperature was 36.6°C (95% CI 36.3–37.0). Higher mean levels of interleukin-6, C-reactive protein, and fibrinogen were associated with higher temperature in DWI-normal brain at admission and 5 days, and higher overall mean body temperature, but only with higher temperature in DWI-ischemic brain on admission. Conclusions: Systemic inflammation after stroke is associated with elevated temperature in normal brain and the body but not with later ischemic brain temperature. Elevated brain temperature is a potential mechanism for the poorer outcome observed in stroke patients with higher levels of circulating inflammatory markers. PMID:22744672

  19. Loss of PAFR prevents neuroinflammation and brain dysfunction after traumatic brain injury

    PubMed Central

    Yin, Xiang-Jie; Chen, Zhen-Yan; Zhu, Xiao-Na; Hu, Jin-Jia

    2017-01-01

    Traumatic brain injury (TBI) is a principal cause of death and disability worldwide, which is a major public health problem. Death caused by TBI accounts for a third of all damage related illnesses, which 75% TBI occurred in low and middle income countries. With the increasing use of motor vehicles, the incidence of TBI has been at a high level. The abnormal brain functions of TBI patients often show the acute and long-term neurological dysfunction, which mainly associated with the pathological process of malignant brain edema and neuroinflammation in the brain. Owing to the neuroinflammation lasts for months or even years after TBI, which is a pivotal causative factor that give rise to neurodegenerative disease at late stage of TBI. Studies have shown that platelet activating factor (PAF) inducing inflammatory reaction after TBI could not be ignored. The morphological and behavioral abnormalities after TBI in wild type mice are rescued by general knockout of PAFR gene that neuroinflammation responses and cognitive ability are improved. Our results thus define a key inflammatory molecule PAF that participates in the neuroinflammation and helps bring about cerebral dysfunction during the TBI acute phase. PMID:28094295

  20. Acute high-altitude hypoxic brain injury: Identification of ten differential proteins

    PubMed Central

    Li, Jianyu; Qi, Yuting; Liu, Hui; Cui, Ying; Zhang, Li; Gong, Haiying; Li, Yaxiao; Li, Lingzhi; Zhang, Yongliang

    2013-01-01

    Hypobaric hypoxia can cause severe brain damage and mitochondrial dysfunction, and is involved in hypoxic brain injury. However, little is currently known about the mechanisms responsible for mitochondrial dysfunction in hypobaric hypoxic brain damage. In this study, a rat model of hypobaric hypoxic brain injury was established to investigate the molecular mechanisms associated with mitochondrial dysfunction. As revealed by two-dimensional electrophoresis analysis, 16, 21, and 36 differential protein spots in cerebral mitochondria were observed at 6, 12, and 24 hours post-hypobaric hypoxia, respectively. Furthermore, ten protein spots selected from each hypobaric hypoxia subgroup were similarly regulated and were identified by mass spectrometry. These detected proteins included dihydropyrimidinase-related protein 2, creatine kinase B-type, isovaleryl-CoA dehydrogenase, elongation factor Ts, ATP synthase beta-subunit, 3-mercaptopyruvate sulfurtransferase, electron transfer flavoprotein alpha-subunit, Chain A of 2-enoyl-CoA hydratase, NADH dehydrogenase iron-sulfur protein 8 and tropomyosin beta chain. These ten proteins are all involved in the electron transport chain and the function of ATP synthase. Our findings indicate that hypobaric hypoxia can induce the differential expression of several cerebral mitochondrial proteins, which are involved in the regulation of mitochondrial energy production. PMID:25206614

  1. A simple behavioral test for locomotor function after brain injury in mice.

    PubMed

    Tabuse, Masanao; Yaguchi, Masae; Ohta, Shigeki; Kawase, Takeshi; Toda, Masahiro

    2010-11-01

    To establish a simple and reliable test for assessing locomotor function in mice with brain injury, we developed a new method, the rotarod slip test, in which the number of slips of the paralytic hind limb from a rotarod is counted. Brain injuries of different severity were created in adult C57BL/6 mice, by inflicting 1-point, 2-point and 4-point cryo-injuries. These mice were subjected to the rotarod slip test, the accelerating rotarod test and the elevated body swing test (EBST). Histological analyses were performed to assess the severity of the brain damage. Significant and consistent correlations between test scores and severity were observed for the rotarod slip test and the EBST. Only the rotarod slip test detected the mild hindlimb paresis in the acute and sub-acute phase after injury. Our results suggest that the rotarod slip test is the most sensitive and reliable method for assessing locomotor function after brain damage in mice. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. CT Perfusion in Acute Stroke: "Black Holes" on Time-to-Peak Image Maps Indicate Unsalvageable Brain.

    PubMed

    Meagher, Ruairi; Shankar, Jai Jai Shiva

    2016-11-01

    CT perfusion is becoming important in acute stroke imaging to determine optimal patient-management strategies. The purpose of this study was to examine the predictive value of time-to-peak image maps and, specifically, a phenomenon coined a "black hole" for assessing infarcted brain tissue at the time of scan. Acute stroke patients were screened for the presence of black holes and their follow-up imaging (noncontrast CT or MR) was reviewed to assess for infarcted brain tissue. Of the 23 patients with signs of acute ischemia on CT perfusion, all had black holes. The black holes corresponded with areas of infarcted brain on follow-up imaging (specificity 100%). Black holes demonstrated significantly lower cerebral blood volumes (P < .001) and cerebral blood flow (P < .001) compared to immediately adjacent tissue. Black holes on time-to-peak image maps represent areas of unsalvageable brain. Copyright © 2016 by the American Society of Neuroimaging.

  3. Brain and cognitive-behavioural development after asphyxia at term birth.

    PubMed

    de Haan, Michelle; Wyatt, John S; Roth, Simon; Vargha-Khadem, Faraneh; Gadian, David; Mishkin, Mortimer

    2006-07-01

    Perinatal asphyxia occurs in approximately 1-6 per 1000 live full-term births. Different patterns of brain damage can result, though the relation of these patterns to long-term cognitive-behavioural outcome remains under investigation. The hippocampus is one brain region that can be damaged (typically not in isolation), and this site of damage has been implicated in two different long-term outcomes, cognitive memory impairment and the psychiatric disorder schizophrenia. Factors in addition to the acute episode of asphyxia likely contribute to these specific outcomes, making prediction difficult. Future studies that better document long-term cognitive-behavioural outcome, quantitatively identify patterns of brain injury over development and consider additional variables that may modulate the impact of asphyxia on cognitive and behavioural function will forward the goals of predicting long-term outcome and understanding the mechanisms by which it unfolds.

  4. New perspectives on central and peripheral immune responses to acute traumatic brain injury

    PubMed Central

    2012-01-01

    Traumatic injury to the brain (TBI) results in a complex set of responses involving various symptoms and long-term consequences. TBI of any form can cause cognitive, behavioral and immunologic changes in later life, which underscores the problem of underdiagnosis of mild TBI that can cause long-term neurological deficits. TBI disrupts the blood–brain barrier (BBB) leading to infiltration of immune cells into the brain and subsequent inflammation and neurodegeneration. TBI-induced peripheral immune responses can also result in multiorgan damage. Despite worldwide research efforts, the methods of diagnosis, monitoring and treatment for TBI are still relatively ineffective. In this review, we delve into the mechanism of how TBI-induced central and peripheral immune responses affect the disease outcome and discuss recent developments in the continuing effort to combat the consequences of TBI and new ways to enhance repair of the damaged brain. PMID:23061919

  5. Experimental acute alcohol pancreatitis-related liver damage and endotoxemia: synbiotics but not metronidazole have a protective effect.

    PubMed

    Marotta, F; Barreto, R; Wu, C C; Naito, Y; Gelosa, F; Lorenzetti, A; Yoshioka, M; Fesce, E

    2005-01-01

    The aim of this study was to test the effect of gut manipulation by either novel synbiotics or by metronidazole on either endotoxemia or the severity of liver damage in the course of acute pancreatitis from alcohol ingestion. Sprague-Dawley rats were fed for 1 week through an intragastric tube a liquid diet with either: (i) 1 mL t.i.d. of a mixture of synbiotics (Lactobacillus acidophilus, Lactobacillus helveticus and Bifidobacterium in an enriched medium); (ii) 20 mg/kg t.i.d. metronidazole; or (iii) standard diet. Then, acute pancreatitis was induced by caerulein and when the disease was full-blown, rats were fed an alcohol-rich diet. Synbiotic and metronidazole treatment was given for a further 2 weeks. Transaminase and endotoxemia levels were measured before treatment, after 6 h, after 24 h and 2 weeks later, at the time the rats were killed. Liver samples were obtained for histological analysis. Synbiotics but not metronidazole improved the acute pancreatitis-induced increase in endotoxemia and transaminase levels. The addition of alcohol worsened these variables to a limited extent in the synbiotic-treated group, while metronidazole had a negative effect on liver damage. Gut flora pretreatment with synbiotics was able to effectively protect against endotoxin/bacterial translocation, as well as liver damage in the course of acute pancreatitis and concomitant heavy alcohol consumption. The beneficial effect of synbiotics on liver histology seems to be correlated with endotoxemia. Metronidazole did not produce such a beneficial effect; in fact, it further worsened liver damage when alcohol was added to the background of ongoing acute pancreatic inflammation.

  6. Zingiber zerumbet L. (Smith) extract alleviates the ethanol-induced brain damage via its antioxidant activity.

    PubMed

    Hamid, Asmah; Ibrahim, Farah Wahida; Ming, Teoh Hooi; Nasrom, Mohd Nazir; Eusoff, Norelina; Husain, Khairana; Abdul Latif, Mazlyzam

    2018-03-20

    Zingiber zerumbet (L.) Smith belongs to the Zingiberaceae family that is widely distributed throughout the tropics, particularly in Southeast Asia. It is locally known as 'Lempoyang' and traditionally used to treat fever, constipation and to relieve pain. It is also known to possess antioxidant and anti-inflammatory activities. Based on these antioxidant and anti-inflammatory activities, this study was conducted to investigate the effects of ethyl-acetate extract of Z. zerumbet rhizomes against ethanol-induced brain damage in male Wistar rats. Twenty-four male Wistar rats were divided into four groups which consist of normal, 1.8 g/kg ethanol (40% v/v), 200 mg/kg Z. zerumbet extract plus ethanol and 400 mg/kg Z. zerumbet plus ethanol. The extract of Z. zerumbet was given once daily by oral gavage, 30 min prior to ethanol exposure via intraperitoneal route for 14 consecutive days. The rats were then sacrificed. Blood and brain homogenate were subjected to biochemical tests and part of the brain tissue was sectioned for histological analysis. Treatment with ethyl-acetate Z. zerumbet extract at 200 mg/kg and 400 mg/kg significantly reduced the level of malondialdehyde (MDA) and protein carbonyl (p < 0.05) in the brain homogenate. Both doses of extracts also significantly increased the level of serum superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities as well as glutathione (GSH) level (p < 0.05). However, administration of ethyl-acetate Z. zerumbet extract at 400 mg/kg showed better protective effects on the ethanol-induced brain damage as shown with higher levels of SOD, CAT, GPx and GSH in the brain homogenate as compared to 200 mg/kg dose. Histological observation of the cerebellum and cerebral cortex showed that the extract prevented the loss of Purkinje cells and retained the number and the shape of the cells. Ethyl-acetate extract of Z. zerumbet has protective effects against ethanol-induced brain damage and

  7. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain.

    PubMed

    Al-Mashhadi, Sufana; Simpson, Julie E; Heath, Paul R; Dickman, Mark; Forster, Gillian; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B

    2015-09-01

    White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P < 0.001). γH2Ax showed a similar, although attenuated difference among groups (P = 0.03). Expression of senescence-associated β-galactosidase and p16 suggested induction of senescence mechanisms in glia. Oxidative DNA damage and a DNA damage response are features of WML pathogenesis and suggest candidate mechanisms for glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined. © 2014 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  8. [Expression of aquaporin-4 during brain edema in rats with thioacetamide-induced acute encephalopathy].

    PubMed

    Wang, Li-Qing; Zhu, Sheng-Mei; Zhou, Heng-Jun; Pan, Cai-Fei

    2011-09-27

    To investigate the expression of aquaporin-4 (AQP4) during brain edema in rats with thioacetamide-induced acute liver failure and encephalopathy. The rat model of acute hepatic failure and encephalopathy was induced by intraperitoneal injection of thioacetamide (TAA) at a 24-hour interval for 2 consecutive days. Thirty-two SD rats were randomly divided into the model group (n = 24) and the control group (normal saline, n = 8). And then the model group was further divided into 3 subgroups by the timepoint of decapitation: 24 h (n = 8), 48 h (n = 8) and 60 h (n = 8). Then we observed their clinical symptoms and stages of HE, indices of liver function and ammonia, liver histology and brain water content. The expression of AQP4 protein in brain tissues was measured with Western blot and the expression of AQP4mRNA with RT-PCR (reverse transcription-polymerase chain reaction). Typical clinical manifestations of hepatic encephalopathy occurred in all TAA-administrated rats. The model rats showed the higher indices of ALT (alanine aminotransferase), AST (aspartate aminotransferase), TBIL (total bilirubin) and ammonia than the control rats (P < 0.05). The brain water content was significantly elevated in TAA-administrated rats compared with the control (P < 0.05). The expressions of AQP4 protein and mRNA in brain tissues significantly increased in TAA-administrated rats (P < 0.05). In addition, the expressions of AQP4 protein and mRNA were positively correlated with brain water content (r = 0.536, P < 0.01; r = 0.566, P = 0.01). The high expression of AQP4 in rats with TAA-induced acute liver failure and encephalopathy plays a significant role during brain edema. AQP4 is one of the molecular mechanisms for the occurrence of brain edema in hepatic encephalopathy.

  9. Acute and chronic ethanol intake: effects on spatial and non-spatial memory in rats.

    PubMed

    García-Moreno, Luis M; Cimadevilla, Jose M

    2012-12-01

    Abusive alcohol consumption produces neuronal damage and biochemical alterations in the mammal brain followed by cognitive disturbances. In this work rats receiving chronic and acute alcohol intake were evaluated in a spontaneous delayed non-matching to sample/position test. Chronic alcohol-treated rats had free access to an aqueous ethanol solution as the only available liquid source from the postnatal day 21 to the end of experiment (postnatal day 90). Acute alcoholic animals received an injection of 2 g/kg ethanol solution once per week. Subjects were evaluated in two tests (object recognition and spatial recognition) based on the spontaneous delayed non-matching to sample or to position paradigm using delays of 1 min, 15 min and 60 min. Results showed that chronic and acute alcohol intake impairs the rats' performance in both tests. Moreover, chronic alcohol-treated rats were more altered than acute treated animals in both tasks. Our results support the idea that chronic and acute alcohol administration during postnatal development caused widespread brain damage resulting in behavioral disturbances and learning disabilities. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Tracking brain damage in progressive supranuclear palsy: a longitudinal MRI study.

    PubMed

    Agosta, Federica; Caso, Francesca; Ječmenica-Lukić, Milica; Petrović, Igor N; Valsasina, Paola; Meani, Alessandro; Copetti, Massimiliano; Kostić, Vladimir S; Filippi, Massimo

    2018-01-18

    In this prospective, longitudinal, multiparametric MRI study, we investigated clinical as well as brain grey matter and white matter (WM) regional changes in patients with progressive supranuclear palsy-Richardson's syndrome (PSP-RS). Twenty-one patients with PSP-RS were evaluated at baseline relative to 36 healthy controls and after a mean follow-up of 1.4 years with clinical rating scales, neuropsychological tests and MRI scans. Relative to controls, patients with PSP-RS showed at baseline a typical pattern of brain damage, including midbrain atrophy, frontal cortical thinning and widespread WM involvement of the main infratentorial and supratentorial tracts that exceeded cortical damage. Longitudinal study showed that PSP-RS exhibited no further changes in cortical thinning, which remained relatively focal, while midbrain atrophy and WM damage significantly progressed. Corpus callosum and frontal WM tract changes correlated with the progression of both disease severity and behavioural dysfunction. This study demonstrated the feasibility of carrying out longitudinal diffusion tensor MRI in patients with PSP-RS and its sensitivity to identifying the progression of pathology. Longitudinal midbrain volume loss and WM changes are associated with PSP disease course. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion.

    PubMed

    Zhai, S-Q; Guo, W; Hu, Y-Y; Yu, N; Chen, Q; Wang, J-Z; Fan, M; Yang, W-Y

    2011-05-01

    To explore the protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion. Recombinant adenovirus brain-derived neurotrophic factor vector, recombinant adenovirus LacZ and artificial perilymph were prepared. Guinea pigs with audiometric auditory brainstem response thresholds of more than 75 dB SPL, measured seven days after four hours of noise exposure at 135 dB SPL, were divided into three groups. Adenovirus brain-derived neurotrophic factor vector, adenovirus LacZ and perilymph were infused into the cochleae of the three groups, variously. Eight weeks later, the cochleae were stained immunohistochemically and the spiral ganglion cells counted. The auditory brainstem response threshold recorded before and seven days after noise exposure did not differ significantly between the three groups. However, eight weeks after cochlear perfusion, the group receiving brain-derived neurotrophic factor had a significantly decreased auditory brainstem response threshold and increased spiral ganglion cell count, compared with the adenovirus LacZ and perilymph groups. When administered via cochlear infusion following noise damage, brain-derived neurotrophic factor appears to improve the auditory threshold, and to have a protective effect on the spiral ganglion cells.

  12. Vision restoration after brain and retina damage: the "residual vision activation theory".

    PubMed

    Sabel, Bernhard A; Henrich-Noack, Petra; Fedorov, Anton; Gall, Carolin

    2011-01-01

    Vision loss after retinal or cerebral visual injury (CVI) was long considered to be irreversible. However, there is considerable potential for vision restoration and recovery even in adulthood. Here, we propose the "residual vision activation theory" of how visual functions can be reactivated and restored. CVI is usually not complete, but some structures are typically spared by the damage. They include (i) areas of partial damage at the visual field border, (ii) "islands" of surviving tissue inside the blind field, (iii) extrastriate pathways unaffected by the damage, and (iv) downstream, higher-level neuronal networks. However, residual structures have a triple handicap to be fully functional: (i) fewer neurons, (ii) lack of sufficient attentional resources because of the dominant intact hemisphere caused by excitation/inhibition dysbalance, and (iii) disturbance in their temporal processing. Because of this resulting activation loss, residual structures are unable to contribute much to everyday vision, and their "non-use" further impairs synaptic strength. However, residual structures can be reactivated by engaging them in repetitive stimulation by different means: (i) visual experience, (ii) visual training, or (iii) noninvasive electrical brain current stimulation. These methods lead to strengthening of synaptic transmission and synchronization of partially damaged structures (within-systems plasticity) and downstream neuronal networks (network plasticity). Just as in normal perceptual learning, synaptic plasticity can improve vision and lead to vision restoration. This can be induced at any time after the lesion, at all ages and in all types of visual field impairments after retinal or brain damage (stroke, neurotrauma, glaucoma, amblyopia, age-related macular degeneration). If and to what extent vision restoration can be achieved is a function of the amount of residual tissue and its activation state. However, sustained improvements require repetitive

  13. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.

    PubMed

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539). Copyright © 2013 by the Research Society on Alcoholism.

  14. Conversation after Right Hemisphere Brain Damage: Motivations for Applying Conversation Analysis

    ERIC Educational Resources Information Center

    Barnes, Scott; Armstrong, Elizabeth

    2010-01-01

    Despite the well documented pragmatic deficits that can arise subsequent to Right Hemisphere Brain Damage (RHBD), few researchers have directly studied everyday conversations involving people with RHBD. In recent years, researchers have begun applying Conversation Analysis (CA) to the everyday talk of people with aphasia. This research programme…

  15. The Neurotrophic Substances and Behavioral Recovery from Brain Damage.

    DTIC Science & Technology

    1984-11-01

    neurotrophic substances that facilitate synthesis may be partially responsible for the com- neuronal regeneration" 12 pensatory effects of the NGF in...1962. Facilitation of simultaneous discrimination learning with strychnine sulphate. Psychopharmacologia 3: 166-172. 21. MEANS, E. D., AND D. K...34 ’- ,P ’% --- SALINE EFFECT 1071 28. SIESJO, B. K. 1981. Cell damage in the brain. A speculative synthesis . J. Cereb. Blood’ Flow Meiab. t: s155-slS5. 29

  16. The blood-brain barrier as a target in traumatic brain injury treatment.

    PubMed

    Thal, Serge C; Neuhaus, Winfried

    2014-11-01

    Traumatic brain injury (TBI) is one of the most frequent causes of death in the young population. Several clinical trials have unsuccessfully focused on direct neuroprotective therapies. Recently immunotherapeutic strategies shifted into focus of translational research in acute CNS diseases. Cross-talk between activated microglia and blood-brain barrier (BBB) could initiate opening of the BBB and subsequent recruitment of systemic immune cells and mediators into the brain. Stabilization of the BBB after TBI could be a promising strategy to limit neuronal inflammation, secondary brain damage and acute neurodegeneration. This review provides an overview on the pathophysiology of TBI and brain edema formation including definitions and classification of TBI, current clinical treatment strategies, as well as current understanding on the underlying cellular processes. A summary of in vivo and in vitro models to study different aspects of TBI is presented. Three mechanisms proposed for stabilization of the BBB, myosin light chain kinases, glucocorticoid receptors and peroxisome proliferator-activated receptors are reviewed for their influence on barrier-integrity and outcome after TBI. In conclusion, the BBB is recommended as a promising target for the treatment of traumatic brain injury, and it is suggested that a combination of BBB stabilization and neuroprotectants may improve therapeutic success. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  17. Acute and massive bleeding from placenta previa and infants' brain damage.

    PubMed

    Furuta, Ken; Tokunaga, Shuichi; Furukawa, Seishi; Sameshima, Hiroshi

    2014-09-01

    Among the causes of third trimester bleeding, the impact of placenta previa on cerebral palsy is not well known. To clarify the effect of maternal bleeding from placenta previa on cerebral palsy, and in particular when and how it occurs. A descriptive study. Sixty infants born to mothers with placenta previa in our regional population-based study of 160,000 deliveries from 1998 to 2012. Premature deliveries occurring at<26 weeks of gestation and placenta accreta were excluded. Prevalence of cystic periventricular leukomalacia (PVL) and cerebral palsy (CP). Five infants had PVL and 4 of these infants developed CP (1/40,000 deliveries). Acute and massive bleeding (>500g within 8h) occurred at around 30-31 weeks of gestation, and was severe enough to deliver the fetus. None of the 5 infants with PVL underwent antenatal corticosteroid treatment, and 1 infant had mild neonatal hypocapnia with a PaCO2 <25mmHg. However, none of the 5 PVL infants showed umbilical arterial acidemia with pH<7.2, an abnormal fetal heart rate monitoring pattern, or neonatal hypotension. Our descriptive study showed that acute and massive bleeding from placenta previa at around 30 weeks of gestation may be a risk factor for CP, and requires careful neonatal follow-up. The underlying process connecting massive placental bleeding and PVL requires further investigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Contribution of Brain Tissue Oxidative Damage in Hypothyroidism-associated Learning and Memory Impairments

    PubMed Central

    Baghcheghi, Yousef; Salmani, Hossein; Beheshti, Farimah; Hosseini, Mahmoud

    2017-01-01

    The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments. PMID:28584813

  19. Plasma copeptin level predicts acute traumatic coagulopathy and progressive hemorrhagic injury after traumatic brain injury.

    PubMed

    Yang, Ding-Bo; Yu, Wen-Hua; Dong, Xiao-Qiao; Du, Quan; Shen, Yong-Feng; Zhang, Zu-Yong; Zhu, Qiang; Che, Zhi-Hao; Liu, Qun-Jie; Wang, Hao; Jiang, Li; Du, Yuan-Feng

    2014-08-01

    Higher plasma copeptin levels correlate with poor clinical outcomes after traumatic brain injury. Nevertheless, their links with acute traumatic coagulopathy and progressive hemorrhagic injury are unknown. Therefore, we aimed to investigate the relationship between plasma copeptin levels, acute traumatic coagulopathy and progressive hemorrhagic injury in patients with severe traumatic brain injury. We prospectively studied 100 consecutive patients presenting within 6h from head trauma. Progressive hemorrhagic injury was present when the follow-up computerized tomography scan reported any increase in size or number of the hemorrhagic lesion, including newly developed ones. Acute traumatic coagulopathy was defined as an activated partial thromboplastic time greater than 40s and/or international normalized ratio greater than 1.2 and/or a platelet count less than 120×10(9)/L. We measured plasma copeptin levels on admission using an enzyme-linked immunosorbent assay in a blinded fashion. In multivariate logistic regression analysis, plasma copeptin level emerged as an independent predictor of progressive hemorrhagic injury and acute traumatic coagulopathy. Using receiver operating characteristic curves, we calculated areas under the curve for progressive hemorrhagic injury and acute traumatic coagulopathy. The predictive performance of copeptin was similar to that of Glasgow Coma Scale score. However, copeptin did not obviously improve the predictive value of Glasgow Coma Scale score. Thus, copeptin may help in the prediction of progressive hemorrhagic injury and acute traumatic coagulopathy after traumatic brain injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Temporal relationship of serum markers and tissue damage during acute intestinal ischemia/reperfusion

    PubMed Central

    la Garza, Francisco Javier Guzmán-de; Ibarra-Hernández, Juan Manuel; Cordero-Pérez, Paula; Villegas-Quintero, Pablo; Villarreal-Ovalle, Claudia Ivette; Torres-González, Liliana; Oliva-Sosa, Norma Edith; Alarcón-Galván, Gabriela; Fernández-Garza, Nancy Esthela; Muñoz-Espinosa, Linda Elsa; Cámara-Lemarroy, Carlos Rodrigo; Carrillo-Arriaga, José Gerardo

    2013-01-01

    OBJECTIVE: It is essential to identify a serological marker of injury in order to study the pathophysiology of intestinal ischemia reperfusion. In this work, we studied the evolution of several serological markers after intestinal ischemia reperfusion injury in rats. The markers of non-specific cell damage were aspartate aminotransferase, alanine aminotransaminase, and lactic dehydrogenase, the markers of inflammation were tumor necrosis factor alpha, interleukin-6, and interleukin-1 beta, and the markers of intestinal mucosal damage were intestinal fatty acid binding protein and D-lactate. We used Chiús classification to grade the histopathological damage. METHODS: We studied 35 Wistar rats divided into groups according to reperfusion time. The superior mesenteric artery was clamped for 30 minutes, and blood and biopsies were collected at 1, 3, 6, 12, 24, and 48 hours after reperfusion. We plotted the mean ± standard deviation and compared the baseline and maximum values for each marker using Student's t-test. RESULTS: The maximum values of interleukin-1 beta and lactic dehydrogenase were present before the maximal histopathological damage. The maximum tumor necrosis factor alpha and D-lactate expressions coincided with histopathological damage. Alanine aminotransaminase and aspartate aminotransferase had a maximum expression level that increased following the histopathological damage. The maximum expressions of interluken-6 and intestinal fatty acid binding protein were not significantly different from the Sham treated group. CONCLUSION: For the evaluation of injury secondary to acute intestinal ischemia reperfusion with a 30 minute ischemia period, we recommend performing histopathological grading, quantification of D-lactate, which is synthesized by intestinal bacteria and is considered an indicator of mucosal injury, and quantification of tumor necrosis factor alpha as indicators of acute inflammation three hours after reperfusion. PMID:23917671

  1. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel

    Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. Inmore » all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti

  2. Methamphetamine-induced striatal apoptosis in the mouse brain: Comparison of a binge to an acute bolus drug administration

    PubMed Central

    Zhu, Judy P.Q.; Xu, Wenjing; Angulo, Nieves; Angulo, Jesus A.

    2010-01-01

    Methamphetamine (METH) is a psychostimulant that induces neural damage in experimental animals and humans. A binge (usually in the 5–10 mg/kg dose range 4× at 2 h intervals) and the acute bolus drug administration (20–40 mg/kg) of METH have been employed frequently to study neurotoxicity in the brain. In this study we have compared these drug delivery schedules to determine their efficacy to induce striatal apoptosis. Exposure of male mice to a binge of METH at 10 mg/kg 4× at 2 h intervals (cumulative dose of 40 mg/kg) was approximately four times less effective in inducing apoptotic cell death (TUNEL staining) 24 h after METH treatment in the striatum than a single bolus administration of 30 mg/kg of METH. The residual TUNEL staining observed three days after METH treatment is proportionately equivalent between a binge and the acute bolus drug administration. Interestingly, a binge of METH induces a hyperthermic response of longer duration. This study demonstrates that an acute bolus drug administration of METH is more effective inducing striatal apoptosis in mice, and therefore, is more suitable for studies assessing the impact of METH on sites post-synaptic to the striatonigral dopamine terminals. PMID:16165214

  3. The differential effects of acute right- vs. left-sided vestibular failure on brain metabolism.

    PubMed

    Becker-Bense, Sandra; Dieterich, Marianne; Buchholz, Hans-Georg; Bartenstein, Peter; Schreckenberger, Mathias; Brandt, Thomas

    2014-07-01

    The human vestibular system is represented in the brain bilaterally, but it has functional asymmetries, i.e., a dominance of ipsilateral pathways and of the right hemisphere in right-handers. To determine if acute right- or left-sided unilateral vestibular neuritis (VN) is associated with differential patterns of brain metabolism in areas representing the vestibular network and the visual-vestibular interaction, patients with acute VN (right n = 9; left n = 13) underwent resting state (18)F-FDG PET once in the acute phase and once 3 months later after central vestibular compensation. The contrast acute vs. chronic phase showed signal differences in contralateral vestibular areas and the inverse contrast in visual cortex areas, both more pronounced in VN right. In VN left additional regions were found in the cerebellar hemispheres and vermis bilaterally, accentuated in severe cases. In general, signal changes appeared more pronounced in patients with more severe vestibular deficits. Acute phase PET data of patients compared to that of age-matched healthy controls disclosed similarities to these patterns, thus permitting the interpretation that the signal changes in vestibular temporo-parietal areas reflect signal increases, and in visual areas, signal decreases. These data imply that brain activity in the acute phase of right- and left-sided VN exhibits different compensatory patterns, i.e., the dominant ascending input is shifted from the ipsilateral to the contralateral pathways, presumably due to the missing ipsilateral vestibular input. The visual-vestibular interaction patterns were preserved, but were of different prominence in each hemisphere and more pronounced in patients with right-sided failure and more severe vestibular deficits.

  4. SPARC (secreted protein acidic and rich in cysteine) knockdown protects mice from acute liver injury by reducing vascular endothelial cell damage

    PubMed Central

    Peixoto, E; Atorrasagasti, C; Aquino, JB; Militello, R; Bayo, J; Fiore, E; Piccioni, F; Salvatierra, E; Alaniz, L; García, MG; Bataller, R; Corrales, F; Gidekel, M; Podhajcer, O; Colombo, MI; Mazzolini, G

    2015-01-01

    Secreted protein, acidic and rich in cysteine (SPARC) is involved in many biological process including liver fibrogenesis, but its role in acute liver damage is unknown. To examine the role of SPARC in acute liver injury, we used SPARC knock-out (SPARC−/−) mice. Two models of acute liver damage were used: concanavalin A (Con A) and the agonistic anti-CD95 antibody Jo2. SPARC expression levels were analyzed in liver samples from patients with acute-on-chronic alcoholic hepatitis (AH). SPARC expression is increased on acute-on-chronic AH patients. Knockdown of SPARC decreased hepatic damage in the two models of liver injury. SPARC−/− mice showed a marked reduction in Con A-induced necroinflammation. Infiltration by CD4+ T cells, expression of tumor necrosis factor-α and interleukin-6 and apoptosis were attenuated in SPARC−/− mice. Sinusoidal endothelial cell monolayer was preserved and was less activated in Con A-treated SPARC−/− mice. SPARC knockdown reduced Con A-induced autophagy of cultured human microvascular endothelial cells (HMEC-1). Hepatic transcriptome analysis revealed several gene networks that may have a role in the attenuated liver damaged found in Con A-treated SPARC−/− mice. SPARC has a significant role in the development of Con A-induced severe liver injury. These results suggest that SPARC could represent a therapeutic target in acute liver injury. PMID:25410742

  5. Co-speech hand movements during narrations: What is the impact of right vs. left hemisphere brain damage?

    PubMed

    Hogrefe, Katharina; Rein, Robert; Skomroch, Harald; Lausberg, Hedda

    2016-12-01

    Persons with brain damage show deviant patterns of co-speech hand movement behaviour in comparison to healthy speakers. It has been claimed by several authors that gesture and speech rely on a single production mechanism that depends on the same neurological substrate while others claim that both modalities are closely related but separate production channels. Thus, findings so far are contradictory and there is a lack of studies that systematically analyse the full range of hand movements that accompany speech in the condition of brain damage. In the present study, we aimed to fill this gap by comparing hand movement behaviour in persons with unilateral brain damage to the left and the right hemisphere and a matched control group of healthy persons. For hand movement coding, we applied Module I of NEUROGES, an objective and reliable analysis system that enables to analyse the full repertoire of hand movements independent of speech, which makes it specifically suited for the examination of persons with aphasia. The main results of our study show a decreased use of communicative conceptual gestures in persons with damage to the right hemisphere and an increased use of these gestures in persons with left brain damage and aphasia. These results not only suggest that the production of gesture and speech do not rely on the same neurological substrate but also underline the important role of right hemisphere functioning for gesture production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Are preterm newborns who have relative hyperthyrotropinemia at increased risk of brain damage?

    PubMed

    Korzeniewski, Steven J; Soto-Rivera, Carmen L; Fichorova, Raina N; Allred, Elizabeth N; Kuban, Karl C K; O'Shea, T Michael; Paneth, Nigel; Agus, Michael; Dammann, Olaf; Leviton, Alan

    2014-11-01

    We sought to disentangle the contributions of hyperthyrotropinemia (an indicator of thyroid dysfunction) (HTT) and intermittent or sustained systemic inflammation (ISSI) to structural and functional indicators of brain damage. We measured the concentrations of thyroid-stimulating hormone (TSH) on day 14 and of 25 inflammation-related proteins in blood collected during the first 2 postnatal weeks from 786 infants born before the 28th week of gestation who were not considered to have hypothyroidism. We defined hyperthyrotropinemia (HTT) as a TSH concentration in the highest quartile for gestational age on postnatal day 14 and ISSI was defined as a concentration in the top quartile for gestational age of a specific inflammation-related protein on 2 separate days a week apart during the first 2 postnatal weeks. We first assessed the risk of brain damage indicators by comparing 1) neonates who had HTT to those without (regardless of ISSI) and 2) neonates with HTT only, ISSI only, or HTT+ISSI to those who were exposed to neither HTT nor ISSI. In univariable models that compared those with HTT to those without, HTT was not significantly associated with any indicator of brain damage. In models that compared HTT only, ISSI only, and HTT+ISSI to those with neither, children with ISSI only or with HTT+ISSI were at significantly higher risk of ventriculomegaly [odds ratios (ORs) 2-6], whereas those with HTT only were at significantly reduced risk of a hypoechoic lesion (ORs 0.2-0.4). Children with HTT only had a higher risk of quadriparesis and those with ISSI alone had a higher risk of hemiparesis (ORs 1.6-2.4). Elevated risk of a very low mental development score was associated with both ISSI only and HTT+ISSI, whereas a very low motor development score and microcephaly were associated with HTT+ISSI. The association of HTT with increased or decreased risk of indicators of brain damage depends on the presence or absence of ISSI.

  7. Acute O3 damage on first year coppice sprouts of aspen and maple sprouts in an open-air experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darbah, J.N.; Nagy, J.; Jones, W. S.

    2011-10-01

    We studied the effect of high ozone (O{sub 3}) concentration (110-490 nmol mol{sup -1}) on regenerating aspen (Populus tremuloides) and maple (Acer saccharum) trees at an open-air O{sub 3} pollution experiment near Rhinelander WI USA. This study is the first of its kind to examine the effects of acute O{sub 3} exposure on aspen and maple sprouts after the parent trees, which were grown under elevated O{sub 3} and/or CO{sub 2} for 12 years, were harvested. Acute O{sub 3} damage was not uniform within the crowns of aspen suckers; it was most severe in the mature, fully expanded photosynthesizing leaves.more » Young expanding leaves showed no visible signs of acute O{sub 3} damage contrary to expectations. Stomatal conductance played a primary role in the severity of acute O{sub 3} damage as it directly controlled O{sub 3} uptake. Maple sprouts, which had lower stomatal conductance, smaller stomatal aperture, higher stomatal density and larger leaf surface area, were tolerant of acute O{sub 3} exposure. Moreover, elevated CO{sub 2} did not ameliorate the adverse effects of acute O{sub 3} dose on aspen and maple sprouts, in contrast to its ability to counteract the effects of long-term chronic exposure to lower O{sub 3} levels.« less

  8. Investigating Metacognition, Cognition, and Behavioral Deficits of College Students with Acute Traumatic Brain Injuries

    ERIC Educational Resources Information Center

    Martinez, Sarah; Davalos, Deana

    2016-01-01

    Objective: Executive dysfunction in college students who have had an acute traumatic brain injury (TBI) was investigated. The cognitive, behavioral, and metacognitive effects on college students who endorsed experiencing a brain injury were specifically explored. Participants: Participants were 121 college students who endorsed a mild TBI, and 121…

  9. [Definition and biomarkers of acute renal damage: new perspectives].

    PubMed

    Seijas, M; Baccino, C; Nin, N; Lorente, J A

    2014-01-01

    The RIFLE and AKIN criteria have definitely help out to draw attention to the relationship between a deterioration of renal function that produces a small increase in serum creatinine and a worse outcome. However, the specific clinical utility of using these criteria remains to be well-defined. It is believed that the main use of these criteria is for the design of epidemiological studies and clinical trials to define inclusion criteria and objectives of an intervention. AKI adopting term, re-summoning former ARF terminology, it is appropriate to describe the clinical condition characterized by damage to kidney, in the same way as the term is used to describe acute lung damage where the lung injury situation still has not increased to a situation of organ failure (dysfunction). The serum and urine biomarkers (creatinine, urea, and diuresis) currently in use are not sensitive or specific for detecting kidney damage, limiting treatment options and potentially compromising the outcome. New biomarkers are being studied in order to diagnose an earlier and more specific AKI, with the potential to change the definition criteria of AKI with different stages, currently based in diuresis and serum creatinine. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  10. Berberine Protects against Neuronal Damage via Suppression of Glia-Mediated Inflammation in Traumatic Brain Injury

    PubMed Central

    Lee, Chao Yu; Wang, Liang-Fei; Wu, Chun-Hu; Ke, Chia-Hua; Chen, Szu-Fu

    2014-01-01

    Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect. PMID:25546475

  11. Neuroprotective effects of NAP against excitotoxic brain damage in the newborn mice: implications for cerebral palsy.

    PubMed

    Sokolowska, P; Passemard, S; Mok, A; Schwendimann, L; Gozes, I; Gressens, P

    2011-01-26

    Activity-dependent neuroprotective protein (ADNP) was shown to be essential for embryogenesis and brain development while NAP, an active motif of ADNP, is neuroprotective in a broad range of neurodegenerative disorders. In the present study, we examined the protective potential of ADNP/NAP in a mouse model of excitotoxic brain lesion mimicking brain damage associated with cerebral palsy. We demonstrated that NAP had a potent neuroprotective effect against ibotenate-induced excitotoxic damage in the cortical plate and the white matter of P5 mice, and moderate against brain lesions of P0 mice. In contrast, endogenous ADNP appears not to be involved in the response to excitotoxic challenge in the studied model. Our findings further show that NAP reduced the number of apoptotic neurons through activation of PI-3K/Akt pathway in the cortical plate or both PI-3K/Akt and MAPK/MEK1 kinases in the white matter. In addition, NAP prevented ibotenate-induced loss of pre-oligodendrocytes without affecting the number of astrocytes or activated microglia around the site of injection. These findings indicate that protective actions of NAP are mediated by triggering transduction pathways that are crucial for neuronal and oligodendroglial survival, thus, NAP might be a promising therapeutic agent for treating developing brain damage. © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Perspectives on Treatment for Communication Deficits Associated with Right Hemisphere Brain Damage

    ERIC Educational Resources Information Center

    Blake, Margaret Lehman

    2007-01-01

    Purpose: To describe the current treatment research for communication (prosodic, discourse, and pragmatic) deficits associated with right hemisphere brain damage and to provide suggestions for treatment selection given the paucity of evidence specifically for this population. Method: The discussion covers (a) clinical decision processes and…

  13. Acute and non-acute effects of cannabis on brain functioning and neuropsychological performance.

    PubMed

    Gonzalez, Raul

    2007-09-01

    Cannabis has an ancient history of human use and is currently one of the most commonly used drugs worldwide. Understanding its impact on neurobehavioral functioning is of significant public health concern. In recent decades, substantial progress has been made in understanding the impact of cannabis use on neurobehavioral functioning. This has been fueled, in part, by characterization of an endocannabinoid signaling system in the brain through which cannabis exerts its psychoactive effects. Acute intoxication with cannabis causes marked changes in subjective mental status, brain functioning, and neuropsychological performance. Some of these changes are consistently detected and well characterized, yet others are not. Changes in brain functioning and neuropsychological performance are also reported after abstinence, but appear to be mild, circumscribed, and transient. On the other hand, functional neuroimaging often reveals subtle differences in the brain functioning of abstinent cannabis users compared with controls. The persistence and clinical significance of these differences, however, remains to be determined. Neuropsychological deficits and differences in brain functioning are most consistently observed only among frequent, heavy users, who are those most likely addicted to cannabis. The dire impact of drug addiction on a person's life and everyday functioning suggests that the large number of individuals addicted to cannabis experience substantial negative effects from its use. This manuscript reviews the scientific literature on the aforementioned topics in detail, providing evidence for converging findings, and highlighting areas in need of further investigation.

  14. Paradoxical false memory for objects after brain damage.

    PubMed

    McTighe, Stephanie M; Cowell, Rosemary A; Winters, Boyer D; Bussey, Timothy J; Saksida, Lisa M

    2010-12-03

    Poor memory after brain damage is usually considered to be a result of information being lost or rendered inaccessible. It is assumed that such memory impairment must be due to the incorrect interpretation of previously encountered information as being novel. In object recognition memory experiments with rats, we found that memory impairment can take the opposite form: a tendency to treat novel experiences as familiar. This impairment could be rescued with the use of a visual-restriction procedure that reduces interference. Such a pattern of data can be explained in terms of a recent representational-hierarchical view of cognition.

  15. Return to drive after non-evolutive brain damage: French recommendations.

    PubMed

    D'apolito, Anne-Claire; Leguiet, Jean-Luc; Enjalbert, Michel; Lemoine, Francis; Mazaux, Jean-Michel

    2017-07-01

    Return to drive after brain damage is a crucial question either for patients than health professionals. The Société française de medicine physique et de réadaptation (SOFMER) and Comète France association developed recommandations for patient's identification, evaluation and accompaniment as part of their project to resume to drive. The place of rehabilitation process and patient's focus has been also discussed. Using a literature review, the aim was to define clinical pathways to determine people who need a fitness to drive evaluation after a non-evolutive brain damage as well as the assessment process. Following the method for Clinical practice guidelines, 1388 abstracts were identified, among which 379 were analysed and confronted with the working group's experience. The draft propositions were submitted to a review group before being validated by the High French Health Autority. No article enabled the development of recommendations above the "expert opinion". The detection of sensory (visual), sensitive, motor and/or cognitive sequelaes is needed before return to drive. It is not recommended to return to drive in case of unilateral spatial neglect. Different assessment strategies, function of sequeale's gravity, are proposed after stroke or brain injury. In case of sequeale, the assessment process (clinical, cognitive, on road evaluation) has to be pluriprofessional. The results are the subject of a pluriprofessional synthesis, shared with the patient and, if possible, in the presence of a close. An accompaniment to maintain the best mobility of the person is needed, whatever the assessment result. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Glutamate as a neurotransmitter in the brain: review of physiology and pathology.

    PubMed

    Meldrum, B S

    2000-04-01

    Glutamate is the principal excitatory neurotransmitter in brain. Our knowledge of the glutamatergic synapse has advanced enormously in the last 10 years, primarily through application of molecular biological techniques to the study of glutamate receptors and transporters. There are three families of ionotropic receptors with intrinsic cation permeable channels [N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate]. There are three groups of metabotropic, G protein-coupled glutamate receptors (mGluR) that modify neuronal and glial excitability through G protein subunits acting on membrane ion channels and second messengers such as diacylglycerol and cAMP. There are also two glial glutamate transporters and three neuronal transporters in the brain. Glutamate is the most abundant amino acid in the diet. There is no evidence for brain damage in humans resulting from dietary glutamate. A kainate analog, domoate, is sometimes ingested accidentally in blue mussels; this potent toxin causes limbic seizures, which can lead to hippocampal and related pathology and amnesia. Endogenous glutamate, by activating NMDA, AMPA or mGluR1 receptors, may contribute to the brain damage occurring acutely after status epilepticus, cerebral ischemia or traumatic brain injury. It may also contribute to chronic neurodegeneration in such disorders as amyotrophic lateral sclerosis and Huntington's chorea. In animal models of cerebral ischemia and traumatic brain injury, NMDA and AMPA receptor antagonists protect against acute brain damage and delayed behavioral deficits. Such compounds are undergoing testing in humans, but therapeutic efficacy has yet to be established. Other clinical conditions that may respond to drugs acting on glutamatergic transmission include epilepsy, amnesia, anxiety, hyperalgesia and psychosis.

  17. Astrocytes Promote Oligodendrogenesis after White Matter Damage via Brain-Derived Neurotrophic Factor.

    PubMed

    Miyamoto, Nobukazu; Maki, Takakuni; Shindo, Akihiro; Liang, Anna C; Maeda, Mitsuyo; Egawa, Naohiro; Itoh, Kanako; Lo, Evan K; Lok, Josephine; Ihara, Masafumi; Arai, Ken

    2015-10-14

    Oligodendrocyte precursor cells (OPCs) in the adult brain contribute to white matter homeostasis. After white matter damage, OPCs compensate for oligodendrocyte loss by differentiating into mature oligodendrocytes. However, the underlying mechanisms remain to be fully defined. Here, we test the hypothesis that, during endogenous recovery from white matter ischemic injury, astrocytes support the maturation of OPCs by secreting brain-derived neurotrophic factor (BDNF). For in vitro experiments, cultured primary OPCs and astrocytes were prepared from postnatal day 2 rat cortex. When OPCs were subjected to chemical hypoxic stress by exposing them to sublethal CoCl2 for 7 d, in vitro OPC differentiation into oligodendrocytes was significantly suppressed. Conditioned medium from astrocytes (astro-medium) restored the process of OPC maturation even under the stressed conditions. When astro-medium was filtered with TrkB-Fc to remove BDNF, the BDNF-deficient astro-medium no longer supported OPC maturation. For in vivo experiments, we analyzed a transgenic mouse line (GFAP(cre)/BDNF(wt/fl)) in which BDNF expression is downregulated specifically in GFAP(+) astrocytes. Both wild-type (GFAP(wt)/BDNF(wt/fl) mice) and transgenic mice were subjected to prolonged cerebral hypoperfusion by bilateral common carotid artery stenosis. As expected, compared with wild-type mice, the transgenic mice exhibited a lower number of newly generated oligodendrocytes and larger white matter damage. Together, these findings demonstrate that, during endogenous recovery from white matter damage, astrocytes may promote oligodendrogenesis by secreting BDNF. The repair of white matter after brain injury and neurodegeneration remains a tremendous hurdle for a wide spectrum of CNS disorders. One potentially important opportunity may reside in the response of residual oligodendrocyte precursor cells (OPCs). OPCs may serve as a back-up for generating mature oligodendrocytes in damaged white matter. However

  18. A combination of experimental measurement, constitutive damage model, and diffusion tensor imaging to characterize the mechanical properties of the human brain.

    PubMed

    Karimi, Alireza; Rahmati, Seyed Mohammadali; Razaghi, Reza

    2017-09-01

    Understanding the mechanical properties of the human brain is deemed important as it may subject to various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the frontal lobe of the human brain. The constrained nonlinear minimization method was employed to identify the brain coefficients according to the axial and transversal compressive data. The pseudo-elastic damage model data was also well compared with that of the experimental data and it not only up to the primary loading but also the discontinuous softening could well address the mechanical behavior of the brain tissue.

  19. Baicalin Attenuates Subarachnoid Hemorrhagic Brain Injury by Modulating Blood-Brain Barrier Disruption, Inflammation, and Oxidative Damage in Mice

    PubMed Central

    Fu, Yongjian; Zhang, SongSong; Ding, Hao; Chen, Jin

    2017-01-01

    In subarachnoid hemorrhagic brain injury, the early crucial events are edema formation due to inflammatory responses and blood-brain barrier disruption. Baicalin, a flavone glycoside, has antineuroinflammatory and antioxidant properties. We examined the effect of baicalin in subarachnoid hemorrhagic brain injury. Subarachnoid hemorrhage was induced through filament perforation and either baicalin or vehicle was administered 30 min prior to surgery. Brain tissues were collected 24 hours after surgery after evaluation of neurological scores. Brain tissues were processed for water content, real-time PCR, and immunoblot analyses. Baicalin improved neurological score and brain water content. Decreased levels of tight junction proteins (occludin, claudin-5, ZO-1, and collagen IV) required for blood-brain barrier function were restored to normal level by baicalin. Real-time PCR data demonstrated that baicalin attenuated increased proinflammatory cytokine (IL-1β, IL-6, and CXCL-3) production in subarachnoid hemorrhage mice. In addition to that, baicalin attenuated microglial cell secretion of IL-1β and IL-6 induced by lipopolysaccharide (100 ng/ml) dose dependently. Finally, baicalin attenuated induction of NOS-2 and NOX-2 in SAH mice at the mRNA and protein level. Thus, we demonstrated that baicalin inhibited microglial cell activation and reduced inflammation, oxidative damage, and brain edema. PMID:28912935

  20. Phosphorylated recombinant HSP27 protects the brain and attenuates blood-brain barrier disruption following stroke in mice receiving intravenous tissue-plasminogen activator.

    PubMed

    Shimada, Yoshiaki; Shimura, Hideki; Tanaka, Ryota; Yamashiro, Kazuo; Koike, Masato; Uchiyama, Yasuo; Urabe, Takao; Hattori, Nobutaka

    2018-01-01

    Loss of integrity of the blood-brain barrier (BBB) in ischemic stroke victims initiates a devastating cascade of events causing brain damage. Maintaining the BBB is important to preserve brain function in ischemic stroke. Unfortunately, recombinant tissue plasminogen activator (tPA), the only effective fibrinolytic treatment at the acute stage of ischemic stroke, also injures the BBB and increases the risk of brain edema and secondary hemorrhagic transformation. Thus, it is important to identify compounds that maintain BBB integrity in the face of ischemic injury in patients with stroke. We previously demonstrated that intravenously injected phosphorylated recombinant heat shock protein 27 (prHSP27) protects the brains of mice with transient middle cerebral artery occlusion (tMCAO), an animal stroke-model. Here, we determined whether prHSP27, in addition to attenuating brain injury, also decreases BBB damage in hyperglycemic tMCAO mice that had received tPA. After induction of hyperglycemia and tMCAO, we examined 4 treatment groups: 1) bovine serum albumin (BSA), 2) prHSP27, 3) tPA, 4) tPA plus prHSP27. We examined the effects of prHSP27 by comparing the BSA and prHSP27 groups and the tPA and tPA plus prHSP27 groups. Twenty-four hours after injection, prHSP27 reduced infarct volume, brain swelling, neurological deficits, the loss of microvessel proteins and endothelial cell walls, and mortality. It also reduced the rates of hemorrhagic transformation, extravasation of endogenous IgG, and MMP-9 activity, signs of BBB damage. Therefore, prHSP27 injection attenuated brain damage and preserved the BBB in tPA-injected, hyperglycemic tMCAO experimental stroke-model mice, in which the BBB is even more severely damaged than in simple tMCAO mice. The attenuation of brain damage and BBB disruption in the presence of tPA suggests the effectiveness of prHSP27 and tPA as a combination therapy. prHSP27 may be a novel therapeutic agent for ischemic stroke patients whose BBBs are

  1. [Possibilities of magnetic-laser therapy in comprehensive treatment of patients with brain concussion in acute period].

    PubMed

    Zubkova, O V; Samosiuk, I Z; Polishchuk, O V; Shul'ga, N M; Samosiuk, N I

    2012-01-01

    The efficacy of magnetic-laser therapy used according to the method developed by us was studied in patients having the brain concussion (BC) in an acute period. The study was based on the dynamics of values of the evoked vestibular potentials and the disease clinical course. It was shown that following the magnetic-laser therapy in combination with traditional pharmacotherapy in BC acute period, the statistically significant positive changes were registered in the quantitative characteristics of the evoked vestibular brain potentials that correlated with the dynamics of the disease clinical course. The data obtained substantiate the possibility of using the magnetic-laser therapy in patients with a mild craniocereblal injury in an acute period.

  2. Objective instrumental memory and performance tests for evaluation of patients with brain damage: a search for a behavioral diagnostic tool.

    PubMed

    Harness, B Z; Bental, E; Carmon, A

    1976-03-01

    Cognition and performance of patients with localized and diffuse brain damage was evaluated through the application of objective perceptual testing. A series of visual perceptual and verbal tests, memory tests, as well as reaction time tasks were administered to the patients by logic programming equipment. In order to avoid a bias due to communicative disorders, all responses were motor, and achievement was scored in terms of correct identification and latencies of response. Previously established norms based on a large sample of non-brain-damaged hospitalized patients served to standardize the performance of the brain-damaged patient since preliminary results showed that age and educational level constitute an important variable affecting performance of the control group. The achievement of brain-damaged patients, corrected for these factors, was impaired significantly in all tests with respect to both recognition and speed of performance. Lateralized effects of brain damage were not significantly demonstrated. However, when the performance was analyzed with respect to the locus of visual input, it was found that patients with right hemispheric lesions showed impairment mainly on perception of figurative material, and that this deficit was more apparent in the left visual field. Conversely, patients with left hemispheric lesions tended to show impairment on perception of visually presented verbal material when the input was delivered to the right visual field.

