Science.gov

Sample records for acute cardiac injury

  1. Acute kidney injury after pediatric cardiac surgery

    PubMed Central

    Singh, Sarvesh Pal

    2016-01-01

    Acute kidney injury is a common complication after pediatric cardiac surgery. The definition, staging, risk factors, biomarkers and management of acute kidney injury in children is detailed in the following review article. PMID:27052074

  2. Cardiac Surgery-Associated Acute Kidney Injury

    PubMed Central

    Mao, Huijuan; Katz, Nevin; Ariyanon, Wassawon; Blanca-Martos, Lourdes; Adýbelli, Zelal; Giuliani, Anna; Danesi, Tommaso Hinna; Kim, Jeong Chul; Nayak, Akash; Neri, Mauro; Virzi, Grazia Maria; Brocca, Alessandra; Scalzotto, Elisa; Salvador, Loris; Ronco, Claudio

    2013-01-01

    Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common and serious postoperative complication of cardiac surgery requiring cardiopulmonary bypass (CPB), and it is the second most common cause of AKI in the intensive care unit. Although the complication has been associated with the use of CPB, the etiology is likely multifactorial and related to intraoperative and early postoperative management including pharmacologic therapy. To date, very little evidence from randomized trials supporting specific interventions to protect from or prevent AKI in broad cardiac surgery populations has been found. The definition of AKI employed by investigators influences not only the incidence of CSA-AKI, but also the identification of risk variables. The advent of novel biomarkers of kidney injury has the potential to facilitate the subclinical diagnosis of CSA-AKI, the assessment of its severity and prognosis, and the early institution of interventions to prevent or reduce kidney damage. Further studies are needed to determine how to optimize cardiac surgical procedures, CPB parameters, and intraoperative and early postoperative blood pressure and renal blood flow to reduce the risk of CSA-AKI. No pharmacologic strategy has demonstrated clear efficacy in the prevention of CSA-AKI; however, some agents, such as the natriuretic peptide nesiritide and the dopamine agonist fenoldopam, have shown promising results in renoprotection. It remains unclear whether CSA-AKI patients can benefit from the early institution of such pharmacologic agents or the early initiation of renal replacement therapy. PMID:24454314

  3. Cardiac surgery-associated acute kidney injury.

    PubMed

    Mao, Huijuan; Katz, Nevin; Ariyanon, Wassawon; Blanca-Martos, Lourdes; Adýbelli, Zelal; Giuliani, Anna; Danesi, Tommaso Hinna; Kim, Jeong Chul; Nayak, Akash; Neri, Mauro; Virzi, Grazia Maria; Brocca, Alessandra; Scalzotto, Elisa; Salvador, Loris; Ronco, Claudio

    2013-10-01

    Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common and serious postoperative complication of cardiac surgery requiring cardiopulmonary bypass (CPB), and it is the second most common cause of AKI in the intensive care unit. Although the complication has been associated with the use of CPB, the etiology is likely multifactorial and related to intraoperative and early postoperative management including pharmacologic therapy. To date, very little evidence from randomized trials supporting specific interventions to protect from or prevent AKI in broad cardiac surgery populations has been found. The definition of AKI employed by investigators influences not only the incidence of CSA-AKI, but also the identification of risk variables. The advent of novel biomarkers of kidney injury has the potential to facilitate the subclinical diagnosis of CSA-AKI, the assessment of its severity and prognosis, and the early institution of interventions to prevent or reduce kidney damage. Further studies are needed to determine how to optimize cardiac surgical procedures, CPB parameters, and intraoperative and early postoperative blood pressure and renal blood flow to reduce the risk of CSA-AKI. No pharmacologic strategy has demonstrated clear efficacy in the prevention of CSA-AKI; however, some agents, such as the natriuretic peptide nesiritide and the dopamine agonist fenoldopam, have shown promising results in renoprotection. It remains unclear whether CSA-AKI patients can benefit from the early institution of such pharmacologic agents or the early initiation of renal replacement therapy. PMID:24454314

  4. Acute Kidney Injury Subsequent to Cardiac Surgery

    PubMed Central

    Kramer, Robert S.; Herron, Crystal R.; Groom, Robert C.; Brown, Jeremiah R.

    2015-01-01

    Abstract: Acute kidney injury (AKI) after cardiac surgery is a common and underappreciated syndrome that is associated with poor short- and long-term outcomes. AKI after cardiac surgery may be epiphenomenon, a signal for adverse outcomes by virtue of other affected organ systems, and a consequence of multiple factors. Subtle increases in serum creatinine (SCr) postoperatively, once considered inconsequential, have been shown to reflect a kidney injury that likely occurred in the operating room during cardiopulmonary bypass (CPB) and more often in susceptible individuals. The postoperative elevation in SCr is a delayed signal reflecting the intraoperative injury. Preoperative checklists and the conduct of CPB represent opportunities for prevention of AKI. Newer definitions of AKI provide us with an opportunity to scrutinize perioperative processes of care and determine strategies to decrease the incidence of AKI subsequent to cardiac surgery. Recognizing and mitigating risk factors preoperatively and optimizing intraoperative practices may, in the aggregate, decrease the incidence of AKI. This review explores the pathophysiology of AKI and addresses the features of patients who are the most vulnerable to AKI. Preoperative strategies are discussed with particular attention to a readiness for surgery checklist. Intraoperative strategies include minimizing hemodilution and maximizing oxygen delivery with specific suggestions regarding fluid management and plasma preservation. PMID:26390675

  5. Acute Kidney Injury Subsequent to Cardiac Surgery.

    PubMed

    Kramer, Robert S; Herron, Crystal R; Groom, Robert C; Brown, Jeremiah R

    2015-03-01

    Acute kidney injury (AKI) after cardiac surgery is a common and underappreciated syndrome that is associated with poor shortand long-term outcomes. AKI after cardiac surgery may be epiphenomenon, a signal for adverse outcomes by virtue of other affected organ systems, and a consequence of multiple factors. Subtle increases in serum creatinine (SCr) postoperatively, once considered inconsequential, have been shown to reflect a kidney injury that likely occurred in the operating room during cardiopulmonary bypass (CPB) and more often in susceptible individuals. The postoperative elevation in SCr is a delayed signal reflecting the intraoperative injury. Preoperative checklists and the conduct of CPB represent opportunities for prevention of AKI. Newer definitions of AKI provide us with an opportunity to scrutinize perioperative processes of care and determine strategies to decrease the incidence of AKI subsequent to cardiac surgery. Recognizing and mitigating risk factors preoperatively and optimizing intraoperative practices may, in the aggregate, decrease the incidence of AKI. This review explores the pathophysiology of AKI and addresses the features of patients who are the most vulnerable to AKI. Preoperative strategies are discussed with particular attention to a readiness for surgery checklist. Intraoperative strategies include minimizing hemodilution and maximizing oxygen delivery with specific suggestions regarding fluid management and plasma preservation. PMID:26390675

  6. Early detection of acute kidney injury after pediatric cardiac surgery

    PubMed Central

    Jefferies, John Lynn; Devarajan, Prasad

    2016-01-01

    Acute kidney injury (AKI) is increasingly recognized as a common problem in children undergoing cardiac surgery, with well documented increases in morbidity and mortality in both the short and the long term. Traditional approaches to the identification of AKI such as changes in serum creatinine have revealed a large incidence in this population with significant negative impact on clinical outcomes. However, the traditional diagnostic approaches to AKI diagnosis have inherent limitations that may lead to under-diagnosis of this pathologic process. There is a dearth of randomized controlled trials for the prevention and treatment of AKI associated with cardiac surgery, at least in part due to the paucity of early predictive biomarkers. Novel non-invasive biomarkers have ushered in a new era that allows for earlier detection of AKI. With these new diagnostic tools, a more consistent approach can be employed across centers that may facilitate a more accurate representation of the actual prevalence of AKI and more importantly, clinical investigation that may minimize the occurrence of AKI following pediatric cardiac surgery. A thoughtful management approach is necessary to mitigate the effects of AKI after cardiac surgery, which is best accomplished in close collaboration with pediatric nephrologists. Long-term surveillance for improvement in kidney function and potential development of chronic kidney disease should also be a part of the comprehensive management strategy. PMID:27429538

  7. Prediction and Prevention of Acute Kidney Injury after Cardiac Surgery

    PubMed Central

    Shin, Su Rin; Kim, Won Ho; Kim, Dong Joon; Shin, Il-Woo; Sohn, Ju-Tae

    2016-01-01

    The incidence of acute kidney injury after cardiac surgery (CS-AKI) ranges from 33% to 94% and is associated with a high incidence of morbidity and mortality. The etiology is suggested to be multifactorial and related to almost all aspects of perioperative management. Numerous studies have reported the risk factors and risk scores and novel biomarkers of AKI have been investigated to facilitate the subclinical diagnosis of AKI. Based on the known independent risk factors, many preventive interventions to reduce the risk of CS-AKI have been tested. However, any single preventive intervention did not show a definite and persistent benefit to reduce the incidence of CS-AKI. Goal-directed therapy has been considered to be a preventive strategy with a substantial level of efficacy. Many pharmacologic agents were tested for any benefit to treat or prevent CS-AKI but the results were conflicting and evidences are still lacking. The present review will summarize the current updated evidences about the risk factors and preventive strategies for CS-AKI. PMID:27419130

  8. Novel biomarkers for early diagnosis of acute kidney injury after cardiac surgery in adults

    PubMed Central

    Kališnik, Jurij Matija

    2016-01-01

    Acute kidney injury after cardiac surgery with cardiopulmonary bypass is a common and serious complication and it is associated with increased morbidity and mortality. Diagnosis of acute kidney injury is based on the serum creatinine levels which rise several hours to days after the initial injury. Thus, novel biomarkers that will enable faster diagnosis are needed in clinical practice. There are numerous urine and serum proteins that indicate kidney injury and are under extensive research. Despite promising basic research results and assembled data, which indicate superiority of some biomarkers to creatinine, we are still awaiting clinical application. PMID:27212976

  9. Acute kidney injury after using contrast during cardiac catheterization in children with heart disease.

    PubMed

    Hwang, Young Ju; Hyun, Myung Chul; Choi, Bong Seok; Chun, So Young; Cho, Min Hyun

    2014-08-01

    Acute kidney injury (AKI) is closely associated with the mortality of hospitalized patients and long-term development of chronic kidney disease, especially in children. The purpose of our study was to assess the evidence of contrast-induced AKI after cardiac catheterization in children with heart disease and evaluate the clinical usefulness of candidate biomarkers in AKI. A total of 26 children undergoing cardiac catheterization due to various heart diseases were selected and urine and blood samples were taken at 0 hr, 6 hr, 24 hr, and 48 hr after cardiac catheterization. Until 48 hr after cardiac catheterization, there was no significant increase in serum creatinine level in all patients. Unlike urine kidney injury molecule-1, IL-18 and neutrophil gelatinase-associated lipocalin, urine liver-type fatty acid-binding protein (L-FABP) level showed biphasic pattern and the significant difference in the levels of urine L-FABP between 24 and 48 hr. We suggest that urine L-FABP can be one of the useful biomarkers to detect subclinical AKI developed by the contrast before cardiac surgery. PMID:25120320

  10. Preoperative Low Serum Bicarbonate Levels Predict Acute Kidney Injury After Cardiac Surgery.

    PubMed

    Jung, Su-Young; Park, Jung Tak; Kwon, Young Eun; Kim, Hyung Woo; Ryu, Geun Woo; Lee, Sul A; Park, Seohyun; Jhee, Jong Hyun; Oh, Hyung Jung; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook

    2016-03-01

    Acute kidney injury (AKI) after cardiac surgery is a common and serious complication. Although lower than normal serum bicarbonate levels are known to be associated with consecutive renal function deterioration in patients with chronic kidney injury, it is not well-known whether preoperative low serum bicarbonate levels are associated with the development of AKI in patients who undergo cardiac surgery. Therefore, the clinical implication of preoperative serum bicarbonate levels on AKI occurrence after cardiac surgery was investigated. Patients who underwent coronary artery bypass or valve surgery at Yonsei University Health System from January 2013 to December 2014 were enrolled. The patients were divided into 3 groups based on preoperative serum bicarbonate levels, which represented group 1 (below normal levels) <23 mEq/L; group 2 (normal levels) 23 to 24 mEq/L; and group 3 (elevated levels) >24 mEq/L. The primary outcome was the predicated incidence of AKI 48 hours after cardiac surgery. AKI was defined according to Acute Kidney Injury Network criteria. Among 875 patients, 228 (26.1%) developed AKI within 48 hours after cardiac surgery. The incidence of AKI was higher in group 1 (40.9%) than in group 2 (26.5%) and group 3 (19.5%) (P < 0.001). In addition, the duration of postoperative stay in a hospital intensive care unit (ICU) was longer for AKI patients and for those in the low-preoperative-serum-bicarbonate-level groups. A multivariate logistic regression analysis showed that low preoperative serum bicarbonate levels were significantly associated with AKI even after adjustment for age, sex, hypertension, diabetes mellitus, operation type, preoperative hemoglobin, and estimated glomerular filtration rate. In conclusion, low serum bicarbonate levels were associated with higher incidence of AKI and prolonged ICU stay. Further studies are needed to clarify whether strict correction of bicarbonate levels close to normal limits may have a protective

  11. Cardiac Physiologic and Genetic Predictors of Hyperoxia-Induced Acute Lung Injury in Mice

    PubMed Central

    Cho, Hye-Youn; Miller-DeGraff, Laura; Walker, Christopher; Clark, James A.; Myers, Page H.; Rouse, D. Clay; Kleeberger, Steven R.

    2012-01-01

    Exposure of mice to hyperoxia produces pulmonary toxicity similar to acute lung injury/acute respiratory distress syndrome, but little is known about the interactions within the cardiopulmonary system. This study was designed to characterize the cardiopulmonary response to hyperoxia, and to identify candidate susceptibility genes in mice. Electrocardiogram and ventilatory data were recorded continuously from 4 inbred and 29 recombinant inbred strains during 96 hours of hyperoxia (100% oxygen). Genome-wide linkage analysis was performed in 27 recombinant inbred strains against response time indices (TIs) calculated from each cardiac phenotype. Reductions in minute ventilation, heart rate (HR), low-frequency (LF) HR variability (HRV), high-frequency HRV, and total power HRV were found in all mice during hyperoxia exposure, but the lag time before these changes began was strain dependent. Significant (chromosome 9) or suggestive (chromosomes 3 and 5) quantitative trait loci were identified for the HRTI and LFTI. Functional polymorphisms in several candidate susceptibility genes were identified within the quantitative trait loci and were associated with hyperoxia susceptibility. This is the first study to report highly significant interstrain variation in hyperoxia-induced changes in minute ventilation, HR, and HRV, and to identify polymorphisms in candidate susceptibility genes that associate with cardiac responses. Results indicate that changes in HR and LF HRV could be important predictors of subsequent adverse outcome during hyperoxia exposure, specifically the pathogenesis of acute lung injury. Understanding the genetic mechanisms of these responses may have significant diagnostic clinical value. PMID:22052878

  12. Acute kidney injury following cardiac surgery: current understanding and future directions.

    PubMed

    O'Neal, Jason B; Shaw, Andrew D; Billings, Frederic T

    2016-01-01

    Acute kidney injury (AKI) complicates recovery from cardiac surgery in up to 30 % of patients, injures and impairs the function of the brain, lungs, and gut, and places patients at a 5-fold increased risk of death during hospitalization. Renal ischemia, reperfusion, inflammation, hemolysis, oxidative stress, cholesterol emboli, and toxins contribute to the development and progression of AKI. Preventive strategies are limited, but current evidence supports maintenance of renal perfusion and intravascular volume while avoiding venous congestion, administration of balanced salt as opposed to high-chloride intravenous fluids, and the avoidance or limitation of cardiopulmonary bypass exposure. AKI that requires renal replacement therapy occurs in 2-5 % of patients following cardiac surgery and is associated with 50 % mortality. For those who recover from renal replacement therapy or even mild AKI, progression to chronic kidney disease in the ensuing months and years is more likely than for those who do not develop AKI. Cardiac surgery continues to be a popular clinical model to evaluate novel therapeutics, off-label use of existing medications, and nonpharmacologic treatments for AKI, since cardiac surgery is fairly common, typically elective, provides a relatively standardized insult, and patients remain hospitalized and monitored following surgery. More efficient and time-sensitive methods to diagnose AKI are imperative to reduce this negative outcome. The discovery and validation of renal damage biomarkers should in time supplant creatinine-based criteria for the clinical diagnosis of AKI. PMID:27373799

  13. Preoperative Low Serum Bicarbonate Levels Predict Acute Kidney Injury After Cardiac Surgery

    PubMed Central

    Jung, Su-Young; Park, Jung Tak; Kwon, Young Eun; Kim, Hyung Woo; Ryu, Geun Woo; Lee, Sul A.; Park, Seohyun; Jhee, Jong Hyun; Oh, Hyung Jung; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook

    2016-01-01

    Abstract Acute kidney injury (AKI) after cardiac surgery is a common and serious complication. Although lower than normal serum bicarbonate levels are known to be associated with consecutive renal function deterioration in patients with chronic kidney injury, it is not well-known whether preoperative low serum bicarbonate levels are associated with the development of AKI in patients who undergo cardiac surgery. Therefore, the clinical implication of preoperative serum bicarbonate levels on AKI occurrence after cardiac surgery was investigated. Patients who underwent coronary artery bypass or valve surgery at Yonsei University Health System from January 2013 to December 2014 were enrolled. The patients were divided into 3 groups based on preoperative serum bicarbonate levels, which represented group 1 (below normal levels) <23 mEq/L; group 2 (normal levels) 23 to 24 mEq/L; and group 3 (elevated levels) >24 mEq/L. The primary outcome was the predicated incidence of AKI 48 hours after cardiac surgery. AKI was defined according to Acute Kidney Injury Network criteria. Among 875 patients, 228 (26.1%) developed AKI within 48 hours after cardiac surgery. The incidence of AKI was higher in group 1 (40.9%) than in group 2 (26.5%) and group 3 (19.5%) (P < 0.001). In addition, the duration of postoperative stay in a hospital intensive care unit (ICU) was longer for AKI patients and for those in the low-preoperative-serum-bicarbonate-level groups. A multivariate logistic regression analysis showed that low preoperative serum bicarbonate levels were significantly associated with AKI even after adjustment for age, sex, hypertension, diabetes mellitus, operation type, preoperative hemoglobin, and estimated glomerular filtration rate. In conclusion, low serum bicarbonate levels were associated with higher incidence of AKI and prolonged ICU stay. Further studies are needed to clarify whether strict correction of bicarbonate levels close to normal limits may have a

  14. Low renal oximetry correlates with acute kidney injury after infant cardiac surgery.

    PubMed

    Owens, Gabe E; King, Karen; Gurney, James G; Charpie, John R

    2011-02-01

    Acute kidney injury (AKI) is a frequent complication after cardiopulmonary bypass surgery during infancy. Standard methods for evaluating renal function are not particularly sensitive nor are proximate indicators of renal dysfunction that allow intervention in real time. Near-infrared spectroscopy (NIRS) is a newer noninvasive technology that continuously evaluates regional oximetry and may correlate with renal injury and adverse outcomes after cardiac surgery in infants. This prospective observational study enrolled 40 infants (age, <12 months) undergoing biventricular repair. Continuous renal oximetry data were collected for the first 48 postoperative hours and correlated with postoperative course, standard laboratory data, and the occurrence of acute renal injury. Subjects with low renal oximetry (below 50% for >2 h) had significantly higher postoperative peak creatinine levels by 48 h (0.8 ± 0.4 vs. 0.52 ± 0.2; p = 0.003) and a higher incidence of AKI (50 vs. 3.1%; p = 0.003) than those with normal renal oximetry. These subjects also required more ventilator days and greater vasoactive support, and they had elevated lactate levels. Prolonged low renal near-infrared oximetry appears to correlate with renal dysfunction, decreased systemic oxygen delivery, and the overall postoperative course in infants with congenital heart disease undergoing biventricular repair. PMID:21085945

  15. Endoplasmic reticulum stress in bone marrow-derived cells prevents acute cardiac inflammation and injury in response to angiotensin II.

    PubMed

    Li, T-T; Jia, L-X; Zhang, W-M; Li, X-Y; Zhang, J; Li, Y-L; Li, H-H; Qi, Y-F; Du, J

    2016-01-01

    Inflammation plays an important role in hypertensive cardiac injury. The endoplasmic reticulum (ER) stress pathway is involved in the inflammatory response. However, the role of ER stress in elevated angiotensin II (Ang II)-induced cardiac injury remains unclear. In this study, we investigated the role of ER stress in Ang II-induced hypertensive cardiac injury. Transcriptome analysis and quantitative real-time PCR showed that Ang II infusion in mice increased ER stress-related genes expression in the heart. C/EBP homologous protein (CHOP) deficiency, a key mediator of ER stress, increased infiltration of inflammatory cells, especially neutrophils, the production of inflammatory cytokines, chemokines in Ang II-infused mouse hearts. CHOP deficiency increased Ang II-induced cardiac fibrotic injury: (1) Masson trichrome staining showed increased fibrotic areas, (2) immunohistochemistry staining showed increased expression of α-smooth muscle actin, transforming growth factor β1 and (3) quantitative real-time PCR showed increased expression of collagen in CHOP-deficient mouse heart. Bone marrow transplantation experiments indicated that CHOP deficiency in bone marrow cells was responsible for Ang II-induced cardiac fibrotic injury. Moreover, TUNEL staining and flow cytometry revealed that CHOP deficiency decreased neutrophil apoptosis in response to Ang II. Taken together, our study demonstrated that hypertension induced ER stress after Ang II infusion. ER stress in bone marrow-derived cells protected acute cardiac inflammation and injury in response to Ang II. PMID:27277680

  16. Cardiac-surgery associated acute kidney injury requiring renal replacement therapy. A Spanish retrospective case-cohort study

    PubMed Central

    2009-01-01

    Background Acute kidney injury is among the most serious complications after cardiac surgery and is associated with an impaired outcome. Multiple factors may concur in the development of this disease. Moreover, severe renal failure requiring renal replacement therapy (RRT) presents a high mortality rate. Consequently, we studied a Spanish cohort of patients to assess the risk factors for RRT in cardiac surgery-associated acute kidney injury (CSA-AKI). Methods A retrospective case-cohort study in 24 Spanish hospitals. All cases of RRT after cardiac surgery in 2007 were matched in a crude ratio of 1:4 consecutive patients based on age, sex, treated in the same year, at the same hospital and by the same group of surgeons. Results We analyzed the data from 864 patients enrolled in 2007. In multivariate analysis, severe acute kidney injury requiring postoperative RRT was significantly associated with the following variables: lower glomerular filtration rates, less basal haemoglobin, lower left ventricular ejection fraction, diabetes, prior diuretic treatment, urgent surgery, longer aortic cross clamp times, intraoperative administration of aprotinin, and increased number of packed red blood cells (PRBC) transfused. When we conducted a propensity analysis using best-matched of 137 available pairs of patients, prior diuretic treatment, longer aortic cross clamp times and number of PRBC transfused were significantly associated with CSA-AKI. Patients requiring RRT needed longer hospital stays, and suffered higher mortality rates. Conclusion Cardiac-surgery associated acute kidney injury requiring RRT is associated with worse outcomes. For this reason, modifiable risk factors should be optimised and higher risk patients for acute kidney injury should be identified before undertaking cardiac surgery. PMID:19772621

  17. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury

    SciTech Connect

    Chen, Lijuan; Wang, Yingjie; Pan, Yaohua; Zhang, Lan; Shen, Chengxing; Qin, Gangjian; Ashraf, Muhammad; Weintraub, Neal; Ma, Genshan; Tang, Yaoliang

    2013-02-15

    Highlights: ► Cardiac progenitor-derived (CPC) Exosomes protect H9C2 from apoptosis in vitro. ► CPC-exosomes protect cardiomyoyctes from MI/R induced apoptosis in vivo. ► CPC-exosomes were taken up by H9C2 with high efficiency using PKH26 labeling. ► miR-451, one of GATA4-responsive miRNA cluster, is enriched in CPC-exosomes. -- Abstract: Background: Cardiac progenitors (CPC) mediate cardioprotection via paracrine effects. To date, most of studies focused on secreted paracrine proteins. Here we investigated the CPC-derived-exosomes on protecting myocardium from acute ischemia/reperfusion (MI/R) injury. Methods and results: CPC were isolated from mouse heart using two-step protocol. Exosomes were purified from conditional medium, and confirmed by electron micrograph and Western blot using CD63 as a marker. qRT-PCR shows that CPC-exosomes have high level expression of GATA4-responsive-miR-451. Exosomes were ex vivo labeled with PKH26, We observed exosomes can be uptaken by H9C2 cardiomyoblasts with high efficiency after 12 h incubation. CPC-exosomes protect H9C2 from oxidative stress by inhibiting caspase 3/7 activation invitro. In vivo delivery of CPC-exosomes in an acute mouse myocardial ischemia/reperfusion model inhibited cardiomyocyte apoptosis by about 53% in comparison with PBS control (p < 0.05). Conclusion: Our results suggest, for the first time, the CPC-exosomes can be used as a therapeutic vehicle for cardioprotection, and highlights a new perspective for using non-cell exosomes for cardiac disease.

  18. Cost-effectiveness analysis of acute kidney injury biomarkers in pediatric cardiac surgery

    PubMed Central

    Petrovic, Stanislava; Lakic, Dragana; Peco-Antic, Amira; Vulicevic, Irena; Ivanisevic, Ivana; Kotur-Stevuljevic, Jelena; Jelic-Ivanovic, Zorana

    2015-01-01

    Introduction Acute kidney injury (AKI) is significant problem in children with congenital heart disease (CHD) who undergo cardiac surgery. The economic impact of a biomarker-based diagnostic strategy for AKI in pediatric populations undergoing CHD surgery is unknown. The aim of this study was to perform the cost effectiveness analysis of using serum cystatin C (sCysC), urine neutrophil gelatinase-associated lipocalin (uNGAL) and urine liver fatty acid-binding protein (uL-FABP) for the diagnosis of AKI in children after cardiac surgery compared with current diagnostic method (monitoring of serum creatinine (sCr) level). Materials and methods We developed a decision analytical model to estimate incremental cost-effectiveness of different biomarker-based diagnostic strategies compared to current diagnostic strategy. The Markov model was created to compare the lifetime cost associated with using of sCysC, uNGAL, uL-FABP with monitoring of sCr level for the diagnosis of AKI. The utility measurement included in the analysis was quality-adjusted life years (QALY). The results of the analysis are presented as the incremental cost-effectiveness ratio (ICER). Results Analysed biomarker-based diagnostic strategies for AKI were cost-effective compared to current diagnostic method. However, uNGAL and sCys C strategies yielded higher costs and lower effectiveness compared to uL-FABP strategy. uL-FABP added 1.43 QALY compared to current diagnostic method at an additional cost of $8521.87 per patient. Therefore, ICER for uL-FABP compared to sCr was $5959.35/QALY. Conclusions Our results suggest that the use of uL-FABP would represent cost effective strategy for early diagnosis of AKI in children after cardiac surgery. PMID:26110039

  19. Peri-operative heart-type fatty acid binding protein is associated with acute kidney injury after cardiac surgery

    PubMed Central

    Schaub, Jennifer A.; Garg, Amit X.; Coca, Steven G.; Testani, Jeffrey M.; Shlipak, Michael G.; Eikelboom, John; Kavsak, Peter; McArthur, Eric; Shortt, Colleen; Whitlock, Richard; Parikh, Chirag R.

    2015-01-01

    Acute Kidney Injury (AKI) is a common complication after cardiac surgery and is associated with worse outcomes. Since heart fatty acid binding protein (H-FABP) is a myocardial protein that detects cardiac injury, we sought to determine if plasma H-FABP was associated with AKI in the TRIBE-AKI cohort; a multi-center cohort of 1219 patients at high risk for AKI who underwent cardiac surgery. The primary outcomes of interest were any AKI (Acute Kidney Injury Network (AKIN) stage 1 or higher) and severe AKI (AKIN stage 2 or higher). The secondary outcome was long-term mortality after discharge. Patients who developed AKI had higher levels of H-FABP pre- and post-operatively than patients who did not have AKI. In analyses adjusted for known AKI risk factors, first post-operative log(H-FABP) was associated with severe AKI (adjusted OR 5.39 [95% CI, 2.87-10.11] per unit increase), while pre-operative log(H-FABP) was associated with any AKI (2.07 [1.48-2.89]) and mortality (1.67 [1.17-2.37]). These relationships persisted after adjustment for change in serum creatinine (for first postoperative log(H-FABP)) and biomarkers of cardiac and kidney injury, including brain natriuretic peptide, cardiac troponin-I, interleukin-18, liver fatty acid binding protein, kidney injury molecule-1, and neutrophil gelatinase associated lipocalin. Thus, peri-operative plasma H-FABP levels may be used for risk-stratification of AKI and mortality following cardiac surgery. PMID:25830762

  20. Post Cardiac Surgery Acute Kidney Injury: A Woebegone Status Rejuvenated by the Novel Biomarkers

    PubMed Central

    Jayaraman, Rajesh; Sunder, Sham; Sathi, Satyanand; Gupta, Vijay Kumar; Sharma, Neera; Kanchi, Prabhu; Gupta, Anurag; Daksh, Sunil Kumar; Ram, Pranith; Mohamed, Ashik

    2014-01-01

    Background: Acute kidney injury (AKI) is common after cardiac surgery, the incidence varying between 7.7% and 28.1%. It significantly increases morbidity and mortality. Creatinine considerably delays the diagnosis with its own attended demerits. Novel urinary biomarkers are emerging which help in rapid diagnosis thus reducing the morbidity and mortality. Biomarkers of our study were neutrophil gelatinase-associated lipocalin (NGAL) and Interleukin-18 (IL-18). Objectives: To find out the incidence of AKI in post-cardiac surgery patients in our hospital, the ability of the two biomarkers in early diagnosis in predicting the severity of AKI based on RIFLE’s criteria and their ability to discriminate pre-renal from intrinsic AKI. Patients and Methods: One-hundred patients who underwent cardiac surgery were selected. Midstream urine samples were collected at 3 time intervals (baseline before surgery, 24 hours and 7 days after surgery). Biomarkers were measured by ELISA using BIORAD processors. Fractional excretion of sodium and urea were used to discriminate pre-renal from intrinsic AKI. Results: Out of 100 patients, 31 had AKI, 11 being pre-renal and 20 intrinsic AKI. Four patients required renal replacement therapy (12.9% among AKI cases and 4% in the overall study cohort). Four among 31 expired in intensive care unit. Identifiable risk factors for AKI included insulin requiring diabetes mellitus, chronic obstructive pulmonary disease, increased cardio-pulmonary bypass time, combined valvular surgery and coronary artery bypass grafting, employment of intra-aortic balloon counter pulsation, left main coronary artery occlusion and an ejection fraction of < 40%. NGAL was extremely sensitive (area under curve-0.96) in detecting intrinsic AKI at 24 hours followed by IL-18 ratio with an area under curve of 0.89. Creatinine at 24 hours was able to detect only 31.6% of intrinsic AKI. None of the pre-renal cases showed rise in the urinary biomarker levels. Patients with

  1. DJ-1 protects against cell death following acute cardiac ischemia–reperfusion injury

    PubMed Central

    Dongworth, R K; Mukherjee, U A; Hall, A R; Astin, R; Ong, S-B; Yao, Z; Dyson, A; Szabadkai, G; Davidson, S M; Yellon, D M; Hausenloy, D J

    2014-01-01

    Novel therapeutic targets are required to protect the heart against cell death from acute ischemia–reperfusion injury (IRI). Mutations in the DJ-1 (PARK7) gene in dopaminergic neurons induce mitochondrial dysfunction and a genetic form of Parkinson's disease. Genetic ablation of DJ-1 renders the brain more susceptible to cell death following ischemia–reperfusion in a model of stroke. Although DJ-1 is present in the heart, its role there is currently unclear. We sought to investigate whether mitochondrial DJ-1 may protect the heart against cell death from acute IRI by preventing mitochondrial dysfunction. Overexpression of DJ-1 in HL-1 cardiac cells conferred the following beneficial effects: reduced cell death following simulated IRI (30.4±4.7% with DJ-1 versus 52.9±4.7% in control; n=5, P<0.05); delayed mitochondrial permeability transition pore (MPTP) opening (a critical mediator of cell death) (260±33 s with DJ-1 versus 121±12 s in control; n=6, P<0.05); and induction of mitochondrial elongation (81.3±2.5% with DJ-1 versus 62.0±2.8% in control; n=6 cells, P<0.05). These beneficial effects of DJ-1 were absent in cells expressing the non-functional DJ-1L166P and DJ-1Cys106A mutants. Adult mice devoid of DJ-1 (KO) were found to be more susceptible to cell death from in vivo IRI with larger myocardial infarct sizes (50.9±3.5% DJ-1 KO versus 41.1±2.5% in DJ-1 WT; n≥7, P<0.05) and resistant to cardioprotection by ischemic preconditioning. DJ-1 KO hearts showed increased mitochondrial fragmentation on electron microscopy, although there were no differences in calcium-induced MPTP opening, mitochondrial respiratory function or myocardial ATP levels. We demonstrate that loss of DJ-1 protects the heart from acute IRI cell death by preventing mitochondrial dysfunction. We propose that DJ-1 may represent a novel therapeutic target for cardioprotection. PMID:24577080

  2. Urine Output During Cardiopulmonary Bypass Predicts Acute Kidney Injury After Cardiac Surgery

    PubMed Central

    Song, Young; Kim, Dong Wook; Kwak, Young Lan; Kim, Beom Seok; Joo, Hyung Min; Ju, Jin Woo; Yoo, Young Chul

    2016-01-01

    Abstract Urine output is closely associated with renal function and has been used as a diagnostic criterion for acute kidney injury (AKI). However, urine output during cardiopulmonary bypass (CPB) has never been identified as a predictor of postoperative AKI. Considering altered renal homeostasis during CPB, we made a comprehensible approach to CPB urine output and evaluated its predictability for AKI. Patients undergoing cardiovascular surgery with the use of CPB, between January 2009 and December 2011, were retrospectively reviewed. AKI was defined as an increase in serum creatinine ≥0.3 mg/dL in the first postoperative 48 hours. We extrapolated a possible optimal amount of urine output from the plot of probability of AKI development according to CPB urine output. After separating patients by the predicted optimal value, we performed stepwise logistic regression analyses to find potential predictors of AKI in both subgroups. A total of 696 patients were analyzed. The amount of CPB urine output had a biphasic association with the incidence of AKI using 4 mL/kg/h as a boundary value. In a multivariate logistic regression to find predictors for AKI in entire patients, CPB urine output did not show statistical significance. After separating patients into subgroups with CPB urine output below and over 4 mL/kg/h, it was identified as an independent predictor for AKI with the odds ratio of 0.43 (confidence interval 0.30–0.61) and 1.11 (confidence interval 1.02–1.20), respectively. The amount of urine output during CPB with careful analysis may serve as a simple and feasible method to predict the development of AKI after cardiac surgery at an early time point. PMID:27258505

  3. Evaluation of cerebral-cardiac syndrome using echocardiography in a canine model of acute traumatic brain injury.

    PubMed

    Qian, Rong; Yang, Weizhong; Wang, Xiumei; Xu, Zhen; Liu, Xiaodong; Sun, Bing

    2015-01-01

    Previous studies have confirmed that traumatic brain injury (TBI) can induce general adaptation syndrome (GAS), which subsequently results in myocardial dysfunction and damage in some patients with acute TBI; this condition is also termed as cerebral-cardiac syndrome. However, most clinicians ignore the detection and treatment of myocardial dysfunction, and instead concentrate only on the serious neural damage that is observed in acute TBI, which is one of the most important fatal factors. Therefore, clarification is urgently needed regarding the relationship between TBI and myocardial dysfunction. In the present study, we evaluated 18 canine models of acute TBI, by using real-time myocardial contrast echocardiography and strain rate imaging to accurately evaluate myocardial function and regional microcirculation, including the strain rate of the different myocardial segments, time-amplitude curves, mean ascending slope of the curve, and local myocardial blood flow. Our results suggest that acute TBI often results in cerebral-cardiac syndrome, which rapidly progresses to the serious stage within 3 days. This study is the first to provide comprehensive ultrasonic characteristics of cerebral-cardiac syndrome in an animal model of TBI. PMID:26064794

  4. Contribution of damage-associated molecular patterns to transfusion-related acute lung injury in cardiac surgery

    PubMed Central

    Müller, Marcella C.A.; Tuinman, Pieter R.; Vlaar, Alexander P.; Tuip, Anita M.; Maijoor, Kelly; Achouiti, Achmed; van t Veer, Cornelis; Vroom, Margreeth B.; Juffermans, Nicole P.

    2014-01-01

    Background The incidence of transfusion-related acute lung injury (TRALI) in cardiac surgery patients is high and this condition contributes to an adverse outcome. Damage-associated molecular pattern (DAMP) molecules, HMGB1 and S100A12, are thought to mediate inflammatory changes in acute respiratory distress syndrome. We aimed to determine whether DAMP are involved in the pathogenesis of TRALI in cardiac surgery patients. Materials and methods This was a secondary analysis of a prospective observational trial in cardiac surgery patients admitted to the Intensive Care Unit of a university hospital in the Netherlands. Fourteen TRALI cases were randomly matched with 32 transfused and non-transfused controls. Pulmonary levels of HMGB1, S100A12 and inflammatory cytokines (interleukins-1β, -6, and -8 and tumour necrosis factor-α) were determined when TRALI evolved. In addition, systemic and pulmonary levels of soluble receptor for advanced glycation end products (sRAGE) were determined. Results HMGB1 expression and levels of sRAGE in TRALI patients did not differ from those in controls. There was a trend towards higher S100A12 levels in TRALI patients compared to the controls. Furthermore, S100A12 levels were associated with increased levels of markers of pulmonary inflammation, prolonged cardiopulmonary bypass, hypoxemia and duration of mechanical ventilation. Conclusion No evidence was found that HMGB1 and sRAGE contribute to the development of TRALI. S100A12 is associated with duration of cardiopulmonary bypass, pulmonary inflammation, hypoxia and prolonged mechanical ventilation and may contribute to acute lung injury in cardiac surgery patients. PMID:24887223

  5. High-dose perioperative atorvastatin and acute kidney injury following cardiac surgery: a randomized clinical trial

    PubMed Central

    Billings, Frederic T.; Hendricks, Patricia A.; Schildcrout, Jonathan S.; Shi, Yaping; Petracek, Michael R.; Byrne, John G.; Brown, Nancy J.

    2016-01-01

    Importance Hydroxy-methylglutaryl-coenzyme A reductase inhibitors affect several mechanisms underlying acute kidney injury (AKI). Objective To test the hypothesis that short-term high-dose perioperative atorvastatin would reduce AKI following cardiac surgery Design, Setting, Participants Double-blinded, placebo-controlled, randomized trial of adult cardiac surgery patients conducted November 2009 to October 2014 at Vanderbilt University Medical Center Intervention Statin-naïve patients (n=199) were randomly assigned 80mg atorvastatin the day before surgery, 40mg the morning of surgery, and 40mg daily following surgery (n=102) or matching placebo (n=97). Patients using statins prior to study enrollment (n=416) continued their pre-enrollment statin until the day of surgery, were randomly assigned 80mg atorvastatin the morning of surgery and 40mg the morning after (n=206) or matching placebo (n=210), and resumed their statin on postoperative day 2. Main Outcome AKI, defined as 0.3 mg/dl rise in serum creatinine within 48 hours of surgery (AKIN criteria) Results The DSMB recommended stopping the statin-naïve group due to increased AKI among statin-naïve participants with chronic kidney disease (CKD, estimated glomerular filtration rate <60 ml/min/1.73 m2) receiving atorvastatin and then recommended stopping for futility after 615 participants (median age, 67 years; 188 [30.6%] women, and 202 [32.8%] diabetic) completed the study. Among all participants (n=615), AKI occurred in 64 of 308 participants (20.8%) randomized to atorvastatin versus 60 of 307 participants (19.5%) randomized to placebo (risk ratio [RR], 1.06 [95% CI, 0.78–1.46]; P=0.75). Among statin-naïve participants (n=199), AKI occurred in 22 of 102 (21.6%) receiving atorvastatin versus 13 of 97 (13.4%) receiving placebo (RR, 1.61 [0.86–3.01]; P=0.15), and serum creatinine increased 0.11mg/dl (−0.11 to 0.56) (median [10th to 90th percentile]) in those randomized to atorvastatin versus 0.05 (−0

  6. Acute Kidney Injury in ICU Patients Following Non-Cardiac Surgery at Masih Daneshvari Hospital: Joint Modeling Application

    PubMed Central

    Khoundabi, Batoul; Mansourian, Marjan; Kazempoor Dizaji, Mehdi; Hashemian, Seyed Mohammadreza

    2015-01-01

    Background: Admission to the intensive care unit (ICU) is often complicated by early acute kidney injury (AKI). AKI is associated with high rates of mortality and morbidity. Risk factors and incidence of AKI have been notably high following non-cardiac surgery in the past decade. The aim of this study was to determine the hazard rate of AKI, the effect of risk factors of AKI and also to assess the changes in urine output (UO) as a predictor of AKI using joint modeling in patients undergoing non-cardiac surgery. Materials and Methods: In this retrospective cohort study, 400 non-cardiac-operated patients admitted during 3 years to the ICU of Masih Daneshvari Hospital were selected according to the consecutive sample selection method. Random mixed effect model and survival model were used to assess UO changes and the effect of UO and other risk factors on the hazard rate of AKI using joint analysis. Results: AKI occurred in 8.8% of the Iranian non-cardiac-operated patients. Survival model showed that the risk of AKI in lower diastolic blood pressure (DBP), higher Acute Physiology and Chronic Health Evaluation II score (APACHE II score), emergency surgery, longer hospitalization and male patients was higher (P=0.001). Using joint modeling, an association was found between the risk of AKI and UO (−0.19, P=0.002). Conclusion: Several predictors were found to be associated with AKI in the Iranian patients after non-cardiac surgery. A relationship between longitudinal and survival responses was found in this study and joint modeling caused considerable improvement in estimations compared to separate longitudinal and survival models. PMID:26221152

  7. Rapamycin Treatment of Healthy Pigs Subjected to Acute Myocardial Ischemia-Reperfusion Injury Attenuates Cardiac Functions and Increases Myocardial Necrosis

    PubMed Central

    Lassaletta, Antonio D; Elmadhun, Nassrene Y; Zanetti, Arthus V D; Feng, Jun; Anduaga, Javier; Gohh, Reginald Y.; Sellke, Frank W; Bianchi, Cesario

    2013-01-01

    Background The Mechanistic Target of Rapamycin (mTOR) pathway is a major regulator of cell immunity and metabolism. mTOR is a well-known suppressor of tissue rejection in organ transplants, however, it has other non-immune functions including in the cardiovascular system, where it is a regulator of heart hypertrophy and locally, in coated vascular stents, inhibits vascular wall cell growth and hence neointimal formation/restenosis. Because the mTOR pathway plays major roles in normal cell growth, metabolism and survival, we hypothesized that inhibiting it with rapamycin, prior to an acute myocardial ischemia-reperfusion injury (IRI), would confer cardioprotection by virtue of slowing down cardiac function and metabolism. Methods Yorkshire pigs received orally either placebo or 4 mg/day rapamycin for 7 days before the IRI. All animals underwent median sternotomy and the mid-left anterior descending coronary artery was occluded for 60 min followed by 120 min of reperfusion. Left ventricular pressure-volume data was collected throughout the operation. The ischemic and infarcted areas were determined by monastral blue and triphenyltetrazolium chloride staining, respectively and plasma cardiac troponin I concentration. mTOR kinase activities were monitored in remote cardiac tissue by western blotting with specific antibodies against specific substrates phosphorylating sites. Results Rapamycin pre-treatement impaired endothelial-dependent vasorelaxation, attenuated cardiac function during IRI, and increased myocardial necrosis. Western blotting confirmed effective inhibition of myocardial mTOR kinase activities. Conclusions Pre-treatment of healthy pigs with rapamycin prior to acute myocardial IRI is associated with decreased cardiac function and higher myocardial necrosis. PMID:24266948

  8. Penetrating cardiac injuries.

    PubMed

    Mittal, V; McAleese, P; Young, S; Cohen, M

    1999-05-01

    Our objective was to determine the influence of several clinical factors on the survival of patients with penetrating wounds to the heart. A retrospective review of 80 consecutive penetrating cardiac injuries treated in a Level II urban trauma center from 1980 through 1994 were examined. Thirty-six patients (45%) had gunshot wounds (including 1 shotgun wound), and 44 (55%) had stab wounds. Intervention consisted of emergency room (ER) or operating room thoracotomy. We measured the effect of several clinical factors on morbidity and patient survival. Survival rate was 17 of 36 (47%) in gunshot injuries and 35 of 44 (80%) in stab injuries, with an overall survival rate of 52 of 80 patients (65%). The average age was 24 years (range, 9-53), and there were 3 female patients. Twelve patients (15%) had multiple cardiac injuries, and 63 (79%) had other associated injuries. Fourteen patients (17%) presented with no blood pressure, and 55 (69%) were hypotensive on admission. ER thoracotomy was performed on 7 of 52 survivors (13%) and 24 of 28 nonsurvivors (86%). Survival after ER thoracotomy was 7 of 31 patients (22%). A selective approach is recommended, because ER thoracotomy has a limited role in penetrating cardiac injury. A high index of suspicion, prompt resuscitation, and immediate definitive surgical management resulted in a high survival rate for these frequently lethal injuries. PMID:10231214

  9. Preoperative angiotensin-converting enzyme inhibitors and angiotensin receptor blocker use and acute kidney injury in patients undergoing cardiac surgery

    PubMed Central

    Coca, Steven G.; Garg, Amit X.; Swaminathan, Madhav; Garwood, Susan; Hong, Kwangik; Thiessen-Philbrook, Heather; Passik, Cary; Koyner, Jay L.; Parikh, Chirag R.; Jai, Raman; Jeevanandam, Valluvan; Akhter, Shahab; Devarajan, Prasad; Bennett, Michael; Edelsteinm, Charles; Patel, Uptal; Chu, Michael; Goldbach, Martin; Guo, Lin Ruo; McKenzie, Neil; Myers, Mary Lee; Novick, Richard; Quantz, Mac; Zappitelli, Michael; Dewar, Michael; Darr, Umer; Hashim, Sabet; Elefteriades, John; Geirsson, Arnar

    2013-01-01

    Background Using either an angiotensin-converting enzyme inhibitor (ACEi) or an angiotensin receptor blocker (ARB) the morning of surgery may lead to ‘functional’ postoperative acute kidney injury (AKI), measured by an abrupt increase in serum creatinine. Whether the same is true for ‘structural’ AKI, measured with new urinary biomarkers, is unknown. Methods The TRIBE-AKI study was a prospective cohort study of 1594 adults undergoing cardiac surgery at six hospitals between July 2007 and December 2010. We classified the degree of exposure to ACEi/ARB into three categories: ‘none’ (no exposure prior to surgery), ‘held’ (on chronic ACEi/ARB but held on the morning of surgery) or ‘continued’ (on chronic ACEi/ARB and taken the morning of surgery). The co-primary outcomes were ‘functional’ AKI based upon changes in pre- to postoperative serum creatinine, and ‘structural AKI’, based upon peak postoperative levels of four urinary biomarkers of kidney injury. Results Across the three levels (none, held and continued) of ACEi/ARB exposure there was a graded increase in functional AKI, as defined by AKI stage 1 or worse; (31, 34 and 42%, P for trend 0.03) and by percentage change in serum creatinine from pre- to postoperative (25, 26 and 30%, P for trend 0.03). In contrast, there were no differences in structural AKI across the strata of ACEi/ARB exposure, as assessed by four structural AKI biomarkers (neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, interleukin-18 or liver-fatty acid-binding protein). Conclusions Preoperative ACEi/ARB usage was associated with functional but not structural acute kidney injury. As AKI from ACEi/ARB in this setting is unclear, interventional studies testing different strategies of perioperative ACEi/ARB use are warranted. PMID:24081864

  10. Over-diuresis or cardiac tamponade? An unusual case of acute kidney injury and early closure

    PubMed Central

    Singh, Gurkeerat; Sabath, Bruce

    2016-01-01

    An 84-year-old man with hypertension and a history of deep venous thrombosis (on warfarin) was admitted with shortness of breath presumed to be due to congestive heart failure. Echocardiogram performed the following day showed a low-normal ejection fraction with signs of elevated right-sided pressures but was otherwise normal. He improved with diuretic therapy but after a few days was found to be hypotensive with a concomitant rise in creatinine with decreased urine output. This was felt to be secondary to over-diuresis but he did not respond to small boluses of intravenous fluids as his kidney function continued to worsen and hypotension persisted. He was transferred to the intermediate care unit where a rapid, bedside ultrasound revealed a new, moderate-sized pericardial effusion with tamponade physiology. Pericardiocentesis, with removal of 750 cc of frank blood, led to dramatic improvement in blood pressure, kidney function, and urine output. Here, we demonstrate the utility of point-of-care ultrasound in a community hospital setting where urgent echocardiogram is not routinely available. We also report acute kidney injury due to pericardial tamponade reversed with therapeutic pericardiocentesis. PMID:27124173

  11. Understanding traumatic blunt cardiac injury.

    PubMed

    El-Menyar, Ayman; Al Thani, Hassan; Zarour, Ahmad; Latifi, Rifat

    2012-01-01

    Cardiac injuries are classified as blunt and penetrating injuries. In both the injuries, the major issue is missing the diagnosis and high mortality. Blunt cardiac injuries (BCI) are much more common than penetrating injuries. Aiming at a better understanding of BCI, we searched the literature from January 1847 to January 2012 by using MEDLINE and EMBASE search engines. Using the key word "Blunt Cardiac Injury," we found 1814 articles; out of which 716 articles were relevant. Herein, we review the causes, diagnosis, and management of BCI. In conclusion, traumatic cardiac injury is a major challenge in critical trauma care, but the guidelines are lacking. A high index of suspicion, application of current diagnostic protocols, and prompt and appropriate management is mandatory. PMID:23041686

  12. Assessment of Plasma and NGAL for the Early Prediction of Acute Kidney Injury After Cardiac Surgery in Adults Study

    ClinicalTrials.gov

    2016-04-11

    Acute Kidney Injury (AKI); Chronic Kidney Disease (CKD); End Stage Renal Disease (ESRD); Estimated Glomerular Filtration Rate (eGFR); Neutrophil Gelatinase-associated Lipocalin (NGAL); Serum Creatinine (SCr); Urine Creatinine (UCr); Urine Albumin (UAlb)

  13. Cardiac arrhythmias associated with spinal cord injury

    PubMed Central

    Hector, Sven Magnus; Biering-Sørensen, Tor; Krassioukov, Andrei; Biering-Sørensen, Fin

    2013-01-01

    Context/Objectives To review the current literature to reveal the incidence of cardiac arrhythmias and its relation to spinal cord injury (SCI). Methods Data source: MEDLINE database, 304 hits, and 32 articles were found to be relevant. The relevant articles all met the inclusion criteria: (1) contained original data (2) on cardiac arrhythmias (3) in humans with (4) traumatic SCI. Results In the acute phase of SCI (1–14 days after injury) more cranial as well as more severe injuries seemed to increase the incidence of bradycardia. Articles not covering the first 14 days after injury, thus describing the chronic phase of SCI, showed that individuals with SCI did not have a higher incidence of cardiac arrhythmias compared with able-bodied controls. Furthermore, their heart rate did not differ significantly. Penile vibro-stimulation was the procedure investigated most likely to cause bradycardia, which in turn was associated with episodes of autonomic dysreflexia. The incidence of bradycardia was found to be 17–77% for individuals with cervical SCI. For individuals with thoracolumbar SCI, the incidence was 0–13%. Conclusion Bradycardia was commonly seen in the acute stage after SCI as well as during procedures such as penile vibro-stimulation and tracheal suction. These episodes of bradycardia were seen more often in individuals with cervical injuries. Longitudinal studies with continuous electrocardiogram recordings are needed to uncover the true relation between cardiac arrhythmias and SCI. PMID:24090076

  14. Intake of fermented beverages protect against acute myocardial injury: target organ cardiac effects and vasculoprotective effects.

    PubMed

    Vilahur, Gemma; Casani, Laura; Guerra, Jose M; Badimon, Lina

    2012-09-01

    Mild-to-moderate alcohol consumption has been associated with reduced risk of morbi/mortality from coronary artery disease. However, whether beer intake affords cardioprotection remains unclear. We investigated whether beer intake (alcohol-containing and alcohol-free brew) provides cardioprotection in a pig model of myocardial infarction (MI). Pigs were randomly assigned to: (1) be fed for 10 days a high-cholesterol diet (HC); (2) HC + low-dose beer (LB; 12.5 g alcohol/day); (3) HC + moderate-dose beer (MB; 25 g alcohol/day); or IV) HC + alcohol-free-MB (0.0 g alcohol/day) before MI induction and kept 21 days with the same regime. Scar size, echocardiography, biochemical and oxidative parameters were assessed. Myocardial tissue was obtained for molecular analysis and histology. All beer-fed animals were less prone to arrhythmogenesis during ischemia. At sacrifice, beer intake was associated with lower oxidative stress and higher HDL-antioxidant capacity. Within the ischemic myocardium beer-fed animals showed higher Akt/eNOS and AMPK activation and reduced sirtuin1-related apoptosis. Compared to controls beer intake was associated with lower lipid infiltration, higher TGFβ-related collagen fibril formation and diminished MMP9 activity in the fibrous tissue limiting scar size (HC + LB and HC + MB P < 0.05 and HC + alcohol-free-MB P = 0.068 vs. HC). Systolic-related parameters were similarly worsen post-MI in all groups and further deteriorated in control animals (P ≤ 0.05 vs. post-MI). At sacrifice, all animals showed a worsening in diastolic-related parameters but overall cardiac performance was improved in beer-fed animals regardless of the dose or alcohol content (P ≤ 0.05). In conclusion, beer intake reduces oxidative stress and apoptosis, activates RISK components and favors reparative fibrosis improving global cardiac performance. PMID:22878829

  15. Cardiac Arrhythmias and Abnormal Electrocardiograms After Acute Stroke.

    PubMed

    Ruthirago, Doungporn; Julayanont, Parunyou; Tantrachoti, Pakpoom; Kim, Jongyeol; Nugent, Kenneth

    2016-01-01

    Cardiac arrhythmias and electrocardiogram (ECG) abnormalities occur frequently but are often underrecognized after strokes. Acute ischemic and hemorrhagic strokes in some particular area of brain can disrupt central autonomic control of the heart, precipitating cardiac arrhythmias, ECG abnormalities, myocardial injury and sometimes sudden death. Identification of high-risk patients after acute stroke is important to arrange appropriate cardiac monitoring and effective management of arrhythmias, and to prevent cardiac morbidity and mortality. More studies are needed to better clarify pathogenesis, localization of areas associated with arrhythmias and practical management of arrhythmias and abnormal ECGs after acute stroke. PMID:26802767

  16. Acute kidney injury.

    PubMed

    Lang, Joanna; Zuber, Kim; Davis, Jane

    2016-04-01

    Acute kidney injury (AKI) complicates up to 20% of all hospital admissions. Responding to the increase in admissions, complications, mortality, morbidity, and cost of AKI, Kidney Disease: Improving Global Outcomes convened an expert panel to study the issue, review the literature, and publish guidelines to evaluate and treat patients with AKI in the acute setting. This article reviews those guidelines. PMID:27023656

  17. Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair

    PubMed Central

    Duan, Jinzhu; Gherghe, Costin; Liu, Dianxin; Hamlett, Eric; Srikantha, Luxman; Rodgers, Laurel; Regan, Jenna N; Rojas, Mauricio; Willis, Monte; Leask, Andrew; Majesky, Mark; Deb, Arjun

    2012-01-01

    Wnts are required for cardiogenesis but the role of specific Wnts in cardiac repair remains unknown. In this report, we show that a dynamic Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. Acute ischaemic cardiac injury upregulates Wnt1 that is initially expressed in the epicardium and subsequently by cardiac fibroblasts in the region of injury. Following cardiac injury, the epicardium is activated organ-wide in a Wnt-dependent manner, expands, undergoes epithelial–mesenchymal transition (EMT) to generate cardiac fibroblasts, which localize in the subepicardial space. The injured regions in the heart are Wnt responsive as well and Wnt1 induces cardiac fibroblasts to proliferate and express pro-fibrotic genes. Disruption of downstream Wnt signalling in epicardial cells decreases epicardial expansion, EMT and leads to impaired cardiac function and ventricular dilatation after cardiac injury. Furthermore, disruption of Wnt/βcatenin signalling in cardiac fibroblasts impairs wound healing and decreases cardiac performance as well. These findings reveal that a pro-fibrotic Wnt1/βcatenin injury response is critically required for preserving cardiac function after acute ischaemic cardiac injury. PMID:22085926

  18. Acute Preconditioning of Cardiac Progenitor Cells with Hydrogen Peroxide Enhances Angiogenic Pathways Following Ischemia-Reperfusion Injury

    PubMed Central

    Pendergrass, Karl D.; Boopathy, Archana V.; Seshadri, Gokulakrishnan; Maiellaro-Rafferty, Kathryn; Che, Pao Lin; Brown, Milton E.

    2013-01-01

    There are a limited number of therapies available to prevent heart failure following myocardial infarction. One novel therapy that is currently being pursued is the implantation of cardiac progenitor cells (CPCs); however, their responses to oxidative stress during differentiation have yet to be elucidated. The objective of this study was to determine the effect of hydrogen peroxide (H2O2) treatment on CPC differentiation in vitro, as well as the effect of H2O2 preconditioning before implantation following ischemia-reperfusion (I/R) injury. CPCs were isolated and cloned from adult rat hearts, and then cultured in the absence or presence of H2O2 for 2 or 5 days. CPC survival was assessed with Annexin V, and cellular differentiation was evaluated through mRNA expression for cardiogenic genes. We found that 100 μM H2O2 decreased serum withdrawal-induced apoptosis by at least 45% following both 2 and 5 days of treatment. Moreover, 100 μM H2O2 treatment for 2 days significantly increased endothelial and smooth muscle markers compared to time-matched untreated CPCs. However, continued H2O2 treatment significantly decreased these markers. Left ventricular cardiac function was assessed 28 days after I/R and I/R with the implantation of Luciferase/GFP+ CPCs, which were preconditioned with 100 μM H2O2 for 2 days. Hearts implanted with Luciferase/GFP+ CPCs had significant improvement in both positive and negative dP/dT over I/R. Furthermore, cardiac fibrosis was significantly decreased in the preconditioned cells versus both I/R alone and I/R with control cells. We also observed a significant increase in endothelial cell density in the preconditioned CPC hearts compared to untreated CPC hearts, which also coincided with a higher density of Luciferase+ vessels. These findings suggest that preconditioning of CPCs with H2O2 for 2 days stimulates neoangiogenesis in the peri-infarct area following I/R injury and could be a viable therapeutic option to prevent heart

  19. SDF-1/CXCR4 mediates acute protection of cardiac function through myocardial STAT3 signaling following global ischemia/reperfusion injury

    PubMed Central

    Huang, Chunyan; Gu, Hongmei; Zhang, Wenjun; Manukyan, Mariuxi C.; Shou, Weinian

    2011-01-01

    Stromal cell-derived factor-1α (SDF-1) has been reported to mediate cardioprotection through the mobilization of stem cells into injured tissue and an increase in local angiogenesis after myocardial infarction. However, little is known regarding whether SDF-1 induces acute protection following global myocardial ischemia/reperfusion (I/R) injury and if so, by what molecular mechanism. SDF-1 binding to its cognate receptor CXCR4 has been shown to activate STAT3 in a variety of cells. STAT3 is a cardioprotective factor and may mediate SDF-1/CXCR4-induced acute protection. We hypothesized that SDF-1 would improve myocardial function through CXCR4-increased STAT3 activation following acute I/R. Isolated mouse hearts were subjected to 25-min global ischemia/40-min reperfusion and divided into groups of 1) vehicle; 2) SDF-1; 3) AMD3100, a CXCR4 inhibitor; 4) SDF-1 + AMD3100; 5) Stattic, a STAT3 inhibitor; 6) SDF-1 + Stattic; 7) cardiomyocyte-restricted ablation of STAT3 (STAT3KO); 8) STAT3KO + SDF-1; 9) Ly294002, an inhibitor of the Akt pathway; and 10) SDF-1 + Ly294002. Reagents were infused into hearts within 5 min before ischemia. SDF-1 administration significantly improved postischemic myocardial functional recovery in a dose-dependent manner. Additionally, pretreatment with SDF-1 reduced cardiac apoptotic signaling and increased myocardial STAT3 activation following acute I/R. Inhibition of the SDF-1 receptor CXCR4 neutralized these protective effects by SDF-1 in hearts subjected to I/R. Notably, inhibition of the STAT3 pathway or use of STAT3KO hearts abolished SDF-1-induced acute protection following myocardial I/R. Our results represent the first evidence that the SDF-1/CXCR4 axis upregualtes myocardial STAT3 activation and, thereby, mediates acute cardioprotection in response to global I/R. PMID:21821779

  20. [Pharmaca Induced Cardiac Injury].

    PubMed

    Haen, Ekkehard

    2016-01-01

    Many drugs influence vital functions via the sympathetic and the parasympathetic system. Besides that hypersensitivity reactions and reactions by chemical radicals that arise in drug metabolism may directly harm the heart muscle cell. Cardiac adverse drug reactions (ADR) result in disturbances of the heart rhythm, negative inotropic effects, direct damage to the heart muscle cell, and reduced perfusion of heart tissue. Their importance is often neglected because pharmacologically similar drugs are licensed for completely different indications. This is of particular interest if more drugs are prescribed in combination. Now these effects may add up to pharmacodynamic drug-drug-interactions. Data banks like PSIAConline (www.psiac.de), individualization of drug prescription by therapeutic drug monitoring (TDM) combined with a clinical pharmacological report (www.konbest.de), as well as drug information systems such as AGATE (www.amuep-agate.de) are today of help not just to recognize such drug risks, but also to find professional and evidence based solutions for it. PMID:26800070

  1. [Perioperative acute kidney injury and failure].

    PubMed

    Chhor, Vibol; Journois, Didier

    2014-04-01

    Perioperative period is very likely to lead to acute renal failure because of anesthesia (general or perimedullary) and/or surgery which can cause acute kidney injury. Characterization of acute renal failure is based on serum creatinine level which is imprecise during and following surgery. Studies are based on various definitions of acute renal failure with different thresholds which skewed their comparisons. The RIFLE classification (risk, injury, failure, loss, end stage kidney disease) allows clinicians to distinguish in a similar manner between different stages of acute kidney injury rather than using a unique definition of acute renal failure. Acute renal failure during the perioperative period can mainly be explained by iatrogenic, hemodynamic or surgical causes and can result in an increased morbi-mortality. Prevention of this complication requires hemodynamic optimization (venous return, cardiac output, vascular resistance), discontinuation of nephrotoxic drugs but also knowledge of the different steps of the surgery to avoid further degradation of renal perfusion. Diuretics do not prevent acute renal failure and may even push it forward especially during the perioperative period when venous retourn is already reduced. Edema or weight gain following surgery are not correlated with the vascular compartment volume, much less with renal perfusion. Treatment of perioperative acute renal failure is similar to other acute renal failure. Renal replacement therapy must be mastered to prevent any additional risk of hemodynamic instability or hydro-electrolytic imbalance. PMID:24656890

  2. Incidence, risk factors and prediction of post-operative acute kidney injury following cardiac surgery for active infective endocarditis: an observational study

    PubMed Central

    2013-01-01

    Introduction Cardiac surgery is frequently needed in patients with infective endocarditis (IE). Acute kidney injury (AKI) often complicates IE and is associated with poor outcomes. The purpose of the study was to determine the risk factors for post-operative AKI in patients operated on for IE. Methods A retrospective, non-interventional study of prospectively collected data (2000–2010) included patients with IE and cardiac surgery with cardio-pulmonary bypass. The primary outcome was post-operative AKI, defined as the development of AKI or progression of AKI based on the acute kidney injury network (AKIN) definition. We used ensemble machine learning (“Super Learning”) to develop a predictor of AKI based on potential risk factors, and evaluated its performance using V-fold cross validation. We identified clinically important predictors among a set of risk factors using Targeted Maximum Likelihood Estimation. Results 202 patients were included, of which 120 (59%) experienced a post-operative AKI. 65 (32.2%) patients presented an AKI before surgery while 91 (45%) presented a progression of AKI in the post-operative period. 20 patients (9.9%) required a renal replacement therapy during the post-operative ICU stay and 30 (14.8%) died during their hospital stay. The following variables were found to be significantly associated with renal function impairment, after adjustment for other risk factors: multiple surgery (OR: 4.16, 95% CI: 2.98-5.80, p<0.001), pre-operative anemia (OR: 1.89, 95% CI: 1.34-2.66, p<0.001), transfusion requirement during surgery (OR: 2.38, 95% CI: 1.55-3.63, p<0.001), and the use of vancomycin (OR: 2.63, 95% CI: 2.07-3.34, p<0.001), aminoglycosides (OR: 1.44, 95% CI: 1.13-1.83, p=0.004) or contrast iodine (OR: 1.70, 95% CI: 1.37-2.12, p<0.001). Post-operative but not pre-operative AKI was associated with hospital mortality. Conclusions Post-operative AKI following cardiopulmonary bypass for IE results from additive hits to the kidney. We

  3. Postoperative Fluid Overload is a Useful Predictor of the Short-Term Outcome of Renal Replacement Therapy for Acute Kidney Injury After Cardiac Surgery

    PubMed Central

    Xu, Jiarui; Shen, Bo; Fang, Yi; Liu, Zhonghua; Zou, Jianzhou; Liu, Lan; Wang, Chunsheng; Ding, Xiaoqiang; Teng, Jie

    2015-01-01

    Abstract To analyze the predictive value of postoperative percent fluid overload (PFO) of renal replacement therapy (RRT) for acute kidney injury (AKI) patients after cardiac surgery. Data from 280 cardiac surgery patients between 2005 January and 2012 April were collected for retrospective analyses. A receiver operating characteristic (ROC) curve was used to compare the predictive values of cumulative PFO at different times after surgery for 90-day mortality. The cumulative PFO before RRT initiation was 7.9% ± 7.1% and the median PFO 6.1%. The cumulative PFO before and after RRT initiation in intensive care unit (ICU) was higher in the death group than in the survival group (8.8% ± 7.6% vs 6.1% ± 5.6%, P = 0.001; −0.5[−5.6, 5.1]% vs 6.9[2.2, 14.6]%, P < 0.001). The cumulative PFO during the whole ICU stay was 14.3% ± 15.8% and the median PFO was 10.7%. The areas under the ROC curves to predict the 90-day mortality by PFO at 24 hours, cumulative PFO before and after RRT initiation, and PFO during the whole ICU stay postoperatively were 0.625, 0.627, 0.731, and 0.752. PFO during the whole ICU stay ≥7.2% was determined as the cut-off point for 90-day mortality prediction with a sensitivity of 77% and a specificity of 64%. Kaplan–Meier survival estimates showed a significant difference in survival among patients with cumulative PFO ≥ 7.2% and PFO < 7.2% after cardiac surgery (log-rank P < 0.001). Postoperative cumulative PFO during the whole ICU stay ≥7.2% would have an adverse effect on 90-day short-term outcome, which may provide a strategy for the volume control of AKI-RRT patients after cardiac surgery. PMID:26287422

  4. The incidence, risk factors, and outcome of transfusion-related acute lung injury in a cohort of cardiac surgery patients: a prospective nested case-control study.

    PubMed

    Vlaar, Alexander P J; Hofstra, Jorrit J; Determann, Rogier M; Veelo, Denise P; Paulus, Frederique; Kulik, Wim; Korevaar, Johanna; de Mol, Bas A; Koopman, Marianne M W; Porcelijn, Leendert; Binnekade, Jan M; Vroom, Margreeth B; Schultz, Marcus J; Juffermans, Nicole P

    2011-04-21

    Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related morbidity and mortality. Both antibodies and bioactive lipids that have accumulated during storage of blood have been implicated in TRALI pathogenesis. In a single-center, nested, case-control study, patients were prospectively observed for onset of TRALI according to the consensus definition. Of 668 patients, 16 patients (2.4%) developed TRALI. Patient-related risk factors for onset of TRALI were age and time on the cardiopulmonary bypass. Transfusion-related risk factors were total amount of blood products (odds ratio [OR] = 1.2; 95% confidence interval [CI], 1.03-1.44), number of red blood cells stored more than 14 days (OR = 1.6; 95% CI, 1.04-2.37), total amount of plasma (OR = 1.2; 95% CI, 1.03-1.44), presence of antibodies in donor plasma (OR = 8.8; 95% CI, 1.8-44), and total amount of transfused bioactive lipids (OR = 1.0; 95% CI, 1.00-1.07). When adjusted for patient risk factors, only the presence of antibodies in the associated blood products remained a risk factor for TRALI (OR = 14.2; 95% CI, 1.5-132). In-hospital mortality of TRALI was 13% compared with 0% and 3% in transfused and nontransfused patients, respectively (P < .05). In conclusion, the incidence of TRALI is high in cardiac surgery patients and associated with adverse outcome. Our results suggest that cardiac surgery patients may benefit from exclusion of blood products containing HLA/HNA antibodies. PMID:21325598

  5. Acute Inhalation Injury

    PubMed Central

    Gorguner, Metin; Akgun, Metin

    2010-01-01

    Inhaled substances may cause injury in pulmonary epithelium at various levels of respiratory tract, leading from simple symptoms to severe disease. Acute inhalation injury (AII) is not uncommon condition. There are certain high risk groups but AII may occur at various places including home or workplace. Environmental exposure is also possible. In addition to individual susceptibility, the characteristics of inhaled substances such as water solubility, size of substances and chemical properties may affect disease severity as well as its location. Although AII cases may recover in a few days but AII may cause long-term complications, even death. We aimed to discuss the effects of short-term exposures (minutes to hours) to toxic substances on the lungs. PMID:25610115

  6. Association of Definition of Acute Kidney Injury by Cystatin C Rise With Biomarkers and Clinical Outcomes in Children Undergoing Cardiac Surgery

    PubMed Central

    Zappitelli, Michael; Greenberg, Jason H.; Coca, Steven G.; Krawczeski, Catherine D.; Li, Simon; Thiessen-Philbrook, Heather R.; Bennett, Michael R.; Devarajan, Prasad; Parikh, Chirag R.

    2015-01-01

    IMPORTANCE Research has identified improved biomarkers of acute kidney injury (AKI). Cystatin C (CysC) is a better glomerular filtration rate marker than serum creatinine (SCr) and may improve AKI definition. OBJECTIVE To determine if defining clinical AKI by increases in CysC vs SCr alters associations with biomarkers and clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS Three-center prospective cohort study of intensive care units in New Haven, Connecticut, Cincinnati, Ohio, and Montreal, Quebec, Canada. Participants were 287 patients 18 years or younger without preoperative AKI or end-stage renal disease who were undergoing cardiac surgery. The study dates were July 1, 2007, through December 31, 2009. EXPOSURES For biomarker vs clinical AKI associations, the exposures were first postoperative (0–6 hours after surgery) urine interleukin 18, neutrophil gelatinase – associated lipocalin, kidney injury molecule 1, and liver fatty acid–binding protein. For clinical AKI outcome associations, the exposure was Kidney Disease: Improving Global Outcomes AKI definition (based on SCr or CysC). MAIN OUTCOMES AND MEASURES Clinical AKI, length of stay, and length of mechanical ventilation. We determined areas under the receiver operating characteristic curve and odds ratios for first postoperative biomarkers to predict AKI. RESULTS The SCr-defined vs CysC-defined AKI incidence differed substantially (43.6% vs 20.6%). Percentage agreement was 71% (κ = 0.38); stage 2 or worse AKI percentage agreement was 95%. Interleukin 18 and kidney injury molecule 1 discriminated for CysC-defined AKI better than for SCr-defined AKI. For interleukin 18 and kidney injury molecule 1, the areas under the receiver operating characteristic curve were 0.74 and 0.65, respectively, for CysC-defined AKI, and 0.66 and 0.58, respectively, for SCr-defined AKI. Fifth (vs first) quintile concentrations of both biomarkers were more strongly associated with CysC-defined AKI. For interleukin 18 and

  7. Acute Kidney Injury.

    PubMed

    Zuk, Anna; Bonventre, Joseph V

    2016-01-01

    Acute kidney injury (AKI) is a global public health concern associated with high morbidity, mortality, and healthcare costs. Other than dialysis, no therapeutic interventions reliably improve survival, limit injury, or speed recovery. Despite recognized shortcomings of in vivo animal models, the underlying pathophysiology of AKI and its consequence, chronic kidney disease (CKD), is rich with biological targets. We review recent findings relating to the renal vasculature and cellular stress responses, primarily the intersection of the unfolded protein response, mitochondrial dysfunction, autophagy, and the innate immune response. Maladaptive repair mechanisms that persist following the acute phase promote inflammation and fibrosis in the chronic phase. Here macrophages, growth-arrested tubular epithelial cells, the endothelium, and surrounding pericytes are key players in the progression to chronic disease. Better understanding of these complex interacting pathophysiological mechanisms, their relative importance in humans, and the utility of biomarkers will lead to therapeutic strategies to prevent and treat AKI or impede progression to CKD or end-stage renal disease (ESRD). PMID:26768243

  8. Evaluation of serum cysteine-rich protein 61 and cystatin C levels for assessment of acute kidney injury after cardiac surgery.

    PubMed

    Mosa, Osama F; Skitek, Milan; Kalisnik, Jurij M; Jerin, Ales

    2016-06-01

    Objective The occurrence of acute kidney injury (AKI) after cardiopulmonary bypass (CPB) can lead to morbidity and mortality. We hypothesized that cysteine-rich protein 61 (CYR61) and cystatin C (CysC) may be potential novel biomarkers of AKI after cardiopulmonary bypass. Methods Patients were classified into AKI and non-AKI group depending on serum creatinine. Levels of creatinine, CysC, and CYR61 were measured at five time-points before and within 48 h after the surgery. Results Fifty patients were included in the study. Serum creatinine pre-operative values were 74.0 ± 43.3 μmol/L in AKI group vs. 64.8 ± 17.9 μmol/L in non-AKI group. During 48 h, the values increased to 124.6 ± 67.2 μmol/L in AKI group (p < 0.001) but in non-AKI group they did not change significantly. Serum CysC values were significantly increased already 2 h after CBP in AKI group (949 ± 557 μg/L, p < 0.05) compared to non-AKI group (700 ± 170 μg/L). Pre-operative serum CYR61 tended to be lower in AKI group (12.4 μg/L) than in non-AKI group (20.3 μg/L), but 24 h after the surgery, the levels in AKI group tended to be higher than non-AKI group. Conclusion Serum CYR61 does not seem to be an early predictor of AKI in patients after cardiac surgery with CPB, but it might possibly identify patients at risk of developing more severe kidney injury. Serum CysC could be a promising biomarker of AKI, differentiating patients at risk of developing AKI after cardiac surgery as early as 2 h after surgery. PMID:26982887

  9. Acute lung injury review.

    PubMed

    Tsushima, Kenji; King, Landon S; Aggarwal, Neil R; De Gorordo, Antonio; D'Alessio, Franco R; Kubo, Keishi

    2009-01-01

    The first report of acute respiratory distress syndrome (ARDS) was published in 1967, and even now acute lung injury (ALI) and ARDS are severe forms of diffuse lung disease that impose a substantial health burden all over the world. Recent estimates indicate approximately 190,000 cases per year of ALI in the United States each year, with an associated 74,500 deaths per year. Common causes of ALI/ARDS are sepsis, pneumonia, trauma, aspiration pneumonia, pancreatitis, and so on. Several pathologic stages of ALI/ARDS have been described: acute inflammation with neutrophil infiltration, fibroproliferative phase with hyaline membranes, with varying degrees of interstitial fibrosis, and resolution phase. There has been intense investigation into the pathophysiologic events relevant to each stage of ALI/ARDS, and much has been learned in the alveolar epithelial, endobronchial homeostasis, and alveolar cell immune responses, especially neutrophils and alveolar macrophages in an animal model. However, these effective results in the animal models are not equally adoptive to those in randomized, controlled trials. The clinical course of ALI/ARDS is variable with the likely pathophysiologic complexity of human ALI/ARDS. In 1994, the definition was recommended by the American-European Consensus Conference Committee, which facilitated easy nomination of patients with ALI/ARDS for a randomized, clinical trial. Here, we review the recent randomized, clinical trials of ALI/ARDS. PMID:19420806

  10. Hyperoxic Acute Lung Injury

    PubMed Central

    Kallet, Richard H; Matthay, Michael A

    2013-01-01

    Prolonged breathing of very high FIO2 (FIO2 ≥ 0.9) uniformly causes severe hyperoxic acute lung injury (HALI) and, without a reduction of FIO2, is usually fatal. The severity of HALI is directly proportional to PO2 (particularly above 450 mm Hg, or an FIO2 of 0.6) and exposure duration. Hyperoxia produces extraordinary amounts of reactive O2 species that overwhelms natural antioxidant defenses and destroys cellular structures through several pathways. Genetic predisposition has been shown to play an important role in HALI among animals, and some genetics-based epidemiologic research suggests that this may be true for humans as well. Clinically, the risk of HALI likely occurs when FIO2exceeds 0.7, and may become problematic when FIO2 exceeds 0.8 for an extended period of time. Both high-stretch mechanical ventilation and hyperoxia potentiate lung injury and may promote pulmonary infection. During the 1960s, confusion regarding the incidence and relevance of HALI largely reflected such issues as the primitive control of FIO2, the absence of PEEP, and the fact that at the time both ALI and ventilator-induced lung injury were unknown. The advent of PEEP and precise control over FIO2, as well as lung-protective ventilation, and other adjunctive therapies for severe hypoxemia, has greatly reduced the risk of HALI for the vast majority of patients requiring mechanical ventilation in the 21st century. However, a subset of patients with very severe ARDS requiring hyperoxic therapy is at substantial risk for developing HALI, therefore justifying the use of such adjunctive therapies. PMID:23271823

  11. Aspirin and clonidine in non-cardiac surgery: acute kidney injury substudy protocol of the Perioperative Ischaemic Evaluation (POISE) 2 randomised controlled trial

    PubMed Central

    Garg, Amit X; Kurz, Andrea; Sessler, Daniel I; Cuerden, Meaghan; Robinson, Andrea; Mrkobrada, Marko; Parikh, Chirag; Mizera, Richard; Jones, Philip M; Tiboni, Maria; Rodriguez, Raul Gonzalez; Popova, Ekaterina; Rojas Gomez, Maria Fernanda; Meyhoff, Christian S; Vanhelder, Tomas; Chan, Matthew T V; Torres, David; Parlow, Joel; de Nadal Clanchet, Miriam; Amir, Mohammed; Bidgoli, Seyed Javad; Pasin, Laura; Martinsen, Kristian; Malaga, German; Myles, Paul; Acedillo, Rey; Roshanov, Pavel; Walsh, Michael; Dresser, George; Kumar, Priya; Fleischmann, Edith; Villar, Juan Carlos; Painter, Tom; Biccard, Bruce; Bergese, Sergio; Srinathan, Sadeesh; Cata, Juan P; Chan, Vincent; Mehra, Bhupendra; Leslie, Kate; Whitlock, Richard; Devereaux, P J

    2014-01-01

    Introduction Perioperative Ischaemic Evaluation-2 (POISE-2) is an international 2×2 factorial randomised controlled trial of low-dose aspirin versus placebo and low-dose clonidine versus placebo in patients who undergo non-cardiac surgery. Perioperative aspirin (and possibly clonidine) may reduce the risk of postoperative acute kidney injury (AKI). Methods and analysis After receipt of grant funding, serial postoperative serum creatinine measurements began to be recorded in consecutive patients enrolled at substudy participating centres. With respect to the study schedule, the last of over 6500 substudy patients from 82 centres in 21 countries were randomised in December 2013. The authors will use logistic regression to estimate the adjusted OR of AKI following surgery (compared with the preoperative serum creatinine value, a postoperative increase ≥26.5 μmol/L in the 2 days following surgery or an increase of ≥50% in the 7 days following surgery) comparing each intervention to placebo, and will report the adjusted relative risk reduction. Alternate definitions of AKI will also be considered, as will the outcome of AKI in subgroups defined by the presence of preoperative chronic kidney disease and preoperative chronic aspirin use. At the time of randomisation, a subpopulation agreed to a single measurement of serum creatinine between 3 and 12 months after surgery, and the authors will examine intervention effects on this outcome. Ethics and dissemination The authors were competitively awarded a grant from the Canadian Institutes of Health Research for this POISE-2 AKI substudy. Ethics approval was obtained for additional kidney data collection in consecutive patients enrolled at participating centres, which first began for patients enrolled after January 2011. In patients who provided consent, the remaining longer term serum creatinine data will be collected throughout 2014. The results of this study will be reported no later than 2015. Clinical Trial

  12. [Ascites and acute kidney injury].

    PubMed

    Piano, Salvatore; Tonon, Marta; Angeli, Paolo

    2016-07-01

    Ascites is the most common complication of cirrhosis. Ascites develops as a consequence of an abnormal splanchnic vasodilation with reduction of effecting circulating volume and activation of endogenous vasoconstrictors system causing salt and water retention. Patients with ascites have a high risk to develop further complications of cirrhosis such as hyponatremia, spontaneous bacterial peritonitis and acute kidney injury resulting in a poor survival. In recent years, new studies helped a better understanding of the pathophysiology of ascites and acute kidney injury in cirrhosis. Furthermore, new diagnostic criteria have been proposed for acute kidney injury and hepatorenal syndrome and a new algorithm for their management has been recommended with the aim of an early diagnosis and treatment. Herein we will review the current knowledge on the pathophysiology, diagnosis and treatment of ascites and acute kidney injury in patients with cirrhosis and we will identify the unmet needs that should be clarified in the next years. PMID:27571467

  13. Acute kidney injury.

    PubMed

    Patschan, Daniel; Müller, Gerhard Anton

    2015-01-01

    Acute kidney injury is a frequent and serious complication in hospitalized patients. Mortality rates have not substantially been decreased during the last 20 years. In most patients AKI results from transient renal hypoperfusion or ischemia. The consequences include tubular cell dysfunction/damage, inflammation of the organ, and post-ischemic microvasculopathy. The two latter events perpetuate kidney damage in AKI. Clinical manifestations result from diminished excretion of water, electrolytes, and endogenous / exogenous waste products. Patients are endangered by cardiovascular complications such as hypertension, heart failure, and arrhythmia. In addition, the whole organism may be affected by systemic toxification (uremia). The diagnostic approach in AKI involves several steps with renal biopsy inevitable in some patients. The current therapy focuses on preventing further kidney damage and on treatment of complications. Different pharmacological strategies have failed to significantly improve prognosis in AKI. If dialysis treatment becomes mandatory, intermittent and continuous renal replacement therapies are equally effective. Thus, new therapies are urgently needed in order to reduce short- and long-term outcome in AKI. In this respect, stem cell-based regimens may offer promising perspectives. PMID:25618438

  14. Acute kidney injury

    PubMed Central

    Müller, Gerhard Anton

    2015-01-01

    Abstract: Acute kidney injury is a frequent and serious complication in hospitalized patients. Mortality rates have not substantially been decreased during the last 20 years. In most patients AKI results from transient renal hypoperfusion or ischemia. The consequences include tubular cell dysfunction/damage, inflammation of the organ, and post-ischemic microvasculopathy. The two latter events perpetuate kidney damage in AKI. Clinical manifestations result from diminished excretion of water, electrolytes, and endogenous / exogenous waste products. Patients are endangered by cardiovascular complications such as hypertension, heart failure, and arrhythmia. In addition, the whole organism may be affected by systemic toxification (uremia). The diagnostic approach in AKI involves several steps with renal biopsy inevitable in some patients. The current therapy focuses on preventing further kidney damage and on treatment of complications. Different pharmacological strategies have failed to significantly improve prognosis in AKI. If dialysis treatment becomes mandatory, intermittent and continuous renal replacement therapies are equally effective. Thus, new therapies are urgently needed in order to reduce short- and long-term outcome in AKI. In this respect, stem cell-based regimens may offer promising perspectives. PMID:25618438

  15. Acute kidney injury in children.

    PubMed

    Merouani, A; Flechelles, O; Jouvet, P

    2012-04-01

    Acute kidney injury (AKI) affects 5% of critically ill hospitalized children and is a risk factor for increased morbidity and mortality. The current review focuses on new definitions of acute kidney injury, standardized to reflect the entire spectrum of the disease, as well as on ongoing research to identify early biomarkers of kidney injury. Its also provides an overview of current practice and available therapies, with emphasis on new strategies for the prevention and pharmacological treatment of diarrhea-associated hemolytic uremic syndrome. Furthermore, a decision-making algorithm is presented for the use of renal replacement therapies in critically ill children with AKI. PMID:22495187

  16. Acute myocarditis presenting as cardiac tamponade.

    PubMed Central

    Nwizu, Chidi; Onwuanyi, Anekwe E.

    2004-01-01

    We report a case of acute fulminant myocarditis presenting with cardiac tamponade and shock. The patient was managed in the coronary care unit with emergency pericardiotomy, invasive hemodynamic monitoring, and supportive therapy for cardiac failure. Pleural effusion and pneumonia complicated her clinical course. She responded well to therapy with normalization of left ventricular systolic function. This case demonstrates the potential for complete recovery with appropriate management in acute myocarditis even with a fulminant course. Images Figure 1 PMID:15586655

  17. Acute injuries in Taekwondo.

    PubMed

    Schlüter-Brust, K; Leistenschneider, P; Dargel, J; Springorum, H P; Eysel, P; Michael, J W-P

    2011-08-01

    Although Taekwondo is becoming an increasingly popular sport, there is a lack of reliable epidemiologic data on Taekwondo injuries. To perform an epidemiologic study on the variety of types of injury in professional and amateur Taekwondo athletes and to find a relation between Taekwondo style, skill level, weight-class and warm-up routine and the occurrence of injuries, we analysed the injury data using a 7-page questionnaire from a total of 356 Taekwondo athletes who were randomly selected. Overall, we registered a total of 2,164 injuries in 356 athletes. Most traumas were contusions and sprains in the lower extremities. Professional Taekwondo athletes have an increased risk of injury in comparison to recreational athletes. Taekwondo style, weight class and tournament frequency have an influence on the athlete's injury profile. Warm-up routines were found to have a positive effect on injury rates. Overall, Taekwondo may be considered a rather benign activity, if injuries during Taekwondo tournaments can be avoided. If not, Taekwondo can result in serious musculoskeletal problems. PMID:21563037

  18. [Cardiac arrest following blunt chest injury. Emergency thoracotomy without ifs or buts?].

    PubMed

    Leidel, B A; Kanz, K G; Kirchhoff, C; Bürklein, D; Wismüller, A; Mutschler, W

    2007-10-01

    In German-speaking countries, most serious thoracic injuries are attributable to the impact of blunt force; they are the second most frequent result of injury after head injury in polytrauma patients with multiple injuries. Almost one in every three polytraumatized patients with significant chest injury develops acute lung failure, and one in every four, acute circulatory failure. The acute circulatory arrest following serious chest injury involves a high mortality rate, and in most cases it reflects a tension pneumothorax, cardiac tamponade, or hemorrhagic shock resulting from injury to the heart or one of the large vessels close to it. Brisk drainage of tension pneumothorax and adequate volume restoration are therefore particularly important in resuscitation of multiply traumatized patients, as are rapid resuscitative thoracotomy to allow direct heart massage, drainage of pericardial tamponade, and control of hemorrhage. However the probability of survival described in the literature is very low for patients sustaining severe chest trauma with acute cardiac arrest. The case report presented here describes a female polytrauma patient who suffered an acute cardiac arrest following cardiac tamponade after admission in the emergency department and who survived without neurological deficits after an emergency thoracotomy. Selections from the topical literature can help the treating physician in the emergency department in making decisions on whether an emergency thoracotomy is indicated after a blunt chest injury and on the procedure itself. PMID:17909734

  19. Cardiac Injuries: A Review of Multidetector Computed Tomography Findings

    PubMed Central

    Baxi, Ameya Jagdish; Restrepo, Carlos; Mumbower, Amy; McCarthy, Michael; Rashmi, Katre

    2015-01-01

    Trauma is the leading cause of death in United States in the younger population. Cardiac trauma is common following blunt chest injuries and is associated with high morbidity and mortality. This study discusses various multidetector computed tomography (MDCT) findings of cardiac trauma. Cardiac injuries are broadly categorized into the most commonly occurring blunt cardiac injury and the less commonly occurring penetrating injury. Signs and symptoms of cardiac injury can be masked by the associated injuries. Each imaging modality including chest radiographs, echocardiography, magnetic resonance imaging and MDCT has role in evaluating these patients. However, MDCT is noninvasive; universally available and has a high spatial, contrast, and temporal resolution. It is a one stop shop to diagnose and evaluate complications of cardiac injury. MDCT is an imaging modality of choice to evaluate patients with cardiac injuries especially the injuries capable of causing hemodynamic instability. PMID:26839855

  20. Estrogenic Impact on Cardiac Ischemic/Reperfusion Injury.

    PubMed

    Sivasinprasasn, Sivaporn; Shinlapawittayatorn, Krekwit; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-02-01

    The increase in cardiovascular disease and metabolic syndrome incidence following the onset of menopause has highlighted the role of estrogen as a cardiometabolic protective agent. Specifically regarding the heart, estrogen induced an improvement in cardiac function, preserved calcium homeostasis, and inhibited the mitochondrial apoptotic pathway. The beneficial effects of estrogen in relation to cardiac ischemia/reperfusion (I/R) injury, such as reduced infarction and ameliorated post-ischemic recovery, have also been shown. Nevertheless, controversial findings exist and estrogen therapy is reported to be related to a higher rate of thromboembolic events and atrial fibrillation in post-menopausal women. Therefore, greater clarification is needed to evaluate the exact potential of estrogen use in cases of cardiac I/R injury. This article reviews the effects of estrogen, in both acute and chronic treatment, and collates the studies with regard to their in vivo, in vitro, or clinical trial settings in cases of cardiac I/R injury and myocardial infarction. PMID:26786980

  1. [How to Apply Bayesian Theorem to the Evaluation of Myocardial Injury by Measuring High Sensitive Cardiac Troponins in the Patients with Suspected Acute Myocardial Infarction].

    PubMed

    Shimada, Toshio; Yokochi, Tsunehiro; Ikoma, Yoko; Sonoda, Akihiro; Amemiya, Naoki; Murakoshi, Daiki; Kuzumi, Hirotoshi; Kosugiyama, Haruka

    2016-02-01

    118 consecutive patients of suspected acute myocardial infarction with acute chest pain and shortness of breath visiting our emergency room were subjected for this clinical study. Based on final diagnosis of acute myocardial infarction (AMI) comprehensively determined by medical record, physical examination, ECG, echocardiography, cardiac catheterization, etc., except for cardiac biomarkers, the patients were classified into two groups, with AMI group (1) and without AMI group (0) and then ROC curve analysis was performed between without AMI group (1) and with AMI group (0). As a result of ROC curve analysis, AUC, cutoff value, sensitivity, specificity and likelihood ratio (LR) were calculated as shown in Fig. 4 (1-7) and Table 2 (1-7). Based on calculating equation led from Bayesian rules, post-test odds were calculated as product of pre-test odds and LR at the cutoff value in each biomarker such as hsCTnT, hsCTnI, h-FABP CK, CKMB activity and CKMB mass. As a result, post-test probability was improved from predictive pre-test probability 30% to post-test probability 89% and 86% in hsCTnT and hsTnI, respectively but less improved from 30% to 68% in h-FABP and unexpectedly improved from 30% to 82% in CKMB mass compared with hsCTnT and hsTnI. Based on Bayesian rule, it is very valuable to predict post-test probability from predictive pre-test probability 30% by calculation in particular, when post-test probability is over 85-90%. In conclusion, we believe that prediction of post-test probability by Bayesian rule can be surely used to evaluate clinical quality of biomarkers which are not depend on at least, specialty and experience of physicians. PMID:27311276

  2. Cardiac papillary fibroelastoma presenting as acute stroke

    PubMed Central

    Abbasi, Atif Saleem; Da Costa, Mark; Hennessy, Terry; Kiernan, Thomas John

    2013-01-01

    We present a case of a young woman who was initially diagnosed with acute stroke with no obvious risk factors. Preliminary investigation with transthoracic echocardiography and subsequent advanced imaging with transoesophageal echocardiography suggested the diagnosis of a benign cardiac tumour on the anterior leaflet of mitral valve. The patient underwent urgent surgical resection. Histology confirmed the diagnosis of cardiac papillary fibroelastoma. She made complete clinical recovery with no recurrence of symptoms. PMID:23761612

  3. Acute Cardiac Tamponade: An Unusual Cause of Acute Renal Failure

    PubMed Central

    Phadke, Gautam; Whaley-Connell, Adam; Dalal, Pranavkumar; Markley, John; Rich, Andrew

    2012-01-01

    We are reporting a case of acute renal failure after cardiac surgery due to acute pericardial effusion. The patient had normal baseline renal function but developed acute oliguric renal failure with a significant increase in serum creatinine postoperatively. Pericardiotomy led to an improvement in blood pressure, immediate diuresis and quick recovery of renal function back to baseline. Pericardial tamponade should be included in the consideration of causes of the cardiorenal syndrome. PMID:22619656

  4. Autophagy in acute brain injury.

    PubMed

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Blomgren, Klas; Kroemer, Guido

    2016-08-01

    Autophagy is an evolutionarily ancient mechanism that ensures the lysosomal degradation of old, supernumerary or ectopic cytoplasmic entities. Most eukaryotic cells, including neurons, rely on proficient autophagic responses for the maintenance of homeostasis in response to stress. Accordingly, autophagy mediates neuroprotective effects following some forms of acute brain damage, including methamphetamine intoxication, spinal cord injury and subarachnoid haemorrhage. In some other circumstances, however, the autophagic machinery precipitates a peculiar form of cell death (known as autosis) that contributes to the aetiology of other types of acute brain damage, such as neonatal asphyxia. Here, we dissect the context-specific impact of autophagy on non-infectious acute brain injury, emphasizing the possible therapeutic application of pharmacological activators and inhibitors of this catabolic process for neuroprotection. PMID:27256553

  5. Acute Shoulder Injuries in Adults.

    PubMed

    Monica, James; Vredenburgh, Zachary; Korsh, Jeremy; Gatt, Charles

    2016-07-15

    Acute shoulder injuries in adults are often initially managed by family physicians. Common acute shoulder injuries include acromioclavicular joint injuries, clavicle fractures, glenohumeral dislocations, proximal humerus fractures, and rotator cuff tears. Acromioclavicular joint injuries and clavicle fractures mostly occur in young adults as the result of a sports injury or direct trauma. Most nondisplaced or minimally displaced injuries can be treated conservatively. Treatment includes pain management, short-term use of a sling for comfort, and physical therapy as needed. Glenohumeral dislocations can result from contact sports, falls, bicycle accidents, and similar high-impact trauma. Patients will usually hold the affected arm in their contralateral hand and have pain with motion and decreased motion at the shoulder. Physical findings may include a palpable humeral head in the axilla or a dimple inferior to the acromion laterally. Reduction maneuvers usually require intra-articular lidocaine or intravenous analgesia. Proximal humerus fractures often occur in older patients after a low-energy fall. Radiography of the shoulder should include a true anteroposterior view of the glenoid, scapular Y view, and axillary view. Most of these fractures can be managed nonoperatively, using a sling, early range-of-motion exercises, and strength training. Rotator cuff tears can cause difficulty with overhead activities or pain that awakens the patient from sleep. On physical examination, patients may be unable to hold the affected arm in an elevated position. It is important to recognize the sometimes subtle signs and symptoms of acute shoulder injuries to ensure proper management and timely referral if necessary. PMID:27419328

  6. Cardiac Manifestation of Acute Lymphoblastic Leukemia.

    PubMed

    Werner, Rudolf A; Rudelius, Martina; Thurner, Annette; Higuchi, Takahiro; Lapa, Constantin

    2016-07-01

    Here, we report on a 38-year-old man with unclear right heart failure. Imaging with cardiac MRI and combined PET/CT with F-FDG revealed a hypermetabolic mass extending from the right ventricle to the atrium. In addition, intense glucose utilization throughout the bone marrow was noted. Biopsies of both bone marrow and cardiac mass were performed and revealed precursor B-cell acute lymphoblastic leukemia with gross leukemic infiltration of the myopericardium, a rare manifestation of acute lymphoblastic leukemia at initial diagnosis. PMID:27088389

  7. Biomarkers of acute kidney injury and associations with short- and long-term outcomes

    PubMed Central

    Schaub, Jennifer A.; Parikh, Chirag R.

    2016-01-01

    Acute kidney injury is strongly associated with increased mortality and other adverse outcomes. Medical researchers have intensively investigated novel biomarkers to predict short- and long-term outcomes of acute kidney injury in many patient care settings, such as cardiac surgery, intensive care units, heart failure, and transplant. Future research should focus on leveraging this relationship to improve enrollment for clinical trials of acute kidney injury. PMID:27239295

  8. Acute Kidney Injury Predicts Mortality after Charcoal Burning Suicide

    PubMed Central

    Chen, Yu-Chin; Tseng, Yi-Chia; Huang, Wen-Hung; Hsu, Ching-Wei; Weng, Cheng-Hao; Liu, Shou-Hsuan; Yang, Huang-Yu; Chen, Kuan-Hsin; Chen, Hui-Ling; Fu, Jen-Fen; Lin, Wey-Ran; Wang, I-Kuan; Yen, Tzung-Hai

    2016-01-01

    A paucity of literature exists on risk factors for mortality in charcoal burning suicide. In this observational study, we analyzed the data of 126 patients with charcoal burning suicide that seen between 2002 and 2013. Patients were grouped according to status of renal damage as acute kidney injury (N = 49) or non-acute kidney injury (N = 77). It was found that patients with acute kidney injury suffered severer complications such as respiratory failure (P = 0.002), myocardial injury (P = 0.049), hepatic injury (P < 0.001), rhabdomyolysis (P = 0.045) and out-of-hospital cardiac arrest (P = 0.028) than patients without acute kidney injury. Moreover, patients with acute kidney injury suffered longer hospitalization duration (16.9 ± 18.3 versus 10.7 ± 10.9, P = 0.002) and had higher mortality rate (8.2% versus 0%, P = 0.011) than patients without injury. In a multivariate Cox regression model, it was demonstrated that serum creatinine level (P = 0.019) and heart rate (P = 0.022) were significant risk factors for mortality. Finally, Kaplan-Meier analysis revealed that patients with acute kidney injury suffered lower cumulative survival than without injury (P = 0.016). In summary, the overall mortality rate of charcoal burning suicide population was 3.2%, and acute kidney injury was a powerful predictor of mortality. Further studies are warranted. PMID:27430168

  9. Acute Kidney Injury Predicts Mortality after Charcoal Burning Suicide.

    PubMed

    Chen, Yu-Chin; Tseng, Yi-Chia; Huang, Wen-Hung; Hsu, Ching-Wei; Weng, Cheng-Hao; Liu, Shou-Hsuan; Yang, Huang-Yu; Chen, Kuan-Hsin; Chen, Hui-Ling; Fu, Jen-Fen; Lin, Wey-Ran; Wang, I-Kuan; Yen, Tzung-Hai

    2016-01-01

    A paucity of literature exists on risk factors for mortality in charcoal burning suicide. In this observational study, we analyzed the data of 126 patients with charcoal burning suicide that seen between 2002 and 2013. Patients were grouped according to status of renal damage as acute kidney injury (N = 49) or non-acute kidney injury (N = 77). It was found that patients with acute kidney injury suffered severer complications such as respiratory failure (P = 0.002), myocardial injury (P = 0.049), hepatic injury (P < 0.001), rhabdomyolysis (P = 0.045) and out-of-hospital cardiac arrest (P = 0.028) than patients without acute kidney injury. Moreover, patients with acute kidney injury suffered longer hospitalization duration (16.9 ± 18.3 versus 10.7 ± 10.9, P = 0.002) and had higher mortality rate (8.2% versus 0%, P = 0.011) than patients without injury. In a multivariate Cox regression model, it was demonstrated that serum creatinine level (P = 0.019) and heart rate (P = 0.022) were significant risk factors for mortality. Finally, Kaplan-Meier analysis revealed that patients with acute kidney injury suffered lower cumulative survival than without injury (P = 0.016). In summary, the overall mortality rate of charcoal burning suicide population was 3.2%, and acute kidney injury was a powerful predictor of mortality. Further studies are warranted. PMID:27430168

  10. Acute Kidney Injury in Cirrhosis.

    PubMed

    Karvellas, Constantine J; Durand, Francois; Nadim, Mitra K

    2015-10-01

    Acute kidney injury (AKI) is a frequent complication of end-stage liver disease, especially in those with acute-on-chronic liver failure, occurring in up to 50% of hospitalized patients with cirrhosis. There is no specific blood or urine biomarker that can reliably identify the cause of AKI in cirrhotic patients. This review examines studies used to assess renal dysfunction in cirrhotic patients including new diagnostic criteria and potential novel biomarkers. Although biomarker development to differentiate the cause of AKI in cirrhosis has promise, the utility of biomarkers to determine irreversible renal dysfunction with liver transplant remains lacking, warranting further investigation. PMID:26410141

  11. Epigenetics in acute kidney injury

    PubMed Central

    Tang, Jinhua; Zhuang, Shougang

    2015-01-01

    Purpose of review Recent advances in epigenetics indicate the involvement of several epigenetic modifications in the pathogenesis of acute kidney injury (AKI). The purpose of this review is to summarize our understanding of recent advances in epigenetic regulation of AKI and provide mechanistic insight into the role of acetylation, methylation, and microRNA expression in the pathological processes of AKI. Recent findings Enhancement of protein acetylation by pharmacological inhibition of histone deacetylases (HDACs) leads to more severe tubular injury and impairment of renal structural and functional recovery. The changes in promoter DNA methylation occur in the kidney with ischemia/reperfusion. microRNA expression is associated with regulation of both renal injury and regeneration after AKI. Summary Recent studies on epigenetic regulation indicate that acetylation, methylation, and microRNA expression are critically implicated in the pathogenesis of AKI. Strategies targeting epigenetic processes may hold a therapeutic potential for patients with AKI. PMID:26050122

  12. Pathophysiology of Acute Kidney Injury

    PubMed Central

    Basile, David P.; Anderson, Melissa D.; Sutton, Timothy A.

    2014-01-01

    Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia or nephrotoxicity. An underlying feature is a rapid decline in GFR usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or CKD patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future. PMID:23798302

  13. Electrophysiologic monitoring in acute brain injury.

    PubMed

    Claassen, Jan; Vespa, Paul

    2014-12-01

    To determine the optimal use and indications of electroencephalography (EEG) in critical care management of acute brain injury (ABI). An electronic literature search was conducted for articles in English describing electrophysiological monitoring in ABI from January 1990 to August 2013. A total of 165 studies were included. EEG is a useful monitor for seizure and ischemia detection. There is a well-described role for EEG in convulsive status epilepticus and cardiac arrest (CA). Data suggest EEG should be considered in all patients with ABI and unexplained and persistent altered consciousness and in comatose intensive care unit (ICU) patients without an acute primary brain condition who have an unexplained impairment of mental status. There remain uncertainties about certain technical details, e.g., the minimum duration of EEG studies, the montage, and electrodes. Data obtained from both EEG and EP studies may help estimate prognosis in ABI patients, particularly following CA and traumatic brain injury. Data supporting these recommendations is sparse, and high quality studies are needed. EEG is used to monitor and detect seizures and ischemia in ICU patients and indications for EEG are clear for certain disease states, however, uncertainty remains on other applications. PMID:25208668

  14. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    NASA Astrophysics Data System (ADS)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  15. Cardiac injuries--a clinical and autopsy profile.

    PubMed

    Kulshrestha, P; Das, B; Iyer, K S; Sampath, K A; Sharma, M L; Rao, I M; Venugopal, P

    1990-02-01

    One hundred two patients sustaining cardiac injuries over a 4-year period were analysed to highlight the natural history of the cardiac injuries. There were 45 blunt, 36 stab, and 21 gunshot injuries. The injury involved the ventricle in 85, atrium in seven, pulmonary artery in five cases, and resulted in crush injury to the heart in the remaining five cases. Thirty-three patients (32.3%) died on the scene and 58 (56.9%) died during the transportation. Only 11 patients (10.8%) reached the hospital alive, and ten of these patients survived following thoracotomy and repair of the cardiac injury. The factors influencing the natural course of cardiac injury were analysed: 2.2% of patients with blunt cardiac trauma reached the hospital alive compared to 19.4% with stab and 14.3% with gunshot injuries; ventricular injuries had a greater prehospital mortality compared to atrial or pulmonary artery injuries; 11.3% of patients sustaining injury to right ventricle reached the hospital alive compared to 3% of those with left ventricular injuries. These data emphasize the need for rapid transport, immediate recognition, and aggressive surgical management, to make a favourable impact on the natural history of cardiac injuries. PMID:2304116

  16. Biomarkers of Acute Kidney Injury

    PubMed Central

    Vaidya, Vishal S.; Ferguson, Michael A.; Bonventre, Joseph V.

    2009-01-01

    Acute kidney injury (AKI) is a common condition with a high risk of death. The standard metrics used to define and monitor the progression of AKI, such as serum creatinine and blood urea nitrogen levels, are insensitive, nonspecific, and change significantly only after significant kidney injury and then with a substantial time delay. This delay in diagnosis not only prevents timely patient management decisions, including administration of putative therapeutic agents, but also significantly affects the preclinical evaluation of toxicity thereby allowing potentially nephrotoxic drug candidates to pass the preclinical safety criteria only to be found to be clinically nephrotoxic with great human costs. Studies to establish effective therapies for AKI will be greatly facilitated by two factors: (a) development of sensitive, specific, and reliable biomarkers for early diagnosis/prognosis of AKI in preclinical and clinical studies, and (b) development and validation of high-throughput innovative technologies that allow rapid multiplexed detection of multiple markers at the bedside. PMID:17937594

  17. Exenatide induced acute kidney injury.

    PubMed

    Aijazi, Ishma; Abdulla, Fadhil M; Zuberi, Beyla J; Elhassan, Ahmed

    2014-01-01

    Exenatide is an incretin mimetic. It was approved by the federal drug authority in 2005 for the treatment of type-2 diabetes. Since it is a relatively new medicine clinicians have limited experience with regards to its side effects and safety profile. We report a 47 year old lady who presented with exenatide associated acute kidney injury. She had type-2 diabetes for 10 years with mild micro albuminuria and normal renal functions. She was also taking a stable dose of metformin, gliclazide, angiotensin converting enzyme inhibitor and diuretic for over a year and there was no history of any recent use of non-steroid anti-inflammatory medications. One week after starting exenatide, she developed severe vomiting, followed by hypotension. She presented with acute renal insufficiency and severe lactic acidosis and had to be dialyzed on emergency basis. To our knowledge this is probably the first case reported in the local United Arab Emirate (U.A.E) population. PMID:25672206

  18. [Acute Kidney Injury, Type - 3 cardiorenal syndrome, Biomarkers, Renal Replacement Therapy].

    PubMed

    Di Lullo, Luca; Bellasi, Antonio; Barbera, Vincenzo; Cozzolino, Mario; Russo, Domenico; De Pascalis, Antonio; Santoboni, Francesca; Villani, Annalisa; De Rosa, Silvia; Colafelice, Marco; Russo, Luigi; Ronco, Claudio

    2016-01-01

    Cardiovascular disease and major cardiovascular events represent main cause of death in both acute and chronic kidney disease patients. Kidney and heart failure are common and frequently co-exist This organ-organ interaction, also called organ cross-talk, leads to well-known definition of cardiorenal syndrome (CRS). Here we will describe cardiovascular involvement in patients with acute kidney injury (AKI). Also known as Type-3 CRS or acute reno-cardiac CRS, it occurs when AKI contributes and/or precipitates development of acute cardiac injury. AKI may directly or indirectly produces an acute cardiac event and it can be associated with volume overload, metabolic acidosis and electrolytes disorders such as hyperkalemia and hypocalcemia, coronary artery disease, left ventricular dysfunction and fibrosis which has been also described in patients with AKI with the consequence of direct negative effects on cardiac performance. PMID:27374388

  19. [Acute kidney injury in children].

    PubMed

    Amira-Peco-Antić; Paripović, Dusan

    2014-01-01

    Acute kidney injury (AKI) is a clinical condition considered to be the consequence of a sudden decrease (> 25%) or discontinuation of renal function. The term AKI is used instead of the previous term acute renal failure, because it has been demonstrated that even minor renal lesions may cause far-reaching consequences on human health. Contemporary classifications of AKI (RIFLE and AKIN) are based on the change of serum creatinine and urinary output. In the developed countries, AKI is most often caused by renal ischemia, nephrotoxins and sepsis, rather than a (primary) diffuse renal disease, such as glomerulonephritis, interstitial nephritis, renovascular disorder and thrombotic microangiopathy. The main risk factors for hospital AKI are mechanical ventilation, use of vasoactive drugs, stem cell transplantation and diuretic-resistant hypervolemia. Prerenal and parenchymal AKI (previously known as acute tubular necrosis) jointly account for 2/3 of all AKI causes. Diuresis and serum creatinine concentration are not early diagnostic markers of AKI. Potential early biomarkers of AKI are neutrophil gelatinase-associated lipocalin (NGAL), cystatin C, kidney injury molecule-1 (KIM-1), interleukins 6, 8 and 18, and liver-type fatty acid-binding protein (L-FABP). Early detection of kidney impairment, before the increase of serum creatinine, is important for timely initiated therapy and recovery. The goal of AKI treatment is to normalize the fluid and electrolyte status, as well as the correction of acidosis and blood pressure. Since a severe fluid overload resistant to diuretics and inotropic agents is associated with a poor outcome, the initiation of dialysis should not be delayed. The mortality rate of AKI is highest in critically ill children with multiple organ failure and hemodynamically unstable patients. PMID:25033598

  20. The cell cycle and acute kidney injury

    PubMed Central

    Price, Peter M.; Safirstein, Robert L.; Megyesi, Judit

    2009-01-01

    Acute kidney injury (AKI) activates pathways of cell death and cell proliferation. Although seemingly discrete and unrelated mechanisms, these pathways can now be shown to be connected and even to be controlled by similar pathways. The dependence of the severity of renal-cell injury on cell cycle pathways can be used to control and perhaps to prevent acute kidney injury. This review is written to address the correlation between cellular life and death in kidney tubules, especially in acute kidney injury. PMID:19536080

  1. [Transfusion-related acute lung injury].

    PubMed

    Tank, S; Sputtek, A; Kiefmann, R

    2013-04-01

    Transfusion-related acute lung injury (TRALI) developed into the leading cause of transfusion-related morbidity and mortality after the first description by Popovsky et al. approximately three decades ago. It was the most frequent reason for transfusion-related fatalities worldwide before implementation of risk minimization strategies by donor selection. Plasma-rich blood products, such as fresh frozen plasma and apheresis platelets seem to be the leading triggers of TRALI. Hypoxemia and development of pulmonary edema within 6 h of transfusion are the diagnostic criteria for TRALI. The differentiation between cardiac failure and other transfusion-related lung injuries, such astransfusion-associated circulatory overload ( TACO) is difficult and causal treatment is not available. Therapy is based on supportive measures, such as oxygen insufflationor mechanical ventilation. The exactly pathogenesis is still unknown but the most propagated hypothesis is the two-event-model. Neutrophils are primed by the underlying condition, e.g. sepsis or trauma during the first event and these primed neutrophils are activated by transfused leukoagglutinating antibodies (immunogen) or bioreactive mediators (non-immunogen) during the second-event. Transfusion of leukoagglutinating antibodies from female donors with one or more previous pregnancies is the most frequent reason. No more TRALI fatalities were reported after implementation of the donor selection in Germany in 2009. PMID:23558721

  2. Diagnosis of acute cardiac ischemia.

    PubMed

    Pope, J Hector; Selker, Harry P

    2003-02-01

    A better understanding of coronary syndromes allow physicians to appreciate UAP and AMI as part of a continuum of ACI. ACI is a life-threatening condition whose identification can have major economic and therapeutic importance as far as threatening dysrhythmias and preventing or limiting myocardial infarction size. The identification of ACI continues to challenge the skill of even experienced clinicians, yet physicians continue (appropriately) to admit the overwhelming majority of patients with ACI; in the process, they admit many patients without acute ischemia [2], overestimating the likelihood of ischemia in low-risk patients because of magnified concern for this diagnosis for prognostic and therapeutic reasons. Studies of admitting practices from a decade ago have yielded useful clinical information but have shown that neither clinical symptoms nor the ECG could reliably distinguish most patients with ACI from those with other conditions. Most studies have evaluated the accuracy of various technologies for diagnosing ACI, yet only a few have evaluated the clinical impact of routine use. The prehospital 12-lead ECG has moderate sensitivity and specificity for the diagnosis of ACI. It has demonstrated a reduction of the mean time to thrombolysis by 33 minutes and short-term overall mortality in randomized trials. In the general ED setting, only the ACI-TIPI has demonstrated, in a large-scale multicenter clinical trial, a reduction in unnecessary hospitalizations without decreasing the rate of appropriate admission for patients with ACI. The Goldman chest pain protocol has good sensitivity for AMI but was not shown to result in any differences in hospitalization rate, length of stay, or estimated costs in the single clinical impact study performed. The protocol's applicability to patients with UAP has not been evaluated. Single measurement of biomarkers at presentation to the ED has poor sensitivity for AMI, although most biomarkers have high specificity. Serial

  3. Rock Climbing Injuries: Acute and Chronic Repetitive Trauma.

    PubMed

    Chang, Connie Y; Torriani, Martin; Huang, Ambrose J

    2016-01-01

    Rock climbing has increased in popularity as a sport, and specific injuries related to its practice are becoming more common. Chronic repetitive injuries are more common than acute injuries, although acute injuries tend to be more severe. We review both acute and chronic upper and lower extremity injuries. Understanding the injury pattern in rock climbers is important for accurate diagnosis. PMID:26360057

  4. Cardiac MRI of acute coronary syndrome.

    PubMed

    Akerem Khan, Shamruz; Khan, Shamruz Akarem; Williamson, Eric E; Foley, Thomas A; Cullen, Ethany L; Young, Phillip M; Araoz, Philip A

    2013-05-01

    Acute coronary syndrome (ACS) is a major cause of morbidity and mortality worldwide. New serological biomarkers, such as troponins, have improved the diagnosis of ACS; however, the diagnosis of ACS can still be difficult as there is marked heterogeneity in its presentation and significant overlap with other disorders presenting with chest pain. Evidence is accumulating that cardiac MRI provides information that can aid the detection and differential diagnosis of ACS, guide clinical decision-making and improve risk-stratification after an event. In this review, we present the relevant cardiac MRI techniques that can be used to detect ACS accurately, provide differential diagnosis, identify the sequelae of ACS, and determine prognostication after ACS. PMID:23668741

  5. PULMONARY AND CARDIAC GENE EXPRESSION FOLLOWING ACUTE ULTRAFINE CARBON PARTICLE INHALATION IN HYPERTENSIVE RATS

    EPA Science Inventory

    Inhalation of ultrafine carbon particles (ufCP) causes cardiac physiological changes without marked pulmonary injury or inflammation. We hypothesized that acute ufCP exposure of 13 months old Spontaneously Hypertensive (SH) rats will cause differential effects on the lung and hea...

  6. Nephrology Update: Acute Kidney Injury.

    PubMed

    Sarabu, Nagaraju; Rahman, Mahboob

    2016-05-01

    Acute kidney injury (AKI) refers to any acute decrease in glomerular filtration rate, regardless of etiology. Staging of AKI has been recommended to stratify AKI patients according to severity of the condition, based on serum creatinine level and urine output. Classification of AKI into prerenal, intrinsic renal, and postrenal etiologies is helpful in differential diagnosis and management. AKI in hospitalized patients typically occurs due to decreased renal perfusion. Drug-induced, contrast-associated, postoperative, and sepsis-associated AKI also can occur. Clinical assessment of a patient with AKI involves a medical record review, thorough history and physical examination, urinary and blood tests, renal imaging, and, in some instances, renal biopsy. Contrast-induced nephropathy is a common iatrogenic etiology of AKI associated with administration of intravenous iodinated contrast media. Measures to prevent AKI should be taken before administration of intravenous iodinated contrast. AKI can result in many short- and long-term complications, including chronic kidney disease and end-stage renal disease. Appropriate treatment of AKI patients involves management of the underlying etiology, when possible, and use of nondialytic and dialytic therapies. PMID:27163760

  7. Targeting Iron Homeostasis in Acute Kidney Injury.

    PubMed

    Walker, Vyvyca J; Agarwal, Anupam

    2016-01-01

    Iron is an essential metal involved in several major cellular processes required to maintain life. Because of iron's ability to cause oxidative damage, its transport, metabolism, and storage is strictly controlled in the body, especially in the small intestine, liver, and kidney. Iron plays a major role in acute kidney injury and has been a target for therapeutic intervention. However, the therapies that have been effective in animal models of acute kidney injury have not been successful in human beings. Targeting iron trafficking via ferritin, ferroportin, or hepcidin may offer new insights. This review focuses on the biology of iron, particularly in the kidney, and its implications in acute kidney injury. PMID:27085736

  8. Out of hospital cardiac arrest and associated injury.

    PubMed Central

    Jones, A I; Stuart, M J; Gray, A J

    1998-01-01

    Three patients are described who sustained injuries around the time of a collapse that led to out of hospital cardiac arrest. In this group of patients the importance of taking a complete medical history and recording the circumstances of the syncopal episode cannot be overemphasised. If cardiac output is successfully restored the possibility of occult traumatic injury must be considered in high risk patients. PMID:9639185

  9. The usefulness of serum troponin levels in evaluating cardiac injury.

    PubMed

    Collins, J N; Cole, F J; Weireter, L J; Riblet, J L; Britt, L D

    2001-09-01

    The diagnosis and clinical significance of blunt cardiac injury remains controversial. Cardiac troponin I is not found in skeletal muscle and has a high sensitivity for myocardial ischemia or injury. We hypothesized that normal troponin levels 4 to 6 hours postinjury would effectively exclude the diagnosis of cardiac contusion. A prospective evaluation of all blunt trauma patients older than 16 and admitted with the possible diagnosis of blunt cardiac injury was undertaken. Patients in whom this diagnosis was considered had an electrocardiogram (EKG) on admission, serum troponin, CPK and isoenzymes 4 to 6 hours postinjury, and admission with overnight telemetry. Other laboratory data and radiographic imaging was obtained as indicated. Seventy-two patients met criteria for entry into the study. Data was incomplete or inaccurately obtained on six patients, and they were excluded. Forty patients had normal troponins and normal EKG's on admission and were discharged the following day without any untoward effect. Sixteen patients were admitted with abnormal EKGs. All of these 16 patients had normal troponins 4 to 6 hours after their injury. They all did well and were discharged the following day. Ten patients had elevated troponins 4 to 6 hours after injury. One died two days later from refractory cardiogenic shock. Another was noted to have severely depressed left ventricular function by echocardiography. The other eight patients sustained no cardiac sequelae and were discharged once recovered from injuries. In the hemodynamically stable patient a normal troponin 4 to 6 hours after injury excludes clinically significant blunt cardiac injury. This holds true whether the admission EKG is normal or not. An elevated troponin does not definitively diagnose a clinically significant contusion. However, these patients should be monitored at least for 24 hours. Patients suspicious for cardiac contusions who have normal troponins and no other serious injuries may be safely

  10. Management of acute spinal cord injury.

    PubMed

    Wagner, F C

    1977-06-01

    Based on the experience with 58 patients with acute spinal cord injuries, a system for rapidly evaluating such patients has been developed. With the knowledge that has been acquired clinically and experimentally of spinal cord injury and with the information provided by laminography and by either air or Pantopaque myelography, a reasonably certain diagnosis of the type of spinal cord injury may be made. Treatment designed to restore neurological function may then be instituted promptly. PMID:882906

  11. Penetrating Cardiac Nail Gun Injury in a Child.

    PubMed

    Kulaylat, Afif N; Chesnut, Charles H; Patel, Sunil; Rocourt, Dorothy V; Clark, Joseph B

    2016-08-01

    Nail gun injuries primarily occur in the extremities of adult males as a consequence of accidental occupational trauma. Such injury involving the thorax is much less common, and penetrating cardiac injury secondary to pneumatic nail gun discharge is rare. Although potentially lethal, most cases with cardiac trauma are survivable with expedient surgical intervention. Despite improvements in engineered safety mechanisms, the incidence of nail gun injuries has risen as use of the devices has increased. The widespread availability of these tools to nonprofessional consumers exposes a broader population to the potential hazards associated with these devices. We describe the presentation and successful management of the first reported case of penetrating cardiac nail gun injury in a young child. PMID:27018525

  12. Acute forefoot and midfoot injuries.

    PubMed

    Laird, R Clinton

    2015-04-01

    Forefoot and midfoot injuries in the athlete are common. Injuries of the digits include subungual hematomas and fractures. Metatarsal fractures occur frequently in sports, and their treatments range greatly. Hyperflexion and extension injuries about the first metatarsophalangeal joint can be very debilitating. Midfoot sprains and fractures require a high index of suspicion for diagnosis. PMID:25804712

  13. CHANGES IN CARDIAC PHYSIOLOGY AFTER SEVERE BURN INJURY

    PubMed Central

    Williams, Felicia N; Herndon, David N; Suman, Oscar E; Lee, Jong O; Norbury, William B; Branski, Ludwik K; Mlcak, Ronald P; Jeschke, Marc G

    2012-01-01

    Objective Cardiac stress, mediated by increased catecholamines, is the hallmark of severe burn injury typified by marked tachycardia, increased myocardial oxygen consumption, and increased cardiac output. It remains one of the main determinants of survival in large burns. It is currently unknown for how long cardiac stress persists after a severe injury. Therefore, the aim of this study was to determine the extent and duration of cardiac stress after a severe burn. To determine persistence of cardiac alteration we determined cardiac parameters of all surviving patients with burns ≥ 40% total body surface area (TBSA) from 1998 to 2008. Methods One-hundred ninety-four patients were included in this study. Heart Rate (HR), mean arterial pressure (MAP), cardiac output (CO), stroke volume (SV), cardiac index (CI), and ejection fractions (EF) were measured at regular intervals from admission up to two years after injury. Rate pressure product (RPP) was calculated as a correlate of myocardial oxygen consumption. All values were compared to normal non-burned children to validate our findings. Statistical analysis was performed using log transformed ANOVA with Bonferroni correction, and Student’s t-test where applicable. Results Heart rate, cardiac output, cardiac index and RPP remained significantly elevated in burned children for up to two years when compared to normal ranges (p<0.05) indicating vastly increased cardiac stress. Ejection fraction was within normal limits for two years. Conclusions Cardiac stress persists for at least 2 years post burn and we suggest that attenuation of these detrimental responses may improve long-term morbidity. PMID:21228708

  14. Pressure Controlled Ventilation to Induce Acute Lung Injury in Mice

    PubMed Central

    Koeppen, Michael; Eckle, Tobias; Eltzschig, Holger K.