  3. Imaging of acute ischemic stroke.

    PubMed

    El-Koussy, Marwan; Schroth, Gerhard; Brekenfeld, Caspar; Arnold, Marcel

    2014-01-01

    Over 80% of strokes result from ischemic damage to the brain due to an acute reduction in the blood supply. Around 25-35% of strokes present with large vessel occlusion, and the patients in this category often present with severe neurological deficits. Without early treatment, the prognosis is poor. Stroke imaging is critical for assessing the extent of tissue damage and for guiding treatment. This review focuses on the imaging techniques used in the diagnosis and treatment of acute ischemic stroke, with an emphasis on those involving the anterior circulation. Key Message: Effective and standardized imaging protocols are necessary for clinical decision making and for the proper design of prospective studies on acute stroke. Each minute without treatment spells the loss of an estimated 1.8 million neurons ('time is brain'). Therefore, stroke imaging must be performed in a fast and efficient manner. First, intracranial hemorrhage and stroke mimics should be excluded by the use of computed tomography (CT) or magnetic resonance imaging (MRI). The next key step is to define the extent and location of the infarct core (values of >70 ml, >1/3 of the middle cerebral artery (MCA) territory or an ASPECTS score ≤ 7 indicate poor clinical outcome). Penumbral imaging is currently based on the mismatch concept. It should be noted that the penumbra is a dynamic zone and can be sustained in the presence of good collateral circulation. A thrombus length of >8 mm predicts poor recanalization after intravenous thrombolysis. © 2014 S. Karger AG, Basel.

  4. Chlorogenic Acid Prevents Alcohol-induced Brain Damage in Neonatal Rat.

    PubMed

    Guo, Zikang; Li, Jiang

    2017-01-01

    The present investigation evaluates the neuroprotective effect of chlorogenic acid (CA) in alcohol-induced brain damage in neonatal rats. Ethanol (12 % v/v, 5 g/kg) was administered orally in the wistar rat pups on postnatal days (PD) 7-9. Chlorogenic acid (100 and 200 mg/kg, p.o.) was administered continuously from PD 6 to 28. Cognitive function was estimated by Morris water maze (MWM) test. However, activity of acetylcholinesterase, inflammatory mediators, parameters of oxidative stress and activity of caspase-3 enzyme was estimated in the tissue homogenate of cerebral cortex and hippocampus of ethanol-exposed pups. It has been observed that treatment with CA attenuates the altered cognitive function in ethanol-exposed pups. There was a significant decrease in the activity of acetylcholinesterase in the CA treated group compared to the negative control group. However, treatment with CA significantly ameliorates the increased oxidative stress and concentration of inflammatory mediators in the brain tissues of ethanol-exposed pups. Activity of caspase-3 enzyme was also found significantly decreased in the CA treated group compared to the negative control group. The present study concludes that CA attenuates the neuronal damage induced in alcohol exposed neonatal rat by decreasing the apoptosis of neuronal cells.

  5. Chlorogenic Acid Prevents Alcohol-induced Brain Damage in Neonatal Rat

    PubMed Central

    Guo, Zikang; Li, Jiang

    2017-01-01

    Abstract The present investigation evaluates the neuroprotective effect of chlorogenic acid (CA) in alcohol-induced brain damage in neonatal rats. Ethanol (12 % v/v, 5 g/kg) was administered orally in the wistar rat pups on postnatal days (PD) 7-9. Chlorogenic acid (100 and 200 mg/kg, p.o.) was administered continuously from PD 6 to 28. Cognitive function was estimated by Morris water maze (MWM) test. However, activity of acetylcholinesterase, inflammatory mediators, parameters of oxidative stress and activity of caspase-3 enzyme was estimated in the tissue homogenate of cerebral cortex and hippocampus of ethanol-exposed pups. It has been observed that treatment with CA attenuates the altered cognitive function in ethanol-exposed pups. There was a significant decrease in the activity of acetylcholinesterase in the CA treated group compared to the negative control group. However, treatment with CA significantly ameliorates the increased oxidative stress and concentration of inflammatory mediators in the brain tissues of ethanol-exposed pups. Activity of caspase-3 enzyme was also found significantly decreased in the CA treated group compared to the negative control group. The present study concludes that CA attenuates the neuronal damage induced in alcohol exposed neonatal rat by decreasing the apoptosis of neuronal cells. PMID:29318034

  6. The 8-oxoguanine DNA glycosylase 1 (ogg1) decreases the vulnerability of the developing brain to DNA damage.

    PubMed

    Gu, Aihua; Ji, Guixiang; Yan, Lifeng; Zhou, Yong

    2013-12-01

    The developing brain is particularly vulnerable to oxidative DNA damage, which may be the cause of most major congenital mental anomalies. The repair enzyme ogg1 initiates the highly conserved base-excision repair pathway. However, its function in the embryonic brain is largely unknown. This study is the first to validate the function of ogg1 during brain development using zebrafish embryos. Ogg1 was found to be highly expressed in the brain throughout early embryonic development, with particularly enrichment observed in the midbrain. The lack of ogg1 causes severe brain defects including changes in brain volume and integrity, destruction of the midbrain-hindbrain boundary, and balance and motor impairment, while overexpression of ogg1 can partially rescue these defects. Multiple cellular and molecular events were involved in the manifestation of brain defects due primarily to the lack of ogg1. These included (1) increased apoptosis; (2) decreased proliferation; and (3) aberrant axon distribution and extension from the inner surface towards the outer layers. The results of a microarray analysis showed that the expression of genes involved in cell cycle checkpoint, apoptosis, and neurogenesis were significantly changed in response to ogg1 knockdown. Cmyb was the key downstream gene that responses to DNA damage caused by ogg1 deficiency. Notably, the recruitment of ogg1 mRNA can alleviate the effects on the brain due to neural DNA damage. In summary, we introduce here that ogg1 is fundamentally required for protecting the developing brain, which may be helpful in understanding the aetiology of congenital brain deficits. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. IL-1 or TNF receptor gene deletion delays onset of encephalopathy and attenuates brain edema in experimental acute liver failure.

    PubMed

    Bémeur, Chantal; Qu, Hong; Desjardins, Paul; Butterworth, Roger F

    2010-01-01

    Previous reports suggested that brain-derived proinflammatory cytokines are involved in the pathogenesis of hepatic encephalopathy (HE) and brain edema in acute liver failure (ALF). To further address this issue, expression of interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) mRNAs were measured in the brains of mice with acute liver failure resulting from exposure to azoxymethane. In addition, time to severe encephalopathy (coma) was assessed in mice lacking genes coding for interferon-gamma, the tumor necrosis factor receptor-1 or the interleukin-1 type 1 receptor. Interleukin-1beta, tumor necrosis factor-alpha and interferon-gamma expression were quantified using RT-PCR. Significant increases in interleukin-1beta and tumor necrosis factor-alpha mRNA were observed in the frontal cortex of azoxymethane-treated wild-type mice at coma stages of encephalopathy. Interferon-gamma, however, could not be detected in the brains of these animals. Onset of severe encephalopathy (coma) and brain edema in ALF mice were significantly delayed in interleukin-1 type 1 receptor or tumor necrosis factor receptor-1 knockout mice. Deletion of the interferon-gamma gene, on the other hand, had no significative effect on the neurological status or brain water content of acute liver failure mice. These results demonstrate that toxic liver injury resulting from exposure to azoxymethane is associated with selective induction of proinflammatory cytokines in the brain and that deletion of tumor necrosis factor receptor-1 or interlukin-1 type 1 receptor delays the onset of coma and brain edema in this model of acute liver failure. These findings further support a role for selective brain-derived cytokines in the pathogenesis of the cerebral complications in acute liver failure and suggest that anti-inflammatory strategies could be beneficial in their prevention. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Hippocampal protection in mice with an attenuated inflammatory monocyte response to acute CNS picornavirus infection

    PubMed Central

    Howe, Charles L.; LaFrance-Corey, Reghann G.; Sundsbak, Rhianna S.; Sauer, Brian M.; LaFrance, Stephanie J.; Buenz, Eric J.; Schmalstieg, William F.

    2012-01-01

    Neuronal injury during acute viral infection of the brain is associated with the development of persistent cognitive deficits and seizures in humans. In C57BL/6 mice acutely infected with the Theiler's murine encephalomyelitis virus, hippocampal CA1 neurons are injured by a rapid innate immune response, resulting in profound memory deficits. In contrast, infected SJL and B6xSJL F1 hybrid mice exhibit essentially complete hippocampal and memory preservation. Analysis of brain-infiltrating leukocytes revealed that SJL mice mount a sharply attenuated inflammatory monocyte response as compared to B6 mice. Bone marrow transplantation experiments isolated the attenuation to the SJL immune system. Adoptive transfer of B6 inflammatory monocytes into acutely infected B6xSJL hosts converted these mice to a hippocampal damage phenotype and induced a cognitive deficit marked by failure to recognize a novel object. These findings show that inflammatory monocytes are the critical cellular mediator of hippocampal injury during acute picornavirus infection of the brain. PMID:22848791

  9. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxic-ischemic brain damage in rats.

    PubMed

    Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin

    2017-01-01

    Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  10. [Organ damage and cardiorenal syndrome in acute heart failure].

    PubMed

    Casado Cerrada, Jesús; Pérez Calvo, Juan Ignacio

    2014-03-01

    Heart failure is a complex syndrome that affects almost all organs and systems of the body. Signs and symptoms of organ dysfunction, in particular kidney dysfunction, may be accentuated or become evident for the first time during acute decompensation of heart failure. Cardiorenal syndrome has been defined as the simultaneous dysfunction of both the heart and the kidney, regardless of which of the two organs may have suffered the initial damage and regardless also of their previous functional status. Research into the mechanisms regulating the complex relationship between the two organs is prompting the search for new biomarkers to help physicians detect renal damage in subclinical stages. Hence, a preventive approach to renal dysfunction may be adopted in the clinical setting in the near future. This article provides a general overview of cardiorenal syndrome and an update of the physiopathological mechanisms involved. Special emphasis is placed on the role of visceral congestion as an emergent mechanism in this syndrome. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  11. The brain is a target organ after acute exposure to depleted uranium.

    PubMed

    Lestaevel, P; Houpert, P; Bussy, C; Dhieux, B; Gourmelon, P; Paquet, F

    2005-09-01

    The health effects of depleted uranium (DU) are mainly caused by its chemical toxicity. Although the kidneys are the main target organs for uranium toxicity, uranium can also reach the brain. In this paper, the central effects of acute exposure to DU were studied in relation to health parameters and the sleep-wake cycle of adult rats. Animals were injected intraperitoneally with 144+/-10 microg DU kg-1 as nitrate. Three days after injection, the amounts of uranium in the kidneys represented 2.6 microg of DU g-1 of tissue, considered as a sub-nephrotoxic dosage. The central effect of uranium could be seen through a decrease in food intake as early as the first day after exposure and shorter paradoxical sleep 3 days after acute DU exposure (-18% of controls). With a lower dosage of DU (70+/-8 microg DU kg-1), no significant effect was observed on the sleep-wake cycle. The present study intends to illustrate the fact that the brain is a target organ, as are the kidneys, after acute exposure to a moderate dosage of DU. The mechanisms by which uranium causes these early neurophysiological perturbations shall be discussed.

  12. [Pharmacological study of nicergoline. (II). Protective effect on ischemic brain damages in animals].

    PubMed

    Shintomi, K; Itakura, T; Yoshimoto, K; Ogawa, Y; Fukushima, T; Matsuoka, Y

    1986-04-01

    Effects of nicergoline on ischemic brain damages induced by bilateral carotid arterial ligation (BCAL) in ICR-strain mice and mongolian gerbils and lipid peroxide formation (LPOF) in normal brain homogenate of rats were compared with those of dihydroergotoxine (DHE). In mice, nicergoline (16 mg/kg, i.p.) significantly reduced the cumulative mortality rate after BCAL (from 80-83% in the control to 50-55%). In gerbils, nicergoline (32 mg/kg, i.p.) significantly prolonged the mean onset time of ischemic seizure following recirculation after the 30-min BCAL (from 45.8 min in the control to 94.9 min). DHE also showed protective effects in these animals. In the ischemic brain of mice, marked decreases of creatine-P, ATP, glucose and glycogen; a remarkable increase of lactate; and elevation of L/P ratio were observed 1 to 10 min after BCAL. Nicergoline (16 mg/kg, i.p.) slightly prevented these decreases and significantly suppressed the increase of lactate and the elevation of L/P ratio 2 min after BCAL. The inhibitory action of nicergoline (20-100 microM) on LPOF is more potent than those of alpha-tocopherol and DHE. These results suggest that nicergoline may have protective effects against ischemic brain damages due to its ameliorating action on cerebral energy metabolism and partially due to its inhibitory action of LPOF.

  13. Predictors of acute and persisting ischemic brain lesions in patients randomized to carotid stenting or endarterectomy.

    PubMed

    Rostamzadeh, Ayda; Zumbrunn, Thomas; Jongen, Lisa M; Nederkoorn, Paul J; Macdonald, Sumaira; Lyrer, Philippe A; Kappelle, L Jaap; Mali, Willem P Th M; Brown, Martin M; van der Worp, H Bart; Engelter, Stefan T; Bonati, Leo H

    2014-02-01

    We investigated predictors for acute and persisting periprocedural ischemic brain lesions among patients with symptomatic carotid stenosis randomized to stenting or endarterectomy in the International Carotid Stenting Study. We assessed acute lesions on diffusion-weighted imaging 1 to 3 days after treatment in 124 stenting and 107 endarterectomy patients and lesions persisting on fluid-attenuated inversion recovery after 1 month in 86 and 75 patients, respectively. Stenting patients had more acute (relative risk, 8.8; 95% confidence interval, 4.4-17.5; P<0.001) and persisting lesions (relative risk, 4.2; 95% confidence interval, 1.6-11.1; P=0.005) than endarterectomy patients. Acute lesion count was associated with age (by trend), male sex, and stroke as the qualifying event in stenting; high systolic blood pressure in endarterectomy; and white matter disease in both groups. The rate of conversion from acute to persisting lesions was lower in the stenting group (relative risk, 0.4; 95% confidence interval, 0.2-0.8; P=0.007), and was only predicted by acute lesion volume. Stenting caused more acute and persisting ischemic brain lesions than endarterectomy. However, the rate of conversion from acute to persisting lesions was lower in the stenting group, most likely attributable to lower acute lesion volumes. Clinical Trial Registration -URL: www.isrctn.org. Unique identifier: ISRCTN25337470.

  14. Interaction of Blast and Head Impact in the Generation of Brain Injuries

    DTIC Science & Technology

    2009-08-01

    accidents; Lee, Melvin and Ueno (1987), Lee and Haut (1989) on FE analysis of subdural hematoma and bridging vein failure characteristics; Lissner, Lebow...contusions; and relative motion damage measure (RMDM), a correlate for acute subdural hematoma (ASDH). Data from animal experiments were used to...caused by brain motion relative to the interior surface of the cranium. This includes injuries due to acute subdural hematoma (ASDH). The metric accounts

  15. Stimulation of functional vision in children with perinatal brain damage.

    PubMed

    Alimović, Sonja; Mejaski-Bosnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual stimulation on development of functional vision at early age of life. We initially assessed 30 children with perinatal brain damage up to 3 years of age, who were reffered to our pediatric low vision cabinet in "Little house" from child neurologists, ophthalmologists Type and degree of visual impairment was determined according to functional vision assessment of each child. On the bases of those assessments different kind of visual stimulations were carried out with children who have been identified to have a certain visual impairment. Through visual stimulation program some of the children were stimulated with light stimulus, some with different materials under the ultraviolet (UV) light, and some with bright color and high contrast materials. Children were also involved in program of early stimulation of overall sensory motor development. Goals and methods of therapy were determined individually, based on observation of child's possibilities and need. After one year of program, reassessment was done. Results for visual functions and functional vision were compared to evaluate the improvement of the vision development. These results have shown that there was significant improvement in functional vision, especially in visual attention and visual communication.

  16. Cognitive activity limitations one year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury.

    PubMed

    Sommer, Jens Bak; Norup, Anne; Poulsen, Ingrid; Morgensen, Jesper

    2013-09-01

    To examine cognitive activity limitations and predictors of outcome 1 year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury. The study included 119 patients with severe traumatic brain injury admitted to centralized sub-acute rehabilitation in the Eastern part of Denmark during a 5-year period from 2005 to 2009. Level of consciousness was assessed consecutively during rehabilitation and at 1 year post-trauma. Severity of traumatic brain injury was classified according to duration of post-traumatic amnesia. The cognitive subscale of Functional Independence MeasureTM (Cog-FIM) was used to assess cognitive activity limitations. Multivariate logistic regression analyses were performed to identify predictors of an independent level of functioning. The majority of patients progressed to a post-confusional level of consciousness during the first year post-trauma. At follow-up 33-58% of patients had achieved functional independence within the cognitive domains on the Cog-FIM. Socio-economic status, duration of acute care and post-traumatic amnesia were significant predictors of outcome. Substantial recovery was documented among patients with severe traumatic brain injury during the first year post-trauma. The results of the current study suggest that absence of consciousness at discharge from acute care should not preclude patients from being referred to specialized sub-acute rehabilitation.

  17. Prediction of specific damage or infarction from the measurement of tissue impedance following repetitive brain ischaemia in the rat.

    PubMed

    Klein, H C; Krop-Van Gastel, W; Go, K G; Korf, J

    1993-02-01

    The development of irreversible brain damage during repetitive periods of hypoxia and normoxia was studied in anaesthetized rats with unilateral occlusion of the carotid artery (modified Levine model). Rats were exposed to 10 min hypoxia and normoxia until severe damage developed. As indices of damage, whole striatal tissue impedance (reflecting cellular water uptake), sodium/potassium contents (due to exchange with blood). Evans Blue staining (blood-brain barrier [BBB] integrity) and silver staining (increased in irreversibly damaged neurons) were used. A substantial decrease in blood pressure was observed during the hypoxic periods possibly producing severe ischaemia. Irreversibly increased impedance, massive changes in silver staining, accumulation of whole tissue Na and loss of K occurred only after a minimum of two periods of hypoxia, but there was no disruption of the BBB. Microscopic examination of tissue sections revealed that cell death was selective with reversible impedance changes, but became massive and non-specific after irreversible increase of the impedance. The development of brain infarcts could, however, not be predicted from measurements of physiological parameters in the blood. We suggest that the development of cerebral infarction during repetitive periods of hypoxia may serve as a model for the development of brain damage in a variety of clinical conditions. Furthermore, the present model allows the screening of potential therapeutic measuring of the prevention and treatment of both infarction and selective cell death.

  18. Retinal microvascular damage and vasogenic edema produced by Clostridium perfringens type D epsilon toxin in rats.

    PubMed

    Finnie, John W; Manavis, Jim; Casson, Robert J; Chidlow, Glyn

    2014-05-01

    When the brain is exposed to large circulating levels of Clostridium perfringens type D epsilon toxin (EXT), microvascular damage with resulting severe, generalized, vasogenic edema seems to be principally responsible for the ensuing acute, and frequently fatal, neurologic disorder. However, although the blood-retinal barrier resembles in many respects the blood-brain barrier, retinal changes in livestock with acute epsilon intoxication have not, to the authors' knowledge, been previously reported. In rats given an acute dose of ETX, retinal microvascular endothelial injury led to widespread vasogenic edema as assessed immunohistochemically by marked plasma albumin extravasation. As laboratory rodents are a good model of the domestic livestock disease produced by ETX, it is probable that the latter sustain some visual deficit when exposed to large doses of this potent neurotoxin. © 2014 The Author(s).

  19. Inferencing Processes After Right Hemisphere Brain Damage: Effects of Contextual Bias

    PubMed Central

    Blake, Margaret Lehman

    2009-01-01

    Purpose Comprehension deficits associated with right hemisphere brain damage (RHD) have been attributed to an inability to use context, but there is little direct evidence to support the claim. This study evaluated the effect of varying contextual bias on predictive inferencing by adults with RHD. Method Fourteen adults with no brain damage (NBD) and 14 with RHD read stories constructed with either high predictability or low predictability of a specific outcome. Reading time for a sentence that disconfirmed the target outcome was measured and compared with a control story context. Results Adults with RHD evidenced activation of predictive inferences only for highly predictive conditions, whereas NBD adults generated inferences in both high- and low-predictability stories. Adults with RHD were more likely than those with NBD to require additional time to integrate inferences in high-predictability conditions. The latter finding was related to working memory for the RHD group. Results are interpreted in light of previous findings obtained using the same stimuli. Conclusions RHD does not abolish the ability to use context. Evidence of predictive inferencing is influenced by task and strength of inference activation. Treatment considerations and cautions regarding interpreting results from one methodology are discussed. PMID:19252126

  20. Psychological Characteristics in Acute Mild Traumatic Brain Injury: An MMPI-2 Study.

    PubMed

    Gass, Carlton S; Rogers, David; Kinne, Erica

    2017-01-01

    The psychological characteristics of acute traumatic brain injury (TBI) have received limited research focus, despite empirical evidence of their relevance for subsequent psychological adjustment and early therapeutic intervention. This study addressed a wide range of psychological features in 47 individuals who were hospitalized as a result of acute mild TBI (mTBI). Participants were screened from amongst consecutive TBI admissions for moderate to severe brain injury, and for pre-injury neurological, psychiatric, or substance abuse histories. Clinical and content scale scores on the MMPI-2 were explored in relation to patient gender, age, level of education, and extent of cognitive complaints. The results revealed diverse psychosocial problem areas across the sample, the most common of which were somatic and cognitive complaints, compromised insight, and a naively optimistic self-perception. The mediating roles of injury severity and demographic variables are discussed. Clinical implications and specific recommendations are presented.

  1. Acute sun damage and photoprotective responses in whales

    PubMed Central

    Martinez-Levasseur, Laura M.; Gendron, Diane; Knell, Rob J.; O'Toole, Edel A.; Singh, Manuraj; Acevedo-Whitehouse, Karina

    2011-01-01

    Rising levels of ultraviolet radiation (UVR) secondary to ozone depletion are an issue of concern for public health. Skin cancers and intraepidermal dysplasia are increasingly observed in individuals that undergo chronic or excessive sun exposure. Such alterations of skin integrity and function are well established for humans and laboratory animals, but remain unexplored for mammalian wildlife. However, effects are unlikely to be negligible, particularly for species such as whales, whose anatomical or life-history traits force them to experience continuous sun exposure. We conducted photographic and histological surveys of three seasonally sympatric whale species to investigate sunburn and photoprotection. We find that lesions commonly associated with acute severe sun damage in humans are widespread and that individuals with fewer melanocytes have more lesions and less apoptotic cells. This suggests that the pathways used to limit and resolve UVR-induced damage in humans are shared by whales and that darker pigmentation is advantageous to them. Furthermore, lesions increased significantly in time, as would be expected under increasing UV irradiance. Apoptosis and melanocyte proliferation mirror this trend, suggesting that whales are capable of quick photoprotective responses. We conclude that the thinning ozone layer may pose a risk to the health of whales and other vulnerable wildlife. PMID:21068035

  2. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage

    ERIC Educational Resources Information Center

    Kleim, Jeffrey A.; Jones, Theresa A.

    2008-01-01

    Purpose: This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. Method: Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the…

  3. Cognitive benefit and cost of acute stress is differentially modulated by individual brain state.

    PubMed

    Kohn, Nils; Hermans, Erno J; Fernández, Guillén

    2017-07-01

    Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated accuracy and speed during a stroop-like task of 120 healthy male subjects after an experimental stress induction or control condition in a randomized, counter-balanced cross-over design; we assessed brain-behavior associations and determined the influence of individual brain connectivity patterns on these associations, which may moderate the effect and help identify stress resilience factors. In the mean, stress was associated to increase in accuracy, but decrease in speed. Accuracy was associated to brain activation in a distributed set of brain regions overlapping with the executive control network (ECN) and speed to temporo-parietal activation. In line with a stress-related large-scale network reconfiguration, individuals showing an upregulation of the salience and down-regulation of the executive-control network under stress displayed increased speed, but decreased performance. In contrast, individuals who upregulate their ECN under stress show improved performance. Our results indicate that the individual large-scale brain network balance under acute stress moderates cognitive consequences of threat. © The Author (2017). Published by Oxford University Press.

  4. Deletion of aquaporin-4 is neuroprotective during the acute stage of micro traumatic brain injury in mice.

    PubMed

    Liang, Fengyin; Luo, Chuanming; Xu, Guangqing; Su, Fengjuan; He, Xiaofei; Long, Simei; Ren, Huixia; Liu, Yaning; Feng, Yanqing; Pei, Zhong

    2015-06-26

    Micro traumatic brain injury (TBI) is the most common type of brain injury, but the mechanisms underlying it are poorly understood. Aquaporin-4 (AQP4) is a water channel expressed in astrocyte end-feet, which plays an important role in brain edema. However, little is known about the role of AQP4 in micro TBI. Here, we examined the role of AQP4 in the pathogenesis of micro TBI in a closed-skull brain injury model, using two-photon microscopy. Our results indicate that AQP4 deletion reduced cell death, water content, astrocyte swelling and lesion volume during the acute stage of micro TBI. Our data revealed that astrocyte swelling is a decisive pathophysiological factor in the acute phase of this form of micro brain injury. Thus, treatments that inhibit AQP4 could be used as a neuroprotective strategy for micro TBI. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis

    PubMed Central

    Fan, Zheng; Sehm, Tina; Rauh, Manfred; Buchfelder, Michael

    2014-01-01

    Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc −; SLC7a11) and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G) resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage. PMID:24714627

  6. Pretreatment Blood Brain Barrier Damage and Post Treatment Intracranial Hemorrhage in Patients Receiving IV tPA

    PubMed Central

    Leigh, Richard; Jen, Shyian S.; Hillis, Argye E.; Krakauer, John W.; Barker, Peter B.

    2014-01-01

    Background and Purpose Early blood brain barrier (BBB) damage after acute ischemic stroke (AIS) has previously been qualitatively linked to subsequent intracranial hemorrhage (ICH). In this quantitative study, it was investigated whether the amount of BBB damage evident on pre-tPA MRI scans was related to the degree of post-tPA ICH in patients with AIS. Methods Analysis was performed on a database of patients with AIS provided by the STIR and VISTA Imaging Investigators. Patients with perfusion-weighted imaging (PWI) lesions >10mL and negative gradient-recalled echo (GRE) imaging prior to IV tPA were included. Post processing of the PWI source images was performed to estimate changes in BBB permeability within the perfusion deficit relative to the unaffected hemisphere. Follow-up GRE images were reviewed for evidence of ICH and divided into three groups according to ECASS criteria: no hemorrhage (NH), hemorrhagic infarction (HI), and parenchymal hematoma (PH). Results 75 patients from the database met the inclusion criteria, 28 of whom experienced ICH, of which 19 were classified as HI, and nine were classified as PH. The mean permeability (±standard deviations), expressed as an index of contrast leakage, was 17.0%±8.8 in the NH group, 19.4%±4.0 in the HI group, and 24.6%±4.5 in the PH group. Permeability was significantly correlated with ICH grade in univariate (p=0.007) and multivariate (p=0.008) linear regression modeling. Conclusions A PWI-derived index of BBB damage measured prior to IV tPA is associated with the severity of ICH after treatment in patients with AIS. PMID:24876245

  7. Quantitation of heavy ion damage to the mammalian brain - Some preliminary findings

    NASA Technical Reports Server (NTRS)

    Cox, A. B.; Kraft, L. M.

    1984-01-01

    For several years, studies have been conducted regarding late effects of particulate radiations in mammalian tissues, taking into account the brains of rodents and lagomorphs. Recently, it has become feasible to quantify pathological damage and morpho-physiologic alterations accurately in large numbers of histological specimens. New investigative procedures make use of computer-assisted automated image analysis systems. Details regarding the employed methodology are discussed along with the results of the information. The radiations of high linear energy transfer (LET) cause apparently earlier and more dramatic shrinkage of olfactory glomeruli in exposed rabbit brains than comparable doses of Co-60 gamma photons.

  8. Protection of cultured brain endothelial cells from cytokine-induced damage by α-melanocyte stimulating hormone.

    PubMed

    Harazin, András; Bocsik, Alexandra; Barna, Lilla; Kincses, András; Váradi, Judit; Fenyvesi, Ferenc; Tubak, Vilmos; Deli, Maria A; Vecsernyés, Miklós

    2018-01-01

    The blood-brain barrier (BBB), an interface between the systemic circulation and the nervous system, can be a target of cytokines in inflammatory conditions. Pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) induce damage in brain endothelial cells and BBB dysfunction which contribute to neuronal injury. The neuroprotective effects of α-melanocyte stimulating hormone (α-MSH) were investigated in experimental models, but there are no data related to the BBB. Based on our recent study, in which α-MSH reduced barrier dysfunction in human intestinal epithelial cells induced by TNF-α and IL-1β, we hypothesized a protective effect of α-MSH on brain endothelial cells. We examined the effect of these two pro-inflammatory cytokines, and the neuropeptide α-MSH on a culture model of the BBB, primary rat brain endothelial cells co-cultured with rat brain pericytes and glial cells. We demonstrated the expression of melanocortin-1 receptor in isolated rat brain microvessels and cultured brain endothelial cells by RT-PCR and immunohistochemistry. TNF-α and IL-1β induced cell damage, measured by impedance and MTT assay, which was attenuated by α-MSH (1 and 10 pM). The peptide inhibited the cytokine-induced increase in brain endothelial permeability, and restored the morphological changes in cellular junctions visualized by immunostaining for claudin-5 and β-catenin. Elevated production of reactive oxygen species and the nuclear translocation of NF-κB were also reduced by α-MSH in brain endothelial cells stimulated by cytokines. We demonstrated for the first time the direct beneficial effect of α-MSH on cultured brain endothelial cells, indicating that this neurohormone may be protective at the BBB.

  9. Protection of cultured brain endothelial cells from cytokine-induced damage by α-melanocyte stimulating hormone

    PubMed Central

    Barna, Lilla; Kincses, András; Váradi, Judit; Fenyvesi, Ferenc; Tubak, Vilmos

    2018-01-01

    The blood–brain barrier (BBB), an interface between the systemic circulation and the nervous system, can be a target of cytokines in inflammatory conditions. Pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) induce damage in brain endothelial cells and BBB dysfunction which contribute to neuronal injury. The neuroprotective effects of α-melanocyte stimulating hormone (α-MSH) were investigated in experimental models, but there are no data related to the BBB. Based on our recent study, in which α-MSH reduced barrier dysfunction in human intestinal epithelial cells induced by TNF-α and IL-1β, we hypothesized a protective effect of α-MSH on brain endothelial cells. We examined the effect of these two pro-inflammatory cytokines, and the neuropeptide α-MSH on a culture model of the BBB, primary rat brain endothelial cells co-cultured with rat brain pericytes and glial cells. We demonstrated the expression of melanocortin-1 receptor in isolated rat brain microvessels and cultured brain endothelial cells by RT-PCR and immunohistochemistry. TNF-α and IL-1β induced cell damage, measured by impedance and MTT assay, which was attenuated by α-MSH (1 and 10 pM). The peptide inhibited the cytokine-induced increase in brain endothelial permeability, and restored the morphological changes in cellular junctions visualized by immunostaining for claudin-5 and β-catenin. Elevated production of reactive oxygen species and the nuclear translocation of NF-κB were also reduced by α-MSH in brain endothelial cells stimulated by cytokines. We demonstrated for the first time the direct beneficial effect of α-MSH on cultured brain endothelial cells, indicating that this neurohormone may be protective at the BBB. PMID:29780671

  10. Perinatal Asphyxia and Brain Development: Mitochondrial Damage Without Anatomical or Cellular Losses.

    PubMed

    Lima, Jean Pierre Mendes; Rayêe, Danielle; Silva-Rodrigues, Thaia; Pereira, Paula Ribeiro Paes; Mendonca, Ana Paula Miranda; Rodrigues-Ferreira, Clara; Szczupak, Diego; Fonseca, Anna; Oliveira, Marcus F; Lima, Flavia Regina Souza; Lent, Roberto; Galina, Antonio; Uziel, Daniela

    2018-03-26

    Perinatal asphyxia remains a significant cause of neonatal mortality and is associated with long-term neurodegenerative disorders. In the present study, we evaluated cellular and subcellular damages to brain development in a model of mild perinatal asphyxia. Survival rate in the experimental group was 67%. One hour after the insult, intraperitoneally injected Evans blue could be detected in the fetuses' brains, indicating disruption of the blood-brain barrier. Although brain mass and absolute cell numbers (neurons and non-neurons) were not reduced after perinatal asphyxia immediately and in late brain development, subcellular alterations were detected. Cortical oxygen consumption increased immediately after asphyxia, and remained high up to 7 days, returning to normal levels after 14 days. We observed an increased resistance to mitochondrial membrane permeability transition, and calcium buffering capacity in asphyxiated animals from birth to 14 days after the insult. In contrast to ex vivo data, mitochondrial oxygen consumption in primary cell cultures of neurons and astrocytes was not altered after 1% hypoxia. Taken together, our results demonstrate that although newborns were viable and apparently healthy, brain development is subcellularly altered by perinatal asphyxia. Our findings place the neonate brain mitochondria as a potential target for therapeutic protective interventions.

  11. Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats.

    PubMed

    Radad, Khaled; Hassanein, Khaled; Al-Shraim, Mubarak; Moldzio, Rudolf; Rausch, Wolf-Dieter

    2014-01-01

    The present study aims to investigate the protective effects of thymoquinone, the major active ingredient of Nigella sativa seeds, against lead-induced brain damage in Sprague-Dawley rats. In which, 40 rats were divided into four groups (10 rats each). The first group served as control. The second, third and fourth groups received lead acetate, lead acetate and thymoquinone, and thymoquinone only, respectively, for one month. Lead acetate was given in drinking water at a concentration of 0.5 g/l (500 ppm). Thymoquinone was given daily at a dose of 20mg/kg b.w. in corn oil by gastric tube. Control and thymoquinone-treated rats showed normal brain histology. Treatment of rats with lead acetate was shown to produce degeneration of endothelial lining of brain blood vessels with peri-vascular cuffing of mononuclear cells consistent to lymphocytes, congestion of choroid plexus blood vessels, ischemic brain infarction, chromatolysis and neuronal degeneration, microglial reaction and neuronophagia, degeneration of hippocampal and cerebellar neurons, and axonal demyelination. On the other hand, co-administration of thymoquinone with lead acetate markedly decreased the incidence of lead acetate-induced pathological lesions. Thus the current study shed some light on the beneficial effects of thymoquinone against neurotoxic effects of lead in rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Role of inter-hemispheric transfer in generating visual evoked potentials in V1-damaged brain hemispheres

    PubMed Central

    Kavcic, Voyko; Triplett, Regina L.; Das, Anasuya; Martin, Tim; Huxlin, Krystel R.

    2015-01-01

    Partial cortical blindness is a visual deficit caused by unilateral damage to the primary visual cortex, a condition previously considered beyond hopes of rehabilitation. However, recent data demonstrate that patients may recover both simple and global motion discrimination following intensive training in their blind field. The present experiments characterized motion-induced neural activity of cortically blind (CB) subjects prior to the onset of visual rehabilitation. This was done to provide information about visual processing capabilities available to mediate training-induced visual improvements. Visual Evoked Potentials (VEPs) were recorded from two experimental groups consisting of 9 CB subjects and 9 age-matched, visually-intact controls. VEPs were collected following lateralized stimulus presentation to each of the 4 visual field quadrants. VEP waveforms were examined for both stimulus-onset (SO) and motion-onset (MO) related components in postero-lateral electrodes. While stimulus presentation to intact regions of the visual field elicited normal SO-P1, SO-N1, SO-P2 and MO-N2 amplitudes and latencies in contralateral brain regions of CB subjects, these components were not observed contralateral to stimulus presentation in blind quadrants of the visual field. In damaged brain hemispheres, SO-VEPs were only recorded following stimulus presentation to intact visual field quadrants, via inter-hemispheric transfer. MO-VEPs were only recorded from damaged left brain hemispheres, possibly reflecting a native left/right asymmetry in inter-hemispheric connections. The present findings suggest that damaged brain hemispheres contain areas capable of responding to visual stimulation. However, in the absence of training or rehabilitation, these areas only generate detectable VEPs in response to stimulation of the intact hemifield of vision. PMID:25575450

  13. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain

    PubMed Central

    Al-Mashhadi, Sufana; Simpson, Julie E.; Heath, Paul R.; Dickman, Mark; Forster, Gillian; Matthews, Fiona E.; Brayne, Carol; Ince, Paul G.; Wharton, Stephen B.

    2016-01-01

    White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2′-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P < 0.001). γH2Ax showed a similar, although attenuated difference among groups (P = 0.03). Expression of senescence-associated β-galactosidase and p16 suggested induction of senescence mechanisms in glia. Oxidative DNA damage and a DNA damage response are features of WML pathogenesis and suggest candidate mechanisms for glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined. PMID:25311358

  14. Use of EPO as an adjuvant in PDT of brain tumors to reduce damage to normal brain

    NASA Astrophysics Data System (ADS)

    Rendon, Cesar A.; Lilge, Lothar

    2004-10-01

    In order to reduce damage to surrounding normal brain in the treatment of brain tumors with photodynamic therapy (PDT), we have investigated the use of the cytokine erythropoietin (EPO) to exploit its well-established role as a neuroprotective agent. In vitro experiments demonstrated that EPO does not confer protection from PDT to rat glioma cells. In vivo testing of the possibility of EPO protecting normal brain tissue was carried out. The normal brains of Lewis rats were treated with Photofrin mediated PDT (6.25 mg/Kg B.W. 22 hours pre irradiation) and the outcome of the treatment compared between animals that received EPO (5000 U/Kg B.W. 22 hours pre irradiation) and controls. This comparison was made based on the volume of necrosis, as measured with the viability stain 2,3,5- Triphenyl tetrazoium chloride (TTC), and incidence of apoptosis, as measured with in situ end labeling assay (ISEL). Western blotting showed that EPO reaches the normal brain and activates the anti-apoptotic protein PKB/AKT1 within the brain cortex. The comparison based on volume of necrosis showed no statistical significance between the two groups. No clear difference was observed in the ISEL staining between the groups. A possible lack of responsivity in the assays that give rise to these results is discussed and future corrections are described.

  15. Right-sided representational neglect after left brain damage in a case without visuospatial working memory deficits.

    PubMed

    van Dijck, Jean-Philippe; Gevers, Wim; Lafosse, Christophe; Fias, Wim

    2013-10-01

    Brain damaged patients suffering from representational neglect (RN) fail to report, orient to, or verbally describe contra-lesional elements of imagined environments or objects. So far this disorder has only been reported after right brain damage, leading to the idea that only the right hemisphere is involved in this deficit. A widely accepted account attributes RN to a lateralized impairment in the visuospatial component of working memory. So far, however, this hypothesis has not been tested in detail. In the present paper, we describe, for the first time, the case of a left brain damaged patient suffering from right-sided RN while imagining both known and new environments and objects. An in-depth evaluation of her visuospatial working memory abilities, with special focus on the presence of a lateralized deficit, did not reveal any abnormality. In sharp contrast, her ability to memorize visual information was severely compromised. The implications of these results are discussed in the light of recent insights in the neglect syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Sensitivity of the Halstead and Wechsler Test Batteries to brain damage: Evidence from Reitan's original validation sample.

    PubMed

    Loring, David W; Larrabee, Glenn J

    2006-06-01

    The Halstead-Reitan Battery has been instrumental in the development of neuropsychological practice in the United States. Although Reitan administered both the Wechsler-Bellevue Intelligence Scale and Halstead's test battery when evaluating Halstead's theory of biologic intelligence, the relative sensitivity of each test battery to brain damage continues to be an area of controversy. Because Reitan did not perform direct parametric analysis to contrast group performances, we reanalyze Reitan's original validation data from both Halstead (Reitan, 1955) and Wechsler batteries (Reitan, 1959a) and calculate effect sizes and probability levels using traditional parametric approaches. Eight of the 10 tests comprising Halstead's original Impairment Index, as well as the Impairment Index itself, statistically differentiated patients with unequivocal brain damage from controls. In addition, 13 of 14 Wechsler measures including Full-Scale IQ also differed statistically between groups (Brain Damage Full-Scale IQ = 96.2; Control Group Full Scale IQ = 112.6). We suggest that differences in the statistical properties of each battery (e.g., raw scores vs. standardized scores) likely contribute to classification characteristics including test sensitivity and specificity.

  17. How Acute Total Sleep Loss Affects the Attending Brain: A Meta-Analysis of Neuroimaging Studies

    PubMed Central

    Ma, Ning; Dinges, David F.; Basner, Mathias; Rao, Hengyi

    2015-01-01

    Study Objectives: Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Design: Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. Methods: The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. Results: The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Conclusion: Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. Citation: Ma N, Dinges DF, Basner M, Rao H. How acute total

  18. Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy.

    PubMed

    Blair, Laura J; Frauen, Haley D; Zhang, Bo; Nordhues, Bryce A; Bijan, Sara; Lin, Yen-Chi; Zamudio, Frank; Hernandez, Lidice D; Sabbagh, Jonathan J; Selenica, Maj-Linda B; Dickey, Chad A

    2015-01-31

    The blood-brain barrier (BBB) is damaged in tauopathies, including progressive supranuclear palsy (PSP) and Alzheimer's disease (AD), which is thought to contribute to pathogenesis later in the disease course. In AD, BBB dysfunction has been associated with amyloid beta (Aß) pathology, but the role of tau in this process is not well characterized. Since increased BBB permeability is found in tauopathies without Aß pathology, like PSP, we suspected that tau accumulation alone could not only be sufficient, but even more important than Aß for BBB damage. Longitudinal evaluation of brain tissue from the tetracycline-regulatable rTg4510 tau transgenic mouse model showed progressive IgG, T cell and red blood cell infiltration. The Evans blue (EB) dye that is excluded from the brain when the BBB is intact also permeated the brains of rTg4510 mice following peripheral administration, indicative of a bonafide BBB defect, but this was only evident later in life. Thus, despite the marked brain atrophy and inflammation that occurs earlier in this model, BBB integrity is maintained. Interestingly, BBB dysfunction emerged at the same time that perivascular tau emerged around major hippocampal blood vessels. However, when tau expression was suppressed using doxycycline, BBB integrity was preserved, suggesting that the BBB can be stabilized in a tauopathic brain by reducing tau levels. For the first time, these data demonstrate that tau alone can initiate breakdown of the BBB, but the BBB is remarkably resilient, maintaining its integrity in the face of marked brain atrophy, neuroinflammation and toxic tau accumulation. Moreover, the BBB can recover integrity when tau levels are reduced. Thus, late stage interventions targeting tau may slow the vascular contributions to cognitive impairment and dementia that occur in tauopathies.

  19. The impacts of acute carbon monoxide poisoning on the brain: Longitudinal clinical and 99mTc ethyl cysteinate brain SPECT characterization of patients with persistent and delayed neurological sequelae.

    PubMed

    Tsai, Chung-Fen; Yip, Ping-Keung; Chen, Shao-Yuan; Lin, Jen-Cheng; Yeh, Zai-Ting; Kung, Lan-Yu; Wang, Cheng-Yi; Fan, Yu-Ming

    2014-04-01

    Acute carbon monoxide (CO) poisoning poses a significant threat to the central nervous system. It can cause brain injury and diverse neurological deficits including persistent neurological sequelae (PNS) and delayed neurological sequelae (DNS). The study aimed to investigate the long-term impacts of acute CO poisoning on brain perfusion and neurological function, and to explore potential differences between PNS and DNS patients. We evaluated brain perfusion using (99m)Tc ethyl cysteinate (ECD) brain single photon emission computed tomography (SPECT) and assessed clinical neurological symptoms and signs one month following acute poisoning. For DNS patients, ECD SPECT and clinical evaluation were performed when their delayed symptoms appeared. All patients had follow-up SPECT imaging, along with clinical assessments six months following poisoning. 12 PNS and 12 DNS patients were recruited between 2007 and 2010. Clinically, the main characteristic presentations were cognitive decline, emotional instability, and gait disturbance. SPECT imaging demonstrated consistent frontal hypoperfusion of varying severities in all patients, which decreased in severity at follow-up imaging. DNS patients usually had more severe symptoms and perfusion defects, along with worse clinical outcomes than the PNS group. These results suggest that acute CO poisoning might lead to long term brain injuries and neurological sequelae, particularly in DNS patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The influence of damage distribution on serious brain injury in occupants in frontal motor vehicle crashes.

    PubMed

    Coimbra, Raul; Conroy, Carol; Hoyt, David B; Pacyna, Sharon; May, MarSue; Erwin, Steve; Tominaga, Gail; Kennedy, Frank; Sise, Michael; Velky, Tom

    2008-07-01

    In spite of improvements in motor vehicle safety systems and crashworthiness, motor vehicle crashes remain one of the leading causes of brain injury. The purpose of this study was to determine if the damage distribution across the frontal plane affected brain injury severity of occupants in frontal impacts. Occupants in "head on" frontal impacts with a Principal Direction of Force (PDOF) equal to 11, 12, or 1o'clock who sustained serious brain injury were identified using the Crash Injury Research Engineering Network (CIREN) database. Impacts were further classified based on the damage distribution across the frontal plane as distributed, offset, and extreme offset (corner). Overall, there was no significant difference for brain injury severity (based on Glasgow Coma Scale<9, or brain injury AIS>2) comparing occupants in the different impact categories. For occupants in distributed frontal impacts, safety belt use was protective (odds ratio (OR)=0.61) and intrusion at the occupant's seat position was four times more likely to result in severe (Glasgow Coma Scale (GCS)<9) brain injury (OR=4.35). For occupants in offset frontal impacts, again safety belt use was protective against severe brain injury (OR=0.25). Possibly due to the small number of brain-injured occupants in corner impacts, safety belts did not significantly protect against increased brain injury severity during corner impacts. This study supports the importance of safety belt use to decrease brain injury severity for occupants in distributed and offset frontal crashes. It also illustrates how studying "real world" crashes may provide useful information on occupant injuries under impact circumstances not currently covered by crash testing.

  1. Natural and accelerated recovery from brain damage: experimental and theoretical approaches.

    PubMed

    Andersen, Richard A; Schieber, Marc H; Thakor, Nitish; Loeb, Gerald E

    2012-03-01

    The goal of the Caltech group is to gain insight into the processes that occur within the primate nervous system during dexterous reaching and grasping and to see whether natural recovery from local brain damage can be accelerated by artificial means. We will create computational models of the nervous system embodying this insight and explain a variety of clinically observed neurological deficits in human subjects using these models.

  2. Clinical Correlates and Prognostic Significance of Lateralized Periodic Discharges in Patients Without Acute or Progressive Brain Injury: A Case-Control Study.

    PubMed

    Sainju, Rup K; Manganas, Louis N; Gilmore, Emily J; Petroff, Ognen A; Rampal, Nishi; Hirsch, Lawrence J; Gaspard, Nicolas

    2015-12-01

    Lateralized periodic discharges (LPDs, also known as periodic lateralized epileptiform discharges) in conjunction with acute brain injuries are known to be associated with worse prognosis but little is known about their importance in absence of such acute injuries. We studied the clinical correlates and outcome of patients with LPDs in the absence of acute or progressive brain injury. This is a case-control study of 74 patients with no acute brain injury undergoing continuous EEG monitoring, half with LPDs and half without, matched for age and etiology of remote brain injury, if any, or history of epilepsy. Lateralized periodic discharges were found in 145/1785 (8.1%) of subjects; 37/145 (26%) had no radiologic evidence of acute or progressive brain injury. Those with LPDs were more likely to have abnormal consciousness (86% vs. 57%; P = 0.005), seizures (70% vs. 24%; P = 0.0002), and functional decline (62% vs. 27%; P = 0.005), and were less likely to be discharged home (24% vs. 62%; P = 0.002). On multivariate analysis, LPDs and status epilepticus were associated with abnormal consciousness (P = 0.009; odds ratio = 5.2, 95% CI = 1.60-20.00 and P = 0.017; odds ratio = 5.0, 95% CI = 1.4-21.4); and LPDs were independently associated with functional decline (P = 0.001; odds ratio = 4.8, 95% CI = 1.6-15.4) and lower likelihood of being discharged home (P = 0.009; odds ratio = 0.2, 95% CI = 0.04-0.6). Despite absence of acute or progressive brain injury, LPDs were independently associated with abnormal consciousness and worse outcome at hospital discharge.

  3. Coptidis Rhizoma Prevents Heat Stress-Induced Brain Damage and Cognitive Impairment in Mice

    PubMed Central

    Moon, Minho; Huh, Eugene; Song, Eun Ji; Hwang, Deok-Sang; Lee, Tae Hee; Oh, Myung Sook

    2017-01-01

    Heat stress conditions lead to neuroinflammation, neuronal death, and memory loss in animals. Coptidis Rhizoma (CR) exhibits potent fever-reducing effects and has been used as an important traditional medicinal herb for treating fever. However, to date, the effects of antipyretic CR on heat-induced brain damages have not been investigated. In this study, CR significantly reduced the elevation of ear and rectal temperatures after exposure to heat in mice. Additionally, CR attenuated hyperthermia-induced stress responses, such as release of cortisol into the blood, and upregulation of heat shock protein and c-Fos in the hypothalamus and hippocampus of mice. The administration of CR inhibited gliosis and neuronal loss induced by thermal stress in the hippocampal CA3 region. Treatment with CR also reduced the heat stress-induced expression of nuclear factor kappa β, tumor necrosis factor-α, and interleukin-1β (IL-1β) in the hippocampus. Moreover, CR significantly decreased proinflammatory mediators such as IL-9 and IL-13 in the heat-stressed hypothalamus. Furthermore, CR attenuated cognitive dysfunction triggered by thermal stress. These results indicate that CR protects the brain against heat stress-mediated brain damage via amelioration of hyperthermia and neuroinflammation in mice, suggesting that fever-reducing CR can attenuate thermal stress-induced neuropathology. PMID:28946610

  4. Apoptosis and Acute Brain Ischemia in Ischemic Stroke.

    PubMed

    Radak, Djordje; Katsiki, Niki; Resanovic, Ivana; Jovanovic, Aleksandra; Sudar-Milovanovic, Emina; Zafirovic, Sonja; Mousad, Shaker A; Isenovic, Esma R

    2017-01-01

    Apoptosis may contribute to a significant proportion of neuron death following acute brain ischemia (ABI), but the underlying mechanisms are still not fully understood. Brain ischemia may lead to stroke, which is one of the main causes of long-term morbidity and mortality in both developed and developing countries. Therefore, stroke prevention and treatment is clinically important. There are two important separate areas of the brain during ABI: the ischemic core and the ischemic penumbra. The ischemic core of the brain experiences a sudden reduction of blood flow, just minutes after ischemic attack with irreversible injury and subsequent cell death. On the other hand, apoptosis within the ischemic penumbra may occur after several hours or days, while necrosis starts in the first hours after the onset of ABI in the ischemic core. ABI is characterized by key molecular events that initiate apoptosis in many cells, such as overproduction of free radicals, Ca2+ overload and excitotoxicity. These changes in cellular homeostasis may trigger either necrosis or apoptosis, which often depends on cell type, cell age, and location in the brain. Apoptosis results in DNA fragmentation, degradation of cytoskeletal and nuclear proteins, cross-linking of proteins, formation of apoptotic bodies, expression of ligands for phagocytic cell receptors and finally uptake by phagocytic cells. This review focuses on recent findings based on animal and human studies regarding the apoptotic mechanisms of neuronal death following ABI and the development of potential neuroprotective agents that reduce morbidity. The effects of statins on stroke prevention and treatment as well as on apoptotic mediators are also considered. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Long-term neuronal damage and recovery after a single dose of MDMA: expression and distribution of serotonin transporter in the rat brain.