    2011-01-01

    Murine models are extensively used to investigate acute injuries of different organs systems (1-34). Acute lung injury (ALI), which occurs with prolonged mechanical ventilation, contributes to morbidity and mortality of critical illness, and studies on novel genetic or pharmacological targets are areas of intense investigation (1-3, 5, 8, 26, 30, 33-36). ALI is defined by the acute onset of the disease, which leads to non-cardiac pulmonary edema and subsequent impairment of pulmonary gas exchange (36). We have developed a murine model of ALI by using a pressure-controlled ventilation to induce ventilator-induced lung injury (2). For this purpose, C57BL/6 mice are anesthetized and a tracheotomy is performed followed by induction of ALI via mechanical ventilation. Mice are ventilated in a pressure-controlled setting with an inspiratory peak pressure of 45 mbar over 1 - 3 hours. As outcome parameters, pulmonary edema (wet-to-dry ratio), bronchoalveolar fluid albumin content, bronchoalveolar fluid and pulmonary tissue myeloperoxidase content and pulmonary gas exchange are assessed (2). Using this technique we could show that it sufficiently induces acute lung inflammation and can distinguish between different treatment groups or genotypes (1-3, 5). Therefore this technique may be helpful for researchers who pursue molecular mechanisms involved in ALI using a genetic approach in mice with gene-targeted deletion. PMID:21587159

  15. Animal models of acute lung injury

    PubMed Central

    Matute-Bello, Gustavo; Frevert, Charles W.; Martin, Thomas R.

    2008-01-01

    Acute lung injury in humans is characterized histopathologically by neutrophilic alveolitis, injury of the alveolar epithelium and endothelium, hyaline membrane formation, and microvascular thrombi. Different animal models of experimental lung injury have been used to investigate mechanisms of lung injury. Most are based on reproducing in animals known risk factors for ARDS, such as sepsis, lipid embolism secondary to bone fracture, acid aspiration, ischemia-reperfusion of pulmonary or distal vascular beds, and other clinical risks. However, none of these models fully reproduces the features of human lung injury. The goal of this review is to summarize the strengths and weaknesses of existing models of lung injury. We review the specific features of human ARDS that should be modeled in experimental lung injury and then discuss specific characteristics of animal species that may affect the pulmonary host response to noxious stimuli. We emphasize those models of lung injury that are based on reproducing risk factors for human ARDS in animals and discuss the advantages and disadvantages of each model and the extent to which each model reproduces human ARDS. The present review will help guide investigators in the design and interpretation of animal studies of acute lung injury. PMID:18621912

  16. Injury to the coronary arteries and related structures by implantation of cardiac implantable electronic devices.

    PubMed

    Pang, Benjamin J; Barold, S Serge; Mond, Harry G

    2015-04-01

    Damage to the coronary arteries and related structures from pacemaker and implantable cardioverter-defibrillator lead implantation is a rarely reported complication that can lead to myocardial infarction and pericardial tamponade that may occur acutely or even years later. We summarize the reported cases of injury to coronary arteries and related structures and review the causes of troponin elevation in the setting of cardiac implantable electronic device implantation. PMID:25564549

  17. Prevention of Lung Injury in Cardiac Surgery: A Review

    PubMed Central

    Young, Robert W.

    2014-01-01

    Abstract: Inflammatory lung injury is an inevitable consequence of cardiac surgery with cardiopulmonary bypass. The lungs are particularly susceptible to the effects of the systemic inflammatory response to cardiopulmonary bypass. This insult is further exacerbated by a pulmonary ischemia–reperfusion injury after termination of bypass. Older patients and those with pre-existing lung disease will clearly be less tolerant of any lung injury and more likely to develop respiratory failure in the postoperative period. A requirement for prolonged ventilation has implications for morbidity, mortality, and cost of treatment. This review contains a summary of recent interventions and changes of practice that may reduce inflammatory lung injury after cardiac surgery. The review also focuses on a number of general aspects of perioperative management, which may exacerbate such injury, if performed poorly. PMID:25208430

  18. Acute kidney injury due to decompression illness.

    PubMed

    Viecelli, Andrea; Jamboti, Jagadish; Waring, Andrew; Banham, Neil; Ferrari, Paolo

    2014-08-01

    Decompression illness is a rare but serious complication of diving caused by intravascular or extravascular gas bubble formation. We report the first case of acute kidney injury in a 27-year-old diver following three rapid ascents. He presented with transient neurological symptoms and abdominal pain followed by rapidly progressive acute kidney injury (creatinine peak 1210 µmol/L) due to arterial air emboli. He received supportive care and 100% oxygen followed by hyperbaric therapy and recovered fully. Arterial air emboli caused by rapid decompression can affect multiple organs including the kidneys. Early transfer to a hyperbaric unit is important as complications may present delayed. PMID:25852912

  19. Acute kidney injury due to decompression illness

    PubMed Central

    Viecelli, Andrea; Jamboti, Jagadish; Waring, Andrew; Banham, Neil; Ferrari, Paolo

    2014-01-01

    Decompression illness is a rare but serious complication of diving caused by intravascular or extravascular gas bubble formation. We report the first case of acute kidney injury in a 27-year-old diver following three rapid ascents. He presented with transient neurological symptoms and abdominal pain followed by rapidly progressive acute kidney injury (creatinine peak 1210 µmol/L) due to arterial air emboli. He received supportive care and 100% oxygen followed by hyperbaric therapy and recovered fully. Arterial air emboli caused by rapid decompression can affect multiple organs including the kidneys. Early transfer to a hyperbaric unit is important as complications may present delayed. PMID:25852912

  20. CAPing inflammation and acute kidney injury.

    PubMed

    Inoue, Tsuyoshi; Rosin, Diane L; Okusa, Mark D

    2016-09-01

    The cholinergic anti-inflammatory pathway has been shown to modulate inflammation in disease models such as rheumatoid arthritis and inflammatory bowel disease. A recent study demonstrated a protective effect of vagus nerve stimulation with activation of the cholinergic anti-inflammatory pathway in the ischemia reperfusion model of acute kidney injury. PMID:27521104

  1. Management of Acute Regurgitation in Left-Sided Cardiac Valves

    PubMed Central

    Mokadam, Nahush A.; Stout, Karen K.; Verrier, Edward D.

    2011-01-01

    The management of acute, severe cardiac valvular regurgitation requires expeditious multidisciplinary care. Although acute, severe valvular regurgitation can be a true surgical emergency, accurate diagnosis and subsequent treatment decisions require clinical acumen, appropriate imaging, and sound judgment. An accurate and timely diagnosis is essential for successful outcomes and requires appropriate expertise and a sufficiently high degree of suspicion in a variety of settings. Whereas cardiovascular collapse is the most obvious and common presentation of acute cardiac valvular regurgitation, findings may be subtle, and the clinical presentation can often be nonspecific. Consequently, other acute conditions such as sepsis, pneumonia, or nonvalvular heart failure may be mistaken for acute valvular regurgitation. In comparison with that of the right-sided valves, regurgitation of the left-sided valves is more common and has greater clinical impact. Therefore, this review focuses on acute regurgitation of the aortic and mitral valves. PMID:21423463

  2. Lactate and lactate clearance in acute cardiac care patients

    PubMed Central

    Lazzeri, Chiara; Picariello, Claudio; Dini, Carlotta Sorini; Gensini, Gian Franco; Valente, Serafina

    2012-01-01

    Hyperlactataemia is commonly used as a diagnostic and prognostic tool in intensive care settings. Recent studies documented that serial lactate measurements over time (or lactate clearance), may be clinically more reliable than lactate absolute value for risk stratification in different pathological conditions. While the negative prognostic role of hyperlactataemia in several critical ill diseases (such as sepsis and trauma) is well established, data in patients with acute cardiac conditions (i.e. acute coronary syndromes) are scarce and controversial. The present paper provides an overview of the current available evidence on the clinical role of lactic acid levels and lactate clearance in acute cardiac settings (acute coronary syndromes, cardiogenic shock, cardiac surgery), focusing on its prognostic role. PMID:24062898

  3. A SCUBA diver with acute kidney injury.

    PubMed

    Gleeson, Patrick James; Kelly, Yvelynne; Ni Sheaghdha, Eadaoin; Lappin, David

    2015-01-01

    An otherwise healthy young man was transferred to our hospital after a diving incident. He had made an uncontrolled ascent from 10 m. On arrival he appeared well. No hypotensive episodes occurred during the transfer. He denied having arthralgias, back pain, dyspnoea or neurological symptoms. Laboratory investigations revealed acutely elevated creatinine (170 µmol/L) and creatine kinase (909 U/L). Radiology was consistent with a focus of pulmonary barotrauma and intrinsic renal disease. Creatine kinase is a marker of arterial gas embolism (AGE). We determined that our patient suffered acute kidney injury as a result of gas embolisation to his renal vasculature from an area of pulmonary barotrauma. Creatinine fell the following day in response to aggressive intravenous fluids. This is the first reported case of acute kidney injury secondary to AGE. Biochemical studies should be part of the routine assessment of patients involved in diving incidents. PMID:25948841

  4. Endothelial RAGE exacerbates acute postischaemic cardiac inflammation.

    PubMed

    Ziegler, Tilman; Horstkotte, Melanie; Lange, Philipp; Ng, Judy; Bongiovanni, Dario; Hinkel, Rabea; Laugwitz, Karl-Ludwig; Sperandio, Markus; Horstkotte, Jan; Kupatt, Christian

    2016-08-01

    Advanced glycation end-products (AGEs) interact with their receptor RAGE, leading to an inflammatory state. We investigated the role of RAGE in postischaemic leukocyte adhesion after myocardial infarction and its effect on postischaemic myocardial function. Wildtype (WT), ICAM-1-/-, RAGE-/- or ICAM-1/RAGE-/- mice underwent 20 minutes (min) of LAD-occlusion followed by 15 min of reperfusion. We applied in vivo fluorescence microscopy visualising Rhodamine-6G labelled leukocytes. To differentiate between endothelial and leukocyte RAGE, we generated bone marrow chimeric mice. Invasive hemodynamic measurements were performed in mice undergoing 45 min of myocardial ischaemia (via LAD-occlusion) followed by 24 hours of reperfusion. Left-ventricular developed pressure (LVDP) was assessed by insertion of a millar-tip catheter into the left ventricle. In the acute model of myocardial ischaemia, leukocyte retention (WT 68 ± 4 cells/hpf) was significantly reduced in ICAM-1-/- (40 ± 3 cells/hpf) and RAGE-/- mice (38 ± 4 cells/hpf). ICAM-1/RAGE-/- mice displayed an additive reduction of leukocyte retention (ICAM-1/RAGE-/- 15 ± 3 cells/hpf). Ly-6G+ neutrophil were predominantly reduced in ICAM-1/RAGE-/- hearts (28 %), whereas Ly-6C+ proinflammatory monocytes decreased to a lesser extent (55 %). Interestingly, PMN recruitment was not affected in chimeric mice with RAGE deficiency in BM cells (WT mice reconstituted with ICAM-1/RAGE-/- BM: 55 ± 4 cells/hpf) while in mice with global RAGE deficiency (ICAM-1/RAGE-/- mice reconstituted with ICAM-1/RAGE-/- BM) leucocyte retention was significantly reduced (13 ± 1 cells/hpf), similar to non-transplanted ICAM/RAGE-/- mice. Furthermore, postischaemic LVDP increased in ICAM-1/RAGE-/- animals (98 ± 4 mmHg vs 86 ± 4 mmHg in WT mice). In conclusion, combined deficiency of ICAM-1 and RAGE reduces leukocyte influx into infarcted myocardium and improves LV function during the acute phase after myocardial ischaemia and reperfusion

  5. Protective Effect of Quercetin on Posttraumatic Cardiac Injury

    PubMed Central

    Jing, Zehao; Wang, Zhuorun; Li, Xiujie; Li, Xintao; Cao, Tingting; Bi, Yue; Zhou, Jicheng; Chen, Xu; Yu, Deqin; Zhu, Liang; Li, Shuzhuang

    2016-01-01

    Quercetin is an important dietary flavonoid present in fruits and vegetables and has attracted attention because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play important roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This study investigates the protective effect of quercetin on trauma-induced secondary cardiac injury and the mechanisms involved. Widely accepted nonlethal mechanical trauma models were established. In vivo, cardiomyocyte apoptosis and cardiac dysfunction in rats were assessed using TUNEL staining and a biological mechanic experiment system. In vitro, cell viability, tumour necrosis factor-α (TNF-α), reactive oxygen species (ROS) and [Ca2+]i of H9c2 cells were detected using an MTT assay, ELISA, and 2′,7′-dichlorofluorescin diacetate and fluo-4 acetoxymethyl ester assays respectively. Quercetin pretreatment (20 mg/kg i.p.; 0.5 h before trauma) significantly improved posttraumatic cardiomyocyte apoptosis and cardiac dysfunction. Pretreatment with quercetin (20 μM; 24 h before trauma plasma addition) significantly attenuated trauma-induced viability decreases, TNF-α increases, ROS overproduction and [Ca2+]i overload in H9c2 cells. In conclusion, quercetin may reverse posttraumatic cardiac dysfunction by reducing cardiomyocyte apoptosis through the suppression of TNF-α increases, ROS overproduction and Ca2+ overload in cardiomyocytes, representing a potential preventive approach for the treatment of secondary cardiac injury after mechanical trauma. PMID:27470932

  6. Protective Effect of Quercetin on Posttraumatic Cardiac Injury.

    PubMed

    Jing, Zehao; Wang, Zhuorun; Li, Xiujie; Li, Xintao; Cao, Tingting; Bi, Yue; Zhou, Jicheng; Chen, Xu; Yu, Deqin; Zhu, Liang; Li, Shuzhuang

    2016-01-01

    Quercetin is an important dietary flavonoid present in fruits and vegetables and has attracted attention because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play important roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This study investigates the protective effect of quercetin on trauma-induced secondary cardiac injury and the mechanisms involved. Widely accepted nonlethal mechanical trauma models were established. In vivo, cardiomyocyte apoptosis and cardiac dysfunction in rats were assessed using TUNEL staining and a biological mechanic experiment system. In vitro, cell viability, tumour necrosis factor-α (TNF-α), reactive oxygen species (ROS) and [Ca(2+)]i of H9c2 cells were detected using an MTT assay, ELISA, and 2',7'-dichlorofluorescin diacetate and fluo-4 acetoxymethyl ester assays respectively. Quercetin pretreatment (20 mg/kg i.p.; 0.5 h before trauma) significantly improved posttraumatic cardiomyocyte apoptosis and cardiac dysfunction. Pretreatment with quercetin (20 μM; 24 h before trauma plasma addition) significantly attenuated trauma-induced viability decreases, TNF-α increases, ROS overproduction and [Ca(2+)]i overload in H9c2 cells. In conclusion, quercetin may reverse posttraumatic cardiac dysfunction by reducing cardiomyocyte apoptosis through the suppression of TNF-α increases, ROS overproduction and Ca(2+) overload in cardiomyocytes, representing a potential preventive approach for the treatment of secondary cardiac injury after mechanical trauma. PMID:27470932

  7. Acute kidney injury: current concepts and new insights

    PubMed Central

    Koza, Yavuzer

    2016-01-01

    Abstract: Background: Acute kidney injury, which was previously named as acute renal failure, is a complex clinical disorder and continues to be associated with poor outcomes. It is frequently seen in hospitalized patients, especially in critically ill patients. The primary causes of acute kidney injury are divided into three categories: prerenal, intrinsic renal and postrenal. The definition and staging of acute kidney injury are mainly based on the risk, injury, failure, loss, end-stage kidney disease (RIFLE) criteria and the acute kidney injury network (AKIN) criteria, which have previously been defined. However the clinical utility of these criteria is still uncertain. Several biomarkers such as Cystatin C and neutrophil gelatinase-associated lipocalin have been suggested for the diagnosis, severity classification and most importantly, the modification of outcome in acute kidney injury. Methods: Current literature on the definition, biomarkers, management and epidemiology of acute kidney injury was reviewed by searching keywords in Medline and PubMed databases. Results: The epidemiology, pathophysiology and diagnosis of acute kidney injury were discussed. The clinical implications of novel biomarkers and management of acute kidney injury were also discussed. Conclusions: The current definitions of acute kidney injury are based on the RIFLE, AKIN and KDIGO criteria. Although these criteria have been widely validated, some of limitations are still remain. Since acute kidney injury is common and harmful, all preventive measures should be taken to avoid its occurrence. Currently, there is no a definitive role for novel biomarkers. PMID:26804946

  8. Acute Kidney Injury in the Surgical Patient.

    PubMed

    Hobson, Charles; Singhania, Girish; Bihorac, Azra

    2015-10-01

    Perioperative acute kidney injury (AKI) is a common, morbid, and costly surgical complication. Current efforts to understand and manage AKI in surgical patients focus on prevention, mitigation of further injury when AKI has occurred, treatment of associated conditions, and facilitation of renal recovery. Lesser severity AKI is now understood to be much more common, and more morbid, than was previously thought. The ability to detect AKI within hours of onset would be helpful in protecting the kidney and in preserving renal function, and several imaging and biomarker modalities are currently being evaluated. PMID:26410139

  9. Clinical significance of lactate in acute cardiac patients

    PubMed Central

    Lazzeri, Chiara; Valente, Serafina; Chiostri, Marco; Gensini, Gian Franco

    2015-01-01

    Lactate, as a metabolite of easy and quick assessment, has been studied over time in critically ill patients in order to evaluate its prognostic ability. The present review is focused on the prognostic role of lactate levels in acute cardiac patients (that is with acute coronary syndrome, cardiogenic shock, cardiac arrest, non including post cardiac surgery patients). In patients with ST-elevation myocardial infarction treated with mechanical revascularization, hyperlactatemia identified a subset of patients at higher risk for early death and in-hospital complications, being strictly related mainly to hemodynamic derangement. The prognostic impact of hyperlactatemia on mortality has been documented in patients with cardiogenic shock and in those with cardiac arrest even if there is no cut-off value of lactate to be associated with worse outcome or to guide resuscitation or hemodynamic management. Therapeutic hypothermia seems to affect per se lactate values which have been shown to progressively decrease during hypothermia. The mechanism(s) accounting for lactate levels during hypothemia seem to be multiple ranging from the metabolic effects of reduced temperatures to the hemodynamic effects of hypothermia (i.e., reduced need of vasopressor agents). Serial lactate measurements over time, or lactate clearance, have been reported to be clinically more reliable than lactate absolute value also in acute cardiac patients. Despite differences in study design, timing of lactate measurements and type of acute cardiac conditions (i.e., cardiogenic shock, cardiac arrest, refractory cardiac arrest), available evidence strongly suggests that higher lactate levels can be observed on admission in non-survivors and that higher lactate clearance is associated with better outcome. PMID:26322188

  10. Renalase and Biomarkers of Contrast-Induced Acute Kidney Injury

    PubMed Central

    Wybraniec, Maciej T.; Mizia-Stec, Katarzyna

    2015-01-01

    Background Contrast-induced acute kidney injury (CI-AKI) remains one of the crucial issues related to the development of invasive cardiology. The massive use of contrast media exposes patients to a great risk of contrast-induced nephropathy and chronic kidney disease development, and increases morbidity and mortality rates. The serum creatinine concentration does not allow for a timely and accurate CI-AKI diagnosis; hence numerous other biomarkers of renal injury have been proposed. Renalase, a novel catecholamine-metabolizing amine oxidase, is synthesized mainly in proximal tubular cells and secreted into urine and blood. It is primarily engaged in the degradation of circulating catecholamines. Notwithstanding its key role in blood pressure regulation, renalase remains a potential CI-AKI biomarker, which was shown to be markedly downregulated in the aftermath of renal injury. In this sense, renalase appears to be the first CI-AKI marker revealing an actual loss of renal function and indicating disease severity. Summary The purpose of this review is to summarize the contemporary knowledge about the application of novel biomarkers of CI-AKI and to highlight the potential role of renalase as a functional marker of contrast-induced renal injury. Key Messages Renalase may constitute a missing biochemical link in the mutual interplay between kidney and cardiac pathology known as the cardiorenal syndrome. PMID:27194994

  11. Blunt Cardiac Injury in the Severely Injured – A Retrospective Multicentre Study

    PubMed Central

    Hanschen, Marc; Kanz, Karl-Georg; Kirchhoff, Chlodwig; Khalil, Philipe N.; Wierer, Matthias; van Griensven, Martijn; Laugwitz, Karl-Ludwig; Biberthaler, Peter; Lefering, Rolf; Huber-Wagner, Stefan

    2015-01-01

    Background Blunt cardiac injury is a rare trauma entity. Here, we sought to evaluate the relevance and prognostic significance of blunt cardiac injury in severely injured patients. Methods In a retrospective multicentre study, using data collected from 47,580 patients enrolled to TraumaRegister DGU (1993-2009), characteristics of trauma, prehospital / hospital trauma management, and outcome analysis were correlated to the severity of blunt cardiac injury. The severity of cardiac injury was assessed according to the abbreviated injury score (AIS score 1-6), the revised injury severity score (RISC) allowed comparison of expected outcome with injury severity-dependent outcome. N = 1.090 had blunt cardiac trauma (AIS 1-6) (2.3% of patients). Results Predictors of blunt cardiac injury could be identified. Sternal fractures indicate a high risk of the presence of blunt cardiac injury (AIS 0 [control]: 3.0%; AIS 1: 19.3%; AIS 2-6: 19.1%). The overall mortality rate was 13.9%, minor cardiac injury (AIS 1) and severe cardiac injury (AIS 2-6) are associated with higher rates. Severe blunt cardiac injury (AIS 4 and AIS 5-6) is associated with a higher mortality (OR 2.79 and 4.89, respectively) as compared to the predicted average mortality (OR 2.49) of the study collective. Conclusion Multiple injured patients with blunt cardiac trauma are at high risk to be underestimated. Careful evaluation of trauma patients is able to predict the presence of blunt cardiac injury. The severity of blunt cardiac injury needs to be stratified according to the AIS score, as the patients’ outcome is dependent on the severity of cardiac injury. PMID:26136126

  12. First aid for acute sports injuries.

    PubMed

    Bull, R C

    1987-09-01

    This article deals with management of acute sports injuries on the field or on the ice and in the dressing room or in the arena's first-aid room. Its most vital message is "Be prepared". A team approach and suitable ambulance and hospital back-up are mandatory. Individual management of a specific acute injury should be approached with a practice plan. Collars, splints, back board, doctor's bag, ambu bag, suture tray and emergency medications should be at hand. Care must be taken that no long-term harm befalls the player. The attending physician must be knowledgeable about preventive equipment and immediate institution of rehabilitation procedures, and must try to inform the coach or trainer and parent as to when the athlete can safely return to play. It is important that the athlete not return to play until he/she is 100% fit. PMID:21263977

  13. Sodium hypochlorite-induced acute kidney injury.

    PubMed

    Peck, Brandon W; Workeneh, Biruh; Kadikoy, Huseyin; Abdellatif, Abdul

    2014-03-01

    Sodium hypochlorite (bleach) is commonly used as an irrigant during dental procedures as well as a topical antiseptic agent. Although it is generally safe when applied topically, reports of accidental injection of sodium hypochlorite into tissue have been reported. Local necrosis, pain and nerve damage have been described as a result of exposure, but sodium hypo-chlorite has never been implicated as a cause of an acute kidney injury (AKI). In this report, we describe the first case of accidental sodium hypochlorite injection into the infraorbital tissue during a dental procedure that precipitated the AKI. We speculate that oxidative species induced by sodium hypochlorite caused AKI secondary to the renal tubular injury, causing mild acute tubular necrosis. PMID:24626008

  14. Analysis of 285 cardiac penetrating injuries in the Lebanon war.

    PubMed

    Zakharia, A T

    1987-01-01

    This study evaluates factors influencing survival in 285 battle cardiac injuries, treated in Lebanon from 1969 to 1982. Survival factors included age (mean 18 years), transportation lag (mean distance 2 miles), wounding agents (shrapnel, gunshot), hospital logistics, and early surgical treatment. The overall survival was 73% (208 patients) compared to 60% from World War II and 67% from recent civilian report. Treatment logistics included a specialized centre with ambulance radio communication. The state of shock at arrival influenced survival: 146 of 188 patients with mild shock survived (78%) with 61% (53 patients) survival in the profound shock group, treated similarly. The site of cardiac injury influenced outcome. Survival was best in the 9 patients with coronary vessel wounds (100%), atrial wounds 80% (56 survivors) but dropped to 46% (17 survivors) in left ventricular injury reflecting pump failure, and 51% (19 survivors) in multiple cardiac wounds. The causes of cardiac mortality and survivor follow-up were evaluated. The study indicates that despite predetermined factors overall survival is significantly improved by early transportation, precise logistics, and urgent surgery. PMID:3597530

  15. Ischaemic Markers in Acute Hepatic Injury

    PubMed Central

    Jena, Sushanta Kumar; Nanda, Rachita; Mangaraj, Manaswini; Nayak, Parsuram

    2016-01-01

    Introduction Hepatic injury of varied aetiology may progress to Acute Liver Failure (ALF). Compromised microcirculation is thought to be a deciding factor of hepatic hypoxia may be involved in disease progression that needs early detection. Ischaemia markers like serum Ischaemia- modified albumin (IMA), ALT-LDH ratio and ALT-LDH index have been suggested for its detection at early stage. Aim To find out the association of Ischaemia markers like serum IMA, ALT-LDH ratio and ALT-LDH index in acute hepatic injury cases. Materials and Methods Forty one diagnosed acute liver injury cases of varied aetiology admitted in Department of Medicine, and Gastroenterology of SCB Medical College, Cuttack were enrolled in the study along with 30 age and sex matched healthy controls. Blood collected at time of admission and at time of discharge (1st day and 7th day) were evaluated for FPG, RFT, LFT, Serum Albumin along with serum LDH, IMA, PT-INR and platelet count. Result Serum bilirubin, hepatic enzymes, IMA, PT-INR was more markedly raised in cases than controls on the 1st day of admission. ALT-LDH ratio and index were significantly low in complicated cases. However, on responding to treatment the ALT-LDH index on 7th day registered a rise in comparison to the 1st day, while serum IMA revealed an insignificant decline showing improvement in hepatic hypoxia. ALT-LDH ratio remains more or less same on response to treatment. Conclusion Serum IMA and ALT-LDH Index reveals association with disease process in Acute Hepatic Injury cases both clinically and biochemically and can be used as supportive parameters for the diagnosis of disease process. PMID:27190791

  16. Dengue-associated acute kidney injury

    PubMed Central

    Oliveira, João Fernando Picollo; Burdmann, Emmanuel A.

    2015-01-01

    Dengue is presently the most relevant viral infection transmitted by a mosquito bite that represents a major threat to public health worldwide. Acute kidney injury (AKI) is a serious and potentially lethal complication of this disease, and the actual incidence is unknown. In this review, we will assess the most relevant epidemiological and clinical data regarding dengue and the available evidence on the frequency, etiopathogenesis, outcomes and treatment of dengue-associated AKI. PMID:26613023

  17. Pros and cons of recruitment maneuvers in acute lung injury and acute respiratory distress syndrome.

    PubMed

    Rocco, Patricia R M; Pelosi, Paolo; de Abreu, Marcelo Gama

    2010-08-01

    In patients with acute lung injury and acute respiratory distress syndrome, a protective mechanical ventilation strategy characterized by low tidal volumes has been associated with reduced mortality. However, such a strategy may result in alveolar collapse, leading to cyclic opening and closing of atelectatic alveoli and distal airways. Thus, recruitment maneuvers (RMs) have been used to open up collapsed lungs, while adequate positive end-expiratory pressure (PEEP) levels may counteract alveolar derecruitment during low tidal volume ventilation, improving respiratory function and minimizing ventilator-associated lung injury. Nevertheless, considerable uncertainty remains regarding the appropriateness of RMs. The most commonly used RM is conventional sustained inflation, associated with respiratory and cardiovascular side effects, which may be minimized by newly proposed strategies: prolonged or incremental PEEP elevation; pressure-controlled ventilation with fixed PEEP and increased driving pressure; pressure-controlled ventilation applied with escalating PEEP and constant driving pressure; and long and slow increase in pressure. The efficiency of RMs may be affected by different factors, including the nature and extent of lung injury, capability of increasing inspiratory transpulmonary pressures, patient positioning and cardiac preload. Current evidence suggests that RMs can be used before setting PEEP, after ventilator circuit disconnection or as a rescue maneuver to overcome severe hypoxemia; however, their routine use does not seem to be justified at present. The development of new lung recruitment strategies that have fewer hemodynamic and biological effects on the lungs, as well as randomized clinical trials analyzing the impact of RMs on morbidity and mortality of acute lung injury/acute respiratory distress syndrome patients, are warranted. PMID:20658909

  18. Modulation of acute lung injury by integrins.

    PubMed

    Sheppard, Dean

    2012-07-01

    Acute lung injury is a common disorder with a high mortality rate, but previous efforts to develop drugs to treat this disorder have been unsuccessful. In an effort to develop more effective treatments, we have been studying the molecular pathways that regulate the dysfunction of alveolar epithelial cells and endothelial cells that serve as a final common pathway leading to alveolar flooding. Using integrin subunit knockout mice and antibodies we developed by immunizing these mice, we have found important and distinct roles for the αvβ6 integrin on epithelial cells and the αvβ5 integrin on endothelial cells in mediating increases in alveolar permeability in multiple models of acute lung injury. We have also found therapeutic effects of αvβ5 inhibition in two models of septic shock even when the antibody was administered to animals that were obviously ill. These results identify αvβ6 and αvβ5 as promising therapeutic targets for the treatment of acute lung injury and septic shock. PMID:22802286

  19. Pharmacologic therapeutics for cardiac reperfusion injury.

    PubMed

    Gross, Eric R; Gross, Garrett J

    2007-09-01

    Cardiovascular disease is the leading cause of morbidity and mortality in industrial societies, with myocardial infarction as the primary assassin. Pharmacologic agents, including the myocardial cell membrane receptor agonists adenosine, bradykinin/angiotensin-converting enzyme inhibitors, opioids and erythropoietin or the mixed cell membrane and intracellular agonists, glucose insulin potassium, and volatile anesthetics, either clinically or experimentally reduce the extent of myocardial injury when administered just prior to reperfusion. Agents that specifically target proteins, transcription factors or ion channels, including PKC agonists/antagonists, PPAR, Phosphodiesterase-5 inhibitors, 3-Hydroxy-3-methyl glutaryl coenzyme A reductase and the ATP-dependent potassium channel are also promising. However, no agent has been specifically approved to reduce reperfusion injury clinically. In this review, we will discuss the advantages and limitations of agents to combat reperfusion injury, their market development status and findings reported in both clinical and preclinical studies. The molecular pathways activated by these agents that preserve myocardium from reperfusion injury, which appear to commonly involve glycogen synthase kinase 3beta and mitochondrial permeability transition pore inhibition, are also described. PMID:17874967

  20. Acute kidney injury due to rhabdomyolysis.

    PubMed

    Lima, Rafael Siqueira Athayde; da Silva Junior, Geraldo Bezerra; Liborio, Alexandre Braga; Daher, Elizabeth De Francesco

    2008-09-01

    Rhabdomyolysis is a clinical and biochemical syndrome that occurs when skeletal muscle cells disrupt and release creatine phosphokinase (CK), lactate dehydrogenase (LDH), and myoglobin into the interstitial space and plasma. The main causes of rhabdomyolysis include direct muscular injury, strenuous exercise, drugs, toxins, infections, hyperthermia, seizures, meta-bolic and/or electrolyte abnormalities, and endocrinopathies. Acute kidney injury (AKI) occurs in 33-50% of patients with rhabdomyolysis. The main pathophysiological mechanisms of renal injury are renal vasoconstriction, intraluminal cast formation, and direct myoglobin toxicity. Rhabdo-myolysis can be asymptomatic, present with mild symptoms such as elevation of muscular en-zymes, or manifest as a severe syndrome with AKI and high mortality. Serum CK five times higher than the normal value usually confirms rhabdomyolysis. Early diagnosis and saline volume expansion may reduce the risk of AKI. Further studies are necessary to establish the importance of bicarbonate and mannitol in the prevention of AKI due to rhabdomyolysis. PMID:18711286

  1. Antifibrinolytic drugs for acute traumatic injury.

    PubMed

    McCaul, Michael; Kredo, Tamara

    2016-08-01

    In South Africa, trauma is a major concern, with violence and road traffic accidents being the fifth and seventh leading causes of death, respectively. Antifibrinolytic agents have been used in trauma and major surgery to prevent fibrinolysis and reduce blood loss. We highlight an updated Cochrane review investigating the effect of antifibrinolytic drugs in patients with acute traumatic injury. The review authorsconducted comprehensive literature searches in January 2015 with regard to all randomised controlled trials comparing antifibrinolytic agents after acute traumatic injury. Three randomised controlled trials, of which two (n=20 451) assessed the effect of tranexamic acid (TXA), were included. The authors concluded that TXA safely reduces mortality in trauma with bleeding without increasing the risk ofadverse events. TXA should be administered as early as possible, and within 3 hours of injury. There is still uncertainty with regard to the effect of TXA on patients with traumatic brain injury; however, ongoing randomised controlled trials should shed more light on this. PMID:27499400

  2. Interleukin-1 and acute brain injury

    PubMed Central

    Murray, Katie N.; Parry-Jones, Adrian R.; Allan, Stuart M.

    2015-01-01

    Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection) have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL)-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review. PMID:25705177

  3. Role of Innate and Adaptive Immunity in Cardiac Injury and Repair

    PubMed Central

    Epelman, Slava; Liu, Peter P.; Mann, Douglas L.

    2015-01-01

    Despite significant advances, cardiovascular disease is the leading cause of world-wide mortality, highlighting an important yet unmet clinical need. Understanding the pathophysiological basis underlying cardiovascular tissue injury and repair in therefore of prime importance. Following cardiac tissue injury, the immune system plays an important and complex role throughout the acute inflammatory response and regenerative response. This review will summarize the role of the immune system in cardiovascular disease, and focus on the idea that the immune system evolved to promote tissue homeostasis following tissue injury and/or infection, and that the inherent cost of this evolutionary development is unwanted inflammatory mediated damage. While inflammation induced tissue damage is of little evolutionary consequence in organisms that have limited life spans, as will be discussed below, inflammation plays a major role in the development of cardiovascular disease worldwide in humans. PMID:25614321

  4. Epidemiology of Overuse and Acute Injuries Among Competitive Collegiate Athletes

    PubMed Central

    Yang, Jingzhen; Tibbetts, Abigail S.; Covassin, Tracey; Cheng, Gang; Nayar, Saloni; Heiden, Erin

    2012-01-01

    Context: Although overuse injuries are gaining attention, epidemiologic studies on overuse injuries in male and female collegiate athletes are lacking. (70.7%) acute injuries were reported. The overall injury rate was Objective: To report the epidemiology of overuse injuries sustained by collegiate athletes and to compare the rates of overuse and acute injuries. Design: Descriptive epidemiology study. Setting: A National Collegiate Athletic Association Division I university. Patients or Other Participants: A total of 1317 reported injuries sustained by 573 male and female athletes in 16 collegiate sports teams during the 2005–2008 seasons. Main Outcome Measure(s): The injury and athlete-exposure (AE) data were obtained from the Sports Injury Monitoring System. An injury was coded as either overuse or acute based on the nature of injury. Injury rate was calculated as the total number of overuse (or acute) injuries during the study period divided by the total number of AEs during the same period. Results: A total of 386 (29.3%) overuse injuries and 931 63.1 per 10000 AEs. The rate ratio (RR) of acute versus overuse injuries was 2.34 (95% confidence interval [CI] = 2.05, 2.67). Football had the highest RR (RR = 8.35, 95% CI = 5.38, 12.97), and women's rowing had the lowest (RR = 0.75, 95% CI = 0.51, 1.10). Men had a higher acute injury rate than women (49.8 versus 38.6 per 10000 AEs). Female athletes had a higher rate of overuse injury than male athletes (24.6 versus 13.2 per 10000 AEs). More than half of the overuse injuries (50.8%) resulted in no time loss from sport. Conclusions: Additional studies are needed to examine why female athletes are at greater risk for overuse injuries and identify the best practices for prevention and rehabilitation of overuse injuries. PMID:22488286

  5. Novel Biomarkers of Acute Kidney Injury After Contrast Coronary Angiography.

    PubMed

    Connolly, M; McEneaney, D; Menown, Ian; Morgan, N; Harbinson, M

    2015-01-01

    Acute kidney injury (AKI), defined as a rise in serum creatinine of greater than 25% from baseline measured at 48 hours after renal insult, may follow iodinated contrast coronary angiography. Termed contrast-induced nephropathy, it can result in considerable morbidity and mortality. Measurement of serum creatinine as a functional biomarker of glomerular filtration rate is widely used for detection of AKI, but it lacks sensitivity for the early diagnosis of AKI (typically rising 24 hours after functional loss) and, as a solely functional marker of glomerular filtration rate, is unable to differentiate among the various causes of AKI. These intrinsic limitations to creatinine measurement and the recognition that improved clinical outcomes are linked to a more timely diagnosis of AKI, has led investigators to search for novel biomarkers of "early" kidney injury. Several studies have investigated the utility of renal injury biomarkers in a variety of clinical settings including angiography/percutaneous coronary intervention, coronary artery bypass graft surgery, sepsis in intensive care patients, and pediatric cardiac surgery. In this article, we discuss the use of iodinated contrast for coronary procedures and the risk factors for contrast-induced nephropathy, followed by a review the potential diagnostic utility of several novel biomarkers of early AKI in the clinical settings of coronary angiography/percutaneous coronary intervention. In particular, we discuss neutrophil gelatinase associated lipocalin in depth. If validated, such biomarkers would facilitate earlier AKI diagnosis and improve clinical outcomes. PMID:25699983

  6. Inflammatory sequences in acute pulmonary radiation injury.

    PubMed Central

    Slauson, D. O.; Hahn, F. F.; Benjamin, S. A.; Chiffelle, T. L.; Jones, R. K.

    1976-01-01

    The histopathologic events in the developing acute pulmonary inflammatory reaction to inhaled particles of Yttrium 90 are detailed. In animals that died or were sacrificed during the first year after inhalation exposure, microscopic findings of acute inflammation predominated and included vascular congestion; stasis, focal hemorrhage; edema; various inflammatory cell infiltrates; cytolysis and desquamation of bronchiolar and alveolar epithelium followed by regeneration; vascular injury and repair; and the eventual development of pulmonary fibrosis. Accumulation of alveolar fibrin deposits was an additional characteristic, though not a constant feature of the early stages of radiation pneumonitis. In addition to the direct effects of radiation on pulmonary cell populations, the histopathologic findings were suggestive of diverse activation of various cellular and humoral mediation systems in their pathogenesis. The potential interrelationships of systems responsible for increased vascular permeability, coagulation and fibrinolysis, chemotaxis, and direct cellular injury were discussed and related to the pathogenesis of the microscopic findings characteristic of early pulmonary radiation injury. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:1258976

  7. Acute Kidney Injury in Patients with Cirrhosis

    PubMed Central

    Russ, Kirk B.; Stevens, Todd M; Singal, Ashwani K.

    2015-01-01

    Acute kidney injury (AKI) occurs commonly in patients with advanced cirrhosis and negatively impacts pre- and post-transplant outcomes. Physiologic changes that occur in patients with decompensated cirrhosis with ascites, place these patients at high risk of AKI. The most common causes of AKI in cirrhosis include prerenal injury, acute tubular necrosis (ATN), and the hepatorenal syndrome (HRS), accounting for more than 80% of AKI in this population. Distinguishing between these causes is particularly important for prognostication and treatment. Treatment of Type 1 HRS with vasoconstrictors and albumin improves short term survival and renal function in some patients while awaiting liver transplantation. Patients with HRS who fail to respond to medical therapy or those with severe renal failure of other etiology may require renal replacement therapy. Simultaneous liver kidney transplant (SLK) is needed in many of these patients to improve their post-transplant outcomes. However, the criteria to select patients who would benefit from SLK transplantation are based on consensus and lack strong evidence to support them. In this regard, novel serum and/or urinary biomarkers such as neutrophil gelatinase-associated lipocalin, interleukins-6 and 18, kidney injury molecule-1, fatty acid binding protein, and endothelin-1 are emerging with a potential for accurately differentiating common causes of AKI. Prospective studies are needed on the use of these biomarkers to predict accurately renal function recovery after liver transplantation alone in order to optimize personalized use of SLK. PMID:26623266

  8. [Drug-induced acute kidney injury].

    PubMed

    Derungs, Adrian

    2015-12-01

    Due to their physiological function, the kidneys are exposed to high concentrations of numerous drugs and their metabolites, making them vulnerable to drug-related injuries. This article provides an overview of the pathophysiological mechanisms involved in nephrotoxicity, the most common nephrotoxic drugs, and the risk factors for the occurrence of drug-induced acute kidney injuries. NSAIDs, diuretics, ACE inhibitors, and angiotensin II receptor blockers (ARBs} are the most frequent prerenal causes of an acute elevation in creatinine levels. Primary vascular damage arises from thrombotic microangiopathy (e. g. due to cic/osporin, tacrolimus, muromonab-CD3, mitomycin C, quinine, ticlopidine, clopidogrel}. Anticoagulants and thrombolytic medications lead to secondary blood vessel damage by cholesterol emboli, embolism of thrombus material into the periphery or bleeding. Tubulopathies can be observed on treatment with ifosfamide and cisplatin (rarely with cyclophosphamide or carboplatin), aminoglycosides, vancomycin, and radiocontrast agents. Immunological mechanisms underlie interstitial nephritides, which are induced by drugs in about 85% of cases. In drug-induced glomerulopathies;- renal biopsy allows closer identification of the triggering medication. Drug-induced systemic lupus erythematosus (SLE} represents a special form of immune complex glomerulonephritis and can be triggered by procainamide, hydralazine, isoniazid, methyldopa, quinidine, chlorpromazine, and propylthiouracil. Crystal-induced kidney injury is caused by precipitation of drugs (e. g. aciclovir, sulfonamide antibiotics, methotrexate, indinavir) in the renal tubules and the urine-conducting organs with consecutive obstruction thereof. PMID:26654816

  9. THE 5-LIPOXYGENASE PATHWAY IS REQUIRED FOR ACUTE LUNG INJURY FOLLOWING HEMORRHAGIC SHOCK

    PubMed Central

    Eun, John C.; Moore, Ernest E.; Mauchley, David C.; Johnson, Chris A.; Meng, Xianzhong; Banerjee, Anirban; Wohlauer, Max V.; Zarini, Simona; Gijón, Miguel A.; Murphy, Robert C.

    2012-01-01

    The cellular and biochemical mechanisms leading to acute lung injury and subsequent multiple organ failure are only partially understood. In order to study the potential role of eicosanoids, particularly leukotrienes, as possible mediators of acute lung injury, we used a murine experimental model of acute lung injury induced by hemorrhagic shock after blood removal via cardiac puncture. Neutrophil sequestration as shown by immunofluorescence, and protein leakage into the alveolar space, were measured as markers of injury. We used liquid chromatography coupled to tandem mass spectrometry to unequivocally identify several eicosanoids in the bronchoalveolar lavage fluid of experimental animals. MK886, a specific inhibitor of the 5-lipoxygenase pathway, as well as transgenic mice deficient in 5-lipoxygenase, were used to determine the role of this enzymatic pathway in this model. Leukotriene B4 and leukotriene C4 were consistently elevated in shock-treated mice compared to sham-treated mice. MK886 attenuated neutrophil infiltration and protein extravasation induced by hemorrhagic shock. 5-lipoxygenase-deficient mice showed reduced neutrophil infiltration and protein extravasation after shock treatment, indicating greatly reduced lung injury. These results support the hypothesis that 5-lipoxygenase, most likely through the generation of leukotrienes, plays an important role in the pathogenesis of acute lung injury induced by hemorrhagic shock in mice. This pathway could represent a new target for pharmacological intervention to reduce lung damage following severe primary injury. PMID:22392149

  10. Monitor lizard bite-induced acute kidney injury--a case report.

    PubMed

    Vikrant, Sanjay; Verma, Balbir Singh

    2014-04-01

    Envenomations by venomous lizards are rare. Monitor lizard bite-induced acute kidney injury (AKI) is a previously unreported complication in humans. A 55-year-old female was bitten on her right leg during farming activity by a monitor lizard (Varanus bengalensis). The patient experienced severe local pain and bleeding from the wound, coagulopathy, hemolysis, rhabdomyolysis, sepsis, and AKI. Patient was treated with supportive care and peritoneal dialysis but succumbed to a sudden cardiac arrest. Post mortem kidney biopsy revealed pigment induced-acute tubular injury. AKI after monitor lizard envenomation is caused by acute tubular injury in the setting of intravascular hemolysis, rhabdomyolysis and sepsis. Coagulopathy and direct nephrotoxicity may be the other contributory factors in causing AKI. PMID:24341640

  11. Circulating Pneumolysin Is a Potent Inducer of Cardiac Injury during Pneumococcal Infection.

    PubMed

    Alhamdi, Yasir; Neill, Daniel R; Abrams, Simon T; Malak, Hesham A; Yahya, Reham; Barrett-Jolley, Richard; Wang, Guozheng; Kadioglu, Aras; Toh, Cheng-Hock

    2015-05-01

    Streptococcus pneumoniae accounts for more deaths worldwide than any other single pathogen through diverse disease manifestations including pneumonia, sepsis and meningitis. Life-threatening acute cardiac complications are more common in pneumococcal infection compared to other bacterial infections. Distinctively, these arise despite effective antibiotic therapy. Here, we describe a novel mechanism of myocardial injury, which is triggered and sustained by circulating pneumolysin (PLY). Using a mouse model of invasive pneumococcal disease (IPD), we demonstrate that wild type PLY-expressing pneumococci but not PLY-deficient mutants induced elevation of circulating cardiac troponins (cTns), well-recognized biomarkers of cardiac injury. Furthermore, elevated cTn levels linearly correlated with pneumococcal blood counts (r=0.688, p=0.001) and levels were significantly higher in non-surviving than in surviving mice. These cTn levels were significantly reduced by administration of PLY-sequestering liposomes. Intravenous injection of purified PLY, but not a non-pore forming mutant (PdB), induced substantial increase in cardiac troponins to suggest that the pore-forming activity of circulating PLY is essential for myocardial injury in vivo. Purified PLY and PLY-expressing pneumococci also caused myocardial inflammatory changes but apoptosis was not detected. Exposure of cultured cardiomyocytes to PLY-expressing pneumococci caused dose-dependent cardiomyocyte contractile dysfunction and death, which was exacerbated by further PLY release following antibiotic treatment. We found that high PLY doses induced extensive cardiomyocyte lysis, but more interestingly, sub-lytic PLY concentrations triggered profound calcium influx and overload with subsequent membrane depolarization and progressive reduction in intracellular calcium transient amplitude, a key determinant of contractile force. This was coupled to activation of signalling pathways commonly associated with cardiac

  12. Approaches to Improving Cardiac Structure and Function During and After an Acute Myocardial Infarction: Acute and Chronic Phases.

    PubMed

    Kloner, Robert A; Dai, Wangde; Hale, Sharon L; Shi, Jianru

    2016-07-01

    While progress has been made in improving survival following myocardial infarction, this injury remains a major source of mortality and morbidity despite modern reperfusion therapy. While one approach has been to develop therapies to reduce lethal myocardial cell reperfusion injury, this concept has not translated to the clinics, and several recent negative clinical trials raise the question of whether reperfusion injury is important in humans undergoing reperfusion for acute ST segment elevation myocardial infarction. Therapy aimed at reducing myocardial cell death while the myocytes are still ischemic is more likely to further reduce myocardial infarct size. Developing new therapies to further reduce left ventricular remodeling after the acute event is another approach to preserving structure and function of the heart after infarction. Such therapy may include chronic administration of pharmacologic agents and/or therapies developed from the field of regenerative cardiology, including cellular or non-cellular materials such as extracellular matrix. The optimal therapy will be to administer agents that both reduce myocardial infarct size in the acute phase of infarction as well as reduce adverse left ventricular remodeling during the chronic or healing phase of myocardial infarction. Such a dual approach will help optimize the preservation of both cardiac structure and function. PMID:26612091

  13. CARDIAC INJURY FROM LONG TERM EPISODIC EXPOSURE TO PARTICULATE MATTER (PM): SOLUBLE COMPONENTS OR SOLID PARTICLES?

    EPA Science Inventory

    Long-term exposure to PM has been associated with cardiac injury in rats. The purpose of this study was to investigate if cardiac injury was due to soluble metals (i.e., zinc), insoluble PM, or pulmonary injury/inflammation. Male Wistar Kyoto rats (n=8) were exposed intratracheal...

  14. Clinical significance of automatic warning function of cardiac remote monitoring systems in preventing acute cardiac episodes

    PubMed Central

    Chen, Shou-Qiang; Xing, Shan-Shan; Gao, Hai-Qing

    2014-01-01

    Objective: In addition to ambulatory Holter electrocardiographic recording and transtelephonic electrocardiographic monitoring (TTM), a cardiac remote monitoring system can provide an automatic warning function through the general packet radio service (GPRS) network, enabling earlier diagnosis, treatment and improved outcome of cardiac diseases. The purpose of this study was to estimate its clinical significance in preventing acute cardiac episodes. Methods: Using 2 leads (V1 and V5 leads) and the automatic warning mode, 7160 patients were tested with a cardiac remote monitoring system from October 2004 to September 2007. If malignant arrhythmias or obvious ST-T changes appeared in the electrocardiogram records was automatically transferred to the monitoring center, the patient and his family members were informed, and the corresponding precautionary or therapeutic measures were implemented immediately. Results: In our study, 274 cases of malignant arrhythmia, including sinus standstill and ventricular tachycardia, and 43 cases of obvious ST-segment elevation were detected and treated. Because of early detection, there was no death or deformity. Conclusions: A cardiac remote monitoring system providing an automatic warning function can play an important role in preventing acute cardiac episodes. PMID:25674124

  15. Acute kidney injury in patients with acute coronary syndromes.

    PubMed

    Marenzi, Giancarlo; Cosentino, Nicola; Bartorelli, Antonio L

    2015-11-01

    Acute kidney injury (AKI) is increasingly being seen in patients with acute coronary syndromes (ACSs). This condition has a complex pathogenesis, an incidence that can reach 30% and it is associated with higher short-term and long-term morbidity and mortality. Nevertheless, AKI is still characterised by lack of a single accepted definition, unclear pathophysiology understanding and insensitive diagnostic tools that make its detection difficult, particularly in the setting of ACS. Recent data suggested that patients with AKI during ACS, even those in whom renal function seems to fully recover, face an increased, persisting risk of future AKI and may develop chronic kidney disease. Thus, in these patients, nephrology follow-up, after hospital discharge, and secondary preventive measures should possibly be implemented. In this review, we aim at providing a framework of knowledge to increase cardiologists' awareness of AKI, with the goal of improving the outcome of patients with ACS. PMID:26243789

  16. Acute kidney injury: A rare cause.

    PubMed

    Mendonca, Satish; Barki, Satish; Mishra, Mayank; Kumar, R S V; Gupta, Devika; Gupta, Pooja

    2015-09-01

    We present a young lady who consumed hair dye, which contained paraphenylene diamine (PPD), as a means of deliberate self-harm. This resulted in severe angio-neurotic edema for which she had to be ventilated, and thereafter developed rhabdomyolysis leading to acute kidney injury (AKI). The unusual aspect was that the patient continued to have flaccid quadriparesis and inability to regain kidney function. Renal biopsy performed 10 weeks after the dye consumption revealed severe acute tubular necrosis with myoglobin pigment casts. This suggests that PPD has a long-term effect leading to ongoing myoglobinuria, causing flaccid paralysis to persist and preventing the recovery of AKI. In such instances, timely treatment to prevent AKI in the form alkalinization of urine should be initiated promptly. Secondly, because PPD is a nondialyzable toxin, and its long-term effect necessitates its speedy removal, hemoperfusion might be helpful and is worth considering. PMID:26354573

  17. Perspectives on the value of biomarkers in acute cardiac care and implications for strategic management.

    PubMed

    Kossaify, Antoine; Garcia, Annie; Succar, Sami; Ibrahim, Antoine; Moussallem, Nicolas; Kossaify, Mikhael; Grollier, Gilles

    2013-01-01

    Biomarkers in acute cardiac care are gaining increasing interest given their clinical benefits. This study is a review of the major conditions in acute cardiac care, with a focus on biomarkers for diagnostic and prognostic assessment. Through a PubMed search, 110 relevant articles were selected. The most commonly used cardiac biomarkers (cardiac troponin, natriuretic peptides, and C-reactive protein) are presented first, followed by a description of variable acute cardiac conditions with their relevant biomarkers. In addition to the conventional use of natriuretic peptides, cardiac troponin, and C-reactive protein, other biomarkers are outlined in variable critical conditions that may be related to acute cardiac illness. These include ST2 and chromogranin A in acute dyspnea and acute heart failure, matrix metalloproteinase in acute chest pain, heart-type fatty acid binding protein in acute coronary syndrome, CD40 ligand and interleukin-6 in acute myocardial infarction, blood ammonia and lactate in cardiac arrest, as well as tumor necrosis factor-alpha in atrial fibrillation. Endothelial dysfunction, oxidative stress and inflammation are involved in the physiopathology of most cardiac diseases, whether acute or chronic. In summary, natriuretic peptides, cardiac troponin, C-reactive protein are currently the most relevant biomarkers in acute cardiac care. Point-of-care testing and multi-markers use are essential for prompt diagnostic approach and tailored strategic management. PMID:24046510

  18. Clinical Scenarios in Acute Kidney Injury: Parenchymal Acute Kidney Injury-Tubulo-Interstitial Diseases.

    PubMed

    Meola, Mario; Samoni, Sara; Petrucci, Ilaria; Ronco, Claudio

    2016-01-01

    Acute tubular necrosis (ATN) is the most common type of acute kidney injury (AKI) related to parenchymal damage (90% of cases). It may be due to a direct kidney injury, such as sepsis, drugs, toxins, contrast media, hemoglobinuria and myoglobinuria, or it may be the consequence of a prolonged systemic ischemic injury. Conventional ultrasound (US) shows enlarged kidneys with hypoechoic pyramids. Increased volume is largely sustained by the increase of anteroposterior diameter, while longitudinal axis usually maintains its normal length. Despite the role of color Doppler in AKI still being debated, many studies demonstrate that renal resistive indexes (RIs) vary on the basis of primary disease. Moreover, several studies assessed that higher RI values are predictive of persistent AKI. Nevertheless, due to the marked heterogeneity among the studies, further investigations focused on timing of RI measurement and test performances are needed. Acute interstitial nephritis is also a frequent cause of AKI, mainly due to non-steroidal anti-inflammatory drugs and antibiotics administration. The development of acute interstitial nephritis is due to an immunological reaction against nephritogenic exogenous antigens, processed by tubular cells. In acute interstitial nephritis, as well as in ATN, conventional US does not allow a definitive diagnosis. Kidneys appear enlarged and widely hyperechoic due to interstitial edema and inflammatory infiltration. Also, in this condition, hemodynamic changes are closely correlated to the severity and the progression of the anatomical damage. PMID:27169885

  19. Thaliporphine derivative improves acute lung injury after traumatic brain injury.

    PubMed

    Chen, Gunng-Shinng; Huang, Kuo-Feng; Huang, Chien-Chu; Wang, Jia-Yi

    2015-01-01

    Acute lung injury (ALI) occurs frequently in patients with severe traumatic brain injury (TBI) and is associated with a poor clinical outcome. Aquaporins (AQPs), particularly AQP1 and AQP4, maintain water balances between the epithelial and microvascular domains of the lung. Since pulmonary edema (PE) usually occurs in the TBI-induced ALI patients, we investigated the effects of a thaliporphine derivative, TM-1, on the expression of AQPs and histological outcomes in the lung following TBI in rats. TM-1 administered (10 mg/kg, intraperitoneal injection) at 3 or 4 h after TBI significantly reduced the elevated mRNA expression and protein levels of AQP1 and AQP4 and diminished the wet/dry weight ratio, which reflects PE, in the lung at 8 and 24 h after TBI. Postinjury TM-1 administration also improved histopathological changes at 8 and 24 h after TBI. PE was accompanied with tissue pathological changes because a positive correlation between the lung injury score and the wet/dry weight ratio in the same animal was observed. Postinjury administration of TM-1 improved ALI and reduced PE at 8 and 24 h following TBI. The pulmonary-protective effect of TM-1 may be attributed to, at least in part, downregulation of AQP1 and AQP4 expression after TBI. PMID:25705683

  20. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury

    PubMed Central

    Di Siena, S; Gimmelli, R; Nori, S L; Barbagallo, F; Campolo, F; Dolci, S; Rossi, P; Venneri, M A; Giannetta, E; Gianfrilli, D; Feigenbaum, L; Lenzi, A; Naro, F; Cianflone, E; Mancuso, T; Torella, D; Isidori, A M; Pellegrini, M

    2016-01-01

    The role of endogenous c-Kit receptor activation on cardiac cell homeostasis and repair remains largely unexplored. Transgenic mice carrying an activating point mutation (TgD814Y) in the kinase domain of the c-Kit gene were generated. c-KitTgD814Y receptor was expressed in the heart during embryonic development and postnatal life, in a similar timing and expression pattern to that of the endogenous gene, but not in the hematopoietic compartment allowing the study of a cardiac-specific phenotype. c-KitTgD814Y mutation produced a constitutive active c-Kit receptor in cardiac tissue and cells from transgenic mice as demonstrated by the increased phosphorylation of ERK1/2 and AKT, which are the main downstream molecular effectors of c-Kit receptor signaling. In adult transgenic hearts, cardiac morphology, size and total c-Kit+ cardiac cell number was not different compared with wt mice. However, when c-KitTgD814Y mice were subjected to transmural necrotic heart damage by cryoinjury (CI), all transgenic survived, compared with half of wt mice. In the sub-acute phase after CI, transgenic and wt mice showed similar heart damage. However, 9 days after CI, transgenic mice exhibited an increased number of c-Kit+CD31+ endothelial progenitor cells surrounding the necrotic area. At later follow-up, a consistent reduction of fibrotic area, increased capillary density and increased cardiomyocyte replenishment rate (as established by BrdU incorporation) were observed in transgenic compared with wt mice. Consistently, CD45−c-Kit+ cardiac stem cells isolated from transgenic c-KitTgD814Y mice showed an enhanced endothelial and cardiomyocyte differentiation potential compared with cells isolated from the wt. Constitutive activation of c-Kit receptor in mice is associated with an increased cardiac myogenic and vasculogenic reparative potential after injury, with a significant improvement of survival. PMID:27468693

  1. Cardiac myosin-binding protein C: a potential early biomarker of myocardial injury.

    PubMed

    Baker, James O; Tyther, Raymond; Liebetrau, Christoph; Clark, James; Howarth, Robert; Patterson, Tiffany; Möllmann, Helge; Nef, Holger; Sicard, Pierre; Kailey, Balrik; Devaraj, Renuka; Redwood, Simon R; Kunst, Gudrun; Weber, Ekkehard; Marber, Michael S

    2015-05-01

    Cardiac troponins are released and cleared slowly after myocardial injury, complicating the diagnosis of early, and recurrent, acute myocardial infarction. Cardiac myosin-binding protein C (cMyC) is a similarly cardiac-restricted protein that may have different release/clearance kinetics. Using novel antibodies raised against the cardiac-specific N-terminus of cMyC, we used confocal microscopy, immunoblotting and immunoassay to document its location and release. In rodents, we demonstrate rapid release of cMyC using in vitro and in vivo models of acute myocardial infarction. In patients, with ST elevation myocardial infarction (STEMI, n = 20), undergoing therapeutic ablation of septal hypertrophy (TASH, n = 20) or having coronary artery bypass surgery (CABG, n = 20), serum was collected prospectively and frequently. cMyC appears in the serum as full-length and fragmented protein. Compared to cTnT measured using a contemporary high-sensitivity commercial assay, cMyC peaks earlier (STEMI, 9.3 ± 3.1 vs 11.8 ± 3.4 h, P < 0.007; TASH, 9.7 ± 1.4 vs 21.6 ± 1.4 h, P < 0.0001), accumulates more rapidly (during first 4 h after TASH, 25.8 ± 1.9 vs 4.0 ± 0.4 ng/L/min, P < 0.0001) and disappears more rapidly (post-CABG, decay half-time 5.5 ± 0.8 vs 22 ± 5 h, P < 0.0001). Our results demonstrate that following defined myocardial injury, the rise and fall in the serum of cMyC is more rapid than that of cTnT. We speculate that these characteristics could enable earlier diagnosis of myocardial infarction and reinfarction in suspected non-STEMI, a population not included in this early translational study. PMID:25837837

  2. Acute complications of spinal cord injuries.

    PubMed

    Hagen, Ellen Merete

    2015-01-18

    The aim of this paper is to give an overview of acute complications of spinal cord injury (SCI). Along with motor and sensory deficits, instabilities of the cardiovascular, thermoregulatory and broncho-pulmonary system are common after a SCI. Disturbances of the urinary and gastrointestinal systems are typical as well as sexual dysfunction. Frequent complications of cervical and high thoracic SCI are neurogenic shock, bradyarrhythmias, hypotension, ectopic beats, abnormal temperature control and disturbance of sweating, vasodilatation and autonomic dysreflexia. Autonomic dysreflexia is an abrupt, uncontrolled sympathetic response, elicited by stimuli below the level of injury. The symptoms may be mild like skin rash or slight headache, but can cause severe hypertension, cerebral haemorrhage and death. All personnel caring for the patient should be able to recognize the symptoms and be able to intervene promptly. Disturbance of respiratory function are frequent in tetraplegia and a primary cause of both short and long-term morbidity and mortality is pulmonary complications. Due to physical inactivity and altered haemostasis, patients with SCI have a higher risk of venous thromboembolism and pressure ulcers. Spasticity and pain are frequent complications which need to be addressed. The psychological stress associated with SCI may lead to anxiety and depression. Knowledge of possible complications during the acute phase is important because they may be life threatening and/ or may lead to prolonged rehabilitation. PMID:25621207

  3. Human models of acute lung injury

    PubMed Central

    Proudfoot, Alastair G.; McAuley, Danny F.; Griffiths, Mark J. D.; Hind, Matthew

    2011-01-01

    Acute lung injury (ALI) is a syndrome that is characterised by acute inflammation and tissue injury that affects normal gas exchange in the lungs. Hallmarks of ALI include dysfunction of the alveolar-capillary membrane resulting in increased vascular permeability, an influx of inflammatory cells into the lung and a local pro-coagulant state. Patients with ALI present with severe hypoxaemia and radiological evidence of bilateral pulmonary oedema. The syndrome has a mortality rate of approximately 35% and usually requires invasive mechanical ventilation. ALI can follow direct pulmonary insults, such as pneumonia, or occur indirectly as a result of blood-borne insults, commonly severe bacterial sepsis. Although animal models of ALI have been developed, none of them fully recapitulate the human disease. The differences between the human syndrome and the phenotype observed in animal models might, in part, explain why interventions that are successful in models have failed to translate into novel therapies. Improved animal models and the development of human in vivo and ex vivo models are therefore required. In this article, we consider the clinical features of ALI, discuss the limitations of current animal models and highlight how emerging human models of ALI might help to answer outstanding questions about this syndrome. PMID:21357760

  4. Acute complications of spinal cord injuries

    PubMed Central

    Hagen, Ellen Merete

    2015-01-01

    The aim of this paper is to give an overview of acute complications of spinal cord injury (SCI). Along with motor and sensory deficits, instabilities of the cardiovascular, thermoregulatory and broncho-pulmonary system are common after a SCI. Disturbances of the urinary and gastrointestinal systems are typical as well as sexual dysfunction. Frequent complications of cervical and high thoracic SCI are neurogenic shock, bradyarrhythmias, hypotension, ectopic beats, abnormal temperature control and disturbance of sweating, vasodilatation and autonomic dysreflexia. Autonomic dysreflexia is an abrupt, uncontrolled sympathetic response, elicited by stimuli below the level of injury. The symptoms may be mild like skin rash or slight headache, but can cause severe hypertension, cerebral haemorrhage and death. All personnel caring for the patient should be able to recognize the symptoms and be able to intervene promptly. Disturbance of respiratory function are frequent in tetraplegia and a primary cause of both short and long-term morbidity and mortality is pulmonary complications. Due to physical inactivity and altered haemostasis, patients with SCI have a higher risk of venous thromboembolism and pressure ulcers. Spasticity and pain are frequent complications which need to be addressed. The psychological stress associated with SCI may lead to anxiety and depression. Knowledge of possible complications during the acute phase is important because they may be life threatening and/ or may lead to prolonged rehabilitation. PMID:25621207

  5. Ischemia-Reperfusion Injury Enhances Lymphatic Endothelial VEGFR3 and Rejection in Cardiac Allografts.

    PubMed

    Dashkevich, A; Raissadati, A; Syrjälä, S O; Zarkada, G; Keränen, M A I; Tuuminen, R; Krebs, R; Anisimov, A; Jeltsch, M; Leppänen, V-M; Alitalo, K; Nykänen, A I; Lemström, K B

    2016-04-01

    Organ damage and innate immunity during heart transplantation may evoke adaptive immunity with serious consequences. Because lymphatic vessels bridge innate and adaptive immunity, they are critical in immune surveillance; however, their role in ischemia-reperfusion injury (IRI) in allotransplantation remains unknown. We investigated whether the lymphangiogenic VEGF-C/VEGFR3 pathway during cardiac allograft IRI regulates organ damage and subsequent interplay between innate and adaptive immunity. We found that cardiac allograft IRI, within hours, increased graft VEGF-C expression and lymphatic vessel activation in the form of increased lymphatic VEGFR3 and adhesion protein expression. Pharmacological VEGF-C/VEGFR3 stimulation resulted in early lymphatic activation and later increase in allograft inflammation. In contrast, pharmacological VEGF-C/VEGFR3 inhibition during cardiac allograft IRI decreased early lymphatic vessel activation with subsequent dampening of acute and chronic rejection. Genetic deletion of VEGFR3 specifically in the lymphatics of the transplanted heart recapitulated the survival effect achieved by pharmacological VEGF-C/VEGFR3 inhibition. Our results suggest that tissue damage rapidly changes lymphatic vessel phenotype, which, in turn, may shape the interplay of innate and adaptive immunity. Importantly, VEGF-C/VEGFR3 inhibition during solid organ transplant IRI could be used as lymphatic-targeted immunomodulatory therapy to prevent acute and chronic rejection. PMID:26689983

  6. Survival of patients with spinal cord injury after cardiac arrest in Department of Veterans Affairs hospital: Pilot study.

    PubMed

    Caruso, Deborah; Carter, William E; Cifu, David X; Carne, William

    2014-01-01

    Survivability characteristics after cardiopulmonary resuscitation in the population with spinal cord injury (SCI) are unclear but may be useful for advanced care planning discussions with patients. Retrospective evaluation from records of all SCI patients over 10 yr at a Department of Veterans Affairs medical center who experienced in-hospital cardiac arrest was performed. Demographic data and other common measurements were recorded. Thirty-six male subjects were identified, and only two patients survived to discharge (5.5% survival rate), both of whom were admitted for nonacute issues and were asymptomatic shortly before the cardiac arrest. The mean age at the time of cardiopulmonary arrest was 62.4 yr, with a mean time from cardiac arrest to death of 3.02 d. No significant demographic parameters were identified. Overall, SCI likely portends worse outcome for acutely ill patients in the situation of a cardiac arrest. Conclusions are limited by sample size. PMID:25436984

  7. Cardiac lymphatics are heterogeneous in origin and respond to injury

    PubMed Central

    Klotz, Linda; Norman, Sophie; Vieira, Joaquim Miguel; Masters, Megan; Rohling, Mala; Dubé, Karina N.; Bollini, Sveva; Matsuzaki, Fumio; Carr, Carolyn A.; Riley, Paul R.

    2015-01-01

    The lymphatic vasculature is a blind-ended network crucial for tissue fluid homeostasis, immune surveillance and lipid absorption from the gut. Recent evidence has proposed an entirely venous-derived mammalian lymphatic system. In contrast, we reveal here that cardiac lymphatic vessels have a heterogeneous cellular origin, whereby formation of at least part of the cardiac lymphatic network is independent of sprouting from veins. Multiple cre-lox based lineage tracing revealed a potential contribution from the hemogenic endothelium during development and discrete lymphatic endothelial progenitor populations were confirmed by conditional knockout of Prox1 in Tie2+ and Vav1+ compartments. In the adult heart, myocardial infarction (MI) promoted a significant lymphangiogenic response, which was augmented by treatment with VEGF-C resulting in improved cardiac function. These data prompt the re-evaluation of a century-long debate on the origin of lymphatic vessels and suggest that lymphangiogenesis may represent a therapeutic target to promote cardiac repair following injury. PMID:25992544

  8. Modulatory effect of semelil (ANGIPARS™) on isoproterenol induced cardiac injury

    PubMed Central

    Joukar, Siyavash; Najafipour, Hamid; Mirzaeipour, Fateme; Nasri, Hamidreza; Ahmadi, Mahboubeh Yeganeh Haj; Badinloo, Marziyeh

    2013-01-01

    Administration of semelil (ANGIPARS™) has been successful in the treatment of diabetic foot ulcer. Considering the improvement of blood flow and anti-inflammatory effect that are attributed to this drug, we investigated its effect on cardiovascular performance in rabbits with isoproterenol (ISO) induced myocardial injury. Animal groups included: control group; ISO group, received ISO 50 mg/kg s.c. for two consecutive days; S1+ISO, S5+ISO and S10+ISO groups, received semelil 1, 5, and 10 mg/kg/day i.p. respectively, 30 min before ISO. On the 3rd day, electrocardiogram (ECG) and hemodynamic parameters were recorded; blood samples were taken and hearts were removed for lab investigations. ISO induced heart injury, ECG disturbance, raise of cardiac troponin I and significant decrease in LVSP (p<0.05), +dp/dt max (p<0.01), -dp/dt max (p<0.05) along with increase of LVEDP (p<0.01). Semelil had no significant effects on ECG and plasma cardiac troponin I. Impairment of +dp/dt max and -dp/dt max was significantly improved in S5+ISO and S10+ISO groups (P<0.05 versus ISO). In addition, LVSP and LVEDP was somewhat recovered in these groups, although semelil (1 mg/kg/day) to some extent exacerbated the myocardial lesions induced by ISO (P<0.05). Therefore, in stressful conditions, semelil may improve myocardial contractility; however, it may aggravate the severity of injury. PMID:26417221

  9. Modulatory effect of semelil (ANGIPARS™) on isoproterenol induced cardiac injury.

    PubMed

    Joukar, Siyavash; Najafipour, Hamid; Mirzaeipour, Fateme; Nasri, Hamidreza; Ahmadi, Mahboubeh Yeganeh Haj; Badinloo, Marziyeh

    2013-01-01

    Administration of semelil (ANGIPARS™) has been successful in the treatment of diabetic foot ulcer. Considering the improvement of blood flow and anti-inflammatory effect that are attributed to this drug, we investigated its effect on cardiovascular performance in rabbits with isoproterenol (ISO) induced myocardial injury. Animal groups included: control group; ISO group, received ISO 50 mg/kg s.c. for two consecutive days; S1+ISO, S5+ISO and S10+ISO groups, received semelil 1, 5, and 10 mg/kg/day i.p. respectively, 30 min before ISO. On the 3(rd) day, electrocardiogram (ECG) and hemodynamic parameters were recorded; blood samples were taken and hearts were removed for lab investigations. ISO induced heart injury, ECG disturbance, raise of cardiac troponin I and significant decrease in LVSP (p<0.05), +dp/dt max (p<0.01), -dp/dt max (p<0.05) along with increase of LVEDP (p<0.01). Semelil had no significant effects on ECG and plasma cardiac troponin I. Impairment of +dp/dt max and -dp/dt max was significantly improved in S5+ISO and S10+ISO groups (P<0.05 versus ISO). In addition, LVSP and LVEDP was somewhat recovered in these groups, although semelil (1 mg/kg/day) to some extent exacerbated the myocardial lesions induced by ISO (P<0.05). Therefore, in stressful conditions, semelil may improve myocardial contractility; however, it may aggravate the severity of injury. PMID:26417221

  10. Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury

    PubMed Central

    Whitaker, Ryan M.; Stallons, L. Jay; Kneff, Joshua E.; Alge, Joseph L.; Harmon, Jennifer L.; Rahn, Jennifer J.; Arthur, John M.; Beeson, Craig C.; Chan, Sherine L.; Schnellmann, Rick G.

    2015-01-01

    Recent studies show the importance of mitochondrial dysfunction in the initiation and progression of acute kidney injury (AKI). However, no biomarkers exist linking renal injury to mitochondrial function and integrity. To this end, we evaluated urinary mitochondrial DNA (UmtDNA) as a biomarker of renal injury and function in humans with AKI following cardiac surgery. mtDNA was isolated from the urine of patients following cardiac surgery and quantified by qPCR. Patients were stratified into no AKI, stable AKI and progressive AKI groups based on Acute Kidney Injury Network (AKIN) staging. UmtDNA was elevated in progressive AKI patients, and was associated with progression of patients with AKI at collection to higher AKIN stages. To evaluate the relationship of UmtDNA to measures of renal mitochondrial integrity in AKI, mice were subjected to sham surgery or varying degrees of ischemia followed by 24 hours of reperfusion. UmtDNA increased in mice after 10-15 minutes of ischemia and positively correlated with ischemia time. Furthermore, UmtDNA was predictive of AKI in the mouse model. Finally, UmtDNA levels were negatively correlated with renal cortical mtDNA and mitochondrial gene expression. These translational studies demonstrate that UmtDNA is associated with recovery from AKI following cardiac surgery by serving as an indicator of mitochondrial integrity. Thus, UmtDNA may serve as valuable biomarker for the development of mitochondrial targeted therapies in AKI. PMID:26287315

  11. [Pre-hospital care management of acute spinal cord injury].

    PubMed

    Hess, Thorsten; Hirschfeld, Sven; Thietje, Roland; Lönnecker, Stefan; Kerner, Thoralf; Stuhr, Markus

    2016-04-01

    Acute injury to the spine and spinal cord can occur both in isolation as also in the context of multiple injuries. Whereas a few decades ago, the cause of paraplegia was almost exclusively traumatic, the ratio of traumatic to non-traumatic causes in Germany is currently almost equivalent. In acute treatment of spinal cord injury, restoration and maintenance of vital functions, selective control of circulation parameters, and avoidance of positioning or transport-related additional damage are in the foreground. This article provides information on the guideline for emergency treatment of patients with acute injury of the spine and spinal cord in the preclinical phase. PMID:27070515

  12. SYSTEMIC IMBALANCE OF ESSENTIAL METALS AND CARDIAC GENE EXPRESSION IN RATS FOLLOWING ACUTE PULMONARY ZINC EXPOSURE

    EPA Science Inventory

    We have recently demonstrated that PM containing water-soluble zinc may cause cardiac injury following pulmonary exposure. To investigate if pulmonary zinc exposure causes systemic metal imbalance and direct cardiac effects, we intratracheally (IT) instilled male Wistar Kyoto (WK...

  13. Babesiosis-induced acute kidney injury with prominent urinary macrophages.

    PubMed

    Luciano, Randy L; Moeckel, Gilbert; Palmer, Matthew; Perazella, Mark A

    2013-10-01

    Babesia is an obligate intracellular erythrocyte parasite that can infect humans. Severe symptomatic disease from massive hemolysis and multiorgan system failure, including acute kidney injury (AKI), occurs. Acute tubular injury from a combination of volume depletion and heme pigment toxicity from profound hemolysis is the most common cause of AKI. We present a case of severe babesiosis complicated by dialysis-requiring AKI with the unique finding of large macrophages containing engulfed erythrocyte fragments in urine sediment. This urinary finding raised the possibility of another diagnosis distinct from acute tubular injury. Subsequent kidney biopsy demonstrated infection-associated acute interstitial nephritis. PMID:23643302

  14. Diacylglycerol kinase α exacerbates cardiac injury after ischemia/reperfusion.

    PubMed

    Sasaki, Toshiki; Shishido, Tetsuro; Kadowaki, Shinpei; Kitahara, Tatsuro; Suzuki, Satoshi; Katoh, Shigehiko; Funayama, Akira; Netsu, Shunsuke; Watanabe, Tetsu; Goto, Kaoru; Takeishi, Yasuchika; Kubota, Isao

    2014-01-01

    Early coronary reperfusion of the ischemic myocardium is a desired therapeutic goal for the preservation of myocardial function. However, reperfusion itself causes additional myocardium injuries. Activation of the diacylglycerol-protein kinase C (DAG-PKC) cascade has been implicated in the cardioprotective effects occurring after ischemia/reperfusion (I/R). DAG kinase (DGK) controls cellular DAG levels by converting DAG to phosphatidic acid, and may act as an endogenous regulator of DAG-PKC signaling. In the present study, we examined the functional role of DGKα in cardiac injury after I/R in in vivo mouse hearts. We generated transgenic mice with cardiac-specific overexpression of DGKα (DGKα-TG). The left anterior descending coronary artery was transiently occluded for 20 min and reperfused for 24 h in DGKα-TG mice and wild-type littermate (WT) mice. The levels of phosphorylation activity of PKCε, extracellular-signal regulated kinase (ERK) 1/2, and p70 ribosomal S6 kinase (p70S6K) were increased after I/R in WT mouse hearts. However, in DGKα-TG mice, activation of PKCε, ERK1/2, and p70S6K was attenuated compared to WT mice. After 24 h, Evans blue/triphenyltetrazolium chloride double staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining showed that DGKα-TG mice had significantly larger myocardial infarctions and larger numbers of TUNEL-positive cardiomyocytes than WT mice. Echocardiography and cardiac catheterization revealed that left ventricular systolic function was more severely depressed in DGKα-TG mice than in WT mice after I/R. These findings suggest that DGKα exacerbates I/R injury by inhibiting the cardioprotective effects of PKCε, ERK1/2, and p70S6K activation. PMID:23719772

  15. Acute vertebrobasilar ischemic stroke due to electric injury.

    PubMed

    Singh Jain, Rajendra; Kumar, Sunil; Suresh, Desai Tushar; Agarwal, Rakesh

    2015-07-01

    Electrical injuries are most commonly due to household accidents.Various factors determine the severity of electric injury, including type of current, amperage, voltage, tissue resistance, pathway of current,and duration of contact with the body. Various types of neurologic damage due to electrical injury have been described in literature. It may manifest as peripheral nerve injury, spinal cord damage, seizures, cerebellarataxia, hypoxic encephalopathy, and intracerebral hemorrhage. Acute ischemic stroke is an infrequent complication of electrical injury. Herein,we report a case of middle-aged man, who accidentally sustained high voltage electrical injury followed by acute vertebrobasilar ischemic stroke. Magnetic resonance imaging of the brain showed acute infarctin bilateral cerebellar and medial occipital regions. Computed tomographic angiogram of the brain and neck vessels was normal. Possibly,in our patient, the mechanism could be related to direct vascular injury due to electric current. PMID:25684743

  16. Anthracycline-induced cardiac injury using a cardiac cell line: potential for gene therapy studies.

    PubMed

    L'Ecuyer, T; Horenstein, M S; Thomas, R; Vander Heide, R

    2001-11-01

    Anthracyclines are effective antitumor agents whose chief limitation has been cardiotoxicity directly related to free radical production. Therefore, strategies designed to selectively overexpress antioxidant proteins in the heart could protect against drug-induced toxicity and allow higher doses of chemotherapy. However, to date an adequate cardiac model system that is susceptible to anthracycline injury and can express foreign genes in a controlled fashion has been lacking. Developing a cardiac model system would permit examination of the relationship between the expression level of a potentially protective foreign gene and the degree of protection from injury. In this study we have examined the potential of the H9C2 rat cardiac myocyte cell line in this regard. H9C2 cells differentiate in a reproducible fashion, as shown by progressive increases in muscle tropomyosin-expressing cells, the organization of this thin filament protein, and the percentage of muscle cells contained within myotubes. Exposure of this cell line to the anthracycline doxorubicin produces cell injury as indicated by release of the intracellular enzyme lactate dehydrogenase into the culture medium. This injury is preceded by generation of reactive oxygen species, indicated by fluorescence after loading with carboxy-dichlorodihydrofluorescein diacetate. Stable transfection of H9C2 cells with a plasmid producing a tetracycline transactivator protein allows foreign genes to be expressed at a level tightly controlled by the concentration of tetracycline in the culture medium. Since H9C2 cells differentiate, can be injured by anthracycline exposure, and can express foreign genes at controllable levels, this is a suitable system in which to design genetic approaches to prevent this important clinical problem. PMID:11708868

  17. Acute Kidney Injury Associated with Linagliptin.

    PubMed

    Nandikanti, Deepak K; Gosmanova, Elvira O; Gosmanov, Aidar R

    2016-01-01

    Linagliptin is a dipeptidyl peptidase-IV (DPP-IV) inhibitor that is approved for the treatment of type 2 diabetes mellitus. About 5% of linagliptin is eliminated by the kidneys and no dose adjustment is recommended in kidney impairment. We report a first case of linagliptin-associated acute kidney injury (AKI) in a patient with preexisting chronic kidney disease (CKD). We hypothesize that AKI was due to renal hypoperfusion from linagliptin-induced natriuresis and intravascular volume contraction in the setting of concomitant lisinopril use, which is known to impair autoregulation and potentiate hypotension-induced AKI. It may be prudent to exert caution and closely monitor kidney function when initiating linagliptin in combination with ACE-inhibitors in CKD patients. PMID:26981294

  18. Contrast Medium-Induced Acute Kidney Injury

    PubMed Central

    Sadat, Umar; Usman, Ammara; Boyle, Jonathan R.; Hayes, Paul D.; Solomon, Richard J.

    2015-01-01

    Contrast medium-induced acute kidney injury (CI-AKI) is a predominant cause of hospital-acquired renal insufficiency. With an increasing number of contrast medium-enhanced radiological procedures being performed in a rapidly increasing ageing population in the Western world, it is imperative that more attention is given to understand the aetiology of CI-AKI to devise novel diagnostic methods and to formulate effective prophylactic and therapeutic regimens to reduce its incidence and its associated morbidity and mortality. This article presents high-yield information on the above-mentioned aspects of CI-AKI, primarily based on results of randomised controlled trials, meta-analyses, systematic reviews and international consensus guidelines. PMID:26195974

  19. Acute Kidney Injury Associated with Linagliptin

    PubMed Central

    Nandikanti, Deepak K.; Gosmanova, Elvira O.; Gosmanov, Aidar R.

    2016-01-01

    Linagliptin is a dipeptidyl peptidase-IV (DPP-IV) inhibitor that is approved for the treatment of type 2 diabetes mellitus. About 5% of linagliptin is eliminated by the kidneys and no dose adjustment is recommended in kidney impairment. We report a first case of linagliptin-associated acute kidney injury (AKI) in a patient with preexisting chronic kidney disease (CKD). We hypothesize that AKI was due to renal hypoperfusion from linagliptin-induced natriuresis and intravascular volume contraction in the setting of concomitant lisinopril use, which is known to impair autoregulation and potentiate hypotension-induced AKI. It may be prudent to exert caution and closely monitor kidney function when initiating linagliptin in combination with ACE-inhibitors in CKD patients. PMID:26981294

  20. Transfusion-related acute lung injury (TRALI).

    PubMed

    Roberts, George H

    2004-01-01

    Transfusion is an inevitable event in the life of many individuals. Transfusion medicine personnel attempt to provide blood products that will result in a safe and harmless transfusion. However, this is not always possible since no laboratory test gives totally accurate and reliable results all the time and testing in routine transfusion services is devoted primarily to the identification of red blood cell problems. Thus, when patients are transfused, several possible adverse effects may occur in the transfused patient even though quality testing indicates no potential problem. These adverse events include infectious complications, hemolytic reactions, anaphylaxis, urticaria, circulatory overload, transfusion-associated graft-versus-host disease, chills and fever, immunomodulation, and transfusion-related acute lung injury (TRALI). PMID:15314887

  1. Acute kidney injury in HCT: an update.

    PubMed

    Lopes, J A; Jorge, S; Neves, M

    2016-06-01

    Acute kidney injury (AKI) is highly prevalent whether the patients undergo myeloablative or non-myeloablative hematopoietic cell transplantation (HCT); however, the pathogenesis and risk factors leading to AKI can differ between the two. The prognosis of AKI in patients receiving HCT is poor. In fact, AKI following HCT is associated not only with increased short- and long-term mortality, but also with progression to chronic kidney disease. Herein, the authors provide a comprehensive and up-to-date review of the definition and diagnosis, as well as of the incidence, pathogenesis and outcome of AKI in patients undergoing HCT, centering on the differences between myeloablative and non-myeloablative regimens. PMID:26855155

  2. The Anatomic Pattern of Injuries in Acute Inversion Ankle Sprains

    PubMed Central

    Khor, Yuet Peng; Tan, Ken Jin

    2013-01-01

    Background: There are little data on the incidence and patterns of injuries seen on magnetic resonance imaging (MRI) in acute inversion ankle sprains. This study may help in the understanding of the pathomechanics, natural history, and outcomes of this common injury. Study Design: Case series; Level of evidence, 4. Methods: From June 2011 to June 2013, a total of 64 consecutive patients had MRI of the ankle performed for acute inversion injury to the ankle. All injuries/pathologies reported were recorded. Results: Only 22% of patients had isolated lateral ligament complex injuries. Twenty-two percent of patients had other pathologies but no lateral ligament injury, and 53% had lateral ligament injuries in combination with other pathologies or injuries. The most common associated finding with lateral ligament injuries was bone bruising (76%) followed by deltoid ligament injury (50%). The overall incidence of bone bruising was 50%. Thirty percent of ankles had tendon pathology, 27% had deltoid ligament injury, and 22% had occult fractures. Conclusion: Isolated lateral ligament ankle injury is not as common as is believed. The pattern of injury seems complex, and most patients appear to have more injuries than expected. MRI reveals additional information that may have significance in terms of diagnosis, treatment, and prognosis in this common injury. PMID:26535261

  3. Dental pulp-derived stem cell conditioned medium reduces cardiac injury following ischemia-reperfusion

    PubMed Central

    Yamaguchi, Satoshi; Shibata, Rei; Yamamoto, Noriyuki; Nishikawa, Masaya; Hibi, Hideharu; Tanigawa, Tohru; Ueda, Minoru; Murohara, Toyoaki; Yamamoto, Akihito

    2015-01-01

    Stem cells from human exfoliated deciduous teeth (SHEDs) can regenerate various tissues. We investigated the impact of SHED-conditioned medium (SHED-CM) on myocardial injury in a mouse model of ischemia-reperfusion (I/R). Wild-type (WT) mice were subjected to myocardial ischemia followed by reperfusion. SHED-CM was intravenously injected at 5 min after reperfusion. Administration of SHED-CM reduced myocardial infarct size as well as decreased apoptosis and inflammatory cytokine levels, such as TNF-α, IL-6, and IL-β, in the myocardium following I/R. In cultured cardiac myocytes, SHED-CM significantly suppressed apoptosis under hypoxia/serum-deprivation and reduced LPS-induced expression of pro-inflammatory genes. Furthermore, anti-apoptotic action of SHED-CM was stronger than bone marrow-derived stem cell (BMSC)-CM or adipose-derived stem cell (ADSC)-CM in cardiac myocytes. SHED-CM contains a higher concentration of hepatocyte growth factor (HGF) than BMSC-CM and ADSC-CM, and neutralization of HGF attenuated the inhibitory actions of SHED-CM on apoptosis in cardiac myocytes. Finally, WT mice were intravenously treated with an HGF-depleted SHED-CM, followed by myocardial I/R. HGF depletion significantly attenuated the inhibitory actions of SHED-CM on myocardial infarct size and apoptosis after I/R. SHED-CM protects the heart from acute ischemic injury because it suppresses inflammation and apoptosis. SHED-CM could be a useful treatment option for acute myocardial infarction. PMID:26542315

  4. Septic acute kidney injury: the glomerular arterioles.

    PubMed

    Bellomo, Rinaldo; Wan, Li; Langenberg, Christoph; Ishikawa, Ken; May, Clive N

    2011-01-01

    Acute kidney injury (AKI) is a serious condition that affects many intensive care unit (ICU) patients. The most common causes of AKI in the ICU are severe sepsis and septic shock. The mortality of AKI in septic critically ill patients remains high despite our increasing ability to support vital organs. This is partly due to our poor understanding of the pathogenesis of sepsis-induced renal dysfunction. However, new concepts are emerging to explain the pathogenesis of septic AKI, which challenge previously held dogma. Throughout the past half century, septic AKI has essentially been considered secondary to tubular injury, which, in turn, has been considered secondary to renal ischemia. This belief is curious because the hallmark of septic AKI and AKI in general is the loss of glomerular filtration rate (GFR). It would seem logical, therefore, to focus on the glomerulus in trying to understand why such loss of GFR occurs. Recent experimental observations suggest that, at least in the initial phases of septic AKI, profound changes occur which involve glomerular hemodynamics and lead to loss of GFR. These observations imply that changes in the vasoconstrictor tone of both the afferent and efferent arterioles are an important component of the pathogenesis of septic AKI. PMID:21921614

  5. Sepsis-Associated Acute Kidney Injury

    PubMed Central

    Alobaidi, Rashid; Basu, Rajit K.; Goldstein, Stuart L.; Bagshaw, Sean M.

    2015-01-01

    Summary Acute kidney injury (AKI) is an epidemic problem. Sepsis has long been recognized as a foremost precipitant of AKI. Sepsis-associated AKI (SA-AKI) portends a high burden of morbidity and mortality in both children and adults with critical illness. Although our understanding of its pathophysiology is incomplete, SA-AKI likely represents a distinct subset of AKI contributed to by a unique constellation of hemodynamic, inflammatory, and immune mechanisms. SA-AKI poses significant clinical challenges for clinicians. To date, no singular effective therapy has been developed to alter the natural history of SA-AKI. Rather, current strategies to alleviate poor outcomes focus on clinical risk identification, early detection of injury, modifying clinician behavior to avoid harm, early appropriate antimicrobial therapy, and surveillance among survivors for the longer-term sequelae of kidney damage. Recent evidence has confirmed that patients no longer die with AKI, but from AKI. To improve the care and outcomes for sufferers of SA-AKI, clinicians need a robust appreciation for its epidemiology and current best-evidence strategies for prevention and treatment. PMID:25795495

  6. Optimizing sedation in patients with acute brain injury.

    PubMed

    Oddo, Mauro; Crippa, Ilaria Alice; Mehta, Sangeeta; Menon, David; Payen, Jean-Francois; Taccone, Fabio Silvio; Citerio, Giuseppe

    2016-01-01

    Daily interruption of sedative therapy and limitation of deep sedation have been shown in several randomized trials to reduce the duration of mechanical ventilation and hospital length of stay, and to improve the outcome of critically ill patients. However, patients with severe acute brain injury (ABI; including subjects with coma after traumatic brain injury, ischaemic/haemorrhagic stroke, cardiac arrest, status epilepticus) were excluded from these studies. Therefore, whether the new paradigm of minimal sedation can be translated to the neuro-ICU (NICU) is unclear. In patients with ABI, sedation has 'general' indications (control of anxiety, pain, discomfort, agitation, facilitation of mechanical ventilation) and 'neuro-specific' indications (reduction of cerebral metabolic demand, improved brain tolerance to ischaemia). Sedation also is an essential therapeutic component of intracranial pressure therapy, targeted temperature management and seizure control. Given the lack of large trials which have evaluated clinically relevant endpoints, sedative selection depends on the effect of each agent on cerebral and systemic haemodynamics. Titration and withdrawal of sedation in the NICU setting has to be balanced between the risk that interrupting sedation might exacerbate brain injury (e.g. intracranial pressure elevation) and the potential benefits of enhanced neurological function and reduced complications. In this review, we provide a concise summary of cerebral physiologic effects of sedatives and analgesics, the advantages/disadvantages of each agent, the comparative effects of standard sedatives (propofol and midazolam) and the emerging role of alternative drugs (ketamine). We suggest a pragmatic approach for the use of sedation-analgesia in the NICU, focusing on some practical aspects, including optimal titration and management of sedation withdrawal according to ABI severity. PMID:27145814

  7. Electrophysiological Monitoring of Brain Injury and Recovery after Cardiac Arrest

    PubMed Central

    Deng, Ruoxian; Xiong, Wei; Jia, Xiaofeng

    2015-01-01

    Reliable prognostic methods for cerebral functional outcome of post cardiac-arrest (CA) patients are necessary, especially since therapeutic hypothermia (TH) as a standard treatment. Traditional neurophysiological prognostic indicators, such as clinical examination and chemical biomarkers, may result in indecisive outcome predictions and do not directly reflect neuronal activity, though they have remained the mainstay of clinical prognosis. The most recent advances in electrophysiological methods—electroencephalography (EEG) pattern, evoked potential (EP) and cellular electrophysiological measurement—were developed to complement these deficiencies, and will be examined in this review article. EEG pattern (reactivity and continuity) provides real-time and accurate information for early-stage (particularly in the first 24 h) hypoxic-ischemic (HI) brain injury patients with high sensitivity. However, the signal is easily affected by external stimuli, thus the measurements of EP should be combined with EEG background to validate the predicted neurologic functional result. Cellular electrophysiology, such as multi-unit activity (MUA) and local field potentials (LFP), has strong potential for improving prognostication and therapy by offering additional neurophysiologic information to understand the underlying mechanisms of therapeutic methods. Electrophysiology provides reliable and precise prognostication on both global and cellular levels secondary to cerebral injury in cardiac arrest patients treated with TH. PMID:26528970

  8. Acute renal injury after partial hepatectomy

    PubMed Central

    Peres, Luis Alberto Batista; Bredt, Luis Cesar; Cipriani, Raphael Flavio Fachini

    2016-01-01

    Currently, partial hepatectomy is the treatment of choice for a wide variety of liver and biliary conditions. Among the possible complications of partial hepatectomy, acute kidney injury (AKI) should be considered as an important cause of increased morbidity and postoperative mortality. Difficulties in the data analysis related to postoperative AKI after liver resections are mainly due to the multiplicity of factors to be considered in the surgical patients, moreover, there is no consensus of the exact definition of AKI after liver resection in the literature, which hampers comparison and analysis of the scarce data published on the subject. Despite this multiplicity of risk factors for postoperative AKI after partial hepatectomy, there are main factors that clearly contribute to its occurrence. First factor relates to large blood losses with renal hypoperfusion during the operation, second factor relates to the occurrence of post-hepatectomy liver failure with consequent distributive circulatory changes and hepatorenal syndrome. Eventually, patients can have more than one factor contributing to post-operative AKI, and frequently these combinations of acute insults can be aggravated by sepsis or exposure to nephrotoxic drugs. PMID:27478539

  9. Acute renal injury after partial hepatectomy.

    PubMed

    Peres, Luis Alberto Batista; Bredt, Luis Cesar; Cipriani, Raphael Flavio Fachini

    2016-07-28

    Currently, partial hepatectomy is the treatment of choice for a wide variety of liver and biliary conditions. Among the possible complications of partial hepatectomy, acute kidney injury (AKI) should be considered as an important cause of increased morbidity and postoperative mortality. Difficulties in the data analysis related to postoperative AKI after liver resections are mainly due to the multiplicity of factors to be considered in the surgical patients, moreover, there is no consensus of the exact definition of AKI after liver resection in the literature, which hampers comparison and analysis of the scarce data published on the subject. Despite this multiplicity of risk factors for postoperative AKI after partial hepatectomy, there are main factors that clearly contribute to its occurrence. First factor relates to large blood losses with renal hypoperfusion during the operation, second factor relates to the occurrence of post-hepatectomy liver failure with consequent distributive circulatory changes and hepatorenal syndrome. Eventually, patients can have more than one factor contributing to post-operative AKI, and frequently these combinations of acute insults can be aggravated by sepsis or exposure to nephrotoxic drugs. PMID:27478539

  10. Ischemia-reperfusion injury leads to distinct temporal cardiac remodeling in normal versus diabetic mice.

    PubMed

    Eguchi, Megumi; Kim, Young Hwa; Kang, Keon Wook; Shim, Chi Young; Jang, Yangsoo; Dorval, Thierry; Kim, Kwang Joon; Sweeney, Gary

    2012-01-01

    Diabetes is associated with higher incidence of myocardial infarction (MI) and increased propensity for subsequent events post-MI. Here we conducted a temporal analysis of the influence of diabetes on cardiac dysfunction and remodeling after ischemia reperfusion (IR) injury in mice. Diabetes was induced using streptozotocin and IR performed by ligating the left anterior descending coronary artery for 30 min followed by reperfusion for up to 42 days. We first evaluated changes in cardiac function using echocardiography after 24 hours reperfusion and observed IR injury significantly decreased the systolic function, such as ejection fraction, fractional shortening and end systolic left ventricular volume (LVESV) in both control and diabetic mice. The longitudinal systolic and diastolic strain rate were altered after IR, but there were no significant differences between diabetic mice and controls. However, a reduced ability to metabolize glucose was observed in the diabetic animals as determined by PET-CT scanning using 2-deoxy-2-((18)F)fluoro-D-glucose. Interestingly, after 24 hours reperfusion diabetic mice showed a reduced infarct size and less apoptosis indicated by TUNEL analysis in heart sections. This may be explained by increased levels of autophagy detected in diabetic mice hearts. Similar increases in IR-induced macrophage infiltration detected by CD68 staining indicated no change in inflammation between control and diabetic mice. Over time, control mice subjected to IR developed mild left ventricular dilation whereas diabetic mice exhibited a decrease in both end diastolic left ventricular volume and LVESV with a decreased intraventricular space and thicker left ventricular wall, indicating concentric hypertrophy. This was associated with marked increases in fibrosis, indicted by Masson trichrome staining, of heart sections in diabetic IR group. In summary, we demonstrate that diabetes principally influences distinct IR-induced chronic changes in cardiac

  11. Troponin T in Patients with Traumatic Chest Injuries with and without Cardiac Involvement: Insights from an Observational Study

    PubMed Central

    Mahmood, Ismail; El-Menyar, Ayman; Dabdoob, Wafer; Abdulrahman, Yassir; Siddiqui, Tarriq; Atique, Sajid; Arumugam, Suresh Kumar; Latifi, Rifat; Al-Thani, Hassan

    2016-01-01

    Background: Serum troponin T (TnT) is a common marker of myocardial injury. However, its implication in the absence of clinical evidence of cardiac reason is not well established. Aims: The aim of this study was to identify the implications of positive TnT in traumatic chest injury (TCI) patients regardless of the cardiac involvement. Materials and Methods: We conducted a retrospective analysis of all TCI patients admitted to level 1 trauma center between 2008 and 2011. Patients who underwent TnT testing were divided into two groups: Group 1 (positive TnT) and Group 2 (negative TnT). The two groups were analyzed and compared, and multivariate regression analyses were performed to identify predictors of TnT positivity and mortality. Results: Out of 993 blunt TCI patients, 19.3% had positive TnT (Group 1). On comparison to Group 2, patients in Group 1 were 5 years younger and more likely to have head, cardiac, hepatic, splenic, and pelvic injuries, in addition to lung contusion. Positive TnT was associated with higher Injury Severity Score (ISS) (P = 0.001), higher chest Abbreviated Injury Score (AIS) (P = 0.001), and longer hospital stay (P = 0.03). In addition, Group 1 patients were more likely to undergo chest tube insertion, exploratory laparotomy, mechanical ventilation, and tracheostomy. Twenty patients had cardiac involvement, and of them 14 had positive TnT. Among 973 patients who showed no evidence of cardiac involvement, 178 had positive TnT (18.3%). There were 104 deaths (60% in Group 1). On multivariate regression analysis, the predictors of hospital mortality were positive TnT, head injury, and high ISS, whereas, the predictors of TnT positivity were cardiac, hepatic, and pelvic injuries; higher ISS; and age. Conclusions: Positive TnT in blunt TCI patients is a common challenge, particularly in polytrauma cases. Patients with positive TnT tend to have the worst outcome even in the absence of clinical evidence of acute cardiac involvement. Positive TnT is

  12. Wasp sting-induced acute kidney injury

    PubMed Central

    Dhanapriya, Jeyachandran; Dineshkumar, Thanigachalam; Sakthirajan, Ramanathan; Shankar, Palaniselvam; Gopalakrishnan, Natarajan; Balasubramaniyan, Thoppalan

    2016-01-01

    Background Wasp stings are a common form of envenomation in tropical countries, especially in farmers. The aim of this study was to document the clinical presentation, treatment and outcomes of patients with acute kidney injury (AKI) due to multiple wasp stings in a tertiary care hospital. Methods We conducted a retrospective observational study of patients with multiple wasp stings and AKI at the Department of Nephrology between July 2011 and August 2015. The clinical features, laboratory data, treatment details and outcomes were noted. Results A total of 11 patients were included. All were from rural areas. All of them were males with age ranging from 21 to 70 years, mean age 45 ± 23 years. Six had oliguria and two had hypotension. All 11 patients had evidence of rhabdomyolysis and three also had hemolysis. Ten patients required hemodialysis with a mean number of hemodialysis sessions of 8.7 ± 2.8. Renal biopsy carried out on four patients, showed acute interstitial nephritis (AIN) in one patient, acute tubular necrosis (ATN) in two patients, and one patient had both AIN and ATN. The two patients with AIN were given steroids, while all other patients were managed with supportive measures. One patient died within 48 h of presentation due to shock. At a mean follow-up of 24 months, one had progressed to chronic kidney disease and the remaining nine had normal renal function. Conclusions Wasp sting is an occupational hazard. AKI was most commonly due to rhabdomyolysis. Early renal biopsy is indicated in those patients who do not respond to supportive measures. Timely dialysis and steroid in the case of AIN improves renal survival. PMID:26985369

  13. Cardiac troponin T in the diagnosis of myocardial injury.

    PubMed

    Mair, J; Dienstl, F; Puschendorf, B

    1992-01-01

    In the last several decades serum levels of cardiac enzymes and isoenzymes have become the final arbiters by which myocardial damage is diagnosed or excluded. Because conventionally used enzymes are neither perfectly sensitive nor specific, there is need for a new sensitive and cardiospecific marker of myocardial damage. Cardiac troponin T (TnT) is a contractile protein unique to cardiac muscle and can be differentiated by immunologic methods from its skeletal-muscle isoform. An enzyme immunoassay specific for cardiac TnT is now available in a commercial kit for routine use. The biggest advantage of this assay is its cardiospecificity. TnT measurements, however, are also highly sensitive in diagnosis of myocardial injury and accurately discern even small amounts of myocardial necrosis. TnT measurements are, therefore, particularly useful in patients with borderline CK-MB and in clinical settings in which traditional enzymes fail to diagnose myocardial damage efficiently because of lack of specificity--for example, perioperative myocardial infarction or blunt heart trauma. TnT release kinetics reveal characteristics of both soluble, cytoplasmic, and structurally bound molecules. It starts to increase a few hours after the onset of myocardial damage and remains increased for several days. TnT allows late diagnosis of myocardial infarction. The diagnostic efficiency remains at 98% until 6 d after the onset of infarct-related symptoms. TnT is also useful in monitoring the effectiveness of thrombolytic therapy in myocardial infarction patients. The ratio of peak TnT concentration on day 1 to TnT concentration at day 4 discriminates between patients with successful (greater than 1) and failed (less than or equal to 1) reperfusion. TnT measurements are very sensitive and specific for the early and late diagnosis of myocardial damage and could, therefore, provide a new criterion in laboratory diagnosis of the occurrence of myocardial damage. PMID:1388708

  14. Cardiac computed tomography in patients with acute chest pain.

    PubMed

    Nieman, Koen; Hoffmann, Udo

    2015-04-14

    The efficient and reliable evaluation of patients with acute chest pain is one of the most challenging tasks in the emergency department. Coronary computed tomography (CT) angiography may play a major role, since it permits ruling out coronary artery disease with high accuracy if performed with expertise in properly selected and prepared patients. Several randomized trials have established early cardiac CT as a viable safe and potentially more efficient alternative to functional testing in the evaluation of acute chest pain. Ongoing investigations explore whether advanced anatomic and functional assessments such as high-risk coronary plaque, resting myocardial perfusion, and left ventricular function, or the simulation of the fractional coronary flow reserve will add information to the anatomic assessment for stenosis, which would allow expanding the benefits of cardiac CT from triage to treatment decisions. Especially, the combination of high-sensitive troponins and coronary computed tomography angiography may play a valuable role in future strategies for the management of patients presenting with acute chest pain. PMID:25687351

  15. Acute Kidney Injury: Quoi de Neuf?

    PubMed Central

    Reichel, Ronald R.

    2014-01-01

    Background Acute kidney injury (AKI) is frequently encountered in the nephrology practice. Serum creatinine, with its many shortcomings, is still the main biomarker used to detect AKI. Methods This review focuses on recent advances in definition, diagnosis, risk factors, and molecular mechanisms of AKI. In addition, specific AKI syndromes such as contrast-induced AKI, hepatorenal syndrome, and acute decompensated heart failure are discussed. The connection between AKI and subsequent chronic kidney disease and recent developments in renal replacement therapy are also covered. Results Novel biomarkers such as cystatin C and neutrophil gelatinase–associated lipocalin (NGAL) are being investigated to replace serum creatinine in the detection of AKI. Recent studies suggest that intravenous (IV) fluid use is beneficial for the prevention of contrast-induced AKI, while N-acetylcysteine use is not as well established. Diuretics are clearly beneficial in the treatment of acute decompensated heart failure. Ultrafiltration is less promising and can lead to adverse side effects. Although terlipressin use in hepatorenal syndrome is associated with reduced mortality, it is not available in the United States; combination therapy with midodrine, octreotide, and albumin provides an alternative. Fluid resuscitation is frequently used in critically ill patients with AKI; however, overly aggressive fluid resuscitation is frequently associated with an increased risk of mortality. A 3-step approach that combines guided fluid resuscitation, establishment of an even fluid balance, and an appropriate rate of fluid removal may be beneficial. If fluid resuscitation is needed, crystalloid solutions are preferred over hetastarch solutions. Renal replacement therapy is the last resort in AKI treatment, and timing, modality, and dosing are discussed. Research suggests that AKI leads to an increased incidence of subsequent chronic kidney disease. However, this relationship has not been fully

  16. Plasma FGF23 levels increase rapidly after acute kidney injury

    PubMed Central

    Christov, Marta; Waikar, Sushrut; Pereira, Renata; Havasi, Andrea; Leaf, David E.; Goltzman, David; Pajevic, Paola Divieti; Wolf, Myles; Jüppner, Harald

    2013-01-01

    Emerging evidence suggests that fibroblast growth factor 23 (FGF23) levels are elevated in patients with acute kidney injury (AKI). In order to determine how early this increase occurs we used a murine folic acid nephropathy model and found that plasma FGF23 levels increased significantly from baseline already after 1 hour of AKI, with an 18-fold increase at 24 hours. Similar elevations of FGF23 levels were found when AKI was induced in mice with osteocyte-specific parathyroid hormone receptor ablation or the global deletion of parathyroid hormone or vitamin D receptor, indicating that the increase in FGF23 was independent of parathyroid hormone and vitamin D signaling. Furthermore, FGF23 levels increased to a similar extent in wild-type mice maintained on normal or phosphate-depleted diets prior to induction of AKI, indicating that the marked FGF23 elevation is at least partially independent of dietary phosphate. Bone production of FGF23 was significantly increased in AKI. The half-life of intravenously administered recombinant FGF23 was only modestly increased. Consistent with the mouse data, plasma FGF23 levels rose 15.9-fold by 24 hours following cardiac surgery in patients who developed AKI. The levels were significantly higher than in those without postoperative AKI. Thus, circulating FGF23 levels rise rapidly during AKI in rodents and humans. In mice this increase is independent of established modulators of FGF23 secretion. PMID:23657144

  17. Bath salt intoxication causing acute kidney injury requiring hemodialysis.

    PubMed

    Regunath, Hariharan; Ariyamuthu, Venkatesh Kumar; Dalal, Pranavkumar; Misra, Madhukar

    2012-10-01

    Traditional bath salts contain a combination of inorganic salts like Epsom salts, table salt, baking soda, sodium metaphosphate, and borax that have cleansing properties. Since 2010, there have been rising concerns about a new type of substance abuse in the name of "bath salts." They are beta-ketone amphetamine analogs and are derivates of cathinone, a naturally occurring amphetamine analog found in the "khat" plant (Catha edulis). Effects reported with intake included increased energy, empathy, openness, and increased libido. Serious adverse effects reported with intoxication included cardiac, psychiatric, and neurological signs and symptoms. Not much is known about the toxicology and metabolism of these compounds. They inhibit monoamine reuptake (dopamine, nor epinephrine, etc.) and act as central nervous system stimulants with high additive and abuse potential because of their clinical and biochemical similarities to effects from use of cocaine, amphetamine, and 3,4-methylenedioxy-N-methylamphetamine. Deaths associated with use of these compounds have also been reported. We report a case of acute kidney injury associated with the use of "bath salt" pills that improved with hemodialysis. PMID:23036036

  18. MicroRNAs in acute kidney injury.

    PubMed

    Fan, Pei-Chun; Chen, Chia-Chun; Chen, Yung-Chang; Chang, Yu-Sun; Chu, Pao-Hsien

    2016-01-01

    Acute kidney injury (AKI) is an important clinical issue that is associated with significant morbidity and mortality. Despite research advances over the past decades, the complex pathophysiology of AKI is not fully understood. The regulatory mechanisms underlying post-AKI repair and fibrosis have not been clarified either. Furthermore, there is no definitively effective treatment for AKI. MicroRNAs (miRNAs) are endogenous single-stranded noncoding RNAs of 19~23 nucleotides that have been shown to be crucial to the post-transcriptional regulation of various cellular biological functions, including proliferation, differentiation, metabolism, and apoptosis. In addition to being fundamental to normal development and physiology, miRNAs also play important roles in various human diseases. In AKI, some miRNAs appear to act pathogenically by promoting inflammation, apoptosis, and fibrosis, while others may act protectively by exerting anti-inflammatory, anti-apoptotic, anti-fibrotic, and pro-angiogenic effects. Thus, miRNAs have not only emerged as novel biomarkers for AKI; they also hold promise to be potential therapeutic targets. PMID:27608623

  19. Montelukast attenuates lipopolysaccharide-induced cardiac injury in rats.

    PubMed

    Khodir, A E; Ghoneim, H A; Rahim, M A; Suddek, G M

    2016-04-01

    This study investigates the possible protective effects of montelukast (MNT) against lipopolysaccharide (LPS)-induced cardiac injury, in comparison to dexamethasone (DEX), a standard anti-inflammatory. Male Sprague Dawley rats (160-180 g) were assigned to five groups (n = 8/group): (1) control; (2) LPS (10 mg/kg, intraperitoneal (i.p.)); (3) LPS + MNT (10 mg/kg, per os (p.o.)); (4) LPS + MNT (20 mg/kg, p.o.); and (5) LPS + DEX (1 mg/kg, i.p.). Twenty-four hours after LPS injection, heart/body weight (BW) ratio and percent survival of rats were determined. Serum total protein, creatine kinase muscle/brain (CK-MB), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) activities were measured. Heart samples were taken for histological assessment and for determination of malondialdehyde (MDA) and glutathione (GSH) contents. Cardiac tumor necrosis factor α (TNF-α) expression was evaluated immunohistochemically. LPS significantly increased heart/BW ratio, serum CK-MB, ALP, and LDH activities and decreased percent survival and serum total protein levels. MDA content increased in heart tissues with a concomitant reduction in GSH content. Immunohistochemical staining of heart specimens from LPS-treated rats revealed high expression of TNF-α. MNT significantly reduced percent mortality and suppressed the release of inflammatory and oxidative stress markers when compared with LPS group. Additionally, MNT effectively preserved tissue morphology as evidenced by histological evaluation. MNT (20 mg/kg) was more effective in alleviating LPS-induced heart injury when compared with both MNT (10 mg/kg) and DEX (1 mg/kg), as evidenced by decrease in positive staining by TNF-α immunohistochemically, decrease MDA, and increase GSH content in heart tissue. This study demonstrates that MNT might have cardioprotective effects against the inflammatory process during endotoxemia. This effect can be attributed to its antioxidant and/or anti-inflammatory properties. PMID:26089034

  20. Inductive and Deductive Approaches to Acute Cell Injury

    PubMed Central

    DeGracia, Donald J.; Tri Anggraini, Fika; Taha, Doaa Taha Metwally; Huang, Zhi-Feng

    2014-01-01

    Many clinically relevant forms of acute injury, such as stroke, traumatic brain injury, and myocardial infarction, have resisted treatments to prevent cell death following injury. The clinical failures can be linked to the currently used inductive models based on biological specifics of the injury system. Here we contrast the application of inductive and deductive models of acute cell injury. Using brain ischemia as a case study, we discuss limitations in inductive inferences, including the inability to unambiguously assign cell death causality and the lack of a systematic quantitative framework. These limitations follow from an overemphasis on qualitative molecular pathways specific to the injured system. Our recently developed nonlinear dynamical theory of cell injury provides a generic, systematic approach to cell injury in which attractor states and system parameters are used to quantitatively characterize acute injury systems. The theoretical, empirical, and therapeutic implications of shifting to a deductive framework are discussed. We illustrate how a deductive mathematical framework offers tangible advantages over qualitative inductive models for the development of therapeutics of acutely injured biological systems. PMID:27437490

  1. [PARTICULAR QUALITIES OF DIAGNOSTIC ACUTE LATERAL ANKLE LIGAMENT INJURIES].

    PubMed

    Krasnoperov, S N; Shishka, I V; Golovaha, M L

    2015-01-01

    Delayed diagnosis of acute lateral ankle ligaments injury and subsequent inadequate treatment leads to the development of chronic instability and rapid progression of degenerative processes in the joint. The aim of our work was to improve treatment results by developing an diagnostic algorithm and treatment strategy of acute lateral ankle ligament injuries. The study included 48 patients with history of acute inversion ankle injury mechanism. Diagnostic protocol included clinical and radiological examination during 48 hours and after 7-10 days after injury. According to the high rate of inaccurate clinical diagnosis in the first 48 hours of the injury a short course of conservative treatment for 7-10 days is needed with follow-up and controlling clinical and radiographic instability tests. Clinical symptoms of ankle inversion injury showed that the combination of local tenderness in the projection of damaged ligaments, the presence of severe periarticular hematoma in the lateral department and positive anterior drawer and talar tilt tests in 7-10 days after the injury in 87% of cases shows the presence of ligament rupture. An algorithm for diagnosis of acute lateral ankle ligament injury was developed, which allowed us to determine differential indications for surgical repair of the ligaments and conservative treatment of these patients. PMID:27089717

  2. Expression of Tumor Necrosis Factor in Human Acute Cardiac Rejection

    PubMed Central

    Arbustini, Eloisa; Grasso, Maurizia; Diegoli, Marta; Bramerio, Manuela; Foglieni, Andrea Scotti; Albertario, Marco; Martinelli, Luigi; Gavazzi, Antonello; Goggi, Claudio; Campana, Carlo; Vigano, Mario

    1991-01-01

    The authors performed an immunohistochemical study on expression of tumor necrosis factor alpha (TNFα) in endomyocardial biopsies from human cardiac allografts. TNFα immunoreactivity was found in 45% biopsies with mild acute rejection, in 83% biopsies with focal moderate rejection, in 80% biopsies with diffuse moderate rejection. Biopsies with absent rejection did not show immunoreactive cells. In mild rejection, positive cells were few and scanty monocytes and macrophages (MAC-387 and LN5 positive cells) and T lymphocytes (UCHL-1/CD45 RO positive cells) (up to 20% of all infiltrating cells). Expression of major histocompatibility complex (MHC) class II antigens on infiltrating and endothelial cells occurred earlier and independent of TNFα reactivity. Number of immunoreactive cells increased in moderate rejection (up to 50%). Immunoreactivity was also present in nonpigmented macrophages in part of the biopsies with resolving rejection (45%). The authors conclude that TNFα is expressed in acute cardiac rejection by immunologically activated inflammatory cells. Immunoreactive cells increase in number with increasing severity of the reaction. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:1928295

  3. MRI in acute ligamentous injuries of the ankle.

    PubMed

    Martella, Ilenia; Azzali, Emanuele; Milanese, Gianluca; Praticò, Francesco Emanuele; Ruggirello, Margherita; Trunfio, Vincenzo; Parziale, Raffaele; Corrado, Michele; Della Casa, Giovanni; Capasso, Raffaella; De Filippo, Massimo

    2016-01-01

    Ankle sprains are the most common lower limb injuries and affect more frequently young athletes; imaging is needed for an accurate diagnosis of such traumatic injuries. The purpose of this review is to analyse the magnetic resonance (MR) findings of both normal and pathological ankle's ligaments; indeed, MRI is the gold standard for the diagnosis of acute traumatic injuries and is useful for differentiation of the causes of ankle instability as well as for pre-operative planning. PMID:27467862

  4. Unique aspects of downhill ski injuries part 2: diagnosis and acute management of specific injuries.

    PubMed

    Buck, P G; Sophocles, A M; Beckenbaugh, R D

    1982-04-01

    As in many sports, a wide spectrum of injuries is seen in skiing (Table 1). This includes injuries to the upper and lower extremities as well as miscellaneous injuries and medical problems (frostbite, hypothermia, and high altitude effects). Six relatively unique injuries in skiing will be presented in detail. The discussion will focus on the acute management of these injuries: subluxing peroneal tendons, fibular stress fractures, tibial shaft fractures (spiral, transverse), medical compartment knee injuries, anterior shoulder dislocations with associated greater tuberosity fractures, and gamekeeper's thumb. PMID:24822536

  5. Acute effects of carbon monoxide on cardiac electrical stability

    SciTech Connect

    Verrier, R.L.; Mills, A.K.; Skornik, W.A. )

    1990-10-01

    The objective of this project was to determine the effects of acute carbon monoxide exposure on cardiac electrical stability. To obtain a comprehensive assessment, diverse biological models were employed. These involved cardiac electrical testing in the normal and ischemic heart in anesthetized and conscious dogs. The experimental plan was designed both to examine the direct effects of carbon monoxide exposure on the myocardium and to evaluate possible indirect influences through alterations in platelet aggregability or changes in central nervous system activity in the conscious animal. Our results indicate that exposure to relatively high levels of carbon monoxide, leading to carboxyhemoglobin concentrations of up to 20 percent, is without significant effect on ventricular electrical stability. This appears to be the case in the acutely ischemic heart as well as in the normal heart. It is important to note that the total exposure period was in the range of 90 to 124 minutes. The possibility that longer periods of exposure or exacerbation from nicotine in cigarette smoke could have a deleterious effect cannot be excluded. We also examined whether or not alterations in platelet aggregability due to carbon monoxide exposure could be a predisposing factor for cardiac arrhythmias. A model involving partial coronary artery stenosis was used to simulate the conditions under which platelet plugs could lead to myocardial ischemia and life-threatening arrhythmias. We found no changes either in the cycle frequency of coronary blood flow oscillations or in platelet aggregability during carbon monoxide exposure. Thus, carbon monoxide exposure does not appear to alter platelet aggregability or its effect on coronary blood flow during stenosis. In the final series of experiments, we examined the effects of carbon monoxide exposure in the conscious state.