    PubMed

    Kirilly, Eszter

    2010-09-01

    "Ecstasy", 3,4-methylenedioxymethamphetamine (MDMA), an amphetamine analogue is one of the most widely used recreational drugs. In spite of the fact that neurotoxic effects of MDMA has been found in several species from rodents to non-human primates, and results increasingly point to damage also in human MDMA users, data about the sensitivity of different brain areas and the recovery after neuronal damage are scarce. Serotonin transporter (5-HTT) mRNA in the raphe nuclei also has not been examined. Humans with genetic predisposition for the slow metabolism of MDMA, the so-called "poor metabolizers" of debrisoquin are at higher risk. Five- 9% of the Caucasian population is considered to carry this phenotype. These studies were carried out in Dark Agouti rats, a special strain that show decreased microsomal CYP2D1 isoenzyme activity, and thus may serve as a model of vulnerable human users. These works were designed to characterize MDMA-induced damage and recovery of the serotonergic system including sleep and morphological changes within 180 days. In our experiments we investigated the 5-HTT mRNA expression in the brainstem and medullary raphe nuclei, 5-HTT immunoreactive (IR) fibre densities in several brain areas, and 16 functional measures of sleep in response to a single dose of +/- MDMA (15mg\\kg). Furthermore, behavioural experiments were performed 21 days after MDMA treatment. We found similar changes in 5-HTT mRNA expression in the examined raphe nuclei, namely transient increases 7 days after MDMA treatment followed by transient decreases at 21 days. Significant (20-40%), widespread reductions in 5-HTT-IR fibre density were detected in most brain areas at 7 and 21 days after MDMA administration. All cortical, but only some brainstem areas were damaged. Parallel to the neuronal damage we observed significant reductions in rapid eye movement (REM) sleep latency, increased fragmentation of sleep and increases in delta power spectra in non-REM sleep. At 180 days

  6. Spatio-Temporal Features of Visual Exploration in Unilaterally Brain-Damaged Subjects with or without Neglect: Results from a Touchscreen Test

    PubMed Central

    Rabuffetti, Marco; Farina, Elisabetta; Alberoni, Margherita; Pellegatta, Daniele; Appollonio, Ildebrando; Affanni, Paola; Forni, Marco; Ferrarin, Maurizio

    2012-01-01

    Cognitive assessment in a clinical setting is generally made by pencil-and-paper tests, while computer-based tests enable the measurement and the extraction of additional performance indexes. Previous studies have demonstrated that in a research context exploration deficits occur also in patients without evidence of unilateral neglect at pencil-and-paper tests. The objective of this study is to apply a touchscreen-based cancellation test, feasible also in a clinical context, to large groups of control subjects and unilaterally brain-damaged patients, with and without unilateral spatial neglect (USN), in order to assess disturbances of the exploratory skills. A computerized cancellation test on a touchscreen interface was used for assessing the performance of 119 neurologically unimpaired control subjects and 193 patients with unilateral right or left hemispheric brain damage, either with or without USN. A set of performance indexes were defined including Latency, Proximity, Crossings and their spatial lateral gradients, and Preferred Search Direction. Classic outcome scores were computed as well. Results show statistically significant differences among groups (assumed p<0.05). Right-brain-damaged patients with USN were significantly slower (median latency per detected item was 1.18 s) and less efficient (about 13 search-path crossings) in the search than controls (median latency 0.64 s; about 3 crossings). Their preferred search direction (53.6% downward, 36.7% leftward) was different from the one in control patients (88.2% downward, 2.1% leftward). Right-brain-damaged patients without USN showed a significantly abnormal behavior (median latency 0.84 s, about 5 crossings, 83.3% downward and 9.1% leftward direction) situated half way between controls and right-brain-damaged patients with USN. Left-brain-damaged patients without USN were significantly slower and less efficient than controls (latency 1.19 s, about 7 crossings), preserving a normal preferred search

  7. Methamphetamine- and Trauma-Induced Brain Injuries: Comparative Cellular and Molecular Neurobiological Substrates

    PubMed Central

    Gold, Mark S.; Kobeissy, Firas H.; Wang, Kevin K.W.; Merlo, Lisa J.; Bruijnzeel, Adriaan W.; Krasnova, Irina N.; Cadet, Jean Lud

    2009-01-01

    The use of methamphetamine (METH) is a growing public health problem because its abuse is associated with long-term biochemical and structural effects on the human brain. Neurodegeneration is often observed in humans as a result of mechanical injuries (e.g. traumatic brain injury, TBI) and ischemic damage (strokes). In this review, we discuss recent findings documenting the fact that the psychostimulant drug, METH, can cause neuronal damage in several brain regions. The accumulated evidence from our laboratories and those of other investigators indicates that acute administration of METH leads to activation of calpain and caspase proteolytic systems. These systems are also involved in causing neuronal damage secondary to traumatic and ischemic brain injuries. Protease activation is accompanied by proteolysis of endogenous neuronal structural proteins (αII-spectrin and MAP-tau protein) evidenced by the appearance of their breakdown products after these injuries. When taken together, these observations suggest that METH exposure, like TBI, can cause substantial damage to the brain by causing both apoptotic and necrotic cell death in the brains of METH addicts who use large doses of the drug during their lifetimes. Finally, because METH abuse is accompanied by functional and structural changes in the brain similar to those in TBI, METH addicts might experience greater benefit if their treatment involved greater emphasis on rehabilitation in conjunction with the use of potential neuroprotective pharmacological agents such as calpain and caspase inhibitors similar to those used in TBI. PMID:19345341

  8. Line and word bisection in right-brain-damaged patients with left spatial neglect.

    PubMed

    Veronelli, Laura; Vallar, Giuseppe; Marinelli, Chiara V; Primativo, Silvia; Arduino, Lisa S

    2014-01-01

    Right-brain-damaged patients with left unilateral spatial neglect typically set the mid-point of horizontal lines to the right of the objective center. By contrast, healthy participants exhibit a reversed bias (pseudoneglect). The same effect has been described also when bisecting orthographic strings. In particular, for this latter kind of stimulus, some recent studies have shown that visuo-perceptual characteristics, like stimulus length, may contribute to both the magnitude and the direction bias of the bisection performance (Arduino et al. in Neuropsychologia 48:2140-2146, 2010). Furthermore, word stress was shown to modulate reading performances in both healthy participants, and patients with left spatial neglect and neglect dyslexia (Cubelli and Beschin in Brain Lang 95:319-326, 2005; Rusconi et al. in Neuropsychology 18:135-140, 2004). In Experiment I, 22 right-brain-damaged patients (11 with left visuo-spatial neglect) and 11 matched neurologically unimpaired control participants were asked to set the subjective mid-point of word letter strings, and of lines of comparable length. Most patients exhibited an overall disproportionate rightward bias, sensitive to stimulus length, and similar for words and lines. Importantly, in individual patients, biases differed according to stimulus type (words vs. lines), indicating that at least partly different mechanisms may be involved. In Experiment II, the putative effects on the bisection bias of ortho-phonological information (i.e., word stress endings), arising from the non-neglected right hand side of the stimulus were investigated. The orthographic cue induced a rightward shift of the perceived mid-point in both patients and controls, with short words stressed on the antepenultimate final sequence inducing a smaller rightward deviation with respect to short words stressed on the penultimate final sequence. In conclusion, partly different mechanisms, including both visuo-spatial and lexical factors, may support

  9. Magnolol protects against ischemic-reperfusion brain damage following oxygen-glucose deprivation and transient focal cerebral ischemia.

    PubMed

    Huang, Sheng-Yang; Tai, Shih-Huang; Chang, Che-Chao; Tu, Yi-Fang; Chang, Chih-Han; Lee, E-Jian

    2018-04-01

    In the present study, the neuroprotective potential of magnolol against ischemia-reperfusion brain injury was examined via in vivo and in vitro experiments. Magnolol exhibited strong radical scavenging and antioxidant activity, and significantly inhibited the production of interleukin‑6, tumor necrosis factor‑a and nitrite/nitrate (NOX) in lipopolysaccharide-stimulated BV2 and RAW 264.7 cells when applied at concentrations of 10 and 50 µM, respectively. Magnolol (100 µM) also significantly attenuated oxygen‑glucose deprivation‑induced damage in neonatal rat hippocampal slice cultures, when administered up to 4 h following the insult. In a rat model of stable ischemia, compared with a vehicle‑treated ischemic control, pretreatment with magnolol (0.01‑1 mg/kg, intravenously) significantly reduced brain infarction following ischemic stroke, and post‑treatment with magnolol (1 mg/kg) remained effective and significantly reduced infarction when administered 2 h following the onset of ischemia. Additionally, magnolol (0.3 and 1 mg/kg) significantly reduced the accumulation of superoxide anions at the border zones of infarction and reduced oxidative damage in the ischemic brain. This was assessed by measuring the levels of NOX, malondialdehyde and myeloperoxidase, the ratio of glutathione/oxidized glutathione and the immunoreactions of 8‑hydroxy‑2'‑deoxyguanosine and 4‑hydroxynonenal. Thus, magnolol was revealed to protect against ischemia‑reperfusion brain damage. This may be partly attributed to its antioxidant, radical scavenging and anti‑inflammatory effects.

  10. Lack of effect of moderate hypothermia on brain tissue oxygenation after acute intracranial hypertension in pigs.

    PubMed

    Bao, Ying-Hui; Liang, Yu-Min; Gao, Guo-Yi; Jiang, Ji-Yao

    2010-02-01

    In this study, we explored the effect of moderate hypothermia on brain tissue oxygenation following acute intracranial hypertension in micropigs. Twenty healthy juvenile micropigs weighting 4-6 kg were randomized into two groups: a normothermia group (n = 10) and a moderate hypothermia group (n = 10). The animals were intravenously anesthetized with propofol (4 mg/kg), an endotracheal tube was inserted, and mechanical ventilation was begun. Autologous arterial blood was injected into the left frontal lobe to establish acute intracerebral hematoma and intracranial hypertension (intracranial pressure [ICP] >40 mm Hg) in all animals. Cooling was initiated at 30 min after injection of the blood, and was achieved via the use of an ice bath and ice packs. In the hypothermia group, the brain temperature decreased to 33-34 degrees C. Brain temperature was maintained at 37 +/- 0.3 degrees C in the normothermia group. The ICP, cerebral perfusion pressure (CPP), brain tissue oxygen pressure (P(br)O(2)), brain tissue carbon dioxide pressure (P(br)CO(2)), and brain tissue pH value (pH(br)) were continuously monitored for 3 h in all animals. Compared to normothermia group, ICP values significantly decreased and CPP markedly improved in the hypothermia group (p < 0.05). Further, pH(br) also markedly increased and P(br)CO(2) decreased significantly in the hypothermia group (p < 0.05). However, P(br)O(2) did not statistically significantly improve in the hypothermia group (p > 0.05). In sum, moderate hypothermia significantly decreased ICP, reduced P(br)CO(2), and increased pH(br) values, but did not improve cerebral oxygenation following acute intracranial hypertension.

  11. Exploring social cognition in patients with apathy following acquired brain damage.

    PubMed

    Njomboro, Progress; Humphreys, Glyn W; Deb, Shoumitro

    2014-01-23

    Research on cognition in apathy has largely focused on executive functions. To the best of our knowledge, no studies have investigated the relationship between apathy symptoms and processes involved in social cognition. Apathy symptoms include attenuated emotional behaviour, low social engagement and social withdrawal, all of which may be linked to underlying socio-cognitive deficits. We compared patients with brain damage who also had apathy symptoms against similar patients with brain damage but without apathy symptoms. Both patient groups were also compared against normal controls on key socio-cognitive measures involving moral reasoning, social awareness related to making judgements between normative and non-normative behaviour, Theory of Mind processing, and the perception of facial expressions of emotion. We also controlled for the likely effects of executive deficits and depressive symptoms on these comparisons. Our results indicated that patients with apathy were distinctively impaired in making moral reasoning decisions and in judging the social appropriateness of behaviour. Deficits in Theory of Mind and perception of facial expressions of emotion did not distinguish patients with apathy from those without apathy. Our findings point to a possible socio-cognitive profile for apathy symptoms and provide initial insights into how socio-cognitive deficits in patients with apathy may affect social functioning.

  12. [Neuroprotective effect of naloxone in brain damage caused by repeated febrile seizure].

    PubMed

    Shan, Ying; Qin, Jiong; Chang, Xing-zhi; Yang, Zhi-xian

    2004-04-01

    The brain damage caused by repeated febrile seizure (FS) during developing age is harmful to the intellectual development of children. So how to decrease the related damage is a very important issue. The main purpose of the present study was to find out whether the non-specific opiate antagonist naloxone at low dose has the neuroprotective effect on seizure-induced brain damage. Warm water induced rat FS model was developed in this study. Forty-seven rats were randomly divided into two groups: normal control group (n = 10) and hyperthermic seizure groups (n = 37). The latter was further divided into FS control group (n = 13) and naloxone-treated group (n = 24). The dose of naloxone is different in two naloxone-treated groups (12/each group), in one group the dose was 1 mg/kg, in the other one 2 mg/kg. Seven febrile seizures were induced in each rat of hyperthermic seizure groups with the interval of 2 days. The rats were weighed and injected intraperitoneally with naloxone once the FS occurred in naloxone-treated group, while the rats of the other groups were injected with 0.9% sodium chloride. Latency, duration and grade of FS in different groups were observed and compared. HE-staining and the electron microscopy (EM) were used to detect the morphologic and ultrastructural changes of hippocampal neurons. In naloxone-treated group, the rats' FS duration and FS grade (5.02 +/- 0.63, 2.63 +/- 0.72) were significantly lower (t = 5.508, P < 0.01; t = 8.439, P < 0.01) than those in FS control group (7.70 +/- 2.25 min, 4.52 +/- 0.49), although no significant gap was observed on FS latency between them. In FS control group, HE-staining pattern of hippocampal CA(1) and CA(2) showed lots of disordered neurons with confused polarity and vacuoles formed. Nuclei were with various size, some rounded and some oblong. While in naloxone-treated groups, the arrangement of neurons was regular, only a small quantity of neurons had changed polarity and vacuoles formed. Most nuclei

  13. Traumatic brain injury and post-acute decline: what role does environmental enrichment play? A scoping review

    PubMed Central

    Frasca, Diana; Tomaszczyk, Jennifer; McFadyen, Bradford J.; Green, Robin E.

    2013-01-01

    Objectives: While a growing number of studies provide evidence of neural and cognitive decline in traumatic brain injury (TBI) survivors during the post-acute stages of injury, there is limited research as of yet on environmental factors that may influence this decline. The purposes of this paper, therefore, are to (1) examine evidence that environmental enrichment (EE) can influence long-term outcome following TBI, and (2) examine the nature of post-acute environments, whether they vary in degree of EE, and what impact these variations have on outcomes. Methods: We conducted a scoping review to identify studies on EE in animals and humans, and post-discharge experiences that relate to barriers to recovery. Results: One hundred and twenty-three articles that met inclusion criteria demonstrated the benefits of EE on brain and behavior in healthy and brain-injured animals and humans. Nineteen papers on post-discharge experiences revealed that variables such as insurance coverage, financial, and social support, home therapy, and transition from hospital to home, can have an impact on clinical outcomes. Conclusion: There is evidence to suggest that lack of EE, whether from lack of resources or limited ability to engage in such environments, may play a role in post-acute cognitive and neural decline. Maximizing EE in the post-acute stages of TBI may improve long-term outcomes for the individual, their family and society. PMID:23616755

  14. Association of acute adverse effects with high local SAR induced in the brain from prolonged RF head and neck hyperthermia

    NASA Astrophysics Data System (ADS)

    Adibzadeh, F.; Verhaart, R. F.; Verduijn, G. M.; Fortunati, V.; Rijnen, Z.; Franckena, M.; van Rhoon, G. C.; Paulides, M. M.

    2015-02-01

    To provide an adequate level of protection for humans from exposure to radio-frequency (RF) electromagnetic fields (EMF) and to assure that any adverse health effects are avoided. The basic restrictions in terms of the specific energy absorption rate (SAR) were prescribed by IEEE and ICNIRP. An example of a therapeutic application of non-ionizing EMF is hyperthermia (HT), in which intense RF energy is focused at a target region. Deep HT in the head and neck (H&N) region involves inducing energy at 434 MHz for 60 min on target. Still, stray exposure of the brain is considerable, but to date only very limited side-effects were observed. The objective of this study is to investigate the stringency of the current basic restrictions by relating the induced EM dose in the brain of patients treated with deep head and neck (H&N) HT to the scored acute health effects. We performed a simulation study to calculate the induced peak 10 g spatial-averaged SAR (psSAR10g) in the brains of 16 selected H&N patients who received the highest SAR exposure in the brain, i.e. who had the minimum brain-target distance and received high forwarded power during treatment. The results show that the maximum induced SAR in the brain of the patients can exceed the current basic restrictions (IEEE and ICNIRP) on psSAR10g for occupational environments by 14 times. Even considering the high local SAR in the brain, evaluation of acute effects by the common toxicity criteria (CTC) scores revealed no indication of a serious acute neurological effect. In addition, this study provides pioneering quantitative human data on the association between maximum brain SAR level and acute adverse effects when brains are exposed to prolonged RF EMF.

  15. Tert-butylhydroquinone post-treatment attenuates neonatal hypoxic-ischemic brain damage in rats.

    PubMed

    Zhang, Juan; Tucker, Lorelei Donovan; DongYan; Lu, Yujiao; Yang, Luodan; Wu, Chongyun; Li, Yong; Zhang, Quanguang

    2018-06-01

    Hypoxic-ischemic (HI) encephalopathy is a leading cause of dire mortality and morbidity in neonates. Unfortunately, no effective therapies have been developed as of yet. Oxidative stress plays a critical role in pathogenesis and progression of neonatal HI. Previously, as a Nrf2 activator, tert-butylhydroquinone (TBHQ) has been demonstrated to exert neuroprotection on brain trauma and ischemic stroke models, as well as oxidative stress-induced cytotoxicity in neurons. It is, however, still unknown whether TBHQ administration can protect against oxidative stress in neonatal HI brain injury. This study was undertaken to determine the neuroprotective effects and mechanisms of TBHQ post-treatment on neonatal HI brain damage. Using a neonatal HI rat model, we demonstrated that TBHQ markedly abated oxidative stress compared to the HI group, as evidenced by decreased oxidative stress indexes, enhanced Nrf2 nuclear accumulation and DNA binding activity, and up-regulated expression of Nrf2 downstream antioxidative genes. Administration of TBHQ likewise significantly suppressed reactive gliosis and release of inflammatory cytokines, and inhibited apoptosis and neuronal degeneration in the neonatal rat cerebral cortex. In addition, infarct size and neuronal damage were attenuated distinctly. These beneficial effects were accompanied by improved neurological reflex and motor coordination as well as amelioration of spatial learning and memory deficits. Overall, our results provide the first documentation of the beneficial effects of TBHQ in neonatal HI model, in part conferred by activation of Nrf2 mediated antioxidative signaling pathways. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Early care of acute hyperglycemia benefits the outcome of traumatic brain injury in rats.

    PubMed

    Kang, Xin; Liu, Yuepeng; Yuan, Tao; Jiang, Na-Na; Dong, Yan-Bin; Wang, Jian-Wei; Fu, Guang-Hui; Liu, Yu-Liang; Wang, Wen-Xue

    2016-11-01

    Previous animal studies showed contradictory clinical observations on whether acute hyperglycemia contributes to poor outcome in traumatic brain injury (TBI). Herein, we tried to clarify this issue. Striking with depths of 3.0-4.25mm at right occipitoparietal brain region and with depth of 3.75mm at right/left occipitoparietal or right/left frontoparietal brain region were performed, respectively. Blood glucose and insulin levels were traced every four hours from 1 to 72h after striking. HOMA2-%S and HOMA2-%β were calculated. Modified neurological severity scores (mNSS) were used to evaluate neurological deficit within 72h. Striking with depths of 3.5-4.25mm induced increase in blood glucose lasting up to 24h after striking. The levels of blood glucose after striking with depths of 3.75-4.25mm were significantly different from that of striking with the depth of 3.0mm. Striking with depth of 3.75mm at right/left occipitoparietal region induced higher blood glucose in 24h than that at right/left frontoparietal region. Insulin concentration increased slowly during 72h after striking. Striking also induced decrease in insulin sensitivity and secretion lasting 72h. Evaluation of mNSS revealed that severe striking (beyond 3.75mm) worsened nerve function than slight striking (<3.0mm). Intervention of acute hyperglycemia could decrease the mNSS from 2 to 7 days after TBI. Our results suggested that only severe TBI could induce acute hyperglycemia by itself, and early care of acute hyperglycemia could benefit the outcome of TBI patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Volumetric Integral Phase-shift Spectroscopy for Noninvasive Detection of Hemispheric Bioimpedance Asymmetry in Acute Brain Pathology

    ClinicalTrials.gov

    2018-05-10

    Stroke; Stroke, Acute; Ischemic Stroke; Hemorrhage; Clot (Blood); Brain; Subarachnoid Hemorrhage; Cerebral Infarction; Cerebral Hemorrhage; Cerebral Stroke; Intracerebral Hemorrhage; Intracerebral Injury

  18. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus.

    PubMed

    Varvel, Nicholas H; Neher, Jonas J; Bosch, Andrea; Wang, Wenyi; Ransohoff, Richard M; Miller, Richard J; Dingledine, Raymond

    2016-09-20

    The generalized seizures of status epilepticus (SE) trigger a series of molecular and cellular events that produce cognitive deficits and can culminate in the development of epilepsy. Known early events include opening of the blood-brain barrier (BBB) and astrocytosis accompanied by activation of brain microglia. Whereas circulating monocytes do not infiltrate the healthy CNS, monocytes can enter the brain in response to injury and contribute to the immune response. We examined the cellular components of innate immune inflammation in the days following SE by discriminating microglia vs. brain-infiltrating monocytes. Chemokine receptor 2 (CCR2(+)) monocytes invade the hippocampus between 1 and 3 d after SE. In contrast, only an occasional CD3(+) T lymphocyte was encountered 3 d after SE. The initial cellular sources of the chemokine CCL2, a ligand for CCR2, included perivascular macrophages and microglia. The induction of the proinflammatory cytokine IL-1β was greater in FACS-isolated microglia than in brain-invading monocytes. However, Ccr2 knockout mice displayed greatly reduced monocyte recruitment into brain and reduced levels of the proinflammatory cytokine IL-1β in hippocampus after SE, which was explained by higher expression of the cytokine in circulating and brain monocytes in wild-type mice. Importantly, preventing monocyte recruitment accelerated weight regain, reduced BBB degradation, and attenuated neuronal damage. Our findings identify brain-infiltrating monocytes as a myeloid-cell subclass that contributes to neuroinflammation and morbidity after SE. Inhibiting brain invasion of CCR2(+) monocytes could represent a viable method for alleviating the deleterious consequences of SE.

  19. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus

    PubMed Central

    Varvel, Nicholas H.; Neher, Jonas J.; Bosch, Andrea; Wang, Wenyi; Ransohoff, Richard M.; Miller, Richard J.; Dingledine, Raymond

    2016-01-01

    The generalized seizures of status epilepticus (SE) trigger a series of molecular and cellular events that produce cognitive deficits and can culminate in the development of epilepsy. Known early events include opening of the blood–brain barrier (BBB) and astrocytosis accompanied by activation of brain microglia. Whereas circulating monocytes do not infiltrate the healthy CNS, monocytes can enter the brain in response to injury and contribute to the immune response. We examined the cellular components of innate immune inflammation in the days following SE by discriminating microglia vs. brain-infiltrating monocytes. Chemokine receptor 2 (CCR2+) monocytes invade the hippocampus between 1 and 3 d after SE. In contrast, only an occasional CD3+ T lymphocyte was encountered 3 d after SE. The initial cellular sources of the chemokine CCL2, a ligand for CCR2, included perivascular macrophages and microglia. The induction of the proinflammatory cytokine IL-1β was greater in FACS-isolated microglia than in brain-invading monocytes. However, Ccr2 knockout mice displayed greatly reduced monocyte recruitment into brain and reduced levels of the proinflammatory cytokine IL-1β in hippocampus after SE, which was explained by higher expression of the cytokine in circulating and brain monocytes in wild-type mice. Importantly, preventing monocyte recruitment accelerated weight regain, reduced BBB degradation, and attenuated neuronal damage. Our findings identify brain-infiltrating monocytes as a myeloid-cell subclass that contributes to neuroinflammation and morbidity after SE. Inhibiting brain invasion of CCR2+ monocytes could represent a viable method for alleviating the deleterious consequences of SE. PMID:27601660

  20. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    PubMed

    Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A

    2010-11-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.

  1. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    PubMed

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Cognitive benefit and cost of acute stress is differentially modulated by individual brain state

    PubMed Central

    Hermans, Erno J.; Fernández, Guillén

    2017-01-01

    Abstract Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated accuracy and speed during a stroop-like task of 120 healthy male subjects after an experimental stress induction or control condition in a randomized, counter-balanced cross-over design; we assessed brain–behavior associations and determined the influence of individual brain connectivity patterns on these associations, which may moderate the effect and help identify stress resilience factors. In the mean, stress was associated to increase in accuracy, but decrease in speed. Accuracy was associated to brain activation in a distributed set of brain regions overlapping with the executive control network (ECN) and speed to temporo-parietal activation. In line with a stress-related large-scale network reconfiguration, individuals showing an upregulation of the salience and down-regulation of the executive-control network under stress displayed increased speed, but decreased performance. In contrast, individuals who upregulate their ECN under stress show improved performance. Our results indicate that the individual large-scale brain network balance under acute stress moderates cognitive consequences of threat. PMID:28402480

  3. Perception of Lexical Stress by Brain-Damaged Individuals: Effects on Lexical-Semantic Activation

    ERIC Educational Resources Information Center

    Shah, Amee P.; Baum, Shari R.

    2006-01-01

    A semantic priming, lexical-decision study was conducted to examine the ability of left- and right-brain damaged individuals to perceive lexical-stress cues and map them onto lexical-semantic representations. Correctly and incorrectly stressed primes were paired with related and unrelated target words to tap implicit processing of lexical prosody.…

  4. Radial bisection of words and lines in right-brain-damaged patients with spatial neglect.

    PubMed

    Veronelli, Laura; Arduino, Lisa S; Girelli, Luisa; Vallar, Giuseppe

    2017-09-01

    The bisection of lines positioned radially (with the two ends of the line close and far, with respect to the participant's body) has been less investigated than that of lines placed horizontally (with their two ends left and right, with respect to the body's midsagittal plane). In horizontal bisection, patients with left neglect typically show a rightward bias for both lines and words, greater with longer stimuli. As for radial bisection, available data indicate that neurologically unimpaired participants make a distal error, while results from right-brain-damaged patients with left spatial neglect are contradictory. We investigated the bisection of radially oriented words, with the prediction that, during bisection, linguistic material would be recoded to its canonical left-to-right format in reading, with the performance of neglect patients being similar to that for horizontal words. Thirteen right-brain-damaged patients (seven with left spatial neglect) and fourteen healthy controls were asked to manually bisect 40 radial and 40 horizontal words (5-10 letters), and 80 lines, 40 radial and 40 horizontal, of comparable length. Right-brain-damaged patients with spatial neglect exhibited a proximal bias in the bisection of short radial words, with the proximal part corresponding to the final right part of horizontally oriented words. This proximal error was not found in patients without neglect and healthy controls. For bisection, short radial words may be recoded to the canonical orthographic horizontal format, unveiling the impact of left neglect on radially oriented stimuli. © 2015 The British Psychological Society.

  5. Rapid-releasing of HI-6 via brain-targeted mesoporous silica nanoparticles for nerve agent detoxification

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Fan, Lixue; Wang, Feijian; Luo, Yuan; Sui, Xin; Li, Wanhua; Zhang, Xiaohong; Wang, Yongan

    2016-05-01

    The toxic nerve agent (NA) soman is the most toxic artificially synthesized compound that can rapidly penetrate into the brain and irreversibly inhibit acetylcholinesterase (AChE) activity, leading to immediate death. However, there are currently few brain-targeted nanodrugs that can treat acute chemical brain poisoning owing to the limited drug-releasing speed. The present study investigated the effectiveness of a nanodrug against NA toxicity that has high blood-brain barrier penetration and is capable of rapid drug release. Transferrin-modified mesoporous silica nanoparticles (TF-MSNs) were conjugated with the known AChE reactivator HI-6. This nanodrug rapidly penetrated the blood-brain barrier in zebrafish and mice and restored cerebral AChE activity via the released HI-6, preventing the brain damage caused by soman poisoning and increasing the survival rate in mice. Furthermore, there was no toxicity associated with the MSNs in mice or rats. These results demonstrate that TF-MSNs loaded with HI-6 represent the most effective antidote against NA poisoning by soman reported to date, and suggest that MSNs are a safe alternative to conventional drugs and an optimal nanocarrier for treating brain poisoning, which requires acute pulse cerebral administration.The toxic nerve agent (NA) soman is the most toxic artificially synthesized compound that can rapidly penetrate into the brain and irreversibly inhibit acetylcholinesterase (AChE) activity, leading to immediate death. However, there are currently few brain-targeted nanodrugs that can treat acute chemical brain poisoning owing to the limited drug-releasing speed. The present study investigated the effectiveness of a nanodrug against NA toxicity that has high blood-brain barrier penetration and is capable of rapid drug release. Transferrin-modified mesoporous silica nanoparticles (TF-MSNs) were conjugated with the known AChE reactivator HI-6. This nanodrug rapidly penetrated the blood-brain barrier in zebrafish and

  6. Acute Ischemic Stroke After Moderate to Severe Traumatic Brain Injury: Incidence and Impact on Outcome.

    PubMed

    Kowalski, Robert G; Haarbauer-Krupa, Juliet K; Bell, Jeneita M; Corrigan, John D; Hammond, Flora M; Torbey, Michel T; Hofmann, Melissa C; Dams-O'Connor, Kristen; Miller, A Cate; Whiteneck, Gale G

    2017-07-01

    Traumatic brain injury (TBI) leads to nearly 300 000 annual US hospitalizations and increased lifetime risk of acute ischemic stroke (AIS). Occurrence of AIS immediately after TBI has not been well characterized. We evaluated AIS acutely after TBI and its impact on outcome. A prospective database of moderate to severe TBI survivors, admitted to inpatient rehabilitation at 22 Traumatic Brain Injury Model Systems centers and their referring acute-care hospitals, was analyzed. Outcome measures were AIS incidence, duration of posttraumatic amnesia, Functional Independence Measure, and Disability Rating Scale, at rehabilitation discharge. Between October 1, 2007, and March 31, 2015, 6488 patients with TBI were enrolled in the Traumatic Brain Injury Model Systems National Database. One hundred and fifty-nine (2.5%) patients had a concurrent AIS, and among these, median age was 40 years. AIS was associated with intracranial mass effect and carotid or vertebral artery dissection. High-velocity events more commonly caused TBI with dissection. AIS predicted poorer outcome by all measures, accounting for a 13.3-point reduction in Functional Independence Measure total score (95% confidence interval, -16.8 to -9.7; P <0.001), a 1.9-point increase in Disability Rating Scale (95% confidence interval, 1.3-2.5; P <0.001), and an 18.3-day increase in posttraumatic amnesia duration (95% confidence interval, 13.1-23.4; P <0.001). Ischemic stroke is observed acutely in 2.5% of moderate to severe TBI survivors and predicts worse functional and cognitive outcome. Half of TBI patients with AIS were aged ≤40 years, and AIS patients more often had cervical dissection. Vigilance for AIS is warranted acutely after TBI, particularly after high-velocity events. © 2017 American Heart Association, Inc.

  7. Brain-lung crosstalk in critical care: how protective mechanical ventilation can affect the brain homeostasis.

    PubMed

    Mazzeo, A T; Fanelli, V; Mascia, L

    2013-03-01

    The maintenance of brain homeostasis against multiple internal and external challenges occurring during the acute phase of acute brain injury may be influenced by critical care management, especially in its respiratory, hemodynamic and metabolic components. The occurrence of acute lung injury represents the most frequent extracranial complication after brain injury and deserves special attention in daily practice as optimal ventilatory strategy for patients with acute brain and lung injury are potentially in conflict. Protecting the lung while protecting the brain is thus a new target in the modern neurointensive care. This article discusses the essentials of brain-lung crosstalk and focuses on how mechanical ventilation may exert an active role in the process of maintaining or treatening brain homeostasis after acute brain injury, highlighting the following points: 1) the role of inflammation as common pathomechanism of both acute lung and brain injury; 2) the recognition of ventilatory induced lung injury as determinant of systemic inflammation affecting distal organs, included the brain; 3) the possible implication of protective mechanical ventilation strategy on the patient with an acute brain injury as an undiscovered area of research in both experimental and clinical settings.

  8. Microcavitation as a Neuronal Damage Mechanism in Blast Traumatic Brain Injury

    NASA Astrophysics Data System (ADS)

    Franck, Christian; Estrada, Jonathan

    2015-11-01

    Blast traumatic brain injury (bTBI) is a leading cause of injury in the armed forces. Diffuse axonal injury, the hallmark feature of blunt TBI, has been investigated in direct mechanical loading conditions. However, recent evidence suggests inertial cavitation as a possible bTBI mechanism, particularly in the case of exposure to blasts. Cavitation damage to free surfaces has been well-studied, but bubble interactions within confined 3D environments, in particular their stress and strain signatures are not well understood. The structural damage due to cavitation in living tissues - particularly at the cellular level - are incompletely understood, in part due to the rapid bubble formation and deformation strain rates of up to ~ 105-106 s-1. This project aims to characterize material damage in 2D and 3D cell culture environments by utilizing a novel high-speed red-blue diffraction assisted image correlation method at speeds of up to 106 frames per second. We gratefully acknowledge funding from the Office of Naval Research (POC: Dr. Tim Bentley).

  9. Rapid Morphological Brain Abnormalities during Acute Methamphetamine Intoxication in the Rat. An Experimental study using Light and Electron Microscopy

    PubMed Central

    Sharma, Hari S.; Kiyatkin, Eugene A.

    2009-01-01

    This study describes morphological abnormalities of brain cells during acute methamphetamine (METH) intoxication in the rat and demonstrates the role of hyperthermia, disruption of the blood-brain barrier (BBB) and edema in their development. Rats with chronically implanted brain, muscle and skin temperature probes and an intravenous (iv) catheter were exposed to METH (9 mg/kg) at standard (23°C) and warm (29°C) ambient temperatures, allowing for the observation of hyperthermia ranging from mild to pathological levels (38–42°C). When brain temperature peaked or reached a level suggestive of possible lethality (>41.5°C), rats were injected with Evans blue (EB), rapidly anesthetized, perfused, and their brains were taken for further analyses. Four brain areas (cortex, hippocampus, thalamus and hypothalamus) were analyzed for EB extravasation, water and electrolyte (Na+, K+, Cl−) contents, immunostained for albumin and glial fibrillary acidic protein, and examined for neuronal, glial and axonal alterations using standard light and electron microscopy. These examinations revealed profound abnormalities in neuronal, glial, and endothelial cells, which were stronger with METH administered at 29°C than 23°C and tightly correlated with brain and body hyperthermia. These changes had some structural specificity, but in each structure they tightly correlated with increases in EB levels, the numbers of albumin-positive cells, and water and ion contents, suggesting leakage of the BBB, acutely developing brain edema, and serious shifts in brain ion homeostasis as leading factors underlying brain abnormalities. While most of these acute structural and functional abnormalities appear to be reversible, they could trigger subsequent cellular alterations in the brain and accelerate neurodegeneration—the most dangerous complication of chronic amphetamine-like drug abuse. PMID:18773954

  10. Effects of positive end-expiratory pressure on brain tissue oxygen pressure of severe traumatic brain injury patients with acute respiratory distress syndrome: A pilot study.

    PubMed

    Nemer, Sérgio Nogueira; Caldeira, Jefferson B; Santos, Ricardo G; Guimarães, Bruno L; Garcia, João Márcio; Prado, Darwin; Silva, Ricardo T; Azeredo, Leandro M; Faria, Eduardo R; Souza, Paulo Cesar P

    2015-12-01

    To verify whether high positive end-expiratory pressure levels can increase brain tissue oxygen pressure, and also their effects on pulse oxygen saturation, intracranial pressure, and cerebral perfusion pressure. Twenty traumatic brain injury patients with acute respiratory distress syndrome were submitted to positive end-expiratory pressure levels of 5, 10, and 15 cm H2O progressively. The 3 positive end-expiratory pressure levels were used during 20 minutes for each one, whereas brain tissue oxygen pressure, oxygen saturation, intracranial pressure, and cerebral perfusion pressure were recorded. Brain tissue oxygen pressure and oxygen saturation increased significantly with increasing positive end-expiratory pressure from 5 to 10 and from 10 to 15 cm H2O (P=.0001 and P=.0001 respectively). Intracranial pressure and cerebral perfusion pressure did not differ significantly with increasing positive end-expiratory pressure from 5 to 10 and from 10 to 15 cm H2O (P=.16 and P=.79 respectively). High positive end-expiratory pressure levels increased brain tissue oxygen pressure and oxygen saturation, without increase in intracranial pressure or decrease in cerebral perfusion pressure. High positive end-expiratory pressure levels can be used in severe traumatic brain injury patients with acute respiratory distress syndrome as a safe alternative to improve brain oxygenation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Overexpression of Thioredoxin in Transgenic Mice Attenuates Focal Ischemic Brain Damage

    NASA Astrophysics Data System (ADS)

    Takagi, Yasushi; Mitsui, Akira; Nishiyama, Akira; Nozaki, Kazuhiko; Sono, Hiroshi; Gon, Yasuhiro; Hashimoto, Nobuo; Yodoi, Junji

    1999-03-01

    Thioredoxin (TRX) plays important biological roles both in intra- and extracellular compartments, including in regulation of various intracellular molecules via thiol redox control. We produced TRX overexpressing mice and confirmed that there were no anatomical and physiological differences between wild-type (WT) mice and TRX transgenic (Tg) mice. In the present study we subjected mice to focal brain ischemia to shed light on the role of TRX in brain ischemic injury. At 24 hr after middle cerebral artery occlusion, infarct areas and volume were significantly smaller in Tg mice than in WT mice. Moreover neurological deficit was ameliorated in Tg mice compared with WT mice. Protein carbonyl content, a marker of cellular protein oxidation, in Tg mice showed less increase than did that of WT mice after the ischemic insult. Furthermore, c-fos expression in Tg mice was stronger than in WT mice 1 hr after ischemia. Our results suggest that transgene expression of TRX decreased ischemic neuronal injury and that TRX and the redox state modified by TRX play a crucial role in brain damage during stroke.

  12. Topography of acute stroke in a sample of 439 right brain damaged patients.

    PubMed

    Sperber, Christoph; Karnath, Hans-Otto

    2016-01-01

    Knowledge of the typical lesion topography and volumetry is important for clinical stroke diagnosis as well as for anatomo-behavioral lesion mapping analyses. Here we used modern lesion analysis techniques to examine the naturally occurring lesion patterns caused by ischemic and by hemorrhagic infarcts in a large, representative acute stroke patient sample. Acute MR and CT imaging of 439 consecutively admitted right-hemispheric stroke patients from a well-defined catchment area suffering from ischemia (n = 367) or hemorrhage (n = 72) were normalized and mapped in reference to stereotaxic anatomical atlases. For ischemic infarcts, highest frequencies of stroke were observed in the insula, putamen, operculum and superior temporal cortex, as well as the inferior and superior occipito-frontal fascicles, superior longitudinal fascicle, uncinate fascicle, and the acoustic radiation. The maximum overlay of hemorrhages was located more posteriorly and more medially, involving posterior areas of the insula, Heschl's gyrus, and putamen. Lesion size was largest in frontal and anterior areas and lowest in subcortical and posterior areas. The large and unbiased sample of stroke patients used in the present study accumulated the different sub-patterns to identify the global topographic and volumetric pattern of right hemisphere stroke in humans.

  13. Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats.

    PubMed

    de Castro, Mauro Robson Torres; Ferreira, Ana Paula de Oliveira; Busanello, Guilherme Lago; da Silva, Luís Roberto Hart; da Silveira Junior, Mauro Eduardo Porto; Fiorin, Fernando da Silva; Arrifano, Gabriela; Crespo-López, Maria Elena; Barcelos, Rômulo Pillon; Cuevas, María J; Bresciani, Guilherme; González-Gallego, Javier; Fighera, Michele Rechia; Royes, Luiz Fernando Freire

    2017-09-01

    An early inflammatory response and oxidative stress are implicated in the signal transduction that alters both hepatic redox status and mitochondrial function after traumatic brain injury (TBI). Peripheral oxidative/inflammatory responses contribute to neuronal dysfunction after TBI Exercise training alters the profile of oxidative-inflammatory status in liver and protects against acute hyperglycaemia and a cerebral inflammatory response after TBI. Approaches such as exercise training, which attenuates neuronal damage after TBI, may have therapeutic potential through modulation of responses by metabolic organs. The vulnerability of the body to oxidative/inflammatory in TBI is significantly enhanced in sedentary compared to physically active counterparts. Although systemic responses have been described after traumatic brain injury (TBI), little is known regarding potential interactions between brain and peripheral organs after neuronal injury. Accordingly, we aimed to investigate whether a peripheral oxidative/inflammatory response contributes to neuronal dysfunction after TBI, as well as the prophylactic role of exercise training. Animals were submitted to fluid percussion injury after 6 weeks of swimming training. Previous exercise training increased mRNA expression of X receptor alpha and ATP-binding cassette transporter, and decreased inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α and interleukin (IL)-6 expression per se in liver. Interestingly, exercise training protected against hepatic inflammation (COX-2, iNOS, TNF-α and IL-6), oxidative stress (decreases in non-protein sulfhydryl and glutathione, as well as increases in 2',7'-dichlorofluorescein diacetate oxidation and protein carbonyl), which altered hepatic redox status (increases in myeloperoxidase and superoxide dismutase activity, as well as inhibition of catalase activity) mitochondrial function (decreases in methyl-tetrazolium and Δψ, as well as

  14. Cluster Analysis of Vulnerable Groups in Acute Traumatic Brain Injury Rehabilitation.

    PubMed

    Kucukboyaci, N Erkut; Long, Coralynn; Smith, Michelle; Rath, Joseph F; Bushnik, Tamara

    2018-01-06

    To analyze the complex relation between various social indicators that contribute to socioeconomic status and health care barriers. Cluster analysis of historical patient data obtained from inpatient visits. Inpatient rehabilitation unit in a large urban university hospital. Adult patients (N=148) receiving acute inpatient care, predominantly for closed head injury. Not applicable. We examined the membership of patients with traumatic brain injury in various "vulnerable group" clusters (eg, homeless, unemployed, racial/ethnic minority) and characterized the rehabilitation outcomes of patients (eg, duration of stay, changes in FIM scores between admission to inpatient stay and discharge). The cluster analysis revealed 4 major clusters (ie, clusters A-D) separated by vulnerable group memberships, with distinct durations of stay and FIM gains during their stay. Cluster B, the largest cluster and also consisting of mostly racial/ethnic minorities, had the shortest duration of hospital stay and one of the lowest FIM improvements among the 4 clusters despite higher FIM scores at admission. In cluster C, also consisting of mostly ethnic minorities with multiple socioeconomic status vulnerabilities, patients were characterized by low cognitive FIM scores at admission and the longest duration of stay, and they showed good improvement in FIM scores. Application of clustering techniques to inpatient data identified distinct clusters of patients who may experience differences in their rehabilitation outcome due to their membership in various "at-risk" groups. The results identified patients (ie, cluster B, with minority patients; and cluster D, with elderly patients) who attain below-average gains in brain injury rehabilitation. The results also suggested that systemic (eg, duration of stay) or clinical service improvements (eg, staff's language skills, ability to offer substance abuse therapy, provide appropriate referrals, liaise with intensive social work services, or plan

  15. Types of traumatic brain injury and regional cerebral blood flow assessed by 99mTc-HMPAO SPECT.

    PubMed

    Yamakami, I; Yamaura, A; Isobe, K

    1993-01-01

    To investigate the relationship between focal and diffuse traumatic brain injury (TBI) and regional cerebral blood flow (rCBF), rCBF changes in the first 24 hours post-trauma were studied in 12 severe head trauma patients using single photon emission computed tomography (SPECT) with 99mtechnetium-hexamethyl propyleneamine oxime. Patients were classified as focal or diffuse TBI based on x-ray computed tomographic (X-CT) findings and neurological signs. In six patients with focal damage, SPECT demonstrated 1) perfusion defect (focal severe ischemia) in the brain region larger than the brain contusion by X-CT, 2) hypoperfusion (focal CBF reduction) in the brain region without abnormality by X-CT, and 3) localized hyperperfusion (focal CBF increase) in the surgically decompressed brain after decompressive craniectomy. Focal damage may be associated with a heterogeneous CBF change by causing various focal CBF derangements. In six patients with diffuse damage, SPECT revealed hypoperfusion in only one patient. Diffuse damage may be associated with a homogeneous CBF change by rarely causing focal CBF derangements. The type of TBI, focal or diffuse, determines the type of CBF change, heterogeneous or homogeneous, in the acute severe head trauma patient.

  16. Low Level Primary Blast Injury in Rodent Brain

    PubMed Central

    Pun, Pamela B. L.; Kan, Enci Mary; Salim, Agus; Li, Zhaohui; Ng, Kian Chye; Moochhala, Shabbir M.; Ling, Eng-Ang; Tan, Mui Hong; Lu, Jia

    2011-01-01

    The incidence of blast attacks and resulting traumatic brain injuries has been on the rise in recent years. Primary blast is one of the mechanisms in which the blast wave can cause injury to the brain. The aim of this study was to investigate the effects of a single sub-lethal blast over pressure (BOP) exposure of either 48.9 kPa (7.1 psi) or 77.3 kPa (11.3 psi) to rodents in an open-field setting. Brain tissue from these rats was harvested for microarray and histopathological analyses. Gross histopathology of the brains showed that cortical neurons were “darkened” and shrunken with narrowed vasculature in the cerebral cortex day 1 after blast with signs of recovery at day 4 and day 7 after blast. TUNEL-positive cells were predominant in the white matter of the brain at day 1 after blast and double-labeling of brain tissue showed that these DNA-damaged cells were both oligodendrocytes and astrocytes but were mainly not apoptotic due to the low caspase-3 immunopositivity. There was also an increase in amyloid precursor protein immunoreactive cells in the white matter which suggests acute axonal damage. In contrast, Iba-1 staining for macrophages or microglia was not different from control post-blast. Blast exposure altered the expression of over 5786 genes in the brain which occurred mostly at day 1 and day 4 post-blast. These genes were narrowed down to 10 overlapping genes after time-course evaluation and functional analyses. These genes pointed toward signs of repair at day 4 and day 7 post-blast. Our findings suggest that the BOP levels in the study resulted in mild cellular injury to the brain as evidenced by acute neuronal, cerebrovascular, and white matter perturbations that showed signs of resolution. It is unclear whether these perturbations exist at a milder level or normalize completely and will need more investigation. Specific changes in gene expression may be further evaluated to understand the mechanism of blast-induced neurotrauma. PMID

  17. Three patients with hemophagocytic syndrome who developed acute organic brain syndrome.

    PubMed

    Shinno, Hideto; Hikasa, Satoshi; Matsuoka, Tatsuo; Fujita, Hidekazu; Yamamoto, Osamu; Takebayashi, Minoru; Uchida, Youzou; Nishiura, Tetsuo; Horiguchi, Jun

    2006-01-01

    We describe three patients with hemophagocytic syndrome (HPS) who developed acute organic brain syndrome. All three presented with high-grade fever and twilight state, and were admitted to our hospital. After admission, delirium developed in all three. As delirium improved, various other psychiatric symptoms, including hallucinations, agitation, hypoactivity, affective lability and insomnia, were noted. When treated with steroid hormones, immunoglobulin and neuroleptics, all patients demonstrated improvement in their psychiatric symptoms, as well as in their general condition and laboratory findings. Ultimately, they all recovered and were discharged. It needs to be noted that organic brain syndrome might be observed at the onset of HPS. Consequently, early diagnosis and treatment for psychiatric symptoms, as well as for HPS, are crucial.

  18. The continuum of spreading depolarizations in acute cortical lesion development: Examining Leão’s legacy

    PubMed Central

    Shuttleworth, C William; Kirov, Sergei A; Ayata, Cenk; Hinzman, Jason M; Foreman, Brandon; Andrew, R David; Boutelle, Martyn G; Brennan, KC; Carlson, Andrew P; Dahlem, Markus A; Drenckhahn, Christoph; Dohmen, Christian; Fabricius, Martin; Farkas, Eszter; Feuerstein, Delphine; Graf, Rudolf; Helbok, Raimund; Lauritzen, Martin; Major, Sebastian; Oliveira-Ferreira, Ana I; Richter, Frank; Rosenthal, Eric S; Sakowitz, Oliver W; Sánchez-Porras, Renán; Santos, Edgar; Schöll, Michael; Strong, Anthony J; Urbach, Anja; Westover, M Brandon; Winkler, Maren KL; Witte, Otto W; Woitzik, Johannes; Dreier, Jens P

    2016-01-01

    A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão’s historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum of spreading mass depolarizations, a concept that is central to understanding their pathologic effects. Within minutes of acute severe ischemia, the onset of persistent depolarization triggers the breakdown of ion homeostasis and development of cytotoxic edema. These persistent changes are diagnosed as diffusion restriction in magnetic resonance imaging and define the ischemic core. In delayed lesion growth, transient spreading depolarizations arise spontaneously in the ischemic penumbra and induce further persistent depolarization and excitotoxic damage, progressively expanding the ischemic core. The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion development. These pathophysiologic concepts establish a working hypothesis for translation to human disease, where complex patterns of depolarizations are observed in acute brain injury and appear to mediate and signal ongoing secondary damage. PMID:27328690

  19. Body knowledge in brain-damaged children: a double-dissociation in self and other's body processing.

    PubMed

    Frassinetti, Francesca; Fiori, Simona; D'Angelo, Valentina; Magnani, Barbara; Guzzetta, Andrea; Brizzolara, Daniela; Cioni, Giovanni

    2012-01-01

    Bodies are important element for self-recognition. In this respect, in adults it has been recently shown a self vs other advantage when small parts of the subjects' body are visible. This advantage is lost following a right brain lesion underlying a role of the right hemisphere in self body-parts processing. In order to investigate the bodily-self processing in children and the development of its neuronal bases, 57 typically developing healthy subjects and 17 subjects with unilateral brain damage (5 right and 12 left sided), aged 4-17 years, were submitted to a matching-to-sample task. In this task, three stimuli vertically aligned were simultaneously presented at the centre of the computer screen. Subjects were required which of two stimuli (the upper or the lower one) matched the central target stimulus, half stimuli representing self and half stimuli representing other people's body-parts and face-parts. The results showed that corporeal self recognition is present since at least 4 years of age and that self and others' body parts processing are different and sustained by separate cerebral substrates. Indeed, a double dissociation was found: right brain damaged patients were impaired in self but not in other people's body parts, showing a self-disadvantage, whereas left brain damaged patients were impaired in others' but not in self body parts processing. Finally, since the double dissociation self/other was found for body-parts but not for face parts, the corporal self seems to be dissociated for body and face-parts. This opens the possibility of independent and lateralized functional modules for the processing of self and other body parts during development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Prominent hypointense veins on susceptibility weighted image in the cat brain with acute infarction: DWI, SWI, and PWI.

    PubMed

    Kim, Yong-Woo; Kim, Hak Jin; Choi, Seon Hee; Kim, Dong Chan

    2014-10-01

    The multiple prominent hypointense veins on susceptibility-weighted imaging (SWI) have been found in the ischemic territory of patients with acute ischemic stroke. Venous side is the unknown area in the hemodynamics of brain infarction. To evaluate the venous aspect in acute brain infarction through an animal study. The acute infarction in cat brains was induced with a bolus infusion of 0.25 mL of triolein through one side of the common carotid artery. The magnetic resonance (MR) images, including diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) map, SW, and perfusion-weighted (PWI) images, were obtained serially at 2 h (n = 17), 1 day (n = 11), and 4 days (n = 4) after triolein infusion. The obtained MR images were evaluated qualitatively and quantitatively. For qualitative assessment, the signal intensity of the serial MR images was evaluated. The presence or absence and the location with serial changes of infarction were identified on DWI and ADC map images. The presence or absence of prominent hypointense veins and the serial changes of cortical veins were also evaluated on SWI. Quantitative assessment was performed by comparing the relative cerebral blood volume (rCBV), cerebral blood flow (rCBF), and mean transit times (MTT) of the lesions with those of the contralateral normal side calculated on PWI. The serial changes of rCBV, rCBF, and MTT ratio were also evaluated. Acute infarction in the first and second medial gyrus of lesion hemisphere was found by qualitative evaluation of DWI and ADC map images. On the serial evaluation of SWI, the cortical veins of cat brain with infarction were obscured at 2 h and then re-appeared at 1 day. The hemorrhage transformation and prominent hypointense veins were seen at 4 days on SWI. The quantitative evaluation revealed increased MTT ratios and decreased rCBV and rCBF ratios on PWIs in the acute infarction of cat brain. The prominent hypointense veins on SWI were seen in the half of the acute

  1. Dynamical Signatures of Structural Connectivity Damage to a Model of the Brain Posed at Criticality.

    PubMed

    Haimovici, Ariel; Balenzuela, Pablo; Tagliazucchi, Enzo

    2016-12-01

    Synchronization of brain activity fluctuations is believed to represent communication between spatially distant neural processes. These interareal functional interactions develop in the background of a complex network of axonal connections linking cortical and subcortical neurons, termed the human "structural connectome." Theoretical considerations and experimental evidence support the view that the human brain can be modeled as a system operating at a critical point between ordered (subcritical) and disordered (supercritical) phases. Here, we explore the hypothesis that pathologies resulting from brain injury of different etiologies are related to this model of a critical brain. For this purpose, we investigate how damage to the integrity of the structural connectome impacts on the signatures of critical dynamics. Adopting a hybrid modeling approach combining an empirical weighted network of human structural connections with a conceptual model of critical dynamics, we show that lesions located at highly transited connections progressively displace the model toward the subcritical regime. The topological properties of the nodes and links are of less importance when considered independently of their weight in the network. We observe that damage to midline hubs such as the middle and posterior cingulate cortex is most crucial for the disruption of criticality in the model. However, a similar effect can be achieved by targeting less transited nodes and links whose connection weights add up to an equivalent amount. This implies that brain pathology does not necessarily arise due to insult targeted at well-connected areas and that intersubject variability could obscure lesions located at nonhub regions. Finally, we discuss the predictions of our model in the context of clinical studies of traumatic brain injury and neurodegenerative disorders.

  2. Restoration of stressor-induced calcium dysregulation and autophagy inhibition by polyphenol-rich acai (Euterpe sps.) fruit pulp extracts in rodent brain cells in vitro

    USDA-ARS?s Scientific Manuscript database

    Oxidative damage to lipids, proteins and nucleic acids in brain often causes progressive neuronal degeneration and death which are the focal traits of chronic and acute pathologies in the brain, including those involving cognitive decline. It has been postulated that at least part of the loss of cog...

  3. Isolated brain stem lesion in children: is it acute disseminated encephalomyelitis or not?

    PubMed

    Alper, G; Sreedher, G; Zuccoli, G

    2013-01-01

    Isolated brain stem lesions presenting with acute neurologic findings create a major diagnostic dilemma in children. Although the brain stem is frequently involved in ADEM, solitary brain stem lesions are unusual. We performed a retrospective review in 6 children who presented with an inflammatory lesion confined to the brain stem. Two children were diagnosed with connective tissue disorder, CNS lupus, and localized scleroderma. The etiology could not be determined in 1, and clinical features suggested monophasic demyelination in 3. In these 3 children, initial lesions demonstrated vasogenic edema; all showed dramatic response to high-dose corticosteroids and made a full clinical recovery. Follow-up MRI showed complete resolution of lesions, and none had relapses at >2 years of follow-up. In retrospect, these cases are best regarded as a localized form of ADEM. We conclude that though ADEM is typically a disseminated disease with multifocal lesions, it rarely presents with monofocal demyelination confined to the brain stem.