  6. Acute traumatic injuries in automotive manufacturing.

    PubMed

    Warner, M; Baker, S P; Li, G; Smith, G S

    1998-10-01

    Motor vehicle manufacturing, with its varied tasks, challenging work environment, and diverse worker populations, presents many hazards to employees. This study examined routinely collected surveillance data from a major motor vehicle manufacturer to identify injury types, high-risk workers, causes of injury, and factors associated with work loss. Injury and personnel data were used to calculate injury rates. Injury data were from the routinely collected medical and safety surveillance system on occupational injuries. The number of persons working in the plants was estimated using year-end personnel reports. Key word searches supplementing the analyses provided insight into the specific circumstances of injury. The most common injuries were sprains/strains (39% of the total), lacerations (22%), and contusions (15%). Forty-nine percent of the injuries resulted in one or more lost or restricted workdays; 25% resulted in 7 or more lost or restricted workdays. The injuries most likely to result in work loss were amputations, hernias and fractures. Sprains/strains accounted for 65% of all lost workdays. Injury rates ranged from 13.8 per 100 person-years at stamping plants to 28.7 at parts depots. Even within similar types of plants, injury rates varied widely, with a twofold difference among the individual assembly plants in overall injury rates. Injury surveillance systems with descriptive data on injury events shed light on the circumstances under which certain types of injuries occur and can provide the basis for preventive interventions. Sources of variation and potential biases are discussed, providing guidance for those interested in designing and using surveillance systems for occupational injuries. PMID:9750941

  7. Pediatric traumatic brain injury: acute and rehabilitation costs.

    PubMed

    Jaffe, K M; Massagli, T L; Martin, K M; Rivara, J B; Fay, G C; Polissar, N L

    1993-07-01

    Pediatric traumatic brain injury constitutes an enormous public health problem, but little is known about the economic costs of such injury. Using charges as a proxy for cost, we prospectively collected data on initial hospital charges and professional fees for emergency department services, acute inpatient care, and acute inpatient rehabilitation for 96 patients with mild, moderate, and severe traumatic brain injuries. We also examined the relationship between these costs and injury severity and etiology. Acute care and rehabilitation median costs were $5,233 per child, $11,478 for hospitalized children, and $230 for those only seen in the emergency department. Median costs for injuries due to motor vehicles, bicycles, and falls were $15,213, $6,311, and $792, respectively. Using Glasgow Coma Scale criteria, median cost of mild, moderate, and severe traumatic brain injuries were $598, $12,022, and $53,332, respectively. Injury etiology added modestly but significantly to the prediction of cost over and above that predicted by injury severity alone. Rehabilitation costs accounted for 37% of the total for all children, but 45% of those with the most severe injuries. PMID:8328886

  8. Recent advances in the understanding of acute kidney injury

    PubMed Central

    Tögel, Florian

    2014-01-01

    Acute kidney injury (AKI) is a common clinical entity associated with high morbidity and mortality and clinical costs. The pathophysiology is multifaceted and involves inflammation, tubular injury, and vascular damage. Recently identified components include necroptosis, a special form of cell death, and autophagy. Most of the pathophysiological knowledge is obtained from animal models but these do not directly reflect the reality of the clinical situation. Tubular cells have a remarkable capacity to regenerate, and the role of stem/progenitor cells is discussed. Acute kidney injury is frequently associated with chronic kidney disease, and the implications are widespread. PMID:25343040

  9. Apocynin Attenuates Cardiac Injury in Type 4 Cardiorenal Syndrome via Suppressing Cardiac Fibroblast Growth Factor-2 With Oxidative Stress Inhibition

    PubMed Central

    Liu, Yang; Liu, Yu; Liu, Xun; Chen, Jie; Zhang, Kun; Huang, Feifei; Wang, Jing-Feng; Tang, Wanchun; Huang, Hui

    2015-01-01

    Background Type 4 cardiorenal syndrome (CRS) refers to the cardiac injury induced by chronic kidney disease. We aimed to assess oxidative stress and cardiac injury in patients with type 4 CRS, determine whether the antioxidant apocynin attenuated cardiac injury in rats with type 4 CRS, and explore potential mechanisms. Methods and Results A cross-sectional study was conducted among patients with type 4 CRS (n=17) and controls (n=16). Compared with controls, patients with type 4 CRS showed elevated oxidative stress, which was significantly correlated with cardiac hypertrophy and decreased ejection fraction. In vivo study, male Sprague-Dawley rats underwent 5/6 subtotal nephrectomy and sham surgery, followed with apocynin or vehicle treatment for 8 weeks. Eight weeks after surgery, the 5/6 subtotal nephrectomy rats mimicked type 4 CRS, showing increased serum creatinine, cardiac hypertrophy and fibrosis, and decreased ejection fraction compared with sham-operated animals. Cardiac malondialdehyde, NADPH oxidase activity, fibroblast growth factor-2, and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation increased significantly in the 5/6 subtotal nephrectomy rats. These changes were significantly attenuated by apocynin. In vitro study showed that apocynin reduced angiotensin II–induced NADPH oxidase–dependent oxidative stress, upregulation of fibroblast growth factor-2 and fibrosis biomarkers, and ERK1/2 phosphorylation in cardiac fibroblasts. Importantly, the ERK1/2 inhibitor U0126 reduced the upregulation of fibroblast growth factor-2 and fibrosis biomarkers in angiotensin II–treated fibroblasts. Conclusions Oxidative stress is a candidate mediator for type 4 CRS. Apocynin attenuated cardiac injury in type 4 CRS rats via inhibiting NADPH oxidase–dependent oxidative stress-activated ERK1/2 pathway and subsequent fibroblast growth factor-2 upregulation. Our study added evidence to the beneficial effect of apocynin in type 4 CRS. PMID:26109504

  10. Molecular determinants of acute kidney injury

    PubMed Central

    Husi, Holger; Human, Christin

    2015-01-01

    Abstract: Background: Acute kidney injury (AKI) is a condition that leads to a rapid deterioration of renal function associated with impairment to maintain electrolyte and acid balance, and, if left untreated, ultimately irreversible kidney damage and renal necrosis. There are a number of causes that can trigger AKI, ranging from underlying conditions as well as trauma and surgery. Specifically, the global rise in surgical procedures led to a substantial increase of AKI incidence rates, which in turn impacts on mortality rates, quality of life and economic costs to the healthcare system. However, no effective therapy for AKI exists. Current approaches, such as pharmacological intervention, help in alleviating symptoms in slowing down the progression, but do not prevent or reverse AKI-induced organ damage. Methods: An in-depth understanding of the molecular machinery involved in and modulated by AKI induction and progression is necessary to specifically pharmacologically target key molecules. A major hurdle to devise a successful strategy is the multifactorial and complex nature of the disorder itself, whereby the activation of a number of seemingly independent molecular pathways in the kidney leads to apoptotic and necrotic events. Results: The renin-angiotensin-aldosterone-system (RAAS) axis appears to be a common element, leading to downstream events such as triggers of immune responses via the NFB pathway. Other pathways intricately linked with AKI-induction and progression are the tumor necrosis factor alpha (TNF α) and transforming growth factor beta (TGF β) signaling cascades, as well as a number of other modulators. Surprisingly, it has been shown that the involvement of the glutamatergic axis, believed to be mainly a component of the neurological system, is also a major contributor. Conclusions: Here we address the current understanding of the molecular pathways evoked in AKI, their interplay, and the potential to pharmacologically intervene in the

  11. Neurogenic stunned myocardium - do we consider this diagnosis in patients with acute central nervous system injury and acute heart failure?

    PubMed

    Mierzewska-Schmidt, Magdalena; Gawecka, Agnieszka

    2015-01-01

    Neurogenic stunned myocardium (NSM) is defined as myocardial injury and dysfunction of a sudden onset, occurring after various types of acute brain injury as a result of an imbalance in the autonomic nervous system. The typical spectrum of clinically observed abnormalities includes acute left ventricular failure, not uncommonly progressing to cardiogenic shock with hypotension that requires inotropic agents, pulmonary oedema and various arrhythmias. Commonly-seen electrocardiographic changes include: prolonged QT interval, ST segment changes, T-wave inversion, a new Q-wave or U-wave. Echocardiography shows both an impaired both systolic and diastolic function of the left ventricle. Biochemical markers of NSM comprise metabolic acidosis and increased cardiac enzymes and markers: creatine kinase (CK), and CK-MB, troponin I and B-type natriuretic peptide. The main cause of NSM is myocardial injury induced by local catecholamine release from nerve endings within the myocardium. Recently, a theory has been proposed to classify NSM as one of the stress-related cardiomyopathies, together with Takotsubo cardiomyopathy, acute left ventricular failure in the critically ill, cardiomyopathy associated with pheochromacytoma and exogenous catecholamine administration. The occurrence of NSM increases the risk of life-threatening complications, death, and worsens neurologic outcome. As far as we know, treatment should generally focus on the underlying neurologic process in order to maximize neurologic recovery. Improvement in neurologic pathology leads to rapid improvement in cardiac function and its full recovery, as NSM is a fully reversible condition if the patient survives. Awareness of the existence of NSM and a deeper knowledge of its etiopathology may reduce diagnostic errors, optimise its treatment. PMID:25940334

  12. Molecular mediators of favism-induced acute kidney injury.

    PubMed

    García-Camín, Rosa María; Goma, Montserrat; Osuna, Rosa García; Rubio-Navarro, Alfonso; Buendía, Irene; Ortiz, Alberto; Egido, Jesús; Manzarbeitia, Félix; Chevarria, Julio Leonel; Gluksmann, María Constanza; Moreno, Juan Antonio

    2014-03-01

    Intolerance to fava beans in subjects with glucose-6-phosphate-dehydrogenase deficiency (favism) may lead to severe hemolytic crises and decreased renal function. Renal biopsy findings exploring the molecular mechanisms of renal damage in favism have not been previously reported. We report a case of favism-associated acute kidney injury in which renal biopsy showed acute tubular necrosis and massive iron deposits in tubular cells. Interestingly, iron deposit areas were characterized by the presence of oxidative stress markers (NADPH-p22 phox and heme-oxigenase-1) and macrophages expressing the hemoglobin scavenger receptor CD163. In addition, iron deposits, NADPH-p22 phox, hemeoxigenase- 1 and CD163 positive cells were observed in some glomeruli. These results identify both glomerular and tubular involvement in favism-associated acute kidney injury and suggest novel therapeutic targets to prevent or accelerate recovery from acute kidney injury. PMID:23006341

  13. The incidence of acute hospital-treated eye injuries.

    PubMed

    Karlson, T A; Klein, B E

    1986-10-01

    Little information is available on the incidence and severity of eye injuries despite the disfigurement and vision loss they cause. From a population-based study in Dane County, Wisconsin, the incidence of acute hospital-treated eye injuries was 423/100,000 residents in 1979. The most common causes of eye injuries were assaults, work-related events, sports and recreational activities, motor vehicle crashes, and falls. Consumer products were involved in almost 70% (9/13) of severe eye injuries classified as severe. Injuries from fireworks were not found at all in this population. Implementing known strategies for eye injury prevention would substantially reduce their incidence. These include requiring certified eye protectors at workplaces and in sports activities whenever possible rather than making their use voluntary. For the preponderance of eye injuries, however, modifying potentially hazardous consumer products, including the interior of passenger cars, will be necessary. PMID:3767676

  14. Neuron specific enolase: a promising therapeutic target in acute spinal cord injury.

    PubMed

    Haque, Azizul; Ray, Swapan K; Cox, April; Banik, Naren L

    2016-06-01

    Enolase is a multifunctional protein, which is expressed abundantly in the cytosol. Upon stimulatory signals, enolase can traffic to cell surface and contribute to different pathologies including injury, autoimmunity, infection, inflammation, and cancer. Cell-surface expression of enolase is often detected on activated macrophages, microglia/macrophages, microglia, and astrocytes, promoting extracellular matrix degradation, production of pro-inflammatory cytokines/chemokines, and invasion of inflammatory cells in the sites of injury and inflammation. Inflammatory stimulation also induces translocation of enolase from the cytosolic pool to the cell surface where it can act as a plasminogen receptor and promote extracellular matrix degradation and tissue damage. Spinal cord injury (SCI) is a devastating debilitating condition characterized by progressive pathological changes including complex and evolving molecular cascades, and insights into the role of enolase in multiple inflammatory events have not yet been fully elucidated. Neuronal damage following SCI is associated with an elevation of neuron specific enolase (NSE), which is also known to play a role in the pathogenesis of hypoxic-ischemic brain injury. Thus, NSE is now considered as a biomarker in ischemic brain damage, and it has recently been suggested to be a biomarker in traumatic brain injury (TBI), stroke and anoxic encephalopathy after cardiac arrest and acute SCI as well. This review article gives an overview of the current basic research and clinical studies on the role of multifunctional enolase in neurotrauma, with a special emphasis on NSE in acute SCI. PMID:26847611

  15. Pericardiocentesis followed by thoracotomy and repair of penetrating cardiac injury caused by nail gun injury to the heart

    PubMed Central

    Chirumamilla, Vasu; Prabhakaran, Kartik; Patrizio, Petrone; Savino, John A.; Marini, Corrado P.; Zoha, Zobair

    2016-01-01

    Introduction Work site injuries involving high projectile tools such as nail guns can lead to catastrophic injuries. Generally, penetrating cardiac injuries are associated with a high mortality rate. Presentation of case A construction worker was brought to the emergency room having sustained a nail gun injury to the chest. The patient was hypotensive, tachycardic with prominent jugular venous distention, and had a profound lactic acidosis. Bedside ultrasound confirmed the presence of pericardial fluid. Pericardiocentesis was performed twice using a central venous catheter inserted into the pericardial space, resulting in improvement in the patient’s hemodynamics. Thereafter he underwent left anterolateral thoracotomy and repair of a right atrial laceration. He recovered uneventfully. Discussion Penetrating cardiac injuries caused by nail guns, although rare, have been previously described. However, pericardiocentesis, while retaining a role in the management of medical causes of cardiac tamponade, has been reported only sporadically in the setting of trauma. We report a rare case of penetrating nail gun injury to the heart where pericardiocentesis was used as a temporizing measure to stabilize the patient in preparation for definitive but timely operative intervention. Conclusion We propose awareness that percardiocentesis can serve as a temporary life saving measure in the setting of trauma, particularly as a bridge to definitive therapy. To our knowledge, this represents the first reported case of catheter pericardiocentesis used to stabilize a patient until definitive repair of a penetrating cardiac injury caused by a nail gun. PMID:27107304

  16. THE MECHANISM OF PARTICULATE MATTER (PM)-ASSOCIATED ZINC IN CARDIAC INJURY IN WISTAR KYOTO RATS.

    EPA Science Inventory

    We have recently found that inhaled combustion particulate matter (PM) with leachable zinc causes myocardial damage without significant pulmonary inflammation or remodeling; this damage is histologically demonstrable in Wistar Kyoto (WKY) rats. Cardiac injury from PM exposure can...

  17. Cardiac Dysfunction After Neurologic Injury: What Do We Know and Where Are We Going?

    PubMed

    Krishnamoorthy, Vijay; Mackensen, G Burkhard; Gibbons, Edward F; Vavilala, Monica S

    2016-05-01

    Recent literature has implicated severe neurologic injuries, such as aneurysmal subarachnoid hemorrhage, as a cause of cardiac dysfunction, impaired hemodynamic function, and poor outcomes. Mechanistic links between the brain and the heart have been explored in detail over the past several decades, and catecholamine excess, neuroendocrine dysfunction, and unchecked inflammation all likely contribute to the pathophysiologic process. Although cardiac dysfunction has also been described in other disease paradigms, including septic shock and thermal injury, there is likely a common underlying pathophysiology. In this review, we will examine the pathophysiology of cardiac dysfunction after neurologic injury, discuss the evidence surrounding cardiac dysfunction after different neurologic injuries, and suggest future research goals to gain knowledge and improve outcomes in this patient population. PMID:26836901

  18. Outcomes after emergency department thoracotomy for penetrating cardiac injuries: a new perspective.

    PubMed

    Molina, Ezequiel J; Gaughan, John P; Kulp, Heather; McClurken, James B; Goldberg, Amy J; Seamon, Mark J

    2008-10-01

    Previous reports have described penetrating cardiac injuries as the anatomic injury with the greatest opportunity for emergency department thoracotomy (EDT) survival. We hypothesize that actual survival rates are lower than that initially reported. A retrospective review of our EDT experience was performed. Data collected included injury mechanism and location, presence of measurable ED vital signs, initial ED cardiac rhythm, GCS, method of transportation, and survival. Logistic regression analysis identified predictors of survival. Ninety-four of 237 patients presented penetrating cardiac injuries after EDT. Eighty-nine patients (95%) were males. Measurable ED vital signs were present in 15 patients (16%). Cardiac injuries were caused by GSW in 82 patients (87%) and SW in 12 patients (13%). Fifteen patients (16%) survived EDT and were taken to the operating room, while eight patients (8%) survived their entire hospitalization. All survivors were neurologically intact. Survival rates were 5% for GSW and 33% for SW. Mechanism of injury (SW), prehospital transportation by police, higher GCS, sinus tachycardia, and measurable ED vital signs were associated with improved survival. In urban trauma centers where firearm injuries are much more common than stabbings, the presence of a penetrating cardiac injury may no longer be considered a predictor of survival after EDT. PMID:18653499

  19. MicroRNA 26a inhibits HMGB1 expression and attenuates cardiac ischemia-reperfusion injury.

    PubMed

    Yao, Li; Lv, Xin; Wang, Xiaohua

    2016-05-01

    Ischemia reperfusion (IR) injury is a major issue in cardiac transplantation and inflammatory processes play a major role in myocardial IR injury. MicroRNA 26a (Mir-26a) plays important roles in cellular differentiation, cell growth, cell apoptosis and metastasis. Mir-26a has been demonstrated to modulate regulatory T cells expansion and attenuates renal IR injury. However, the role of Mir-26a in the cardiac IR injury has never been investigated. In our study, hearts of C57BL/6 mice were flushed and stored in cold Bretschneider solution for 8 hours and then transplanted into syngeneic recipients. The results demonstrate a crucial role for Mir-26a in inhibiting high mobility group box-1 (HMGB1) expression and attenuating cardiac IR injury. Mir-26a overexpression results in attenuated cardiac IR injury and inhibited HMGB1 expression. Mir-26a also inhibits inflammatory cells infiltration and cytokines expression. Furthermore, the attenuated cardiac IR injury induced by Mir-26a was abrogated by additional administration of recombinant HMGB1 (rHMGB1). In conclusion, Mir-26a plays a protective role in cardiomyocyte IR injury and this is associated with inhibited HMGB1 expression. PMID:26320674

  20. Cardiac troponins as indicators of acute myocardial damage in dogs.

    PubMed

    Burgener, Iwan A; Kovacevic, Alan; Mauldin, G Neal; Lombard, Christophe W

    2006-01-01

    Cardiac troponin I (cTnI) and T (cTnT) have a high sequence homology across phyla and are sensitive and specific markers of myocardial damage. The purpose of this study was to evaluate the Cardiac Reader, a human point-of-care system for the determination of cTnT and myoglobin, and the Abbott Axsym System for the determination of cTnI and creatine kinase isoenzyme MB (CK-MB) in healthy dogs and in dogs at risk for acute myocardial damage because of gastric dilatation-volvulus (GDV) and blunt chest trauma (BCT). In healthy dogs (n = 56), cTnI was below detection limits (<0.1 microg/L) in 35 of 56 dogs (reference range 0-0.7 microg/L), and cTnT was not measurable (<0.05 ng/mL) in all but 1 dog. At presentation, cTnI, CK-MB, myoglobin, and lactic acid were all significantly higher in dogs with GDV (n = 28) and BCT (n = 8) than in control dogs (P < .001), but cTnT was significantly higher only in dogs with BCT (P = .033). Increased cTnI or cTnT values were found in 26 of 28 (highest values 1.1-369 microg/L) and 16 of 28 dogs (0.1-1.7 ng/mL) with GDV, and in 6 of 8 (2.3-82.4 microg/L) and 3 of 8 dogs (0.1-0.29 ng/mL) with BCT, respectively. In dogs suffering from GDV, cTnI and cTnT increased further within the first 48 hours (P < .001). Increased cardiac troponins suggestive of myocardial damage occurred in 93% of dogs with GDV and 75% with BCT. cTnI appeared more sensitive, but cTnT may be a negative prognostic indicator in GDV. Both systems tested seemed applicable for the measurement of canine cardiac troponins, with the Cardiac Reader particularly suitable for use in emergency settings. PMID:16594583

  1. Dissection of the right coronary artery following blunt cardiac injury

    PubMed Central

    Vogiatzis, I; Dapcevic, I

    2015-01-01

    Background Coronary artery dissection is a rare complication of blunt thoracic trauma which can become rapidly lethal necessitating prompt diagnosis and treatment. Most reported cases of coronary artery injury, including dissection, involve the left anterior descending coronary artery, given its anatomical location in relation to the impact. Description of case A 72-year-old male, who was involved in a vehicular accident, sustained blunt thoracic trauma which resulted in isolated right coronary artery dissection and acute myocardial infarction. The culprit lesion was found in coronary angiography in the proximal right coronary artery and was successfully repaired with percutaneous coronary intervention and one drug-eluting stent placement. Conclusion Traumatic dissection of coronary arteries must be suspected in blunt thoracic trauma. It can be treated with interventional management and results in a fairly good prognosis. Hippokratia 2015; 19 (3): 278-280. PMID:27418793

  2. Endovascular Treatment of Acute and Chronic Thoracic Aortic Injury

    SciTech Connect

    Raupach, Jan Ferko, Alexander; Lojik, Miroslav; Krajina, Antonin; Harrer, Jan; Dominik, Jan

    2007-11-15

    Our aim is to present midterm results after endovascular repair of acute and chronic blunt aortic injury. Between December 1999 and December 2005, 13 patients were endovascularly treated for blunt aortic injury. Ten patients, 8 men and 2 women, mean age 38.7 years, were treated for acute traumatic injury in the isthmus region of thoracic aorta. Stent-graftings were performed between the fifth hour and the sixth day after injury. Three patients (all males; mean age, 66 years; range, 59-71 years) were treated due to the presence of symptoms of chronic posttraumatic pseudoaneurysm of the thoracic aorta (mean time after injury, 29.4 years, range, 28-32). Fifteen stent-grafts were implanted in 13 patients. In the group with acute aortic injury one patient died due to failure of endovascular technique. Lower leg paraparesis appeared in one patient; the other eight patients were regularly followed up (1-72 months; mean, 35.6 months), without complications. In the group with posttraumatic pseudoaneurysms all three patients are alive. One patient suffered postoperatively from upper arm claudication, which was treated by carotidosubclavian bypass. We conclude that the endoluminal technique can be used successfully in the acute repair of aortic trauma and its consequences. Midterm results are satisfactory, with a low incidence of neurologic complications.

  3. Acute Kidney Injury is More Common in Acute Haemorrhagic Stroke in Mymensingh Medical College Hospital.

    PubMed

    Ray, N C; Chowdhury, M A; Sarkar, S R

    2016-01-01

    Acute kidney injury (AKI) is a common complication after acute stroke and is an independent predictor of both early and long-term mortality after acute stroke. Acute kidney injury is associated with increased mortality in haemorrhagic stroke patients. This cross sectional observational study was conducted in Nephrology, Neuromedicine and Medicine department of Mymensingh Medical College & Hospital, Mymensingh from July 2012 to June 2014. A total of 240 patients with newly detected acute stroke confirmed by CT scan of brain were included in this study. According to this study, 15.42% of acute stroke patients developed AKI. Among the patients with haemorrhagic stroke 21.87% developed AKI while only 13.07% patients with ischaemic stroke developed AKI. So, early diagnosis and management of AKI in patients with acute stroke especially in haemorrhagic stroke is very important to reduce the morbidity and mortality of these patients. PMID:26931240

  4. Bronchogenic Carcinoma with Cardiac Invasion Simulating Acute Myocardial Infarction

    PubMed Central

    Das, Anirban; Das, Sibes K.; Pandit, Sudipta; Karmakar, Rathindra Nath

    2016-01-01

    Cardiac metastases in bronchogenic carcinoma may occur due to retrograde lymphatic spread or by hematogenous dissemination of tumour cells, but direct invasion of heart by adjacent malignant lung mass is very uncommon. Pericardium is frequently involved in direct cardiac invasion by adjacent lung cancer. Pericardial effusion, pericarditis, and tamponade are common and life threatening presentation in such cases. But direct invasion of myocardium and endocardium is very uncommon. Left atrial endocardium is most commonly involved in such cases due to anatomical contiguity with pulmonary hilum through pulmonary veins, and in most cases left atrial involvement is asymptomatic. But myocardial compression and invasion by adjacent lung mass may result in myocardial ischemia and may present with retrosternal, oppressive chest pain which clinically may simulate with the acute myocardial infarction (AMI). As a result, it leads to misdiagnosis and delayed diagnosis of lung cancer. Here we report a case of non-small-cell carcinoma of right lung which was presented with asymptomatic invasion in left atrium and retrosternal chest pain simulating AMI due to myocardial compression by adjacent lung mass, in a seventy-four-year-old male smoker. PMID:27042370

  5. Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness.

    PubMed

    Müller, Anna E; Kreiner, Matthias; Kötter, Sebastian; Lassak, Philipp; Bloch, Wilhelm; Suhr, Frank; Krüger, Martina

    2014-01-01

    Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT) and PEVK (increases PT). Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15 min, untrained animals served as controls. Titin phosphorylation was determined by Western blot analysis using phosphospecific antibodies to Ser4099 and Ser4010 in the N2-Bus region (PKG and PKA-dependent. respectively), and to Ser11878 and Ser 12022 in the PEVK region (PKCα and CaMKIIδ-dependent, respectively). Passive tension was determined by step-wise stretching of isolated skinned cardiomyocytes to sarcomere length (SL) ranging from 1.9 to 2.4 μm and showed a significantly increased PT from exercised samples, compared to controls. In cardiac samples titin N2-Bus phosphorylation was significantly decreased by 40% at Ser4099, however, no significant changes were observed at Ser4010. PEVK phosphorylation at Ser11878 was significantly increased, which is probably mediated by the observed exercise-induced increase in PKCα activity. Interestingly, relative phosphorylation of Ser12022 was substantially decreased in the exercised samples. Surprisingly, in skeletal samples from acutely exercised animals we detected a significant decrease in PEVK phosphorylation at Ser11878 and an increase in Ser12022 phosphorylation; however, PKCα activity remained unchanged. In summary, our data show that a single exercise bout of 15 min affects titin domain phosphorylation and titin-based myocyte stiffness with obviously divergent effects in cardiac and skeletal muscle tissues. The observed changes in titin stiffness could play an important role in adapting the passive and active properties of the myocardium and the skeletal muscle to increased physical activity. PMID:25477822

  6. Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness

    PubMed Central

    Müller, Anna E.; Kreiner, Matthias; Kötter, Sebastian; Lassak, Philipp; Bloch, Wilhelm; Suhr, Frank; Krüger, Martina

    2014-01-01

    Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT) and PEVK (increases PT). Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15 min, untrained animals served as controls. Titin phosphorylation was determined by Western blot analysis using phosphospecific antibodies to Ser4099 and Ser4010 in the N2-Bus region (PKG and PKA-dependent. respectively), and to Ser11878 and Ser 12022 in the PEVK region (PKCα and CaMKIIδ-dependent, respectively). Passive tension was determined by step-wise stretching of isolated skinned cardiomyocytes to sarcomere length (SL) ranging from 1.9 to 2.4 μm and showed a significantly increased PT from exercised samples, compared to controls. In cardiac samples titin N2-Bus phosphorylation was significantly decreased by 40% at Ser4099, however, no significant changes were observed at Ser4010. PEVK phosphorylation at Ser11878 was significantly increased, which is probably mediated by the observed exercise-induced increase in PKCα activity. Interestingly, relative phosphorylation of Ser12022 was substantially decreased in the exercised samples. Surprisingly, in skeletal samples from acutely exercised animals we detected a significant decrease in PEVK phosphorylation at Ser11878 and an increase in Ser12022 phosphorylation; however, PKCα activity remained unchanged. In summary, our data show that a single exercise bout of 15 min affects titin domain phosphorylation and titin-based myocyte stiffness with obviously divergent effects in cardiac and skeletal muscle tissues. The observed changes in titin stiffness could play an important role in adapting the passive and active properties of the myocardium and the skeletal muscle to increased physical activity. PMID:25477822

  7. Acute blast injury reduces brain abeta in two rodent species.

    PubMed

    De Gasperi, Rita; Gama Sosa, Miguel A; Kim, Soong Ho; Steele, John W; Shaughness, Michael C; Maudlin-Jeronimo, Eric; Hall, Aaron A; Dekosky, Steven T; McCarron, Richard M; Nambiar, Madhusoodana P; Gandy, Sam; Ahlers, Stephen T; Elder, Gregory A

    2012-01-01

    Blast-induced traumatic brain injury (TBI) has been a major cause of morbidity and mortality in the conflicts in Iraq and Afghanistan. How the primary blast wave affects the brain is not well understood. In particular, it is unclear whether blast injures the brain through mechanisms similar to those found in non-blast closed impact injuries (nbTBI). The β-amyloid (Aβ) peptide associated with the development of Alzheimer's disease is elevated acutely following TBI in humans as well as in experimental animal models of nbTBI. We examined levels of brain Aβ following experimental blast injury using enzyme-linked immunosorbent assays for Aβ 40 and 42. In both rat and mouse models of blast injury, rather than being increased, endogenous rodent brain Aβ levels were decreased acutely following injury. Levels of the amyloid precursor protein (APP) were increased following blast exposure although there was no evidence of axonal pathology based on APP immunohistochemical staining. Unlike the findings in nbTBI animal models, levels of the β-secretase, β-site APP cleaving enzyme 1, and the γ-secretase component presenilin-1 were unchanged following blast exposure. These studies have implications for understanding the nature of blast injury to the brain. They also suggest that strategies aimed at lowering Aβ production may not be effective for treating acute blast injury to the brain. PMID:23267342

  8. [Acute and overuse injuries in elite paracycling - an epidemiological study].

    PubMed

    Kromer, P; Röcker, K; Sommer, A; Baur, H; Konstantinidis, L; Gollhofer, A; Südkamp, N P; Hirschmüller, A

    2011-09-01

    Although paracycling is a growing discipline in high level competitive sports as well as in posttraumatic rehabilitation, epidemiological data of resulting injuries is still missing. Therefore, 19 athletes of the German national paracycling team were asked about their injuries during the 2008 season using a standardized questionnaire. Overall, 18 (94.7 %) of 19 athletes reported overuse injuries; most commonly localized at the back (83.3 %), neck/shoulder (77.8 %), knee (50 %), groin/buttock (50 %) and hands/wrists (38.9 %). Altogether, 18 accidents were registered, corresponding to an injury rate of 0,95 acute injuries per athlete per year (0,07 / 1000 km). The most common acute injuries were abrasions (69.2 %) and contusions (61.5 %), whereas fractures were stated only twice (11.8 %). The anatomical distribution of overuse injuries in disabled cyclists confirms the results of studies in able-bodied cycling, although the incidences in low-back pain and neck/shoulder pain is clearly higher in disabled cycling, as well as the rate of traumatic injuries. PMID:21922439

  9. Monitoring plasma cardiac troponin I for the detection of myocardial injury after percutaneous transluminal coronary angioplasty.

    PubMed

    Ricchiuti, V; Shear, W S; Henry, T D; Paulsen, P R; Miller, E A; Apple, F S

    2000-12-01

    The objective of this study was to detect myocardial injury defined by an increase of plasma cardiac troponin I (cTnI) following percutaneous transluminal coronary angioplasty (PTCA) and compare plasma cTnI with the risk of cardiac complications at 30 days. Plasma cTnI, creatine kinase (CK) MB, and total CK were determined in 83 patients before (baseline) and 6, 12 and 24 h after PTCA. Thirty-eight patients underwent conventional PTCA, 39 PTCA-stent and six rotational atherectomy. Patients with acute myocardial infarction (AMI) and increased pre-procedural cTnI >0.8 microg/l were categorized into group 1 (n=23). The remaining 60 patients (pre-procedural cTnI=0.8 microg/l) were categorized as follows: group 2 (n=15) AMI; group 3 (n=20) unstable angina (UA); group 4 (n=25) coronary artery disease (CAD). Twelve hours post-procedure, all three cardiac markers were more frequently increased over baseline in group 2 patients (40-60%) compared to patients in group 3 (5-29%, P<0.03) or group 4 (0.5-5%, P<0.01). This was also true for patients undergoing PTCA-stent compared to conventional PTCA or rotational atherectomy (27-40 vs. 4-14%, P<0.02). cTnI was more sensitive (60%) to detect release of myocardial protein after PTCA compared to total CK (47%) or CKMB (43%). A moderate increase of cTnI (0.8-1.5 microg/l) in groups 2, 3 and 4 was associated with higher risk of complications 30 days post-procedure. PMID:11074073

  10. Acute assessment and management of burn injuries.

    PubMed

    Purdue, Gary F; Arnoldo, Brett D; Hunt, John L

    2011-05-01

    Burns are ubiquitous injuries in modern society, with virtually all adults having sustained a burn at some point in their lives. The skin is the largest organ of the body, basically functioning to protect self from non-self. Burn injury to the skin is painful, resource-intensive, and often associated with scarring, contracture formation, and long-term disability. Larger burns are associated with morbidity and mortality disproportionate to their initial appearance. Electrical and chemical burns are less common injuries but are often associated with significant morbidity. PMID:21624716

  11. Acute aortic dissection from cross-clamp injury.

    PubMed

    Litchford, B; Okies, J E; Sugimura, S; Starr, A

    1976-11-01

    Acute dissection of the ascending aorta secondary to cross-clamp injury can be successfully managed if the problem is recognized immediately. Bypass must be instituted after recannulation at a point distal to the innominate artery so that proper exposure of the site of injury can be obtained. Systemic as well as local hypothermia for myocardial preservation are both necessary. Direct suture closure of all layers at the site of dissection over Teflon felt can terminate this process. PMID:979312

  12. Ammonium dichromate poisoning: A rare cause of acute kidney injury

    PubMed Central

    Radhakrishnan, H.; Gopi, M.; Arumugam, A.

    2014-01-01

    Ammonium dichromate is an inorganic compound frequently used in screen and color printing. Being a strong oxidizing agent, it causes oxygen free radical injury resulting in organ failure. We report a 25-year-old female who presented with acute kidney injury after consumption of ammonium dichromate. She was managed successfully with hemodialysis and supportive measures. This case is reported to highlight the toxicity of ammonium dichromate. PMID:25484533

  13. Acute Management of Nutritional Demands after Spinal Cord Injury

    PubMed Central

    Thibault-Halman, Ginette; Casha, Steven; Singer, Shirley

    2011-01-01

    Abstract A systematic review of the literature was performed to address pertinent clinical questions regarding nutritional management in the setting of acute spinal cord injury (SCI). Specific metabolic challenges are present following spinal cord injury. The acute stage is characterized by a reduction in metabolic activity, as well as a negative nitrogen balance that cannot be corrected, even with aggressive nutritional support. Metabolic demands need to be accurately monitored to avoid overfeeding. Enteral feeding is the optimal route following SCI. When oral feeding is not possible, nasogastric, followed by nasojejunal, then by percutaneous endoscopic gastrostomy, if necessary, is suggested. PMID:20373845

  14. Heme oxygenase-1 expression protects the heart from acute injury caused by inducible Cre recombinase

    PubMed Central

    Hull, Travis D.; Bolisetty, Subashini; DeAlmeida, Angela; Litovsky, Silvio H.; Prabhu, Sumanth D.; Agarwal, Anupam; George, James F.

    2013-01-01

    The protective effect of heme oxygenase-1 (HO-1) expression in cardiovascular disease has been previously demonstrated using transgenic animal models in which HO-1 is constitutively overexpressed in the heart. However, the temporal requirements for protection by HO-1 induction relative to injury have not been investigated, but are essential to employ HO-1 as a therapeutic strategy in human cardiovascular disease states. Therefore, we generated mice with cardiac-specific, tamoxifen (TAM)-inducible overexpression of a human HO-1 (hHO-1) transgene (MHC-HO-1 mice) by breeding mice with cardiac-specific expression of a TAM-inducible Cre recombinase (MHC-Cre mice) with mice containing an hHO-1 transgene preceded by a floxed stop signal (CBA-flox mice). MHC-HO-1 overexpress the HO-1 gene and enzymatically protein following TAM administration (40 mg/kg body weight on two consecutive days). In MHC-Cre controls, TAM administration leads to severe, acute cardiac toxicity, cardiomyocyte necrosis, and 80% mortality by day 3. This cardiac toxicity is accompanied by a significant increase in inflammatory cells in the heart that are predominantly neutrophils. In MHC-HO-1 mice, HO-1 overexpression ameliorates the depression of cardiac function and high mortality rate observed in MHC-Cre mice following TAM administration and attenuates cardiomyocyte necrosis and neutrophil infiltration. These results highlight that HO-1 induction is sufficient to prevent the depression of cardiac function observed in mice with TAM-inducible Cre recombinase expression by protecting the heart from necrosis and neutrophil infiltration. These findings are important because MHC-Cre mice are widely used in cardiovascular research despite the limitations imposed by Cre-induced cardiac toxicity and also because inflammation is an important pathological component of many human cardiovascular diseases. PMID:23732814

  15. Heme oxygenase-1 expression protects the heart from acute injury caused by inducible Cre recombinase.

    PubMed

    Hull, Travis D; Bolisetty, Subhashini; DeAlmeida, Angela C; Litovsky, Silvio H; Prabhu, Sumanth D; Agarwal, Anupam; George, James F

    2013-08-01

    The protective effect of heme oxygenase-1 (HO-1) expression in cardiovascular disease has been previously demonstrated using transgenic animal models in which HO-1 is constitutively overexpressed in the heart. However, the temporal requirements for protection by HO-1 induction relative to injury have not been investigated, but are essential to employ HO-1 as a therapeutic strategy in human cardiovascular disease states. Therefore, we generated mice with cardiac-specific, tamoxifen (TAM)-inducible overexpression of a human HO-1 (hHO-1) transgene (myosin heavy chain (MHC)-HO-1 mice) by breeding mice with cardiac-specific expression of a TAM-inducible Cre recombinase (MHC-Cre mice), with mice containing an hHO-1 transgene preceded by a floxed-stop signal. MHC-HO-1 mice overexpress HO-1 mRNA and the enzymatically active protein following TAM administration (40 mg/kg body weight on 2 consecutive days). In MHC-Cre controls, TAM administration leads to severe, acute cardiac toxicity, cardiomyocyte necrosis, and 80% mortality by day 3. This cardiac toxicity is accompanied by a significant increase in inflammatory cells in the heart that are predominantly neutrophils. In MHC-HO-1 mice, HO-1 overexpression ameliorates the depression of cardiac function and high mortality rate observed in MHC-Cre mice following TAM administration and attenuates cardiomyocyte necrosis and neutrophil infiltration. These results highlight that HO-1 induction is sufficient to prevent the depression of cardiac function observed in mice with TAM-inducible Cre recombinase expression by protecting the heart from necrosis and neutrophil infiltration. These findings are important because MHC-Cre mice are widely used in cardiovascular research despite the limitations imposed by Cre-induced cardiac toxicity, and also because inflammation is an important pathological component of many human cardiovascular diseases. PMID:23732814

  16. Colchicine Acutely Suppresses Local Cardiac Production of Inflammatory Cytokines in Patients With an Acute Coronary Syndrome

    PubMed Central

    Martínez, Gonzalo J; Robertson, Stacy; Barraclough, Jennifer; Xia, Qiong; Mallat, Ziad; Bursill, Christina; Celermajer, David S; Patel, Sanjay

    2015-01-01

    Background Interleukin (IL)-1β, IL-18, and downstream IL-6 are key inflammatory cytokines in the pathogenesis of coronary artery disease. Colchicine is believed to block the NLRP3 inflammasome, a cytosolic complex responsible for the production of IL-1β and IL-18. In vivo effects of colchicine on cardiac cytokine release have not been previously studied. This study aimed to (1) assess the local cardiac production of inflammatory cytokines in patients with acute coronary syndromes (ACS), stable coronary artery disease and in controls; and (2) determine whether acute administration of colchicine inhibits their production. Methods and Results Forty ACS patients, 33 with stable coronary artery disease, and 10 controls, were included. ACS and stable coronary artery disease patients were randomized to oral colchicine treatment (1 mg followed by 0.5 mg 1 hour later) or no colchicine, 6 to 24 hours prior to cardiac catheterization. Blood samples from the coronary sinus, aortic root (arterial), and lower right atrium (venous) were collected and tested for IL-1β, IL-18, and IL-6 using ELISA. In ACS patients, coronary sinus levels of IL-1β, IL-18, and IL-6 were significantly higher than arterial and venous levels (P=0.017, <0.001 and <0.001, respectively). Transcoronary (coronary sinus-arterial) gradients for IL-1β, IL-18, and IL-6 were highest in ACS patients and lowest in controls (P=0.077, 0.033, and 0.014, respectively). Colchicine administration significantly reduced transcoronary gradients of all 3 cytokines in ACS patients by 40% to 88% (P=0.028, 0.032, and 0.032, for IL-1β, IL-18, and IL-6, respectively). Conclusions ACS patients exhibit increased local cardiac production of inflammatory cytokines. Short-term colchicine administration rapidly and significantly reduces levels of these cytokines. PMID:26304941

  17. Inhibition of miR-15 Protects Against Cardiac Ischemic Injury

    PubMed Central

    Hullinger, Thomas G.; Montgomery, Rusty L.; Seto, Anita G.; Dickinson, Brent A.; Semus, Hillary M.; Lynch, Joshua M.; Dalby, Christina M.; Robinson, Kathryn; Stack, Christianna; Latimer, Paul A.; Hare, Joshua M.; Olson, Eric N.; van Rooij, Eva

    2012-01-01

    Rationale Myocardial infarction (MI) is a leading cause of death worldwide. Because endogenous cardiac repair mechanisms are not sufficient for meaningful tissue regeneration, MI results in loss of cardiac tissue and detrimental remodeling events. MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression in a sequence dependent manner. Our previous data indicate that miRNAs are dysregulated in response to ischemic injury of the heart and actively contribute to cardiac remodeling after MI. Objective This study was designed to determine whether miRNAs are dysregulated on ischemic damage in porcine cardiac tissues and whether locked nucleic acid (LNA)-modified anti-miR chemistries can target cardiac expressed miRNAs to therapeutically inhibit miR-15 on ischemic injury. Methods and Results Our data indicate that the miR-15 family, which includes 6 closely related miRNAs, is regulated in the infarcted region of the heart in response to ischemia-reperfusion injury in mice and pigs. LNA-modified chemistries can effectively silence miR-15 family members in vitro and render cardiomyocytes resistant to hypoxia-induced cardiomyocyte cell death. Correspondingly, systemic delivery of miR-15 anti-miRs dose-dependently represses miR-15 in cardiac tissue of both mice and pigs, whereas therapeutic targeting of miR-15 in mice reduces infarct size and cardiac remodeling and enhances cardiac function in response to MI. Conclusions Oligonucleotide-based therapies using LNA-modified chemistries for modulating cardiac miRNAs in the setting of heart disease are efficacious and validate miR-15 as a potential therapeutic target for the manipulation of cardiac remodeling and function in the setting of ischemic injury. PMID:22052914

  18. Age-Related Differences in Cardiac Ischemia-Reperfusion Injury: Effects of Estrogen Deficiency

    PubMed Central

    Korzick, D.H.; Lancaster, T.S.

    2013-01-01

    Despite conflicting evidence for the efficacy of hormone replacement therapy in cardioprotection of postmenopausal women, numerous studies have demonstrated reductions in ischemia/reperfusion (I/R) injury following chronic or acute exogenous estradiol (E2) administration in adult male and female, gonad-intact and gonadectomized animals. It has become clear that ovariectomized adult animals may not accurately represent the combined effects of age and E2 deficiency on reductions in ischemic tolerance seen in the postmenopausal females. E2 is known to regulate the transcription of several cardioprotective genes. Acute, non-genomic E2 signaling can also activate many of the same signaling pathways recruited in cardioprotection. Alterations in cardioprotective gene expression or cardioprotective signal transduction are therefore likely to result within the context of aging and E2 deficiency, and may help explain the reduced ischemic tolerance and loss of cardioprotection in the senescent female heart. Quantification of the mitochondrial proteome as it adapts to advancing age and E2 deficiency may also represent a key experimental approach to uncover proteins associated with disruptions in cardiac signaling contributing to age-associated declines in ischemic tolerance. These alterations have important ramifications for understanding the increased morbidity and mortality due to ischemic cardiovascular disease seen in postmenopausal females. Functional perturbations that occur in mitochondrial respiration and Ca2+ sensitivity with age-associated E2 deficiency may also allow for the identification of alternative therapeutic targets for reducing I/R injury and treatment of the leading cause of death in postmenopausal women. PMID:23525672

  19. Severe but reversible acute kidney injury resulting from Amanita punctata poisoning

    PubMed Central

    Kang, Eunjung; Cheong, Ka-Young; Lee, Min-Jeong; Kim, Seirhan; Shin, Gyu-Tae; Kim, Heungsoo; Park, In-Whee

    2015-01-01

    Mushroom-related poisoning can cause acute kidney injury. Here we report a case of acute kidney injury after ingestion of Amanita punctata, which is considered an edible mushroom. Gastrointestinal symptoms occurred within 24 hours from the mushroom intake and were followed by an asymptomatic period, acute kidney injury, and elevation of liver and pancreatic enzymes. Kidney function recovered with supportive care. Nephrotoxic mushroom poisoning should be considered as a cause of acute kidney injury. PMID:26779427

  20. INHALATION OF OZONE AND DIESEL EXHAUST PARTICLES (DEP) INDUCES ACUTE AND REVERSIBLE CARDIAC GENE EXPRESSION CHANGES

    EPA Science Inventory

    We have recently shown that episodic but not acute exposure to ozone or DEP induces vascular effects that are associated with the loss of cardiac mitochondrial phospholipid fatty acids (DEP 2.0 mg/m3 > ozone, 0.4 ppm). In this study we determined ozone and DEP-induced cardiac gen...

  1. Dyselectrolytemia in acute kidney injury causing tetany and quadriparesis.

    PubMed

    Palkar, Atul Vijay; Mewada, Mayur; Thakur, Sonal; Shrivastava, Makardhwaj Sarvadaman

    2011-01-01

    A 40-year-old female, presented with prerenal acute kidney injury secondary to diarrhoea. With appropriate hydration, she went into diuretic phase and subsequently developed hypokalemic quadriparesis with hypocalcaemic tetany due to hypomagnesemia and subclinical vitamin D deficiency. The patient improved with oral potassium, magnesium, calcium and vitamin D supplementation. PMID:22674589

  2. Acute kidney injury and dermonecrosis after Loxosceles reclusa envenomation

    PubMed Central

    Nag, A.; Datta, J.; Das, A.; Agarwal, A. K.; Sinha, D.; Mondal, S.; Ete, T.; Chakraborty, A.; Ghosh, S.

    2014-01-01

    Spiders of the Loxosceles species can cause dermonecrosis and acute kidney injury (AKI). Hemolysis, rhabdomyolysis and direct toxin-mediated renal damage have been postulated. There are very few reports of Loxoscelism from India. We report a case of AKI, hemolysis and a “gravitational” pattern of ulceration following the bite of the brown recluse spider (Loxosceles spp). PMID:25097339

  3. Acute kidney injury and dermonecrosis after Loxosceles reclusa envenomation.

    PubMed

    Nag, A; Datta, J; Das, A; Agarwal, A K; Sinha, D; Mondal, S; Ete, T; Chakraborty, A; Ghosh, S

    2014-07-01

    Spiders of the Loxosceles species can cause dermonecrosis and acute kidney injury (AKI). Hemolysis, rhabdomyolysis and direct toxin-mediated renal damage have been postulated. There are very few reports of Loxoscelism from India. We report a case of AKI, hemolysis and a "gravitational" pattern of ulceration following the bite of the brown recluse spider (Loxosceles spp). PMID:25097339

  4. Pancreatitis-induced acute lung injury. An ARDS model.

    PubMed Central

    Guice, K S; Oldham, K T; Johnson, K J; Kunkel, R G; Morganroth, M L; Ward, P A

    1988-01-01

    Cerulein-induced acute pancreatitis in rats is associated with acute lung injury characterized by increased pulmonary microvascular permeability, increased wet lung weights, and histologic features of alveolar capillary endothelial cell and pulmonary parenchymal injury. The alveolar capillary permeability index is increased 1.8-fold after a 3-hour injury (0.30 to 0.54, p less than 0.05). Gravimetric analysis shows a similar 1.5-fold increase in wet lung weights at 3 hours (0.35% vs. 0.51% of total body weight, p less than 0.05). Histologic features assessed by quantitative morphometric analysis include significant intra-alveolar hemorrhage (0.57 +/- 0.08 vs. 0.12 +/- 0.02 RBC/alveolus at 6 hours, p less than 0.001); endothelial cell disruption (28.11% vs. 4.3%, p less than 0.001); and marked, early neutrophil infiltration (7.45 +/- 0.53 vs. 0.83 +/- 0.18 PMN/hpf at 3 hours, p less than 0.001). The cerulein peptide itself, a cholecystokinin (CCK) analog, is naturally occurring and is not toxic and in several in vitro settings including exposure to pulmonary artery endothelial cells, Type II epithelial cells, and an ex vivo perfused lung preparation. The occurrence of this ARDS-like acute lung injury with acute pancreatitis provides an excellent experimental model to investigate mechanisms and mediators involved in the pathogenesis of ARDS. Images Fig. 1. PMID:3389946

  5. Pancreatitis-induced acute lung injury. An ARDS model.

    PubMed

    Guice, K S; Oldham, K T; Johnson, K J; Kunkel, R G; Morganroth, M L; Ward, P A

    1988-07-01

    Cerulein-induced acute pancreatitis in rats is associated with acute lung injury characterized by increased pulmonary microvascular permeability, increased wet lung weights, and histologic features of alveolar capillary endothelial cell and pulmonary parenchymal injury. The alveolar capillary permeability index is increased 1.8-fold after a 3-hour injury (0.30 to 0.54, p less than 0.05). Gravimetric analysis shows a similar 1.5-fold increase in wet lung weights at 3 hours (0.35% vs. 0.51% of total body weight, p less than 0.05). Histologic features assessed by quantitative morphometric analysis include significant intra-alveolar hemorrhage (0.57 +/- 0.08 vs. 0.12 +/- 0.02 RBC/alveolus at 6 hours, p less than 0.001); endothelial cell disruption (28.11% vs. 4.3%, p less than 0.001); and marked, early neutrophil infiltration (7.45 +/- 0.53 vs. 0.83 +/- 0.18 PMN/hpf at 3 hours, p less than 0.001). The cerulein peptide itself, a cholecystokinin (CCK) analog, is naturally occurring and is not toxic and in several in vitro settings including exposure to pulmonary artery endothelial cells, Type II epithelial cells, and an ex vivo perfused lung preparation. The occurrence of this ARDS-like acute lung injury with acute pancreatitis provides an excellent experimental model to investigate mechanisms and mediators involved in the pathogenesis of ARDS. PMID:3389946

  6. Critical care in the emergency department: acute kidney injury.

    PubMed

    Nee, Patrick A; Bailey, David J; Todd, Victoria; Lewington, Andrew J; Wootten, Andrea E; Sim, Kevin J

    2016-05-01

    Acute kidney injury (AKI) is common among emergency department patients admitted to hospital. There is evidence of inadequate management of the condition leading to adverse outcomes. We present an illustrative case of AKI complicating a gastrointestinal disorder in an older adult. We discuss the clinical presentation, assessment and management of AKI with reference to recent consensus guidelines on classification and treatment. PMID:25969433

  7. Research Progress on Regulatory T Cells in Acute Kidney Injury

    PubMed Central

    Wang, Yamei; Tao, Yuhong

    2015-01-01

    Immune inflammation is crucial in mediating acute kidney injury (AKI). Immune cells of both the innate and adaptive immune systems substantially contribute to overall renal damage in AKI. Regulatory T cells (Tregs) are key regulator of immunological function and have been demonstrated to ameliorate injury in several murine experimental models of renal inflammation. Recent studies have illuminated the renal-protective function of Tregs in AKI. Tregs appear to exert beneficial effects in both the acute injury phase and the recovery phase of AKI. Additionally, Tregs-based immunotherapy may represent a promising approach to ameliorate AKI and promote recovery from AKI. This review will highlight the recent insights into the role of Tregs and their therapeutic potential in AKI. PMID:26273681

  8. Donor Heart Treatment With COMP-Ang1 Limits Ischemia-Reperfusion Injury and Rejection of Cardiac Allografts.

    PubMed

    Syrjälä, S O; Nykänen, A I; Tuuminen, R; Raissadati, A; Keränen, M A I; Arnaudova, R; Krebs, R; Koh, G Y; Alitalo, K; Lemström, K B

    2015-08-01

    The major cause of death during the first year after heart transplantation is primary graft dysfunction due to preservation and ischemia-reperfusion injury (IRI). Angiopoietin-1 is a Tie2 receptor-binding paracrine growth factor with anti-inflammatory properties and indispensable roles in vascular development and stability. We used a stable variant of angiopoietin-1 (COMP-Ang1) to test whether ex vivo intracoronary treatment with a single dose of COMP-Ang1 in donor Dark Agouti rat heart subjected to 4-h cold ischemia would prevent microvascular dysfunction and inflammatory responses in the fully allogeneic recipient Wistar Furth rat. COMP-Ang1 reduced endothelial cell-cell junction disruption of the donor heart in transmission electron microscopy during 4-h cold ischemia, improved myocardial reflow, and reduced microvascular leakage and cardiomyocyte injury of transplanted allografts during IRI. Concurrently, the treatment reduced expression of danger signals, dendritic cell maturation markers, endothelial cell adhesion molecule VCAM-1 and RhoA/Rho-associated protein kinase activation and the influx of macrophages and neutrophils. Furthermore, COMP-Ang1 treatment provided sustained anti-inflammatory effects during acute rejection and prevented the development of cardiac fibrosis and allograft vasculopathy. These results suggest donor heart treatment with COMP-Ang1 having important clinical implications in the prevention of primary and subsequent long-term injury and dysfunction in cardiac allografts. PMID:25932532

  9. Activation of mitochondrial calpain and increased cardiac injury: beyond AIF release.

    PubMed

    Thompson, Jeremy; Hu, Ying; Lesnefsky, Edward J; Chen, Qun

    2016-02-01

    Calpain 1 (CPN1) is a ubiquitous cysteine protease that exists in both cytosol and cardiac mitochondria. Mitochondrial CPN1 (mit-CPN1) is located in the intermembrane space and matrix. Activation of mit-CPN1 within the intermembrane space increases cardiac injury by releasing apoptosis-inducing factor from mitochondria during ischemia-reperfusion (IR). We asked if activation of mit-CPN1 is involved in mitochondrial injury during IR. MDL-28170 (MDL) was used to inhibit CPN1 in buffer-perfused hearts following 25-min ischemia and 30-min reperfusion. MDL treatment decreased the release of lactate dehydrogenase into coronary effluent compared with untreated hearts, indicating that inhibition of CPN1 decreases cardiac injury. MDL also prevented the cleavage of spectrin (a substrate of CPN1) in cytosol during IR, supporting that MDL treatment decreased cytosolic calpain activation. In addition, MDL markedly improved calcium retention capacity compared with untreated heart, suggesting that MDL treatment decreases mitochondrial permeability transition pore opening. In addition, we found that IR led to decreased complex I activity, whereas inhibition of mit-CPN1 using MDL protected complex I. Pyruvate dehydrogenase content was decreased following IR. However, pyruvate dehydrogenase content was preserved in MDL-treated mitochondria. Taken together, MDL treatment decreased cardiac injury during IR by inhibiting both cytosolic and mit-CPN1. Activation of mit-CPN1 increases cardiac injury during IR by sensitizing mitochondrial permeability transition pore opening and impairing mitochondrial metabolism through damage of complex I. PMID:26637561

  10. MOEMS-based cardiac enzymes detector for acute myocardial infarction

    NASA Astrophysics Data System (ADS)

    Amritsar, Jeetender; Stiharu, Ion G.; Packirisamy, Muthukumaran; Balagopal, Ganesharam; Li, Xing

    2004-10-01

    Biomedical applications of MOEMS are limited only by the mankind imagination. Precision measurements on minute amounts of biological material could be performed by optical means with a remarkable accuracy. Although available in medical laboratories for general purposes, such analyzers are making their way directly to the users in the form of dedicated equipment. Such an example is a test kit to detect the existence of cardiac enzymes in the blood stream. Apart from the direct users, the medical personnel will make use of such tools given the practicality of the kit. In a large proportion of patients admitted to the hospital suspected of Acute Myocardial Infarction (AMI), the symptoms and electrocardiographic changes are inconclusive. This necessitates the use of biochemical markers of myocardial damage for correct exclusion or conformation of AMI. In this study the concept of MOEMS is applied for the detection of enzyme reaction, in which glass spectrums are scanned optically when enzyme molecules adsorb on their surface. This paper presents the optical behavior of glass spectrums under Horseradish Peroxide (HRP) enzyme reaction. The reported experimental results provide valuable information that will be useful in the development of biosensors for enzymatic detection. This paper also reports the dynamic behavior of different glass spectrums.

  11. Transfusion-Related Acute Lung Injury: The Work of DAMPs*

    PubMed Central

    Land, Walter G.

    2013-01-01

    Current notions in immunology hold that not only pathogen-mediated tissue injury but any injury activates the innate immune system. In principle, this evolutionarily highly conserved, rapid first-line defense system responds to pathogen-induced injury with the creation of infectious inflammation, and non-pathogen-induced tissue injury with ‘sterile’ tissue inflammation. In this review, evidence has been collected in support of the notion that the transfusion-related acute lung injury induces a ‘sterile’ inflammation in the lung of transfused patients in terms of an acute innate inflammatory disease. The inflammatory response is mediated by the patient's innate immune cells including lung-passing neutrophils and pulmonary endothelial cells, which are equipped with pattern recognition receptors. These receptors are able to sense injury-induced, damage-associated molecular patterns (DAMPs) generated during collection, processing, and storage of blood/blood components. The recognition process leads to activation of these innate cells. A critical role for a protein complex known as the NLRP3 inflammasome has been suggested to be at the center of such a scenario. This complex undergoes an initial ‘priming’ step mediated by 1 class of DAMPs and then an ‘activating’ step mediated by another class of DAMPs to activate interleukin-1beta and interleukin-18. These 2 cytokines then promote, via transactivation, the formation of lung inflammation. PMID:23637644

  12. Accelerated recovery from acute brain injuries: clinical efficacy of neurotrophic treatment in stroke and traumatic brain injuries.