  4. Early metabolic crisis-related brain atrophy and cognition in traumatic brain injury.

    PubMed

    Wright, Matthew J; McArthur, David L; Alger, Jeffry R; Van Horn, Jack; Irimia, Andrei; Filippou, Maria; Glenn, Thomas C; Hovda, David A; Vespa, Paul

    2013-09-01

    Traumatic brain injury often results in acute metabolic crisis. We recently demonstrated that this is associated with chronic brain atrophy, which is most prominent in the frontal and temporal lobes. Interestingly, the neuropsychological profile of traumatic brain injury is often characterized as 'frontal-temporal' in nature, suggesting a possible link between acute metabolic crisis-related brain atrophy and neurocognitive impairment in this population. While focal lesions and diffuse axonal injury have a well-established role in the neuropsychological deficits observed following traumatic brain injury, no studies to date have examined the possible contribution of acute metabolic crisis-related atrophy in the neuropsychological sequelae of traumatic brain injury. In the current study we employed positron emission tomography, magnetic resonance imaging, and neuropsychological assessments to ascertain the relationship between acute metabolic crisis-related brain atrophy and neurocognitive outcome in a sample of 14 right-handed traumatic brain injury survivors. We found that acute metabolic crisis-related atrophy in the frontal and temporal lobes was associated with poorer attention, executive functioning, and psychomotor abilities at 12 months post-injury. Furthermore, participants with gross frontal and/or temporal lobe atrophy exhibited numerous clinically significant neuropsychological deficits in contrast to participants with other patterns of brain atrophy. Our findings suggest that interventions that reduce acute metabolic crisis may lead to improved functional outcomes for traumatic brain injury survivors.

  5. Oxidative damage and brain concentrations of free amino acid in chicks exposed to high ambient temperature.

    PubMed

    Chowdhury, Vishwajit S; Tomonaga, Shozo; Ikegami, Taro; Erwan, Edi; Ito, Kentaro; Cockrem, John F; Furuse, Mitsuhiro

    2014-03-01

    High ambient temperatures (HT) reduce food intake and body weight in young chickens, and HT can cause increased expression of hypothalamic neuropeptides. The mechanisms by which HT act, and the effects of HT on cellular homeostasis in the brain, are however not well understood. In the current study lipid peroxidation and amino acid metabolism were measured in the brains of 14 d old chicks exposed to HT (35 °C for 24- or 48-h) or to control thermoneutral temperature (CT; 30 °C). Malondialdehyde (MDA) was measured in the brain to determine the degree of oxidative damage. HT increased body temperature and reduced food intake and body weight gain. HT also increased diencephalic oxidative damage after 48 h, and altered some free amino acid concentrations in the diencephalon. Diencephalic MDA concentrations were increased by HT and time, with the effect of HT more prominent with increasing time. HT altered cystathionine, serine, tyrosine and isoleucine concentrations. Cystathionine was lower in HT birds compared with CT birds at 24h, whilst serine, tyrosine and isoleucine were higher at 48 h in HT birds. An increase in oxidative damage and alterations in amino acid concentrations in the diencephalon may contribute to the physiological, behavioral and thermoregulatory responses of heat-exposed chicks. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Acutely damaged axons are remyelinated in multiple sclerosis and experimental models of demyelination.

    PubMed

    Schultz, Verena; van der Meer, Franziska; Wrzos, Claudia; Scheidt, Uta; Bahn, Erik; Stadelmann, Christine; Brück, Wolfgang; Junker, Andreas

    2017-08-01

    Remyelination is in the center of new therapies for the treatment of multiple sclerosis to resolve and improve disease symptoms and protect axons from further damage. Although remyelination is considered beneficial in the long term, it is not known, whether this is also the case early in lesion formation. Additionally, the precise timing of acute axonal damage and remyelination has not been assessed so far. To shed light onto the interrelation between axons and the myelin sheath during de- and remyelination, we employed cuprizone- and focal lysolecithin-induced demyelination and performed time course experiments assessing the evolution of early and late stage remyelination and axonal damage. We observed damaged axons with signs of remyelination after cuprizone diet cessation and lysolecithin injection. Similar observations were made in early multiple sclerosis lesions. To assess the correlation of remyelination and axonal damage in multiple sclerosis lesions, we took advantage of a cohort of patients with early and late stage remyelinated lesions and assessed the number of APP- and SMI32- positive damaged axons and the density of SMI31-positive and silver impregnated preserved axons. Early de- and remyelinating lesions did not differ with respect to axonal density and axonal damage, but we observed a lower axonal density in late stage demyelinated multiple sclerosis lesions than in remyelinated multiple sclerosis lesions. Our findings suggest that remyelination may not only be protective over a long period of time, but may play an important role in the immediate axonal recuperation after a demyelinating insult. © 2017 The Authors GLIA Published by Wiley Periodicals, Inc.

  7. Damage to ventral and dorsal language pathways in acute aphasia

    PubMed Central

    Hartwigsen, Gesa; Kellmeyer, Philipp; Glauche, Volkmar; Mader, Irina; Klöppel, Stefan; Suchan, Julia; Karnath, Hans-Otto; Weiller, Cornelius; Saur, Dorothee

    2013-01-01

    Converging evidence from neuroimaging studies and computational modelling suggests an organization of language in a dual dorsal–ventral brain network: a dorsal stream connects temporoparietal with frontal premotor regions through the superior longitudinal and arcuate fasciculus and integrates sensorimotor processing, e.g. in repetition of speech. A ventral stream connects temporal and prefrontal regions via the extreme capsule and mediates meaning, e.g. in auditory comprehension. The aim of our study was to test, in a large sample of 100 aphasic stroke patients, how well acute impairments of repetition and comprehension correlate with lesions of either the dorsal or ventral stream. We combined voxelwise lesion-behaviour mapping with the dorsal and ventral white matter fibre tracts determined by probabilistic fibre tracking in our previous study in healthy subjects. We found that repetition impairments were mainly associated with lesions located in the posterior temporoparietal region with a statistical lesion maximum in the periventricular white matter in projection of the dorsal superior longitudinal and arcuate fasciculus. In contrast, lesions associated with comprehension deficits were found more ventral-anterior in the temporoprefrontal region with a statistical lesion maximum between the insular cortex and the putamen in projection of the ventral extreme capsule. Individual lesion overlap with the dorsal fibre tract showed a significant negative correlation with repetition performance, whereas lesion overlap with the ventral fibre tract revealed a significant negative correlation with comprehension performance. To summarize, our results from patients with acute stroke lesions support the claim that language is organized along two segregated dorsal–ventral streams. Particularly, this is the first lesion study demonstrating that task performance on auditory comprehension measures requires an interaction between temporal and prefrontal brain regions via the

  8. Iron porphyrinate Fe(TPPS) reduces brain cell damage in rats intrastriatally lesioned by quinolinate.

    PubMed

    González-Cortés, Carolina; Salinas-Lara, Citlaltepetl; Gómez-López, Marcos Artemio; Tena-Suck, Martha Lilia; Pérez-De La Cruz, Verónica; Rembao-Bojórquez, Daniel; Pedraza-Chaverrí, José; Gómez-Ruiz, Celedonio; Galván-Arzate, Sonia; Ali, Syed F; Santamaría, Abel

    2008-01-01

    It has been recently demonstrated that the reactive nitrogen species (RNS) peroxynitrite (ONOO(-)) is involved in the neurotoxic pattern produced by quinolinic acid in the rat brain [V. Pérez-De La Cruz, C. González-Cortés, S. Galván-Arzate, O.N. Medina-Campos, F. Pérez-Severiano, S.F. Ali, J. Pedraza-Chaverrí, A. Santamaría, Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III), Neuroscience 135 (2005) 463-474.]. The aim of this work was to investigate whether ONOO(-) can also be responsible for morphological alterations and inflammatory events in the same paradigm. For this purpose, we evaluated the effect of a pre-treatment with the iron porphyrinate Fe(TPPS), a well-known ONOO(-) decomposition catalyst (10 mg/kg, i.p., 120 min before lesion), on the quinolinate-induced striatal cell damage and immunoreactivities to glial-fibrilar acidic protein (GFAP), interleukin 6 (IL-6) and inducible nitric oxide synthase (iNOS), one and seven days after the intrastriatal infusion of quinolinate (240 nmol/microl) to rats. The striatal tissue from animals lesioned by quinolinate showed a significant degree of damage and enhanced immunoreactivities to GFAP, IL-6 and iNOS, both at 1 and 7 days post-lesion. Pre-treatment of rats with Fe(TPPS) significantly attenuated or prevented all these markers at both post-lesion times tested, except for GFAP immunoreactivity at 7 days post-lesion and iNOS immunoreactivity at 1 day post-lesion. Altogether, our results suggest that ONOO(-) is actively participating in triggering inflammatory events and morphological alterations in the toxic model produced by quinolinate, since the use of agents affecting its formation, such as Fe(TPPS), are effective experimental tools to reduce the brain lesions associated to excitotoxic and oxidative damage.

  9. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration.

    PubMed

    Calderón-Garcidueñas, Lilian; Maronpot, Robert R; Torres-Jardon, Ricardo; Henríquez-Roldán, Carlos; Schoonhoven, Robert; Acuña-Ayala, Hilda; Villarreal-Calderón, Anna; Nakamura, Jun; Fernando, Reshan; Reed, William; Azzarelli, Biagio; Swenberg, James A

    2003-01-01

    Acute, subchronic, or chronic exposures to particulate matter (PM) and pollutant gases affect people in urban areas and those exposed to fires, disasters, and wars. Respiratory tract inflammation, production of mediators of inflammation capable of reaching the brain, systemic circulation of PM, and disruption of the nasal respiratory and olfactory barriers are likely in these populations. DNA damage is crucial in aging and in age-associated diseases such as Alzheimer's disease. We evaluated apurinic/apyrimidinic (AP) sites in nasal and brain genomic DNA, and explored by immunohistochemistry the expression of nuclear factor NFkappaB p65, inducible nitric oxide synthase (iNOS), cyclo-oxygenase 2 (COX2), metallothionein I and II, apolipoprotein E, amyloid precursor protein (APP), and beta-amyloid(1-42) in healthy dogs naturally exposed to urban pollution in Mexico City. Nickel (Ni) and vanadium (V) were measured by inductively coupled plasma mass spectrometry (ICP-MS). Forty mongrel dogs, ages 7 days-10 years were studied (14 controls from Tlaxcala and 26 exposed to urban pollution in South West Metropolitan Mexico City (SWMMC)). Nasal respiratory and olfactory epithelium were found to be early pollutant targets. Olfactory bulb and hippocampal AP sites were significantly higher in exposed than in control age matched animals. Ni and V were present in a gradient from olfactory mucosa > olfactory bulb > frontal cortex. Exposed dogs had (a) nuclear neuronal NFkappaB p65, (b) endothelial, glial and neuronal iNOS, (c) endothelial and glial COX2, (d) ApoE in neuronal, glial and vascular cells, and (e) APP and beta amyloid(1-42) in neurons, diffuse plaques (the earliest at age 11 months), and in subarachnoid blood vessels. Increased AP sites and the inflammatory and stress protein brain responses were early and significant in dogs exposed to urban pollution. Oil combustion PM-associated metals Ni and V were detected in the brain. There was an acceleration of Alzheimer

  10. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain.

    PubMed

    Nonato, L F; Rocha-Vieira, E; Tossige-Gomes, R; Soares, A A; Soares, B A; Freitas, D A; Oliveira, M X; Mendonça, V A; Lacerda, A C; Massensini, A R; Leite, H R

    2016-09-29

    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain.

  11. Brain dopamine neurone 'damage': methamphetamine users vs. Parkinson's disease - a critical assessment of the evidence.

    PubMed

    Kish, Stephen J; Boileau, Isabelle; Callaghan, Russell C; Tong, Junchao

    2017-01-01

    The objective of this review is to evaluate the evidence that recreational methamphetamine exposure might damage dopamine neurones in human brain, as predicted by experimental animal findings. Brain dopamine marker data in methamphetamine users can now be compared with those in Parkinson's disease, for which the Oleh Hornykiewicz discovery in Vienna of a brain dopamine deficiency is established. Whereas all examined striatal (caudate and putamen) dopamine neuronal markers are decreased in Parkinson's disease, levels of only some (dopamine, dopamine transporter) but not others (dopamine metabolites, synthetic enzymes, vesicular monoamine transporter 2) are below normal in methamphetamine users. This suggests that loss of dopamine neurones might not be characteristic of methamphetamine exposure in at least some human drug users. In methamphetamine users, dopamine loss was more marked in caudate than in putamen, whereas in Parkinson's disease, the putamen is distinctly more affected. Substantia nigra loss of dopamine-containing cell bodies is characteristic of Parkinson's disease, but similar neuropathological studies have yet to be conducted in methamphetamine users. Similarly, it is uncertain whether brain gliosis, a common feature of brain damage, occurs after methamphetamine exposure in humans. Preliminary epidemiological findings suggest that methamphetamine use might increase risk of subsequent development of Parkinson's disease. We conclude that the available literature is insufficient to indicate that recreational methamphetamine exposure likely causes loss of dopamine neurones in humans but does suggest presence of a striatal dopamine deficiency that, in principle, could be corrected by dopamine substitution medication if safety and subject selection considerations can be resolved. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Mild traumatic brain injury in children: management practices in the acute care setting.

    PubMed

    Kool, Bridget; King, Vivienne; Chelimo, Carol; Dalziel, Stuart; Shepherd, Michael; Neutze, Jocelyn; Chambers, Nikki; Wells, Susan

    2014-08-01

    Accurate diagnosis, treatment and follow up of children suffering mild traumatic brain injury (MTBI) is important as post-concussive symptoms and long-term disability might occur. This research explored the decisions clinicians make in their assessment and management of children with MTBI in acute care settings, and identified barriers and enablers to the delivery of best-practice care. A purposeful sample of 29 clinicians employed in two metropolitan paediatric EDs and one Urgent Care clinic was surveyed using a vignette-based questionnaire that also included domains of guideline awareness, attitudes to MTBI care, use of clinical decision support systems, and knowledge and skills for practising evidence-based healthcare. Overall, the evaluation and management of children presenting acutely with MTBI generally followed best-practice guidelines, particularly in relation to identifying intracranial injuries that might require surgical intervention, observation for potential deterioration, adequate pain management and the provision of written head injury advice on discharge. Larger variation emerged in regard to follow-up care and referral pathways. Potential barriers to best- practice were lack of guideline awareness, attitudes to MTBI, and lack of time or other priorities. Opportunities exist to improve care for children who present in acute care settings following mild traumatic brain injury. These include having up-to-date guidelines that are consistent across acute care settings; providing clearer pathways for referral and follow up; targeting continuing medical education towards potential complications; and providing computerised decision support so that assessment and management are conducted systematically. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  13. Nicergoline enhances glutamate re-uptake and protects against brain damage in rat global brain ischemia.

    PubMed

    Asai, S; Zhao, H; Yamashita, A; Jike, T; Kunimatsu, T; Nagata, T; Kohno, T; Ishikawa, K

    1999-11-03

    Whereas a 2-3 degrees C decrease in intraischemic brain temperature can be neuroprotective, mild brain hyperthermia significantly worsens outcome. Our previous study suggested that an ischemic injury mechanism which is sensitive to temperature may not actually increase the extracellular glutamate concentration ([Glu](e)) during the intraischemic period, but rather impairs the Glu re-uptake system, which has been suggested to be involved in the reversed uptake of Glu. We speculated that enhancing Glu re-uptake, pharmacologically or hypothermically, may shorten exposure to high [Glu](e) in the postischemic period and thereby decrease its deleterious excitotoxic effect on neuronal cells. In the present study, rats treated with nicergoline (32 mg/kg, i.p.), an ergot alkaloid derivative, showed minimal inhibition of the [Glu](e) elevation which characteristically occurs during the 10-min intraischemic period, while Glu re-uptake was dramatically improved in the postischemic period, when severe transient global ischemia was caused by mild hyperthermia. Moreover, the nicergoline (32 mg/kg, i.p.) treated rats showed reduced cell death morphologically and clearly had a far lower mortality. The present study suggests that the development of therapeutic strategies aimed at inhibition or prevention of the reversed uptake of glutamate release during ischemia, i.e., activation of the glutamate uptake mechanism, is a promising approach to reduce neural damage occurring in response to brain ischemia.

  14. Brain damage in a large cohort of solvent abusers.

    PubMed

    Al-Hajri, Zahra; Del Bigio, Marc R

    2010-04-01

    The neuropathology of solvent inhalation consists of patchy myelin loss with white matter macrophages that contain granular inclusions. It has been described only in a small number of cases. We sought to characterize the abnormalities in greater detail. In a retrospective study from 1995 to 2009, we encountered 88 autopsy cases with documented history of solvent abuse by inhalation and 1 with industrial exposure. Among these are 6 fetuses and infants with maternal exposure, 23 children (12-17 years), and 60 adults (18-66 years). Available brain samples from 75 cases were stained with solochrome cyanein (to demonstrate myelin) and periodic acid-Schiff (PAS) (to highlight the inclusions). Forty brains of ethanol and/or illicit drug exposed individuals and ten cases of multiple sclerosis were examined as controls. We found that 16 cases (age 23-49, median 37 years) had well-established leukoencephalopathy with multifocal myelin loss and abundant macrophages that stain with PAS and which contain birefringent inclusions. Six cases (age 15-55, median 27 years) had early leukoencephalopathy with scattered macrophages but no obvious myelin changes. Clusters of PAS-staining but non-birefringent macrophages were seen in 2/10 cases of (active) multiple sclerosis and in none of the ethanol/drug exposed brains. Ultrastructurally, inclusions from solvent cases differed from multiple sclerosis cases. Although exposure to solvents is impossible to quantify, there appears to be a duration-dependent effect. Brain damage related to solvent abuse can begin within only a few years of the onset. In the context of substance abuse, the changes are relatively specific for solvent inhalation and do not appear to result from demyelination alone. Interaction with ethanol cannot be excluded as a compounding risk factor.

  15. Uric acid is released in the brain during seizure activity and increases severity of seizures in a mouse model for acute limbic seizures.

    PubMed

    Thyrion, Lisa; Raedt, Robrecht; Portelli, Jeanelle; Van Loo, Pieter; Wadman, Wytse J; Glorieux, Griet; Lambrecht, Bart N; Janssens, Sophie; Vonck, Kristl; Boon, Paul

    2016-03-01

    Recent evidence points at an important role of endogenous cell-damage induced pro-inflammatory molecules in the generation of epileptic seizures. Uric acid, under the form of monosodium urate crystals, has shown to have pro-inflammatory properties in the body, but less is known about its role in seizure generation. This study aimed to unravel the contribution of uric acid to seizure generation in a mouse model for acute limbic seizures. We measured extracellular levels of uric acid in the brain and modulated them using complementary pharmacological and genetic tools. Local extracellular uric acid levels increased three to four times during acute limbic seizures and peaked between 50 and 100 min after kainic acid infusion. Manipulating uric acid levels through administration of allopurinol or knock-out of urate oxidase significantly altered the number of generalized seizures, decreasing and increasing them by a twofold respectively. Taken together, our results consistently show that uric acid is released during limbic seizures and suggest that uric acid facilitates seizure generalization. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Brain Aquaporin-4 in Experimental Acute Liver Failure

    PubMed Central

    Rama Rao, Kakulavarapu V.; Jayakumar, Arumugam R.; Tong, Xiaoying; Curtis, Kevin M.; Norenberg, Michael D.

    2016-01-01

    Intracranial hypertension due to brain edema and associated astrocyte swelling is a potentially lethal complication of acute liver failure (ALF). Mechanisms of edema formation are not well understood but elevated levels of blood and brain ammonia and its byproduct glutamine have been implicated in this process. We examined mRNA and protein expression of the water channel protein aquaporin-4 (AQP4) in cerebral cortex in a rat model of ALF induced by the hepatotoxin thioacetamide. Rats with ALF showed increased AQP4 protein in the plasma membrane (PM). Total tissue levels of AQP4 protein and mRNA levels were not altered indicating that increased AQP4 is not transcriptionally mediated but is likely due to a conformational change in the protein, i.e. a more stable anchoring of AQP4 to the PM and/or interference with its degradation. By immunohistochemistry there was an increase in AQP4 immunoreactivity in the PM of perivascular astrocytes in ALF. Rats with ALF showed increased levels of α-syntrophin, a protein involved in the anchoring of AQP4 to perivascular astrocytic end-feet. Increased AQP4 and α-syntrophin levels were inhibited by L-histidine, an inhibitor of glutamine transport into mitochondria, suggesting a role for glutamine in the increase of PM levels of AQP4. These results indicate that increased AQP4 PM levels in perivascular astrocytic end-feet are likely critical to the development of brain edema in ALF. PMID:20720509

  17. Frequency of brain tissue donation for research after suicide.

    PubMed

    Longaray, Vanessa K; Padoan, Carolina S; Goi, Pedro D; da Fonseca, Rodrigo C; Vieira, Daniel C; Oliveira, Francine H de; Kapczinski, Flávio; Magalhães, Pedro V

    2017-01-01

    To describe the frequency of brain tissue donation for research purposes by families of individuals that committed suicide. All requests for brain tissue donation to a brain biorepository made to the families of individuals aged 18-60 years who had committed suicide between March 2014 and February 2016 were included. Cases presenting with brain damage due to acute trauma were excluded. Fifty-six cases of suicide were reported. Of these, 24 fulfilled the exclusion criteria, and 11 others were excluded because no next of kin was found to provide informed consent. Of the 21 remaining cases, brain tissue donation was authorized in nine (tissue fragments in seven and the entire organ in two). Donation of brain tissue from suicide cases for research purposes is feasible. The acceptance rate of 42.8% in our sample is in accordance with international data on such donations, and similar to rates reported for neurodegenerative diseases.

  18. Increased miR-21-3p in injured brain microvascular endothelial cells following traumatic brain injury aggravates blood-brain barrier damage by promoting cellular apoptosis and inflammation through targeting MAT2B.

    PubMed

    Ge, Xintong; Li, Wenzhu; Huang, Shan; Yin, Zhenyu; Yang, Mengchen; Han, Zhenying; Han, Zhaoli; Chen, Fanglian; Wang, Haichen; Lei, Ping; Zhang, Jian-Ning

    2018-04-26

    Our recent papers have reported that increased miR-21-5p in brain following traumatic brain injury (TBI) could improve the neurological outcome through alleviating blood-brain barrier (BBB) damage. miR-21-3p is another mature miRNA derived from pre-miR-21 after Dicer Procession other than miR-21-5p. Its roles in various diseases, such as tumors and myocardial disease aroused great interest for research in recent years. To further explore the function and underlying mechanism of miR-21, especially miR-21-3p in regulating the pathological development of BBB damage after TBI, we designed this research and focused on studying the impact of miR-21-3p on apoptosis and inflammation in brain microvascular endothelial cells (BMVECs), the major cellular component of BBB. We performed controlled cortical impact on mouse brain, and employed the oxygen glucose deprivation/reoxygenation (OGD)-treated bEnd.3 cells injury model. We found that miR-21-3p level in BMVECs from injured cerebral cortex of controlled cortical impact (CCI) mice, and bEnd.3 cells with OGD treatment were both increased after injury. For in-vitro experiments, downregulation on miR-21-3p level by transfecting miR-21-3p antagomir in cultured cells alleviated OGD-induced BBB damage, characterized by decreased BBB leakage and increased expression of tight junction proteins. Besides, miR-21-3p antagomir could suppress cell death by anti-apoptosis, and control inflammatory response by inhibiting the activity of NF-κB signaling. Using luciferase reporter assay and a MAT2B-silenced shRNA vector, we further proved that miR-21-3p exerted above functions through targeting MAT2B. In addition, in-vivo experiments also confirmed that intracerebroventricular infusion of miR-21-3p antagomir could alleviate BBB leakage after TBI. It reduced Evans Blue extravasation and promoted the expression of tight junction proteins, thus contributed to improve the neurological outcome of CCI mice. Taken together, increased miR-21-3p in

  19. Parallel recovery of consciousness and sleep in acute traumatic brain injury.

    PubMed

    Duclos, Catherine; Dumont, Marie; Arbour, Caroline; Paquet, Jean; Blais, Hélène; Menon, David K; De Beaumont, Louis; Bernard, Francis; Gosselin, Nadia

    2017-01-17

    To investigate whether the progressive recuperation of consciousness was associated with the reconsolidation of sleep and wake states in hospitalized patients with acute traumatic brain injury (TBI). This study comprised 30 hospitalized patients (age 29.1 ± 13.5 years) in the acute phase of moderate or severe TBI. Testing started 21.0 ± 13.7 days postinjury. Consciousness level and cognitive functioning were assessed daily with the Rancho Los Amigos scale of cognitive functioning (RLA). Sleep and wake cycle characteristics were estimated with continuous wrist actigraphy. Mixed model analyses were performed on 233 days with the RLA (fixed effect) and sleep-wake variables (random effects). Linear contrast analyses were performed in order to verify if consolidation of the sleep and wake states improved linearly with increasing RLA score. Associations were found between scores on the consciousness/cognitive functioning scale and measures of sleep-wake cycle consolidation (p < 0.001), nighttime sleep duration (p = 0.018), and nighttime fragmentation index (p < 0.001). These associations showed strong linear relationships (p < 0.01 for all), revealing that consciousness and cognition improved in parallel with sleep-wake quality. Consolidated 24-hour sleep-wake cycle occurred when patients were able to give context-appropriate, goal-directed responses. Our results showed that when the brain has not sufficiently recovered a certain level of consciousness, it is also unable to generate a 24-hour sleep-wake cycle and consolidated nighttime sleep. This study contributes to elucidating the pathophysiology of severe sleep-wake cycle alterations in the acute phase of moderate to severe TBI. © 2016 American Academy of Neurology.

  20. The role of angiogenesis in damage and recovery from ischemic stroke.

    PubMed

    Arenillas, Juan F; Sobrino, Tomás; Castillo, José; Dávalos, Antoni

    2007-06-01

    Ischemic stroke is burdened with a high morbidity and mortality in our society. However, there are few effective and largely available therapies for this devastating disease. In additon to advancing acute reperfusion therapies, there is a need to develop treatments aimed to promote repair and regeneration of brain tissue damaged by ischemia (neurorecovery). Therapeutic angiogenesis and vasculogenesis represent novel approaches of regenerative medicine that may help in the cure of patients with acute ischemic stroke. Translation of our knowledge about these processes from the bench to bedside is still underway. Although angiogenesis (the sprouting of new blood vessels from pre-existing vascular structures) is likely to contribute to neurorepair, the finality of the angiogenic response in acute ischemic stroke has not been fully elucidated. The first therapeutic approach to angiogenesis after ischemic stroke would be the modulation of the endogenous angiogenic response. In this setting, early instauration of physical activity, statins, and peroxisome proliferator-activated receptor-gamma agonists may enhance angiogenesis and neuroregeneration. Gene therapy with vascular growth factors has been successfully tested in patients affected by chronic myocardial and peripheral ischemia. Regarding brain ischemia, experiments in animal models have shown that the effect of these growth factors is critically affected by the dosage, route of delivery, and time of administration in relation to stroke onset. In addition, the optimal angiogenic substance is unknown. Finally, vectors for gene transfer should be further optimized. Therapeutic vasculogenesis consists of the administration of exogenous endothelial progenitor cells in order to enhance brain repair processes. Endothelial progenitor cells may be recruited in response to cerebral ischemia and participate in reparative vasculogenesis after acute ischemic stroke. Further research is needed to clarify their role and

  1. Distinct time courses of secondary brain damage in the hippocampus following brain concussion and contusion in rats.

    PubMed

    Nakajima, Yuko; Horiuchi, Yutaka; Kamata, Hiroshi; Yukawa, Masayoshi; Kuwabara, Masato; Tsubokawa, Takashi

    2010-07-01

    Secondary brain damage (SBD) is caused by apoptosis after traumatic brain injury that is classified into concussion and contusion. Brain concussion is temporary unconsciousness or confusion caused by a blow on the head without pathological changes, and contusion is a brain injury with hemorrhage and broad extravasations. In this study, we investigated the time-dependent changes of apoptosis in hippocampus after brain concussion and contusion using rat models. We generated the concussion by dropping a plumb on the dura from a height of 3.5 cm and the contusion by cauterizing the cerebral cortex. SBD was evaluated in the hippocampus by histopathological analyses and measuring caspase-3 activity that induces apoptotic neuronal cell death. The frequency of abnormal neuronal cells with vacuolation or nuclear condensation, or those with DNA fragmentation was remarkably increased at 1 hr after concussion (about 30% for each abnormality) from the pre-injury level (0%) and reached the highest level (about 50% for each) by 48 hrs, whereas the frequency of abnormal neuronal cells was increased at 1 hr after contusion (about 10%) and reached the highest level (about 40%) by 48 hrs. In parallel, caspase-3 activity was increased sevenfold in the hippocampus at 1 hr after concussion and returned to the pre-injury level by 48 hrs, whereas after contusion, caspase-3 activity was continuously increased to the highest level at 48 hrs (fivefold). Thus, anti-apoptotic-cell-death treatment to prevent SBD must be performed by 1 hr after concussion and at latest by 48 hrs after contusion.

  2. Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion.

    PubMed

    Qu, Jie; Zhou, Qiong; Du, Ying; Zhang, Wei; Bai, Miao; Zhang, Zhuo; Xi, Ye; Li, Zhuyi; Miao, Jianting

    2014-08-01

    Chronic cerebral hypoperfusion is a critical causative factor for the development of cognitive decline and dementia in the elderly, which involves many pathophysiological processes. Consequently, inhibition of several pathophysiological pathways is an attractive therapeutic strategy for this disorder. Rutin, a biologically active flavonoid, protects the brain against several insults through its antioxidant and anti-inflammatory properties, but its effect on cognitive deficits and brain damage caused by chronic cerebral hypoperfusion remains unknown. Here, we investigated the neuroprotective effect of rutin on cognitive impairments and the potential mechanisms underlying its action in rats with chronic cerebral hypoperfusion. We used Sprague-Dawley rats with permanent bilateral common carotid artery occlusion (BCCAO), a well-established model of chronic cerebral hypoperfusion. After rutin treatment for 12 weeks, the neuroprotective effect of rutin in rats was evaluated by behavioural tests, biochemical and histopathological analyses. BCCAO rats showed marked cognitive deficits, which were improved by rutin treatment. Moreover, BCCAO rats exhibited central cholinergic dysfunction, oxidative damage, inflammatory responses and neuronal damage in the cerebral cortex and hippocampus, compared with sham-operated rats. All these effects were significantly alleviated by treatment with rutin. Our results provide new insights into the pharmacological actions of rutin and suggest that rutin has multi-targeted therapeutical potential on cognitive deficits associated with conditions with chronic cerebral hypoperfusion such as vascular dementia and Alzheimer's disease. © 2014 The British Pharmacological Society.

  3. Hand rehabilitation using MIDI keyboard playing in adolescents with brain damage: a preliminary study.

    PubMed

    Chong, Hyun Ju; Cho, Sung-Rae; Kim, Soo Ji

    2014-01-01

    As a sequential, programmed movement of fingers, keyboard playing is a promising technique for inducing execution and a high level of coordination during finger movements. Also, keyboard playing can be physically and emotionally rewarding for adolescents in rehabilitation settings and thereby motivate continued involvement in treatment. The purpose of this study is to evaluate the effects of keyboard playing using Musical Instrument Digital Interface (MIDI) on finger movement for adolescents with brain damage. Eight adolescents with brain damage, ages 9 to 18 years (M = 13 years, SD = 2.78), in physical rehabilitation settings participated in this study. Measurements included MIDI keyboard playing for pressing force of the fingers and hand function tests (Grip and Pinch Power Test, Box and Block Test of Manual Dexterity [BBT], and the Jebsen Taylor Hand Function Test). Results showed increased velocity of all fingers on the MIDI-based test, and statistical significance was found in the velocity of F2 (index finger), F3 (middle finger), and F5 (little finger) between pre- and post-training tests. Correlation analysis between the pressing force of the finger and hand function tests showed a strong positive correlation between the measure of grip power and the pressing force of F2 and F5 on the Grip and Pinch Strength Test. All fingers showed strong correlation between MIDI results and BBT. For the Jebsen Taylor Hand Function Test, only the moving light objects task at post-training yielded strong correlation with MIDI results of all fingers. The results support using keyboard playing for hand rehabilitation, especially in the pressing force of individual finger sequential movements. Further investigation is needed to define the feasibility of the MIDI program for valid hand rehabilitation for people with brain damage.

  4. Alterations in blood-brain barrier function following acute hypertension: comparison of the blood-to-brain transfer of horseradish peroxidase with that of alpha-aminisobutyric acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellison, M.D.B.

    The blood-brain barrier (BBB) selectively restricts the blood-to-brain passage of many solutes owing to unique properties of cerebrovascular endothelial cell membranes. To date, experimental study of the BBB has been accomplished primarily through the use of two different methodological approaches. Morphological studies have mostly employed large molecular weight (MW) tracers to detect morphological alterations underlying increased permeability. Physiological studies, employing smaller, more physiologic tracers have successfully described, quantitatively, certain functional aspects of blood-to-brain transfer. The current work attempts to merge these two approaches and to consider barrier function/dysfunction from both a morphological and a functional perspective. Specifically, the study comparesmore » in rats, following acute hypertension, the cerebrovascular passage of /sup 14/C-alpha-aminoisobutyric acid (AIB) and that of horseradish peroxidase (HRP). The blood-to-brain passage of AIB and HRP were compared following acute hypertension, with regard to both the distributions of the tracer extravasation patterns and the magnitude of tracer extravasation. The results of this study suggest that traditional morphological barrier studies alone do not reveal all aspects of altered barrier status and that multiple mechanisms underlying increased BBB permeability may operate simultaneously during BBB dysfunction.« less

  5. The 2100MHz radiofrequency radiation of a 3G-mobile phone and the DNA oxidative damage in brain.

    PubMed

    Sahin, Duygu; Ozgur, Elcin; Guler, Goknur; Tomruk, Arın; Unlu, Ilhan; Sepici-Dinçel, Aylin; Seyhan, Nesrin

    2016-09-01

    We aimed to evaluate the effect of 2100MHz radiofrequency radiation emitted by a generator, simulating a 3G-mobile phone on the brain of rats during 10 and 40 days of exposure. The female rats were randomly divided into four groups. Group I; exposed to 3G modulated 2100MHz RFR signal for 6h/day, 5 consecutive days/wk for 2 weeks, group II; control 10 days, were kept in an inactive exposure set-up for 6h/day, 5 consecutive days/wk for 2 weeks, group III; exposed to 3G modulated 2100MHz RFR signal for 6h/day, 5 consecutive days/wk for 8 weeks and group IV; control 40 days, were kept in an inactive exposure set-up for 6h/day, 5 consecutive days/wk for 8 weeks. After the genomic DNA content of brain was extracted, oxidative DNA damage (8-hydroxy-2'deoxyguanosine, pg/mL) and malondialdehyde (MDA, nmoL/g tissue) levels were determined. Our main finding was the increased oxidative DNA damage to brain after 10 days of exposure with the decreased oxidative DNA damage following 40 days of exposure compared to their control groups. Besides decreased lipid peroxidation end product, MDA, was observed after 40 days of exposure. The measured decreased quantities of damage during the 40 days of exposure could be the means of adapted and increased DNA repair mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Use of the Progressive Figures Test in evaluating brain-damaged children, children with academic problems, and normal controls.

    PubMed

    Reitan, Ralph M; Wolfson, Deborah

    2004-03-01

    This study explores the use of the Progressive Figures Test as an instrument for broad initial screening of children in the 6- through 8-year age range with respect to the possible need for more definitive neuropsychological evaluation. Considering earlier results obtained in comparison of brain-damaged and control children [Clinical Neuropsychology: Current Applications, Hemisphere Publishing Corp., Washington, DC, 1974, p. 53; Proceedings of the Conference on Minimal Brain Dysfunction, New York Academy of Sciences, New York, 1973, p. 65], the Progressive Figures Test seemed potentially useful as a first step in determining whether a comprehensive neuropsychological evaluation is indicated. In this investigation, three groups were studied: (1) children with definitive evidence of brain damage or disease who, when compared with normal controls, help to establish the limits of neuropsychological functioning, (2) a group of children who had normal neurological examinations but also had academic problems of significant concern to both parents and teachers, and (3) a normal control group. Statistically significant differences were present in comparing each pair of groups, with the brain-damaged children performing most poorly and the controls performing best. Score distributions for the three groups make it possible to identify a score-range that represented a borderline or "gray" area and to suggest a cutting score that identified children whose academic problems might have a neurological basis and for whom additional neuropsychological evaluation appeared to be indicated.

  7. Damage to Arousal-Promoting Brainstem Neurons with Traumatic Brain Injury.

    PubMed

    Valko, Philipp O; Gavrilov, Yuri V; Yamamoto, Mihoko; Noaín, Daniela; Reddy, Hasini; Haybaeck, Johannes; Weis, Serge; Baumann, Christian R; Scammell, Thomas E

    2016-06-01

    Coma and chronic sleepiness are common after traumatic brain injury (TBI). Here, we explored whether injury to arousal-promoting brainstem neurons occurs in patients with fatal TBI. Postmortem examination of 8 TBI patients and 10 controls. Compared to controls, TBI patients had 17% fewer serotonergic neurons in the dorsal raphe nucleus (effect size: 1.25), but the number of serotonergic neurons did not differ in the median raphe nucleus. TBI patients also had 29% fewer noradrenergic neurons in the locus coeruleus (effect size: 0.96). The number of cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT) was similar in TBI patients and controls. TBI injures arousal-promoting neurons of the mesopontine tegmentum, but this injury is less severe than previously observed in hypothalamic arousal-promoting neurons. Most likely, posttraumatic arousal disturbances are not primarily caused by damage to these brainstem neurons, but arise from an aggregate of injuries, including damage to hypothalamic arousal nuclei and disruption of other arousal-related circuitries. © 2016 Associated Professional Sleep Societies, LLC.

  8. Serum levels of S100B from jugular bulb as a biomarker of poor prognosis in patients with severe acute brain injury.

    PubMed

    Ballesteros, María A; Rubio-Lopez, María I; San Martín, María; Padilla, Ana; López-Hoyos, Marcos; Llorca, Javier; Miñambres, Eduardo

    2018-02-15

    To evaluate the correlation between protein S100B concentrations measured in the jugular bulb as well as at peripheral level and the prognostic usefulness of this marker. A prospective study of all patients admitted to the intensive care unit with acute brain damage was carried out. Peripheral and jugular bulb blood samples were collected upon admission and every 24h for three days. The endpoints were brain death diagnosis and the Glasgow Outcome Scale score after 6months. A total of 83 patients were included. Jugular protein S100B levels were greater than systemic levels upon admission and also after 24 and 72h (mean difference>0). Jugular protein S100B levels showed acceptable precision in predicting brain death both upon admission [AUC 0.67 (95% CI 0.53-0.80)] and after 48h [AUC 0.73 (95% CI 0.57-0.89)]. Similar results were obtained regarding the capacity of jugular protein S100B levels upon admission to predict an unfavourable outcome (AUC 0.69 (95% CI 0.56-0.79)). The gradient upon admission (jugular-peripheral levels) showed its capacity to predict the development of brain death [AUC 0.74 (95% CI 0.62-0.86)] and together with the Glasgow Coma Scale constituted the independent factors associated with the development of brain death. Regional protein S100B determinations are higher than systemic determinations, thus confirming the cerebral origin of protein S100B. The transcranial protein S100B gradient is correlated to the development of brain death. Copyright © 2017. Published by Elsevier B.V.

  9. Distribution of trans-resveratrol and its metabolites after acute or sustained administration in mouse heart, brain, and liver.

    PubMed

    Menet, Marie-Claude; Baron, Stephanie; Taghi, Meryam; Diestra, Remi; Dargère, Delphine; Laprévote, Olivier; Nivet-Antoine, Valérie; Beaudeux, Jean-Louis; Bédarida, Tatiana; Cottart, Charles-Henry

    2017-08-01

    Trans-resveratrol is widely studied for its potentially beneficial effects on numerous disorders. It is rapidly metabolized and its metabolites can exhibit biological activity. The present study aimed to investigate whether acute or sustained trans-resveratrol administration impacted on the distribution of trans-resveratrol and its metabolites in brain, heart, and liver. We used ultra-HPLC quadrupole-TOF (UHPLC-Q-TOF) in a full-scan mode to identify and assess large numbers of resveratrol metabolites. For acute intake, mice were overfed with a single dose of trans-resveratrol (150 mg/kg) and organs were collected after 30 and 60 min. For sustained intake, trans-resveratrol was given in the chow (0.04% w/w corresponding to 40 mg/kg/day), and plasma and the organs were collected after 3 months of this resveratrol diet. We found that trans-resveratrol-3-O-glucuronide and resveratrol-3-sulfate were the main metabolites found after acute intake, and free trans-resveratrol (in the brain and heart) and dihydroresveratrol derivatives were found after sustained administration CONCLUSIONS: Our results show notable differences between acute and sustained administration of trans-resveratrol and distribution of trans-resveratrol and its metabolites in mouse heart, brain, and liver. The results suggest a strategy for development of galenic forms of resveratrol. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Half brain irradiation in a murine model of breast cancer brain metastasis: magnetic resonance imaging and histological assessments of dose-response.

    PubMed

    Zarghami, Niloufar; Murrell, Donna H; Jensen, Michael D; Dick, Frederick A; Chambers, Ann F; Foster, Paula J; Wong, Eugene

    2018-06-01

    Brain metastasis is becoming increasingly prevalent in breast cancer due to improved extra-cranial disease control. With emerging availability of modern image-guided radiation platforms, mouse models of brain metastases and small animal magnetic resonance imaging (MRI), we examined brain metastases' responses from radiotherapy in the pre-clinical setting. In this study, we employed half brain irradiation to reduce inter-subject variability in metastases dose-response evaluations. Half brain irradiation was performed on a micro-CT/RT system in a human breast cancer (MDA-MB-231-BR) brain metastasis mouse model. Radiation induced DNA double stranded breaks in tumors and normal mouse brain tissue were quantified using γ-H2AX immunohistochemistry at 30 min (acute) and 11 days (longitudinal) after half-brain treatment for doses of 8, 16 and 24 Gy. In addition, tumor responses were assessed volumetrically with in-vivo longitudinal MRI and histologically for tumor cell density and nuclear size. In the acute setting, γ-H2AX staining in tumors saturated at higher doses while normal mouse brain tissue continued to increase linearly in the phosphorylation of H2AX. While γ-H2AX fluorescence intensities returned to the background level in the brain 11 days after treatment, the residual γ-H2AX phosphorylation in the radiated tumors remained elevated compared to un-irradiated contralateral tumors. With radiation, MRI-derived relative tumor growth was significantly reduced compared to the un-irradiated side. While there was no difference in MRI tumor volume growth between 16 and 24 Gy, there was a significant reduction in tumor cell density from histology with increasing dose. In the longitudinal study, nuclear size in the residual tumor cells increased significantly as the radiation dose was increased. Radiation damages to the DNAs in the normal brain parenchyma are resolved over time, but remain unrepaired in the treated tumors. Furthermore, there is a radiation dose

  11. Acute but not chronic activation of brain glucagon-like peptide-1 receptors enhances glucose-stimulated insulin secretion in mice.

    PubMed

    Tudurí, E; Beiroa, D; Porteiro, B; López, M; Diéguez, C; Nogueiras, R

    2015-08-01

    To investigate the role of brain glucagon-like peptide-1 (GLP-1) in pancreatic β-cell function. To determine the role of brain GLP-1 receptor (GLP-1R) on β-cell function, we administered intracerebroventricular (i.c.v.) infusions of GLP-1 or the specific GLP-1 antagonist exendin-9 (Ex-9), in both an acute and a chronic setting. We observed that acute i.c.v. GLP-1 infusion potentiates glucose-stimulated insulin secretion (GSIS) and improves glucose tolerance, whereas central GLP-1R blockade with Ex-9 impaired glucose excursion after a glucose load. Sustained activation of central nervous system GLP-1R, however, did not produce any effect on either GSIS or glucose tolerance. Similarly, ex vivo GSIS performed in islets from mice chronically infused with i.c.v. GLP-1 resulted in no differences compared with controls. In addition, in mice fed a high-fat diet we observed that acute i.c.v. GLP-1 infusion improved glucose tolerance without changes in GSIS, while chronic GLP-1R activation had no effect on glucose homeostasis. Our results indicate that, under non-clamped conditions, brain GLP-1 plays a functional neuroendocrine role in the acute regulation of glucose homeostasis in both lean and obese rodents. © 2015 John Wiley & Sons Ltd.

  12. Effect of Shock-Induced Cavitation Bubble Collapse on the damage in the Simulated Perineuronal Net of the Brain.

    PubMed

    Wu, Yuan-Ting; Adnan, Ashfaq

    2017-07-13

    The purpose of this study is to conduct modeling and simulation to understand the effect of shock-induced mechanical loading, in the form of cavitation bubble collapse, on damage to the brain's perineuronal nets (PNNs). It is known that high-energy implosion due to cavitation collapse is responsible for corrosion or surface damage in many mechanical devices. In this case, cavitation refers to the bubble created by pressure drop. The presence of a similar damage mechanism in biophysical systems has long being suspected but not well-explored. In this paper, we use reactive molecular dynamics (MD) to simulate the scenario of a shock wave induced cavitation collapse within the perineuronal net (PNN), which is the near-neuron domain of a brain's extracellular matrix (ECM). Our model is focused on the damage in hyaluronan (HA), which is the main structural component of PNN. We have investigated the roles of cavitation bubble location, shockwave intensity and the size of a cavitation bubble on the structural evolution of PNN. Simulation results show that the localized supersonic water hammer created by an asymmetrical bubble collapse may break the hyaluronan. As such, the current study advances current knowledge and understanding of the connection between PNN damage and neurodegenerative disorders.

  13. Disruptions of occludin and claudin-5 in brain endothelial cells in vitro and in brains of mice with acute liver failure

    PubMed Central

    Chen, Florence; Ohashi, Norifumi; Li, Wensheng; Eckman, Christopher; Nguyen, Justin H.

    2010-01-01

    Brain edema in acute liver failure (ALF) remains lethal. The role of vasogenic mechanisms of brain edema has not been explored. We previously demonstrated that matrix metalloproteinase-9 (MMP-9) contributes to the pathogenesis of brain edema. Here, we show that MMP-9 mediates disruptions in tight junction proteins in vitro and in brains of mice with ALF. We transfected murine brain endothelial cells with MMP-9 cDNA using pc DNA3.1 (+)/Myc-His A expression vector. Tissue inhibitor of matrix metalloproteinases (TIMP-1) cDNA transfection or GM6001 was used to inhibit MMP-9. ALF was induced in mice with azoxymethane. Endogenous overexpression of MMP-9 in brain endothelial cells resulted in significant degradation of tight junction proteins occludin and claudin-5. The alterations in tight junction proteins correlated with increased permeability to FITC-dextran molecules. The degradation of tight junction proteins and the increased permeability were reversed by TIMP-1 and GM6001. Similar results were found when MMP-9 was exogenously added to brain EC. We also found that tight junction proteins degradation was reversed with GM6001 in brains of mice with ALF. Conclusions Tight junction proteins are significantly perturbed in brains of mice with ALF. These data corroborate the important role of MMP-9 in the vasogenic mechanism of brain edema in ALF. PMID:19821483

  14. Deferoxamine inhibits microglial activation, attenuates blood-brain barrier disruption, rescues dendritic damage, and improves spatial memory in a mouse model of microhemorrhages.

    PubMed

    He, Xiao-Fei; Lan, Yue; Zhang, Qun; Liu, Dong-Xu; Wang, Qinmei; Liang, Feng-Ying; Zeng, Jin-Sheng; Xu, Guang-Qing; Pei, Zhong

    2016-08-01

    Cerebral microbleeds are strongly linked to cognitive dysfunction in the elderly. Iron accumulation plays an important role in the pathogenesis of intracranial hemorrhage. Deferoxamine (DFX), a metal chelator, removes iron overload and protects against brain damage in intracranial hemorrhage. In this study, the protective effects of DFX against microhemorrhage were examined in mice. C57BL6 and Thy-1 green fluorescent protein transgenic mice were subjected to perforating artery microhemorrhages on the right posterior parietal cortex using two-photon laser irradiation. DFX (100 mg/kg) was administered 6 h after microhemorrhage induction, followed by every 12 h for three consecutive days. The water maze task was conducted 7 days after induction of microhemorrhages, followed by measurement of blood-brain barrier permeability, iron deposition, microglial activation, and dendritic damage. Laser-induced multiple microbleeds in the right parietal cortex clearly led to spatial memory disruption, iron deposits, microglial activation, and dendritic damage, which were significantly attenuated by DFX, supporting the targeting of iron overload as a therapeutic option and the significant potential of DFX in microhemorrhage treatment. Irons accumulation after intracranial hemorrhage induced a serious secondary damage to the brain. We proposed that irons accumulation after parietal microhemorrhages impaired spatial cognition. After parietal multiple microhemorrhages, increased irons and ferritin contents induced blood-brain barrier disruption, microglial activation, and further induced dendrites loss, eventually impaired the water maze, deferoxamine treatment protected from these damages. © 2016 International Society for Neurochemistry.

  15. Detection of Low Level Microwave Radiation Induced Deoxyribonucleic Acid Damage Vis-à-vis Genotoxicity in Brain of Fischer Rats

    PubMed Central

    Deshmukh, Pravin Suryakantrao; Megha, Kanu; Banerjee, Basu Dev; Ahmed, Rafat Sultana; Chandna, Sudhir; Abegaonkar, Mahesh Pandurang; Tripathi, Ashok Kumar

    2013-01-01

    Background: Non-ionizing radiofrequency radiation has been increasingly used in industry, commerce, medicine and especially in mobile phone technology and has become a matter of serious concern in present time. Objective: The present study was designed to investigate the possible deoxyribonucleic acid (DNA) damaging effects of low-level microwave radiation in brain of Fischer rats. Materials and Methods: Experiments were performed on male Fischer rats exposed to microwave radiation for 30 days at three different frequencies: 900, 1800 and 2450 MHz. Animals were divided into 4 groups: Group I (Sham exposed): Animals not exposed to microwave radiation but kept under same conditions as that of other groups, Group II: Animals exposed to microwave radiation at frequency 900 MHz at specific absorption rate (SAR) 5.953 × 10−4 W/kg, Group III: Animals exposed to 1800 MHz at SAR 5.835 × 10−4 W/kg and Group IV: Animals exposed to 2450 MHz at SAR 6.672 × 10−4 W/kg. At the end of the exposure period animals were sacrificed immediately and DNA damage in brain tissue was assessed using alkaline comet assay. Results: In the present study, we demonstrated DNA damaging effects of low level microwave radiation in brain. Conclusion: We concluded that low SAR microwave radiation exposure at these frequencies may induce DNA strand breaks in brain tissue. PMID:23833433

  16. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury

    PubMed Central

    Lauritzen, Martin; Dreier, Jens Peter; Fabricius, Martin; Hartings, Jed A; Graf, Rudolf; Strong, Anthony John

    2011-01-01

    Cortical spreading depression (CSD) and depolarization waves are associated with dramatic failure of brain ion homeostasis, efflux of excitatory amino acids from nerve cells, increased energy metabolism and changes in cerebral blood flow (CBF). There is strong clinical and experimental evidence to suggest that CSD is involved in the mechanism of migraine, stroke, subarachnoid hemorrhage and traumatic brain injury. The implications of these findings are widespread and suggest that intrinsic brain mechanisms have the potential to worsen the outcome of cerebrovascular episodes or brain trauma. The consequences of these intrinsic mechanisms are intimately linked to the composition of the brain extracellular microenvironment and to the level of brain perfusion and in consequence brain energy supply. This paper summarizes the evidence provided by novel invasive techniques, which implicates CSD as a pathophysiological mechanism for this group of acute neurological disorders. The findings have implications for monitoring and treatment of patients with acute brain disorders in the intensive care unit. Drawing on the large body of experimental findings from animal studies of CSD obtained during decades we suggest treatment strategies, which may be used to prevent or attenuate secondary neuronal damage in acutely injured human brain cortex caused by depolarization waves. PMID:21045864

  17. Identification of Reversible Disruption of the Human Blood-Brain Barrier Following Acute Ischemia.

    PubMed

    Simpkins, Alexis N; Dias, Christian; Leigh, Richard

    2016-09-01

    Animal models of acute cerebral ischemia have demonstrated that diffuse blood-brain barrier (BBB) disruption can be reversible after early reperfusion. However, irreversible, focal BBB disruption in humans is associated with hemorrhagic transformation in patients receiving intravenous thrombolytic therapy. The goal of this study was to use a magnetic resonance imaging biomarker of BBB permeability to differentiate these 2 forms of BBB disruption. Acute stroke patients imaged with magnetic resonance imaging before, 2 hours after, and 24 hours after treatment with intravenous tissue-type plasminogen activator were included. The average BBB permeability of the acute ischemic region before and 2 hours after treatment was calculated using a T2* perfusion-weighted source images. Change in average permeability was compared with percent reperfusion using linear regression. Focal regions of maximal BBB permeability from the pretreatment magnetic resonance imaging were compared with the occurrence of parenchymal hematoma (PH) formation on the 24-hour magnetic resonance imaging scan using logistic regression. Signals indicating reversible BBB permeability were detected in 18/36 patients. Change in average BBB permeability correlated inversely with percent reperfusion (P=0.006), indicating that early reperfusion is associated with decreased BBB permeability, whereas sustained ischemia is associated with increased BBB disruption. Focal regions of maximal BBB permeability were significantly associated with subsequent formation of PH (P=0.013). This study demonstrates that diffuse, mild BBB disruption in the acutely ischemic human brain is reversible with reperfusion. This study also confirms prior findings that focal severe BBB disruption confers an increased risk of hemorrhagic transformation in patients treated with intravenous tissue-type plasminogen activator. © 2016 American Heart Association, Inc.

  18. Effect of Ginkgo biloba extract on apoptosis of brain tissues in rats with acute cerebral infarction and related gene expression.

    PubMed

    Wu, C; Zhao, X; Zhang, X; Liu, S; Zhao, H; Chen, Y

    2015-06-11

    We investigated the effect of Ginkgo biloba extract on apoptosis of brain tissues in rats with acute cerebral infarction and apoptosis-related gene expression. Rat models of acute cerebral infarction were constructed using the suture method, and randomly divided into the control group, model, and treatment groups. In the treatment group, 4 mg/kg G. biloba extract was intravenously injected into the rat tail vein. Phosphate-buffered saline solution was injected in the model group. Seventy-two hours after treatment, rats were euthanized, and brain tissues were removed to analyze the changes in caspase-3, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) mRNA and protein levels, and variation in brain tissue cells' apoptosis indices was measured. Compared with the control group, the model and treatment groups showed significantly upregulated caspase-3, Bcl-2, and Bax mRNA and protein levels in brain tissues, but remarkably downregulated Bcl-2 mRNA and protein levels (P < 0.05). After treatment, in treatment group brain tissues, caspase-3 and Bax mRNA and protein levels were significantly lower than those in the model group, while Bcl-2 mRNA and protein levels were higher than that in the model group (P < 0.05). The model and treatment groups showed increased cell apoptosis indices of brain tissues compared to the control group; after treatment, the apoptosis index in the treatment group was significantly downregulated compared with that in the model group (P < 0.05). In conclusion, G. biloba extract significantly reduced apoptosis in rat brain tissue cells with acute cerebral infarction and thus protected brain tissues.

  19. Negative regulation of miRNA-9 on oligodendrocyte lineage gene 1 during hypoxic-ischemic brain damage.

    PubMed

    Yang, Lijun; Cui, Hong; Cao, Ting

    2014-03-01

    Oligodendrocyte lineage gene 1 plays a key role in hypoxic-ischemic brain damage and myelin repair. miRNA-9 is involved in the occurrence of many related neurological disorders. Bioinformatics analysis demonstrated that miRNA-9 complementarily, but incompletely, bound oligodendrocyte lineage gene 1, but whether miRNA-9 regulates oligodendrocyte lineage gene 1 remains poorly understood. Whole brain slices of 3-day-old Sprague-Dawley rats were cultured and divided into four groups: control group; oxygen-glucose deprivation group (treatment with 8% O2 + 92% N2 and sugar-free medium for 60 minutes); transfection control group (after oxygen and glucose deprivation for 60 minutes, transfected with control plasmid) and miRNA-9 transfection group (after oxygen and glucose deprivation for 60 minutes, transfected with miRNA-9 plasmid). From the third day of transfection, and with increasing culture days, oligodendrocyte lineage gene 1 expression increased in each group, peaked at 14 days, and then decreased at 21 days. Real-time quantitative PCR results, however, demonstrated that oligodendrocyte lineage gene 1 expression was lower in the miRNA-9 transfection group than that in the transfection control group at 1, 3, 7, 14, 21 and 28 days after transfection. Results suggested that miRNA-9 possibly negatively regulated oligodendrocyte lineage gene 1 in brain tissues during hypoxic-ischemic brain damage.

  20. Effect of alpha-ketoglutarate and oxaloacetate on brain mitochondrial DNA damage and seizures induced by kainic acid in mice.

    PubMed

    Yamamoto, Hiro-aki; Mohanan, Parayanthala V

    2003-07-20

    The effects of alpha-ketoglutarate and oxaloacetate on brain mitochondrial DNA (mtDNA) damage and seizures induced by kainic acid were examined both in vivo and in vitro. An intraperitoneal (ip) injection of kainic acid (45 mg/kg) produced broad-spectrum limbic and severe sustained seizures in all of the treated mice. The seizures were abolished when alpha-ketoglutarate (2 g/kg) or oxaloacetate (1 g/kg) was injected intraperitoneally in the animals 1 min before kainic acid administration. In addition, the administration of kainic acid caused damage to mtDNA in brain frontal and middle cortex of mice. These effects were completely abolished by the ip preinjection of alpha-ketoglutarate (2 g/kg) or oxaloacetate (1 g/kg). In vitro exposure of kainic acid (0.25, 0.5 or 1.0 mM) to brain homogenate inflicted damage to mtDNA in a concentration-dependent manner. The damage of mtDNA induced by 1.0 mM kainic acid was attenuated by the co-treatment with alpha-ketoglutarate (2.5 or 5.0 mM) or oxaloacetate (0.75 or 1.0 mM). Furthermore, in vivo and in vitro exposure of kainic acid elicited an increase in lipid peroxidation. However, the increased lipid peroxidation was completely inhibited by cotreatment of alpha-ketoglutarate or oxaloacetate. These results suggest that alpha-keto acids such as alpha-ketoglutarate and oxaloacetate play a role in the inhibition of seizures and subsequent mtDNA damage induced by the excitotoxic/neurotoxic agent, kainic acid.

  1. Acute Ethanol Administration Rapidly Increases Phosphorylation of Conventional Protein Kinase C in Specific Mammalian Brain Regions in Vivo

    PubMed Central

    Wilkie, Mary Beth; Besheer, Joyce; Kelley, Stephen P.; Kumar, Sandeep; O’Buckley, Todd K.; Morrow, A. Leslie; Hodge, Clyde W.

    2010-01-01

    Background Protein kinase C (PKC) is a family of isoenzymes that regulate a variety of functions in the central nervous system including neurotransmitter release, ion channel activity, and cell differentiation. Growing evidence suggests that specific isoforms of PKC influence a variety of behavioral, biochemical, and physiological effects of ethanol in mammals. The purpose of this study was to determine whether acute ethanol exposure alters phosphorylation of conventional PKC isoforms at a threonine 674 (p-cPKC) site in the hydrophobic domain of the kinase, which is required for its catalytic activity. Methods Male rats were administered a dose range of ethanol (0, 0.5, 1, or 2 g/kg, intragastric) and brain tissue was removed 10 minutes later for evaluation of changes in p-cPKC expression using immunohistochemistry and Western blot methods. Results Immunohistochemical data show that the highest dose of ethanol (2 g/kg) rapidly increases p-cPKC immunoreactivity specifically in the nucleus accumbens (core and shell), lateral septum, and hippocampus (CA3 and dentate gyrus). Western blot analysis further showed that ethanol (2 g/kg) increased p-cPKC expression in the P2 membrane fraction of tissue from the nucleus accumbens and hippocampus. Although p-cPKC was expressed in numerous other brain regions, including the caudate nucleus, amygdala, and cortex, no changes were observed in response to acute ethanol. Total PKCγ immunoreactivity was surveyed throughout the brain and showed no change following acute ethanol injection. Conclusions These results suggest that ethanol rapidly promotes phosphorylation of cPKC in limbic brain regions, which may underlie effects of acute ethanol on the nervous system and behavior. PMID:17511744

  2. Cognitive Impairment and Whole Brain Diffusion in Patients with Neuromyelitis Optica after Acute Relapse

    ERIC Educational Resources Information Center

    He, Diane; Wu, Qizhu; Chen, Xiuying; Zhao, Daidi; Gong, Qiyong; Zhou, Hongyu

    2011-01-01

    The objective of this study investigated cognitive impairments and their correlations with fractional anisotropy (FA) and mean diffusivity (MD) in patients with neuromyelitis optica (NMO) without visible lesions on conventional brain MRI during acute relapse. Twenty one patients with NMO and 21 normal control subjects received several cognitive…

  3. Frontal white matter damage impairs response inhibition in children following traumatic brain injury.

    PubMed

    Lipszyc, Jonathan; Levin, Harvey; Hanten, Gerri; Hunter, Jill; Dennis, Maureen; Schachar, Russell

    2014-05-01

    Inhibition, the ability to suppress inappropriate cognitions or behaviors, can be measured using computer tasks and questionnaires. Inhibition depends on the frontal cortex, but the role of the underlying white matter (WM) is unclear. We assessed the specific impact of frontal WM damage on inhibition in 29 children with moderate-to-severe traumatic brain injury (15 with and 14 without frontal WM damage), 21 children with orthopedic injury, and 29 population controls. We used the Stop Signal Task to measure response inhibition, the Behavior Rating Inventory of Executive Function to assess everyday inhibition, and T2 fluid-attenuated inversion recovery magnetic resonance imaging to identify lesions. Children with frontal WM damage had impaired response inhibition compared with all other groups and poorer everyday inhibition than the orthopedic injury group. Frontal WM lesions most often affected the superior frontal gyrus. These results provide evidence for the critical role of frontal WM in inhibition.

  4. The neuropathology and neurobiology of traumatic brain injury.

    PubMed

    Blennow, Kaj; Hardy, John; Zetterberg, Henrik

    2012-12-06

    The acute and long-term consequences of traumatic brain injury (TBI) have received increased attention in recent years. In this Review, we discuss the neuropathology and neural mechanisms associated with TBI, drawing on findings from sports-induced TBI in athletes, in whom acute TBI damages axons and elicits both regenerative and degenerative tissue responses in the brain and in whom repeated concussions may initiate a long-term neurodegenerative process called dementia pugilistica or chronic traumatic encephalopathy (CTE). We also consider how the neuropathology and neurobiology of CTE in many ways resembles other neurodegenerative illnesses such as Alzheimer's disease, particularly with respect to mismetabolism and aggregation of tau, β-amyloid, and TDP-43. Finally, we explore how translational research in animal models of acceleration/deceleration types of injury relevant for concussion together with clinical studies employing imaging and biochemical markers may further elucidate the neurobiology of TBI and CTE. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Can neuropsychological testing produce unequivocal evidence of brain damage? II. Testing for right vs. left differences.

    PubMed

    Reitan, Ralph M; Wolfson, Deborah

    2008-01-01

    Sensation and perception, as well as motor functions, have played an important role in the history of psychology. Although tests of these abilities are sometimes included in neuropsychological assessments, comparisons of intraindividual performances on the two sides of the body (as a basis for drawing conclusions and comparisons about the functional status of the two cerebral hemispheres) are in many instances neglected or considered only casually. This study, utilizing several motor and sensory-perceptual tests, compared intraindividual differences on the two sides of the body in a group of controls and a group of persons with brain damage. The results indicated that the sensory-perceptual tests were particularly effective in differentiating the groups. More than 60% of the group with brain damage had greater differences on the two sides of the body than did any of the controls. These findings suggest that a substantial proportion of persons with cerebral disease or damage may be subject to unequivocal identification using sensory-perceptual tests that take only about 20 minutes to administer. These tests may serve a valuable role as an adjunct to comprehensive neuropsychological evaluation and should be further evaluated in this respect.

  6. Preserved Self-Awareness following Extensive Bilateral Brain Damage to the Insula, Anterior Cingulate, and Medial Prefrontal Cortices

    PubMed Central

    Khalsa, Sahib S.; Damasio, Antonio; Tranel, Daniel; Landini, Gregory; Williford, Kenneth

    2012-01-01

    It has been proposed that self-awareness (SA), a multifaceted phenomenon central to human consciousness, depends critically on specific brain regions, namely the insular cortex, the anterior cingulate cortex (ACC), and the medial prefrontal cortex (mPFC). Such a proposal predicts that damage to these regions should disrupt or even abolish SA. We tested this prediction in a rare neurological patient with extensive bilateral brain damage encompassing the insula, ACC, mPFC, and the medial temporal lobes. In spite of severe amnesia, which partially affected his “autobiographical self”, the patient's SA remained fundamentally intact. His Core SA, including basic self-recognition and sense of self-agency, was preserved. His Extended SA and Introspective SA were also largely intact, as he has a stable self-concept and intact higher-order metacognitive abilities. The results suggest that the insular cortex, ACC and mPFC are not required for most aspects of SA. Our findings are compatible with the hypothesis that SA is likely to emerge from more distributed interactions among brain networks including those in the brainstem, thalamus, and posteromedial cortices. PMID:22927899

  7. Role of damage control enterostomy in management of children with peritonitis from acute intestinal disease.

    PubMed

    Ameh, Emmanuel A; Ayeni, Michael A; Kache, Stephen A; Mshelbwala, Philip M

    2013-01-01

    Intestinal anastomosis in severely ill children with peritonitis from intestinal perforation, intestinal gangrene or anastomotic dehiscence (acute intestinal disease) is associated with high morbidity and mortality. Enterostomy as a damage control measure may be an option to minimize the high morbidity and mortality. This report evaluates the role of damage control enterostomy in the treatment of these patients. A retrospective review of 52 children with acute intestinal disease who had enterostomy as a damage control measure in 12 years. There were 34 (65.4%) boys and 18 (34.6%) girls aged 3 days-13 years (median 9 months), comprising 27 (51.9%) neonates and infants and 25 (48.1%) older children. The primary indication for enterostomy in neonates and infants was intestinal gangrene 25 (92.6%) and perforated typhoid ileitis 22 (88%) in older children. Enterostomy was performed as the initial surgery in 33 (63.5%) patients and as a salvage procedure following anastomotic dehiscence in 19 (36.5%) patients. Enterostomy-related complications occurred in 19 (36.5%) patients, including 11 (21.2%) patients with skin excoriations and eight (15.4%) with hypokalaemia. There were four (7.7%) deaths (aged 19 days, 3 months, 3½ years and 10 years, respectively) directly related to the enterostomy, from hypokalaemia at 4, 12, 20 and 28 days postoperatively, respectively. Twenty other patients died shortly after surgery from their primary disease. Twenty of 28 surviving patients have had their enterostomy closed without complications, while eight are awaiting enterostomy closure. Damage-control enterostomy is useful in management of severely ill children with intestinal perforation or gangrene. Careful and meticulous attention to fluid and electrolyte balance, and stoma care, especially in the first several days following surgery, are important in preventing morbidity and mortality.

  8. Tool use disorders after left brain damage.

    PubMed

    Baumard, Josselin; Osiurak, François; Lesourd, Mathieu; Le Gall, Didier

    2014-01-01

    In this paper we review studies that investigated tool use disorders in left-brain damaged (LBD) patients over the last 30 years. Four tasks are classically used in the field of apraxia: Pantomime of tool use, single tool use, real tool use and mechanical problem solving. Our aim was to address two issues, namely, (1) the role of mechanical knowledge in real tool use and (2) the cognitive mechanisms underlying pantomime of tool use, a task widely employed by clinicians and researchers. To do so, we extracted data from 36 papers and computed the difference between healthy subjects and LBD patients. On the whole, pantomime of tool use is the most difficult task and real tool use is the easiest one. Moreover, associations seem to appear between pantomime of tool use, real tool use and mechanical problem solving. These results suggest that the loss of mechanical knowledge is critical in LBD patients, even if all of those tasks (and particularly pantomime of tool use) might put differential demands on semantic memory and working memory.

  9. Tool use disorders after left brain damage

    PubMed Central

    Baumard, Josselin; Osiurak, François; Lesourd, Mathieu; Le Gall, Didier

    2014-01-01

    In this paper we review studies that investigated tool use disorders in left-brain damaged (LBD) patients over the last 30 years. Four tasks are classically used in the field of apraxia: Pantomime of tool use, single tool use, real tool use and mechanical problem solving. Our aim was to address two issues, namely, (1) the role of mechanical knowledge in real tool use and (2) the cognitive mechanisms underlying pantomime of tool use, a task widely employed by clinicians and researchers. To do so, we extracted data from 36 papers and computed the difference between healthy subjects and LBD patients. On the whole, pantomime of tool use is the most difficult task and real tool use is the easiest one. Moreover, associations seem to appear between pantomime of tool use, real tool use and mechanical problem solving. These results suggest that the loss of mechanical knowledge is critical in LBD patients, even if all of those tasks (and particularly pantomime of tool use) might put differential demands on semantic memory and working memory. PMID:24904487

  10. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    PubMed

    Silachev, Denis N; Isaev, Nikolay K; Pevzner, Irina B; Zorova, Ljubava D; Stelmashook, Elena V; Novikova, Svetlana V; Plotnikov, Egor Y; Skulachev, Vladimir P; Zorov, Dmitry B

    2012-01-01

    Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β) in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s) which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated kidney cells with cortical neurons resulted in enchanced

  11. Toxicological aspects of interesterified fat: Brain damages in rats.

    PubMed

    D'avila, Lívia Ferraz; Dias, Verônica Tironi; Vey, Luciana Taschetto; Milanesi, Laura Hautrive; Roversi, Karine; Emanuelli, Tatiana; Bürger, Marilise Escobar; Trevizol, Fabíola; Maurer, H Luana

    2017-07-05

    In recent years, interesterified fat (IF) has been used to replace hydrogenated vegetable fat (HVF), rich in trans isomers, being found in processed foods. Studies involving IF have shown deleterious influences on the metabolic system, similarly to HVF, whereas no studies regarding its influence on the central nervous system (CNS) were performed. Rats from first generation born and maintained under supplementation (3g/Kg, p.o.) of soybean-oil or IF until adulthood were assessed on memory, biochemical and molecular markers in the hippocampus. IF group showed higher saturated fatty acids and linoleic acid and lower docosahexaenoic acid incorporation in the hippocampus. In addition, IF supplementation impaired short and long-term memory, which were related to increased reactive species generation and protein carbonyl levels, decreased catalase activity, BDNF and TrkB levels in the hippocampus. To the best of our knowledge, this is the first study to show that lifelong IF consumption may be related to brain oxidative damage, memory impairments and neurotrophins modifications, which collectively may be present indifferent neurological disorders. In fact, the use of IF in foods was intended to avoid damage from HVF consumption; however this substitute should be urgently reviewed, since this fat can be as harmful as trans fat. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Reno-Cerebral Reflex Activates the Renin-Angiotensin System, Promoting Oxidative Stress and Renal Damage After Ischemia-Reperfusion Injury.

    PubMed

    Cao, Wei; Li, Aiqing; Li, Jiawen; Wu, Chunyi; Cui, Shuang; Zhou, Zhanmei; Liu, Youhua; Wilcox, Christopher S; Hou, Fan Fan

    2017-09-01

    A kidney-brain interaction has been described in acute kidney injury, but the mechanisms are uncertain. Since we recently described a reno-cerebral reflex, we tested the hypothesis that renal ischemia-reperfusion injury (IRI) activates a sympathetic reflex that interlinks the renal and cerebral renin-angiotensin axis to promote oxidative stress and progression of the injury. Bilateral ischemia-reperfusion activated the intrarenal and cerebral, but not the circulating, renin-angiotensin system (RAS), increased sympathetic activity in the kidney and the cerebral sympathetic regulatory regions, and induced brain inflammation and kidney injury. Selective renal afferent denervation with capsaicin or renal denervation significantly attenuated IRI-induced activation of central RAS and brain inflammation. Central blockade of RAS or oxidative stress by intracerebroventricular (ICV) losartan or tempol reduced the renal ischemic injury score by 65% or 58%, respectively, and selective renal afferent denervation or reduction of sympathetic tone by ICV clonidine decreased the score by 42% or 52%, respectively (all p < 0.05). Ischemia-reperfusion-induced renal damage and dysfunction persisted after controlling blood pressure with hydralazine. This study uncovered a novel reflex pathway between ischemic kidney and the brain that sustains renal oxidative stress and local RAS activation to promote ongoing renal damage. These data suggest that the renal and cerebral renin-angiotensin axes are interlinked by a reno-cerebral sympathetic reflex that is activated by ischemia-reperfusion, which contributes to ischemia-reperfusion-induced brain inflammation and worsening of the acute renal injury. Antioxid. Redox Signal. 27, 415-432.

  13. Ang-(1-7) exerts protective role in blood-brain barrier damage by the balance of TIMP-1/MMP-9.

    PubMed

    Wu, Jitao; Zhao, Duo; Wu, Shuang; Wang, Dan

    2015-02-05

    Cerebrovascular disease (CVD) ranks as the top three health risks, specially cerebral ischemia characterized with the damage of blood-brain barrier (BBB). The angiotensin Ang-(1-7) was proven to have a protective effect on cerebrovascular diseases. However, its role on blood-brain barrier and the underlying molecular mechanism remains unclear. In this study, Ang-(1-7) significantly relieved damage of ischemia reperfusion injury on blood-brain barrier in cerebral ischemia reperfusion injury (IRI) rats. Furthermore, its treatment attenuated BBB permeability and brain edema. Similarly, Ang-(1-7) also decreased the barrier permeability of brain endothelial cell line RBE4. Further analysis showed that Ang-(1-7) could effectively restore tight junction protein (claudin-5 and zonula occludens ZO-1) expression levels both in IRI-rats and hypoxia-induced RBE4 cells. Furthermore, Ang-(1-7) stimulation down-regulated hypoxia-induced matrix metalloproteinase-9 (MMP-9) levels, whose silencing with (matrix metalloproteinase-9 hemopexin domain) MMP9-PEX inhibitor significantly increased the expression of claudin-5 and ZO-1. Further mechanism analysis demonstrated that Ang-(1-7) might junction protein levels by tissue inhibitor of metalloproteinase 1 (TIMP1)-MMP9 pathway, because Ang-(1-7) enhanced TIMP1 expression, whose silencing obviously attenuated the inhibitor effect of Ang-(1-7) on MMP-9 levels and decreased Ang-(1-7)-triggered increase in claudin-5 and ZO-1. Together, this study demonstrated a protective role of Ang-(1-7) in IRI-induced blood-brain barrier damage by TIMP1-MMP9-regulated tight junction protein expression. Accordingly, Ang-(1-7) may become a promising therapeutic agent against IRI and its complications. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies.

    PubMed

    Ma, Ning; Dinges, David F; Basner, Mathias; Rao, Hengyi

    2015-02-01

    Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. © 2015 Associated Professional Sleep Societies, LLC.

  15. Acute and timing effects of beta-hydroxy-beta-methylbutyrate (HMB) on indirect markers of skeletal muscle damage.

    PubMed

    Wilson, Jacob M; Kim, Jeong-Su; Lee, Sang-Rok; Rathmacher, John A; Dalmau, Brett; Kingsley, J Derek; Koch, Heather; Manninen, Anssi H; Saadat, Raz; Panton, Lynn B

    2009-02-04

    While chronic β-Hydroxy β-Methylbutyrate (HMB) supplementation (≥ 2 wk) lowers exercise induced muscle damage, its acute or timing effects have not been examined. The purpose of this study was to investigate the acute and timing effects of oral HMB supplementation on serum creatine kinase (CK), lactate dehydrogenase (LDH), muscle soreness, and maximal voluntary contraction (MVC). Sixteen non-resistance trained men (22 ± 2 yrs) were assigned to HMB-Pre or HMB-Post groups. In a crossover design, all subjects performed 55 maximal eccentric knee extension/flexion contractions on 2 occasions on either the right or left leg. HMB-Pre (N = 8) randomly received 3 grams of either a placebo or HMB before and a placebo after exercise. HMB-Post (N = 8) received a placebo before and either 3 grams of HMB or a placebo after exercise. Muscle damage tests were recorded before, at 8, 24, 48, and 72 hrs post exercise. There was a reduction in MVC and an increase in soreness in the quadriceps and hamstrings following exercise (p < 0.001). Although HMB-Pre approached significance in attenuating soreness for the quadriceps (p = 0.07), there was no time x group effect. Serum indices of damage increased, peaking at 48 hrs for CK (773%) (p < 0.001) and 72 hrs for LDH (180%) (p < 0.001). While there were no time x group effects of HMB on CK and LDH, post hoc analysis revealed that only HMB-Pre showed no significant increase in LDH levels following exercise. Our findings suggest no clear acute or timing effects of HMB supplementation. However, consuming HMB before exercise appeared to prevent increases in LDH.

  16. Acute and timing effects of beta-hydroxy-beta-methylbutyrate (HMB) on indirect markers of skeletal muscle damage

    PubMed Central

    Wilson, Jacob M; Kim, Jeong-su; Lee, Sang-rok; Rathmacher, John A; Dalmau, Brett; Kingsley, J Derek; Koch, Heather; Manninen, Anssi H; Saadat, Raz; Panton, Lynn B

    2009-01-01

    Background While chronic β-Hydroxy β-Methylbutyrate (HMB) supplementation (≥ 2 wk) lowers exercise induced muscle damage, its acute or timing effects have not been examined. The purpose of this study was to investigate the acute and timing effects of oral HMB supplementation on serum creatine kinase (CK), lactate dehydrogenase (LDH), muscle soreness, and maximal voluntary contraction (MVC). Methods Sixteen non-resistance trained men (22 ± 2 yrs) were assigned to HMB-Pre or HMB-Post groups. In a crossover design, all subjects performed 55 maximal eccentric knee extension/flexion contractions on 2 occasions on either the right or left leg. HMB-Pre (N = 8) randomly received 3 grams of either a placebo or HMB before and a placebo after exercise. HMB-Post (N = 8) received a placebo before and either 3 grams of HMB or a placebo after exercise. Muscle damage tests were recorded before, at 8, 24, 48, and 72 hrs post exercise. Results There was a reduction in MVC and an increase in soreness in the quadriceps and hamstrings following exercise (p < 0.001). Although HMB-Pre approached significance in attenuating soreness for the quadriceps (p = 0.07), there was no time × group effect. Serum indices of damage increased, peaking at 48 hrs for CK (773%) (p < 0.001) and 72 hrs for LDH (180%) (p < 0.001). While there were no time × group effects of HMB on CK and LDH, post hoc analysis revealed that only HMB-Pre showed no significant increase in LDH levels following exercise. Conclusion Our findings suggest no clear acute or timing effects of HMB supplementation. However, consuming HMB before exercise appeared to prevent increases in LDH. PMID:19193206

  17. Overexpression of Human S100B Exacerbates Brain Damage and Periinfarct Gliosis After Permanent Focal Ischemia

    PubMed Central

    Mori, Takashi; Tan, Jun; Arendash, Gary W.; Koyama, Naoki; Nojima, Yoshiko; Town, Terrence

    2009-01-01

    Background and Purpose We have previously demonstrated that augmented and prolonged activation of astrocytes detrimentally influences both the subacute and chronic phases of cerebral ischemia. Furthermore, we have suggested that the astrocyte-derived protein S100B may be important in these pathogenic events. However, the causal relationship between S100B and exacerbation of brain damage in vivo remains to be elucidated. Methods Using transgenic mice overexpressing human S100B (Tg huS100B mice), we examined whether S100B plays a cardinal role in aggravation of brain damage after permanent middle cerebral artery occlusion (pMCAO). Results Tg huS100B mice had significantly larger infarct volumes and worse neurological deficits at any time point examined after pMCAO as compared with CD-1 background strain-matched control mice. Infarct volumes in Tg huS100B mice were significantly increased from 1 to 3 and 5 days after pMCAO (delayed infarct expansion), whereas those in control mice were not significantly altered. S100, glial fibrillary acidic protein, and Iba1 burdens in the periinfarct area were significantly increased through to 7 days after pMCAO in Tg huS100B mice, whereas those in control mice reached a plateau at 3 days after pMCAO. Conclusions These results provide genetic evidence that overexpression of human S100B acts to exacerbate brain damage and periinfarct reactive gliosis (astrocytosis and microgliosis) during the subacute phase of pMCAO. PMID:18451356

  18. MANF prevents traumatic brain injury in rats by inhibiting inflammatory activation and protecting Blood Brain Barrier.

    PubMed

    Li, Qing-Xin; Shen, Yu-Xian; Ahmad, Akhlaq; Shen, Yu-Jun; Zhang, Yi-Quan; Xu, Pei-Kun; Chen, Wei-Wei; Yu, Yong-Qiang

    2018-06-05

    Our previous studies have shown that MANF provides neuroprotective effect against ischemia/reperfusion injury and is also involved in inflammatory disease models. This work investigates the potential role and mechanism of MANF in acute brain damage after traumatic brain injury (TBI). The model of TBI was induced by Feeney free falling methods with male Sprauge-Dawley rats. The expression of MANF, 24 hrs after TBI, was detected by the immunohistochemistry, immunofluorescence, Western blot and Reverse transcription PCR(RT-PCR) techniques. After treatment with recombinant human MANF following TBI, assessment was conducted - 24 hrs later for brain water content(BWC), cerebral edema volume in MRI, neurobehavioral testing and Evans blue extravasation. Moreover, by the techniques of Western blot and RT-PCR, the expression of inflammatory cytokines(IL-1β, TNF-α) and P65 was also analyzed to explore the underlying protective mechanism of MANF. At 24 hrs after TBI, we found that endogenous MANF was widely expressed in the rat's brain tissues and different types of cells. Treatment with high dose of recombinant human MANF(20 μg/20 μL) - significantly increased the modified Garcia score, and reduced BWC as well as cerebral edema volume in MRI. Furthermore, MANF alleviated not only the blood-brain barrier(BBB) permeability, but also the expressions of IL-1β and TNF-α mRNA and protein. Besides, the activation of P65 was also inhibited. These results suggest that MANF provides neuroprotective effect against acute brain injury after TBI, via attenuating BBB disruption and intracranial neuroinflammation, while the inhibition of NF-κB signaling pathway might be a potential mechanism. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Acute Brain Dysfunction: Development and Validation of a Daily Prediction Model.

    PubMed

    Marra, Annachiara; Pandharipande, Pratik P; Shotwell, Matthew S; Chandrasekhar, Rameela; Girard, Timothy D; Shintani, Ayumi K; Peelen, Linda M; Moons, Karl G M; Dittus, Robert S; Ely, E Wesley; Vasilevskis, Eduard E

    2018-03-24

    The goal of this study was to develop and validate a dynamic risk model to predict daily changes in acute brain dysfunction (ie, delirium and coma), discharge, and mortality in ICU patients. Using data from a multicenter prospective ICU cohort, a daily acute brain dysfunction-prediction model (ABD-pm) was developed by using multinomial logistic regression that estimated 15 transition probabilities (from one of three brain function states [normal, delirious, or comatose] to one of five possible outcomes [normal, delirious, comatose, ICU discharge, or died]) using baseline and daily risk factors. Model discrimination was assessed by using predictive characteristics such as negative predictive value (NPV). Calibration was assessed by plotting empirical vs model-estimated probabilities. Internal validation was performed by using a bootstrap procedure. Data were analyzed from 810 patients (6,711 daily transitions). The ABD-pm included individual risk factors: mental status, age, preexisting cognitive impairment, baseline and daily severity of illness, and daily administration of sedatives. The model yielded very high NPVs for "next day" delirium (NPV: 0.823), coma (NPV: 0.892), normal cognitive state (NPV: 0.875), ICU discharge (NPV: 0.905), and mortality (NPV: 0.981). The model demonstrated outstanding calibration when predicting the total number of patients expected to be in any given state across predicted risk. We developed and internally validated a dynamic risk model that predicts the daily risk for one of three cognitive states, ICU discharge, or mortality. The ABD-pm may be useful for predicting the proportion of patients for each outcome state across entire ICU populations to guide quality, safety, and care delivery activities. Copyright © 2018 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  20. Acute and long-term effects of trophic exposure to silver nanospheres in the central nervous system of a neotropical fish Hoplias intermedius.

    PubMed

    Klingelfus, T; Lirola, J R; Oya Silva, L F; Disner, G R; Vicentini, M; Nadaline, M J B; Robles, J C Z; Trein, L M; Voigt, C L; Silva de Assis, H C; Mela, M; Leme, D M; Cestari, M M

    2017-12-01

    Nanotechnologies are at the center of societal interest, due to their broad spectrum of application in different industrial products. The current concern about nanomaterials (NMs) is the potential risks they carry for human health and the environment. Considering that NMs can reach bodies of water, there is a need for studying the toxic effects of NMs on aquatic organisms. Among the NMs' toxic effects on fish, the interactions between NMs and the nervous system are yet to be understood. For this reason, our goal was to assess the neurotoxicity of polyvinylpyrrolidone coated silver nanospheres [AgNS (PVP coated)] and compare their effects in relation to silver ions (Ag + ) in carnivorous Hoplias intermedius fish after acute and subchronic trophic exposure through the analysis of morphological (retina), biochemical (brain) and genetic biomarkers (brain and blood). For morphological biomarkers, damage by AgNS (PVP coated) in retina was found, including morphological changes in rods, cones, hemorrhage and epithelium rupture, and also deposition of AgNS (PVP coated) in retina and sclera. In the brain biomarkers, AgNS (PVP coated) did not disturb acetylcholinesterase activity. However, lowered migration of the DNA tail in the Comet Assay of blood and brain cells was observed for all doses of AgNS (PVP coated), for both acute and subchronic bioassays, and in a dose-dependent manner in acute exposure. Ag + also reduced the level of DNA damage only under subchronic conditions in the brain cells. In general, the results demonstrated that AgNS (PVP coated) do not cause similar effects in relation to Ag + . Moreover, the lowered level of DNA damage detected by Comet Assay suggests that AgNS (PVP coated) directly interacts with DNA of brain and blood cells, inducing DNA-DNA or DNA-protein crosslinks. Therefore, the AgNS (PVP coated) accumulating, particularly in the retina, can lead to a competitive disadvantage for fish, compromising their survival. Copyright © 2017 Elsevier

  1. Role of CCR5 and its ligands in the control of vascular inflammation and leukocyte recruitment required for acute excitotoxic seizure induction and neural damage

    PubMed Central

    Louboutin, Jean-Pierre; Chekmasova, Alena; Marusich, Elena; Agrawal, Lokesh; Strayer, David S.

    2011-01-01

    Chemokines may play a role in leukocyte migration across the blood-brain barrier (BBB) during neuroinflammation and other neuropathological processes, such as epilepsy. We investigated the role of the chemokine receptor CCR5 in seizures. We used a rat model based on intraperitoneal kainic acid (KA) administration. Four months before KA injection, adult rats were given femoral intramarrow inoculations of SV (RNAiR5-RevM10.AU1), which carries an interfering RNA (RNAi) against CCR5, plus a marker epitope (AU1), or its monofunctional RNAi-carrying homologue, SV(RNAiR5). This treatment lowered expression of CCR5 in circulating cells. In control rats, seizures induced elevated expression of CCR5 ligands MIP-1α and RANTES in the microvasculature, increased BBB leakage and CCR5+ cells, as well as neuronal loss, inflammation, and gliosis in the hippocampi. Animals given either the bifunctional or the monofunctional vector were largely protected from KA-induced seizures, neuroinflammation, BBB damage, and neuron loss. Brain CCR5 mRNA was reduced. Rats receiving RNAiR5-bearing vectors showed far greater repair responses: increased neuronal proliferation, and decreased production of MIP-1α and RANTES. Controls received unrelated SV(BUGT) vectors. Decrease in CCR5 in circulating cells strongly protected from excitotoxin-induced seizures, BBB leakage, CNS injury, and inflammation, and facilitated neurogenic repair.—Louboutin, J.-P., Chekmasova, A., Marusich, E., Agrawal, L., Strayer, D. S. Role of CCR5 and its ligands in the control of vascular inflammation and leukocyte recruitment required for acute excitotoxic seizure induction and neural damage. PMID:20940264

  2. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients

    PubMed Central

    Vanhaudenhuyse, Audrey; Noirhomme, Quentin; Tshibanda, Luaba J.-F.; Bruno, Marie-Aurelie; Boveroux, Pierre; Schnakers, Caroline; Soddu, Andrea; Perlbarg, Vincent; Ledoux, Didier; Brichant, Jean-François; Moonen, Gustave; Maquet, Pierre; Greicius, Michael D.

    2010-01-01

    The ‘default network’ is defined as a set of areas, encompassing posterior-cingulate/precuneus, anterior cingulate/mesiofrontal cortex and temporo-parietal junctions, that show more activity at rest than during attention-demanding tasks. Recent studies have shown that it is possible to reliably identify this network in the absence of any task, by resting state functional magnetic resonance imaging connectivity analyses in healthy volunteers. However, the functional significance of these spontaneous brain activity fluctuations remains unclear. The aim of this study was to test if the integrity of this resting-state connectivity pattern in the default network would differ in different pathological alterations of consciousness. Fourteen non-communicative brain-damaged patients and 14 healthy controls participated in the study. Connectivity was investigated using probabilistic independent component analysis, and an automated template-matching component selection approach. Connectivity in all default network areas was found to be negatively correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative then coma patients. Furthermore, precuneus connectivity was found to be significantly stronger in minimally conscious patients as compared with unconscious patients. Locked-in syndrome patient’s default network connectivity was not significantly different from controls. Our results show that default network connectivity is decreased in severely brain-damaged patients, in proportion to their degree of consciousness impairment. Future prospective studies in a larger patient population are needed in order to evaluate the prognostic value of the presented methodology. PMID:20034928

  3. Mutations of the Thyroid Hormone Transporter MCT8 Cause Prenatal Brain Damage and Persistent Hypomyelination

    PubMed Central

    López-Espíndola, Daniela; Morales-Bastos, Carmen; Grijota-Martínez, Carmen; Liao, Xiao-Hui; Lev, Dorit; Sugo, Ella; Verge, Charles F.; Refetoff, Samuel

    2014-01-01

    Context: Mutations in the MCT8 (SLC16A2) gene, encoding a specific thyroid hormone transporter, cause an X-linked disease with profound psychomotor retardation, neurological impairment, and abnormal serum thyroid hormone levels. The nature of the central nervous system damage is unknown. Objective: The objective of the study was to define the neuropathology of the syndrome by analyzing brain tissue sections from MCT8-deficient subjects. Design: We analyzed brain sections from a 30th gestational week male fetus and an 11-year-old boy and as controls, brain tissue from a 30th and 28th gestational week male and female fetuses, respectively, and a 10-year-old girl and a 12-year-old boy. Methods: Staining with hematoxylin-eosin and immunostaining for myelin basic protein, 70-kDa neurofilament, parvalbumin, calbindin-D28k, and synaptophysin were performed. Thyroid hormone determinations and quantitative PCR for deiodinases were also performed. Results: The MCT8-deficient fetus showed a delay in cortical and cerebellar development and myelination, loss of parvalbumin expression, abnormal calbindin-D28k content, impaired axonal maturation, and diminished biochemical differentiation of Purkinje cells. The 11-year-old boy showed altered cerebellar structure, deficient myelination, deficient synaptophysin and parvalbumin expression, and abnormal calbindin-D28k expression. The MCT8-deficient fetal cerebral cortex showed 50% reduction of thyroid hormones and increased type 2 deiodinase and decreased type 3 deiodinase mRNAs. Conclusions: The following conclusions were reached: 1) brain damage in MCT8 deficiency is diffuse, without evidence of focal lesions, and present from fetal stages despite apparent normality at birth; 2) deficient hypomyelination persists up to 11 years of age; and 3) the findings are compatible with the deficient action of thyroid hormones in the developing brain caused by impaired transport to the target neural cells. PMID:25222753

  4. Protective effect of Carica papaya L leaf extract against alcohol induced acute gastric damage and blood oxidative stress in rats.

    PubMed

    Indran, M; Mahmood, A A; Kuppusamy, U R

    2008-09-01

    The effects of Carica papaya leaf (CPL) aqueous extract on alcohol induced acute gastric damage and the immediate blood oxidative stress level were studied in rats. The results showed that gastric ulcer index was significantly reduced in rats pretreated with CPL extract as compared with alcohol treated controls. The in vitro studies using 2,2-Diphenyl-1-Picryl-Hydrazyl (DPPH) assay showed strong antioxidant nature of CPL extract. Biochemical analysis indicated that the acute alcohol induced damage is reflected in the alterations of blood oxidative indices and CPL extract offered some protection with reduction in plasma lipid peroxidation level and increased erythrocyte glutathione peroxidase activity. Carica papaya leaf may potentially serve as a good therapeutic agent for protection against gastric ulcer and oxidative stress.

  5. Establishing a model for assessing DNA damage in murine brain cells as a molecular marker of chemotherapy-associated cognitive impairment.

    PubMed

    Krynetskiy, Evgeny; Krynetskaia, Natalia; Rihawi, Diana; Wieczerzak, Katarzyna; Ciummo, Victoria; Walker, Ellen

    2013-10-17

    Chemotherapy-associated cognitive impairment often follows cancer chemotherapy. We explored chemotherapy-induced DNA damage in the brain cells of mice treated with 5-fluorouracil (5FU), an antineoplastic agent, to correlate the extent of DNA damage to behavioral functioning in an autoshaping-operant mouse model of chemotherapy-induced learning and memory deficits (Foley et al., 2008). Male, Swiss-Webster mice were injected once with saline or 75 mg/kg 5FU at 0, 12, and 24h and weighed every 24h. Twenty-four h after the last injection, the mice were tested in a two-day acquisition and the retention of a novel response task for food reinforcement. Murine brain cells were analyzed for the presence of single- and double-strand DNA breaks by the single cell gel electrophoresis assay (the Comet assay). We detected significant differences (p<0.0001) for all DNA damage characteristics (DNA "comet" tail shape, migration pattern, tail moment and olive moments) between control mice cohort and 5FU-treated mice cohort: tail length - 119 vs. 153; tail moment - 101 vs. 136; olive moment - 60 vs. 82, correspondingly. We found a positive correlation between increased response rates (r=0.52, p<0.05) and increased rate of errors (r=0.51, p<0.05), and DNA damage on day 1. For all 15 mice (saline-treated and 5FU-treated mice), we found negative correlations between DNA damage and weight (r=-0.75, p<0.02). Our results indicate that chemotherapy-induced DNA damage changes the physiological status of the brain cells and may provide insights to the mechanisms for cognitive impairment after cancer chemotherapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. [Application of diffusion tensor imaging in judging infarction time of acute ischemic cerebral infarction].

    PubMed

    Dai, Zhenyu; Chen, Fei; Yao, Lizheng; Dong, Congsong; Liu, Yang; Shi, Haicun; Zhang, Zhiping; Yang, Naizhong; Zhang, Mingsheng; Dai, Yinggui

    2015-08-18

    To evaluate the clinical application value of diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) in judging infarction time phase of acute ischemic cerebral infarction. To retrospective analysis DTI images of 52 patients with unilateral acute ischemic cerebral infarction (hyper-acute, acute and sub-acute) from the Affiliated Yancheng Hospital of Southeast University Medical College, which diagnosed by clinic and magnetic resonance imaging. Set the regions of interest (ROIs) of infarction lesions, brain tissue close to infarction lesions and corresponding contra (contralateral normal brain tissue) on DTI parameters mapping of fractional anisotropy (FA), volume ratio anisotropy (VRA), average diffusion coefficient (DCavg) and exponential attenuation (Exat), record the parameters values of ROIs and calculate the relative parameters value of infarction lesion to contra. Meanwhile, reconstruct the DTT images based on the seed points (infarction lesion and contra). The study compared each parameter value of infarction lesions, brain tissue close to infarction lesions and corresponding contra, also analysed the differences of relative parameters values in different infarction time phases. The DTT images of acute ischemic cerebral infarction in each time phase could show the manifestation of fasciculi damaged. The DCavg value of cerebral infarction lesions was lower and the Exat value was higher than contra in each infarction time phase (P<0.05). The FA and VRA value of cerebral infarction lesions were reduced than contra only in acute and sub-acute infarction (P<0.05). The FA, VRA and Exat value of brain tissue close to infarction lesions were increased and DCavg value was decreased than contra in hyper-acute infarction (P<0.05). There were no statistic differences of FA, VRA, DCavg and Exat value of brain tissue close to infarction lesions in acute and sub-acute infarction. The relative FA and VRA value of infarction lesion to contra gradually

  7. Erythrocyte membrane fluidity and indices of plasmatic oxidative damage after acute physical exercise in humans.

    PubMed

    Berzosa, C; Gómez-Trullén, E M; Piedrafita, E; Cebrián, I; Martínez-Ballarín, E; Miana-Mena, F J; Fuentes-Broto, L; García, J J

    2011-06-01

    Optimal levels of membrane fluidity are essential for numerous cell functions including cell growth, solute transport and signal transduction. Since exercise enhances free radical production, our aim was to evaluate in healthy male subjects the effects of an acute bout of maximal and submaximal exercise on the erythrocyte membrane fluidity and its possible relation to the oxidative damage overproduction due to exercise. Subjects (n = 34) performed three cycloergometric tests: a continuous progressive exercise, a strenuous exercise until exhaustion and an acute bout of exercise at an intensity corresponding to 70% of maximal work capacity for 30 min. Venous blood samples were collected before and immediately after these exercises. Erythrocyte membrane fluidity was assessed by fluorescence spectroscopy. Plasma malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations and carbonyl content of plasmatic proteins were used as an index of lipid and protein oxidation, respectively. Exercise produced a dramatic drop in the erythrocyte membrane fluidity as compared to resting time, but this was not accompanied by significant changes in the plasmatic MDA and 4-HDA concentrations. The highest erythrocyte membrane rigidity was detected immediately after strenuous exercise until exhaustion was performed. Protein carbonyl levels were higher after exhaustive exercises than at rest. Continuous progressive and strenuous exercises until exhaustion, but not submaximal workload, resulted in a significant enhanced accumulation of carbonylated proteins in the plasma. These findings are consistent with the idea that exercise exaggerates oxidative damage, which may contribute, at least partially, to explain the rigidity in the membrane of the erythrocytes due to acute exercise.

  8. Metronidazole and Hydroxymetronidazole Central Nervous System Distribution: 1. Microdialysis Assessment of Brain Extracellular Fluid Concentrations in Patients with Acute Brain Injury

    PubMed Central

    Frasca, Denis; Dahyot-Fizelier, Claire; Adier, Christophe; Mimoz, Olivier; Debaene, Bertrand; Couet, William

    2014-01-01

    The distribution of metronidazole in the central nervous system has only been described based on cerebrospinal fluid data. However, extracellular fluid (ECF) concentrations may better predict its antimicrobial effect and/or side effects. We sought to explore by microdialysis brain ECF metronidazole distribution in patients with acute brain injury. Four brain-injured patients monitored by cerebral microdialysis received 500 mg of metronidazole over 0.5 h every 8 h. Brain dialysates and blood samples were collected at steady state over 8 h. Probe recoveries were evaluated by in vivo retrodialysis in each patient for metronidazole. Metronidazole and OH-metronidazole were assayed by high-pressure liquid chromatography, and a noncompartmental pharmacokinetic analysis was performed. Probe recovery was equal to 78.8% ± 1.3% for metronidazole in patients. Unbound brain metronidazole concentration-time curves were delayed compared to unbound plasma concentration-time curves but with a mean metronidazole unbound brain/plasma AUC0–τ ratio equal to 102% ± 19% (ranging from 87 to 124%). The unbound plasma concentration-time profiles for OH-metronidazole were flat, with mean average steady-state concentrations equal to 4.0 ± 0.7 μg ml−1. This microdialysis study describes the steady-state brain distribution of metronidazole in patients and confirms its extensive distribution. PMID:24277041

  9. Metronidazole and hydroxymetronidazole central nervous system distribution: 1. microdialysis assessment of brain extracellular fluid concentrations in patients with acute brain injury.

    PubMed

    Frasca, Denis; Dahyot-Fizelier, Claire; Adier, Christophe; Mimoz, Olivier; Debaene, Bertrand; Couet, William; Marchand, Sandrine

    2014-01-01

    The distribution of metronidazole in the central nervous system has only been described based on cerebrospinal fluid data. However, extracellular fluid (ECF) concentrations may better predict its antimicrobial effect and/or side effects. We sought to explore by microdialysis brain ECF metronidazole distribution in patients with acute brain injury. Four brain-injured patients monitored by cerebral microdialysis received 500 mg of metronidazole over 0.5 h every 8 h. Brain dialysates and blood samples were collected at steady state over 8 h. Probe recoveries were evaluated by in vivo retrodialysis in each patient for metronidazole. Metronidazole and OH-metronidazole were assayed by high-pressure liquid chromatography, and a noncompartmental pharmacokinetic analysis was performed. Probe recovery was equal to 78.8% ± 1.3% for metronidazole in patients. Unbound brain metronidazole concentration-time curves were delayed compared to unbound plasma concentration-time curves but with a mean metronidazole unbound brain/plasma AUC0-τ ratio equal to 102% ± 19% (ranging from 87 to 124%). The unbound plasma concentration-time profiles for OH-metronidazole were flat, with mean average steady-state concentrations equal to 4.0 ± 0.7 μg ml(-1). This microdialysis study describes the steady-state brain distribution of metronidazole in patients and confirms its extensive distribution.

  10. An Evidence-Based Systematic Review on Communication Treatments for Individuals with Right Hemisphere Brain Damage

    ERIC Educational Resources Information Center

    Blake, Margaret Lehman; Frymark, Tobi; Venedictov, Rebecca

    2013-01-01

    Purpose: The purpose of this review is to evaluate and summarize the research evidence related to the treatment of individuals with right hemisphere communication disorders. Method: A comprehensive search of the literature using key words related to right hemisphere brain damage and communication treatment was conducted in 27 databases (e.g.,…

  11. Monitoring inflammation (including fever) in acute brain injury.

    PubMed

    Provencio, J Javier; Badjatia, Neeraj

    2014-12-01

    Inflammation is an important part of the normal physiologic response to acute brain injury (ABI). How inflammation is manifest determines if it augments or hinders the resolution of ABI. Monitoring body temperature, the cellular arm of the inflammatory cascade, and inflammatory proteins may help guide therapy. This summary will address the utility of inflammation monitoring in brain-injured adults. An electronic literature search was conducted for English language articles describing the testing, utility, and optimal methods to measure inflammation in ABI. Ninety-four articles were included in this review. Current evidence suggests that control of inflammation after ABI may hold promise for advances in good outcomes. However, our understanding of how much inflammation is good and how much is deleterious is not yet clear. Several important concepts emerge form our review. First, while continuous temperature monitoring of core body temperature is recommended, temperature pattern alone is not useful in distinguishing infectious from noninfectious fever. Second, when targeted temperature management is used, shivering should be monitored at least hourly. Finally, white blood cell levels and protein markers of inflammation may have a limited role in distinguishing infectious from noninfectious fever. Our understanding of optimal use of inflammation monitoring after ABI is limited currently but is an area of active investigation.

  12. Resting State Functional Connectivity in Mild Traumatic Brain Injury at the Acute Stage: Independent Component and Seed-Based Analyses

    PubMed Central

    Iraji, Armin; Benson, Randall R.; Welch, Robert D.; O'Neil, Brian J.; Woodard, John L.; Imran Ayaz, Syed; Kulek, Andrew; Mika, Valerie; Medado, Patrick; Soltanian-Zadeh, Hamid; Liu, Tianming; Haacke, E. Mark

    2015-01-01

    Abstract Mild traumatic brain injury (mTBI) accounts for more than 1 million emergency visits each year. Most of the injured stay in the emergency department for a few hours and are discharged home without a specific follow-up plan because of their negative clinical structural imaging. Advanced magnetic resonance imaging (MRI), particularly functional MRI (fMRI), has been reported as being sensitive to functional disturbances after brain injury. In this study, a cohort of 12 patients with mTBI were prospectively recruited from the emergency department of our local Level-1 trauma center for an advanced MRI scan at the acute stage. Sixteen age- and sex-matched controls were also recruited for comparison. Both group-based and individual-based independent component analysis of resting-state fMRI (rsfMRI) demonstrated reduced functional connectivity in both posterior cingulate cortex (PCC) and precuneus regions in comparison with controls, which is part of the default mode network (DMN). Further seed-based analysis confirmed reduced functional connectivity in these two regions and also demonstrated increased connectivity between these regions and other regions of the brain in mTBI. Seed-based analysis using the thalamus, hippocampus, and amygdala regions further demonstrated increased functional connectivity between these regions and other regions of the brain, particularly in the frontal lobe, in mTBI. Our data demonstrate alterations of multiple brain networks at the resting state, particularly increased functional connectivity in the frontal lobe, in response to brain concussion at the acute stage. Resting-state functional connectivity of the DMN could serve as a potential biomarker for improved detection of mTBI in the acute setting. PMID:25285363

  13. Demyelinating and ischemic brain diseases: detection algorithm through regular magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Castillo, D.; Samaniego, René; Jiménez, Y.; Cuenca, L.; Vivanco, O.; Rodríguez-Álvarez, M. J.

    2017-09-01

    This work presents the advance to development of an algorithm for automatic detection of demyelinating lesions and cerebral ischemia through magnetic resonance images, which have contributed in paramount importance in the diagnosis of brain diseases. The sequences of images to be used are T1, T2, and FLAIR. Brain demyelination lesions occur due to damage of the myelin layer of nerve fibers; and therefore this deterioration is the cause of serious pathologies such as multiple sclerosis (MS), leukodystrophy, disseminated acute encephalomyelitis. Cerebral or cerebrovascular ischemia is the interruption of the blood supply to the brain, thus interrupting; the flow of oxygen and nutrients needed to maintain the functioning of brain cells. The algorithm allows the differentiation between these lesions.

  14. Renoprotective effects of combined endothelin-converting enzyme/neutral endopeptidase inhibitor SLV338 in acute and chronic experimental renal damage.