    PubMed

    Bornstein, N; Poon, W S

    2012-04-01

    Stroke is one of the most devastating vascular diseases in the world as it is responsible for almost five million deaths per year. Almost 90% of all strokes are ischemic and mainly due to atherosclerosis, cardiac embolism and small-vessel disease. Intracerebral or subarachnoid hemorrhage can lead to hemorrhagic stroke, which usually has the poorest prognosis. Cerebrolysin is a peptide preparation which mimics the action of a neurotrophic factor, protecting stroke-injured neurons and promoting neuroplasticity and neurogenesis. Cerebrolysin has been widely studied as a therapeutic tool for both ischemic and hemorrhagic stroke, as well as traumatic brain injury. In ischemic stroke, Cerebrolysin given as an adjuvant therapy to antiplatelet and rheologically active medication resulted in accelerated improvement in global, neurological and motor functions, cognitive performance and activities of daily living. Cerebrolysin was also safe and well tolerated when administered in patients suffering from hemorrhagic stroke. Traumatic brain injury leads to transient or chronic impairments in physical, cognitive, emotional and behavioral functions. This is associated with deficits in the recognition of basic emotions, the capacity to interpret the mental states of others, and executive functioning. Pilot clinical studies with adjuvant Cerebrolysin in the acute and postacute phases of the injury have shown faster recovery, which translates into an earlier onset of rehabilitation and shortened hospitalization time. PMID:22514794

  13. Racial and Ethnic Disparities in Mortality from Acute Lung Injury

    PubMed Central

    Erickson, Sara E.; Shlipak, Michael G.; Martin, Greg S.; Wheeler, Arthur P.; Ancukiewicz, Marek; Matthay, Michael A.; Eisner, Mark D.

    2009-01-01

    Objective: Little is known about the influence of race and ethnicity on mortality from acute lung injury. We sought to determine whether black race or Hispanic ethnicity are independently associated with mortality among patients with acute lung injury. Design: Retrospective cohort study of patients enrolled in the Acute Respiratory Distress Syndrome (ARDS) Network randomized controlled trials. Setting: Adult intensive care units participating in the ARDS Network trials. Patients: 2362 mechanically ventilated patients (1,715 white, 449 black and 198 Hispanic) with acute lung injury. Measurements and Main Results: The primary outcome was 60-day mortality. A secondary outcome was number of ventilator-free days. Crude mortality was 33% for both blacks and Hispanics compared with 27% for whites (p=0.02). After adjusting for demographic and clinical covariates, the association between race/ethnicity and mortality persisted (OR = 1.42; 95% CI 1.10-1.84 for blacks; OR=1.94; 95% CI, 1.36-2.77 for Hispanics; OR=1 for whites, reference). After adjustment for severity of illness (Acute Physiology Score), black race was no longer significantly associated with mortality (OR =1.25; 95% CI, 0.95-1.66), whereas the association with Hispanic ethnicity persisted (OR=2.00; 95% CI, 1.37-2.90). Hispanics had significantly fewer ventilator-free days compared with whites after adjustment for demographic and clinical covariates (mean difference in days = -2.3; 95% CI -3.9 to -0.7). Conclusions: Black and Hispanic patients with acute lung injury have a significantly higher risk of death compared to white patients. This increased risk appeared to be mediated by increased severity of illness at presentation for blacks, but was unexplained among Hispanics. PMID:19050621

  14. Incidence of acute volleyball injuries: a prospective cohort study of injury mechanisms and risk factors.

    PubMed

    Bahr, R; Bahr, I A

    1997-06-01

    The purpose of the study was to examine the incidence and mechanisms of acute volleyball injuries, with particular reference to possible risk factors for ankle injuries. Coaches and players in the top two divisions of the Norwegian Volleyball Federation were asked to keep records of exposure time and all acute volleyball injuries causing a player to miss at least one playing day during one season. We found 89 injuries among 272 players during 51588 player hours, 45837 h of training and 5751 h of match play. The total injury incidence was 1.7 +/- 0.2 per 1000 h of play, 1.5 +/- 0.2 during training and 3.5 +/- 0.8 during match play. The ankle (54%) was the most commonly injured region, followed by the lower back (11%), knee (8%), shoulder (8%) and fingers (7%). Of the ankle injuries, 79% were recurrences, and the relative risk of injury was 3.8 (P < 0.0001) for previously injured ankles (38 of 232) vs. non-injured ankles (10 of the 234). Moreover, a reinjury was observed in 21 of the 50 ankles that had suffered an ankle sprain within the last 6 months (42.0 +/- 7.0%; risk ratio: 9.8 vs. uninjured ankles; P < 0.000001). The data indicate that external supports should be worn for 6-12 months after an ankle sprain and that specific injury prevention programs may be developed for ankle sprains in volleyball. PMID:9200321

  15. Understanding acute ankle ligamentous sprain injury in sports

    PubMed Central

    Fong, Daniel TP; Chan, Yue-Yan; Mok, Kam-Ming; Yung, Patrick SH; Chan, Kai-Ming

    2009-01-01

    This paper summarizes the current understanding on acute ankle sprain injury, which is the most common acute sport trauma, accounting for about 14% of all sport-related injuries. Among, 80% are ligamentous sprains caused by explosive inversion or supination. The injury motion often happens at the subtalar joint and tears the anterior talofibular ligament (ATFL) which possesses the lowest ultimate load among the lateral ligaments at the ankle. For extrinsic risk factors to ankle sprain injury, prescribing orthosis decreases the risk while increased exercise intensity in soccer raises the risk. For intrinsic factors, a foot size with increased width, an increased ankle eversion to inversion strength, plantarflexion strength and ratio between dorsiflexion and plantarflexion strength, and limb dominance could increase the ankle sprain injury risk. Players with a previous sprain history, players wearing shoes with air cells, players who do not stretch before exercising, players with inferior single leg balance, and overweight players are 4.9, 4.3, 2.6, 2.4 and 3.9 times more likely to sustain an ankle sprain injury. The aetiology of most ankle sprain injuries is incorrect foot positioning at landing – a medially-deviated vertical ground reaction force causes an explosive supination or inversion moment at the subtalar joint in a short time (about 50 ms). Another aetiology is the delayed reaction time of the peroneal muscles at the lateral aspect of the ankle (60–90 ms). The failure supination or inversion torque is about 41–45 Nm to cause ligamentous rupture in simulated spraining tests on cadaver. A previous case report revealed that the ankle joint reached 48 degrees inversion and 10 degrees internal rotation during an accidental grade I ankle ligamentous sprain injury during a dynamic cutting trial in laboratory. Diagnosis techniques and grading systems vary, but the management of ankle ligamentous sprain injury is mainly conservative. Immobilization should not

  16. Acute care management of spinal cord injuries.

    PubMed

    Mitcho, K; Yanko, J R

    1999-08-01

    Meeting the health care needs of the spinal cord-injured patient is an immense challenge for the acute care multidisciplinary team. The critical care nurse clinician, as well as other members of the team, needs to maintain a comprehensive knowledge base to provide the care management that is essential to the care of the spinal cord-injured patient. With the active participation of the patient and family in care delivery decisions, the health care professionals can help to meet the psychosocial and physical needs of the patient/family unit. This article provides an evidence-based, comprehensive review of the needs of the spinal cord-injured patient in the acute care setting including optimal patient outcomes, methods to prevent complications, and a plan that provides an expeditious transition to rehabilitation. PMID:10646444

  17. MicroRNAs: Novel regulatory molecules in acute lung injury/acute respiratory distress syndrome

    PubMed Central

    CAO, YONGMEI; LYU, YI; TANG, JIAHUA; LI, YINGCHUAN

    2016-01-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome (ARDS) are common and complex inflammatory lung diseases. MicroRNAs (miRNAs), a type of non-coding RNA molecule that regulate gene expression at the post-transcriptional level, have emerged as a novel class of gene regulators, which have critical roles in a wide range of human disorders and diseases, including ALI. Certain types of miRNAs are abnormally expressed in response to lung injury. miRNAs can regulate inflammation pathways by targeting specific molecules and modulate immune response in the process of lung injury and repair. The regulation of miRNA can relieve injury response and promote the recovery of ALI/ARDS. Therefore, miRNAs may serve as novel therapeutic targets in ALI/ARDS. PMID:27123242

  18. Application of new acute kidney injury biomarkers in human randomized controlled trials.

    PubMed

    Parikh, Chirag R; Moledina, Dennis G; Coca, Steven G; Thiessen-Philbrook, Heather R; Garg, Amit X

    2016-06-01

    The use of novel biomarkers of acute kidney injury (AKI) in clinical trials may help evaluate treatments for AKI. Here we explore potential applications of biomarkers in simulated clinical trials of AKI using data from the TRIBE-AKI multicenter, prospective cohort study of patients undergoing cardiac surgery. First, in a hypothetical trial of an effective therapy at the time of acute tubular necrosis to prevent kidney injury progression, use of an indirect kidney injury marker such as creatinine compared to a new direct biomarker of kidney injury reduces the proportion of true acute tubular necrosis cases enrolled. The result is a lower observed relative risk reduction with the therapy, and lower statistical power to detect a therapy effect at a given sample size. Second, the addition of AKI biomarkers (interleukin-18 and NGAL) to clinical risk factors as eligibility criteria for trial enrollment in early AKI has the potential to increase the proportion of patients who will experience AKI progression and reduce trial cost. Third, we examine AKI biomarkers as outcome measures for the purposes of identifying therapies that warrant further testing in larger, multicenter, multi-country trials. In the hypothetical trial of lower cardiopulmonary bypass time to reduce the risk of postoperative AKI, the sample size required to detect a reduction in AKI is lower if new biomarkers are used to define AKI rather than serum creatinine. Thus, incorporation of new biomarkers of AKI has the potential to increase statistical power, decrease the sample size, and lower the cost of AKI trials. PMID:27165835

  19. KIM-1-mediated phagocytosis reduces acute injury to the kidney.

    PubMed

    Yang, Li; Brooks, Craig R; Xiao, Sheng; Sabbisetti, Venkata; Yeung, Melissa Y; Hsiao, Li-Li; Ichimura, Takaharu; Kuchroo, Vijay; Bonventre, Joseph V

    2015-04-01

    Kidney injury molecule 1 (KIM-1, also known as TIM-1) is markedly upregulated in the proximal tubule after injury and is maladaptive when chronically expressed. Here, we determined that early in the injury process, however, KIM-1 expression is antiinflammatory due to its mediation of phagocytic processes in tubule cells. Using various models of acute kidney injury (AKI) and mice expressing mutant forms of KIM-1, we demonstrated a mucin domain-dependent protective effect of epithelial KIM-1 expression that involves downregulation of innate immunity. Deletion of the mucin domain markedly impaired KIM-1-mediated phagocytic function, resulting in increased proinflammatory cytokine production, decreased antiinflammatory growth factor secretion by proximal epithelial cells, and a subsequent increase in tissue macrophages. Mice expressing KIM-1Δmucin had greater functional impairment, inflammatory responses, and mortality in response to ischemia- and cisplatin-induced AKI. Compared with primary renal proximal tubule cells isolated from KIM-1Δmucin mice, those from WT mice had reduced proinflammatory cytokine secretion and impaired macrophage activation. The antiinflammatory effect of KIM-1 expression was due to the interaction of KIM-1 with p85 and subsequent PI3K-dependent downmodulation of NF-κB. Hence, KIM-1-mediated epithelial cell phagocytosis of apoptotic cells protects the kidney after acute injury by downregulating innate immunity and inflammation. PMID:25751064

  20. Demographics of acute admissions to a National Spinal Injuries Unit

    PubMed Central

    Boran, S.; Street, J.; Higgins, T.; McCormack, D.; Poynton, A. R.

    2009-01-01

    This prospective demographic study was undertaken to review the epidemiology and demographics of all acute admissions to the National Spinal Injuries Unit in Ireland for the 5 years to 2003. The study was conducted at the National Spinal Injuries Unit, Mater Miscericordiae University Hospital, Dublin, Ireland. Records of all patients admitted to our unit from 1999 to 2003 were compiled from a prospective computerized spinal database. In this 5-year period, 942 patients were acutely hospitalized at the National Spinal Injuries Unit. There were 686 (73%) males and 256 (27%) females, with an average age of 32 years (range 16–84 years). The leading cause of admission with a spinal injury was road traffic accidents (42%), followed by falls (35%), sport (11%), neoplasia (7.5%) and miscellaneous (4.5%). The cervical spine was most commonly affected (51%), followed by lumbar (28%) and thoracic (21%). On admission 38% of patients were ASIA D or worse, of which one-third were AISA A. Understanding of the demographics of spinal column injuries in unique populations can help us to develop preventative and treatment strategies at both national and international levels. PMID:19283414

  1. Utilization and cost of a new model of care for managing acute knee injuries: the Calgary acute knee injury clinic

    PubMed Central

    2012-01-01

    Background Musculoskeletal disorders (MSDs) affect a large proportion of the Canadian population and present a huge problem that continues to strain primary healthcare resources. Currently, the Canadian healthcare system depicts a clinical care pathway for MSDs that is inefficient and ineffective. Therefore, a new inter-disciplinary team-based model of care for managing acute knee injuries was developed in Calgary, Alberta, Canada: the Calgary Acute Knee Injury Clinic (C-AKIC). The goal of this paper is to evaluate and report on the appropriateness, efficiency, and effectiveness of the C-AKIC through healthcare utilization and costs associated with acute knee injuries. Methods This quasi-experimental study measured and evaluated cost and utilization associated with specific healthcare services for patients presenting with acute knee injuries. The goal was to compare patients receiving care from two clinical care pathways: the existing pathway (i.e. comparison group) and a new model, the C-AKIC (i.e. experimental group). This was accomplished through the use of a Healthcare Access and Patient Satisfaction Questionnaire (HAPSQ). Results Data from 138 questionnaires were analyzed in the experimental group and 136 in the comparison group. A post-hoc analysis determined that both groups were statistically similar in socio-demographic characteristics. With respect to utilization, patients receiving care through the C-AKIC used significantly less resources. Overall, patients receiving care through the C-AKIC incurred 37% of the cost of patients with knee injuries in the comparison group and significantly incurred less costs when compared to the comparison group. The total aggregate average cost for the C-AKIC group was $2,549.59 compared to $6,954.33 for the comparison group (p <.001). Conclusions The Calgary Acute Knee Injury Clinic was able to manage and treat knee injured patients for less cost than the existing state of healthcare delivery. The combined results from

  2. Paeoniflorin ameliorates acute necrotizing pancreatitis and pancreatitis‑induced acute renal injury.

    PubMed

    Wang, Peng; Wang, Weixing; Shi, Qiao; Zhao, Liang; Mei, Fangchao; Li, Chen; Zuo, Teng; He, Xiaobo

    2016-08-01

    Acute renal injury caused by acute necrotizing pancreatitis (ANP) is a common complication that is associated with a high rate of mortality. Paeoniflorin is the active ingredient of paeonia radix and exhibits a number of pharmacological effects, such as anti‑inflammatory, anticancer, analgesic and immunomodulatory effects. The present study detected the potential treatment effects of paeoniflorin on acute renal injury induced by ANP in a rat model. The optimal dose of paeoniflorin for preventing acute renal injury induced by ANP was determined. Then, the possible protective mechanism of paeoniflorin was investigated. The serum levels of tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β and IL‑6 were measured with enzyme‑linked immunosorbent assay kits. Renal inflammation and apoptosis were measured by immunohistochemistry and terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling assay. The expression of nitric oxide in kidney tissues was also evaluated. The p38 mitogen‑activated protein kinases (MAPKs) were measured by western blotting. The results shown that paeoniflorin may ameliorate acute renal injury following ANP in rats by inhibiting inflammatory responses and renal cell apoptosis. These effects may be associated with the p38MAPK and nuclear factor‑κB signal pathway. PMID:27279569

  3. Paeoniflorin ameliorates acute necrotizing pancreatitis and pancreatitis-induced acute renal injury

    PubMed Central

    Wang, Peng; Wang, Weixing; Shi, Qiao; Zhao, Liang; Mei, Fangchao; Li, Chen; Zuo, Teng; He, Xiaobo

    2016-01-01

    Acute renal injury caused by acute necrotizing pancreatitis (ANP) is a common complication that is associated with a high rate of mortality. Paeoniflorin is the active ingredient of paeonia radix and exhibits a number of pharmacological effects, such as anti-inflammatory, anticancer, analgesic and immunomodulatory effects. The present study detected the potential treatment effects of paeoniflorin on acute renal injury induced by ANP in a rat model. The optimal dose of paeoniflorin for preventing acute renal injury induced by ANP was determined. Then, the possible protective mechanism of paeoniflorin was investigated. The serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were measured with enzyme-linked immunosorbent assay kits. Renal inflammation and apoptosis were measured by immunohistochemistry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The expression of nitric oxide in kidney tissues was also evaluated. The p38 mitogen-activated protein kinases (MAPKs) were measured by western blotting. The results shown that paeoniflorin may ameliorate acute renal injury following ANP in rats by inhibiting inflammatory responses and renal cell apoptosis. These effects may be associated with the p38MAPK and nuclear factor-κB signal pathway. PMID:27279569

  4. Is Progressive Chronic Kidney Disease a Slow Acute Kidney Injury?

    PubMed

    Cowgill, Larry D; Polzin, David J; Elliott, Jonathan; Nabity, Mary B; Segev, Gilad; Grauer, Gregory F; Brown, Scott; Langston, Cathy; van Dongen, Astrid M

    2016-11-01

    International Renal Interest Society chronic kidney disease Stage 1 and acute kidney injury Grade I categorizations of kidney disease are often confused or ignored because patients are nonazotemic and generally asymptomatic. Recent evidence suggests these seemingly disparate conditions may be mechanistically linked and interrelated. Active kidney injury biomarkers have the potential to establish a new understanding for traditional views of chronic kidney disease, including its early identification and possible mediators of its progression, which, if validated, would establish a new and sophisticated paradigm for the understanding and approach to the diagnostic evaluation, and treatment of urinary disease in dogs and cats. PMID:27593574

  5. Tracheoinnominate fistula: a rare acute complication of penetrating neck injury.

    PubMed

    Kulyapina, Alena; Díaz, Dolores Pérez; Rodríguez, Teresa Sanchez; Fuentes, Fernando Turegano

    2015-05-01

    Penetrating injuries in the base of the neck are considered to be the most dangerous due to the potential combination of vascular and intrathoracic lesions. We describe an extremely rare case of combined injury of the trachea and innominate artery, which resulted in formation of a traumatic acute tracheoinnominate fistula. Previously, these fistulas have been described as an iatrogenic complication of tracheostomy, presenting with massive peristomal bleed or hemoptysis. This case demonstrates that a combination of lesions to vital anatomical structures in the neck can change their clinical presentation, making them extremely difficult to diagnose. PMID:24948779

  6. Genome-wide association mapping of acute lung injury in neonatal inbred mice

    PubMed Central

    Nichols, Jennifer L.; Gladwell, Wesley; Verhein, Kirsten C.; Cho, Hye-Youn; Wess, Jürgen; Suzuki, Oscar; Wiltshire, Tim; Kleeberger, Steven R.

    2014-01-01

    Reactive oxygen species (ROS) contribute to the pathogenesis of many acute and chronic pulmonary disorders, including bronchopulmonary dysplasia (BPD), a respiratory condition that affects preterm infants. However, the mechanisms of susceptibility to oxidant stress in neonatal lungs are not completely understood. We evaluated the role of genetic background in response to oxidant stress in the neonatal lung by exposing mice from 36 inbred strains to hyperoxia (95% O2) for 72 h after birth. Hyperoxia-induced lung injury was evaluated by using bronchoalveolar lavage fluid (BALF) analysis and pathology. Statistically significant interstrain variation was found for BALF inflammatory cells and protein (heritability estimates range: 33.6–55.7%). Genome-wide association mapping using injury phenotypes identified quantitative trait loci (QTLs) on chromosomes 1, 2, 4, 6, and 7. Comparative mapping of the chromosome 6 QTLs identified Chrm2 (cholinergic receptor, muscarinic 2, cardiac) as a candidate susceptibility gene, and mouse strains with a nonsynonymous coding single-nucleotide polymorphism (SNP) in Chrm2 that causes an amino acid substitution (P265L) had significantly reduced hyperoxia-induced inflammation compared to strains without the SNP. Further, hyperoxia-induced lung injury was significantly reduced in neonatal mice with targeted deletion of Chrm2, relative to wild-type controls. This study has important implications for understanding the mechanisms of oxidative lung injury in neonates.—Nichols, J. L., Gladwell, W., Verhein, K. C., Cho, H.-Y., Wess, J., Suzuki, O., Wiltshire, T., Kleeberger, S. R. Genome-wide association mapping of acute lung injury in neonatal inbred mice. PMID:24571919

  7. The perfect storm: older adults and acute kidney injury.

    PubMed

    Hain, Debra; Paixao, Rute

    2015-01-01

    Older adults have a high risk for acute kidney injury (AKI), often necessitating critical care admission. The majority of older adults live with 1 or more chronic conditions requiring multiple medications, and when faced with acute illness increased vulnerability can lead to poor health outcomes. When combined with circumstances that exacerbate chronic conditions, clinicians may witness the perfect storm. Some factors that contribute to AKI risk include the aging kidney, sepsis, polypharmacy, and nephrotoxic medications and contrast media. This paper discusses specific risks and approaches to care for older adults with AKI who are in critical care. PMID:26039649

  8. The Role of Chemokines in Acute Liver Injury

    PubMed Central

    Saiman, Yedidya; Friedman, Scott L.

    2012-01-01

    Chemokines are small molecular weight proteins primarily known to drive migration of immune cell populations. In both acute and chronic liver injury, hepatic chemokine expression is induced resulting in inflammatory cell infiltration, angiogenesis, and cell activation and survival. During acute injury, massive parenchymal cell death due to apoptosis and/or necrosis leads to chemokine production by hepatocytes, cholangiocytes, Kupffer cells, hepatic stellate cells, and sinusoidal endothelial cells. The specific chemokine profile expressed during injury is dependent on both the type and course of injury. Hepatotoxicity by acetaminophen for example leads to cellular necrosis and activation of Toll-like receptors while the inciting insult in ischemia reperfusion injury produces reactive oxygen species and subsequent production of pro-inflammatory chemokines. Chemokine expression by these cells generates a chemoattractant gradient promoting infiltration by monocytes/macrophages, NK cells, NKT cells, neutrophils, B cells, and T cells whose activity are highly regulated by the specific chemokine profiles within the liver. Additionally, resident hepatic cells express chemokine receptors both in the normal and injured liver. While the role of these receptors in normal liver has not been well described, during injury, receptor up-regulation, and chemokine engagement leads to cellular survival, proliferation, apoptosis, fibrogenesis, and expression of additional chemokines and growth factors. Hepatic-derived chemokines can therefore function in both paracrine and autocrine fashions further expanding their role in liver disease. More recently it has been appreciated that chemokines can have diverging effects depending on their temporal expression pattern and the type of injury. A better understanding of chemokine/chemokine receptor axes will therefore pave the way for development of novel targeted therapies for the treatment of liver disease. PMID:22723782

  9. An initial evaluation of post-cardiopulmonary bypass acute kidney injury in swine☆

    PubMed Central

    Murphy, Gavin J.; Lin, Hua; Coward, Richard J.; Toth, Tibor; Holmes, Robin; Hall, David; Angelini, Gianni D.

    2016-01-01

    Objective Acute kidney injury (AKI) post-cardiac surgery is associated with mortality rates approaching 20%. The development of effective treatments is hindered by the poor homology between rodent models, the mainstay of research into AKI, and that which occurs in humans. This pilot study aims to characterise post-cardiopulmonary bypass (CPB) AKI in an animal model with potentially greater homology to cardiac surgery patients. Methods and results Adult pigs, weighing 50–75 kg, underwent 2.5 h of CPB. Pigs undergoing saphenous vein grafting procedures served as controls. Pre-CPB measures of porcine renal function were within normal ranges for adult humans. The effect of CPB on renal function; a 25% reduction in 51Cr-EDTA clearance ( p = 0.068), and a 33% reduction in creatinine clearance (p = 0.043), was similar to those reported in clinical studies. CPB resulted in tubular epithelial injury (median NAG/creatinine ratio 2.6 u mmol−1 (interquartile range (IQR): 0.81–5.43) post-CPB vs 0.48 u mmol−1 (IQR: 0.37–0.97) pre-CPB, p = 0.043) as well as glomerular and/or proximal tubular injury (median albumin/creatinine ratio 6.8 mg mmol−1 (IQR: 5.45–13.06) post-CPB vs 1.10 mg mmol−1 (IQR: 0.05–2.00) pre-CPB, p = 0.080). Tubular injury scores were significantly higher in kidneys post-CPB (median score 2.0 (IQR: 1.0–2.0) relative to vein graft controls (median score 1.0 (IQR 1.0–1.0), p = 0.019). AKI was associated with endothelial injury and activation, as demonstrated by reduced DBA (dolichos biflorus agglutinin) lectin and increased endothelin-1 and vascular cell adhesion molecule (VCAM) staining. Conclusions The porcine model of post-CPB AKI shows significant homology to AKI in cardiac surgical patients. It links functional, urinary and histological measures of kidney injury and may offer novel insights into the mechanisms underlying post-CPB AKI. PMID:19692256

  10. Methodological issues in current practice may lead to bias in the development of biomarker combinations for predicting acute kidney injury

    PubMed Central

    Meisner, Allison; Kerr, Kathleen F.; Thiessen-Philbrook, Heather; Coca, Steven G.; Parikh, Chirag R.

    2015-01-01

    Individual biomarkers of renal injury are only modestly predictive of acute kidney injury (AKI). Using multiple biomarkers has the potential to improve predictive capacity. In this systematic review, statistical methods of articles developing biomarker combinations to predict acute kidney injury were assessed. We identified and described three potential sources of bias (resubstitution bias, model selection bias and bias due to center differences) that may compromise the development of biomarker combinations. Fifteen studies reported developing kidney injury biomarker combinations for the prediction of AKI after cardiac surgery (8 articles), in the intensive care unit (4 articles) or other settings (3 articles). All studies were susceptible to at least one source of bias and did not account for or acknowledge the bias. Inadequate reporting often hindered our assessment of the articles. We then evaluated, when possible (7 articles), the performance of published biomarker combinations in the TRIBE-AKI cardiac surgery cohort. Predictive performance was markedly attenuated in six out of seven cases. Thus, deficiencies in analysis and reporting are avoidable and care should be taken to provide accurate estimates of risk prediction model performance. Hence, rigorous design, analysis and reporting of biomarker combination studies are essential to realizing the promise of biomarkers in clinical practice. PMID:26398494

  11. Acute kidney injury and ESRD management in austere environments.

    PubMed

    Raman, Gaurav; Perkins, Robert M; Jaar, Bernard G

    2012-05-01

    Current knowledge about managing acute kidney injury in disaster situations stems mostly from lessons learned while taking care of crush syndrome patients during major earthquakes. More recently, there has been a greater focus on emergency preparedness for ESRD management. Natural or man-made disasters create an "austere environment," wherein resources to administer standard of care are limited. Advance planning and timely coordinated intervention during disasters are paramount to administer effective therapies and save lives. This article reviews the presentation and management of disaster victims with acute kidney injury and those requiring renal replacement therapies. Major contributions of some key national and international organizations in the field of disaster nephrology are highlighted. The article intends to increase awareness about nephrology care of disaster victims, among nephrology and non-nephrology providers alike. PMID:22578674

  12. Mechanical ventilation of patients with acute lung injury.

    PubMed

    Sessler, C N

    1998-10-01

    Ventilatory management of patients with acute lung injury (ALI), particularly its most severe subset, acute respiratory distress syndrome (ARDS), is complex. Newer lung protective strategies emphasize measures to enhance alveolar recruitment and avoid alveolar overdistention, thus minimizing the risk of ventilator-induced lung injury (VILI). Key components of such strategies include the use of smaller-than-conventional tidal volumes which maintain peak transpulmonary pressure below the pressure associated with overdistention, and titration of positive end-expiratory pressure to promote maximal alveolar recruitment. Novel techniques, including prone positioning, inverse ratio ventilation, tracheal gas insufflation, and high frequency ventilation, are considerations in severe ARDS. No single approach is best for all patients; adjustment of ventilatory parameters to individual characteristics, such as lung mechanics and gas exchange, is required. PMID:9891634

  13. Acute kidney injury caused by bothrops snake venom.

    PubMed

    Rodrigues Sgrignolli, Lívia; Florido Mendes, Glória Elisa; Carlos, Carla Patricia; Burdmann, Emmanuel A

    2011-01-01

    Medically important venomous snakes in Latin America belong to the genus Bothrops, Crotalus, Lachesis and Micrurus. The Bothrops genus is responsible for the majority of accidents. The WHO globally estimates 2,500,000 poisonous snakebites and 125,000 deaths annually. In its last report in 2001, the Brazilian Ministry of Health accounted 359 deaths due to snakebites, of which the Bothrops genus was responsible for 185. Snake venoms cause local and systemic damage, including acute kidney injury, which is the most important cause of death among patients surviving the early effects of envenoming by the Crotalus and Bothrops genuses. Venom-induced acute kidney injury is a frequent complication of Bothrops snakebite, carrying relevant morbidity and mortality. PMID:21757950

  14. Cardiac Tissue Injury and Remodeling Is Dependent Upon MR Regulation of Activation Pathways in Cardiac Tissue Macrophages.

    PubMed

    Shen, Jimmy Z; Morgan, James; Tesch, Greg H; Rickard, Amanda J; Chrissobolis, Sophocles; Drummond, Grant R; Fuller, Peter J; Young, Morag J

    2016-08-01

    Macrophage mineralocorticoid receptor (MR) signaling is an important mediator of cardiac tissue inflammation and fibrosis. The goal of the present study was to determine the cellular mechanisms of MR signaling in macrophages that promote cardiac tissue injury and remodeling. We sought to identify specific markers of MR signaling in isolated tissue macrophages (cardiac, aortic) vs splenic mononuclear cells from wild-type and myeloid MR-null mice given vehicle/salt or deoxycorticosterone (DOC)/salt for 8 weeks. Cardiac tissue fibrosis in response to 8 weeks of DOC/salt treatment was found in the hearts from wild-type but not myeloid MR-null mice. This was associated with an increased expression of the profibrotic markers TGF-β1 and matrix metalloproteinase-12 and type 1 inflammatory markers TNFα and chemokine (C-X-C motif) ligand-9 in cardiac macrophages. Differential expression of immunomodulatory M2-like markers (eg, arginase-1, macrophage scavenger receptor 1) was dependent on the tissue location of wild-type and MR-null macrophages. Finally, intact MR signaling is required for the phosphorylation of c-Jun NH2-terminal kinase in response to a proinflammatory stimulus in bone marrow monocytes/macrophages in culture. These data suggest that the activation of the c-Jun NH2-terminal kinase pathway in macrophages after a tissue injury and inflammatory stimuli in the DOC/salt model is MR dependent and regulates the transcription of downstream profibrotic factors, which may represent potential therapeutic targets in heart failure patients. PMID:27253999

  15. Paneth cell-mediated multiorgan dysfunction after acute kidney injury

    PubMed Central

    Park, Sang Won; Kim, Mihwa; Kim, Joo Yun; Ham, Ahrom; Brown, Kevin M.; Mori-Akiyama, Yuko; Ouellette, André J.; D’Agati, Vivette D.; Lee, H. Thomas

    2012-01-01

    Acute kidney injury (AKI) is frequently complicated by extra-renal multi-organ injury including intestinal and hepatic dysfunction. In this study, we hypothesized that a discrete intestinal source of pro-inflammatory mediators drives multi-organ injury in response to AKI. After induction of AKI in mice by renal ischemia-reperfusion or bilateral nephrectomy, small intestinal Paneth cells increased the synthesis and release of IL-17A in conjunction with severe intestinal apoptosis and inflammation. We also detected significantly increased IL-17A in portal and systemic circulation after AKI. Intestinal macrophages appear to transport released Paneth cell granule constituents induced by AKI, away from the base of the crypts into the liver. Genetic or pharmacologic depletion of Paneth cells decreased small intestinal IL-17A secretion and plasma IL-17A levels significantly and attenuated intestinal, hepatic, and renal injury after AKI. Similarly, portal delivery of IL-17A in macrophage depleted mice decreased markedly, and intestinal, hepatic, and renal injury following AKI was attenuated without affecting intestinal IL-17A generation. In conclusion, AKI induces IL-17A synthesis and secretion by Paneth cells to initiate intestinal and hepatic injury by hepatic and systemic delivery of IL-17A by macrophages. Modulation of Paneth cell dysregulation may have therapeutic implications by reducing systemic complications arising from AKI. PMID:23109723

  16. Suramin protects from cisplatin-induced acute kidney injury.

    PubMed

    Dupre, Tess V; Doll, Mark A; Shah, Parag P; Sharp, Cierra N; Kiefer, Alex; Scherzer, Michael T; Saurabh, Kumar; Saforo, Doug; Siow, Deanna; Casson, Lavona; Arteel, Gavin E; Jenson, Alfred Bennett; Megyesi, Judit; Schnellmann, Rick G; Beverly, Levi J; Siskind, Leah J

    2016-02-01

    Cisplatin, a commonly used cancer chemotherapeutic, has a dose-limiting side effect of nephrotoxicity. Approximately 30% of patients administered cisplatin suffer from kidney injury, and there are limited treatment options for the treatment of cisplatin-induced kidney injury. Suramin, which is Federal Drug Administration-approved for the treatment of trypanosomiasis, improves kidney function after various forms of kidney injury in rodent models. We hypothesized that suramin would attenuate cisplatin-induced kidney injury. Suramin treatment before cisplatin administration reduced cisplatin-induced decreases in kidney function and injury. Furthermore, suramin attenuated cisplatin-induced expression of inflammatory cytokines and chemokines, endoplasmic reticulum stress, and apoptosis in the kidney cortex. Treatment of mice with suramin 24 h after cisplatin also improved kidney function, suggesting that the mechanism of protection is not by inhibition of tubular cisplatin uptake or its metabolism to nephrotoxic species. If suramin is to be used in the context of cancer, then it cannot prevent cisplatin-induced cytotoxicity of cancer cells. Suramin did not alter the dose-response curve of cisplatin in lung adenocarcinoma cells in vitro. In addition, suramin pretreatment of mice harboring lung adenocarcinomas did not alter the initial cytotoxic effects of cisplatin (DNA damage and apoptosis) on tumor cells. These results provide evidence that suramin has potential as a renoprotective agent for the treatment/prevention of cisplatin-induced acute kidney injury and justify future long-term preclinical studies using cotreatment of suramin and cisplatin in mouse models of cancer. PMID:26661653

  17. [Uncaria tomentosa and acute ischemic kidney injury in rats].

    PubMed

    de Fátima Fernandes Vattimo, Maria; da Silva, Natalia Oliveira

    2011-03-01

    The objective of this study was to evaluate the renoprotective effects of Uncaria Tomentosa (cat's claw) on ischemic acute kidney injury induced by renal clamping in rats. The hypoxia and hypoperfusion increase the production of reactive species already present in the inflammatory process. Results showed that the renal function evaluated by creatinine clearance, the urinary excretion of peroxides and malondealdehyde indexes demonstrated that UT induced renoprotection, probably related to its antioxidant activities. PMID:21445508

  18. Presumptive acute lung injury following multiple surgeries in a cat

    PubMed Central

    Katayama, Masaaki; Okamura, Yasuhiko; Katayama, Rieko; Sasaki, Jun; Shimamura, Shunsuke; Uzuka, Yuji; Kamishina, Hiroaki; Nezu, Yoshinori

    2013-01-01

    A 12-year-old, 3.5-kg spayed female domestic shorthair cat had a tracheal mass identified as malignant B-cell lymphoma. The cat had tracheal resection and subsequently developed laryngeal paralysis. Due to multiple episodes of respiratory distress the cat subsequently had tracheal surgeries. Finally, the cat had a sudden onset of severe respiratory distress and collapsed. Computed tomography imaging and arterial blood gas analysis supported a diagnosis of acute lung injury. PMID:24082167

  19. Iron, hormesis, and protection in acute kidney injury.

    PubMed

    Swaminathan, Sundararaman

    2016-07-01

    Iron is critical for cellular, organismal, and possibly universal existence. Use of iron complexes to treat human diseases is ancient and is described in detail in Ayurveda/Siddha systems of medicine. Old aphorisms from Siddha medicine ("Alavukku Minjinal Amirdhamum Nanjagum," an elixir turns poisonous when taken in excess) and Paracelsus ("Die Dosis macht das Gift," the dose makes the poison) are of practical relevance in understanding the role of this ancient metal in acute kidney injury. PMID:27312440

  20. [Sodium dichloroisocyanurate-induced acute lung injury in a child].

    PubMed

    Wiel, E; Sicot, J; Leteurtre, S; Binoche, A; Nisse, P; Assez, N

    2013-04-01

    Intoxication, by cyanurate and its chlorated derivatives in children, is increasingly reported in the literature due to accidental ingestion compared to accidental inhalation. We report a case in a 5-year-old child who presented with acute lung injury due to accidental inhalation of gas formed after a reaction of sodium dichloroisocyanurate tablets with water. Prevention remains the best way to reduce the risk of children being intoxicated by inhalation of the gas formed after contact of tablets with water. PMID:23433843

  1. Transfusion-related acute lung injury; clinical perspectives

    PubMed Central

    Kim, Jeongmin

    2015-01-01

    Transfusion-related acute lung injury (TRALI) was introduced in 1983 to describe a clinical syndrome seen within 6 h of a plasma-containing blood products transfusion. TRALI is a rare transfusion complication; however, the FDA has suggested that TRALI is the leading cause of transfusion-related mortality. Understanding the pathogenesis of TRALI will facilitate adopting preventive strategies, such as deferring high plasma volume female product donors. This review outlines the clinical features, pathogenesis, treatment, and prevention of TRALI. PMID:25844126

  2. Acetaminophen-induced acute liver injury in HCV transgenic mice

    SciTech Connect

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U.; Tech, Katherine; Macdonald, Jeffrey M.; Boorman, Gary A.; Chatterjee, Saurabh; Mason, Ronald P.; Melnyk, Stepan B.; Tryndyak, Volodymyr P.; Pogribny, Igor P.; Rusyn, Ivan

    2013-01-15

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  3. Drug and alcohol abuse in patients with acute burn injuries.

    PubMed

    Swenson, J R; Dimsdale, J E; Rockwell, E; Carroll, W; Hansbrough, J

    1991-01-01

    We reviewed records of adult patients admitted to our burn unit who were reported to abuse drugs or alcohol from 1985 to 1988. The proportion of patients reported as abusing drugs increased significantly from 1987 to 1988, compared to previous years. However, there was no increase in the proportion of patients reported to abuse alcohol. Patients identified as abusing drugs had longer hospital stays, compared to patients who were not reported to abuse substances. Methamphetamine and cocaine were the drugs most often abused by patients who abused drugs or both drugs and alcohol. Mechanisms of burn injury in these patients included "accidental" burn injury related to acute intoxication, and self-injury due to psychosis or depression. PMID:1882020

  4. The role of Toll-like receptor 4 (TLR4) in cardiac ischaemic-reperfusion injury, cardioprotection and preconditioning.

    PubMed

    Lee, Sam Man; Hutchinson, Mark; Saint, David A

    2016-09-01

    Cardiac ischaemic-reperfusion injury (IRI) remains the primary cause of mortality throughout the developed world. Molecular mechanisms underlying IRI are complex and are often interlinked with each other driving a synergistic response. Toll-like receptor 4 (TLR4), an immunosurveillance receptor, is known to enhance tissue injury during IRI by enhancing the inflammatory response. The release of endogenous components during IRI bind onto TLR4 leading to the activation of multiple signalling kinases. Once this event occurs these proteins are defined as danger associated molecular patterns molecules (DAMPs) or alarmins. Examples include heat shock proteins, high mobility group box one (HMGB1) and extracellular matrix proteins, all of which are involved in IRI. However, literature in the last two decades suggests that transient stimulation of TLR4 may suppress IRI and thus improve cardiac recovery. Furthermore, it remains to be seen what role TLR4 plays during ischaemic-preconditioning where acute bouts of ischaemia, preceding a harmful bout of ischaemic-reperfusion, is cardioprotective. The other question which also needs to be considered is that if transient TLR4 signalling drives a preconditioning response then what are the ligands which drive this? Hence the second part of this review explores the possible TLR4 ligands which may promote cardioprotection against IRI. PMID:27249055

  5. Acute gastroduodenal injury after ingestion of diluted herbicide pendimethalin.

    PubMed

    Tsukada, K; Azuhata, H; Katoh, H; Kuwano, H

    2009-03-01

    The herbicide, pendimethalin, is used worldwide, but its acute toxicity is not yet widely known. There have been some reported acute pendimethalin poisoning cases in humans and most of them intentionally ingested the concentrated formulation. We describe a 73-year-old man who developed corrosive gastroduodenal injury after accidental ingestion of the diluted (300 times with water) pendimethalin formulation. He had a history of reflux oesophagitis and had been taking omeprazol (10 mg/day) for a year. He consumed alcohol two hours after the accidental ingestion and then had nausea and epigastric pain. Endoscopy performed three days post-exposure revealed gastroduodenal injury. As he had consumed alcohol every day for years and had no history of gastroduodenal ulcer, the accidental ingestion may be associated with this injury. He was successfully treated by increasing his dosage of omeprazol (20 mg/day) for two weeks. This case indicates that ingestion of a small quantity of pendimethalin can provoke gastroduodenal injury. PMID:19352552

  6. Pathophysiology of cisplatin-induced acute kidney injury.

    PubMed

    Ozkok, Abdullah; Edelstein, Charles L

    2014-01-01

    Cisplatin and other platinum derivatives are the most widely used chemotherapeutic agents to treat solid tumors including ovarian, head and neck, and testicular germ cell tumors. A known complication of cisplatin administration is acute kidney injury (AKI). The nephrotoxic effect of cisplatin is cumulative and dose-dependent and often necessitates dose reduction or withdrawal. Recurrent episodes of AKI may result in chronic kidney disease. The pathophysiology of cisplatin-induced AKI involves proximal tubular injury, oxidative stress, inflammation, and vascular injury in the kidney. There is predominantly acute tubular necrosis and also apoptosis in the proximal tubules. There is activation of multiple proinflammatory cytokines and infiltration of inflammatory cells in the kidney. Inhibition of the proinflammatory cytokines TNF-α or IL-33 or depletion of CD4+ T cells or mast cells protects against cisplatin-induced AKI. Cisplatin also causes endothelial cell injury. An understanding of the pathogenesis of cisplatin-induced AKI is important for the development of adjunctive therapies to prevent AKI, to lessen the need for dose decrease or drug withdrawal, and to lessen patient morbidity and mortality. PMID:25165721

  7. The science of reperfusion injury post cardiac arrest--Implications for emergency nurses.

    PubMed

    Baker, Edward; Lee, Geraldine

    2016-01-01

    Survival following cardiac arrest in the developed world remains below 10%. In those who survive the initial cardiac arrest, prognosis remains poor due to the onset of multi-organ failure with both significant cardiac and neurological dysfunction. Nurses have demonstrated good understanding of cardiac arrest/post arrest guidelines and have good technical skills but deficits remain in their understanding of pathophysiological processes involved in post cardiac arrest syndromes. This article aims to provide an overview of these pathophysiological processes involved in the post cardiac arrest phase, potential treatment options and the nursing interventions that may be required within the emergency department setting. This article will focus emergency nurses to become more involved in patient management at this critical phase of treatment and highlight potential early signs of deterioration. Although return of spontaneous circulation (ROSC) is crucial in the process of recovery from cardiac arrest, it is only the first of many complex stages. Given the complexity of post cardiac arrest syndrome and its impact on the patient, healthcare professionals need to understand the cellular changes associated with reperfusion injuries in order to improve outcomes. It is only through effective nursing care and medical management that improved outcomes will become more common in the future. PMID:26385262

  8. Targeted Lipid Profiling Discovers Plasma Biomarkers of Acute Brain Injury

    PubMed Central

    Sheth, Sunil A.; Iavarone, Anthony T.; Liebeskind, David S.; Won, Seok Joon; Swanson, Raymond A.

    2015-01-01

    Prior efforts to identify a blood biomarker of brain injury have relied almost exclusively on proteins; however their low levels at early time points and poor correlation with injury severity have been limiting. Lipids, on the other hand, are the most abundant molecules in the brain and readily cross the blood-brain barrier. We previously showed that certain sphingolipid (SL) species are highly specific to the brain. Here we examined the feasibility of using SLs as biomarkers for acute brain injury. A rat model of traumatic brain injury (TBI) and a mouse model of stroke were used to identify candidate SL species though our mass-spectrometry based lipid profiling approach. Plasma samples collected after TBI in the rat showed large increases in many circulating SLs following injury, and larger lesions produced proportionately larger increases. Plasma samples collected 24 hours after stroke in mice similarly revealed a large increase in many SLs. We constructed an SL score (sum of the two SL species showing the largest relative increases in the mouse stroke model) and then evaluated the diagnostic value of this score on a small sample of patients (n = 14) who presented with acute stroke symptoms. Patients with true stroke had significantly higher SL scores than patients found to have non-stroke causes of their symptoms. The SL score correlated with the volume of ischemic brain tissue. These results demonstrate the feasibility of using lipid biomarkers to diagnose brain injury. Future studies will be needed to further characterize the diagnostic utility of this approach and to transition to an assay method applicable to clinical settings. PMID:26076478

  9. Anemia management after acute brain injury.

    PubMed

    Lelubre, Christophe; Bouzat, Pierre; Crippa, Ilaria Alice; Taccone, Fabio Silvio

    2016-01-01

    Anemia is frequent among brain-injured patients, where it has been associated with an increased risk of poor outcome. The pathophysiology of anemia in this patient population remains multifactorial; moreover, whether anemia merely reflects a higher severity of the underlying disease or is a significant determinant of the neurological recovery of such patients remains unclear. Interestingly, the effects of red blood cell transfusions (RBCT) in moderately anemic patients remain controversial; although hemoglobin levels are increased, different studies observed only a modest and inconsistent improvement in cerebral oxygenation after RBCT and raised serious concerns about the risk of increased complications. Thus, considering this "blood transfusion anemia paradox", the optimal hemoglobin level to trigger RBCT in brain-injured patients has not been defined yet; also, there is insufficient evidence to provide strong recommendations regarding which hemoglobin level to target and which associated transfusion strategy (restrictive versus liberal) to select in this patient population. We summarize in this review article the more relevant studies evaluating the effects of anemia and RBCT in patients with an acute neurological condition; also, we propose some potential strategies to optimize transfusion management in such patients. PMID:27311626

  10. Pathophysiology of pulmonary hypertension in acute lung injury

    PubMed Central

    Price, Laura C.; McAuley, Danny F.; Marino, Philip S.; Finney, Simon J.; Griffiths, Mark J.

    2012-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome are characterized by protein rich alveolar edema, reduced lung compliance, and acute severe hypoxemia. A degree of pulmonary hypertension (PH) is also characteristic, higher levels of which are associated with increased morbidity and mortality. The increase in right ventricular (RV) afterload causes RV dysfunction and failure in some patients, with associated adverse effects on oxygen delivery. Although the introduction of lung protective ventilation strategies has probably reduced the severity of PH in ALI, a recent invasive hemodynamic analysis suggests that even in the modern era, its presence remains clinically important. We therefore sought to summarize current knowledge of the pathophysiology of PH in ALI. PMID:22246001

  11. Elevated Cardiac Troponin in Acute Stroke without Acute Coronary Syndrome Predicts Long-Term Adverse Cardiovascular Outcomes

    PubMed Central

    Bhatt, Reema; Bove, Alfred A.

    2014-01-01

    Background. Elevated cardiac troponin in acute stroke in absence of acute coronary syndrome (ACS) has unclear long-term outcomes. Methods. Retrospective analysis of 566 patients admitted to Temple University Hospital from 2008 to 2010 for acute stroke was performed. Patients were included if cardiac troponin I was measured and had no evidence of ACS and an echocardiogram was performed. Of 200 patients who met the criteria, baseline characteristics, electrocardiograms, and major adverse cardiovascular events (MACE) were reviewed. Patients were characterized into two groups with normal and elevated troponins. Primary end point was nonfatal myocardial infarction during follow-up period after discharge. The secondary end points were MACE and death from any cause. Results. For 200 patients, 17 patients had positive troponins. Baseline characteristics were as follows: age 63.1 ± 13.8, 64% African Americans, 78% with hypertension, and 22% with previous CVA. During mean follow-up of 20.1 months, 7 patients (41.2%) in elevated troponin and 6 (3.3%) patients in normal troponin group had nonfatal myocardial infarction (P = 0.0001). MACE (41.2% versus 14.2%, P = 0.01) and death from any cause (41.2% versus 14.5%, P = 0.017) were significant in the positive troponin group. Conclusions. Elevated cardiac troponin in patients with acute stroke and no evidence of ACS is strong predictor of long-term cardiac outcomes. PMID:25530906

  12. SPR detection of cardiac troponin T for acute myocardial infarction.

    PubMed

    Pawula, Maria; Altintas, Zeynep; Tothill, Ibtisam E

    2016-01-01

    A surface plasmon resonance (SPR) sensor developed for the rapid, sensitive and specific detection of cardiac troponin T (cTnT) in serum samples is reported in this work. An extensive optimisation of assay parameters was conducted to achieve optimal detection strategy. Both direct and sandwich immunoassay formats were investigated and optimised. The response obtained was enhanced further by the use of gold nanoparticles (AuNPs) conjugated to the anti-cTnT detection antibody. A regeneration method was developed to enable the reuse of the SPR sensor for multiple sample application. The SPR immunosensor showed good reproducibility for cTnT detection in the concentration range of 25-1000 ng mL(-1) and 5-400 ng mL(-1) for the direct and sandwich assays in buffer, respectively. The linear regression analysis was performed and R(2) value was found as 0.99 for both assays. In order to optimise the sensor for serum analysis, nonspecific binding of serum proteins was reduced through the use of additives in the dilution buffer. To achieve greater sensitivity, the performance of the cTnT immunosensor sandwich assay in human serum was evaluated using non-modified and AuNP modified detector antibodies. A detection limit (LOD) for the immunosensor in 50% serum was assessed as 5 ng mL(-1) cTnT for the standard sandwich assay and 0.5 ng mL(-1) cTnT when using AuNP conjugated detector antibodies with a linear dynamic range of 0.5-40 ng mL(-1). The dissociation constant was found as 3.28 × 10(-9) M using Langmuir binding model which indicates high affinity between cTnT and its antibody. The proposed SPR immunosensor has a promising potential to be developed for point-of-care testing for the early diagnosis of acute myocardial infarction (AMI). This method can also be used for the rapid detection of biomarkers in central nervous system diseases. PMID:26695335

  13. Ultrafine ambient particulate matter enhances cardiac ischemia and reperfusion injury

    EPA Science Inventory

    Epidemiological studies have demonstrated a consistent link between exposure to ambient particulate air pollutant (PM) and the incidence of cardiovascular morbidity and mortality. The present study was designed to evaluate the cardiac effects of ambient PM. Mice were exposed to 1...

  14. Imaging of acute thoracic injury: the advent of MDCT screening.

    PubMed

    Mirvis, Stuart E

    2005-10-01

    Chest radiography remains the primary screening study for the assessment of victims of chest trauma, but computed tomography (CT), particularly multidetector CT (MDCT), has progressively changed the imaging approach to these patients. MDCT acquires thinner sections with greater speed, allowing higher quality axial images and nonaxial reformations than conventional or single-detector helical CT. The speed of MDCT, both in acquiring data and in reconstructing images, makes the performance of total body surveys in the blunt polytrauma patient practicable. In general, CT has been well documented to offer major advantages over chest radiography in both screening for thoracic injuries and in characterizing such injuries. This capacity has been enhanced by the application of multichannel data acquisition. The greater sensitivity of MDCT has been well demonstrated in diagnosing vascular and diaphragmatic injuries. This article reviews current concepts of diagnostic imaging in acute chest trauma from blunt force and penetrating mechanisms emphasizing the spectrum of diagnostic imaging findings for various injuries, based primarily on radiographic and CT appearances. The advantages of MDCT for selected injuries are emphasized. PMID:16274001

  15. Biomarkers and acute brain injuries: interest and limits

    PubMed Central

    2014-01-01

    For patients presenting with acute brain injury (such as traumatic brain injury, subarachnoid haemorrhage and stroke), the diagnosis and identification of intracerebral lesions and evaluation of the severity, prognosis and treatment efficacy can be challenging. The complexity and heterogeneity of lesions after brain injury are most probably responsible for this difficulty. Patients with apparently comparable brain lesions on imaging may have different neurological outcomes or responses to therapy. In recent years, plasmatic and cerebrospinal fluid biomarkers have emerged as possible tools to distinguish between the different pathophysiological processes. This review aims to summarise the plasmatic and cerebrospinal fluid biomarkers evaluated in subarachnoid haemorrhage, traumatic brain injury and stroke, and to clarify their related interests and limits for diagnosis and prognosis. For subarachnoid haemorrhage, particular interest has been focused on the biomarkers used to predict vasospasm and cerebral ischaemia. The efficacy of biomarkers in predicting the severity and outcome of traumatic brain injury has been stressed. The very early diagnostic performance of biomarkers and their ability to discriminate ischaemic from haemorrhagic stroke were studied. PMID:25029344

  16. Fatal oxidative haemolysis and methaemoglobinaemia in a patient with alkaptonuria and acute kidney injury

    PubMed Central

    Mullan, Adam; Cocker, Derek; Taylor, Gordon; Millar, Colin; Ranganath, Lakshminarayan

    2015-01-01

    Alkaptonuria (AKU) is a rare inherited disorder of tyrosine metabolism, which leads to an accumulation of homogentisic acid (HGA) and is associated with a progressive arthropathy. Fatal complications are unusual and usually result from cardiac disease or progressive renal impairment; rapidly fatal haematological complications are exceptionally rare and described in only a handful of case reports. This case involves a 63-year-old male with AKU and modest chronic kidney disease who developed rapidly fatal haemolysis and methaemoglobinuria following an episode of acute kidney injury triggered by an obstructing ureteric calculus and urosepsis. The patient succumbed despite aggressive antioxidant therapy with ascorbic acid and n-acetyl cysteine. A rapid build-up of HGA due to reduced renal clearance, triggering oxidative haemolysis and methaemoglobinuria is proposed as the mechanism. Alternative strategies to consider when conventional antioxidants fail are discussed including the potent inhibitor of HGA production, nitisonone. PMID:25713720

  17. Necrostatin-1 inhibits Hmgb1-IL-23/IL-17 pathway and attenuates cardiac ischemia reperfusion injury.

    PubMed

    Zhang, Anbin; Mao, Xiaogang; Li, Lin; Tong, Yunjie; Huang, Yanli; Lan, Yanli; Jiang, Hong

    2014-10-01

    Ischemia reperfusion (IR) injury is a major issue in cardiac transplantation and inflammatory processes play a major role in myocardial IR injury. Necrostatin-1 (Nec-1) is a small molecule capable of inhibiting RIP1 kinase activity and attenuates inflammation-mediated tissue injury. In our study, hearts of C57Bl/6 mice were flushed and stored in cold Bretschneider solution for 8 h and then transplanted into syngeneic recipients. We found that Nec-1 decreased cardiomyocyte necrosis and recruitment of neutrophils and macrophages. Troponin T (TnT) production on 24 h after myocardial IR injury was reduced by Nec-1 administration. Cardiac output at 60 mmHg of afterload pressure was significantly increased in hearts with Nec-1 administration and the cardiac allograft survival in Nec-1-treated animals was significantly prolonged (MST = 90 days in IR + Nec-1 group, P < 0.05 as compared with IR group, MST = 83.5 days). Nec-1 treatment attenuated ROS generation and increased expression of NOS2 and COX-2. The expression of Hmgb1, IL-23, and IL-17A were also decreased with Nec-1 administration. Furthermore, the decreased TnT expression induced by Nec-1 was abrogated with exogenous Hmgb1 administration. In conclusion, Nec-1 played a protective role in cardiomyocyte IR injury, and this was associated with inhibited Hmgb1-IL-23/IL-17 pathway. PMID:24810904

  18. Prospective Study on the Clinical Course and Outcomes in Transfusion-Related Acute Lung Injury

    PubMed Central

    Looney, Mark R.; Roubinian, Nareg; Gajic, Ognjen; Gropper, Michael A.; Hubmayr, Rolf D.; Lowell, Clifford A.; Bacchetti, Peter; Wilson, Gregory; Koenigsberg, Monique; Lee, Deanna C.; Wu, Ping; Grimes, Barbara; Norris, Philip J.; Murphy, Edward L.; Gandhi, Manish J.; Winters, Jeffrey L.; Mair, David C.; Schuller, Randy M.; Hirschler, Nora V.; Rosen, Rosa Sanchez; Matthay, Michael A.; Toy, Pearl

    2014-01-01

    Objective Transfusion-related acute lung injury is the leading cause of transfusion-related mortality. A prospective study using electronic surveillance was conducted at two academic medical centers in the United States with the objective to define the clinical course and outcomes in transfusion-related acute lung injury cases. Design Prospective case study with controls. Setting University of California, San Francisco and Mayo Clinic, Rochester. Patients We prospectively enrolled 89 patients with transfusion-related acute lung injury, 164 transfused controls, and 145 patients with possible transfusion-related acute lung injury. Interventions None. Measurements and Main Results Patients with transfusion-related acute lung injury had fever, tachycardia, tachypnea, hypotension, and prolonged hypoxemia compared with controls. Of the patients with transfusion-related acute lung injury, 29 of 37 patients (78%) required initiation of mechanical ventilation and 13 of 53 (25%) required initiation of vasopressors. Patients with transfusion-related acute lung injury and possible transfusion-related acute lung injury had an increased duration of mechanical ventilation and increased days in the ICU and hospital compared with controls. There were 15 of 89 patients with transfusion-related acute lung injury (17%) who died, whereas 61 of 145 patients with possible transfusion-related acute lung injury (42%) died and 7 of 164 of controls (4%) died. Patients with transfusion-related acute lung injury had evidence of more systemic inflammation with increases in circulating neutrophils and a decrease in platelets compared with controls. Patients with transfusion-related acute lung injury and possible transfusion-related acute lung injury also had a statistically significant increase in plasma interleukin-8, interleukin-10, and interleukin-1 receptor antagonist posttransfusion compared with controls. Conclusions In conclusion, transfusion-related acute lung injury produced a condition

  19. Circulating Extracellular Vesicles Contain miRNAs and are Released as Early Biomarkers for Cardiac Injury.

    PubMed

    Deddens, Janine C; Vrijsen, Krijn R; Colijn, Johanna M; Oerlemans, Martinus I; Metz, Corina H G; van der Vlist, Els J; Nolte-'t Hoen, Esther N M; den Ouden, Krista; Jansen Of Lorkeers, Sanne J; van der Spoel, Tycho I G; Koudstaal, Stefan; Arkesteijn, Ger J; Wauben, Marca H M; van Laake, Linda W; Doevendans, Pieter A; Chamuleau, Steven A J; Sluijter, Joost P G

    2016-08-01

    Plasma-circulating microRNAs have been implicated as novel early biomarkers for myocardial infarction (MI) due to their high specificity for cardiac injury. For swift clinical translation of this potential biomarker, it is important to understand their temporal and spatial characteristics upon MI. Therefore, we studied the temporal release, potential source, and transportation of circulating miRNAs in different models of ischemia reperfusion (I/R) injury. We demonstrated that extracellular vesicles are released from the ischemic myocardium upon I/R injury. Moreover, we provided evidence that cardiac and muscle-specific miRNAs are transported by extracellular vesicles and are rapidly detectable in plasma. Since these vesicles are enriched for the released miRNAs and their detection precedes traditional damage markers, they hold great potential as specific early biomarkers for MI. PMID:27383837

  20. Acute traumatic spinal injury following bicycle accidents: a report of three cases.

    PubMed

    McGoldrick, Niall P; Green, Connor; Burke, Neil; Synnott, Keith

    2012-06-01

    Although the vast majority of injuries suffered while cycling are minor, acute spinal injuries have been reported. We describe three cases of acute spinal injury occurring while cycling. All three patients reported being thrown over the handlebars, while travelling downhill at speed. Two of the cases resulted in profound neurological deficit. These cases show that there is a spectrum of spinal injury due to bicycle accidents, ranging from no neurological deficit to profound insult, and from high cervical injury to mid-thoracic spinal injury. In cases of bicycle accidents, increased awareness of the possibility of such spinal injury is advisable. PMID:22822586

  1. Functional engineered human cardiac patches prepared from nature's platform improve heart function after acute myocardial infarction.

    PubMed

    Wang, Qingjie; Yang, Hui; Bai, Aobing; Jiang, Wei; Li, Xiuya; Wang, Xinhong; Mao, Yishen; Lu, Chao; Qian, Ruizhe; Guo, Feng; Ding, Tianling; Chen, Haiyan; Chen, Sifeng; Zhang, Jianyi; Liu, Chen; Sun, Ning

    2016-10-01

    With the advent of induced pluripotent stem cells and directed differentiation techniques, it is now feasible to derive individual-specific cardiac cells for human heart tissue engineering. Here we report the generation of functional engineered human cardiac patches using human induced pluripotent stem cells-derived cardiac cells and decellularized natural heart ECM as scaffolds. The engineered human cardiac patches can be tailored to any desired size and shape and exhibited normal contractile and electrical physiology in vitro. Further, when patching on the infarct area, these patches improved heart function of rats with acute myocardial infarction in vivo. These engineered human cardiac patches can be of great value for normal and disease-specific heart tissue engineering, drug screening, and meet the demands for individual-specific heart tissues for personalized regenerative therapy of myocardial damages in the future. PMID:27509303

  2. The cardiac surgery-associated neutrophil gelatinase-associated lipocalin (CSA-NGAL) score: A potential tool to monitor acute tubular damage.

    PubMed

    de Geus, Hilde R H; Ronco, Claudio; Haase, Michael; Jacob, Laurent; Lewington, Andrew; Vincent, Jean-Louis

    2016-06-01

    Acute kidney injury (AKI), defined as a rise in serum creatinine (functional AKI), is a frequent complication after cardiac surgery. The expression pattern of acute tubular damage biomarkers such as neutrophil gelatinase-associated lipocalin (NGAL) has been shown to precede functional AKI and, therefore, may be useful to identify very early tubular damage. The term subclinical AKI represents acute tubular damage in the absence of functional AKI (biomarker positivity without a rise in serum creatinine) and affects hard outcome measures. This potentiates an tubular-damage-based identification of renal injury, which may guide clinical management, allowing for very early preventive-protective strategies. The aim of this paper was to review the current available evidence on NGAL applicability in adult cardiac surgery patients and combine this knowledge with the expert consensus of the authors to generate an NGAL based tubular damage score: The cardiac surgery-associated NGAL Score (CSA-NGAL score). The CSA-NGAL score might be the tool needed to improve awareness and enable interventions to possibly modify these detrimental outcomes. In boldly doing so, it is intended to introduce a different approach in study designs, which will undoubtedly expand our knowledge and will hopefully move the AKI biomarker field forward. PMID:26952930

  3. Humanin prevents brain mitochondrial dysfunction in a cardiac ischaemia-reperfusion injury model.

    PubMed

    Kumfu, Sirinart; Charununtakorn, Savitree T; Jaiwongkam, Thidarat; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2016-06-01

    What is the central question of this study? Myocardial ischaemia-reperfusion (I/R) injury causes interference in the systemic circulation and damages not only the heart but also several vital organs, including the brain. Recently, a novel peptide called humanin has been shown to exert potent neuroprotective effects. However, the effect of humanin on the brain during cardiac I/R injury has not yet been investigated. What is the main finding and its importance? The I/R injury caused blood-brain barrier breakdown, increased brain oxidative stress and resulted in mitochondrial dysfunction. Only the humanin treatment before ischaemia attenuated brain mitochondrial dysfunction, but it did not prevent blood-brain barrier breakdown or brain oxidative stress. Humanin treatment during ischaemia and in the reperfusion period provided no neuroprotection. These findings indicate that humanin exerted neuroprotection during cardiac I/R injury via improved brain mitochondrial function. Myocardial ischaemia-reperfusion (I/R) injury causes interference in the systemic circulation and damages not only the heart but also several vital organs, including the brain. Nevertheless, limited information is available regarding the effect of cardiac I/R injury on the brain, including blood-brain barrier (BBB) breakdown, brain oxidative stress and mitochondrial function. Recently, a novel peptide called humanin has been shown to exert potent neuroprotective effects. However, the effect of humanin on the brain during cardiac I/R injury has not yet been investigated. Forty-two male Wistar rats were divided into the following two groups: an I/R group, which was subjected to a 30 min left anterior descending coronary artery occlusion followed by 120 min reperfusion (I/R group; n = 36); and a sham group (n = 6). The I/R group was divided into six subgroups. Each subgroup was given either vehicle or humanin analogue (84 μg kg(-1) , i.v.) at three different time points, namely before

  4. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules

    PubMed Central

    Nagata, Takanobu; Yasukawa, Hideo; Kyogoku, Sachiko; Oba, Toyoharu; Takahashi, Jinya; Nohara, Shoichiro; Minami, Tomoko; Mawatari, Kazutoshi; Sugi, Yusuke; Shimozono, Koutatsu; Pradervand, Sylvain; Hoshijima, Masahiko; Aoki, Hiroki; Fukumoto, Yoshihiro; Imaizumi, Tsutomu

    2015-01-01

    Myocardial ischemia reperfusion injury (IRI) adversely affects cardiac performance and the prognosis of patients with acute myocardial infarction. Although myocardial signal transducer and activator of transcription (STAT) 3 is potently cardioprotective during IRI, the inhibitory mechanism responsible for its activation is largely unknown. The present study aimed to investigate the role of the myocardial suppressor of cytokine signaling (SOCS)-3, an intrinsic negative feedback regulator of the Janus kinase (JAK)-STAT signaling pathway, in the development of myocardial IRI. Myocardial IRI was induced in mice by ligating the left anterior descending coronary artery for 1 h, followed by different reperfusion times. One hour after reperfusion, the rapid expression of JAK-STAT–activating cytokines was observed. We precisely evaluated the phosphorylation of cardioprotective signaling molecules and the expression of SOCS3 during IRI and then induced myocardial IRI in wild-type and cardiac-specific SOCS3 knockout mice (SOCS3-CKO). The activation of STAT3, AKT, and ERK1/2 rapidly peaked and promptly decreased during IRI. This decrease correlated with the induction of SOCS3 expression up to 24 h after IRI in wild-type mice. The infarct size 24 h after reperfusion was significantly reduced in SOCS3-CKO compared with wild-type mice. In SOCS3-CKO mice, STAT3, AKT, and ERK1/2 phosphorylation was sustained, myocardial apoptosis was prevented, and the expression of anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) was augmented. Cardiac-specific SOCS3 deletion led to the sustained activation of cardioprotective signaling molecules including and prevented myocardial apoptosis and injury during IRI. Our findings suggest that SOCS3 may represent a key factor that exacerbates the development of myocardial IRI. PMID:26010537

  5. Protease-activated receptor 4 deficiency offers cardioprotection after acute ischemia reperfusion injury.

    PubMed

    Kolpakov, Mikhail A; Rafiq, Khadija; Guo, Xinji; Hooshdaran, Bahman; Wang, Tao; Vlasenko, Liudmila; Bashkirova, Yulia V; Zhang, Xiaoxiao; Chen, Xiongwen; Iftikhar, Sahar; Libonati, Joseph R; Kunapuli, Satya P; Sabri, Abdelkarim

    2016-01-01

    Protease-activated receptor (PAR)4 is a low affinity thrombin receptor with less understood function relative to PAR1. PAR4 is involved in platelet activation and hemostasis, but its specific actions on myocyte growth and cardiac function remain unknown. This study examined the role of PAR4 deficiency on cardioprotection after myocardial ischemia-reperfusion (IR) injury in mice. When challenged by in vivo or ex vivo IR, PAR4 knockout (KO) mice exhibited increased tolerance to injury, which was manifest as reduced infarct size and a more robust functional recovery compared to wild-type mice. PAR4 KO mice also showed reduced cardiomyocyte apoptosis and putative signaling shifts in survival pathways in response to IR. Inhibition of PAR4 expression in isolated cardiomyocytes by shRNA offered protection against thrombin and PAR4-agonist peptide-induced apoptosis, while overexpression of wild-type PAR4 significantly enhanced the susceptibility of cardiomyocytes to apoptosis, even under low thrombin concentrations. Further studies implicate Src- and epidermal growth factor receptor-dependent activation of JNK on the proapoptotic effect of PAR4 in cardiomyocytes. These findings reveal a pivotal role for PAR4 as a regulator of cardiomyocyte survival and point to PAR4 inhibition as a therapeutic target offering cardioprotection after acute IR injury. PMID:26643815

  6. Neuroprotection and Acute Spinal Cord Injury: A Reappraisal

    PubMed Central

    Hall, Edward D.; Springer, Joe E.

    2004-01-01

    Summary: It has long been recognized that much of the post-traumatic degeneration of the spinal cord following injury is caused by a multi-factorial secondary injury process that occurs during the first minutes, hours, and days after spinal cord injury (SCI). A key biochemical event in that process is reactive oxygen-induced lipid peroxidation (LP). In 1990 the results of the Second National Acute Spinal Cord Injury Study (NASCIS II) were published, which showed that the administration of a high-dose regimen of the glucocorticoid steroid methylprednisolone (MP), which had been previously shown to inhibit post-traumatic LP in animal models of SCI, could improve neurological recovery in spinal-cord-injured humans. This resulted in the registration of high-dose MP for acute SCI in several countries, although not in the U.S. Nevertheless, this treatment quickly became the standard of care for acute SCI since the drug was already on the U.S. market for many other indications. Subsequently, it was demonstrated that the non-glucocorticoid 21-aminosteroid tirilazad could duplicate the antioxidant neuroprotective efficacy of MP in SCI models, and evidence of human efficacy was obtained in a third NASCIS trial (NASCIS III). In recent years, the use of high-dose MP in acute SCI has become controversial largely on the basis of the risk of serious adverse effects versus what is perceived to be on average a modest neurological benefit. The opiate receptor antagonist naloxone was also tested in NASCIS II based upon the demonstration of its beneficial effects in SCI models. Although it did not a significant overall effect, some evidence of efficacy was seen in incomplete (i.e., paretic) patients. The monosialoganglioside GM1 has also been examined in a recently completed clinical trial in which the patients first received high-dose MP treatment. However, GM1 failed to show any evidence of a significant enhancement in the extent of neurological recovery over the level afforded by

  7. [Cardiopulmonary resuscitation and post-cardiac arrest brain injury].

    PubMed

    Sakurai, Atsushi

    2016-02-01

    One of the most important topics in the field of resuscitation at present is the drafting of the 2015 version of the Consensus on Science and Treatment Recommendation (CoSTR) by the International Liaison Committee on Resuscitation. The Japan Resuscitation Council is preparing its 2015 Guideline based on this CoSTR and plans to release it in October 2015. A critical change in the upcoming CoSTR is the adoption of the GRADE system. The new Guideline incorporating the GRADE system will surely be more scientific than the previous Guideline issued in 2010. Meanwhile, an important finding appeared in a report from Nielsen et al.: hypothermia at a targeted temperature of 33 degrees C did not confer a benefit versus 36 degrees in unconscious survivors of out-of-hospital cardiac arrest of presumed cardiac cause. PMID:26915250

  8. [Sequential changes in acute phase reactant proteins and complement activation in patients with acute head injuries].

    PubMed

    Ikeda, Y; Matsuura, H; Nakazawa, S

    1987-12-01

    The role of immunological mechanisms in head injury is not clearly defined. In this study we investigated the immunological function in patients with acute head injuries. Serum acute phase reactant proteins (APRP), complement activation and immunoglobulines as immunological parameters were studied. APRP are produced in the liver and increase in cancer patients as well as those with acute and chronic inflammations, trauma and autoimmune diseases. APRP are known to be one of the immunosuppressive factors in the serum. Forty patients with acute head injuries were studied. Thirty-four patients were male and six patients were female, ages ranged from 12 to 81 years. Serial blood samples were obtained during the first seven days of trauma. The Glasgow Coma Score (GCS) were recorded at the time of admission for all patients. Clinical outcome was assessed at the time of discharge according to the Glasgow Outcome Scale. The "good" group consisted of patients with good recovery or moderate disability. The "bad" group consisted of patients with severe disability, persistent vegetative state and death. The concentrations of immunoglobulines (IgG, IgM, IgA) were within normal range and humoral immunity was not affected. Complement activation at the time of admission was closely related to GCS (p less than 0.01), but the levels of C4, C3, and C3 activator except for these of CH50 were within normal range.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2451531

  9. Fluid Balance, Diuretic Use, and Mortality in Acute Kidney Injury

    PubMed Central

    Estrella, Michelle M.; Coresh, Josef; Brower, Roy G.; Liu, Kathleen D.

    2011-01-01

    Summary Background and objectives Management of volume status in patients with acute kidney injury (AKI) is complex, and the role of diuretics is controversial. The primary objective was to elucidate the association between fluid balance, diuretic use, and short-term mortality after AKI in critically ill patients. Design, setting, participants, & measurements Using data from the Fluid and Catheter Treatment Trial (FACTT), a multicenter, randomized controlled trial evaluating a conservative versus liberal fluid-management strategy in 1000 patients with acute lung injury (ALI), we evaluated the association of post-renal injury fluid balance and diuretic use with 60-day mortality in patients who developed AKI, as defined by the AKI Network criteria. Results 306 patients developed AKI in the first 2 study days and were included in our analysis. There were 137 in the fluid-liberal arm and 169 in the fluid-conservative arm (P = 0.04). Baseline characteristics were similar between groups. Post-AKI fluid balance was significantly associated with mortality in both crude and adjusted analysis. Higher post-AKI furosemide doses had a protective effect on mortality but no significant effect after adjustment for post-AKI fluid balance. There was no threshold dose of furosemide above which mortality increased. Conclusions A positive fluid balance after AKI was strongly associated with mortality. Post-AKI diuretic therapy was associated with 60-day patient survival in FACTT patients with ALI; this effect may be mediated by fluid balance. PMID:21393482

  10. Acute Injuries among Professional Boxers in New York State: A Two-Year Survey.

    ERIC Educational Resources Information Center

    Jordan, Barry D.; Campbell, Edwin A.

    1988-01-01

    From August 1982 through July 1984, all acute boxing injuries among professional boxers in New York State were reviewed in order to classify them as craniocerebral or other injuries. Results and methodology are discussed. (Author/MT)

  11. [Acute lung injury as a consequence of blood transfusion].

    PubMed

    Rodríguez-Moyado, Héctor

    2011-01-01

    Acute lung injury (ALI) has been recognized as a consequence of blood transfusion (BT) since 1978; the Food and Drug Administration, has classified it as the third BT mortality issue, in 2004, and in first place related with ALI. It can be mainly detected as: Acute respiratory distress syndrome (ARDS), transfusion associated circulatory overload (TACO) and transfusion related acute lung injury (TRALI). The clinical onset is: severe dyspnea, bilateral lung infiltration and low oxygen saturation. In USA, ARDS has an incidence of three to 22.4 cases/100 000 inhabitants, with 58.3 % mortality. TACO and TRALI are less frequent; they have been reported according to the number of transfusions: one in 1275 to 6000 for TRALI and one in 356 transfusions for TACO. Mortality is reported from two to 20 % in TRALI and 20 % in TACO. Antileukocyte antibodies in blood donors plasma, caused TRALI in 89 % of cases; also it has been found antigen specificity against leukocyte blood receptor in 59 %. The UCI patients who received a BT have ALI as a complication in 40 % of cases. The capillary pulmonary endothelia is the target of leukocyte antibodies and also plasma biologic modifiers of the stored plasma, most probable like a Sanarelli-Shwar-tzman phenomenon. PMID:21838994

  12. Innate danger signals in acute injury: From bench to bedside.

    PubMed

    Fontaine, Mathieu; Lepape, Alain; Piriou, Vincent; Venet, Fabienne; Friggeri, Arnaud

    2016-08-01

    The description of the systemic inflammatory response syndrome (SIRS) as a reaction to numerous insults marked a turning point in the understanding of acute critical states, which are intensive care basic cases. This concept highlighted the final inflammatory response features whichever the injury mechanism is: infectious, or non-infectious such as extensive burns, traumas, major surgery or acute pancreatitis. In these cases of severe non-infectious insult, many endogenous mediators are released. Like infectious agents components, they can activate the immune system (via common signaling pathways) and initiate an inflammatory response. They are danger signals or alarmins. These molecules generally play an intracellular physiological role and acquire new functions when released in extracellular space. Many progresses brought new information on these molecules and on their function in infectious and non-infectious inflammation. These danger signals can be used as biomarkers and provide new pathophysiological and therapeutic approaches, particularly for immune dysfunctions occurring after an acute injury. We present herein the danger model, the main danger signals and the clinical consequences. PMID:26987739

  13. Contrast-Induced Acute Kidney Injury: An Update.

    PubMed

    Chalikias, George; Drosos, Ioannis; Tziakas, Dimitrios N

    2016-04-01

    Contrast-induced acute kidney injury (CI-AKI) is defined as an abrupt deterioration in renal function associated with the administration of iodinated contrast media. This type of acute kidney injury is frequently encountered as a complication of percutaneous coronary intervention (PCI) and is associated with adverse short- and long-term outcomes including mainly mortality, cardiovascular morbidity and prolongation of hospitalization. The incidence of CI-AKI after PCI ranges from 2 to 20 % according to baseline kidney function. It may also range according to the clinical setting, being higher after emergency PCI. The primary manifestation is a small decline in kidney function, occurring 1 to 3 days after the procedure. Kidney function usually returns to preexisting levels within 7 days. Incidence of acute renal failure requiring dialysis following PCI is rare (<1 %). The present article aims to review up-to-date published data concerning diagnosis, definition, epidemiology and prognosis of this novel in-hospital epidemic. PMID:26780748

  14. Role of liver progenitors in acute liver injury

    PubMed Central

    Best, Jan; Dollé, Laurent; Manka, Paul; Coombes, Jason; van Grunsven, Leo A.; Syn, Wing-Kin

    2013-01-01

    Acute liver failure (ALF) results from the acute and rapid loss of hepatocyte function and frequently exhibits a fulminant course, characterized by high mortality in the absence of immediate state-of-the-art intensive care and/or emergency liver transplantation (ELT). The role of hepatocyte-mediated liver regeneration during acute and chronic liver injury has been extensively investigated, and recent studies suggest that hepatocytes are not exclusively responsible for the regeneration of the injured liver during fulminant liver injury. Liver progenitor cells (LPC) (or resident liver stem cells) are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. This review aims to provide an overview of the role of the LPC population during ALF, and the role of putative cytokines, growth factors, mitogens, and hormones in the LPC response. We will highlight the potential interaction among cellular compartments during ALF, and discuss the possible prognostic value of the LPC response on ALF outcomes. PMID:24133449

  15. Acute response and chronic stimulus for cardiac structural and functional adaptation in a professional boxer.

    PubMed

    Oxborough, David; George, Keith; Utomi, Victor; Lord, Rachel; Morton, James; Jones, Nigel; Somauroo, John

    2014-06-01

    The individual response to acute and chronic changes in cardiac structure and function to intense exercise training is not fully understood and therefore evidence in this setting may help to improve the timing and interpretation of pre-participation cardiac screening. The following case report highlights an acute increase in right ventricular (RV) size and a reduction in left ventricular (LV) basal radial function with concomitant increase at the mid-level in response to a week's increase in training volume in a professional boxer. These adaptations settle by the second week; however, chronic physiological adaptation occurs over a 12-week period. Electrocardiographic findings demonstrate an acute lateral T-wave inversion at 1 week, which revert to baseline for the duration of training. It appears that a change in training intensity and volume generates an acute response within the RV that acts as a stimulus for chronic adaptation in this professional boxer. PMID:25988031

  16. Blueberry Anthocyanins-Enriched Extracts Attenuate Cyclophosphamide-Induced Cardiac Injury.

    PubMed

    Liu, Yunen; Tan, Dehong; Shi, Lin; Liu, Xinwei; Zhang, Yubiao; Tong, Changci; Song, Dequn; Hou, Mingxiao

    2015-01-01

    We sought to explore the effect of blueberry anthocyanins-enriched extracts (BAE) on cyclophosphamide (CTX)-induced cardiac injury. The rats were divided randomly into five groups including normal control, CTX 100 mg/kg, BAE 80mg/kg, CTX+BAE 20mg/kg and CTX+BAE 80mg/kg groups. The rats in the three BAE-treated groups were administered BAE for four weeks. Seven days after BAE administration, rats in CTX group and two BAE-treated groups were intraperitoneally injected with a single dose of 100 mg/kg CTX. Cardiac injury was assessed using physiological parameters, Echo, morphological staining, real-time PCR and western blot. In addition, cardiotoxicity indices, inflammatory cytokines expression and oxidative stress markers were also detected. Four weeks 20mg/kg and 80mg/kg dose of BAE treatment following CTX exposure attenuated mean arterial blood pressure, heart rate and activities of heart enzymes, improved cardiac dysfunction, left ventricular hypertrophy and fibrosis. Importantly, BAE also attenuated CTX-induced LV leukocyte infiltration and inflammatory cytokines expression, ameliorated oxidative stress as well as cardiomyocyte apoptosis. In conclusion, BAE attenuated the CTX-induced cardiac injury and the protective mechanisms were related closely to the anti-inflammatory, antioxidant and anti-inflammatory characteristics of BAE. PMID:26133371

  17. Blueberry Anthocyanins-Enriched Extracts Attenuate Cyclophosphamide-Induced Cardiac Injury

    PubMed Central

    Liu, Yunen; Tan, Dehong; Shi, Lin; Liu, Xinwei; Zhang, Yubiao; Tong, Changci; Song, Dequn; Hou, Mingxiao

    2015-01-01

    We sought to explore the effect of blueberry anthocyanins-enriched extracts (BAE) on cyclophosphamide (CTX)-induced cardiac injury. The rats were divided randomly into five groups including normal control, CTX 100 mg/kg, BAE 80mg/kg, CTX+BAE 20mg/kg and CTX+BAE 80mg/kg groups. The rats in the three BAE-treated groups were administered BAE for four weeks. Seven days after BAE administration, rats in CTX group and two BAE-treated groups were intraperitoneally injected with a single dose of 100 mg/kg CTX. Cardiac injury was assessed using physiological parameters, Echo, morphological staining, real-time PCR and western blot. In addition, cardiotoxicity indices, inflammatory cytokines expression and oxidative stress markers were also detected. Four weeks 20mg/kg and 80mg/kg dose of BAE treatment following CTX exposure attenuated mean arterial blood pressure, heart rate and activities of heart enzymes, improved cardiac dysfunction, left ventricular hypertrophy and fibrosis. Importantly, BAE also attenuated CTX-induced LV leukocyte infiltration and inflammatory cytokines expression, ameliorated oxidative stress as well as cardiomyocyte apoptosis. In conclusion, BAE attenuated the CTX-induced cardiac injury and the protective mechanisms were related closely to the anti-inflammatory, antioxidant and anti-inflammatory characteristics of BAE. PMID:26133371

  18. Clinical investigation: thyroid function test abnormalities in cardiac arrest associated with acute coronary syndrome

    PubMed Central

    Iltumur, Kenan; Olmez, Gonul; Arıturk, Zuhal; Taskesen, Tuncay; Toprak, Nizamettin

    2005-01-01

    Introduction It is known that thyroid homeostasis is altered during the acute phase of cardiac arrest. However, it is not clear under what conditions, how and for how long these alterations occur. In the present study we examined thyroid function tests (TFTs) in the acute phase of cardiac arrest caused by acute coronary syndrome (ACS) and at the end of the first 2 months after the event. Method Fifty patients with cardiac arrest induced by ACS and 31 patients with acute myocardial infarction (AMI) who did not require cardioversion or cardiopulmonary resuscitation were enrolled in the study, as were 40 healthy volunteers. The patients were divided into three groups based on duration of cardiac arrest (<5 min, 5–10 min and >10 min). Blood samples were collected for thyroid-stimulating hormone (TSH), tri-iodothyronine (T3), free T3, thyroxine (T4), free T4, troponin-I and creatine kinase-MB measurements. The blood samples for TFTs were taken at 72 hours and at 2 months after the acute event in the cardiac arrest and AMI groups, but only once in the control group. Results The T3 and free T3 levels at 72 hours in the cardiac arrest group were significantly lower than in both the AMI and control groups (P < 0.0001). On the other hand, there were no significant differences between T4, free T4 and TSH levels between the three groups (P > 0.05). At the 2-month evaluation, a dramatic improvement was observed in T3 and free T3 levels in the cardiac arrest group (P < 0.0001). In those patients whose cardiac arrest duration was in excess of 10 min, levels of T3, free T3, T4 and TSH were significantly lower than those in patients whose cardiac arrest duration was under 5 min (P < 0.001, P < 0.001, P < 0.005 and P < 0.05, respectively). Conclusion TFTs are significantly altered in cardiac arrest induced by ACS. Changes in TFTs are even more pronounced in patients with longer periods of resuscitation. The changes in the surviving patients were characterized by euthyroid sick

  19. A case of life-threatening acute kidney injury with toxic encephalopathy caused by Dioscorea quinqueloba.

    PubMed

    Kang, Kyung-Sik; Heo, Sang Taek

    2015-01-01

    Some herbal medications induce acute kidney injury. The acute kidney injuries caused by herbal medications are mild and commonly treated by palliative care. A 51-years-old man who drank the juice squeezed from the raw tubers of Dioscorea quinqueloba (D. quinqueloba) was admitted with nausea, vomiting and chilling. He developed a seizure with decreased level of consciousness. He was diagnosed with acute kidney injury, which was cured by continuous venovenous hemodialfiltration. Non-detoxified D. quinqueloba can cause severe acute kidney injury with toxic encephalopathy. It is critical to inform possible adverse effects of the medicinal herbs and to implement more strict regulation of these products. PMID:25510780

  20. Exploration of Disease Mechanism in Acute Kidney Injury Using a Multiplex Bead Array Assay: A Nested Case Control Pilot Study

    PubMed Central

    Liangos, Orfeas; Addabbo, Francesco; Tighiouart, Hocine; Goligorsky, Michael; Jaber, Bertrand L.

    2010-01-01

    Context Acute kidney injury (AKI) following cardiac surgery with cardiopulmonary bypass (CPB) causes increased morbidity and mortality. Objective Evaluate the plasma profile of biomarkers potentially involved in AKI following CPB. Methods In a nested case-control study, plasma levels of 27 biomarkers in 11 AKI cases were compared with 25 controls. Results Pre CPB, plasma levels of epidermal growth factor and macrophage inflammatory protein-1β; 2 hours following CPB, soluble vascular cell adhesion molecule-1, fractalkine and macrophage inflammatory protein-1α; and at later time points, sVCAM-1 and interleukin-6 were associated with AKI. Conclusion Biomarkers associated with AKI following CPB may merit further study. PMID:20482449

  1. Protein methionine oxidation augments reperfusion injury in acute ischemic stroke

    PubMed Central

    Gu, Sean X.; Blokhin, Ilya O.; Wilson, Katina M.; Dhanesha, Nirav; Doddapattar, Prakash; Grumbach, Isabella M.; Chauhan, Anil K.; Lentz, Steven R.

    2016-01-01

    Reperfusion injury can exacerbate tissue damage in ischemic stroke, but little is known about the mechanisms linking ROS to stroke severity. Here, we tested the hypothesis that protein methionine oxidation potentiates NF-κB activation and contributes to cerebral ischemia/reperfusion injury. We found that overexpression of methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that reverses protein methionine oxidation, attenuated ROS-augmented NF-κB activation in endothelial cells, in part, by protecting against the oxidation of methionine residues in the regulatory domain of calcium/calmodulin-dependent protein kinase II (CaMKII). In a murine model, MsrA deficiency resulted in increased NF-κB activation and neutrophil infiltration, larger infarct volumes, and more severe neurological impairment after transient cerebral ischemia/reperfusion injury. This phenotype was prevented by inhibition of NF-κB or CaMKII. MsrA-deficient mice also exhibited enhanced leukocyte rolling and upregulation of E-selectin, an endothelial NF-κB–dependent adhesion molecule known to contribute to neurovascular inflammation in ischemic stroke. Finally, bone marrow transplantation experiments demonstrated that the neuroprotective effect was mediated by MsrA expressed in nonhematopoietic cells. These findings suggest that protein methionine oxidation in nonmyeloid cells is a key mechanism of postischemic oxidative injury mediated by NF-κB activation, leading to neutrophil recruitment and neurovascular inflammation in acute ischemic stroke. PMID:27294204

  2. Management of Acute Lumbar Injuries in the Workplace.

    PubMed

    Lurati, Ann Regina

    2016-01-01

    Occupational acute lumbar injuries are a common injury. One intervention that is unique to occupational health is the determination of the amount of physical activity that an injured worker can perform without increasing the risk of further injury. Clinical recommendations suggest that workers continue to stay active; however, it is still the clinician's responsibility to determine the level of activity. The level of work activity is determined on a case-to-case basis and is done by evaluating the physical capacity of an injured worker and the job description. Current evidence-based guidelines suggest that staying active may actually reduce pain levels. The purpose of this evidence-based literature review is to outline the proper assessment and management of workers who have sustained a work-related low back injury. The related literature has been reviewed as well as red flags for more severe neurological conditions that require more in-depth evaluation. Determining the safe level of activity and guided return to work have been discussed. PMID:27187219

  3. Cell-specific translational profiling in acute kidney injury

    PubMed Central

    Liu, Jing; Krautzberger, A. Michaela; Sui, Shannan H.; Hofmann, Oliver M.; Chen, Ying; Baetscher, Manfred; Grgic, Ivica; Kumar, Sanjeev; Humphreys, Benjamin; Hide, Winston A.; McMahon, Andrew P.

    2014-01-01

    Acute kidney injury (AKI) promotes an abrupt loss of kidney function that results in substantial morbidity and mortality. Considerable effort has gone toward identification of diagnostic biomarkers and analysis of AKI-associated molecular events; however, most studies have adopted organ-wide approaches and have not elucidated the interplay among different cell types involved in AKI pathophysiology. To better characterize AKI-associated molecular and cellular events, we developed a mouse line that enables the identification of translational profiles in specific cell types. This strategy relies on CRE recombinase–dependent activation of an EGFP-tagged L10a ribosomal protein subunit, which allows translating ribosome affinity purification (TRAP) of mRNA populations in CRE-expressing cells. Combining this mouse line with cell type–specific CRE-driver lines, we identified distinct cellular responses in an ischemia reperfusion injury (IRI) model of AKI. Twenty-four hours following IRI, distinct translational signatures were identified in the nephron, kidney interstitial cell populations, vascular endothelium, and macrophages/monocytes. Furthermore, TRAP captured known IRI-associated markers, validating this approach. Biological function annotation, canonical pathway analysis, and in situ analysis of identified response genes provided insight into cell-specific injury signatures. Our study provides a deep, cell-based view of early injury-associated molecular events in AKI and documents a versatile, genetic tool to monitor cell-specific and temporal-specific biological processes in disease modeling. PMID:24569379

  4. Nephrotoxin Microinjection in Zebrafish to Model Acute Kidney Injury.

    PubMed

    McKee, Robert A; Wingert, Rebecca A

    2016-01-01

    The kidneys are susceptible to harm from exposure to chemicals they filter from the bloodstream. This can lead to organ injury associated with a rapid decline in renal function and development of the clinical syndrome known as acute kidney injury (AKI). Pharmacological agents used to treat medical circumstances ranging from bacterial infection to cancer, when administered individually or in combination with other drugs, can initiate AKI. Zebrafish are a useful animal model to study the chemical effects on renal function in vivo, as they form an embryonic kidney comprised of nephron functional units that are conserved with higher vertebrates, including humans. Further, zebrafish can be utilized to perform genetic and chemical screens, which provide opportunities to elucidate the cellular and molecular facets of AKI and develop therapeutic strategies such as the identification of nephroprotective molecules. Here, we demonstrate how microinjection into the zebrafish embryo can be utilized as a paradigm for nephrotoxin studies. PMID:27500823

  5. Autophagy is activated to protect against endotoxic acute kidney injury.

    PubMed

    Mei, Shuqin; Livingston, Man; Hao, Jielu; Li, Lin; Mei, Changlin; Dong, Zheng

    2016-01-01

    Endotoxemia in sepsis, characterized by systemic inflammation, is a major cause of acute kidney injury (AKI) in hospitalized patients, especially in intensive care unit; however the underlying pathogenesis is poorly understood. Autophagy is a conserved, cellular catabolic pathway that plays crucial roles in cellular homeostasis including the maintenance of cellular function and viability. The regulation and role of autophagy in septic or endotoxic AKI remains unclear. Here we show that autophagy was induced in kidney tubular cells in mice by the endotoxin lipopolysaccharide (LPS). Pharmacological inhibition of autophagy with chloroquine enhanced LPS-induced AKI. Moreover, specific ablation of autophagy gene 7 (Atg7) from kidney proximal tubules worsened LPS-induced AKI. Together, the results demonstrate convincing evidence of autophagy activation in endotoxic kidney injury and support a renoprotective role of autophagy in kidney tubules. PMID:26916346

  6. Snakebite-induced acute kidney injury in Latin America.

    PubMed

    Pinho, Fábia M Oliveira; Yu, Luis; Burdmann, Emmanuel A

    2008-07-01

    There are 4 genera of venomous snakes in Latin America: Bothrops, Crotalus, Lachesis, and Micrurus. Acute kidney injury (AKI) has been reported consistently after Bothrops and Crotalus envenomations. In fact, these 2 genera of snakes are responsible, along with the Russell's viper, for the majority of cases of snakebite-induced AKI reported worldwide. Although the Bothrops snakes are the leading cause of venomous snakebites in Latin America, the absolute number of AKI cases seen after Bothrops and Crotalus snakebites is similar. In this article the main characteristics of Bothrops and Crotalus snakes and their venoms, the clinical picture, and the pattern of accidents, risk factors, and mechanisms of renal injury are reviewed. PMID:18620958

  7. Immediate Consequences of Acute Kidney Injury: The Impact of Traditional and Nontraditional Complications on Mortality in Acute Kidney Injury.

    PubMed

    Faubel, Sarah; Shah, Pratik B

    2016-05-01

    Acute kidney injury (AKI) that requires renal replacement therapy is associated with a mortality rate that exceeds 50% in the intensive care unit, which is greater than other serious illnesses such as acute lung injury and myocardial infarction. Much information is now available regarding the complications of AKI that contribute to mortality and may be usefully categorized as "traditional" and "nontraditional". Traditional complications are the long-recognized complications of AKI such as hyperkalemia, acidosis, and volume overload, which may be typically corrected with renal replacement therapy. "Nontraditional" complications include complications such as sepsis, lung injury, and heart failure that may arise due to the effects of AKI on inflammatory cytokines, immune function, and cell death pathways such as apoptosis. In this review, we discuss both traditional and nontraditional complications of AKI with a focus on factors that contribute to mortality, considering both pathophysiology and potential remedies. Because AKI is the most common inpatient consult to nephrologists, it is essential to be aware of the complications of AKI that contribute to mortality to devise appropriate treatment strategies to prevent and manage AKI complications with the ultimate goal of reducing the unacceptably high mortality rate of AKI. PMID:27113694

  8. Netrin-1 attenuates cardiac ischemia reperfusion injury and generates alternatively activated macrophages.

    PubMed

    Mao, Xiaogang; Xing, Hui; Mao, Aihua; Jiang, Hong; Cheng, Li; Liu, Yun; Quan, Xiaozhen; Li, Lin

    2014-04-01

    Ischemia reperfusion (IR) injury is a major issue in cardiac transplantation and inflammatory processes play a major role in myocardial IR injury. Netrin-1 is a laminin-related protein identified as a neuronal guidance cue and netrin-1 expressed outside the nervous system inhibits migration of leukocytes in vitro and in vivo and attenuates inflammation-mediated tissue injury. In our study, hearts of C57BL/6 mice were flushed and stored in cold Bretschneider solution for 8 h and then transplanted into syngeneic recipient. We found that netrin-1 decreased cardiomyocyte apoptosis and recruitment of neutrophils and macrophages. Troponin T (TnT) production on 24 h after myocardial IR injury was reduced by netrin-1 administration. Cardiac output at 60 mmHg of afterload pressure was significantly increased in hearts with netrin-1 administration (IR + Netrin-1: 59.9 ± 5.78 ml/min; IR: 26.2 ± 4.3 ml/min; P < 0.05). Netrin-1 treatment increased expression of the alternatively activated macrophage (AAM) markers arginase-1 (Arg-1) and mannose receptor (MR) and promoted proliferator-activated receptor γ (PPARγ) expression in cardiac allograft. Furthermore, decreased TnT expression and reduced allograft infiltration of neutrophils and monocytes/macrophages by netrin-1 was abolished with addition of PPARγ antagonist. In conclusion, netrin-1 attenuates cardiac IR injury and generates AAM which contributes to the protective effect of netrin-1. PMID:24234226

  9. Bilateral ureteric stones: an unusual cause of acute kidney injury.

    PubMed

    Sumner, Daniel; Rehnberg, Lucas; Kler, Aaron

    2016-01-01

    A 49-year-old man presented to the accident and emergency department, with a short history of vague abdominal pain, abdominal distension and two episodes of frank haematuria. A plain chest film showed dilated loops of large bowel and blood results on admission showed an acute kidney injury (stage 3). A diagnosis of bowel obstruction was made initially but a CT scan of the abdomen showed bilateral obstructing calculi. After initial resuscitation, the patient had bilateral ultrasound-guided nephrostomies and haemofiltration. He later underwent bilateral antegrade ureteric stenting. A decision will later be made on whether or not he is fit enough to undergo ureteroscopy and laser stone fragmentation. PMID:27030462

  10. Dynamic Multiphoton Microscopy: Focusing Light on Acute Kidney Injury

    PubMed Central

    Molitoris, Bruce A.

    2014-01-01

    Acute kidney injury (AKI) is a major global health problem; much research has been conducted on AKI, and numerous agents have shown benefit in animal studies, but none have translated into treatments. There is, therefore, a pressing unmet need to increase knowledge of the pathophysiology of AKI. Multiphoton microscopy (MPM) provides a tool to non-invasively visualize dynamic events in real time and at high resolution in rodent kidneys, and in this article we review its application to study novel mechanisms and treatments in different forms of AKI. PMID:25180263

  11. Acute traumatic cord injury associated with ossified ligamentum flavum.

    PubMed

    Kow, Chien Yew; Chan, Patrick; Etherington, Greg; Rosenfeld, Jeffrey V

    2016-08-01

    Ossification of the ligamentum flavum (OLF) is an uncommon condition, which usually occurs amongst people of Asian descent, and most commonly in the thoracic spine region. Whilst often asymptomatic, OLF can cause spinal canal stenosis, with patients presenting with back pain, posterior cord syndrome or myelopathy. We present a rare case of acute spinal cord injury associated with OLF after a kite surfing accident, with the resulting paraplegia partially improved after decompression was performed. The prevalence, presentation and management of OLF are also discussed. PMID:27052256

  12. The Effects of Preexisting Medical Comorbidities on Mortality and Length of Hospital Stay in Acute Burn Injury

    PubMed Central

    Thombs, Brett D.; Singh, Vijay A.; Halonen, Jill; Diallo, Alfa; Milner, Stephen M.

    2007-01-01

    Objective: To determine whether and to what extent preexisting medical comorbidities influence mortality risk and length of hospitalization in patients with acute burn injury. Summary Background Data: The effects on mortality and length of stay of a number of important medical comorbidities have not been examined in acute burn injury. Existing studies that have investigated the effects of medical comorbidities on outcomes in acute burn injury have produced inconsistent results, chiefly due to the use of relatively small samples from single burn centers. Methods: Records of 31,338 adults who were admitted with acute burn injury to 70 burn centers from the American Burn Association National Burn Repository, were reviewed. A burn-specific list of medical comorbidities was derived from diagnoses included in the Charlson Index of Comorbidities and the Elixhauser method of comorbidity measurement. Logistic regression was used to assess the effects of preexisting medical conditions on mortality, controlling for demographic and burn injury characteristics. Ordinal least squares regression with a logarithmic transformation of the dependent variable was used to assess the relationship of comorbidities with length of stay. Results: In-hospital mortality was significantly predicted by HIV/AIDS (odds ratio [OR] = 10.2), renal disease (OR = 5.1), liver disease (OR = 4.8), metastatic cancer (OR = 4.6), pulmonary circulation disorders (OR = 2.9), congestive heart failure (OR = 2.4), obesity (OR = 2.1), non-metastatic malignancies (OR = 2.1), peripheral vascular disorders (OR = 1.8), alcohol abuse (OR = 1.8), neurological disorders (OR = 1.6), and cardiac arrhythmias (OR = 1.5). Increased length of hospital stay among survivors was significantly predicted by paralysis (90% increase), dementia (60%), peptic ulcer disease (53%), other neurological disorders (52%), HIV/AIDS (49%), renal disease (44%), a psychiatric diagnosis (42%), cerebrovascular disease (41%), cardiac arrhythmias

  13. Imaging of Spinal Cord Injury: Acute Cervical Spinal Cord Injury, Cervical Spondylotic Myelopathy, and Cord Herniation.

    PubMed

    Talekar, Kiran; Poplawski, Michael; Hegde, Rahul; Cox, Mougnyan; Flanders, Adam

    2016-10-01

    We review the pathophysiology and imaging findings of acute traumatic spinal cord injury (SCI), cervical spondylotic myelopathy, and briefly review the much less common cord herniation as a unique cause of myelopathy. Acute traumatic SCI is devastating to the patient and the costs to society are staggering. There are currently no "cures" for SCI and the only accepted pharmacologic treatment regimen for traumatic SCI is currently being questioned. Evaluation and prognostication of SCI is a demanding area with significant deficiencies, including lack of biomarkers. Accurate classification of SCI is heavily dependent on a good clinical examination, the results of which can vary substantially based upon the patient׳s condition or comorbidities and the skills of the examiner. Moreover, the full extent of a patients׳ neurologic injury may not become apparent for days after injury; by then, therapeutic response may be limited. Although magnetic resonance imaging (MRI) is the best imaging modality for the evaluation of spinal cord parenchyma, conventional MR techniques do not appear to differentiate edema from axonal injury. Recently, it is proposed that in addition to characterizing the anatomic extent of injury, metrics derived from conventional MRI and diffusion tensor imaging, in conjunction with the neurological examination, can serve as a reliable objective biomarker for determination of the extent of neurologic injury and early identification of patients who would benefit from treatment. Cervical spondylosis is a common disorder affecting predominantly the elderly with a potential to narrow the spinal canal and thereby impinge or compress upon the neural elements leading to cervical spondylotic myelopathy and radiculopathy. It is the commonest nontraumatic cause of spinal cord disorder in adults. Imaging plays an important role in grading the severity of spondylosis and detecting cord abnormalities suggesting myelopathy. PMID:27616315

  14. Preventing Flow-Metabolism Uncoupling Acutely Reduces Axonal Injury after Traumatic Brain Injury

    PubMed Central

    Mironova, Yevgeniya A.; Chen, Szu-Fu; Richards, Hugh K.; Pickard, John D.

    2012-01-01

    Abstract We have previously presented evidence that the development of secondary traumatic axonal injury is related to the degree of local cerebral blood flow (LCBF) and flow-metabolism uncoupling. We have now tested the hypothesis that augmenting LCBF in the acute stages after brain injury prevents further axonal injury. Data were acquired from rats with or without acetazolamide (ACZ) that was administered immediately following controlled cortical impact injury to increase cortical LCBF. Local cerebral metabolic rate for glucose (LCMRglc) and LCBF measurements were obtained 3 h post-trauma in the same rat via 18F-fluorodeoxyglucose and 14C-iodoantipyrine co-registered autoradiographic images, and compared to the density of damaged axonal profiles in adjacent sections, and in additional groups at 24 h used to assess different populations of injured axons stereologically. ACZ treatment significantly and globally elevated LCBF twofold above untreated-injured rats at 3 h (p<0.05), but did not significantly affect LCMRglc. As a result, ipsilateral LCMRglc:LCBF ratios were reduced by twofold to sham-control levels, and the density of β-APP-stained axons at 24 h was significantly reduced in most brain regions compared to the untreated-injured group (p<0.01). Furthermore, early LCBF augmentation prevented the injury-associated increase in the number of stained axons from 3–24 h. Additional robust stereological analysis of impaired axonal transport and neurofilament compaction in the corpus callosum and cingulum underlying the injury core confirmed the amelioration of β-APP axon density, and showed a trend, but no significant effect, on RMO14-positive axons. These data underline the importance of maintaining flow-metabolism coupling immediately after injury in order to prevent further axonal injury, in at least one population of injured axons. PMID:22321027

  15. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats

    PubMed Central

    Zhao, Jinbing; Chen, Zhi; Xi, Guohua; Keep, Richard F.; Hua, Ya

    2014-01-01

    Acute post-traumatic ventricular dilation and hydrocephalus are relatively frequent consequences of traumatic brain injury (TBI). Several recent studies have indicated that high iron level in brain may relate to hydrocephalus development after intracranial hemorrhage. However, the role of iron in the development of post-traumatic hydrocephalus is still unclear. This study was to determine whether or not iron has a role in hydrocephalus development after TBI. TBI was induced by lateral fluid-percussion in male Sprague-Dawley rats. Some rats had intraventricular injection of iron. Acute hydrocephalus was measured by magnetic resonance T2-weighted imaging and brain hemorrhage was determined by T2* gradient-echo sequence imaging and brain hemoglobin levels. The effect of deferoxamine on TBI-induced hydrocephalus was examined. TBI resulted in acute hydrocephalus at 24 hours (lateral ventricle volume: 24.1±3.0 vs. 9.9±0.2 mm3 in sham group). Intraventricular injection of iron also caused hydrocephalus (25.7 ± 3.4 vs. 9.0 ± 0.6 mm3 in saline group). Deferoxamine treatment attenuated TBI-induced hydrocephalus and heme oxygenase-1 upregulation. In conclusion, iron may contribute to acute hydrocephalus after TBI. PMID:24935175

  16. Renal and urological diseases of the newborn neonatal acute kidney injury.

    PubMed

    Mistry, Kirtida

    2014-01-01

    Survival of critically ill neonates in the intensive care unit has improved over the past decades reflecting improvements in obstetric, delivery room and neonatal intensive care, however, morbidity remains significant. Acute kidney injury is a common occurrence in these neonates and despite improved understanding of the pathophysiology and management of acute kidney injury in full term and preterm infants, the mortality remains as high as 61%. Furthermore, there is growing evidence that despite recovery from the acute injury, these infants are at risk for developing hypertension and chronic kidney disease later in life. Emphasis on improving our capability to detect renal insult and injury early, before renal failure occurs, and identification of novel therapeutic agents to prevent and treat acute kidney injury may impact mortality and morbidity. This review focuses on our current knowledge of acute kidney injury in the newborn, approaches to investigating and managing this complication and what future trends in this field may bring. PMID:25088261

  17. Hemojuvelin Modulates Iron Stress During Acute Kidney Injury: Improved by Furin Inhibitor

    PubMed Central

    Young, Guang-Huar; Huang, Tao-Min; Wu, Che-Hsiung; Lai, Chun-Fu; Hou, Chun-Cheng; Peng, Kang-Yung; Liang, Chan-Jung; Lin, Shuei-Liong; Chang, Shih-Chung; Tsai, Pi-Ru; Wu, Kwan-Dun

    2014-01-01

    Abstract Aims: Free iron plays an important role in the pathogenesis of acute kidney injury (AKI) via the formation of hydroxyl radicals. Systemic iron homeostasis is controlled by the hemojuvelin-hepcidin-ferroportin axis in the liver, but less is known about this role in AKI. Results: By proteomics, we identified a 42 kDa soluble hemojuvelin (sHJV), processed by furin protease from membrane-bound hemojuvelin (mHJV), in the urine during AKI after cardiac surgery. Biopsies from human and mouse specimens with AKI confirm that HJV is extensively increased in renal tubules. Iron overload enhanced the expression of hemojuvelin-hepcidin signaling pathway. The furin inhibitor (FI) decreases furin-mediated proteolytic cleavage of mHJV into sHJV and augments the mHJV/sHJV ratio after iron overload with hypoxia condition. The FI could reduce renal tubule apoptosis, stabilize hypoxic induced factor-1, prevent the accumulation of iron in the kidney, and further ameliorate ischemic-reperfusion injury. mHJV is associated with decreasing total kidney iron, secreting hepcidin, and promoting the degradation of ferroportin at AKI, whereas sHJV does the opposite. Innovation: This study suggests the ratio of mHJV/sHJV affects the iron deposition during acute kidney injury and sHJV could be an early biomarker of AKI. Conclusion: Our findings link endogenous HJV inextricably with renal iron homeostasis for the first time, add new significance to early predict AKI, and identify novel therapeutic targets to reduce the severity of AKI using the FI. Antioxid. Redox Signal. 20, 1181–1194. PMID:23901875

  18. Transdermal Nicotine Application Attenuates Cardiac Dysfunction after Severe Thermal Injury

    PubMed Central

    Claassen, Leif; Papst, Stephan; Reimers, Kerstin; Stukenborg-Colsman, Christina; Steinstraesser, Lars; Vogt, Peter M.; Kraft, Theresia; Niederbichler, Andreas D.

    2015-01-01

    Background. Severe burn trauma leads to an immediate and strong inflammatory response inciting cardiac dysfunction that is associated with high morbidity and mortality. The aim of this study was to determine whether transdermal application of nicotine could influence the burn-induced cardiac dysfunction via its known immunomodulatory effects. Material and Methods. A standardized rat burn model was used in 35 male Sprague Dawley rats. The experimental animals were divided into a control group, a burn trauma group, a burn trauma group with additional nicotine treatment, and a sham group with five experimental animals per group. The latter two groups received nicotine administration. Using microtip catheterization, functional parameters of the heart were assessed 12 or 24 hours after infliction of burn trauma. Results. Burn trauma led to significantly decreased blood pressure (BP) values whereas nicotine administration normalized BP. As expected, burn trauma also induced a significant deterioration of myocardial contractility and relaxation parameters. After application of nicotine these adverse effects were attenuated. Conclusion. The present study showed that transdermal nicotine administration has normalizing effects on burn-induced myocardial dysfunction parameters. Further research is warranted to gain insight in molecular mechanisms and pathways and to evaluate potential treatment options in humans. PMID:26290866

  19. Risk Factors and Outcomes of Acute Kidney Injury in Patients With Acute Liver Failure

    PubMed Central

    Tujios, Shannan R.; Hynan, Linda S.; Vazquez, Miguel A.; Larson, Anne M.; Seremba, Emmanuel; Sanders, Corron M.; Lee, William M.

    2016-01-01

    BACKGROUND & AIMS Patients with acute liver failure (ALF) frequently develop renal dysfunction, yet its overall incidence and outcomes have not been fully assessed. We investigated the incidence of acute kidney injury (AKI) among patients with ALF, using defined criteria to identify risk factors and to evaluate its effect on overall outcomes. METHODS We performed a retrospective review of data from 1604 patients enrolled in the Acute Liver Failure Study Group, from 1998 through 2010. Patients were classified by the Acute Kidney Injury Network criteria, as well as for etiology of liver failure (acetaminophen-based, ischemic, and all others). RESULTS Seventy percent of patients with ALF developed AKI, and 30% received renal replacement therapy (RRT). Patients with severe AKI had higher international normalized ratio values than those without renal dysfunction (P < .001), and a higher proportion had advanced-grade coma (coma grades 3 or 4; P < .001) or presented with hypotension requiring vasopressor therapy (P < .001). A greater proportion of patients with acetaminophen-induced ALF had severe kidney injury than of patients with other etiologies of ALF; 34% required RRT, compared with 25% of patients with ALF not associated with acetaminophen or ischemia (P < .002). Of the patients with ALF who were alive at 3 weeks after study entry, significantly fewer with AKI survived for 1 year. Although AKI reduced the overall survival time, more than 50% of patients with acetaminophen-associated or ischemic ALF survived without liver transplantation (even with RRT), compared with 19% of patients with ALF attribute to other causes (P < .001). Only 4% of patients requiring RRT became dependent on dialysis. CONCLUSIONS Based on a retrospective analysis of data from more than 1600 patients, AKI is common in patients with ALF and affects short- and long-term outcomes, but rarely results in chronic kidney disease. Acetaminophen-induced kidney injury is frequent, but patients have

  20. Nonextensive entropy measure of EEG following brain injury from cardiac arrest

    NASA Astrophysics Data System (ADS)

    Tong, S.; Bezerianos, A.; Paul, J.; Zhu, Y.; Thakor, N.

    2002-03-01

    The nonextensive entropy measure is developed to study the electroencephalogram (EEG) during the recovery of the brain's electrical function from asphyxic cardiac arrest (ACA) injury. The statistical characteristics of the Tsallis-like time-dependent entropy (TDE) for different signal distributions are investigated. Both the mean and the variance of TDE show good specificity to the ACA brain injury and its recovery. ACA brain injury results in a decrease in entropy while a good electrophysiological recovery shows a rapid return to a higher entropy level. There is a reduction in the mean and increase in the variance of TDE after brain injury followed by a gradual recovery upon resuscitation. The nonextensive TDE is expected to provide a novel quantitative EEG strategy for monitoring the brain states.

  1. Mechanisms of cardiac radiation injury and potential preventive approaches.

    PubMed

    Slezak, Jan; Kura, Branislav; Ravingerová, Táňa; Tribulova, Narcisa; Okruhlicova, Ludmila; Barancik, Miroslav

    2015-09-01

    In addition to cytostatic treatment and surgery, the most common cancer treatment is gamma radiation. Despite sophisticated radiological techniques however, in addition to irradiation of the tumor, irradiation of the surrounding healthy tissue also takes place, which results in various side-effects, depending on the absorbed dose of radiation. Radiation either damages the cell DNA directly, or indirectly via the formation of oxygen radicals that in addition to the DNA damage, react with all cell organelles and interfere with their molecular mechanisms. The main features of radiation injury besides DNA damage is inflammation and increased expression of pro-inflammatory genes and cytokines. Endothelial damage and dysfunction of capillaries and small blood vessels plays a particularly important role in radiation injury. This review is focused on summarizing the currently available data concerning the mechanisms of radiation injury, as well as the effectiveness of various antioxidants, anti-inflammatory cytokines, and cytoprotective substances that may be utilized in preventing, mitigating, or treating the toxic effects of ionizing radiation on the heart. PMID:26030720

  2. Acute Hemodynamic Efficacy of a 32-ml Subcutaneous Counterpulsation Device in a Calf Model of Diminished Cardiac Function

    PubMed Central

    Koenig, Steven C.; Litwak, Kenneth N.; Giridharan, Guruprasad A.; Pantalos, George M.; Dowling, Robert D.; Prabhu, Sumanth D.; Slaughter, Mark S.; Sobieski, Michael A.; Spence, Paul A.

    2010-01-01

    The acute hemodynamic efficacy of an implantable counter-pulsation device (CPD) was evaluated. The CPD is a valveless single port, 32-ml stroke volume blood chamber designed to be connected to the human axillary artery using a simple surface surgical procedure. Blood is drawn into the pump during systole and ejected during diastole. The acute hemodynamic effects of the 32-ml CPD were compared to a standard clinical 40-ml intra-aortic balloon pump (IABP) in calves (80 kg, n = 10). The calves were treated by a single oral dose of Monensin to produce a model of diminished cardiac function (DCF). The CPD and IABP produced similar increases in cardiac output (6% CPD vs. 5% IABP, p > 0.5) and reduction in left ventricular external work (14% CPD vs. 13% IABP, p > 0.5) compared to DCF (p < 0.05). However, the ratio of diastolic coronary artery flow to left ventricular external work increase from DCF baseline (p < 0.05) was greater with the CPD compared to the IABP (15% vs. 4%, p < 0.05). The CPD also produced a greater reduction in left ventricular myocardial oxygen consumption from DCF baseline (p < 0.05) compared to the IABP (13% vs. 9%, p < 0.05) despite each device providing similar improvements in cardiac output. There was no early indication of hemolysis, thrombus formation, or vascular injury. The CPD provides hemodynamic efficacy equivalent to an IABP and may become a therapeutic option for patients who may benefit from prolonged counterpulsation. PMID:19033769

  3. Acute hemodynamic efficacy of a 32-ml subcutaneous counterpulsation device in a calf model of diminished cardiac function.

    PubMed

    Koenig, Steven C; Litwak, Kenneth N; Giridharan, Guruprasad A; Pantalos, George M; Dowling, Robert D; Prabhu, Sumanth D; Slaughter, Mark S; Sobieski, Michael A; Spence, Paul A

    2008-01-01

    The acute hemodynamic efficacy of an implantable counterpulsation device (CPD) was evaluated. The CPD is a valveless single port, 32-ml stroke volume blood chamber designed to be connected to the human axillary artery using a simple surface surgical procedure. Blood is drawn into the pump during systole and ejected during diastole. The acute hemodynamic effects of the 32-ml CPD were compared to a standard clinical 40-ml intra-aortic balloon pump (IABP) in calves (80 kg, n = 10). The calves were treated by a single oral dose of Monensin to produce a model of diminished cardiac function (DCF). The CPD and IABP produced similar increases in cardiac output (6% CPD vs. 5% IABP, p > 0.5) and reduction in left ventricular external work (14% CPD vs. 13% IABP, p > 0.5) compared to DCF (p < 0.05). However, the ratio of diastolic coronary artery flow to left ventricular external work increase from DCF baseline (p < 0.05) was greater with the CPD compared to the IABP (15% vs. 4%, p < 0.05). The CPD also produced a greater reduction in left ventricular myocardial oxygen consumption from DCF baseline (p < 0.05) compared to the IABP (13% vs. 9%, p < 0.05) despite each device providing similar improvements in cardiac output. There was no early indication of hemolysis, thrombus formation, or vascular injury. The CPD provides hemodynamic efficacy equivalent to an IABP and may become a therapeutic option for patients who may benefit from prolonged counterpulsation. PMID:19033769

  4. Human Cardiac-Derived Adherent Proliferating Cells Reduce Murine Acute Coxsackievirus B3-Induced Myocarditis

    PubMed Central

    Miteva, Kapka; Haag, Marion; Peng, Jun; Savvatis, Kostas; Becher, Peter Moritz; Seifert, Martina; Warstat, Katrin; Westermann, Dirk; Ringe, Jochen; Sittinger, Michael; Schultheiss, Heinz-Peter

    2011-01-01

    Background Under conventional heart failure therapy, inflammatory cardiomyopathy typically has a progressive course, indicating a need for alternative therapeutic strategies to improve long-term outcomes. We recently isolated and identified novel cardiac-derived cells from human cardiac biopsies: cardiac-derived adherent proliferating cells (CAPs). They have similarities with mesenchymal stromal cells, which are known for their anti-apoptotic and immunomodulatory properties. We explored whether CAPs application could be a novel strategy to improve acute Coxsackievirus B3 (CVB3)-induced myocarditis. Methodology/Principal Findings To evaluate the safety of our approach, we first analyzed the expression of the coxsackie- and adenovirus receptor (CAR) and the co-receptor CD55 on CAPs, which are both required for effective CVB3 infectivity. We could demonstrate that CAPs only minimally express both receptors, which translates to minimal CVB3 copy numbers, and without viral particle release after CVB3 infection. Co-culture of CAPs with CVB3-infected HL-1 cardiomyocytes resulted in a reduction of CVB3-induced HL-1 apoptosis and viral progeny release. In addition, CAPs reduced CD4 and CD8 T cell proliferation. All CAPs-mediated protective effects were nitric oxide- and interleukin-10-dependent and required interferon-γ. In an acute murine model of CVB3-induced myocarditis, application of CAPs led to a decrease of cardiac apoptosis, cardiac CVB3 viral load and improved left ventricular contractility parameters. This was associated with a decline in cardiac mononuclear cell activity, an increase in T regulatory cells and T cell apoptosis, and an increase in left ventricular interleukin-10 and interferon-γ mRNA expression. Conclusions We conclude that CAPs are a unique type of cardiac-derived cells and promising tools to improve acute CVB3-induced myocarditis. PMID:22174827

  5. Blunt cardiac injury: case report of salvaged traumatic right atrial rupture.

    PubMed

    Al Ayyan, Muna; Aziz, Tanim; El Sherif, Amgad; Bekdache, Omar

    2016-11-01

    The incidence of cardiac rupture following blunt trauma is rare, occurring in 0.3%-0.5% of all blunt trauma patients. It can be fatal at the trauma scene, and is frequently missed in the emergency room setting. The severity of a cardiac trauma is based on the mechanism and degree of the force applied. The objective of this study was to report the case of a 32-year-old male patient who was involved in a motor vehicle collision and presented to the emergency room with signs of hypovolemic shock. The patient was found to have severe chest trauma associated with massive hemothorax requiring immediate intervention. The patient had an emergent thoracotomy revealing a right atrial injury. Repair of the atrial injury reversed the state of shock. The patient was discharged after 35 days of hospitalization in good condition. PMID:27054650

  6. Hypoxia/Reoxygenation Cardiac Injury and Regeneration in Zebrafish Adult Heart

    PubMed Central

    Pompilio, Giulio; Verduci, Lorena; Colombo, Gualtiero I.; Milano, Giuseppina; Guerrini, Uliano; Squadroni, Lidia; Cotelli, Franco; Pozzoli, Ombretta; Capogrossi, Maurizio C.