    PubMed

    Sharkovska, Yuliya; Kalk, Philipp; von Websky, Karoline; Relle, Katharina; Pfab, Thiemo; Alter, Markus; Fischer, Yvan; Hocher, Berthold

    2011-01-01

    Acute kidney injury (AKI) as well as chronic renal failure are associated with a huge mortality/morbidity. However, so far no drugs have been approved for the treatment of acute kidney failure and only a few for the treatment of chronic kidney disease (CKD). We analysed the effect of SLV338, a neutral endopeptidase (NEP)/endothelin converting enzyme (ECE)-inhibitor in animal models of acute kidney failure as well as chronic renal failure. Acute renal failure was induced in male Wistar rats by uninephrectomy and clamping of the remaining kidney for 55 minutes. SLV338 (total dose: 4.9 mg/kg) or vehicle was continuously infused for 2 hours (starting 20 minutes prior to clamping). Sham operated animals served as controls. Plasma creatinine was measured at baseline and day 2 and 8 after renal ischemia-reperfusion. Hypertensive renal damage was induced in male Sprague Dawley rats by nitric oxide deficiency using L-NAME (50 mg/kg per day, added to drinking water for 4 weeks). One group was treated over the same time period with SLV338 (30 mg/kg per day, mixed with food). Systolic blood pressure was monitored weekly. At study end, urine and blood samples were collected and kidneys were harvested. Acute renal ischemia-reperfusion caused a 5-fold plasma creatinine elevation (day 2), which was significantly attenuated by more than 50% in animals treated with SLV338 (p < 0.05). Renal failure was accompanied by a 67% mortality in vehicle-treated rats, but only 20% after SLV338 treatment (p = 0.03 compared to sham controls). Chronic L-NAME administration caused hypertension, urinary albumin excretion, glomerulosclerosis, renal arterial remodelling, and renal interstitial fibrosis. Treatment with SLV338 did not significantly affect blood pressure, but abolished renal tissue damage (interstitial fibrosis, glomerulosclerosis, renal arterial remodelling (p < 0.05 versus L-NAME group in each case). The dual ECE/NEP inhibitor SLV338 preserves kidney function and reduces mortality in

  15. Cortisol evaluation during the acute phase of traumatic brain injury-A prospective study.

    PubMed

    Bensalah, Meriem; Donaldson, Malcolm; Aribi, Yamina; Iabassen, Malek; Cherfi, Lyes; Nebbal, Mustapha; Medjaher, Meriem; Haffaf, ElMehdi; Abdennebi, Benaissa; Guenane, Kamel; Djermane, Adel; Kemali, Zahra; OuldKablia, Samia

    2018-05-01

    Biochemical diagnosis of adrenal insufficiency (AI) is difficult in the context of traumatic brain injury (TBI). To assess the frequency and predictive factors of AI in victims of TBI from Algiers. Between November 2009 and December 2013, TBI victims had a single 8-9 am serum cortisol measurement during the acute postinjury period (0-7 days). AI was defined according to basal cortisol levels of 83, 276 and 414 nmol/L. Variables studied were TBI severity according to Glasgow coma scale, duration of intubation and coma, pupillary status, hypotension, anaemia, brain imaging findings, diabetes insipidus and medication. Insulin tolerance test was performed during the recovery phase, defining AI as peak cortisol <500 nmol/L. Cortisol samples were obtained at median 3 (1-7) days from 277 patients (257M: 20F) aged 32 (18-65) years. Acute AI frequency was 8 (2.8%), 20 (21%) and 35 (37%), respectively using the three cortisol cut-offs. Factors predicting AI were diastolic hypotension, sedative medication, diabetes insipidus, skull base fracture and intraparenchymal haematoma. Mortality was highest in patients with acute cortisol <276 nmol/L (44.6% with OR for death 1.64, 95% CI 0.92-3.0, P = .12). During the recovery phase, AI was present in 3 of 3, 12 of 24, 4 of 16 and 20 of 66 patients with week 1 cortisol <83, 83-276, 277-414 and >414 nmol/L. Hydrocortisone replacement is advised in TBI patients with morning cortisol <276 nmol/L or those <414 nmol/L with additional risk factors for AI. As acute and subsequent AI are poorly correlated, patients with moderate/severe TBI require adrenal re-evaluation during the recovery phase. © 2018 John Wiley & Sons Ltd.

  16. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion

    PubMed Central

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-feng; Kong, Liang; Yao, Ying-Jia; Jiao, Ya-Nan; Yan, Yu-Hui; Li, Shao-Heng; Tao, Zhen-Yu; Lian, Guan; Yang, Jing-Xian; Kang, Ting-Guo

    2016-01-01

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary brain injury and the determination of the underlying mechanism of action in a mouse model of SWI that mimics the process of CED. After CED, mice received a gavage of ARC from 30 min to 14 days. Neurological severity scores (NSS) and wound closure degree were assessed after the injury. Histological analysis and immunocytochemistry were used to evaluated the extent of brain damage and neuroinflammation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect universal apoptosis. Enzyme-linked immunosorbent assays (ELISA) was used to test the inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10) and lactate dehydrogenase (LDH) content. Gene levels of inflammation (TNF-α, IL-6, and IL-10) and apoptosis (Caspase-3, Bax and Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Using these, we analyzed ARC’s efficacy and mechanism of action. Results: ARC treatment improved neurological function by reducing brain water content and hematoma and accelerating wound closure relative to untreated mice. ARC treatment reduced the levels of TNF-α and IL-6 and the number of allograft inflammatory factor (IBA)- and myeloperoxidase (MPO)-positive cells and increased the levels of IL-10. ARC-treated mice had fewer TUNEL+ apoptotic neurons and activated caspase-3-positive neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions: ARC treatment confers

  17. Protective effect of green tea polyphenol EGCG against neuronal damage and brain edema after unilateral cerebral ischemia in gerbils.

    PubMed

    Lee, Hyung; Bae, Jae Hoon; Lee, Seong-Ryong

    2004-09-15

    Previous studies have demonstrated that a green tea polyphenol, (-)-epigallocatechine gallate (EGCG), has a potent free radical scavenging and antioxidant effect. Glutamate leads to excitotoxicity and oxidative stress, which are important pathophysiologic responses to cerebral ischemia resulting in brain edema and neuronal damage. We investigated the effect of EGCG on excitotoxic neuronal damage in a culture system and the effect on brain edema formation and lesion after unilateral cerebral ischemia in gerbils. In vitro, excitotoxicity was induced by 24-hr incubation with N-methyl-D-aspartate (NMDA; 10 microM), AMPA (10 microM), or kainate (20 microM). EGCG (5 microM) was added to the culture media alone or with excitotoxins. We examined malondialdehyde (MDA) level and neuronal viability to evaluate the effect of EGCG. In vivo, unilateral cerebral ischemia was induced by occlusion of the right common carotid artery for 30, 60, or 90 min and followed by reperfusion of 24 hr. Brain edema, MDA, and infarction were examined to evaluate the protective effect of EGCG. EGCG (25 or 50 mg/kg, intraperitoneally) was administered twice, at 30 min before and immediately after ischemia. EGCG reduced excitotoxin-induced MDA production and neuronal damage in the culture system. In the in vivo study, treatment of gerbils with the lower EGCG dose failed to show neuroprotective effects; however, the higher EGCG dose attenuated the increase in MDA level caused by cerebral ischemia. EGCG also reduced the formation of postischemic brain edema and infarct volume. These results demonstrate EGCG may have future possibilities as a neuroprotective agent against excitotoxicity-related neurologic disorders such as brain ischemia.

  18. NOX4-dependent neuronal autotoxicity and BBB breakdown explain the superior sensitivity of the brain to ischemic damage.

    PubMed

    Casas, Ana I; Geuss, Eva; Kleikers, Pamela W M; Mencl, Stine; Herrmann, Alexander M; Buendia, Izaskun; Egea, Javier; Meuth, Sven G; Lopez, Manuela G; Kleinschnitz, Christoph; Schmidt, Harald H H W

    2017-11-14

    Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show in mouse models of ischemia in the heart, brain, and hindlimb that only in the brain does NADPH oxidase 4 (NOX4) lead to ischemic damage. We explain this distinct cellular distribution pattern through cell-specific knockouts. Endothelial NOX4 breaks down the BBB, while neuronal NOX4 leads to neuronal autotoxicity. Vascular smooth muscle NOX4, the common denominator of ischemia within all ischemic organs, played no apparent role. The direct neuroprotective potential of pharmacological NOX4 inhibition was confirmed in an ex vivo model, free of vascular and BBB components. Our results demonstrate that the heightened sensitivity of the brain to ischemic damage is due to an organ-specific role of NOX4 in blood-brain-barrier endothelial cells and neurons. This mechanism is conserved in at least two rodents and humans, making NOX4 a prime target for a first-in-class mechanism-based, cytoprotective therapy in the unmet high medical need indication of ischemic stroke. Copyright © 2017 the Author(s). Published by PNAS.

  19. Piano training in youths with hand motor impairments after damage to the developing brain

    PubMed Central

    Lampe, Renée; Thienel, Anna; Mitternacht, Jürgen; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2015-01-01

    Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients’ quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35–40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano. PMID:26345312

  20. Piano training in youths with hand motor impairments after damage to the developing brain.

    PubMed

    Lampe, Renée; Thienel, Anna; Mitternacht, Jürgen; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2015-01-01

    Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients' quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35-40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano.

  1. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury

    PubMed Central

    2014-01-01

    Background Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to substantial neuronal damage and behavioral impairment, and Toll-like receptor 4 (TLR4) is an important mediator of thiscascade. In the current study, we tested the hypothesis that curcumin, a phytochemical compound with potent anti-inflammatory properties that is extracted from the rhizome Curcuma longa, alleviates acute inflammatory injury mediated by TLR4 following TBI. Methods Neurological function, brain water content and cytokine levels were tested in TLR4-/- mice subjected to weight-drop contusion injury. Wild-type (WT) mice were injected intraperitoneally with different concentrations of curcumin or vehicle 15 minutes after TBI. At 24 hours post-injury, the activation of microglia/macrophages and TLR4 was detected by immunohistochemistry; neuronal apoptosis was measured by FJB and TUNEL staining; cytokines were assayed by ELISA; and TLR4, MyD88 and NF-κB levels were measured by Western blotting. In vitro, a co-culture system comprised of microglia and neurons was treated with curcumin following lipopolysaccharide (LPS) stimulation. TLR4 expression and morphological activation in microglia and morphological damage to neurons were detected by immunohistochemistry 24 hours post-stimulation. Results The protein expression of TLR4 in pericontusional tissue reached a maximum at 24 hours post-TBI. Compared with WT mice, TLR4-/- mice showed attenuated functional impairment, brain edema and cytokine release post-TBI. In addition to improvement in the above aspects, 100 mg/kg curcumin treatment post-TBI significantly reduced the number of TLR4-positive microglia/macrophages as well as inflammatory mediator release and neuronal apoptosis in WT mice. Furthermore, Western blot analysis indicated that the levels of TLR4 and its known downstream effectors (MyD88, and NF-κB) were also decreased after curcumin treatment. Similar outcomes were observed in the microglia and

  2. Opposing Effects of Pigment Epithelium-Derived Factor on Breast Cancer Cell versus Neuronal Survival: Implication for Brain Metastasis and Metastasis-Induced Brain Damage

    PubMed Central

    Fitzgerald, Daniel P.; Subramanian, Preeti; Deshpande, Monika; Graves, Christian; Gordon, Ira; Qian, Yongzhen; Snitkovsky, Yeva; Liewehr, David J.; Steinberg, Seth M.; Paltán-Ortiz, José D.; Herman, Mary M.; Camphausen, Kevin; Palmieri, Diane; Becerra, S. Patricia; Steeg, Patricia S.

    2011-01-01

    Brain metastases are a significant cause of cancer patient morbidity and mortality, yet preventative and therapeutic options remain an unmet need. The cytokine PEDF is downregulated in resected human brain metastases of breast cancer compared to primary breast tumors, suggesting that restoring its expression might limit metastatic spread. Here we show that outgrowth of large experimental brain metastases from human 231-BR or murine 4T1-BR breast cancer cells was suppressed by PEDF expression, as supported by in vitro analyses as well as direct intracranial implantation. Notably, the suppressive effects of PEDF were not only rapid but independent of the effects of this factor on angiogenesis. Paralleling its cytotoxic effects on breast cancer cells, PEDF also exerted a pro-survival effect on neurons that shielded the brain from tumor-induced damage, as indicated by a relative 3.5-fold reduction in the number of dying neurons adjacent to tumors expressing PEDF. Our findings establish that PEDF as both a metastatic suppressor and a neuroprotectant in the the brain, highlighting its role as a double agent in limiting brain metastasis and its local consequences. PMID:22215693

  3. Antimicrobial Peptides and Complement in Neonatal Hypoxia-Ischemia Induced Brain Damage

    PubMed Central

    Rocha-Ferreira, Eridan; Hristova, Mariya

    2015-01-01

    Hypoxic-ischemic encephalopathy (HIE) is a clinical condition in the neonate, resulting from oxygen deprivation around the time of birth. HIE affects 1–5/1000 live births worldwide and is associated with the development of neurological deficits, including cerebral palsy, epilepsy, and cognitive disabilities. Even though the brain is considered as an immune-privileged site, it has innate and adaptive immune response and can produce complement (C) components and antimicrobial peptides (AMPs). Dysregulation of cerebral expression of AMPs and C can exacerbate or ameliorate the inflammatory response within the brain. Brain ischemia triggers a prolonged inflammatory response affecting the progression of injury and secondary energy failure and involves both innate and adaptive immune systems, including immune-competent and non-competent cells. Following injury to the central nervous system (CNS), including neonatal hypoxia-ischemia (HI), resident microglia, and astroglia are the main cells providing immune defense to the brain in a stimulus-dependent manner. They can express and secrete pro-inflammatory cytokines and therefore trigger prolonged inflammation, resulting in neurodegeneration. Microglial cells express and release a wide range of inflammation-associated molecules including several components of the complement system. Complement activation following neonatal HI injury has been reported to contribute to neurodegeneration. Astrocytes can significantly affect the immune response of the CNS under pathological conditions through production and release of pro-inflammatory cytokines and immunomodulatory AMPs. Astrocytes express β-defensins, which can chemoattract and promote maturation of dendritic cells (DC), and can also limit inflammation by controlling the viability of these same DC. This review will focus on the balance of complement components and AMPs within the CNS following neonatal HI injury and the effect of that balance on the subsequent brain damage

  4. Changes in compressed neurons from dogs with acute and severe cauda equina constrictions following intrathecal injection of brain-derived neurotrophic factor-conjugated polymer nanoparticles☆

    PubMed Central

    Tan, Junming; Shi, Jiangang; Shi, Guodong; Liu, Yanling; Liu, Xiaohong; Wang, Chaoyang; Chen, Dechun; Xing, Shunming; Shen, Lianbing; Jia, Lianshun; Ye, Xiaojian; He, Hailong; Li, Jiashun

    2013-01-01

    This study established a dog model of acute multiple cauda equina constriction by experimental constriction injury (48 hours) of the lumbosacral central processes in dorsal root ganglia neurons. The repair effect of intrathecal injection of brain-derived neurotrophic factor with 15 mg encapsulated biodegradable poly(lactide-co-glycolide) nanoparticles on this injury was then analyzed. Dorsal root ganglion cells (L7) of all experimental dogs were analyzed using hematoxylin-eosin staining and immunohistochemistry at 1, 2 and 4 weeks following model induction. Intrathecal injection of brain-derived neurotrophic factor can relieve degeneration and inflammation, and elevate the expression of brain-derived neurotrophic factor in sensory neurons of compressed dorsal root ganglion. Simultaneously, intrathecal injection of brain-derived neurotrophic factor obviously improved neurological function in the dog model of acute multiple cauda equina constriction. Results verified that sustained intraspinal delivery of brain-derived neurotrophic factor encapsulated in biodegradable nanoparticles promoted the repair of histomorphology and function of neurons within the dorsal root ganglia in dogs with acute and severe cauda equina syndrome. PMID:25206593

  5. Social isolation stress-induced oxidative damage in mouse brain and its modulation by majonoside-R2, a Vietnamese ginseng saponin.

    PubMed

    Huong, Nguyen Thi Thu; Murakami, Yukihisa; Tohda, Michihisa; Watanabe, Hiroshi; Matsumoto, Kinzo

    2005-08-01

    Stressors with a physical factor such as immobilization, electric foot shock, cold swim, etc., have been shown to produce oxidative damage to membrane lipids in the brain. In this study, we investigated the effect of protracted social isolation stress on lipid peroxidation activity in the mouse brain and elucidated the protective effect of majonoside-R2, a major saponin component of Vietnamese ginseng, in mice exposed to social isolation stress. Thiobarbituric acid reactive substance levels, one of the end products of lipid peroxidation reaction, were increased in the brains of mice subjected to 6-8 weeks of social isolation stress. Measurements of nitric oxide (NO) metabolites (NO(x)(-)) also revealed a significant increase of NO production in the brains of socially isolated mice. Moreover, the depletion of brain glutathione content, an endogenous antioxidant, in socially isolated animals occurred in association with the rise in lipid peroxidation. The intraperitoneal administration of majonoside-R2 (10-50 mg/kg) had no effect on thiobarbituric acid reactive substances (TBARS), NO, or glutathione levels in the brains of group-housed control mice but it significantly suppressed the increase in TBARS and NO levels and the decrease in glutathione levels caused by social isolation stress. These results suggest that mice subjected to 6-8 weeks of social isolation stress produces oxidative damage in the brain partly via enhancement of NO production, and that majonoside-R2 exerts a protective effect by modulating NO and glutathione systems in the brain.

  6. Acute caffeine administration effect on brain activation patterns in mild cognitive impairment.

    PubMed

    Haller, Sven; Montandon, Marie-Louise; Rodriguez, Cristelle; Moser, Dominik; Toma, Simona; Hofmeister, Jeremy; Sinanaj, Indrit; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon

    2014-01-01

    Previous studies showed that acute caffeine administration enhances task-related brain activation in elderly individuals with preserved cognition. To explore the effects of this widely used agent on cognition and brain activation in early phases of cognitive decline, we performed a double-blinded, placebo-controlled functional magnetic resonance imaging (fMRI) study during an n-back working memory task in 17 individuals with mild cognitive impairment (MCI) compared to 17 age-matched healthy controls (HC). All individuals were regular caffeine consumers with an overnight abstinence and given 200 mg caffeine versus placebo tablets 30 minutes before testing. Analyses included assessment of task-related activation (general linear model), functional connectivity (tensorial-independent component analysis, TICA), baseline perfusion (arterial spin labeling, ASL), grey matter density (voxel-based morphometry, VBM), and white matter microstructure (tract-based spatial statistics, TBSS). Acute caffeine administration induced a focal activation of the prefrontal areas in HC with a more diffuse and posteromedial activation pattern in MCI individuals. In MCI, TICA documented a significant caffeine-related enhancement in the prefrontal cortex, supplementary motor area, ventral premotor and parietal cortex as well as the basal ganglia and cerebellum. The absence of significant group differences in baseline ASL perfusion patterns supports a neuronal rather than a purely vascular origin of these differences. The VBM and TBSS analyses excluded potentially confounding differences in grey matter density and white matter microstructure between MCI and HC. The present findings suggest a posterior displacement of working memory-related brain activation patterns after caffeine administration in MCI that may represent a compensatory mechanism to counterbalance a frontal lobe dysfunction.

  7. Subacute administration of fluoxetine prevents short-term brain hypometabolism and reduces brain damage markers induced by the lithium-pilocarpine model of epilepsy in rats.

    PubMed

    Shiha, Ahmed Anis; de Cristóbal, Javier; Delgado, Mercedes; Fernández de la Rosa, Rubén; Bascuñana, Pablo; Pozo, Miguel A; García-García, Luis

    2015-02-01

    The role of serotonin (5-hydroxytryptamine; 5-HT) in epileptogenesis still remains controversial. In this regard, it has been reported that serotonergic drugs can alter epileptogenesis in opposite ways. The main objective of this work was to investigate the effect of the selective 5-HT selective reuptake inhibitor (SSRI) fluoxetine administered subacutely (10mg/kg/day×7 days) on the eventual metabolic impairment induced by the lithium-pilocarpine model of epilepsy in rats. In vivo 2-deoxy-2-[(18)F]fluoro-d-glucose ([(18)F] FDG) positron emission tomography (PET) was performed to assess the brain glucose metabolic activity on days 3 and 30 after the insult. In addition, at the end of the experiment (day 33), several histochemical and neurochemical assessments were performed for checking the neuronal functioning and integrity. Three days after the insult, a marked reduction of [(18)F] FDG uptake (about 30% according to the brain region) was found in all brain areas studied. When evaluated on day 30, although a hypometabolism tendency was observed, no statistically significant reduction was present in any region analyzed. In addition, lithium-pilocarpine administration was associated with medium-term hippocampal and cortical damage, since it induced neurodegeneration, glial activation and augmented caspase-9 expression. Regarding the effect of fluoxetine, subacute treatment with this SSRI did not significantly reduce the mortality rate observed after pilocarpine-induced seizures. However, fluoxetine did prevent not only the short-term metabolic impairment, but also the aforementioned signs of neuronal damage in surviving animals to lithium-pilocarpine protocol. Finally, fluoxetine increased the density of GABAA receptor both at the level of the dentate gyrus and CA1-CA2 regions in pilocarpine-treated animals. Overall, our data suggest a protective role for fluoxetine against pilocarpine-induced brain damage. Moreover, this action may be associated with an increase of

  8. A new threshold of apparent diffusion coefficient values in white matter after successful tissue plasminogen activator treatment for acute brain ischemia.

    PubMed

    Sato, Atsushi; Shimizu, Yusaku; Koyama, Junichi; Hongo, Kazuhiro

    2017-06-01

    Tissue plasminogen activator (tPA) is effective for the treatment of acute brain ischemia, but may trigger fatal brain edema or hemorrhage if the brain ischemia results in a large infarct. Herein, we attempted to predict the extent of infarcts by determining the optimal threshold of ADC values on DWI that predictively distinguishes between infarct and reversible areas, and by reconstructing color-coded images based on this threshold. The study subjects consisted of 36 patients with acute brain ischemia in whom MRA had confirmed reopening of the occluded arteries in a short time (mean: 99min) after tPA treatment. We measured the apparetnt diffusion coefficient (ADC) values in several small regions of interest over the white matter within high-intensity areas on the initial diffusion weighted image (DWI); then, by comparing the findings to the follow-up images, we obtained the optimal threshold of ADC values using receiver-operating characteristic analysis. The threshold obtained (583×10 -6 m 2 /s) was lower than those previously reported; this threshold could distinguish between infarct and reversible areas with considerable accuracy (sensitivity: 0.87, specificity: 0.94). The threshold obtained and the reconstructed images were predictive of the final radiological result of tPA treatment, and this threshold may be helpful in determining the appropriate management of patients with acute brain ischemia. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Potential for thermal damage to the blood–brain barrier during craniotomy: implications for intracortical recording microelectrodes

    NASA Astrophysics Data System (ADS)

    Shoffstall, Andrew J.; Paiz, Jen E.; Miller, David M.; Rial, Griffin M.; Willis, Mitchell T.; Menendez, Dhariyat M.; Hostler, Stephen R.; Capadona, Jeffrey R.

    2018-06-01

    Objective. Our objective was to determine how readily disruption of the blood–brain barrier (BBB) occurred as a result of bone drilling during a craniotomy to implant microelectrodes in rat cortex. While the phenomenon of heat production during bone drilling is well known, practices to evade damage to the underlying brain tissue are inconsistently practiced and reported in the literature. Approach. We conducted a review of the intracortical microelectrode literature to summarize typical approaches to mitigate drill heating during rodent craniotomies. Post mortem skull-surface and transient brain-surface temperatures were experimentally recorded using an infrared camera and thermocouple, respectively. A number of drilling conditions were tested, including varying drill speed and continuous versus intermittent contact. In vivo BBB permeability was assayed 1 h after the craniotomy procedure using Evans blue dye. Main results. Of the reviewed papers that mentioned methods to mitigate thermal damage during craniotomy, saline irrigation was the most frequently cited (in six of seven papers). In post mortem tissues, we observed increases in skull-surface temperature ranging from  +3 °C to  +21 °C, dependent on drill speed. In vivo, pulsed-drilling (2 s-on/2 s-off) and slow-drilling speeds (1000 r.p.m.) were the most effective methods we studied to mitigate heating effects from drilling, while inconclusive results were obtained with saline irrigation. Significance. Neuroinflammation, initiated by damage to the BBB and perpetuated by the foreign body response, is thought to play a key role in premature failure of intracortical recording microelectrodes. This study demonstrates the extreme sensitivity of the BBB to overheating caused by bone drilling. To avoid damage to the BBB, the authors recommend that craniotomies be drilled with slow speeds and/or with intermittent drilling with complete removal of the drill from the skull during ‘off’ periods. While

  10. Establishing a model for assessing DNA damage in murine brain cells as a molecular marker of chemotherapy-associated cognitive impairment

    PubMed Central

    Krynetskiy, Evgeny; Krynetskaia, Natalia; Rihawi, Diana; Wieczerzak, Katarzyna; Ciummo, Victoria; Walker, Ellen

    2013-01-01

    Aims Chemotherapy-associated cognitive impairment often follows cancer chemotherapy. We explored chemotherapy-induced DNA damage in the brain cells of mice treated with 5-fluorouracil (5FU), an antineoplastic agent, to correlate the extent of DNA damage to behavioral functioning in an autoshaping-operant mouse model of chemotherapy-induced learning and memory deficits (Foley et al. 2008). Main methods Male, Swiss-Webster mice were injected once with saline or 75 mg/kg 5FU at 0, 12, and 24 h and weighed every 24 h. Twenty-four h after the last injection, the mice were tested in a two-day acquisition and retention of a novel response task for food reinforcement. Murine brain cells were analyzed for the presence of single- and double-strand DNA breaks by the single cell gel electrophoresis assay (the Comet assay). Key findings We detected significant differences (p<0.0001) for all DNA damage characteristics (DNA “comet” tail shape, migration pattern, tail moment and Olive moments) between control mice cohort and 5FU-treated mice cohort: tail length – 119 vs. 153; tail moment – 101 vs. 136; olive moment – 60 vs. 82, correspondingly. We found a positive correlation between increased response rates (r=0.52, p<0.05) and increased rate of errors (r=0.51, p<0.05), and DNA damage on day 1. For all 15 mice (saline-treated and 5FU-treated mice), we found negative correlations between DNA damage and weight (r=−0.75, p<0.02). Significance Our results indicate that chemotherapy-induced DNA damage changes the physiological status of the brain cells and may provide insights to the mechanisms for cognitive impairment after cancer chemotherapy. PMID:23567806

  11. Effect of hyperbaric oxygen on lipid peroxidation and visual development in neonatal rats with hypoxia-ischemia brain damage.

    PubMed

    Chen, Jing; Chen, Yan-Hui; Lv, Hong-Yan; Chen, Li-Ting

    2016-07-01

    The aim of the present study was to investigate the effect of hyperbaric oxygen (HBO) on lipid peroxidation and visual development in a neonatal rat model of hypoxic-ischemic brain damage (HIBD). The rat models of HIBD were established by delayed uterus dissection and were divided randomly into two groups (10 rats each): HIBD and HBO-treated HIBD (HIBD+HBO) group. Another 20 rats that underwent sham-surgery were also divided randomly into the HBO-treated and control groups. The rats that underwent HBO treatment received HBO (0.02 MPa, 1 h/day) 24 h after the surgery and this continued for 14 days. When rats were 4 weeks old, their flash visual evoked potentials (F-VEPs) were monitored and the ultrastructures of the hippocampus were observed under transmission electron microscope. The levels of superoxide dismutase (SOD) and malonyldialdehyde (MDA) in the brain tissue homogenate were detected by xanthine oxidase and the thiobarbituric acid colorimetric method. Compared with the control group, the ultrastructures of the pyramidal neurons in the hippocampal CA3 area were distorted, the latencies of F-VEPs were prolonged (P<0.01) and the SOD activities were lower while the MDA levels were higher (P<0.01) in the HIBD group. No significant differences in ultrastructure, the latency of F-VEPs or SOD/MDA levels were identified between the HBO-treated HIBD group and the normal control group (P>0.05). HBO enhances antioxidant capacity and reduces the ultrastructural damage induced by hypoxic-ischemia, which may improve synaptic reconstruction and alleviate immature brain damage to promote the habilitation of brain function.

  12. [Acute brain expansion during emergency neck clipping surgery for cerebral aneurysms in a patient with dilated cardiomyopathy].

    PubMed

    Nakao, M; Kawaguchi, R; Nakatani, K; Niinai, H; Takezaki, T; Hanaki, C

    1996-06-01

    A 61-year-old male with coma and undiagnosed dilated cardiomyopathy received emergency cerebral aneurysm surgery. Anesthesia was induced with thiamylal, fentanyl and vecuronium and maintained with 66% N2O and 1.0% isoflurane. Five hundred ml of 20% mannitol was infused in 30 min. At the end of the infusion, hypotension occurred. Immediately after the injection of ephedrine, acute brain swelling was observed. The operation was switched to external decompression. Post-operative echocardiography revealed the presence of dilated cardiomyopathy (DCM). The ejection fraction was 34%. Two weeks later, the second operation was scheduled. The anesthesia was induced with fentanyl, midazolam and vecuronium and maintained with N2O and 0.7% isoflurane. Nitroglycerine, lidocaine, PGE1, dopamine and dobutamine were infused throughout the operation. Five hundred ml of 20% mannitol was infused in 60 min. There were no considerable hemodynamic changes and no episode of brain expansion during operation. We conclude that the rapid infusion of mannitol can trigger acute cardiac failure and brain edema in patients with DCM.

  13. Loud Noise Exposure Produces DNA, Neurotransmitter and Morphological Damage within Specific Brain Areas.

    PubMed

    Frenzilli, Giada; Ryskalin, Larisa; Ferrucci, Michela; Cantafora, Emanuela; Chelazzi, Silvia; Giorgi, Filippo S; Lenzi, Paola; Scarcelli, Vittoria; Frati, Alessandro; Biagioni, Francesca; Gambardella, Stefano; Falleni, Alessandra; Fornai, Francesco

    2017-01-01

    Exposure to loud noise is a major environmental threat to public health. Loud noise exposure, apart from affecting the inner ear, is deleterious for cardiovascular, endocrine and nervous systems and it is associated with neuropsychiatric disorders. In this study we investigated DNA, neurotransmitters and immune-histochemical alterations induced by exposure to loud noise in three major brain areas (cerebellum, hippocampus, striatum) of Wistar rats. Rats were exposed to loud noise (100 dBA) for 12 h. The effects of noise on DNA integrity in all three brain areas were evaluated by using Comet assay. In parallel studies, brain monoamine levels and morphology of nigrostriatal pathways, hippocampus and cerebellum were analyzed at different time intervals (24 h and 7 days) after noise exposure. Loud noise produced a sudden increase in DNA damage in all the brain areas under investigation. Monoamine levels detected at 7 days following exposure were differently affected depending on the specific brain area. Namely, striatal but not hippocampal dopamine (DA) significantly decreased, whereas hippocampal and cerebellar noradrenaline (NA) was significantly reduced. This is in line with pathological findings within striatum and hippocampus consisting of a decrease in striatal tyrosine hydroxylase (TH) combined with increased Bax and glial fibrillary acidic protein (GFAP). Loud noise exposure lasting 12 h causes immediate DNA, and long-lasting neurotransmitter and immune-histochemical alterations within specific brain areas of the rat. These alterations may suggest an anatomical and functional link to explain the neurobiology of diseases which prevail in human subjects exposed to environmental noise.

  14. N-Terminal Pro-B-Type Natriuretic Peptide and Subclinical Brain Damage in the General Population.

    PubMed

    Zonneveld, Hazel I; Ikram, M Arfan; Hofman, Albert; Niessen, Wiro J; van der Lugt, Aad; Krestin, Gabriel P; Franco, Oscar H; Vernooij, Meike W

    2017-04-01

    Purpose To investigate the association between N-terminal pro-B-type natriuretic peptide (NT-proBNP), which is a marker of heart disease, and markers of subclinical brain damage on magnetic resonance (MR) images in community-dwelling middle-aged and elderly subjects without dementia and without a clinical diagnosis of heart disease. Materials and Methods This prospective population-based cohort study was approved by a medical ethics committee overseen by the national government, and all participants gave written informed consent. Serum levels of NT-proBNP were measured in 2397 participants without dementia or stroke (mean age, 56.6 years; age range, 45.7-87.3 years) and without clinical diagnosis of heart disease who were drawn from the population-based Rotterdam Study. All participants were examined with a 1.5-T MR imager. Multivariable linear and logistic regression analyses were used to investigate the association between NT-proBNP level and MR imaging markers of subclinical brain damage, including volumetric, focal, and microstructural markers. Results A higher NT-proBNP level was associated with smaller total brain volume (mean difference in z score per standard deviation increase in NT-proBNP level, -0.021; 95% confidence interval [CI]: -0.034, -0.007; P = .003) and was predominantly driven by gray matter volume (mean difference in z score per standard deviation increase in NT-proBNP level, -0.037; 95% CI: -0.057, -0.017; P < .001). Higher NT-proBNP level was associated with larger white matter lesion volume (mean difference in z score per standard deviation increase in NT-proBNP level, 0.090; 95% CI: 0.051, 0.129; P < .001), with lower fractional anisotropy (mean difference in z score per standard deviation increase in NT-proBNP level, -0.048; 95% CI: -0.088, -0.008; P = .019) and higher mean diffusivity (mean difference in z score per standard deviation increase in NT-proBNP level, 0.054; 95% CI: 0.018, 0.091; P = .004) of normal-appearing white matter

  15. Organotins in Neuronal Damage, Brain Function, and Behavior: A Short Review

    PubMed Central

    Ferraz da Silva, Igor; Freitas-Lima, Leandro Ceotto; Graceli, Jones Bernardes; Rodrigues, Lívia Carla de Melo

    2018-01-01

    The consequences of exposure to environmental contaminants have shown significant effects on brain function and behavior in different experimental models. The endocrine-disrupting chemicals (EDC) present various classes of pollutants with potential neurotoxic actions, such as organotins (OTs). OTs have received special attention due to their toxic effects on the central nervous system, leading to abnormal mammalian neuroendocrine axis function. OTs are organometallic pollutants with a tin atom bound to one or more carbon atoms. OT exposure may occur through the food chain and/or contaminated water, since they have multiple applications in industry and agriculture. In addition, OTs have been used with few legal restrictions in the last decades, despite being highly toxic. In addition to their action as EDC, OTs can also cross the blood–brain barrier and show relevant neurotoxic effects, as observed in several animal model studies specifically involving the development of neurodegenerative processes, neuroinflammation, and oxidative stress. Thus, the aim of this short review is to summarize the toxic effects of the most common OT compounds, such as trimethyltin, tributyltin, triethyltin, and triphenyltin, on the brain with a focus on neuronal damage as a result of oxidative stress and neuroinflammation. We also aim to present evidence for the disruption of behavioral functions, neurotransmitters, and neuroendocrine pathways caused by OTs. PMID:29358929

  16. Deciphering neuronal population codes for acute thermal pain

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Zhang, Qiaosheng; Phuong Sieu Tong, Ai; Manders, Toby R.; Wang, Jing

    2017-06-01

    Objective. Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage. Current pain research mostly focuses on molecular and synaptic changes at the spinal and peripheral levels. However, a complete understanding of pain mechanisms requires the physiological study of the neocortex. Our goal is to apply a neural decoding approach to read out the onset of acute thermal pain signals, which can be used for brain-machine interface. Approach. We used micro wire arrays to record ensemble neuronal activities from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) in freely behaving rats. We further investigated neural codes for acute thermal pain at both single-cell and population levels. To detect the onset of acute thermal pain signals, we developed a novel latent state-space framework to decipher the sorted or unsorted S1 and ACC ensemble spike activities, which reveal information about the onset of pain signals. Main results. The state space analysis allows us to uncover a latent state process that drives the observed ensemble spike activity, and to further detect the ‘neuronal threshold’ for acute thermal pain on a single-trial basis. Our method achieved good detection performance in sensitivity and specificity. In addition, our results suggested that an optimal strategy for detecting the onset of acute thermal pain signals may be based on combined evidence from S1 and ACC population codes. Significance. Our study is the first to detect the onset of acute pain signals based on neuronal ensemble spike activity. It is important from a mechanistic viewpoint as it relates to the significance of S1 and ACC activities in the regulation of the acute pain onset.

  17. Atypical temporal activation pattern and central-right brain compensation during semantic judgment task in children with early left brain damage.

    PubMed

    Chang, Yi-Tzu; Lin, Shih-Che; Meng, Ling-Fu; Fan, Yang-Teng

    In this study we investigated the event-related potentials (ERPs) during the semantic judgment task (deciding if the two Chinese characters were semantically related or unrelated) to identify the timing of neural activation in children with early left brain damage (ELBD). The results demonstrated that compared with the controls, children with ELBD had (1) competitive accuracy and reaction time in the semantic judgment task, (2) weak operation of the N400, (3) stronger, earlier and later compensational positivities (referred to the enhanced P200, P250, and P600 amplitudes) in the central and right region of the brain to successfully engage in semantic judgment. Our preliminary findings indicate that temporally postlesional reorganization is in accordance with the proposed right-hemispheric organization of speech after early left-sided brain lesion. During semantic processing, the orthography has a greater effect on the children with ELBD, and a later semantic reanalysis (P600) is required due to the less efficient N400 at the former stage for semantic integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Post-stroke acquired amusia: A comparison between right- and left-brain hemispheric damages.

    PubMed

    Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H

    2017-01-01

    Although extensive research has been published about the emotional consequences of stroke, most studies have focused on emotional words, speech prosody, voices, or facial expressions. The emotional processing of musical excerpts following stroke has been relatively unexplored. The present study was conducted to investigate the effects of chronic stroke on the recognition of basic emotions in music. Seventy persons, including 25 normal controls (NC), 25 persons with right brain damage (RBD) from stroke, and 20 persons with left brain damage (LBD) from stroke between the ages of 31-71 years were studied. The Musical Emotional Bursts (MEB) test, which consists of a set of short musical pieces expressing basic emotional states (happiness, sadness, and fear) and neutrality, was used to test musical emotional perception. Both stroke groups were significantly poorer than normal controls for the MEB total score and its subtests (p < 0.001). The RBD group was significantly less able than the LBD group to recognize sadness (p = 0.047) and neutrality (p = 0.015). Negative correlations were found between age and MEB scores for all groups, particularly the NC and RBD groups. Our findings indicated that stroke affecting the auditory cerebrum can cause acquired amusia with greater severity in RBD than LBD. These results supported the "valence hypothesis" of right hemisphere dominance in processing negative emotions.

  19. Brain Activity Associated With Attention Deficits Following Chemotherapy for Childhood Acute Lymphoblastic Leukemia.

    PubMed

    Fellah, Slim; Cheung, Yin T; Scoggins, Matthew A; Zou, Ping; Sabin, Noah D; Pui, Ching-Hon; Robison, Leslie L; Hudson, Melissa M; Ogg, Robert J; Krull, Kevin R

    2018-05-21

    The impact of contemporary chemotherapy treatment for childhood acute lymphoblastic leukemia on central nervous system activity is not fully appreciated. Neurocognitive testing and functional magnetic resonance imaging (fMRI) were obtained in 165 survivors five or more years postdiagnosis (average age = 14.4 years, 7.7 years from diagnosis, 51.5% males). Chemotherapy exposure was measured as serum concentration of methotrexate following high-dose intravenous injection. Neurocognitive testing included measures of attention and executive function. fMRI was obtained during completion of two tasks, the continuous performance task (CPT) and the attention network task (ANT). Image analysis was performed using Statistical Parametric Mapping software, with contrasts targeting sustained attention, alerting, orienting, and conflict. All statistical tests were two-sided. Compared with population norms, survivors demonstrated impairment on number-letter switching (P < .001, a measure of cognitive flexibility), which was associated with treatment intensity (P = .048). Task performance during fMRI was associated with neurocognitive dysfunction across multiple tasks. Regional brain activation was lower in survivors diagnosed at younger ages for the CPT (bilateral parietal and temporal lobes) and the ANT (left parietal and right hippocampus). With higher serum methotrexate exposure, CPT activation decreased in the right temporal and bilateral frontal and parietal lobes, but ANT alerting activation increased in the ventral frontal, insula, caudate, and anterior cingulate. Brain activation during attention and executive function tasks was associated with serum methotrexate exposure and age at diagnosis. These findings provide evidence for compromised and compensatory changes in regional brain function that may help clarify the neural substrates of cognitive deficits in acute lymphoblastic leukemia survivors.

  20. Exploring Uncoupling Proteins and Antioxidant Mechanisms under Acute Cold Exposure in Brains of Fish

    PubMed Central

    Lucassen, Magnus; Schmidt, Maike M.; Dringen, Ralf; Abele, Doris; Hwang, Pung-Pung

    2011-01-01

    Exposure to fluctuating temperatures accelerates the mitochondrial respiration and increases the formation of mitochondrial reactive oxygen species (ROS) in ectothermic vertebrates including fish. To date, little is known on potential oxidative damage and on protective antioxidative defense mechanisms in the brain of fish under cold shock. In this study, the concentration of cellular protein carbonyls in brain was significantly increased by 38% within 1 h after cold exposure (from 28°C to 18°C) of zebrafish (Danio rerio). In addition, the specific activity of superoxide dismutase (SOD) and the mRNA level of catalase (CAT) were increased after cold exposure by about 60% (6 h) and by 60%–90% (1 and 24 h), respectively, while the specific glutathione content as well as the ratio of glutathione disulfide to glutathione remained constant and at a very low level. In addition, cold exposure increased the protein level of hypoxia-inducible factor (HIF) by about 50% and the mRNA level of the glucose transporter zglut3 in brain by 50%–100%. To test for an involvement of uncoupling proteins (UCPs) in the cold adaptation of zebrafish, five UCP members were annotated and identified (zucp1-5). With the exception of zucp1, the mRNA levels of the other four zucps were significantly increased after cold exposure. In addition, the mRNA levels of four of the fish homologs (zppar) of the peroxisome proliferator-activated receptor (PPAR) were increased after cold exposure. These data suggest that PPARs and UCPs are involved in the alterations observed in zebrafish brain after exposure to 18°C. The observed stimulation of the PPAR-UCP axis may help to prevent oxidative damage and to maintain metabolic balance and cellular homeostasis in the brains of ectothermic zebrafish upon cold exposure. PMID:21464954

  1. Methylmercury Causes Blood-Brain Barrier Damage in Rats via Upregulation of Vascular Endothelial Growth Factor Expression

    PubMed Central

    Takahashi, Tetsuya; Fujimura, Masatake; Koyama, Misaki; Kanazawa, Masato; Usuki, Fusako; Nishizawa, Masatoyo; Shimohata, Takayoshi

    2017-01-01

    Clinical manifestations of methylmercury (MeHg) intoxication include cerebellar ataxia, concentric constriction of visual fields, and sensory and auditory disturbances. The symptoms depend on the site of MeHg damage, such as the cerebellum and occipital lobes. However, the underlying mechanism of MeHg-induced tissue vulnerability remains to be elucidated. In the present study, we used a rat model of subacute MeHg intoxication to investigate possible MeHg-induced blood-brain barrier (BBB) damage. The model was established by exposing the rats to 20-ppm MeHg for up to 4 weeks; the rats exhibited severe cerebellar pathological changes, although there were no significant differences in mercury content among the different brain regions. BBB damage in the cerebellum after MeHg exposure was confirmed based on extravasation of endogenous immunoglobulin G (IgG) and decreased expression of rat endothelial cell antigen-1. Furthermore, expression of vascular endothelial growth factor (VEGF), a potent angiogenic growth factor, increased markedly in the cerebellum and mildly in the occipital lobe following MeHg exposure. VEGF expression was detected mainly in astrocytes of the BBB. Intravenous administration of anti-VEGF neutralizing antibody mildly reduced the rate of hind-limb crossing signs observed in MeHg-exposed rats. In conclusion, we demonstrated for the first time that MeHg induces BBB damage via upregulation of VEGF expression at the BBB in vivo. Further studies are required in order to determine whether treatment targeted at VEGF can ameliorate MeHg-induced toxicity. PMID:28118383

  2. Angiotensin-(1-7) protects from brain damage induced by shiga toxin 2-producing enterohemorrhagic Escherichia coli.

    PubMed

    Goldstein, Jorge; Carden, Tomás R; Perez, María J; Taira, Carlos A; Höcht, Christian; Gironacci, Mariela M

    2016-12-01

    Shiga toxin 2 (Stx2)-producing enterohemorrhagic induced brain damage. Since a cerebroprotective action was reported for angiotensin (Ang)-(1-7), our aim was to investigate whether Ang-(1-7) protects from brain damage induced by Stx2-producing enterohemorrhagic Escherichia coli The anterior hypothalamic area of adult male Wistar rats was injected with saline solution or Stx2 or Stx2 plus Ang-(1-7) or Stx2 plus Ang-(1-7) plus A779. Rats received a single injection of Stx2 at the beginning of the experiment, and Ang-(1-7), A779, or saline was administered daily in a single injection for 8 days. Cellular ultrastructural changes were analyzed by transmission electron microscopy. Stx2 induced neurodegeneration, axonal demyelination, alterations in synapse, and oligodendrocyte and astrocyte damage, accompanied by edema. Ang-(1-7) prevented neuronal damage triggered by the toxin in 55.6 ± 9.5% of the neurons and the Stx2-induced synapse dysfunction was reversed. In addition, Ang-(1-7) blocked Stx2-induced demyelination in 92 ± 4% of the axons. Oligodendrocyte damage caused by Stx2 was prevented by Ang-(1-7) but astrocytes were only partially protected by the peptide (38 ± 5% of astrocytes were preserved). Ang-(1-7) treatment resulted in 50% reduction in the number of activated microglial cells induced by Stx2, suggesting an anti-inflammatory action. All these beneficial effects elicited by Ang-(1-7) were blocked by the Mas receptor antagonist and thus it was concluded that Ang-(1-7) protects mainly neurons and oligodendrocytes, and partially astrocytes, in the central nervous system through Mas receptor stimulation. Copyright © 2016 the American Physiological Society.

  3. Brain regions involved in the development of acute phase responses accompanying fever in rabbits.

    PubMed Central

    Morimoto, A; Murakami, N; Nakamori, T; Sakata, Y; Watanabe, T

    1989-01-01

    1. The effects of microinjection of rabbit endogenous pyrogen and human recombinant interleukin-1 alpha on rectal temperature and acute phase responses were extensively examined in forty different brain regions of rabbits. The acute phase responses that were investigated were the changes in plasma levels of iron, zinc and copper concentration and the changes in circulating leucocyte count. 2. The rostral hypothalamic regions, such as nucleus broca ventralis, preoptic area and anterior hypothalamic region, responded to the microinjection of endogenous pyrogen or interleukin-1 by producing both fever and acute phase responses. 3. The microinjection of endogenous pyrogen or interleukin-1 into the rostral hypothalamic regions significantly decreased the plasma levels of iron and zinc concentration 8 and 24 h after injection. The circulating leucocyte count increased 8 h after injection. However, neither the injections of endogenous pyrogen nor interleukin-1 affected the number of red blood cells. 4. The present results show that the rostral hypothalamic regions respond directly to endogenous pyrogen or interleukin-1 with the consequent development of fever and acute phase responses. PMID:2514261

  4. [An experimental model of mass-type brain damage in the rat: expression of brain damage based on neurospecific enolase and protein S100B].

    PubMed

    Egea-Guerrero, J J; Murillo-Cabezas, F; Rodríguez-Rodríguez, A; Gordillo-Escobar, E; Revuelto-Rey, J; Muñoz-Sánchez, M A; León-Justel, A; Vilches-Arenas, A

    2014-05-01

    To determine whether a model of transient mass-type brain damage (MTBD) in the rat produces early release of neurospecific enolase (NSE) and protein S100B in peripheral blood, as an expression of the induced brain injury. An experimental study with a control group. Experimental operating room of the Institute of Biomedicine (IBiS) of Virgen del Rocío University Hospital (Seville, Spain). Fourteen adult Wistar rats. Blood was sampled at baseline, followed by: MTBD group, a trephine perforation was used to insert and inflate the balloon of a catheter at a rate of 500 μl/20 sec, followed by 4 blood extractions every 20 min. Control group, the same procedure as before was carried out, though without trephine perforation. Weight, early mortality, serum NSE and S100B concentration. Differences in NSE and S100B concentration were observed over time within the MTBD group (P<.001), though not so in the control group. With the exception of the baseline determination, differences were observed between the two groups in terms of the mean NSE and S100B values. Following MTBD, NSE and S100B progressively increased at all measurement timepoints, with r=0.765; P=.001 and r=0.628; P=.001, respectively. In contrast, the control group showed no such correlation for either biomarker. Serum NSE and S100B concentrations offer an early indication of brain injury affecting the gray and white matter in an experimental model of mass-type MTBD in the rat. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  5. Antioxidant and hepatoprotective effects of A. cerana honey against acute alcohol-induced liver damage in mice.

    PubMed

    Zhao, Haoan; Cheng, Ni; He, Liangliang; Peng, Guoxia; Xue, Xiaofeng; Wu, Liming; Cao, Wei

    2017-11-01

    A. cerana honey, gathered from Apis cerana Fabricius (A. cerana), has not been fully studied. Samples of honey originating from six geographical regions (mainly in the Qinling Mountains of China) were investigated to determine their antioxidant and hepatoprotective effects against acute alcohol-induced liver damage. The results showed that A. cerana honeys from the Qinling Mountains had high total phenolic contents (345.1-502.1mgGAkg -1 ), ascorbic acid contents (153.8-368.4mgkg -1 ), and strong antioxidant activities in DPPH radical scavenging activity assays (87.5-136.2IC50mgmL -1 ), ferric reducing antioxidant powers (191.8-317.4mgTroloxkg -1 ), and ferrous ion-chelating activities (27.5-35.5mgNa 2 EDTAkg -1 ). Pretreatment with A. cerana honey (Qinling Mountains) at 5, 10, or 20gkg -1 twice daily for 12weeks significantly inhibited serum lipoprotein oxidation and increased serum radical absorbance capacity (ORAC) (P<0.05). Moreover, A. cerana honey inhibited acute alcohol-induced increases in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum (P<0.05), reduced the production of hepatic malondialdehyde (MDA) (P<0.05), and promoted superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities (P<0.05). More importantly, it also remarkably inhibited the level of TGF-β1 in the serum and liver (P<0.05). The results of this study indicate that administration of A. cerana honey prevents acute alcohol-induced liver damage likely because of its antioxidant properties and ability to prevent oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices

    NASA Astrophysics Data System (ADS)

    Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent

    2016-03-01

    Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models.

  7. Effect of Resveratrol Administration on the Element Metabolism in the Blood and Brain Tissues of Rats Subjected to Acute Swimming Exercise.

    PubMed

    Baltaci, Abdulkerim Kasim; Arslangil, Dilek; Mogulkoc, Rasim; Patlar, Suleyman

    2017-02-01

    The aim of the present study is to examine how resveratrol administration affects the element metabolism in the blood and brain cortex tissues of rats subjected to an acute swimming exercise. The study was carried out on Wistar-Albino-type adult male rats supplied by the Center. Group 1 is the control group. Group 2 is the swimming control group. Group 3 is the resveratrol (10 mg/kg/day) + swimming group. Group 4 is the resveratrol (10 mg/kg/day) group. Blood and brain cortex tissues were analyzed for some elements. The acute swimming exercise led to increases in the rats' serum iron, selenium, lead, cobalt, and boron levels, while the resveratrol-swimming group has increases in copper, phosphorus, and calcium values. The brain cortex tissue of the resveratrol-swimming group had significantly higher molybdenum levels than others. The results obtained in the study indicate that acute swimming exercise altered the distribution of elements in the serum to a considerable extent; however, resveratrol's affect is limited. Especially, resveratrol supplementation may have a regulatory affect on serum iron and magnesium levels.

  8. Gelatin promotes rapid restoration of the blood brain barrier after acute brain injury.

    PubMed

    Kumosa, Lucas S; Zetterberg, Valdemar; Schouenborg, Jens

    2018-01-01

    Gelatin coating of brain implants is known to provide considerable benefits in terms of reduced inflammatory sequalae and long-term neuroprotective effects. However, the mechanisms for gelatin's protective role in brain injury are still unknown. To address this question, cellular and molecular markers were studied with quantitative immunohistochemical microscopy at acute (<2hours, 1, 3days), intermediate (1-2 weeks) and long-term time points (6 weeks) after transient insertion of stainless steel needles into female rat cortex cerebri with or without gelatin coating. Compared to non-coated controls, injuries caused by gelatin coated needles showed a significantly faster resolution of post-stab bleeding/leakage and differential effects on different groups of microglia cells. While similar levels of matrix metalloproteinase (MMP-2 and MMP-9, two gelatinases) was found for coated and noncoated needle stabs during the first week, markedly increased levels of both MMPs was seen for gelatin-coated but not non-coated needle stabs after 2weeks. Neuronal populations and activated astrocytes were largely unaffected. In conclusion, the beneficial effects of gelatin may be the combined results of faster healing of the blood brain barrier curtailing leakage of blood borne molecules/cells into brain parenchyma and to a modulation of the microglial population response favoring restitution of the injured tissue. These findings present an important therapeutic potential for gelatin coatings in various disease, injury and surgical conditions. The neural interfaces field holds great promise to enable elucidation of neural information processing and to develop new implantable devices for stimulation based therapy. Currently, this field is struggling to find solutions for reducing tissue reactions to implanted micro and nanotechnology. Prior studies have recently shown that gelatin coatings lower activation of digestive microglia and mitigate the ubiquitous loss of neurons adjacent to

  9. Near Infrared Light Scattering Changes Following Acute Brain Injury

    PubMed Central

    Highton, David; Tachtsidis, Ilias; Tucker, Alison; Elwell, Clare; Smith, Martin

    2018-01-01

    Acute brain injury (ABI) is associated with changes in near infrared light absorption reflecting haemodynamic and metabolic status via changes in cerebral oxygenation (haemoglobin oxygenation and cytochrome-c-oxidase oxidation). Light scattering has not been comprehensively investigated following ABI and may be an important confounding factor in the assessment of chromophore concentration changes, and/or a novel non-invasive optical marker of brain tissue morphology, cytostructure, hence metabolic status. The aim of this study is to characterize light scattering following adult ABI. Time resolved spectroscopy was performed as a component of multimodal neuromonitoring in critically ill brain injured patients. The scattering coefficient (μ′s), absorption coefficient and cerebral haemoglobin oxygen saturation (SO2) were derived by fitting the time resolved data. Cerebral infarction was subsequently defined on routine clinical imaging. In total, 21 patients with ABI were studied. Ten patients suffered a unilateral frontal infarction, and mean μ′s was lower over infarcted compared to non-infarcted cortex (injured 6.9/cm, non-injured 8.2/cm p = 0.002). SO2 did not differ significantly between the two sides (injured 69.3 %, non-injured 69.0 % p = 0.7). Cerebral infarction is associated with changes in μ′s which might be a novel marker of cerebral injury and will interfere with quantification of haemoglobin/cytochrome c oxidase concentration. Although further work combining optical and physiological analysis is required to elucidate the significance of these results, μ′s may be uniquely placed as a non-invasive biomarker of cerebral energy failure as well as gross tissue changes. PMID:26782205

  10. DNA Double-Strand Break Repair Genes and Oxidative Damage in Brain Metastasis of Breast Cancer

    PubMed Central

    Evans, Lynda; Duchnowska, Renata; Reed, L. Tiffany; Palmieri, Diane; Qian, Yongzhen; Badve, Sunil; Sledge, George; Gril, Brunilde; Aladjem, Mirit I.; Fu, Haiqing; Flores, Natasha M.; Gökmen-Polar, Yesim; Biernat, Wojciech; Szutowicz-Zielińska, Ewa; Mandat, Tomasz; Trojanowski, Tomasz; Och, Waldemar; Czartoryska-Arlukowicz, Bogumiła; Jassem, Jacek; Mitchell, James B.

    2014-01-01

    Background Breast cancer frequently metastasizes to the brain, colonizing a neuro-inflammatory microenvironment. The molecular pathways facilitating this colonization remain poorly understood. Methods Expression profiling of 23 matched sets of human resected brain metastases and primary breast tumors by two-sided paired t test was performed to identify brain metastasis–specific genes. The implicated DNA repair genes BARD1 and RAD51 were modulated in human (MDA-MB-231-BR) and murine (4T1-BR) brain-tropic breast cancer cell lines by lentiviral transduction of cDNA or short hairpin RNA (shRNA) coding sequences. Their functional contribution to brain metastasis development was evaluated in mouse xenograft models (n = 10 mice per group). Results Human brain metastases overexpressed BARD1 and RAD51 compared with either matched primary tumors (1.74-fold, P < .001; 1.46-fold, P < .001, respectively) or unlinked systemic metastases (1.49-fold, P = .01; 1.44-fold, P = .008, respectively). Overexpression of either gene in MDA-MB-231-BR cells increased brain metastases by threefold to fourfold after intracardiac injections, but not lung metastases upon tail-vein injections. In 4T1-BR cells, shRNA-mediated RAD51 knockdown reduced brain metastases by 2.5-fold without affecting lung metastasis development. In vitro, BARD1- and RAD51-overexpressing cells showed reduced genomic instability but only exhibited growth and colonization phenotypes upon DNA damage induction. Reactive oxygen species were present in tumor cells and elevated in the metastatic neuro-inflammatory microenvironment and could provide an endogenous source of genotoxic stress. Tempol, a brain-permeable oxygen radical scavenger suppressed brain metastasis promotion induced by BARD1 and RAD51 overexpression. Conclusions BARD1 and RAD51 are frequently overexpressed in brain metastases from breast cancer and may constitute a mechanism to overcome reactive oxygen species–mediated genotoxic stress in the metastatic

  11. DNA double-strand break repair genes and oxidative damage in brain metastasis of breast cancer.

    PubMed

    Woditschka, Stephan; Evans, Lynda; Duchnowska, Renata; Reed, L Tiffany; Palmieri, Diane; Qian, Yongzhen; Badve, Sunil; Sledge, George; Gril, Brunilde; Aladjem, Mirit I; Fu, Haiqing; Flores, Natasha M; Gökmen-Polar, Yesim; Biernat, Wojciech; Szutowicz-Zielińska, Ewa; Mandat, Tomasz; Trojanowski, Tomasz; Och, Waldemar; Czartoryska-Arlukowicz, Bogumiła; Jassem, Jacek; Mitchell, James B; Steeg, Patricia S

    2014-07-01

    Breast cancer frequently metastasizes to the brain, colonizing a neuro-inflammatory microenvironment. The molecular pathways facilitating this colonization remain poorly understood. Expression profiling of 23 matched sets of human resected brain metastases and primary breast tumors by two-sided paired t test was performed to identify brain metastasis-specific genes. The implicated DNA repair genes BARD1 and RAD51 were modulated in human (MDA-MB-231-BR) and murine (4T1-BR) brain-tropic breast cancer cell lines by lentiviral transduction of cDNA or short hairpin RNA (shRNA) coding sequences. Their functional contribution to brain metastasis development was evaluated in mouse xenograft models (n = 10 mice per group). Human brain metastases overexpressed BARD1 and RAD51 compared with either matched primary tumors (1.74-fold, P < .001; 1.46-fold, P < .001, respectively) or unlinked systemic metastases (1.49-fold, P = .01; 1.44-fold, P = .008, respectively). Overexpression of either gene in MDA-MB-231-BR cells increased brain metastases by threefold to fourfold after intracardiac injections, but not lung metastases upon tail-vein injections. In 4T1-BR cells, shRNA-mediated RAD51 knockdown reduced brain metastases by 2.5-fold without affecting lung metastasis development. In vitro, BARD1- and RAD51-overexpressing cells showed reduced genomic instability but only exhibited growth and colonization phenotypes upon DNA damage induction. Reactive oxygen species were present in tumor cells and elevated in the metastatic neuro-inflammatory microenvironment and could provide an endogenous source of genotoxic stress. Tempol, a brain-permeable oxygen radical scavenger suppressed brain metastasis promotion induced by BARD1 and RAD51 overexpression. BARD1 and RAD51 are frequently overexpressed in brain metastases from breast cancer and may constitute a mechanism to overcome reactive oxygen species-mediated genotoxic stress in the metastatic brain. Published by Oxford University Press

  12. Mechanisms of Endogenous Neuroprotective Effects of Astrocytes in Brain Injury

    PubMed Central

    2018-01-01

    Astrocytes, once believed to serve only as “glue” for the structural support of neurons, have been demonstrated to serve critical functions for the maintenance and protection of neurons, especially under conditions of acute or chronic injury. There are at least seven distinct mechanisms by which astrocytes protect neurons from damage; these are (1) protection against glutamate toxicity, (2) protection against redox stress, (3) mediation of mitochondrial repair mechanisms, (4) protection against glucose-induced metabolic stress, (5) protection against iron toxicity, (6) modulation of the immune response in the brain, and (7) maintenance of tissue homeostasis in the presence of DNA damage. Astrocytes support these critical functions through specialized responses to stress or toxic conditions. The detoxifying activities of astrocytes are essential for maintenance of the microenvironment surrounding neurons and in whole tissue homeostasis. Improved understanding of the mechanisms by which astrocytes protect the brain could lead to the development of novel targets for the development of neuroprotective strategies.

  13. Plasma Anti-Glial Fibrillary Acidic Protein Autoantibody Levels during the Acute and Chronic Phases of Traumatic Brain Injury: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot Study.

    PubMed

    Wang, Kevin K W; Yang, Zhihui; Yue, John K; Zhang, Zhiqun; Winkler, Ethan A; Puccio, Ava M; Diaz-Arrastia, Ramon; Lingsma, Hester F; Yuh, Esther L; Mukherjee, Pratik; Valadka, Alex B; Gordon, Wayne A; Okonkwo, David O; Manley, Geoffrey T; Cooper, Shelly R; Dams-O'Connor, Kristen; Hricik, Allison J; Inoue, Tomoo; Maas, Andrew I R; Menon, David K; Schnyer, David M; Sinha, Tuhin K; Vassar, Mary J

    2016-07-01

    We described recently a subacute serum autoantibody response toward glial fibrillary acidic protein (GFAP) and its breakdown products 5-10 days after severe traumatic brain injury (TBI). Here, we expanded our anti-GFAP autoantibody (AutoAb[GFAP]) investigation to the multicenter observational study Transforming Research and Clinical Knowledge in TBI Pilot (TRACK-TBI Pilot) to cover the full spectrum of TBI (Glasgow Coma Scale 3-15) by using acute (<24 h) plasma samples from 196 patients with acute TBI admitted to three Level I trauma centers, and a second cohort of 21 participants with chronic TBI admitted to inpatient TBI rehabilitation. We find that acute patients self-reporting previous TBI with loss of consciousness (LOC) (n = 43) had higher day 1 AutoAb[GFAP] (mean ± standard error: 9.11 ± 1.42; n = 43) than healthy controls (2.90 ± 0.92; n = 16; p = 0.032) and acute patients reporting no previous TBI (2.97 ± 0.37; n = 106; p < 0.001), but not acute patients reporting previous TBI without LOC (8.01 ± 1.80; n = 47; p = 0.906). These data suggest that while exposure to TBI may trigger the AutoAb[GFAP] response, circulating antibodies are elevated specifically in acute TBI patients with a history of TBI. AutoAb[GFAP] levels for participants with chronic TBI (average post-TBI time 176 days or 6.21 months) were also significantly higher (15.08 ± 2.82; n = 21) than healthy controls (p < 0.001). These data suggest a persistent upregulation of the autoimmune response to specific brain antigen(s) in the subacute to chronic phase after TBI, as well as after repeated TBI insults. Hence, AutoAb[GFAP] may be a sensitive assay to study the dynamic interactions between post-injury brain and patient-specific autoimmune responses across acute and chronic settings after TBI.

  14. Does any aspect of mind survive brain damage that typically leads to a persistent vegetative state? Ethical considerations

    PubMed Central

    Panksepp, Jaak; Fuchs, Thomas; Garcia, Victor Abella; Lesiak, Adam

    2007-01-01

    Recent neuroscientific evidence brings into question the conclusion that all aspects of consciousness are gone in patients who have descended into a persistent vegetative state (PVS). Here we summarize the evidence from human brain imaging as well as neurological damage in animals and humans suggesting that some form of consciousness can survive brain damage that commonly causes PVS. We also raise the issue that neuroscientific evidence indicates that raw emotional feelings (primary-process affects) can exist without any cognitive awareness of those feelings. Likewise, the basic brain mechanisms for thirst and hunger exist in brain regions typically not damaged by PVS. If affective feelings can exist without cognitive awareness of those feelings, then it is possible that the instinctual emotional actions and pain "reflexes" often exhibited by PVS patients may indicate some level of mentality remaining in PVS patients. Indeed, it is possible such raw affective feelings are intensified when PVS patients are removed from life-supports. They may still experience a variety of primary-process affective states that could constitute forms of suffering. If so, withdrawal of life-support may violate the principle of nonmaleficence and be tantamount to inflicting inadvertent "cruel and unusual punishment" on patients whose potential distress, during the process of dying, needs to be considered in ethical decision-making about how such individuals should be treated, especially when their lives are ended by termination of life-supports. Medical wisdom may dictate the use of more rapid pharmacological forms of euthanasia that minimize distress than the de facto euthanasia of life-support termination that may lead to excruciating feelings of pure thirst and other negative affective feelings in the absence of any reflective awareness. PMID:18086316

  15. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Dong-Fang; Qian, Cheng; An, Yan-Li; Chang, Di; Ju, Sheng-Hong; Teng, Gao-Jun

    2014-11-01

    Blood-brain barrier (BBB) damage during ischemia may induce devastating consequences like cerebral edema and hemorrhagic transformation. This study presents a novel strategy for dynamically imaging of BBB damage with PEGylated supermagnetic iron oxide nanoparticles (SPIONs) as contrast agents. The employment of SPIONs as contrast agents made it possible to dynamically image the BBB permeability alterations and ischemic lesions simultaneously with T2-weighted MRI, and the monitoring could last up to 24 h with a single administration of PEGylated SPIONs in vivo. The ability of the PEGylated SPIONs to highlight BBB damage by MRI was demonstrated by the colocalization of PEGylated SPIONs with Gd-DTPA after intravenous injection of SPION-PEG/Gd-DTPA into a mouse. The immunohistochemical staining also confirmed the leakage of SPION-PEG from cerebral vessels into parenchyma. This study provides a novel and convenient route for imaging BBB alteration in the experimental ischemic stroke model.

  16. Progressive Return to Activity Following Acute Concussion/Mild Traumatic Brain Injury: Guidance for the Rehabilitation Provider in Deployed and Non-deployed Settings

    DTIC Science & Technology

    2014-01-01

    RPE and references are also included as part of the CST. DCoE Clinical Recommendation | January 2014 Progressive Return to Activity Following Acute...Recommendation | January 2014 Progressive Return to Activity Following Acute Concussion/Mild Traumatic Brain Injury: Guidance for the Rehabilitation Provider...days Symptoms are worsening 3 DCoE Clinical Recommendation | January 2014 Progressive Return to Activity Following Acute Concussion/Mild Traumatic

  17. Physiological complexity of acute traumatic brain injury in patients treated with a brain oxygen protocol: utility of symbolic regression in predictive modeling of a dynamical system.

    PubMed

    Narotam, Pradeep K; Morrison, John F; Schmidt, Michael D; Nathoo, Narendra

    2014-04-01

    Predictive modeling of emergent behavior, inherent to complex physiological systems, requires the analysis of large complex clinical data streams currently being generated in the intensive care unit. Brain tissue oxygen protocols have yielded outcome benefits in traumatic brain injury (TBI), but the critical physiological thresholds for low brain oxygen have not been established for a dynamical patho-physiological system. High frequency, multi-modal clinical data sets from 29 patients with severe TBI who underwent multi-modality neuro-clinical care monitoring and treatment with a brain oxygen protocol were analyzed. The inter-relationship between acute physiological parameters was determined using symbolic regression (SR) as the computational framework. The mean patient age was 44.4±15 with a mean admission GCS of 6.6±3.9. Sixty-three percent sustained motor vehicle accidents and the most common pathology was intra-cerebral hemorrhage (50%). Hospital discharge mortality was 21%, poor outcome occurred in 24% of patients, and good outcome occurred in 56% of patients. Criticality for low brain oxygen was intracranial pressure (ICP) ≥22.8 mm Hg, for mortality at ICP≥37.1 mm Hg. The upper therapeutic threshold for cerebral perfusion pressure (CPP) was 75 mm Hg. Eubaric hyperoxia significantly impacted partial pressure of oxygen in brain tissue (PbtO2) at all ICP levels. Optimal brain temperature (Tbr) was 34-35°C, with an adverse effect when Tbr≥38°C. Survivors clustered at [Formula: see text] Hg vs. non-survivors [Formula: see text] 18 mm Hg. There were two mortality clusters for ICP: High ICP/low PbtO2 and low ICP/low PbtO2. Survivors maintained PbtO2 at all ranges of mean arterial pressure in contrast to non-survivors. The final SR equation for cerebral oxygenation is: [Formula: see text]. The SR-model of acute TBI advances new physiological thresholds or boundary conditions for acute TBI management: PbtO2≥25 mmHg; ICP≤22 mmHg; CPP≈60-75

  18. Partial IGF-1 deficiency induces brain oxidative damage and edema, which are ameliorated by replacement therapy.

    PubMed

    Puche, Juan E; Muñoz, Úrsula; García-Magariño, Mariano; Sádaba, María C; Castilla-Cortázar, Inma

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) induces multiple cytoprotective effects on every tissue, including the brain. Since the mechanisms by which IGF-1 produces neuroprotection are not fully understood, the aim of this work was to delve into the underlying mechanisms. IGF-1 deficient mice (Hz) were compared with wild type (WT) and Hz mice treated with low doses of IGF-1 (2 µg/100 g body weight/day) for 10 days (Hz + IGF). Gene expression, quantitative PCR, histology, and magnetic resonance imaging were performed in the three groups. IGF-1 deficiency induced increased oxidative damage determined by markers of lipid peroxidation and hypoxia, as well as gene expression of heat shock proteins, antioxidant enzymes, and molecules involved in inflammation, apoptosis, and mitochondrial protection. These changes correlated with edema and learning impairment in Hz mice. IGF-1 therapy improved all these alterations. In conclusion, IGF-1 deficiency is responsible for increased brain oxidative damage, edema, and impaired learning and memory capabilities which are rescued by IGF-1 replacement therapy. © 2016 International Union of Biochemistry and Molecular Biology.

  19. [Depersonalization syndrome after acquired brain damage. Overview based on 3 case reports and the literature and discussion of etiological models].

    PubMed

    Paulig, M; Böttger, S; Sommer, M; Prosiegel, M

    1998-12-01

    Depersonalization after brain damage is still only rarely reported and poorly understood. We describe three patients between the ages of 21 and 25 who experienced depersonalization and derealization for periods of 6 weeks to 4 months, two after traumatic brain injury, the third after surgical and radiation treatment of a pineocytoma. Each one believed to be living in a nightmare and thought about committing suicide in order to wake up. One patient developed symptoms as described in Cotard delusion. Aspects of neuroanatomy, psychodynamics, and anthropology are discussed with reference to the literature. Frontal and temporal lesions seem only to play a facilitating role but not to be a necessary condition. There is evidence for additional influence of psychological and premorbid personality factors. Summarizing the current state of information we consider depersonalization with the experience of being in a dream or being dead as a heuristic reaction to brain damage. Similar models have already been discussed in neuropsychological disorders as for instance reduplicative paramnesias, neglect, and anosognosia.

  20. Acute lesions that impair affective empathy

    PubMed Central

    Oishi, Kenichi; Hsu, John; Lindquist, Martin; Gottesman, Rebecca F.; Jarso, Samson; Crainiceanu, Ciprian; Mori, Susumu

    2013-01-01

    Functional imaging studies of healthy participants and previous lesion studies have provided evidence that empathy involves dissociable cognitive functions that rely on at least partially distinct neural networks that can be individually impaired by brain damage. These studies converge in support of the proposal that affective empathy—making inferences about how another person feels—engages at least the following areas: prefrontal cortex, orbitofrontal gyrus, anterior insula, anterior cingulate cortex, temporal pole, amygdala and temporoparietal junction. We hypothesized that right-sided lesions to any one of these structures, except temporoparietal junction, would cause impaired affective empathy (whereas bilateral damage to temporoparietal junction would be required to disrupt empathy). We studied 27 patients with acute right hemisphere ischaemic stroke and 24 neurologically intact inpatients on a test of affective empathy. Acute impairment of affective empathy was associated with infarcts in the hypothesized network, particularly temporal pole and anterior insula. All patients with impaired affective empathy were also impaired in comprehension of affective prosody, but many patients with impairments in prosodic comprehension had spared affective empathy. Patients with impaired affective empathy were older, but showed no difference in performance on tests of hemispatial neglect, volume of infarct or sex distribution compared with patients with intact affective empathy. PMID:23824490

  1. Acute over-the-counter pharmacological intervention does not adversely affect behavioral outcome following diffuse traumatic brain injury in the mouse.

    PubMed

    Harrison, Jordan L; Rowe, Rachel K; O'Hara, Bruce F; Adelson, P David; Lifshitz, Jonathan

    2014-09-01

    Following mild traumatic brain injury (TBI), patients may self-treat symptoms of concussion, including post-traumatic headache, taking over-the-counter (OTC) analgesics. Administering one dose of OTC analgesics immediately following experimental brain injury mimics the at-home treated population of concussed patients and may accelerate the understanding of the relationship between brain injury and OTC pharmacological intervention. In the current study, we investigate the effect of acute administration of OTC analgesics on neurological function and cortical cytokine levels after experimental diffuse TBI in the mouse. Adult, male C57BL/6 mice were injured using a midline fluid percussion (mFPI) injury model of concussion (6-10 min righting reflex time for brain-injured mice). Experimental groups included mFPI paired with either ibuprofen (60 mg/kg, i.p.; n = 16), acetaminophen (40 mg/kg, i.p.; n = 9), or vehicle (15% ethanol (v/v) in 0.9% saline; n = 13) and sham injury paired OTC medicine or vehicle (n = 7-10 per group). At 24 h after injury, functional outcome was assessed using the rotarod task and a modified neurological severity score. Following behavior assessment, cortical cytokine levels were measured by multiplex ELISA at 24 h post-injury. To evaluate efficacy on acute inflammation, cortical cytokine levels were measured also at 6 h post-injury. In the diffuse brain-injured mouse, immediate pharmacological intervention did not attenuate or exacerbate TBI-induced functional deficits. Cortical cytokine levels were affected by injury, time, or their interaction. However, levels were not affected by treatment at 6 or 24 h post-injury. These data indicate that acute administration of OTC analgesics did not exacerbate or attenuate brain-injury deficits which may inform clinical recommendations for the at-home treated mildly concussed patient.

  2. [Developmental amnesia and early brain damage: neuropsychology and neuroimaging].

    PubMed

    Crespo-Eguilaz, N; Dominguez, P D; Vaquero, M; Narbona, J

    2018-03-01

    To contribute to neuropsychological profiling of developmental amnesia subsequent to bilateral damage to both hippocampi in early age. The total sample of 24 schoolchildren from both sexes is distributed in three groups: perinatal hypoxic-ischaemic encephalopathy and everyday complaints of memory in school age (n = 8); perinatal hypoxic-ischaemic encephalopathy without memory complaints (n = 7); and a group of typically developing (n = 9). All participants in every groups did have normal general intelligence and attention. Both clinical groups had, as another clinical consequence, spastic cerebral palsy (diplegia). Neuropsychological exam consisted on tests of general intelligence, attentional abilities, declarative memory and semantic knowledge. All participants had a brain magnetic resonance image and spectroscopy of hippocampi. Scheltens criteria were used for visual estimation of hippocampal atrophy. Parametric and non-parametric statistical contrasts were made. Despite preservation of semantic and procedural learning, declarative-episodic memory is impaired in the first group versus the other two groups. A significant proportion of bilateral hippocampal atrophy is only present in the first group versus the other two non-amnesic groups using Scheltens estimation on MRI. Two cases without evident atrophy did have diminished NAA/(Cho + Cr) index in both hippocampi. Taken together, these results contribute to delineate developmental amnesia as an specific impairment due to early partial bihippocampal damage, in agreement with previous studies. After diagnosis of developmental amnesia, a specific psychoeducational intervention must be made; also this impairment could be candidate for pharmacological trials in the future.

  3. Changes in Extracellular Striatal Acetylcholine and Brain Seizure Activity Following Acute Exposure to Nerve Against in Freely Moving Guinea Pigs

    DTIC Science & Technology

    2010-01-01

    Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Changes in extracellular striatal acetylcholine and brain seizure activity following...Acetylcholine, acetylcholinesterase, choline, guinea pig, in vivo microdialysis, nerve agents, organophosphorus compounds, sarin, seizure activity ...RESEARCH ARTICLE Changes in extracellular striatal acetylcholine and brain seizure activity following acute exposure to nerve agents in freely

  4. Occludin is regulated by epidermal growth factor receptor activation in brain endothelial cells and brains of mice with acute liver failure

    PubMed Central

    Chen, Feng; Hori, Tomohide; Ohashi, Norifumi; Baine, Ann-Marie; Eckman, Christopher B.; Nguyen, Justin H.

    2011-01-01

    Mechanisms of brain edema in acute liver failure (ALF) are not completely understood. We recently demonstrated that matrix metalloproteinase 9 (MMP-9) induces significant alterations to occludin in brain endothelial cells in vitro and in brains of mice with experimental ALF (Hepatology 50:1914, 2009). In this study, we show that MMP-9-induced transactivation of epidermal growth factor receptor (EGFR) and p38MAPK/NFκB signals participate in regulating brain endothelial occludin level. Mouse brain endothelial bEnd3 cells were exposed to MMP-9 or p38 MAPK upregulation in the presence and absence of EGFR inhibitor, p38 MAPK inhibitor, NFκB inhibitor, and/or appropriate small interfering RNA. RT-PCR and western blotting were used for mRNA and protein expression analyses. Immunohistochemical staining and confocal microscopy were used to demonstrate cellular EGFR activation. Intraperitoneal azoxymethane was use to induce ALF in mice. Brains of comatose ALF mice were processed for histological and biochemical analyses. When bEnd3 cells were exposed to MMP-9, EGFR was significantly transactivated, followed by p38 MAPK activation, IκBα degradation, NFκB activation, and suppression of occludin synthesis and expression. Similar EGFR activation and p38 MAPK/NFκB activation were found in the brains of ALF mice, and these changes were attenuated with GM6001 treatment. Conclusion EGFR activation with p38 MAPK/NFκB signaling contributes to the regulation of tight junction integrity in ALF. EGFR activation may thus play an important role in vasogenic brain edema in ALF. PMID:21480332

  5. Standardized Bacopa monnieri extract ameliorates acute paraquat-induced oxidative stress, and neurotoxicity in prepubertal mice brain.

    PubMed

    Hosamani, Ravikumar; Krishna, Gokul; Muralidhara

    2016-12-01

    Bacopa monnieri (BM), an ayurvedic medicinal plant, has attracted considerable interest owing to its diverse neuropharmacological properties. Epidemiological studies have shown significant correlation between paraquat (PQ) exposure and increased risk for Parkinson's disease in humans. In this study, we examined the propensity of standardized extract of BM to attenuate acute PQ-induced oxidative stress, mitochondrial dysfunctions, and neurotoxicity in the different brain regions of prepubertal mice. To test this hypothesis, prepubertal mice provided orally with standardized BM extract (200 mg/kg body weight/day for 4 weeks) were challenged with an acute dose (15 mg/kg body weight, intraperitoneally) of PQ after 3 hours of last dose of extract. Mice were sacrificed after 48 hours of PQ injection, and different brain regions were isolated and subjected to biochemical determinations/quantification of central monoamine (dopamine, DA) levels (by high-performance liquid chromatography). Oral supplementation of BM for 4 weeks resulted in significant reduction in the basal levels of oxidative markers such as reactive oxygen species (ROS), malondialdehyde (MDA), and hydroperoxides (HP) in various brain regions. PQ at the administered dose elicited marked oxidative stress within 48 hours in various brain regions of mice. However, BM prophylaxis significantly improved oxidative homeostasis by restoring PQ-induced ROS, MDA, and HP levels and also by attenuating mitochondrial dysfunction. Interestingly, BM supplementation restored the activities of cholinergic enzymes along with the restoration of striatal DA levels among the PQ-treated mice. Based on these findings, we infer that BM prophylaxis renders the brain resistant to PQ-mediated oxidative perturbations and thus may be better exploited as a preventive approach to protect against oxidative-mediated neuronal dysfunctions.

  6. The effect of piracetam on brain damage and serum nitric oxide levels in dogs submitted to hemorrhagic shock.

    PubMed

    Ozkan, Seda; Ikizceli, Ibrahim; Sözüer, Erdoğan Mütevelli; Avşaroğullari, Levent; Oztürk, Figen; Muhtaroğlu, Sebahattin; Akdur, Okhan; Küçük, Can; Durukan, Polat

    2008-10-01

    To demonstrate the effect of piracetam on changes in brain tissue and serum nitric oxide levels in dogs submitted to hemorrhagic shock. The subjects were randomized into four subgroups each consisting of 10 dogs. Hemorrhagic shock was induced in Group I for 1 hour and no treatment was given to this group. Blood and saline solutions were administered to Group II following 1 hour hemorrhagic shock. Blood and piracetam were given to Group III following 1 hour shock. No shock was induced and no treatment was applied to Group IV. Blood samples were obtained at the onset of the experiment and at 60, 120 and 180 minutes for nitric oxide analysis. For histopathological examination, brain tissue samples were obtained at the end of the experiment. The observed improvement in blood pressure and pulse rates in Group III was more than in Group II. Nitric oxide levels were increased in Group I; however, no correlation between piracetam and nitric oxide levels was determined. It was seen that recovery in brain damage in Group III was greater than in the control group. Piracetam, added to the treatment, may ecrease ischemic damage in hemorrhagic shock.

  7. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cakmak G.; Miller L.; Zorlu, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{submore » 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.« less

  8. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: an FTIR microspectroscopic imaging study.

    PubMed

    Cakmak, Gulgun; Miller, Lisa M; Zorlu, Faruk; Severcan, Feride

    2012-04-15

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH(2) groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH(3) groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Brain activity monitoring by compressed spectral array during deep hypothermic circulatory arrest in acute aortic dissection surgery.

    PubMed

    Urbanowicz, Tomasz K; Budniak, Wiktor; Buczkowski, Piotr; Perek, Bartłomiej; Walczak, Maciej; Tomczyk, Jadwiga; Katarzyński, Sławomir; Jemielity, Marek

    2014-12-01

    Monitoring the central nervous system during aortic dissection repair may improve the understanding of the intraoperative changes related to its bioactivity. The aim of the study was to evaluate the influence of deep hypothermia on intraoperative brain bioactivity measured by the compressed spectral array (CSA) method and to assess the influence of the operations on postoperative cognitive function. The study enrolled 40 patients (31 men and 9 women) at the mean age of 60.2 ± 8.6 years, diagnosed with acute aortic dissection. They underwent emergency operations in deep hypothermic circulatory arrest (DHCA). During the operations, brain bioactivity was monitored with the compressed spectral array method. There were no intraoperative deaths. Electrocerebral silence during DHCA was observed in 31 patients (74%). The lowest activity was observed during DHCA: it was 0.01 ± 0.05 nW in the left hemisphere and 0.01 ± 0.03 nW in the right hemisphere. The postoperative results of neurological tests deteriorated statistically significantly (26.9 ± 1.7 points vs. 22.0 ± 1.7 points; p < 0.001), especially among patients who exhibited brain activity during DHCA. The compressed spectral array method is clinically useful in monitoring brain bioactivity during emergency operations of acute aortic dissections. Electrocerebral silence occurs in 75% of patients during DHCA. The cognitive function of patients deteriorates significantly after operations with DHCA.

  10. Inference Generation during Text Comprehension by Adults with Right Hemisphere Brain Damage: Activation Failure Versus Multiple Activation.

    ERIC Educational Resources Information Center

    Tompkins, Connie A.; Fassbinder, Wiltrud; Blake, Margaret Lehman; Baumgaertner, Annette; Jayaram, Nandini

    2004-01-01

    ourse comprehensionEvidence conflicts as to whether adults with right hemisphere brain damage (RHD) generate inferences during text comprehension. M. Beeman (1993) reported that adults with RHD fail to activate the lexical-semantic bases of routine bridging inferences, which are necessary for comprehension. But other evidence indicates that adults…

  11. Central nervous system damage due to acute paraquat poisoning: an experimental study with rat model.

    PubMed

    Wu, Bailin; Song, Bo; Yang, Haiqing; Huang, Boyuan; Chi, Bo; Guo, Yansu; Liu, Huaijun

    2013-03-01

    Paraquat (PQ) is a common herbicide and PQ poisoning is a major medical problem in Asia. However, few studies have focused on the acute neurotoxic changes caused by PQ. Here we report the acute neurotoxicological findings of rats treated with lethal dose of PQ. In substantia nigra (SN) and striatum we found obvious microglia (labeled by Iba-1) activation within one week. In SN and hippocampus, we detected increased oxidative stress in the neurons based on NeuN/8-OHdG immunofluorescence double labeling and laser cofocal microscopy. Moreover, we provided ultrastructural evidences of astrocyte edema and neurons apoptosis in rat brain by electron microscopy. Further studies will be needed with non-lethal dose of PQ to confirm these results and demonstrate the direct CNS toxicity of PQ. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Acute Brain Imaging in Children: Can MRI Replace CT as a Screening Tool?

    PubMed

    Wagner, Matthias W; Kontzialis, Marinos; Seeburg, Daniel; Stern, Steven E; Oshmyansky, Alexander; Poretti, Andrea; Huisman, Thierry A G M

    2016-01-01

    To determine if axial T2-weighted imaging can serve as screening tool for pediatric brain imaging. We retrospectively evaluated consecutive brain magnetic resonance imaging (MRI) data of 161 children (74 girls) with a mean age of 7.44 ± 5.71 years. Standard of reference was the final report of neuroradiology attendings. Three readers with different levels of experience were blinded for clinical diagnoses and study indications. First, readers studied only the axial T2-weighted screening sequence. Second, they studied all available anatomical and functional MRI sequences as performed per standard protocol for each clinical indication. The readings were classified as normal or abnormal. Sensitivity and specificity were measured. Axial T2 screening yielded a sensitivity of 77-88% and a specificity of 92%. The full studies/data sets had a sensitivity of 89-95% and a specificity of 86-93%. Nineteen of 167 studies were acquired for acute and 148 of 167 studies for nonacute clinical indication. Twenty-five false-negative diagnoses paneled in three groups were made by all readers together. Readers misread four of 19 studies with acute and 21 of 148 studies with nonacute clinical indication. Four of 21 misread studies with nonacute indications harbored unexpected findings needing management. Axial T2 screening can detect pediatric brain abnormalities with high sensitivity and specificity and can possibly replace CT as screening tool if the reading physician is aware of possible limitations/pitfalls. The level of experience influences sensitivity and specificity. Adding diffusion-weighted imaging and susceptibility-weighted imaging to a 3-dimensional T2-weighted sequence would most likely further increase sensitivity and specificity. Copyright © 2015 by the American Society of Neuroimaging.

  13. Histological evaluation of brain damage caused by crude quinolizidine alkaloid extracts from lupines.

    PubMed

    Bañuelos Pineda, J; Nolasco Rodríguez, G; Monteon, J A; García López, P M; Ruiz Lopez, M A; García Estrada, J

    2005-10-01

    The effects of the intracerebroventricular (ICV) administration of crude extracts of lupin quinolizidine alkaloids (LQAs) were studied in adult rat brain tissue. Mature L. exaltatus and L. montanus seeds were collected in western Mexico, and the LQAs from these seeds were extracted and analyzed by capillary gas chromatography. This LQA extract was administered to the right lateral ventricle of adult rats through a stainless steel cannula on five consecutive days. While control animals received 10 microl of sesame oil daily (vehicle), the experimental rats (10 per group) received 20 ng of LQA from either L. exaltatus or from L. montanus. All the animals were sacrificed 40 h after receiving the last dose of alkaloids, and their brains were removed, fixed and coronal paraffin sections were stained with haematoxylin and eosin. Immediately after the administration of LQA the animals began grooming and suffered tachycardia, tachypnea, piloerection, tail erection, muscular contractions, loss of equilibrium, excitation, and unsteady walk. In the brains of the animals treated with LQA damaged neurons were identified. The most frequent abnormalities observed in this brain tissue were "red neurons" with shrunken eosinophilic cytoplasm, strongly stained pyknotic nuclei, neuronal swelling, spongiform neuropil, "ghost cells" (hypochromasia), and abundant neuronophagic figures in numerous brain areas. While some alterations in neurons were observed in control tissues, unlike those found in the animals treated with LQA these were not significant. Thus, the histopathological changes observed can be principally attributed to the administration of sparteine and lupanine present in the alkaloid extracts.

  14. Early detection of consciousness in patients with acute severe traumatic brain injury.

    PubMed

    Edlow, Brian L; Chatelle, Camille; Spencer, Camille A; Chu, Catherine J; Bodien, Yelena G; O'Connor, Kathryn L; Hirschberg, Ronald E; Hochberg, Leigh R; Giacino, Joseph T; Rosenthal, Eric S; Wu, Ona

    2017-09-01

    See Schiff (doi:10.1093/awx209) for a scientific commentary on this article. Patients with acute severe traumatic brain injury may recover consciousness before self-expression. Without behavioural evidence of consciousness at the bedside, clinicians may render an inaccurate prognosis, increasing the likelihood of withholding life-sustaining therapies or denying rehabilitative services. Task-based functional magnetic resonance imaging and electroencephalography techniques have revealed covert consciousness in the chronic setting, but these techniques have not been tested in the intensive care unit. We prospectively enrolled 16 patients admitted to the intensive care unit for acute severe traumatic brain injury to test two hypotheses: (i) in patients who lack behavioural evidence of language expression and comprehension, functional magnetic resonance imaging and electroencephalography detect command-following during a motor imagery task (i.e. cognitive motor dissociation) and association cortex responses during language and music stimuli (i.e. higher-order cortex motor dissociation); and (ii) early responses to these paradigms are associated with better 6-month outcomes on the Glasgow Outcome Scale-Extended. Patients underwent functional magnetic resonance imaging on post-injury Day 9.2 ± 5.0 and electroencephalography on Day 9.8 ± 4.6. At the time of imaging, behavioural evaluation with the Coma Recovery Scale-Revised indicated coma (n = 2), vegetative state (n = 3), minimally conscious state without language (n = 3), minimally conscious state with language (n = 4) or post-traumatic confusional state (n = 4). Cognitive motor dissociation was identified in four patients, including three whose behavioural diagnosis suggested a vegetative state. Higher-order cortex motor dissociation was identified in two additional patients. Complete absence of responses to language, music and motor imagery was only observed in coma patients. In patients with behavioural evidence

  15. Licorice Pretreatment Protects Against Brain Damage Induced by Middle Cerebral Artery Occlusion in Mice.

    PubMed

    Lim, Chiyeon; Lim, Sehyun; Lee, Byoungho; Kim, Buyeo; Cho, Suin

    2018-05-01

    Licorice is extracted from the roots of plants in the Glycyrrhiza genus, especially Glycyrrhiza uralensis in China and Korea. It has several pharmacological activities, including neuro-protective, anti-fungal, and anti-cariogenic effects. Ischemia/reperfusion-induced brain injury is a leading cause of adult disability and death; thus, the identification of anti-apoptotic, neuro-protective therapeutic agents is viewed as an attractive drug development strategy. Infarct volumes and the expression of several apoptosis-related proteins, including Bcl-xL, Bcl-2, caspase-8, and caspase-9, were evaluated by western blotting in the brains of mice subjected to middle cerebral artery occlusion (MCAO). Three consecutive days of oral pretreatment with the methanol extract of licorice (GRex) significantly reduced infarct volumes 24 h after MCAO. In addition, GRex effectively inhibited the activation of caspase-9 by upregulating protein expression of Bcl-xL and Bcl-2. The neuro-protective effect of licorice was due to its regulation of apoptosis-related proteins. These data suggest that licorice could be a potential candidate for the treatment of ischemia-induced brain damage.

  16. Acute Symptomatic Seizures Caused by Electrolyte Disturbances

    PubMed Central

    Nardone, Raffaele; Brigo, Francesco

    2016-01-01

    In this narrative review we focus on acute symptomatic seizures occurring in subjects with electrolyte disturbances. Quite surprisingly, despite its clinical relevance, this issue has received very little attention in the scientific literature. Electrolyte abnormalities are commonly encountered in clinical daily practice, and their diagnosis relies on routine laboratory findings. Acute and severe electrolyte imbalances can manifest with seizures, which may be the sole presenting symptom. Seizures are more frequently observed in patients with sodium disorders (especially hyponatremia), hypocalcemia, and hypomagnesemia. They do not entail a diagnosis of epilepsy, but are classified as acute symptomatic seizures. EEG has little specificity in differentiating between various electrolyte disturbances. The prominent EEG feature is slowing of the normal background activity, although other EEG findings, including various epileptiform abnormalities may occur. An accurate and prompt diagnosis should be established for a successful management of seizures, as rapid identification and correction of the underlying electrolyte disturbance (rather than an antiepileptic treatment) are of crucial importance in the control of seizures and prevention of permanent brain damage. PMID:26754778

  17. Acute renal failure potentiates methylmalonate-induced oxidative stress in brain and kidney of rats.

    PubMed

    Schuck, P F; Alves, L; Pettenuzzo, L F; Felisberto, F; Rodrigues, L B; Freitas, B W; Petronilho, F; Dal-Pizzol, F; Streck, E L; Ferreira, G C

    2013-03-01

    Tissue methylmalonic acid (MMA) accumulation is the biochemical hallmark of methylmalonic acidemia. The disease is clinically characterized by progressive neurological deterioration and kidney failure, whose pathophysiology is still unclear. In the present work we investigated the effects of acute MMA administration on various parameters of oxidative stress in cerebral cortex and kidney of young rats, as well as the influence of acute renal failure on MMA-elicited effects on these parameters. Acute renal failure was induced by gentamicin, an aminoglycoside antibiotic whose utilization over prolonged periods causes nephrotoxicity. The administration of gentamicin alone increased carbonyl content and inhibited superoxide dismutase (SOD) activity in cerebral cortex, as well as increased thiobarbituric acid-reactive substances (TBA-RS) and sulfhydryl levels and diminished glutathione peroxidase activity in kidney. On the other hand, MMA administration increased TBA-RS levels in cerebral cortex and decreased SOD activity in kidney. Furthermore, the simultaneous administration of MMA and gentamicin to the rats provoked an augment in TBA-RS levels and superoxide generation in cerebral cortex and in TBA-RS, carbonyl and sulfhydryl levels in kidney, while diminished SOD activity in both studied tissues. Finally, nitrate/nitrite content, reduced glutathione levels, 2',7'-dihydrodichlorofluorescein oxidation and catalase activity were not affected by this animal treatment in either tissue. In conclusion, our present data are in line with the hypothesis that MMA acts as a toxin in brain and kidney of rats and suggest that renal injury potentiates the toxicity of MMA on oxidative stress parameters in brain and peripheral tissues.

  18. Blood constituents trigger brain swelling, tissue death, and reduction of glucose metabolism early after acute subdural hematoma in rats.

    PubMed

    Baechli, Heidi; Behzad, Melika; Schreckenberger, Matthias; Buchholz, Hans-Georg; Heimann, Axel; Kempski, Oliver; Alessandri, Beat

    2010-03-01

    Outcome from acute subdural hematoma is often worse than would be expected from the pure increase of intracranial volume by bleeding. The aim was to test whether volume-independent pathomechanisms aggravate damage by comparing the effects of blood infusion with those of an inert fluid, paraffin oil, on intracranial pressure (ICP), cerebral perfusion pressure (CPP), local cerebral blood flow (CBF), edema formation, glucose metabolism ([18F]-deoxyglucose, MicroPET ), and histological outcome. Rats were injured by subdural infusion of 300 muL venous blood or paraffin. ICP, CPP, and CBF changes, assessed during the first 30 mins after injury, were not different between the injury groups at most time points (n=8 per group). Already at 2 h after injury, blood caused a significantly more pronounced decrease in glucose metabolism in the injured cortex when compared with paraffin (P<0.001, n=5 per group). Ipsilateral brain edema did not differ between groups at 2 h, but was significantly more pronounced in the blood-treated groups at 24 and 48 h after injury (n=8 per group). These changes caused a 56.2% larger lesion after blood when compared with paraffin (48.1+/-23.0 versus 21.1+/-11.8 mm(3); P<0.02). Blood constituent-triggered pathomechanisms aggravate the immediate effects due to ICP, CPP, and CBF during hemorrhage and lead to early reduction of glucose metabolism followed by more severe edema and histological damage.

  19. Blockade of the swelling-induced chloride current attenuates the mouse neonatal hypoxic-ischemic brain injury in vivo.

    PubMed

    Wong, Raymond; Abussaud, Ahmed; Leung, Joseph Wh; Xu, Bao-Feng; Li, Fei-Ya; Huang, Sammen; Chen, Nai-Hong; Wang, Guan-Lei; Feng, Zhong-Ping; Sun, Hong-Shuo

    2018-05-01

    Activation of swelling-induced Cl - current (I Cl,swell ) during neonatal hypoxia-ischemia (HI) may induce brain damage. Hypoxic-ischemic brain injury causes chronic neurological morbidity in neonates as well as acute mortality. In this study, we investigated the role of I Cl,swell in hypoxic-ischemic brain injury using a selective blocker, 4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl) oxybutyric acid (DCPIB). In primary cultured cortical neurons perfusion of a 30% hypotonic solution activated I Cl,swell , which was completely blocked by the application of DCPIB (10 μmol/L). The role of I Cl,swell in neonatal hypoxic-ischemic brain injury in vivo was evaluated in a modified neonatal hypoxic-ischemic brain injury model. Before receiving the ischemic insult, the mouse pups were injected with DCPIB (10 mg/kg, ip). We found that pretreatment with DCPIB significantly reduced the brain damage assessed using TTC staining, Nissl staining and whole brain imaging, and improved the sensorimotor and vestibular recovery outcomes evaluated in neurobehavioural tests (i.e. geotaxis reflex, and cliff avoidance reflex). These results show that DCPIB has neuroprotective effects on neonatal hypoxic-ischemic brain injury, and that the I Cl,swell may serve as a therapeutic target for treatment of hypoxic-ischemic encephalopathy.

  20. A simple brain atrophy measure improves the prediction of malignant middle cerebral artery infarction by acute DWI lesion volume.

    PubMed

    Beck, Christoph; Kruetzelmann, Anna; Forkert, Nils D; Juettler, Eric; Singer, Oliver C; Köhrmann, Martin; Kersten, Jan F; Sobesky, Jan; Gerloff, Christian; Fiehler, Jens; Schellinger, Peter D; Röther, Joachim; Thomalla, Götz

    2014-06-01

    In patients with malignant middle cerebral artery infarction (MMI) decompressive surgery within 48 h improves functional outcome. In this respect, early identification of patients at risk of developing MMI is crucial. While the acute diffusion weighted imaging (DWI) lesion volume was found to predict MMI with high predictive values, the potential impact of preexisting brain atrophy on the course of space-occupying middle cerebral artery (MCA) infarction and the development of MMI remains unclear. We tested the hypothesis that the combination of the acute DWI lesion volume with simple measures of brain atrophy improves the early prediction of MMI. Data from a prospective, multicenter, observational study, which included patients with acute middle cerebral artery main stem occlusion studied by MRI within 6 h of symptom onset, was analyzed retrospectively. The development of MMI was defined according to the European randomized controlled trials of decompressive surgery. Acute DWI lesion volume, as well as brain and cerebrospinal fluid volume (CSF) were delineated. The intercaudate distance (ICD) was assessed as a linear brain atrophy marker by measuring the hemi-ICD of the intact hemisphere to account for local brain swelling. Binary logistic regression analysis was used to identify significant predictors of MMI. Cut-off values were determined by Classification and Regression Trees analysis. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the resulting models were calculated. Twenty-one (18 %) of 116 patients developed a MMI. Malignant middle cerebral artery infarctions patients had higher National Institutes of Health Stroke Scale scores on admission and presented more often with combined occlusion of the internal carotid artery and MCA. There were no differences in brain and CSF volume between the two groups. Diffusion weighted imaging lesion volume was larger (p < 0.001), while hemi-ICD was smaller (p = 0.029) in

  1. Aggravated brain damage after hypoxic ischemia in immature adenosine A2A knockout mice.

    PubMed

    Adén, Ulrika; Halldner, Linda; Lagercrantz, Hugo; Dalmau, Ishar; Ledent, Catherine; Fredholm, Bertil B

    2003-03-01

    Cerebral hypoxic ischemia (HI) is an important cause of brain injury in the newborn infant. Adenosine is believed to protect against HI brain damage. However, the roles of the different adenosine receptors are unclear, particularly in young animals. We examined the role of adenosine A2A receptors (A2AR) using 7-day-old A2A knockout (A2AR(-/-)) mice in a model of HI. HI was induced in 7-day-old CD1 mice by exposure to 8% oxygen for 30 minutes after occlusion of the left common carotid artery. The resulting unilateral focal lesion was evaluated with the use of histopathological scoring and measurements of residual brain areas at 5 days, 3 weeks, and 3 months after HI. Behavioral evaluation of brain injury by locomotor activity, rotarod, and beam-walking test was made 3 weeks and 3 months after HI. Cortical cerebral blood flow, assessed by laser-Doppler flowmetry, and rectal temperature were measured during HI. Reduction in cortical cerebral blood flow during HI and rectal temperature did not differ between wild-type (A2AR(+/+)) and knockout mice. In the A2AR(-/-) animals, brain injury was aggravated compared with wild-type mice. The A2AR(-/-) mice subjected to HI displayed increased forward locomotion and impaired rotarod performance in adulthood compared with A2AR(+/+) mice subjected to HI, whereas beam-walking performance was similarly defective in both groups. These results suggest that, in contrast to the situation in adult animals, A2AR play an important protective role in neonatal HI brain injury.

  2. The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment.

    PubMed

    Donega, Vanessa; van Velthoven, Cindy T J; Nijboer, Cora H; Kavelaars, Annemieke; Heijnen, Cobi J

    2013-05-01

    Neurogenesis continues throughout adulthood. The neurogenic capacity of the brain increases after injury by, e.g., hypoxia-ischemia. However, it is well known that in many cases brain damage does not resolve spontaneously, indicating that the endogenous regenerative capacity of the brain is insufficient. Neonatal encephalopathy leads to high mortality rates and long-term neurologic deficits in babies worldwide. Therefore, there is an urgent need to develop more efficient therapeutic strategies. The latest findings indicate that stem cells represent a novel therapeutic possibility to improve outcome in models of neonatal encephalopathy. Transplanted stem cells secrete factors that stimulate and maintain neurogenesis, thereby increasing cell proliferation, neuronal differentiation, and functional integration. Understanding the molecular and cellular mechanisms underlying neurogenesis after an insult is crucial for developing tools to enhance the neurogenic capacity of the brain. The aim of this review is to discuss the endogenous capacity of the neonatal brain to regenerate after a cerebral ischemic insult. We present an overview of the molecular and cellular mechanisms underlying endogenous regenerative processes during development as well as after a cerebral ischemic insult. Furthermore, we will consider the potential to use stem cell transplantation as a means to boost endogenous neurogenesis and restore brain function.

  3. Markers of oxidative damage to lipids, nucleic acids and proteins and antioxidant enzymes activities in Alzheimer's disease brain: A meta-analysis in human pathological specimens.

    PubMed

    Zabel, Matthew; Nackenoff, Alex; Kirsch, Wolff M; Harrison, Fiona E; Perry, George; Schrag, Matthew

    2018-02-01

    Oxidative stress and decreased cellular responsiveness to oxidative stress are thought to influence brain aging and Alzheimer's disease, but the specific patterns of oxidative damage and the underlying mechanism leading to this damage are not definitively known. The objective of this study was to define the pattern of changes in oxidative-stress related markers by brain region in human Alzheimer's disease and mild cognitive impairment brain tissue. Observational case-control studies were identified from systematic queries of PubMed, ISI Web of Science and Scopus databases and studies were evaluated with appropriate quality measures. The data was used to construct a region-by-region meta-analysis of malondialdehyde, 4-hydroxynonenal, protein carbonylation, 8-hydroxyguanine levels and superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase activities. We also evaluated ascorbic acid, tocopherol, uric acid and glutathione levels. The analysis was complicated in several cases by publication bias and/or outlier data. We found that malondialdehyde levels were slightly increased in the temporal and occipital lobes and hippocampus, but this analysis was significantly impacted by publication bias. 4-hydroxynonenal levels were unchanged in every brain region. There was no change in 8-hydroxyguanine level in any brain region and protein carbonylation levels were unchanged except for a slight increase in the occipital lobe. Superoxide dismutase, glutathione peroxidase and reductase and catalase activities were not decreased in any brain region. There was limited data reporting non-enzymatic antioxidant levels in Alzheimer's disease brain, although glutathione and tocopherol levels appear to be unchanged. Minimal quantitative data is available from brain tissue from patients with mild cognitive impairment. While there is modest evidence supporting minor regional changes in markers of oxidative damage, this analysis fails to identify a consistent pattern

  4. Acute necrosis after Gamma Knife surgery in vestibular schwannoma leading to multiple cranial nerve palsies.

    PubMed

    Kapitza, Sandra; Pangalu, Athina; Horstmann, Gerhard A; van Eck, Albert T; Regli, Luca; Tarnutzer, Alexander A

    2016-08-01

    We discuss a rare acute complication after Gamma Knife therapy (Elekta AB, Stockholm, Sweden) in a single patient. A 52-year-old woman presented with vertigo, facial weakness and hearing loss emerging 48hours following Gamma Knife radiosurgery for a right-sided vestibular schwannoma. Neurological examination 6days after symptom onset showed right-sided facial palsy, spontaneous left-beating nystagmus and pathologic head-impulse testing to the right. Pure-tone audiogram revealed right-sided sensorineural hearing loss. A diagnosis of acute vestibulocochlear and facial neuropathy was made. Brain MRI demonstrated focal contrast sparing within the schwannoma, likely related to acute radiation necrosis. Acute multiple cranial neuropathies of the cerebellopontine angle after Gamma Knife treatment should raise suspicion of acute tissue damage within the schwannoma and should result in urgent MRI. Treatment with steroids may be considered based on accompanying swelling and edema. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Cell transplantation in the damaged adult brain.

    PubMed

    Jaber, M; Benoit-Marand, M; Prestoz, L; Gaillard, A

    2013-11-01

    Parkinson's disease (PD) is the most common movement disorder in Europe, affecting more than two million people between 50 and 70 years of age. The current therapeutic approaches are of symptomatic nature and fail to halt the progressive neurodegenerative course of the disease. The development of innovative and complementary approaches to promote cellular repair may pave the way for disease-modifying therapies which may lead to less suffering for the patients and their families and finally to more cost-effective therapies. To date, cell replacement trials in PD aiming at replacing lost dopamine neurons were mainly focused on placing the transplanted cells within the target site, the striatum, and not within the lesioned site, the substantia nigra (SN). This was based on the misconception that the adult brain constitutes a non-permissive barrier not allowing the outgrowth of long distance axons originating from transplanted embryonic neurons. A growing body of evidence is challenging this concept and proposing instead to place the graft within its ontogenic site. This has been performed in several lesional animal models for various traumatic or neurodegenerative pathologies of the brain. For instance, transplanted neurons within the lesioned motor cortex were shown to be able to send distant and appropriate projections to target areas including the spinal cord. Similarly, in an animal model of PD, mesencephalic embryonic cells transplanted within the lesioned SN send massive projections to the striatum and, to a lesser extent, the frontal cortex and the nucleus accumbens. This has lead to the proposal that homotopic transplantation may be an alternative in cell-based therapies as transplanted neurons can integrate within the host brain, send projections to target areas, restore the damaged circuitry, increase neurotransmitter levels and ameliorate behavior. We will discuss also the potential of replacing embryonic neuronal cells by stem cell derived neurons as the

  6. Bile duct ligation in developing rats: temporal progression of liver, kidney, and brain damage.

    PubMed

    Sheen, Jiunn-Ming; Huang, Li-Tung; Hsieh, Chih-Sung; Chen, Chih-Cheng; Wang, Jia-Yi; Tain, You-Lin

    2010-08-01

    Cholestatic liver disease may result in progressive end-stage liver disease and other extrahepatic complications. We explored the temporal progression of bile duct ligation (BDL)-induced cholestasis in developing rats, focusing on brain cognition and liver and kidney pathology, to elucidate whether these findings were associated with asymmetric dimethylarginine and oxidative stress alterations. Three groups of young male Sprague-Dawley rats were studied: one group underwent laparotomy (sham), another group underwent laparotomy and BDL for 2 weeks (BDL2), and a third group underwent laparotomy and BDL for 4 weeks (BDL4). The effect of BDL on liver was represented by transforming growth factor beta1 levels and histology activity index scores, which were worse in the BDL4 rats than in the BDL2 rats. BDL4 rats also exhibited more severe spatial memory deficits than BDL2 rats. In addition, renal injury was more progressive in BDL4 rats than in BDL2 rats because BDL4 rats displayed higher Cr levels, elevated tubulointerstitial injury scores, neutrophil gelatinase-associated lipocalin, and symmetric dimethylarginine levels. Our findings highlight the fact that young BDL rats exhibit similar trends of progression of liver, kidney, and brain damage. Further studies are needed to better delineate the nature of progression of organ damage in young cholestatic rats. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Acute kidney failure

    MedlinePlus

    Kidney failure; Renal failure; Renal failure - acute; ARF; Kidney injury - acute ... There are many possible causes of kidney damage. They include: ... cholesterol (cholesterol emboli) Decreased blood flow due to very ...

  8. Zero in the brain: A voxel-based lesion-symptom mapping study in right hemisphere damaged patients.

    PubMed

    Benavides-Varela, Silvia; Passarini, Laura; Butterworth, Brian; Rolma, Giuseppe; Burgio, Francesca; Pitteri, Marco; Meneghello, Francesca; Shallice, Tim; Semenza, Carlo

    2016-04-01

    Transcoding numerals containing zero is more problematic than transcoding numbers formed by non-zero digits. However, it is currently unknown whether this is due to zeros requiring brain areas other than those traditionally associated with number representation. Here we hypothesize that transcoding zeros entails visuo-spatial and integrative processes typically associated with the right hemisphere. The investigation involved 22 right-brain-damaged patients and 20 healthy controls who completed tests of reading and writing Arabic numbers. As expected, the most significant deficit among patients involved a failure to cope with zeros. Moreover, a voxel-based lesion-symptom mapping (VLSM) analysis showed that the most common zero-errors were maximally associated to the right insula which was previously related to sensorimotor integration, attention, and response selection, yet for the first time linked to transcoding processes. Error categories involving other digits corresponded to the so-called Neglect errors, which however, constituted only about 10% of the total reading and 3% of the writing mistakes made by the patients. We argue that damage to the right hemisphere impairs the mechanism of parsing, and the ability to set-up empty-slot structures required for processing zeros in complex numbers; moreover, we suggest that the brain areas located in proximity to the right insula play a role in the integration of the information resulting from the temporary application of transcoding procedures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [Effects of N-butylphthalide on the expressions of ZO-1 and claudin-5 in blood-brain barrier of rats with acute carbon monoxide poisoning].

    PubMed

    Wang, Li; Ding, Xiaoyu; Bi, Mingjun; Wang, Jinglin; Zou, Yong; Tang, Jiyou; Li, Qin

    2018-05-01

    protein: 32.35±3.11 vs. 46.43±7.20, both P < 0.05). NBP treatment could significantly alleviate the ultrastructure injury of BBB induced by acute CO poisoning, the amount of ZO-1 and claudin-5 positive cells in brain tissue were significantly increased, as well as the expressions of ZO-1 and claudin-5 proteins were significantly increased, which were significantly higher than those of CO poisoning group from 1 day and 3 days on, respectively (1-day ZO-1 protein: 7.57±0.69 vs. 3.38±0.30, 3-day claudin-5 protein: 20.46±1.42 vs. 11.43±0.86, both P < 0.05), and which showed an increase tendency with time prolongation. The results of immunofluorescence double staining showed that ZO-1 and claudin-5 proteins could not only coexist in the same cell, but also could be expressed separately in different cells. Linear regression analysis showed the positive correlation between the expressions of ZO-1 and claudin-5 proteins in brain tissue of rats with acute CO poisoning (R 2 = 0.917, P = 0.022). NBP could markedly improve the ultrastructure and functional integrity of BBB through up-regulating the expressions of ZO-1 and claudin-5 proteins, and then reduce brain damage caused by CO poisoning.

  10. In vivo Postnatal Electroporation and Time-lapse Imaging of Neuroblast Migration in Mouse Acute Brain Slices

    PubMed Central

    Oudin, Madeleine Julie; Doherty, Patrick; Lalli, Giovanna

    2013-01-01

    The subventricular zone (SVZ) is one of the main neurogenic niches in the postnatal brain. Here, neural progenitors proliferate and give rise to neuroblasts able to move along the rostral migratory stream (RMS) towards the olfactory bulb (OB). This long-distance migration is required for the subsequent maturation of newborn neurons in the OB, but the molecular mechanisms regulating this process are still unclear. Investigating the signaling pathways controlling neuroblast motility may not only help understand a fundamental step in neurogenesis, but also have therapeutic regenerative potential, given the ability of these neuroblasts to target brain sites affected by injury, stroke, or degeneration. In this manuscript we describe a detailed protocol for in vivo postnatal electroporation and subsequent time-lapse imaging of neuroblast migration in the mouse RMS. Postnatal electroporation can efficiently transfect SVZ progenitor cells, which in turn generate neuroblasts migrating along the RMS. Using confocal spinning disk time-lapse microscopy on acute brain slice cultures, neuroblast migration can be monitored in an environment closely resembling the in vivo condition. Moreover, neuroblast motility can be tracked and quantitatively analyzed. As an example, we describe how to use in vivo postnatal electroporation of a GFP-expressing plasmid to label and visualize neuroblasts migrating along the RMS. Electroporation of shRNA or CRE recombinase-expressing plasmids in conditional knockout mice employing the LoxP system can also be used to target genes of interest. Pharmacological manipulation of acute brain slice cultures can be performed to investigate the role of different signaling molecules in neuroblast migration. By coupling in vivo electroporation with time-lapse imaging, we hope to understand the molecular mechanisms controlling neuroblast motility and contribute to the development of novel approaches to promote brain repair. PMID:24326479

  11. A multicenter, randomized trial on neuroprotection with remote ischemic per-conditioning during acute ischemic stroke: the REmote iSchemic Conditioning in acUtE BRAin INfarction study protocol.

    PubMed

    Pico, Fernando; Rosso, Charlotte; Meseguer, Elena; Chadenat, Marie-Laure; Cattenoy, Amina; Aegerter, Philippe; Deltour, Sandrine; Yeung, Jennifer; Hosseini, Hassan; Lambert, Yves; Smadja, Didier; Samson, Yves; Amarenco, Pierre

    2016-10-01

    Rationale Remote ischemic per-conditioning-causing transient limb ischemia to induce ischemic tolerance in other organs-reduces final infarct size in animal stroke models. Aim To evaluate whether remote ischemic per-conditioning during acute ischemic stroke (<6 h) reduces brain infarct size at 24 h. Methods and design This study is being performed in five French hospitals using a prospective randomized open blinded end-point design. Adults with magnetic resonance imaging confirmed ischemic stroke within 6 h of symptom onset and clinical deficit of 5-25 according to National Institutes of Health Stroke Scale will be randomized 1:1 to remote ischemic per-conditioning or control (stratified by center and intravenous fibrinolysis use). Remote ischemic per-conditioning will consist of four cycles of electronic tourniquet inflation (5 min) and deflation (5 min) to a thigh within 6 h of symptom onset. Magnetic resonance imaging is repeated 24 h after stroke onset. Sample size estimates For a difference of 15 cm 3 in brain infarct growth between groups, 200 patients will be included for 5% significance and 80% power. Study outcomes The primary outcome will be the difference in brain infarct growth from baseline to 24 h in the intervention versus control groups (by diffusion-weighted image magnetic resonance imaging). Secondary outcomes include: National Institutes of Health Stroke Scale score absolute difference between baseline and 24 h, three-month modified Rankin score and daily living activities, mortality, and tolerance and side effects of remote ischemic per-conditioning. Discussion The only remote ischemic per-conditioning trial in humans with stroke did not show remote ischemic per-conditioning to be effective. REmote iSchemic Conditioning in acUtE BRAin INfarction, which has important design differences, should provide more information on the use of this intervention in patients with acute ischemic stroke.

  12. The acute action of ammonia on rat brain metabolism in vivo.

    PubMed

    Hawkins, R A; Miller, A L; Nielsen, R C; Veech, R L

    1973-08-01

    1. Acute NH(4) (+) toxicity was studied by using a new apparatus that removes and freezes the brains of conscious rats within 1s. 2. Brains were removed and frozen 5min after intraperitoneal injection of ammonium acetate (2-3min before the onset of convulsions). Arterial [NH(4) (+)] rose from less than 0.01 to 1.74mm at 4-5min. The concentrations of all glycolytic intermediates measured, except glucose 6-phosphate, were increased by the indicated percentage above the control value as follows: glucose (by 41%), fructose 1,6-diphosphate (by 133%), dihydroxyacetone phosphate (by 164%), alpha-glycerophosphate (by 45%), phosphoenolpyruvate (by 67%) and pyruvate (by 26%). 4. Citrate and alpha-oxoglutarate concentrations were unchanged and that of malate was increased (by 17%). 5. Adenine nucleotides and P(i) concentrations were unchanged but the concentration of creatine phosphate decreased slightly (by 6%). 6. Brain [NH(4) (+)] increased from 0.2 to 1.53mm. Net glutamine synthesis occurred at an average rate of 0.33mumol/min per g. 7. The rate of brain glucose utilization was measured in vivo as 0.62mumol/min per g in controls and 0.81mumol/min per g after NH(4) (+) injection. 8. The arteriovenous difference of glucose and O(2) increased by 35%. 9. No significant arteriovenous differences of glutamate or glutamine were detected. Thus, although much NH(4) (+) was incorporated into glutamine the latter was not rapidly released from the brain to the circulation. 10. Plasma [K(+)] increased from 3.3 to 5.4mm. 11. The results indicate that NH(4) (+) stimulates oxidative metabolism but does not interfere with brain energy balance. The increased rate of oxidative metabolism could not be accounted for only on the basis of glutamine synthesis. We suggest that increased extracellular [NH(4) (+)] and [K(+)] decreased the resting transmembrane potential and stimulated Na(+),K(+)-stimulated adenosine triphosphatase activity thus accounting for the increased metabolic rate.

  13. Inducing rat brain CYP2D with nicotine increases the rate of codeine tolerance; predicting the rate of tolerance from acute analgesic response.

    PubMed

    McMillan, Douglas M; Tyndale, Rachel F

    2017-12-01

    Repeated opioid administration produces analgesic tolerance, which may lead to dose escalation. Brain CYP2D metabolizes codeine to morphine, a bioactivation step required for codeine analgesia. Higher brain, but not liver, CYP2D is found in smokers and nicotine induces rat brain, but not liver, CYP2D expression and activity. Nicotine induction of rat brain CYP2D increases acute codeine conversion to morphine, and analgesia, however the role of brain CYP2D on the effects of repeated codeine exposure and tolerance is unknown. Rats were pretreated with nicotine (brain CYP2D inducer; 1mg/kg subcutaneously) or vehicle (saline; 1ml/kg subcutaneously). Codeine (40-60mg/kg oral-gavage) or morphine (20-30mg/kg oral-gavage) was administered daily and analgesia was assessed daily using the tail-flick reflex assay. Nicotine (versus saline) pretreatment increased acute codeine analgesia (1.32-fold change in AUC 0-60 min ; p<0.05) and the rate of loss of peak analgesia (11.42%/day versus 4.20%; p<0.006) across the first four days of codeine administration (time to negligible analgesia). Inducing brain CYP2D with nicotine did not alter acute morphine analgesia (1.03-fold; p>0.8), or the rate of morphine tolerance (8.1%/day versus 7.6%; p>0.9). The rate of both codeine and morphine tolerance (loss in peak analgesia from day 1 to day 4) correlated with initial analgesic response on day 1 (R=0.97, p<001). Increasing brain CYP2D altered initial analgesia and subsequent rate of tolerance. Variation in an individual's initial response to analgesic (e.g. high initial dose, smoking) may affect the rate of tolerance, and thereby the risk for dose escalation and/or opioid dependence. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Poor Hand-Pointing to Sounds in Right Brain-Damaged Patients: Not Just a Problem of Spatial-Hearing

    ERIC Educational Resources Information Center

    Pavani, Francesco; Farne, Alessandro; Ladavas, Elisabetta

    2005-01-01

    We asked 22 right brain-damaged (RBD) patients and 11 elderly healthy controls to perform hand-pointing movements to free-field unseen sounds, while modulating two non-auditory variables: the initial position of the responding hand (left, centre or right) and the presence or absence of task-irrelevant ambient vision. RBD patients suffering from…

  15. Altered brain concentrations of citalopram and escitalopram in P-glycoprotein deficient mice after acute and chronic treatment.

    PubMed

    Karlsson, Louise; Carlsson, Björn; Hiemke, Christoph; Ahlner, Johan; Bengtsson, Finn; Schmitt, Ulrich; Kugelberg, Fredrik C

    2013-11-01

    According to both in vitro and in vivo data P-glycoprotein (P-gp) may restrict the uptake of several antidepressants into the brain, thus contributing to the poor success rate of current antidepressant therapies. The therapeutic activity of citalopram resides in the S-enantiomer, whereas the R-enantiomer is practically devoid of serotonin reuptake potency. To date, no in vivo data are available that address whether the enantiomers of citalopram and its metabolites are substrates of P-gp. P-gp knockout (abcb1ab (-/-)) and wild-type (abcb1ab (+/+)) mice underwent acute (single-dose) and chronic (two daily doses for 10 days) treatment with citalopram (10mg/kg) or escitalopram (5mg/kg) Serum and brain samples were collected 1-6h after the first or last i.p. injection for subsequent drug analysis by an enantioselective HPLC method. In brain, 3-fold higher concentrations of S- and R-citalopram, and its metabolites, were found in abcb1ab (-/-) mice than in abcb1ab (+/+) mice after both acute and chronic citalopram treatments. After escitalopram treatment, the S-citalopram brain concentration was 3-5 times higher in the knockout mice than in controls. The results provide novel evidence that the enantiomers of citalopram are substrates of P-gp. Possible clinical and toxicological implications of this finding need to be further elucidated. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  16. Monitoring gap junctional communication in astrocytes from acute adult mouse brain slices using the gap-FRAP technique.

    PubMed

    Yi, Chenju; Teillon, Jérémy; Koulakoff, Annette; Berry, Hugues; Giaume, Christian

    2018-06-01

    Intercellular communication through gap junction channels plays a key role in cellular homeostasis and in synchronizing physiological functions, a feature that is modified in number of pathological situations. In the brain, astrocytes are the cell population that expresses the highest amount of gap junction proteins, named connexins. Several techniques have been used to assess the level of gap junctional communication in astrocytes, but so far they remain very difficult to apply in adult brain tissue. Here, using specific loading of astrocytes with sulforhodamine 101, we adapted the gap-FRAP (Fluorescence Recovery After Photobleaching) to acute hippocampal slices from 9 month-old adult mice. We show that gap junctional communication monitored in astrocytes with this technique was inhibited either by pharmacological treatment with a gap junctional blocker or in mice lacking the two main astroglial connexins, while a partial inhibition was measured when only one connexin was knocked-out. We validate this approach using a mathematical model of sulforhodamine 101 diffusion in an elementary astroglial network and a quantitative analysis of the exponential fits to the fluorescence recovery curves. Consequently, we consider that the adaptation of the gap-FRAP technique to acute brain slices from adult mice provides an easy going and valuable approach that allows overpassing this age-dependent obstacle and will facilitate the investigation of gap junctional communication in adult healthy or pathological brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Hyperbaric oxygen increases tissue-plasminogen activator-induced thrombolysis in vitro, and reduces ischemic brain damage and edema in rats subjected to thromboembolic brain ischemia.

    PubMed

    Chazalviel, Laurent; Haelewyn, Benoit; Degoulet, Mickael; Blatteau, Jean-Eric; Vallée, Nicolas; Risso, Jean-Jacques; Besnard, Stéphane; Abraini, Jacques H

    2016-01-01

    Recent data have shown that normobaric oxygen (NBO) increases the catalytic and thrombolytic efficiency of recombinant tissue plasminogen activator (rtPA) in vitro , and is as efficient as rtPA at restoring cerebral blood flow in rats subjected to thromboembolic brain ischemia. Therefore, in the present study, we studied the effects of hyperbaric oxygen (HBO) (i) on rtPA-induced thrombolysis in vitro and (ii) in rats subjected to thromboembolic middle cerebral artery occlusion-induced brain ischemia. HBO increases rtPA-induced thrombolysis in vitro to a greater extent than NBO; in addition, HBO treatment of 5-minute duration, but not of 25-minute duration, reduces brain damage and edema in vivo . In line with the facilitating effect of NBO on cerebral blood flow, our findings suggest that 5-minute HBO could have provided neuroprotection by promoting thrombolysis. The lack of effect of HBO exposure of longer duration is discussed.

  18. Ankle passive and active movement training in children with acute brain injury using a wearable robot.

    PubMed

    Chen, Kai; Xiong, Bo; Ren, Yupeng; Dvorkin, Assaf Y; Gaebler-Spira, Deboah; Sisung, Charles E; Zhang, Li-Qun

    2018-01-10

    To evaluate the feasibility and effectiveness of a wearable robotic device in guiding isometric torque generation and passive-active movement training for ankle motor recovery in children with acute brain injury. Ten inpatient children with acute brain injury being treated in a rehabilitation hospital. Daily robot-guided ankle passive-active movement therapy for 15 sessions, including isometric torque generation under real-time feedback, stretch-ing, and active movement training with motivating games using a wearable ankle rehabilitation robot. Ankle biomechanical improvements induced by each training session including ankle range of motion (ROM), muscle strength, and clinical (Fugl-Meyer Lower-Extremity (FMLE), Pediatric Balance Scale (PBS)) and biomechanical (ankle ROM and muscle strength) outcomes over 15 training sessions. As training progressed, improvements in biomechanical performance measures followed logarithmic curves. Each training session increased median dorsiflexion active range of motion (AROM) 2.73° (standard deviation (SD) 1.14), dorsiflexion strength 0.87 Nm (SD 0.90), and plantarflexion strength 0.60 Nm (SD 1.19). After 15 training sessions the median FMLE score had increased from 14.0 (SD 10.11) to 23.0 (SD 11.4), PBS had increased from 33.0 (SD 19.99) to 50.0 (SD 23.13) (p < 0.05), median dorsiflexion and plantarflexion strength had improved from 0.21 Nm (SD 4.45) to 4.0 Nm (SD 7.63) and 8.33 Nm (SD 10.18) to 18.45 Nm (SD 14.41), respectively, median dorsiflexion AROM had improved from -10.45° (SD 12.01) to 11.87° (SD 20.69), and median dorsiflexion PROM increased from 20.0° (SD 9.04) to 25.0° (SD 8.03). Isometric torque generation with real-time feedback, stretching and active movement training helped promote neuroplasticity and improve motor performance in children with acute brain injury.

  19. Brain Malformations

    MedlinePlus

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  20. Association between ventilatory settings and development of acute respiratory distress syndrome in mechanically ventilated patients due to brain injury.

    PubMed

    Tejerina, Eva; Pelosi, Paolo; Muriel, Alfonso; Peñuelas, Oscar; Sutherasan, Yuda; Frutos-Vivar, Fernando; Nin, Nicolás; Davies, Andrew R; Rios, Fernando; Violi, Damian A; Raymondos, Konstantinos; Hurtado, Javier; González, Marco; Du, Bin; Amin, Pravin; Maggiore, Salvatore M; Thille, Arnaud W; Soares, Marco Antonio; Jibaja, Manuel; Villagomez, Asisclo J; Kuiper, Michael A; Koh, Younsuck; Moreno, Rui P; Zeggwagh, Amine Ali; Matamis, Dimitrios; Anzueto, Antonio; Ferguson, Niall D; Esteban, Andrés

    2017-04-01

    In neurologically critically ill patients with mechanical ventilation (MV), the development of acute respiratory distress syndrome (ARDS) is a major contributor to morbidity and mortality, but the role of ventilatory management has been scarcely evaluated. We evaluate the association of tidal volume, level of PEEP and driving pressure with the development of ARDS in a population of patients with brain injury. We performed a secondary analysis of a prospective, observational study on mechanical ventilation. We included 986 patients mechanically ventilated due to an acute brain injury (hemorrhagic stroke, ischemic stroke or brain trauma). Incidence of ARDS in this cohort was 3%. Multivariate analysis suggested that driving pressure could be associated with the development of ARDS (odds ratio for unit increment of driving pressure 1.12; confidence interval for 95%: 1.01 to 1.23) whereas we did not observe association for tidal volume (in ml per kg of predicted body weight) or level of PEEP. ARDS was associated with an increase in mortality, longer duration of mechanical ventilation, and longer ICU length of stay. In a cohort of brain-injured patients the development of ARDS was not common. Driving pressure was associated with the development of this disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Death rates reflect accumulating brain damage in arthropods.

    PubMed

    Fonseca, Duane B; Brancato, Carolina L; Prior, Andrew E; Shelton, Peter M J; Sheehy, Matt R J

    2005-09-22

    We present the results of the first quantitative, whole-lifespan study of the relationship between age-specific neurolipofuscin concentration and natural mortality rate in any organism. In a convenient laboratory animal, the African migratory locust, Locusta migratoria, we find an unusual delayed-onset neurolipofuscin accumulation pattern that is highly correlated with exponentially accelerating age-specific Gompertz-Makeham death rates in both males (r=0.93, p=0.0064) and females (r=0.97, p=0.0052). We then test the conservation of this association by aggregating the locust results with available population-specific data for a range of other terrestrial, freshwater, marine, tropical and temperate arthropods whose longevities span three orders of magnitude. This synthesis shows that the strong association between neurolipofuscin deposition and natural mortality is a phylogenetically and environmentally widespread phenomenon (r=0.96, p < 0.0001). These results highlight neurolipofuscin as a unique and outstanding integral biomarker of ageing. They also offer compelling evidence for the proposal that, in vital organs like the brain, either the accumulation of toxic garbage in the form of lipofuscin itself, or the particular molecular reactions underlying lipofuscinogenesis, including free-radical damage, are the primary events in senescence.

  2. [Correlation between post-stroke pneumonia and outcome in patients with acute brain infarction].

    PubMed

    Li, S J; Hu, H Q; Wang, X L; Cao, B Z

    2016-09-20

    Objective: To investigate the correlation between post-stroke pneumonia and outcome in patients with acute brain infarction. Methods: Consecutive acute cerebral infarction patients who were hospitalized in Department of Neurology, Jinan Military General Hospital were prospectively recruited from August 2010 to August 2014. The baseline data including age, sex, the National Institute of Health Stroke Scale (NIHSS) scores, type of Oxfordshire Community Stroke Project (OCSP: total anterior circulation infarct, partial anterior circulation infarct, posterior circulation infarct and lacunar infarct), fasting blood glucose etc. after admission were recorded. Post-stroke pneumonia was diagnosed by treating physician according to criteria for hospital-acquired pneumonia of the Centers for Disease Control and Prevention. Recovery was assessed by modified Rankin Scale (mRS) 180 days after stroke by telephone interview (mRS≤2 reflected good prognosis, and mRS>2 reflected unfavorable prognosis). Multinominal Logistic regression analysis, Kaplan-Meier curve and log rank test were used. Results: A total of 1 249 patients were enrolled, among them 173 patients were lost during follow-up. A total of 159 patients had post-stroke pneumonia, while 1 090 patients were without post-stroke. Compared with patients without post-stoke pneumonia, patients with post-stroke pneumonia were older (67±13 vs 63±12 years, P =0.000), more severe (NIHSS, 15(14) vs 4(4), P =0.000). Compared with patients without post-stoke pneumonia, more patients with post-stroke pneumonia suffered from heart failure (12.58% vs 3.40%, P =0.000), atrial fibrillation (26.42% vs 8.81%, P =0.000), myocardial infarction (10.06% vs 5.05%, P =0.016), recurrent brain infarction (30.19% vs 22.66%, P =0.045), total anterior circulation infarct type of OCSP (46.54% vs 19.63%, P =0.000), posterior circulation infarct of OCSP (39.62% vs 25.51%, P =0.001); more patients suffered from disorder of consciousness (60.38% vs 9

  3. Thresholds for thermal damage to normal tissues: an update.

    PubMed

    Yarmolenko, Pavel S; Moon, Eui Jung; Landon, Chelsea; Manzoor, Ashley; Hochman, Daryl W; Viglianti, Benjamin L; Dewhirst, Mark W

    2011-01-01

    The purpose of this review is to summarise a literature survey on thermal thresholds for tissue damage. This review covers published literature for the consecutive years from 2002-2009. The first review on this subject was published in 2003. It included an extensive discussion of how to use thermal dosimetric principles to normalise all time-temperature data histories to a common format. This review utilises those same principles to address sensitivity of a variety of tissues, but with particular emphasis on brain and testis. The review includes new data on tissues that were not included in the original review. Several important observations have come from this review. First, a large proportion of the papers examined for this review were discarded because time-temperature history at the site of thermal damage assessment was not recorded. It is strongly recommended that future research on this subject include such data. Second, very little data is available examining chronic consequences of thermal exposure. On a related point, the time of assessment of damage after exposure is critically important for assessing whether damage is transient or permanent. Additionally, virtually no data are available for repeated thermal exposures which may occur in certain recreational or occupational activities. For purposes of regulatory guidelines, both acute and lasting effects of thermal damage should be considered.

  4. Behavior outcome after ischemic and hemorrhagic stroke, with similar brain damage, in rats.

    PubMed

    Mestriner, Régis Gemerasca; Miguel, Patrícia Maidana; Bagatini, Pamela Brambilla; Saur, Lisiani; Boisserand, Lígia Simões Braga; Baptista, Pedro Porto Alegre; Xavier, Léder Leal; Netto, Carlos Alexandre

    2013-05-01

    Stroke causes disability and mortality worldwide and is divided into ischemic and hemorrhagic subtypes. Although clinical trials suggest distinct recovery profiles for ischemic and hemorrhagic events, this is not conclusive due to stroke heterogeneity. The aim of this study was to produce similar brain damage, using experimental models of ischemic (IS) and hemorrhagic (HS) stroke and evaluate the motor spontaneous recovery profile. We used 31 Wistar rats divided into the following groups: Sham (n=7), ischemic (IS) (n=12) or hemorrhagic (HS) (n=12). Brain ischemia or hemorrhage was induced by endotelin-1 (ET-1) and collagenase type IV-S (collagenase) microinjections, respectively. All groups were evaluated in the open field, cylinder and ladder walk behavioral tests at distinct time points as from baseline to 30 days post-surgery (30 PS). Histological and morphometric analyses were used to assess the volume of lost tissue and lesion length. Present results reveal that both forms of experimental stroke had a comparable long-term pattern of damage, since no differences were found in volume of tissue lost or lesion size 30 days after surgery. However, behavioral data showed that hemorrhagic rats were less impaired at skilled walking than ischemic ones at 15 and 30 days post-surgery. We suggest that experimentally comparable stroke design is useful because it reduces heterogeneity and facilitates the assessment of neurobiological differences related to stroke subtypes; and that spontaneous skilled walking recovery differs between experimental ischemic and hemorrhagic insults. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Soman increases neuronal COX-2 levels: possible link between seizures and protracted neuronal damage.

    PubMed

    Angoa-Pérez, Mariana; Kreipke, Christian W; Thomas, David M; Van Shura, Kerry E; Lyman, Megan; McDonough, John H; Kuhn, Donald M

    2010-12-01

    Nerve agent-induced seizures cause neuronal damage in brain limbic and cortical circuits leading to persistent behavioral and cognitive deficits. Without aggressive anticholinergic and benzodiazepine therapy, seizures can be prolonged and neuronal damage progresses for extended periods of time. The objective of this study was to determine the effects of the nerve agent soman on expression of cyclooxygenase-2 (COX-2), the initial enzyme in the biosynthetic pathway of the proinflammatory prostaglandins and a factor that has been implicated in seizure initiation and propagation. Rats were exposed to a toxic dose of soman and scored behaviorally for seizure intensity. Expression of COX-2 was determined throughout brain from 4h to 7 days after exposure by immunohistochemistry and immunoblotting. Microglial activation and astrogliosis were assessed microscopically over the same time-course. Soman increased COX-2 expression in brain regions known to be damaged by nerve agents (e.g., hippocampus, amygdala, piriform cortex and thalamus). COX-2 expression was induced in neurons, and not in microglia or astrocytes, and remained elevated through 7 days. The magnitude of COX-2 induction was correlated with seizure intensity. COX-1 expression was not changed by soman. Increased expression of neuronal COX-2 by soman is a late-developing response relative to other signs of acute physiological distress caused by nerve agents. COX-2-mediated production of prostaglandins is a consequence of the seizure-induced neuronal damage, even after survival of the initial cholinergic crisis is assured. COX-2 inhibitors should be considered as adjunct therapy in nerve agent poisoning to minimize nerve agent-induced seizure activity. Published by Elsevier B.V.

  6. Caspase-3 inhibitor prevents the apoptosis of brain tissue in rats with acute cerebral infarction.

    PubMed

    Sun, Yuhua; Xu, Yuming; Geng, Lijiao

    2015-07-01

    The aim of the present study was to investigate the effect of the caspase-3 inhibitor z-DEVD-fmk on the apoptosis of the brain tissues of rats with acute cerebral infarction. Middle cerebral artery occlusion was used to establish a rat model of infarction, and the rats were randomly divided into a sham group (n=15), model group (n=15) and treatment group (n=15). z-DEVD-fmk (2.5 µg/kg) was injected into the intracranial artery of rats in the treatment group, while the same volume of phosphate-buffered saline solution was administered to the rats of the sham and model groups. After 48 h, all rats were sacrificed and their brain tissues were removed. The caspase-3 mRNA level, protein level and activity, brain cell apoptosis index and infarction scope of the three groups were analyzed. Neurological impairment was also assessed. At 48 h after model establishment, the caspase-3 mRNA and protein levels in the brain tissues of the model group were significantly higher than those of the sham group, and those in the treatment group were significantly lower than those in the model group (P<0.05); however, they remained significantly higher than those in the sham group. Caspase-3 activity in the model group was significantly higher than that in the sham group, and treatment with the caspase-3 inhibitor significantly reduced caspase-3 activity compared with that in the model group (P<0.05). The apoptosis index and infarction scope in the model and treatment groups were significantly increased compared with those in the sham group, and were significantly lower in the treatment group than in the model group (P<0.05). The neurological impairment of rats in the model and treatment groups was increased significantly compared with that in the sham group, and the treatment group exhibited a significantly lower level of neurological impairment than the model group (P<0.05). In conclusion, the caspase-3 inhibitor z-DEVD-fmk effectively inhibited apoptosis and delayed the necrosis of

  7. Regulation of endogenous neural stem/progenitor cells for neural repair—factors that promote neurogenesis and gliogenesis in the normal and damaged brain

    PubMed Central

    Christie, Kimberly J.; Turnley, Ann M.

    2012-01-01

    Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation. PMID:23346046

  8. Acute Liver Failure including Acetaminophen Overdose

    PubMed Central

    Fontana, Robert J.

    2008-01-01

    Synopsis Acute liver failure (ALF) is a dramatic and highly unpredictable clinical syndrome defined by the sudden onset of coagulopathy and encephalopathy. Although many disease processes can cause ALF, acetaminophen overdose is the leading cause in the United States, and has a 66% chance of recovery with early N-acetylcysteine treatment and supportive care. Cerebral edema and infectious complications are notoriously difficult to detect and treat in ALF patients and may lead to irreversible brain damage and multi-organ failure. Emergency liver transplantation is associated with a 70% 1-year patient survival but 20% of listed patients die, highlighting the importance of early referral of ALF patients with a poor prognosis to a liver transplant center. PMID:18570942

  9. Brain Angiotensin II AT1 receptors are involved in the acute and long-term amphetamine-induced neurocognitive alterations.

    PubMed

    Marchese, Natalia Andrea; Artur de laVillarmois, Emilce; Basmadjian, Osvaldo Martin; Perez, Mariela Fernanda; Baiardi, Gustavo; Bregonzio, Claudia

    2016-03-01

    Angiotensin II, by activation of its brain AT1-receptors, plays an active role as neuromodulator in dopaminergic transmission. These receptors participate in the development of amphetamine-induced behavioral and dopamine release sensitization. Dopamine is involved in cognitive processes and provides connectivity between brain areas related to these processes. Amphetamine by its mimetic activity over dopamine neurotransmission elicits differential responses after acute administration or after re-exposure following long-term withdrawal periods in different cognitive processes. The purpose of this study is to evaluate the AT1-receptor involvement in the acute and long-term amphetamine-induced alterations in long-term memory and in cellular-related events. Male Wistar rats (250-300 g) were used in this study. Acute effects: Amphetamine (0.5/2.5 mg/kg i.p.) was administered after post-training in the inhibitory avoidance (IA) response. The AT1-receptor blocker Losartan was administered i.c.v. before a single dose of amphetamine (0.5 mg/kg i.p.). Long-term effects: The AT1-receptors blocker Candesartan (3 mg/kg p.o.) was administered for 5 days followed by 5 consecutive days of amphetamine (2.5 mg/kg/day, i.p.). The neuroadaptive changes were evidenced after 1 week of withdrawal by an amphetamine challenge (0.5 mg/kg i.p.). The IA response, the neuronal activation pattern, and the hippocampal synaptic transmission were evaluated. The impairing effect in the IA response of post-training acute amphetamine was partially prevented by Losartan. The long-term changes induced by repeated amphetamine (resistance to acute amphetamine interference in the IA response, neurochemical altered response, and increased hippocampal synaptic transmission) were prevented by AT1-receptors blockade. AT1-receptors are involved in the acute alterations and in the neuroadaptations induced by repeated amphetamine associated with neurocognitive processes.

  10. Oxcarbazepine causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway mediated caspase 3 activation in neonatal rats.

    PubMed

    Song, Y; Zhong, M; Cai, F-C

    2018-01-01

    Anti-epileptic drugs (AEDs) are the main methods for treatment of neonatal seizures; however, a few AEDs may cause developing brain damage of neonate. This study aims to investigate effects of oxcarbazepine (OXC) on developing brain damage of neonatal rats. Both of neonatal and adult rats were divided into 6 groups, including Control, OXC 187.5 mg/kg, OXC 281.25 mg/kg, OXC 375 mg/kg group, LEV and PHT group. Body weight and brain weight were evaluated. Hematoxylin and eosin (HE) and Nissl staining were used to observe neurocyte morphology and Nissl bodies, respectively. Apoptosis was examined using TUNEL assay, and caspase 8 activity was evaluated using spectrophotometer method. Cytochrome C-release was evaluated using flow cytometry. Western blot was used to examine Bax and Bcl-2 expression. OXC 375 mg/kg treatment significantly decreased brain weight compared to Control group in neonatal rats (P5 rats) (p<0.05). OXC administration causes histological changes of neurocytes. OXC 281.25 mg/kg or more concentration significantly decreased neurocytes counts and increased TUNEL-staining positive neurocytes compared to Control group (p<0.05). OXC 281.25 mg/kg and OXC 375 mg/kg significantly increased caspase 3 activity compared to Control group in P5 rats (p<0.05). OXC 281.25 mg/kg and OXC 375 mg/kg significantly increased Bax, Bax/Bcl-2 ratio and cytochrome C release in frontal lobes compared to Control group in P5 rats (p<0.05). Oxcarbazepine at a concentration of 281.25 mg/kg or more causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway mediated caspase 3 activation in neonatal rats.

  11. Histologic damage of lung allografts according to magnitude of acute rejection in the re-isotransplant model.

    PubMed

    Marui, Tsutomu; Iwata, Hisashi; Shirahashi, Koyo; Matsumoto, Shinsuke; Mizuno, Yoshimasa; Matsui, Masafumi; Takemura, Hirofumi

    2008-06-01

    Graft damage due to acute rejection has been reported as one of the risk factors in the chronic stage of cardiac and renal allografts. This study was designed to elucidate the histologic changes of grafts after ongoing acute allograft rejection was discontinued in models of lung re-isotransplantation. WKAH rat lungs were orthotopically transplanted into F344 recipients. Three days (3A group) and 5 days (5A group) after the first allotransplantation, the grafts were re-isotransplanted back into the WKAH rats (3RA and 5RA groups, respectively). Five days (5I group) after the first isotransplantation, the grafts were re-isotransplanted back into the WKAH rats (5RI group). The grafts were removed 30 and 60 days after re-isotransplantation and assessed histologically. Typical acute allograft rejection developed in the 3A and 5A groups, and the changes were reduced after re-isotransplantation, although they remained significantly greater in the 5RA group than in the 3RA and 5RI groups. For intimal hyperplasia, the graft score 60 days after re-isotransplantation in the 5RA group was significantly higher than in the 5RI and 3RA groups. The changes in airway inflammation were significantly greater in the 5RA group than in the 3RA and 5RI groups at 60 days. Peribronchiolar fibrosis was significantly more frequent in the 5RA and 3RA groups than in the 5RI group. Acute rejection and airway inflammation corresponded to the magnitude of rejection before retransplantation. Significant intimal hyperplasia developed in severe acute rejection, and peribronchiolar fibrosis occurred after the first acute rejection.

  12. Structural Brain Damage and Upper Limb Kinematics in Children with Unilateral Cerebral Palsy.

    PubMed

    Mailleux, Lisa; Simon-Martinez, Cristina; Klingels, Katrijn; Jaspers, Ellen; Desloovere, Kaat; Demaerel, Philippe; Fiori, Simona; Guzzetta, Andrea; Ortibus, Els; Feys, Hilde

    2017-01-01

    Background: In children with unilateral cerebral palsy (uCP) virtually nothing is known on the relation between structural brain damage and upper limb (UL) kinematics quantified with three-dimensional movement analysis (3DMA). This explorative study aimed to (1) investigate differences in UL kinematics between children with different lesion timings, i.e., periventricular white matter (PWM) vs. cortical and deep gray matter (CDGM) lesions and (2) to explore the relation between UL kinematics and lesion location and extent within each lesion timing group. Methods: Forty-eight children (age 10.4 ± 2.7 year; 29 boys; 21 right-sided; 33 PWM; 15 CDGM) underwent an UL 3DMA during a reach-to-grasp task. Spatiotemporal parameters [movement duration, (timing of) maximum velocity, trajectory straightness], the Arm Profile Score (APS) and Arm Variable Scores (AVS) were extracted. The APS and AVS refer to the total amount of movement pathology and movement deviations of the wrist, elbow, shoulder, scapula and trunk respectively. Brain lesion location and extent were scored based on FLAIR-images using a semi-quantitative MRI-scale. Results: Children with CDGM lesions showed more aberrant spatiotemporal parameters ( p < 0.03) and more movement pathology (APS, p = 0.003) compared to the PWM group, mostly characterized by increased wrist flexion ( p = 0.01). In the CDGM group, moderate to high correlations were found between lesion location and extent and duration, timing of maximum velocity and trajectory straightness ( r = 0.53-0.90). Lesion location and extent were further moderately correlated with distal UL movement pathology (wrist flexion/extension, elbow pronation/supination, elbow flexion/extension; r = 0.50-0.65) and with the APS ( r = 0.51-0.63). In the PWM group, only a few and low correlations were observed, mostly between damage to the PLIC and higher AVS of elbow flexion/extension, shoulder elevation and trunk rotation ( r = 0.35-0.42). Regression analysis revealed

  13. Acute care alternate-level-of-care days due to delayed discharge for traumatic and non-traumatic brain injuries.

    PubMed

    Amy, Chen; Zagorski, Brandon; Chan, Vincy; Parsons, Daria; Vander Laan, Rika; Colantonio, Angela

    2012-05-01

    Alternate-level-of-care (ALC) days represent hospital beds that are taken up by patients who would more appropriately be cared for in other settings. ALC days have been found to be costly and may result in worse functional outcomes, reduced motor skills and longer lengths of stay in rehabilitation. This study examines the factors that are associated with acute care ALC days among patients with acquired brain injury (ABI). We used the Discharge Abstract Database to identify patients with ABI using International Classification of Disease-10 codes. From fiscal years 2007/08 to 2009/10, 17.5% of patients with traumatic and 14% of patients with non-traumatic brain injury had at least one ALC day. Significant predictors include having a psychiatric co-morbidity, increasing age and length of stay in acute care. These findings can inform planning for care of people with ABI in a publicly funded healthcare system.

  14. Acute Methanol Poisoning: Prevalence and Predisposing Factors of Haemorrhagic and Non-Haemorrhagic Brain Lesions.

    PubMed

    Zakharov, Sergey; Kotikova, Katerina; Vaneckova, Manuela; Seidl, Zdenek; Nurieva, Olga; Navratil, Tomas; Caganova, Blazena; Pelclova, Daniela

    2016-08-01

    The purpose was to study the prevalence and predisposing factors of brain lesions in survivors of acute methanol poisoning. Clinical data on 106 patients with methanol poisoning were collected during the Czech mass poisoning outbreak. Of 83 survivors, in 46 (55%) patients, follow-up examinations including magnetic resonance imaging of brain (MR) were performed 3-8 and 24-28 months after discharge from the hospital. Of 46 patients with a median age of 49 (interquartile range, 35-57) years, 24 (52%) patients had a total of 40 abnormal brain findings with haemorrhagic lesions detected in 15 (33%) and non-haemorrhagic lesions found in 9 (19%) patients. The patients with haemorrhagic brain lesions were more acidemic (lower arterial blood pH, higher base deficit) and had higher glycaemia and lactacidaemia on admission than those without haemorrhages (all p < 0.05). Thirteen of 32 (41%) of patients with systemic anticoagulation and 2 of 14 (14%) of patients without it had haemorrhagic lesions (p = 0.080). Bleeding complications during the treatment occurred in 4 of 15 (27%) patients, and 5 of 15 (33%) patients had conditions predisposing to haemorrhage in the group with haemorrhagic lesions. In three cases with a series of computer tomography (CT)/MR performed during hospitalization, the necrotic lesions in the brain remained non-haemorrhagic during hospitalization and haemorrhagic lesions were detected on the follow-up MR examinations only. No association between brain haemorrhages and systemic anticoagulation during dialysis was found: brain haemorrhages might occur in severely poisoned patients treated without systemic anticoagulation, whereas treatment with high doses of heparin might not lead to brain haemorrhages. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  15. Experimental approach to IGF-1 therapy in CCl4-induced acute liver damage in healthy controls and mice with partial IGF-1 deficiency.

    PubMed

    Morales-Garza, Luis A; Puche, Juan E; Aguirre, Gabriel A; Muñoz, Úrsula; García-Magariño, Mariano; De la Garza, Rocío G; Castilla-Cortazar, Inma

    2017-05-04

    Cell necrosis, oxidative damage, and fibrogenesis are involved in cirrhosis development, a condition in which insulin-like growth factor 1 (IGF-1) levels are diminished. This study evaluates whether the exogenous administration of low doses of IGF-1 can induce hepatoprotection in acute carbon tetrachloride (CCl 4 )-induced liver damage compared to healthy controls (Wt Igf +/+ ). Additionally, the impact of IGF-1 deficiency on a damaged liver was investigated in mice with a partial deficit of this hormone (Hz Igf1 +/- ). Three groups of 25 ± 5-week-old healthy male mice (Wt Igf +/+ ) were included in the protocol: untreated controls (Wt). Controls that received CCl 4 (Wt + CCl 4 ) and Wt + CCl 4 were treated subcutaneously with IGF-1 (2 µg/100 g body weight/day) for 10 days (Wt + CCl 4  + IGF1). In parallel, three IGF-1-deficient mice (Hz Igf1 +/- ) groups were studied: untreated Hz, Hz + CCl 4 , and Hz + CCl 4  + IGF-1. Microarray and real-time quantitative polymerase chain reaction (RT-qPCR) analyses, serum aminotransferases levels, liver histology, and malondialdehyde (MDA) levels were assessed at the end of the treatment in all groups. All data represent mean ± SEM. An altered gene coding expression pattern for proteins of the extracellular matrix, fibrosis, and cellular protection were found, as compared to healthy controls, in which IGF-1 therapy normalized in the series including healthy mice. Liver histology showed that Wt + CCl 4  + IGF1 mice had less oxidative damage, fibrosis, lymphocytic infiltrate, and cellular changes when compared to the Wt + CCl 4 . Moreover, there was a correlation between MDA levels and the histological damage score (Pearson's r = 0.858). In the IGF-1-deficient mice series, similar findings were identified, denoting a much more vulnerable hepatic parenchyma. IGF1 treatment improved the biochemistry, histology, and genetic expression of pro-regenerative and cytoprotective factors in both series

  16. Occludin is regulated by epidermal growth factor receptor activation in brain endothelial cells and brains of mice with acute liver failure.

    PubMed

    Chen, Feng; Hori, Tomohide; Ohashi, Norifumi; Baine, Ann-Marie; Eckman, Christopher B; Nguyen, Justin H

    2011-04-01

    Mechanisms of brain edema in acute liver failure (ALF) are not completely understood. We recently demonstrated that matrix metalloproteinase 9 (MMP-9) induces significant alterations to occludin in brain endothelial cells in vitro and in brains of mice with experimental ALF (Hepatology 2009;50:1914). In this study we show that MMP-9-induced transactivation of epidermal growth factor receptor (EGFR) and p38 MAPK/NFκB (mitogen-activated protein kinase/nuclear factor-kappa B) signals participate in regulating brain endothelial occludin level. Mouse brain endothelial bEnd3 cells were exposed to MMP-9 or p38 MAPK up-regulation in the presence and absence of EGFR inhibitor, p38 MAPK inhibitor, NFκB inhibitor, and/or appropriate small interfering RNA. Reverse-transcription polymerase chain reaction (RT-PCR) and western blotting were used for messenger RNA and protein expression analyses. Immunohistochemical staining and confocal microscopy were used to demonstrate cellular EGFR activation. Intraperitoneal azoxymethane was use to induce ALF in mice. Brains of comatose ALF mice were processed for histological and biochemical analyses. When bEnd3 cells were exposed to MMP-9, EGFR was significantly transactivated, followed by p38 MAPK activation, I-kappa B alpha (IκBα) degradation, NFκB activation, and suppression of occludin synthesis and expression. Similar EGFR activation and p38 MAPK/NFκB activation were found in the brains of ALF mice, and these changes were attenuated with GM6001 treatment. EGFR activation with p38 MAPK/NFκB signaling contributes to the regulation of tight junction integrity in ALF. EGFR activation may thus play an important role in vasogenic brain edema in ALF. 2011 American Association for the Study of Liver Diseases.

  17. Role and Importance of IGF-1 in Traumatic Brain Injuries

    PubMed Central

    Mangiola, Annunziato; Vigo, Vera; Anile, Carmelo; De Bonis, Pasquale; Lofrese, Giorgio

    2015-01-01

    It is increasingly affirmed that most of the long-term consequences of TBI are due to molecular and cellular changes occurring during the acute phase of the injury and which may, afterwards, persist or progress. Understanding how to prevent secondary damage and improve outcome in trauma patients, has been always a target of scientific interest. Plans of studies focused their attention on the posttraumatic neuroendocrine dysfunction in order to achieve a correlation between hormone blood level and TBI outcomes. The somatotropic axis (GH and IGF-1) seems to be the most affected, with different alterations between the acute and late phases. IGF-1 plays an important role in brain growth and development, and it is related to repair responses to damage for both the central and peripheral nervous system. The IGF-1 blood levels result prone to decrease during both the early and late phases after TBI. Despite this, experimental studies on animals have shown that the CNS responds to the injury upregulating the expression of IGF-1; thus it appears to be related to the secondary mechanisms of response to posttraumatic damage. We review the mechanisms involving IGF-1 in TBI, analyzing how its expression and metabolism may affect prognosis and outcome in head trauma patients. PMID:26417600

  18. Combining Functional and Tubular Damage Biomarkers Improves Diagnostic Precision for Acute Kidney Injury After Cardiac Surgery

    PubMed Central

    Basu, Rajit K.; Wong, Hector R.; Krawczeski, Catherine D.; Wheeler, Derek S.; Manning, Peter B.; Chawla, Lakhmir S.; Devarajan, Prasad; Goldstein, Stuart L.

    2015-01-01

    BACKGROUND Increases in serum creatinine (ΔSCr) from baseline signify acute kidney injury (AKI) but offer little granular information regarding its characteristics. The 10th Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) suggested that combining AKI biomarkers would provide better precision for AKI course prognostication. OBJECTIVES This study investigated the value of combining a functional damage biomarker (plasma cystatin C [pCysC]) with a tubular damage biomarker (urine neutrophil gelatinase-associated lipocalin [uNGAL]), forming a composite biomarker for prediction of discrete characteristics of AKI. METHODS Data from 345 children after cardiopulmonary bypass (CPB) were analyzed. Severe AKI was defined as Kidney Disease Global Outcomes Initiative stages 2 to 3 (>100% ΔSCr) within 7 days of CPB. Persistent AKI lasted >2 days. SCr in reversible AKI returned to baseline ≤48 h after CPB. The composite of uNGAL (>200 ng/mg urine Cr = positive [+]) and pCysC (>0.8 mg/l = positive [+]), uNGAL+/pCysC+, measured 2 h after CPB initiation, was compared to ΔSCr increases of ≤50% for correlation with AKI characteristics by using predictive probabilities, likelihood ratios (LR), and area under the curve receiver operating curve (AUC-ROC) values. RESULTS Severe AKI occurred in 18% of patients. The composite uNGAL+/pCysC+ demonstrated a greater likelihood than ΔSCr for severe AKI (+LR: 34.2 [13.0:94.0] vs. 3.8 [1.9:7.2]) and persistent AKI (+LR: 15.6 [8.8:27.5] versus 4.5 [2.3:8.8]). In AKI patients, the uNGAL−/pCysC+ composite was superior to ΔSCr for prediction of transient AKI. Biomarker composites carried greater probability for specific outcomes than ΔSCr strata. CONCLUSIONS Composites of functional and tubular damage biomarkers are superior to ΔSCr for predicting discrete characteristics of AKI. PMID:25541128

  19. N-terminal pro-brain natriuretic peptide and high-sensitivity troponin in the evaluation of acute chest pain of uncertain etiology. A PITAGORAS substudy.

    PubMed

    Sanchis, Juan; Bardají, Alfredo; Bosch, Xavier; Loma-Osorio, Pablo; Marín, Francisco; Sánchez, Pedro L; Calvo, Francisco; Avanzas, Pablo; Hernández, Carolina; Serrano, Silvia; Carratalá, Arturo; Barrabés, José A

    2013-07-01

    High-sensitivity troponin assays have improved the diagnosis of acute coronary syndrome in patients presenting with chest pain and normal troponin levels as measured by conventional assays. Our aim was to investigate whether N-terminal pro-brain natriuretic peptide provides additional information to troponin determination in these patients. A total of 398 patients, included in the PITAGORAS study, presenting to the emergency department with chest pain and normal troponin levels as measured by conventional assay in 2 serial samples (on arrival and 6 h to 8h later) were studied. The samples were also analyzed in a central laboratory for high-sensitivity troponin T (both samples) and for N-terminal pro-brain natriuretic peptide (second sample). The endpoints were diagnosis of acute coronary syndrome and the composite endpoint of in-hospital revascularization or a 30-day cardiac event. Acute coronary syndrome was adjudicated to 79 patients (20%) and the composite endpoint to 59 (15%). When the N-terminal pro-brain natriuretic peptide quartile increased, the diagnosis of acute coronary syndrome also increased (12%, 16%, 23% and 29%; P=.01), as did the risk of the composite endpoint (6%, 13%, 16% and 24%; P=.004). N-terminal pro-brain natriuretic peptide elevation (>125ng/L) was associated with both endpoints (relative risk= 2.0; 95% confidence interval, 1.2-3.3; P=.02; relative risk=2.4; 95% confidence interval, 1.4-4.2; P=.004). However, in the multivariable models adjusted by clinical and electrocardiographic data, a predictive value was found for high-sensitivity T troponin but not for N-terminal pro-brain natriuretic peptide. In low-risk patients with chest pain of uncertain etiology evaluated using high-sensitivity T troponin, N-terminal pro-brain natriuretic peptide does not contribute additional predictive value to diagnosis or the prediction of short-term outcomes. Copyright © 2012 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights

  20. Neuropsychological outcome after traumatic temporal lobe damage.

    PubMed

    Formisano, R; Schmidhuber-Eiler, B; Saltuari, L; Cigany, E; Birbamer, G; Gerstenbrand, F

    1991-01-01

    The most frequent sequelae after severe brain injury include changes in personality traits, disturbances of emotional behaviour and impairment of cognitive functions. In particular, emotional changes and/or verbal and non verbal dysfunctions were found in patients with bilateral or unilateral temporal lobe lesions. The aim of our study is to correlate the localization of the brain damage after severe brain injury, in particular of the temporal lobe, with the cognitive impairment and the emotional and behavioural changes resulting from these lesions. The patients with right temporal lobe lesions showed significantly better scores in verbal intelligence and verbal memory in comparison with patients with left temporal lobe lesions and those with other focal brain lesions or diffuse brain damage. In contradistinction, study of the personality and the emotional changes (MMPI and FAF) failed to demonstrate pathological scores in the 3 groups with different CT lesions, without any significant difference being found between the groups with temporal lesions and those with other focal brain lesions or diffuse brain damage. The severity of the brain injury and the prolongation of the disturbance of consciousness could, in our patients, account for prevalence of congnitive impairment on personality and emotional changes.