    2013-01-01

    Aims the adult zebrafish heart regenerates spontaneously after injury and has been used to study the mechanisms of cardiac repair. However, no zebrafish model is available that mimics ischemic injury in mammalian heart. We developed and characterized zebrafish cardiac injury induced by hypoxia/reoxygenation (H/R) and the regeneration that followed it. Methods and Results adult zebrafish were kept either in hypoxic (H) or normoxic control (C) water for 15 min; thereafter fishes were returned to C water. Within 2–6 hours (h) after reoxygenation there was evidence of cardiac oxidative stress by dihydroethidium fluorescence and protein nitrosylation, as well as of inflammation. We used Tg(cmlc2:nucDsRed) transgenic zebrafish to identify myocardial cell nuclei. Cardiomyocyte apoptosis and necrosis were evidenced by TUNEL and Acridine Orange (AO) staining, respectively; 18 h after H/R, 9.9±2.6% of myocardial cell nuclei were TUNEL+ and 15.0±2.5% were AO+. At the 30-day (d) time point myocardial cell death was back to baseline (n = 3 at each time point). We evaluated cardiomyocyte proliferation by Phospho Histone H3 (pHH3) or Proliferating Cell Nuclear Antigen (PCNA) expression. Cardiomyocyte proliferation was apparent 18–24 h after H/R, it achieved its peak 3–7d later, and was back to baseline at 30d. 7d after H/R 17.4±2.3% of all cardiomyocytes were pHH3+ and 7.4±0.6% were PCNA+ (n = 3 at each time point). Cardiac function was assessed by 2D-echocardiography and Ventricular Diastolic and Systolic Areas were used to compute Fractional Area Change (FAC). FAC decreased from 29.3±2.0% in normoxia to 16.4±1.8% at 18 h after H/R; one month later ventricular function was back to baseline (n = 12 at each time point). Conclusions zebrafish exposed to H/R exhibit evidence of cardiac oxidative stress and inflammation, myocardial cell death and proliferation. The initial decrease in ventricular function is followed by full recovery. This model more closely

  7. Liver autophagy in anorexia nervosa and acute liver injury.

    PubMed

    Kheloufi, Marouane; Boulanger, Chantal M; Durand, François; Rautou, Pierre-Emmanuel

    2014-01-01

    Autophagy, a lysosomal catabolic pathway for long-lived proteins and damaged organelles, is crucial for cell homeostasis, and survival under stressful conditions. During starvation, autophagy is induced in numerous organisms ranging from yeast to mammals, and promotes survival by supplying nutrients and energy. In the early neonatal period, when transplacental nutrients supply is interrupted, starvation-induced autophagy is crucial for neonates' survival. In adult animals, autophagy provides amino acids and participates in glucose metabolism following starvation. In patients with anorexia nervosa, autophagy appears initially protective, allowing cells to copes with nutrient deprivation. However, when starvation is critically prolonged and when body mass index reaches 13 kg/m(2) or lower, acute liver insufficiency occurs with features of autophagic cell death, which can be observed by electron microscopy analysis of liver biopsy samples. In acetaminophen overdose, a classic cause of severe liver injury, autophagy is induced as a protective mechanism. Pharmacological enhancement of autophagy protects against acetaminophen-induced necrosis. Autophagy is also activated as a rescue mechanism in response to Efavirenz-induced mitochondrial dysfunction. However, Efavirenz overdose blocks autophagy leading to liver cell death. In conclusion, in acute liver injury, autophagy appears as a protective mechanism that can be however blocked or overwhelmed. PMID:25250330

  8. Adrenal insufficiency presenting as hypercalcemia and acute kidney injury

    PubMed Central

    Ahn, Seung Won; Kim, Tong Yoon; Lee, Sangmin; Jeong, Jeong Yeon; Shim, Hojoon; Han, Yu min; Choi, Kyu Eun; Shin, Seok Joon; Yoon, Hye Eun

    2016-01-01

    Adrenal insufficiency is an uncommon cause of hypercalcemia and not easily considered as an etiology of adrenal insufficiency in clinical practice, as not all cases of adrenal insufficiency manifest as hypercalcemia. We report a case of secondary adrenal insufficiency presenting as hypercalcemia and acute kidney injury in a 66-year-old female. The patient was admitted to the emergency department with general weakness and poor oral intake. Hypercalcemia (11.5 mg/dL) and moderate renal dysfunction (serum creatinine 4.9 mg/dL) were shown in her initial laboratory findings. Studies for malignancy and hyperparathyroidism showed negative results. Basal cortisol and adrenocorticotropic hormone levels and adrenocorticotropic hormone stimulation test confirmed the diagnosis of adrenal insufficiency. With the administration of oral hydrocortisone, hypercalcemia was dramatically resolved within 3 days. This case shows that adrenal insufficiency may manifest as hypercalcemia and acute kidney injury, which implicates that adrenal insufficiency should be considered a cause of hypercalcemia in clinical practice. PMID:27536162

  9. Preemptive mechanical ventilation can block progressive acute lung injury

    PubMed Central

    Sadowitz, Benjamin; Jain, Sumeet; Kollisch-Singule, Michaela; Satalin, Joshua; Andrews, Penny; Habashi, Nader; Gatto, Louis A; Nieman, Gary

    2016-01-01

    Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS. PMID:26855896

  10. Acute Kidney Injury by Radiographic Contrast Media: Pathogenesis and Prevention

    PubMed Central

    Faga, Teresa; Pisani, Antonio; Michael, Ashour

    2014-01-01

    It is well known that iodinated radiographic contrast media may cause kidney dysfunction, particularly in patients with preexisting renal impairment associated with diabetes. This dysfunction, when severe, will cause acute renal failure (ARF). We may define contrast-induced Acute Kidney Injury (AKI) as ARF occurring within 24–72 hrs after the intravascular injection of iodinated radiographic contrast media that cannot be attributed to other causes. The mechanisms underlying contrast media nephrotoxicity have not been fully elucidated and may be due to several factors, including renal ischaemia, particularly in the renal medulla, the formation of reactive oxygen species (ROS), reduction of nitric oxide (NO) production, and tubular epithelial and vascular endothelial injury. However, contrast-induced AKI can be prevented, but in order to do so, we need to know the risk factors. We have reviewed the risk factors for contrast-induced AKI and measures for its prevention, providing a long list of references enabling readers to deeply evaluate them both. PMID:25197639

  11. Liver Autophagy in Anorexia Nervosa and Acute Liver Injury

    PubMed Central

    Kheloufi, Marouane; Boulanger, Chantal M.; Durand, François

    2014-01-01

    Autophagy, a lysosomal catabolic pathway for long-lived proteins and damaged organelles, is crucial for cell homeostasis, and survival under stressful conditions. During starvation, autophagy is induced in numerous organisms ranging from yeast to mammals, and promotes survival by supplying nutrients and energy. In the early neonatal period, when transplacental nutrients supply is interrupted, starvation-induced autophagy is crucial for neonates' survival. In adult animals, autophagy provides amino acids and participates in glucose metabolism following starvation. In patients with anorexia nervosa, autophagy appears initially protective, allowing cells to copes with nutrient deprivation. However, when starvation is critically prolonged and when body mass index reaches 13 kg/m2 or lower, acute liver insufficiency occurs with features of autophagic cell death, which can be observed by electron microscopy analysis of liver biopsy samples. In acetaminophen overdose, a classic cause of severe liver injury, autophagy is induced as a protective mechanism. Pharmacological enhancement of autophagy protects against acetaminophen-induced necrosis. Autophagy is also activated as a rescue mechanism in response to Efavirenz-induced mitochondrial dysfunction. However, Efavirenz overdose blocks autophagy leading to liver cell death. In conclusion, in acute liver injury, autophagy appears as a protective mechanism that can be however blocked or overwhelmed. PMID:25250330

  12. Preemptive mechanical ventilation can block progressive acute lung injury.

    PubMed

    Sadowitz, Benjamin; Jain, Sumeet; Kollisch-Singule, Michaela; Satalin, Joshua; Andrews, Penny; Habashi, Nader; Gatto, Louis A; Nieman, Gary

    2016-02-01

    Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS. PMID:26855896

  13. Acute kidney injury by radiographic contrast media: pathogenesis and prevention.

    PubMed

    Andreucci, Michele; Faga, Teresa; Pisani, Antonio; Sabbatini, Massimo; Michael, Ashour

    2014-01-01

    It is well known that iodinated radiographic contrast media may cause kidney dysfunction, particularly in patients with preexisting renal impairment associated with diabetes. This dysfunction, when severe, will cause acute renal failure (ARF). We may define contrast-induced Acute Kidney Injury (AKI) as ARF occurring within 24-72 hrs after the intravascular injection of iodinated radiographic contrast media that cannot be attributed to other causes. The mechanisms underlying contrast media nephrotoxicity have not been fully elucidated and may be due to several factors, including renal ischaemia, particularly in the renal medulla, the formation of reactive oxygen species (ROS), reduction of nitric oxide (NO) production, and tubular epithelial and vascular endothelial injury. However, contrast-induced AKI can be prevented, but in order to do so, we need to know the risk factors. We have reviewed the risk factors for contrast-induced AKI and measures for its prevention, providing a long list of references enabling readers to deeply evaluate them both. PMID:25197639

  14. [Role of computed tomography in the diagnosis of acute lung injury/acute respiratory distress syndrome].

    PubMed

    Mazzei, Maria Antonietta; Guerrini, Susanna; Cioffi Squitieri, Nevada; Franchi, Federico; Volterrani, Luca; Genovese, Eugenio Annibale; Macarini, Luca

    2012-11-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a complex pulmonary pathology with high mortality rates, manifesting over a wide range of severity. Clinical diagnosis relies on the following 4 criteria stated by the American-European Consensus Conference: acute onset of impaired gas exchange, severe hypoxemia defined as a PaO2 to FiO2 ratio <300 (PaO2 in mmHg), bilateral diffuse infiltration on chest X-ray; pulmonary artery wedge pressure of ≤18 mmHg to rule out cardiogenic causes of pulmonary edema. The aim of this study was to determine the usefulness of CT in the diagnosis and management of this condition. PMID:23096732

  15. Cardiac Dysregulation and Myocardial Injury in a 6-Hydroxydopamine-Induced Rat Model of Sympathetic Denervation

    PubMed Central

    Yang, Jin-long; Ma, Du-Fang; Lin, Hai-Qing; Su, Wen-ge; Wang, Zhen; Li, Xiao

    2015-01-01

    Background Cardiac sympathetic denervation is found in various cardiac pathologies; however, its relationship with myocardial injury has not been thoroughly investigated. Methods Twenty-four rats were assigned to the normal control group (NC), sympathectomy control group (SC), and a sympathectomy plus mecobalamin group (SM). Sympathectomy was induced by injection of 6-OHDA, after which, the destruction and distribution of sympathetic and vagal nerve in the left ventricle (LV) myocardial tissue were determined by immunofluorescence and ELISA. Heart rate variability (HRV), ECG and echocardiography, and assays for myocardial enzymes in serum before and after sympathectomy were examined. Morphologic changes in the LV by HE staining and transmission electron microscope were used to estimate levels of myocardial injury and concentrations of inflammatory cytokines were used to reflect the inflammatory reaction. Results Injection of 6-OHDA decreased NE (933.1 ± 179 ng/L for SC vs. 3418.1± 443.6 ng/L for NC, P < 0.01) and increased NGF (479.4± 56.5 ng/mL for SC vs. 315.85 ± 28.6 ng/mL for NC, P < 0.01) concentrations. TH expression was reduced, while ChAT expression showed no change. Sympathectomy caused decreased HRV and abnormal ECG and echocardiography results, and histopathologic examinations showed myocardial injury and increased collagen deposition as well as inflammatory cell infiltration in the cardiac tissue of rats in the SC and SM groups. However, all pathologic changes in the SM group were less severe compared to those in the SC group. Conclusions Chemical sympathectomy with administration of 6-OHDA caused dysregulation of the cardiac autonomic nervous system and myocardial injuries. Mecobalamin alleviated inflammatory and myocardial damage by protecting myocardial sympathetic nerves. PMID:26230083

  16. Deoxycorticosterone Acetate/Salt-Induced Cardiac But Not Renal Injury Is Mediated By Endothelial Mineralocorticoid Receptors Independently From Blood Pressure.

    PubMed

    Lother, Achim; Fürst, David; Bergemann, Stella; Gilsbach, Ralf; Grahammer, Florian; Huber, Tobias B; Hilgendorf, Ingo; Bode, Christoph; Moser, Martin; Hein, Lutz

    2016-01-01

    Chronic kidney disease has a tremendously increasing prevalence and requires novel therapeutic approaches. Mineralocorticoid receptor (MR) antagonists have proven highly beneficial in the therapy of cardiac disease. The cellular and molecular events leading to cardiac inflammation and remodeling are proposed to be similar to those mediating renal injury. Thus, this study was designed to evaluate and directly compare the effect of MR deletion in endothelial cells on cardiac and renal injury in a model of deoxycorticosterone acetate-induced hypertension. Endothelial MR deletion ameliorated deoxycorticosterone acetate/salt-induced cardiac remodeling. This was associated with a reduced expression of the vascular cell adhesion molecule Vcam1 in MR-deficient cardiac endothelial cells. Ambulatory blood pressure telemetry revealed that the protective effect of MR deletion was independent from blood pressure. Similar to the heart, deoxycorticosterone acetate/salt-induced severe renal injury, including inflammation, fibrosis, glomerular injury, and proteinuria. However, no differences in renal injury were observed between genotypes. In conclusion, MR deletion from endothelial cells ameliorated deoxycorticosterone acetate/salt-induced cardiac inflammation and remodeling independently from alterations in blood pressure but it did not affect renal injury. These findings suggest that the anti-inflammatory mechanism mediating organ protection after endothelial cell MR deletion is specific for the heart versus the kidney. PMID:26553231

  17. Immune Mechanisms and Novel Pharmacological Therapies of Acute Kidney Injury

    PubMed Central

    Bajwa, Amandeep; Kinsey, Gilbert R.; Okusa, Mark D.

    2010-01-01

    Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and both innate and adaptive immunity contribute to the pathogenesis. Kidney resident cells promote inflammation after IRI by increasing endothelial cell adhesion molecule expression and vascular permeability. Kidney epithelial cells bind complement and express tolllike receptors and resident and infiltrating cells produce cytokines/chemokines. Early activation of kidney dendritic cells (DCs) initiates a cascade of events leading to accumulation of interferon-γ-producing neutrophils, infiltrating macrophages, CD4+ T cells, B cells and invariant natural killer T (NKT) cells. Recent studies from our laboratory now implicate the IL23/IL17 pathway in kidney IRI. Following the initial early phase of inflammation, the late phase involves infiltration of anti-inflammatory cells including regulatory T cells, alternatively activated macrophages and stem cells leading to attenuation of inflammation and initiation of repair. Based upon these immune mechanisms of injury, recent studies hold promise for novel drug therapies. These pharmacological agents have been shown to reduce inflammation or cytotoxicity in rodent models of AKI and some show early promise in clinical trials. This review summarizes recent advances to further our understanding of the immune mechanisms of AKI and potential pharmacological therapies. PMID:19715538

  18. Vitamin D deficiency aggravates ischemic acute kidney injury in rats

    PubMed Central

    de Bragança, Ana Carolina; Volpini, Rildo A; Canale, Daniele; Gonçalves, Janaína G; Shimizu, Maria Heloisa M; Sanches, Talita R; Seguro, Antonio C; Andrade, Lúcia

    2015-01-01

    Vitamin D deficiency (VDD) increases the risk of death in hospitalized patients. Renal ischemia/reperfusion injury (IRI) induces acute kidney injury (AKI), which activates cell cycle inhibitors, including p21, a cyclin-dependent kinase inhibitor and genomic target of 25-hydroxyvitamin D, which is in turn a potent immunomodulator with antiproliferative effects. In this study, we assess the impact of VDD in renal IRI. Wistar rats were divided into groups, each evaluated for 30 days: control (receiving a standard diet); VDD (receiving a vitamin D-free diet); IRI (receiving a standard diet and subjected to 45-min bilateral renal ischemia on day 28); and VDD + IRI (receiving a vitamin D-free diet and subjected to 45-min bilateral renal ischemia on day 28). At 48 h after IRI, animals were euthanized; blood, urine, and kidney tissue samples were collected. Compared with IRI rats, VDD + IRI rats showed a more severe decrease in glomerular filtration rate, greater urinary protein excretion, a higher kidney/body weight ratio and lower renal aquaporin 2 expression, as well as greater morphological damage, characterized by increased interstitial area and tubular necrosis. Our results suggest that the severity of tubular damage in IRI may be associated with downregulation of vitamin D receptors and p21. VDD increases renal inflammation, cell proliferation and cell injury in ischemic AKI. PMID:25780095

  19. Comparison of stem cell therapies for acute kidney injury

    PubMed Central

    Barnes, Carol J; Distaso, Casey T; Spitz, Kristin M; Verdun, Valerie A; Haramati, Aviad

    2016-01-01

    Acute kidney injury (AKI) is the rapid onset of decreased kidney function that ultimately increases mortality and morbidity. Stem cell research is a promising avenue for curative and preventative therapies of kidney injury, however, there are many types of stem cells under investigation. Currently there is no research to compare the value of one stem cell method over another. Induced pluripotent stem cells (iPSCs) and spermatogonial stem cells (SSCs) have been shown to differentiate into renal cells, though further clinical research is needed to fully explore potential therapeutic strategies. Mesenchymal stem cells (MSCs) have long been investigated in the preclinical setting and have recently been successful in Phase I clinical trials. MSCs may represent a promising new therapeutic approach to treat AKI as they demonstrate renoprotective effects post-injury via the secretion of promitotic, anti-apoptotic, anti-inflammatory, and immunomodulatory factors. Given the most current research, MSCs appear to offer a promising course of treatment for AKI. PMID:27335697

  20. Microglia: Dismantling and rebuilding circuits after acute neurological injury

    PubMed Central

    Ziebell, Jenna M.; Adelson, P. David; Lifshitz, Jonathan

    2014-01-01

    The brain is comprised of neurons and its support system including astrocytes, glial cells and microglia, thereby forming neurovascular units. Neurons require support from glial cells to establish and maintain functional circuits, but microglia are often overlooked. Microglia function as the immune cell of the central nervous system, acting to monitor the microenvironment for changes in signaling, pathogens and injury. More recently, other functional roles for microglia within the healthy brain have been identified, including regulating synapse formation, elimination and function. This review aims to highlight and discuss these alternate microglial roles in the healthy and in contrast, diseased brain with a focus on two acute neurological diseases, traumatic brain injury and epilepsy. In these conditions, microglial roles in synaptic stripping and stabilization as part of neuronal:glial interactions may position them as mediators of the transition between injury-induced circuit dismantling and subsequent reorganization. Increased understanding of microglia roles could identify therapeutic targets to mitigate the consequences of neurological disease. PMID:24733573

  1. Acute kidney injury: from clinical to molecular diagnosis.

    PubMed

    Ronco, Claudio

    2016-01-01

    The RIFLE classification was introduced in 2004 to describe the presence of acute kidney injury (AKI) and to define its clinical stage, based upon the serum creatinine level and urine output. The same criteria, although slightly modified, are used in the other scoring systems AKIN and KDIGO. Mortality and morbidity remain high in AKI, suggesting that current diagnostic methods are suboptimal, poorly accurate, and often timely inadequate in detecting the presence of early kidney injury. Conversely, a growing body of evidence indicates that new AKI biomarkers can be used to both rule out AKI and to assess high-risk conditions or the presence of subclinical forms. Neutrophil gelatinase-associated lipocalin or cell cycle arrest biomarkers seem to be sensitive and specific enough to be used in conjunction with existing markers of AKI for better classifying renal injury as well as dysfunction. Improvements in diagnosis, risk identification, stratification, prognosis, and therapeutic monitoring may improve prevention and protection from organ damage and help to identify patients at risk, allowing individualized therapy. In this view, we may say that AKI diagnosis has finally moved from clinical to molecular level with potential benefits for the patients because similar progress has been shown in other disciplines. PMID:27384344

  2. N-11C-Methyl-Dopamine PET Imaging of Sympathetic Nerve Injury in a Swine Model of Acute Myocardial Ischemia: A Comparison with 13N-Ammonia PET

    PubMed Central

    Zhou, Weina; Wang, Xiangcheng; He, Yulin; Nie, Yongzhen; Zhang, Guojian; Wang, Cheng; Wang, Chunmei; Wang, Xuemei

    2016-01-01

    Objective. Using a swine model of acute myocardial ischemia, we sought to validate N-11C-methyl-dopamine (11C-MDA) as an agent capable of imaging cardiac sympathetic nerve injury. Methods. Acute myocardial ischemia was surgically generated in Chinese minipigs. ECG and serum enzyme levels were used to detect the presence of myocardial ischemia. Paired 11C-MDA PET and 13N-ammonia PET scans were performed at baseline, 1 day, and 1, 3, and 6 months after surgery to relate cardiac sympathetic nerve injury to blood perfusion. Results. Seven survived the surgical procedure. The ECG-ST segment was depressed, and levels of the serum enzymes increased. Cardiac uptake of tracer was quantified as the defect volume. Both before and immediately after surgery, the images obtained with 11C-MDA and 13N-ammonia were similar. At 1 to 6 months after surgery, however, 11C-MDA postsurgical left ventricular myocardial defect volume was significantly greater compared to 13N-ammonia. Conclusions. In the Chinese minipig model of acute myocardial ischemia, the extent of the myocardial defect as visualized by 11C-MDA is much greater than would be suggested by blood perfusion images, and the recovery from myocardial sympathetic nerve injury is much slower than the restoration of blood perfusion. 11C-MDA PET may provide additional biological information during recovery from ischemic heart disease. PMID:27034950

  3. Inflammatory mechanisms involved in brain injury following cardiac arrest and cardiopulmonary resuscitation

    PubMed Central

    XIANG, YANXIAO; ZHAO, HUA; WANG, JIALI; ZHANG, LUETAO; LIU, ANCHANG; CHEN, YUGUO

    2016-01-01

    Cardiac arrest (CA) is a leading cause of fatality and long-term disability worldwide. Recent advances in cardiopulmonary resuscitation (CPR) have improved survival rates; however, the survivors are prone to severe neurological injury subsequent to successful CPR following CA. Effective therapeutic options to protect the brain from CA remain limited, due to the complexities of the injury cascades caused by global cerebral ischemia/reperfusion (I/R). Although the precise mechanisms of neurological impairment following CA-initiated I/R injury require further clarification, evidence supports that one of the key cellular pathways of cerebral injury is inflammation. The inflammatory response is orchestrated by activated glial cells in response to I/R injury. Increased release of danger-associated molecular pattern molecules and cellular dysfunction in activated microglia and astrocytes contribute to ischemia-induced cytotoxic and pro-inflammatory cytokines generation, and ultimately to delayed death of neurons. Furthermore, cytokines and adhesion molecules generated within activated microglia, as well as astrocytes, are involved in the innate immune response; modulate influx of peripheral immune and inflammatory cells into the brain, resulting in neurological injury. The present review discusses the molecular aspects of immune and inflammatory mechanisms in global cerebral I/R injury following CA and CPR, and the potential therapeutic strategies that target neuroinflammation and the innate immune system. PMID:27330748

  4. Cardiac Ischemia Reperfusion Injury Following Instillation of 20 nm Citrate-capped Nanosilver

    SciTech Connect

    Holland, Nathan A.; Becak, Daniel P.; Shanahan, Jonathan H.; Brown, Jared M.; Carratt, S. A.; Van Winkle, Laura S.; Pinkerton, Kent E.; Wang, Chong M.; Munusamy, Prabhakaran; Baer, Donald R.; Sumner, Susan J.; Fennell, T. R.; Lust, R. M.; Wingard, Chistopher J.

    2015-02-26

    Background: Silver nanoparticles (AgNP) have garnered much interest due to their antimicrobial properties, becoming one of the most utilized nano scale materials. However, any potential evocable cardiovascular injury associated with exposure has not been previously reported. We have previously demonstrated expansion of myocardial infarction after intratracheal (IT) instillation of other nanomaterials. We hypothesized that pulmonary exposure to Ag core AgNP induces persistent increase in circulating cytokines, expansion of cardiac ischemia-reperfusion (I/R) injury and associated with altered coronary vessel reactivity. Methods: Male Sprague-Dawley rats were exposed to 200 µg of 20 nm citrate capped Ag core AgNP, or a citrate vehicle intratracheally (IT). One and 7 days following IT instillation lungs were evaluated for inflammation and silver presence, serum was analyzed for concentrations of selected cytokines, and cardiac I/R injury and coronary artery reactivity was assessed. Results: AgNP instillation resulted in modest pulmonary injury with detection of silver in lung tissue and infiltrating cells, elevation of serum cytokines: G-CSF, MIP-1α, IL-1β, IL-2, IL-6, IL-13, IL-10, IL-18, IL-17, TNFα, and RANTES, expansion of I/R injury and depression of the coronary vessel reactivity at 1 day post IT compared to vehicle treated rats. Seven days post IT instillation was associated with persistent detection of silver in lungs, elevation in cytokines: IL-2, IL-13, and TNFα and expansion of I/R injury. Conclusions: Based on these data, IT instillation of AgNP increases circulating levels of several cytokines, which may contribute to persistent expansion of I/R injury possibly through an impaired vascular responsiveness.

  5. Acetaminophen-induced acute liver injury in mice.

    PubMed

    Mossanen, J C; Tacke, F

    2015-04-01

    The induction of acute hepatic damage by acetaminophen (N-acetyl-p-aminophenol [APAP]), also termed paracetamol, is one of the most commonly used experimental models of acute liver injury in mice. The specific values of this model are the highly reproducible, dose-dependent hepatotoxicity of APAP and its outstanding translational importance, because acetaminophen overdose is one of the most frequent reasons for acute liver failure (ALF) in humans. However, preparation of concentrated APAP working solutions, application routes, fasting period and variability due to sex, genetic background or barrier environment represent important considerations to be taken into account before implementing this model. This standard operating procedure (SOP) provides a detailed protocol for APAP preparation and application in mice, aimed at facilitating comparability between research groups as well as minimizing animal numbers and distress. The mouse model of acetaminophen poisoning therefore helps to unravel the pathogenesis of APAP-induced toxicity or subsequent immune responses in order to explore new therapeutic interventions for improving the prognosis of ALF in patients. PMID:25835736

  6. Pathophysiology and Clinical Work-Up of Acute Kidney Injury.

    PubMed

    Meola, Mario; Nalesso, Federico; Petrucci, Ilaria; Samoni, Sara; Ronco, Claudio

    2016-01-01

    Acute kidney injury (AKI), also known in the past as acute renal failure, is a syndrome characterized by the rapid loss of kidney excretory function. It is usually diagnosed by the accumulation of end products of nitrogen metabolism (urea and creatinine) or decreased urine output or both. AKI is the clinical consequence of several disorders that acutely affect the kidney, causing electrolytes and acid-base imbalance, hyperhydration and loss of depurative function. AKI is common in critical care patients in whom it is often secondary to extrarenal events. No specific therapies can attenuate AKI or accelerate renal function recovery; thus, the only treatment is supportive. New diagnostic techniques such as renal biomarkers might improve early diagnosis. Also ultrasonography helps nephrologists in AKI diagnosis, in order to describe and follow kidney alterations and find possible causes of AKI. Renal replacement therapy is a life-saving treatment if AKI is severe. If patients survive to AKI, and did not have previous chronic kidney disease (CKD), they typically recover to dialysis independence. However, evidence suggests that patients who have had AKI are at increased risk of subsequent CKD. PMID:27169469

  7. Psychiatric Disease and Post-Acute Traumatic Brain Injury.

    PubMed

    Zgaljardic, Dennis J; Seale, Gary S; Schaefer, Lynn A; Temple, Richard O; Foreman, Jack; Elliott, Timothy R

    2015-12-01

    Psychiatric disorders are common following traumatic brain injury (TBI) and can include depression, anxiety, and psychosis, as well as other maladaptive behaviors and personality changes. The epidemiologic data of psychiatric disorders post-TBI vary widely, although the incidence and prevalence rates typically are higher than in the general population. Although the experience of psychiatric symptoms may be temporary and may resolve in the acute period, many patients with TBI can experience psychopathology that is persistent or that develops in the post-acute period. Long-term psychiatric disorder, along with cognitive and physical sequelae and greater risk for substance use disorders, can pose a number of life-long challenges for patients and their caregivers, as they can interfere with participation in rehabilitation as well as limit functional independence in the community. The current review of the literature considers the common psychiatric problems affecting individuals with TBI in the post-acute period, including personality changes, psychosis, executive dysfunction, depression, anxiety, and substance misuse. Although treatment considerations (pharmacological and nonpharmacological) are referred to, an extensive description of such protocols is beyond the scope of the current review. The impact of persistent psychiatric symptoms on perceived caregiver burden and distress is also discussed. PMID:25629222

  8. Acute Kidney Injury in Patients with Acute Lung Injury: Impact of Fluid Accumulation on Classification of Acute Kidney Injury and Associated Outcomes

    PubMed Central

    Liu, Kathleen D.; Thompson, B. Taylor; Ancukiewicz, Marek; Steingrub, Jay S.; Douglas, Ivor S.; Matthay, Michael A.; Wright, Patrick; Peterson, Michael W.; Rock, Peter; Hyzy, Robert C.; Anzueto, Antonio; Truwit, Jonathon D.

    2011-01-01

    Objective It has been suggested that fluid accumulation may delay recognition of acute kidney injury (AKI). We sought to determine the impact of fluid balance on the incidence of non-dialysis requiring AKI in patients with acute lung injury and to describe associated outcomes, including mortality. Design Analysis of the Fluid and Catheter Treatment Trial, a factorial randomized clinical trial of conservative versus liberal fluid management and of management guided by a central venous versus pulmonary artery catheter. Setting and Patients 1000 patients at ARDS Network hospitals. Measurements and Main Results The incidence of AKI, defined as an absolute rise in creatinine of ≥ 0.3 mg/dL or a relative change of > 50% over 48 hours, was examined before and after adjustment of serum creatinine for fluid balance. The incidence of AKI before adjustment for fluid balance was greater in those managed with the conservative fluid protocol (57 versus 51%, p = 0.04). After adjustment for fluid balance, the incidence of AKI was greater in those managed with the liberal fluid protocol (66 versus 58%, p = 0.007). Patients who met AKI criteria after adjustment of creatinine for fluid balance (but not before) had a mortality rate that was significantly greater than those who did not meet AKI criteria both before and after adjustment for fluid balance (31 versus 12%, p < 0.001) and those who had AKI before but not after adjustment for fluid balance (31 versus 11%, p = 0.005). The mortality of those patients meeting AKI criteria after but not before adjustment for fluid balance was similar to patients with AKI both before and after adjustment for fluid balance (31% versus 38%, p = 0.18). Conclusions Fluid management influences serum creatinine and therefore the diagnosis of AKI using creatinine-based definitions. Patients with “unrecognized” AKI that is identified after adjusting for positive fluid balance have high mortality rates, and patients who have AKI before but not after

  9. MicroRNA and vascular remodelling in acute vascular injury and pulmonary vascular remodelling

    PubMed Central

    McDonald, Robert A.; Hata, Akiko; MacLean, Margaret R.; Morrell, Nicholas W.; Baker, Andrew H.

    2012-01-01

    Vascular remodelling is an integral pathological process central to a number of cardiovascular diseases. The complex interplay between distinct cell populations in the vessel wall following vascular injury leads to inflammation, cellular dysfunction, pro-growth signals in the smooth muscle cell (SMC) compartment, and the acquisition of a synthetic phenotype. Although the signals for vascular remodelling are diverse in different pathological contexts, SMC proliferation and migration are consistently observed. It is therefore critical to elucidate key mechanisms central to these processes. MicroRNAs (miRNAs) are small non-coding sequences of RNA that have the capacity to regulate many genes, pathways, and complex biological networks within cells, acting either alone or in concert with one another. In diseases such as cancer and cardiac disease, the role of miRNA in disease pathogenesis has been documented in detail. In contrast, despite a great deal of interest in miRNA, relatively few studies have directly assessed the role of miRNA in vascular remodelling. The potential for modulation of miRNA to achieve therapeutic benefits in this setting is attractive. Here, we focus on the role of miRNA in vascular inflammation and remodelling associated with acute vascular injury (vein graft disease, angioplasty restenosis, and in-stent restenosis) as well as in vascular remodelling associated with the development of pulmonary arterial hypertension. PMID:22065733

  10. Major comorbid disease processes associated with increased incidence of acute kidney injury

    PubMed Central

    Farooqi, Salwa; Dickhout, Jeffrey G

    2016-01-01

    Acute kidney injury (AKI) is commonly seen amongst critically ill and hospitalized patients. Individuals with certain co-morbid diseases have an increased risk of developing AKI. Thus, recognizing the co-morbidities that predispose patients to AKI is important in AKI prevention and treatment. Some of the most common co-morbid disease processes that increase the risk of AKI are diabetes, cancer, cardiac surgery and human immunodeficiency virus (HIV) acquired immune deficiency syndrome (AIDS). This review article identifies the increased risk of acquiring AKI with given co-morbid diseases. Furthermore, the pathophysiological mechanisms underlying AKI in relation to co-morbid diseases are discussed to understand how the risk of acquiring AKI is increased. This paper reviews the effects of various co-morbid diseases including: Diabetes, cancer, cardiovascular disease and HIV AIDS, which all exhibit a significant increased risk of developing AKI. Amongst these co-morbid diseases, inflammation, the use of nephrotoxic agents, and hypoperfusion to the kidneys have been shown to be major pathological processes that predisposes individuals to AKI. The pathogenesis of kidney injury is complex, however, effective treatment of the co-morbid disease processes may reduce its risk. Therefore, improved management of co-morbid diseases may prevent some of the underlying pathology that contributes to the increased risk of developing AKI. PMID:26981437

  11. An unusual cause of acute kidney injury due to oxalate nephropathy in systemic scleroderma.

    PubMed

    Mascio, Heather M; Joya, Christie A; Plasse, Richard A; Baker, Thomas P; Flessner, Michael F; Nee, Robert

    2015-08-01

    Oxalate nephropathy is an uncommon cause of acute kidney injury. Far rarer is its association with scleroderma, with only one other published case report in the literature. We report a case of a 75-year-old African-American female with a history of systemic scleroderma manifested by chronic pseudo-obstruction and small intestinal bacterial overgrowth (SIBO) treated with rifaximin, who presented with acute kidney injury with normal blood pressure. A renal biopsy demonstrated extensive acute tubular injury with numerous intratubular birefringent crystals, consistent with oxalate nephropathy. We hypothesize that her recent treatment with rifaximin for SIBO and decreased intestinal transit time in pseudo-obstruction may have significantly increased intestinal oxalate absorption, leading to acute kidney injury. Oxalate nephropathy should be considered in the differential diagnosis of acute kidney injury in scleroderma with normotension, and subsequent evaluation should be focused on bowel function to include alterations in gut flora due to antibiotic administration. PMID:25500295

  12. Histone lysine crotonylation during acute kidney injury in mice

    PubMed Central

    Ruiz-Andres, Olga; Sanchez-Niño, Maria Dolores; Cannata-Ortiz, Pablo; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto; Sanz, Ana Belen

    2016-01-01

    ABSTRACT Acute kidney injury (AKI) is a potentially lethal condition for which no therapy is available beyond replacement of renal function. Post-translational histone modifications modulate gene expression and kidney injury. Histone crotonylation is a recently described post-translational modification. We hypothesized that histone crotonylation might modulate kidney injury. Histone crotonylation was studied in cultured murine proximal tubular cells and in kidneys from mice with AKI induced by folic acid or cisplatin. Histone lysine crotonylation was observed in tubular cells from healthy murine and human kidney tissue. Kidney tissue histone crotonylation increased during AKI. This was reproduced by exposure to the protein TWEAK in cultured tubular cells. Specifically, ChIP-seq revealed enrichment of histone crotonylation at the genes encoding the mitochondrial biogenesis regulator PGC-1α and the sirtuin-3 decrotonylase in both TWEAK-stimulated tubular cells and in AKI kidney tissue. To assess the role of crotonylation in kidney injury, crotonate was used to increase histone crotonylation in cultured tubular cells or in the kidneys in vivo. Crotonate increased the expression of PGC-1α and sirtuin-3, and decreased CCL2 expression in cultured tubular cells and healthy kidneys. Systemic crotonate administration protected from experimental AKI, preventing the decrease in renal function and in kidney PGC-1α and sirtuin-3 levels as well as the increase in CCL2 expression. For the first time, we have identified factors such as cell stress and crotonate availability that increase histone crotonylation in vivo. Overall, increasing histone crotonylation might have a beneficial effect on AKI. This is the first observation of the in vivo potential of the therapeutic manipulation of histone crotonylation in a disease state. PMID:27125278

  13. Metallothionein-induced zinc partitioning exacerbates hyperoxic acute lung injury

    PubMed Central

    Lee, Sang-Min; McLaughlin, Joseph N.; Frederick, Daniel R.; Zhu, Lin; Thambiayya, Kalidasan; Wasserloos, Karla J.; Kaminski, Iris; Pearce, Linda L.; Peterson, Jim; Li, Jin; Latoche, Joseph D.; Peck Palmer, Octavia M.; Stolz, Donna Beer; Fattman, Cheryl L.; Alcorn, John F.; Oury, Tim D.; Angus, Derek C.; Pitt, Bruce R.

    2013-01-01

    Hypozincemia, with hepatic zinc accumulation at the expense of other organs, occurs in infection, inflammation, and aseptic lung injury. Mechanisms underlying zinc partitioning or its impact on extrahepatic organs are unclear. Here we show that the major zinc-binding protein, metallothionein (MT), is critical for zinc transmigration from lung to liver during hyperoxia and preservation of intrapulmonary zinc during hyperoxia is associated with an injury-resistant phenotype in MT-null mice. Particularly, lung-to-liver zinc ratios decreased in wild-type (WT) and increased significantly in MT-null mice breathing 95% oxygen for 72 h. Compared with female adult WT mice, MT-null mice were significantly protected against hyperoxic lung injury indicated by reduced inflammation and interstitial edema, fewer necrotic changes to distal airway epithelium, and sustained lung function at 72 h hyperoxia. Lungs of MT-null mice showed decreased levels of immunoreactive LC3, an autophagy marker, compared with WT mice. Analysis of superoxide dismutase (SOD) activity in the lungs revealed similar levels of manganese-SOD activity between strains under normoxia and hyperoxia. Lung extracellular SOD activity decreased significantly in both strains at 72 h of hyperoxia, although there was no difference between strains. Copper-zinc-SOD activity was ∼4× higher under normoxic conditions in MT-null compared with WT mice but was not affected in either group by hyperoxia. Collectively the data suggest that genetic deletion of MT-I/II in mice is associated with compensatory increase in copper-zinc-SOD activity, prevention of hyperoxia-induced zinc transmigration from lung to liver, and hyperoxia-resistant phenotype strongly associated with differences in zinc homeostasis during hyperoxic acute lung injury. PMID:23275622

  14. Transfusion Related Acute Lung Injury (TRALI): A Single Institution Experience of 15 Years.

    PubMed

    Kumar, Ramesh; Sedky, Mohammed Jaber; Varghese, Sunny Joseph; Sharawy, Osama Ebrahim

    2016-09-01

    Transfusion related acute Lung injury (TRALI) though a serious blood transfusion reaction with a fatality rate of 5-25 % presents with acute respiratory distress with hypoxaemia and noncardiac pulmonary oedema within 6 h of transfusion. In non fatal cases, it may resolve within 72 h or earlier. Although reported with an incidence of 1:5000, its true occurrence is rather unknown. Pathogenesis is believed to be related to sequestration and adhesion of neutrophils to the pulmonary capillary endothelium and its activation leading to its destruction and leaks. The patient's underlying condition, anti-neutrophil antibody in the transfused donor plasma and certain lipids that accumulate in routinely stores blood and components are important in its aetiopathogenesis. Patient's predisposing conditions include haematological malignancy, major surgery (especially cardiac), trauma and infections. The more commonly incriminated products include fresh frozen plasma (FFP), platelets (whole blood derived and apheresis), whole blood and Packed RBC. Occasional cases involving cryoprecipitate and Intravenous immunoglobulin (IVig) have also been reported. We present a 15 year single institution experience of TRALI, during which we observed 9 cases among 170,871 transfusions, giving an incidence of 1:19,000. We did not encounter cases of haematological malignancy or cardiac surgery in our TRALI patients. Among the blood products, that could be related to TRALI in our patients included solitary cases receiving cryoprecipitate, IVIg, and recombinant Factor VII apart from platelets and FFP. All patients were treated with oxygen support. Six patients required mechanical ventilation. Off label hydrocortisone was given to all patients. There were no cases of fatality among our patients. PMID:27429525

  15. Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acute pharmacological inhibition of cardiac malonyl coenzyme A decarboxylase (MCD) protects the heart from ischemic damage by inhibiting fatty acid oxidation and stimulating glucose oxidation. However, it is unknown whether chronic inhibition of MCD results in altered cardiac function, energy metabo...

  16. Amelioration of Acute Kidney Injury in Lipopolysaccharide-Induced Systemic Inflammatory Response Syndrome by an Aldose Reductase Inhibitor, Fidarestat

    PubMed Central

    Takahashi, Kazunori; Mizukami, Hiroki; Kamata, Kosuke; Inaba, Wataru; Kato, Noriaki; Hibi, Chihiro; Yagihashi, Soroku

    2012-01-01

    Background Systemic inflammatory response syndrome is a fatal disease because of multiple organ failure. Acute kidney injury is a serious complication of systemic inflammatory response syndrome and its genesis is still unclear posing a difficulty for an effective treatment. Aldose reductase (AR) inhibitor is recently found to suppress lipopolysaccharide (LPS)-induced cardiac failure and its lethality. We studied the effects of AR inhibitor on LPS-induced acute kidney injury and its mechanism. Methods Mice were injected with LPS and the effects of AR inhibitor (Fidarestat 32 mg/kg) before or after LPS injection were examined for the mortality, severity of renal failure and kidney pathology. Serum concentrations of cytokines (interleukin-1β, interleukin-6, monocyte chemotactic protein-1 and tumor necrosis factor-α) and their mRNA expressions in the lung, liver, spleen and kidney were measured. We also evaluated polyol metabolites in the kidney. Results Mortality rate within 72 hours was significantly less in LPS-injected mice treated with AR inhibitor both before (29%) and after LPS injection (40%) than untreated mice (90%). LPS-injected mice showed marked increases in blood urea nitrogen, creatinine and cytokines, and AR inhibitor treatment suppressed the changes. LPS-induced acute kidney injury was associated with vacuolar degeneration and apoptosis of renal tubular cells as well as infiltration of neutrophils and macrophages. With improvement of such pathological findings, AR inhibitor treatment suppressed the elevation of cytokine mRNA levels in multiple organs and renal sorbitol accumulation. Conclusion AR inhibitor treatment ameliorated LPS-induced acute kidney injury, resulting in the lowered mortality. PMID:22253906

  17. Penetrating cardiac injury: sustaining health by building team resilience in growing civilian violence.

    PubMed

    Pol, Manjunath Maruti; Prasad, K Shiv Krishna; Deo, Vishant; Uniyal, Madhur

    2016-01-01

    Penetrating cardiac injury (PCI) is gradually increasing in developing countries owing to large-scale manufacturing of illegal country-made weapons. These injuries are associated with significant morbidity and mortality. Logistically it is difficult to have all organ-based specialists arrive together and attend every critically injured patient round-the-clock in developing countries. It is therefore important for doctors (physicians, surgeons and anaesthetists) to be trained for adequate management of critically injured patients following trauma. We report the approach towards 2 cases of haemodynamically unstable PCI managed by a team of trauma doctors. Time lag (duration between injury and arrival at hospital) and quick horizontal resuscitation are important considerations in the treatment. By not referring these patients to different hospitals the team actually reduced the time lag, and a quick life-saving surgery by trauma surgeons (trained in torso surgery) offered these almost dying patients a chance of survival. PMID:27591038

  18. Successful Resuscitation of a Cardiac Arrest following Slit Neck and Carotid Artery Injury: A Case Report.

    PubMed

    Naqvi, Sayyed Ehtesham Hussain; Ali, Eram; Beg, Mohammed Haneef; Varshney, Saurav

    2016-06-01

    Carotid artery injuries constitute a specific and relatively small group of vascular trauma among the traumatic injuries to neck. They have the potential of killing the patients within minutes to hours due to haemodynamic instability if not managed by the specialist team within time. Central Neurologic deficit from cerebral hypoxia either resulting primarily from trauma or secondarily from surgery is a major concern. We hereby present a case of a 22-year-old man who presented to emergency department with alleged assault and vascular trauma to neck in a state of cardiac arrest. On exploration patient had injuries to external and internal carotid arteries and external jugular vein. Combined effort of trauma team lead to successful resuscitation and saved the life of the patient. PMID:27504354

  19. Successful Resuscitation of a Cardiac Arrest following Slit Neck and Carotid Artery Injury: A Case Report

    PubMed Central

    Ali, Eram; Beg, Mohammed Haneef; Varshney, Saurav

    2016-01-01

    Carotid artery injuries constitute a specific and relatively small group of vascular trauma among the traumatic injuries to neck. They have the potential of killing the patients within minutes to hours due to haemodynamic instability if not managed by the specialist team within time. Central Neurologic deficit from cerebral hypoxia either resulting primarily from trauma or secondarily from surgery is a major concern. We hereby present a case of a 22-year-old man who presented to emergency department with alleged assault and vascular trauma to neck in a state of cardiac arrest. On exploration patient had injuries to external and internal carotid arteries and external jugular vein. Combined effort of trauma team lead to successful resuscitation and saved the life of the patient. PMID:27504354

  20. Mechanisms of Severe Acute Respiratory Syndrome Coronavirus-Induced Acute Lung Injury

    PubMed Central

    Gralinski, Lisa E.; Bankhead, Armand; Jeng, Sophia; Menachery, Vineet D.; Proll, Sean; Belisle, Sarah E.; Matzke, Melissa; Webb-Robertson, Bobbie-Jo M.; Luna, Maria L.; Shukla, Anil K.; Ferris, Martin T.; Bolles, Meagan; Chang, Jean; Aicher, Lauri; Waters, Katrina M.; Smith, Richard D.; Metz, Thomas O.; Law, G. Lynn; Katze, Michael G.; McWeeney, Shannon; Baric, Ralph S.

    2013-01-01

    ABSTRACT Systems biology offers considerable promise in uncovering novel pathways by which viruses and other microbial pathogens interact with host signaling and expression networks to mediate disease severity. In this study, we have developed an unbiased modeling approach to identify new pathways and network connections mediating acute lung injury, using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model pathogen. We utilized a time course of matched virologic, pathological, and transcriptomic data within a novel methodological framework that can detect pathway enrichment among key highly connected network genes. This unbiased approach produced a high-priority list of 4 genes in one pathway out of over 3,500 genes that were differentially expressed following SARS-CoV infection. With these data, we predicted that the urokinase and other wound repair pathways would regulate lethal versus sublethal disease following SARS-CoV infection in mice. We validated the importance of the urokinase pathway for SARS-CoV disease severity using genetically defined knockout mice, proteomic correlates of pathway activation, and pathological disease severity. The results of these studies demonstrate that a fine balance exists between host coagulation and fibrinolysin pathways regulating pathological disease outcomes, including diffuse alveolar damage and acute lung injury, following infection with highly pathogenic respiratory viruses, such as SARS-CoV. PMID:23919993

  1. An unusual case of reversible acute kidney injury due to chlorine dioxide poisoning.

    PubMed

    Bathina, Gangadhar; Yadla, Manjusha; Burri, Srikanth; Enganti, Rama; Prasad Ch, Rajendra; Deshpande, Pradeep; Ch, Ramesh; Prayaga, Aruna; Uppin, Megha

    2013-09-01

    Chlorine dioxide is a commonly used water disinfectant. Toxicity of chlorine dioxide and its metabolites is rare. In experimental studies, it was shown that acute and chronic toxicity were associated with insignificant hematological changes. Acute kidney injury due to chlorine dioxide was not reported. Two cases of renal toxicity due to its metabolites, chlorate and chlorite were reported. Herein, we report a case of chlorine dioxide poisoning presenting with acute kidney injury. PMID:23902291

  2. Management of penetrating cardiac injuries in the Department of surgery, Mohamed Thahar Maamouri Hospital, Tunisia: report of 19 cases.

    PubMed

    Ezzine, Sonia Baccari; Bouassida, Mahdi; Benali, Mechaal; Ghannouchi, Mosaab; Chebbi, Fethi; Sassi, Sélim; Mighri, Mohamed Mongi; Touinsi, Hassen; Sassi, Sadok

    2012-01-01

    The goal of this paper is to discuss how to ameliorate the management of penetrating cardiac injuries in general surgery department. An algorithm for the initial assessment of penetrating injuries in cardiac box, based on our own experience, is presented. This was a retrospective study of 19 patients undergoing thoracotomy for penetrating cardiac injuries, managed in the department of general surgery of Nabeul-Tunisia, between 1994 and 2010. The mean age of patients was 25 years old. Sex ratio was 8,5. All patients had cardiac injury resulting from stab wounds inside of the pericardium. 42% of them were critically unstable, 21% had cardiac tamponnade. All these patients were quickly transferred to the operating room without any other investigations. 37% of patients were hemodynamically stable and underwent additional investigations. The management of penetrating cardiac injuries is possible in a general surgery department, but it requires a rapid prehospital transfer, a yet thorough physical examination along with efficient surgical management, all done in minimal time. PMID:22593790

  3. Management of penetrating cardiac injuries in the Department of surgery, Mohamed Thahar Maamouri Hospital, Tunisia: report of 19 cases

    PubMed Central

    Ezzine, Sonia Baccari; Bouassida, Mahdi; Benali, Mechaal; Ghannouchi, Mosaab; Chebbi, Fethi; Sassi, Sélim; Mighri, Mohamed Mongi; Touinsi, Hassen; Sassi, Sadok

    2012-01-01

    The goal of this paper is to discuss how to ameliorate the management of penetrating cardiac injuries in general surgery department. An algorithm for the initial assessment of penetrating injuries in cardiac box, based on our own experience, is presented. This was a retrospective study of 19 patients undergoing thoracotomy for penetrating cardiac injuries, managed in the department of general surgery of Nabeul-Tunisia, between 1994 and 2010. The mean age of patients was 25 years old. Sex ratio was 8,5. All patients had cardiac injury resulting from stab wounds inside of the pericardium. 42% of them were critically unstable, 21% had cardiac tamponnade. All these patients were quickly transferred to the operating room without any other investigations. 37% of patients were hemodynamically stable and underwent additional investigations. The management of penetrating cardiac injuries is possible in a general surgery department, but it requires a rapid prehospital transfer, a yet thorough physical examination along with efficient surgical management, all done in minimal time. PMID:22593790

  4. SIRT Is Required for EDP-Mediated Protective Responses toward Hypoxia–Reoxygenation Injury in Cardiac Cells

    PubMed Central

    Samokhvalov, Victor; Jamieson, Kristi L.; Fedotov, Ilia; Endo, Tomoko; Seubert, John M.

    2016-01-01

    Hypoxia–reoxygenation (H/R) injury is known to cause extensive injury to cardiac myocardium promoting development of cardiac dysfunction. Despite the vast number of studies dedicated to studying H/R injury, the molecular mechanisms behind it are multiple, complex, and remain very poorly understood, which makes development of novel pharmacological agents challenging. Docosahexaenoic acid (DHA, 22:6n3) is an n - 3 polyunsaturated fatty acid obtained from dietary sources, which produces numerous effects including regulation of cell survival and death mechanisms. The beneficial effects of DHA toward the cardiovascular system are well documented but the relative role of DHA or one of its more potent metabolites is unresolved. Emerging evidence indicates that cytochrome P450 (CYP) epoxygenase metabolites of DHA, epoxydocosapentaenoic acids (EDPs), have more potent biological activity than DHA in cardiac cells. In this study we examined whether EDPs protect HL-1 cardiac cells from H/R injury. Our observations demonstrate that treatment with 19,20-EDP protected HL-1 cardiac cells from H/R damage through a mechanism(s) protecting and enhancing mitochondrial quality. EDP treatment increased the relative rates of mitobiogenesis and mitochondrial respiration in control and H/R exposed cardiac cells. The observed EDP protective response toward H/R injury involved SIRT1-dependent pathways. PMID:27242531

  5. Mitochondrial Approaches to Protect Against Cardiac Ischemia and Reperfusion Injury

    PubMed Central

    Camara, Amadou K. S.; Bienengraeber, Martin; Stowe, David F.

    2011-01-01

    The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g., ischemic heart disease), alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury. PMID:21559063

  6. Methodological issues in current practice may lead to bias in the development of biomarker combinations for predicting acute kidney injury.

    PubMed

    Meisner, Allison; Kerr, Kathleen F; Thiessen-Philbrook, Heather; Coca, Steven G; Parikh, Chirag R

    2016-02-01

    Individual biomarkers of renal injury are only modestly predictive of acute kidney injury (AKI). Using multiple biomarkers has the potential to improve predictive capacity. In this systematic review, statistical methods of articles developing biomarker combinations to predict AKI were assessed. We identified and described three potential sources of bias (resubstitution bias, model selection bias, and bias due to center differences) that may compromise the development of biomarker combinations. Fifteen studies reported developing kidney injury biomarker combinations for the prediction of AKI after cardiac surgery (8 articles), in the intensive care unit (4 articles), or other settings (3 articles). All studies were susceptible to at least one source of bias and did not account for or acknowledge the bias. Inadequate reporting often hindered our assessment of the articles. We then evaluated, when possible (7 articles), the performance of published biomarker combinations in the TRIBE-AKI cardiac surgery cohort. Predictive performance was markedly attenuated in six out of seven cases. Thus, deficiencies in analysis and reporting are avoidable, and care should be taken to provide accurate estimates of risk prediction model performance. Hence, rigorous design, analysis, and reporting of biomarker combination studies are essential to realizing the promise of biomarkers in clinical practice. PMID:26398494

  7. Acute Kidney Injury Associated With Vancomycin When Laxity Leads to Injury and Findings on Kidney Biopsy.

    PubMed

    Katikaneni, Madhavi; Lwin, Lin; Villanueva, Hugo; Yoo, Jinil

    2016-01-01

    The issue of vancomycin-induced acute kidney injury (AKI) has resurged with the use of intravenous vancomycin as a first-line antibiotic, often for prolonged periods of time for the management of serious methicillin-resistant Staphylococcus aureus infections, and with a higher recommended trough level (15-20 μg/mL). We have observed 3 patients on intravenous vancomycin who developed very high trough levels (>40 μg/mL) and severe (stage 3) AKI. Those 3 patients underwent kidney biopsy for unresolving AKI, which revealed findings compatible with acute tubular necrosis. The first patient initially developed asymptomatic acute interstitial nephritis because of a concomitant antibiotic that caused worsening of kidney function, and the dose of vancomycin was not properly adjusted while staying at the nursing home. The second was an emaciated patient (BMI, 14) whose serum creatinine level was a deceptive marker of kidney function for the proper dosing of vancomycin, resulting in a toxic level. The third patient developed vancomycin-related AKI on an initially high therapeutic level, which then contributed to further rising in vancomycin level and subsequently causing severe AKI. One patient required hemodialysis, but all 3 patients ultimately recovered their kidney function significantly. A regular monitoring (preferably twice weekly) of serum creatinine and vancomycin trough level is advisable to minimize vancomycin-associated AKI, primarily acute tubular necrosis, for patients requiring prolonged administration of vancomycin (>2 weeks) on the currently recommended higher therapeutic trough levels (>15 μg/mL). PMID:26035034

  8. Biomarkers in Acute Lung Injury – Marking Forward Progress

    PubMed Central

    Barnett, Nicolas; Ware, Lorraine B.

    2011-01-01

    In this article we review the ‘state of the art’ with regards to biomarkers for prediction, diagnosis and prognosis in acute lung injury (ALI). We begin by defining biomarkers and the goals of biomarker research in ALI including their ability to define more homogenous populations for recruitment into trials of novel therapies as well as to identify important biological pathways in the pathogenesis of ALI. Progress along four general routes is then examined. First the results of wide-ranging existing protein biomarkers are reported. Secondly, we describe newer biomarkers awaiting or with strong potential for validation. Thirdly, we report progress in the fields of genomics and proteomics. Finally given the complexity and number of potential biomarkers, we examine the results of combining clinical predictors with protein and other biomarkers to produce better prognostic and diagnostic indices. PMID:21742222

  9. Pathogenesis of Acute Kidney Injury: Foundation for Clinical Practice

    PubMed Central

    Kinsey, Gilbert R.; Okusa, Mark D.

    2011-01-01

    The pathogenesis of acute kidney injury (AKI) is complex, involving factors such as vasoconstriction, leukostasis, vascular congestion, cell death, and abnormal immune modulators and growth factors. Many targeted clinical therapies have failed, are inconclusive, or have yet to be tested. Given the complexity of the pathogenesis of AKI, it may be naïve to expect one therapeutic intervention would have success. Some examples of detrimental processes that can be blocked in pre-clinical models to improve kidney function and survival are apoptotic cell death in tubular epithelial cells, complement-mediated immune system activation, and impairment of cellular homeostasis and metabolism. Modalities with potential to reduce morbidity and mortality in AKI include vasodilators, growth factors, anti-inflammatory agents, and cell-based therapies. Pharmacological agents that target these diverse pathways are being used clinically for other indications. Using combinatorial approaches in future clinical trials may improve our ability to prevent and treat AKI. PMID:21530035

  10. Acute kidney injury after massive attack of Africanised bees.

    PubMed

    Bridi, Ramaiane A; Balbi, Andre Luis; Neves, Precil M; Ponce, Daniela

    2014-01-01

    Acute kidney injury (AKI) is a well-documented complication of massive attack by Africanised bees and can be observed 48-72 h after the accident. We report a case of Africanised bees attack followed by severe and lethal AKI. A 56-year-old man was admitted to emergency department after a massive attack of Africanised bees (>1000 bee stings). He was unconscious, presenting with hypotension and tachycardia. Mechanical ventilation, volume expansion and care for anaphylaxis were instituted. The patient was transferred to the intensive care unit (ICU) and after 48 h he developed rhabdomyolysis, oliguria, increased creatinine levels, hyperkalaemia and refractory acidosis. A diagnosis of AKI secondary to rhabdomyolysis and shock was made. The patient was treated with a prolonged course of haemodialysis. However, he progressed to refractory shock and died 5 days after admission. PMID:24618864

  11. Necroptosis in acute kidney injury: a shedding light

    PubMed Central

    Wang, S; Zhang, C; Hu, L; Yang, C

    2016-01-01

    Acute kidney injury (AKI) is a common and severe clinical condition with a heavy healthy burden around the world. In spite of supportive therapies, the mortality associated with AKI remains high. Our limited understanding of the complex cell death mechanism in the process of AKI impedes the development of desirable therapeutics. Necroptosis is a recently identified novel form of cell death contributing to numerable diseases and tissue damages. Increasing evidence has suggested that necroptosis has an important role in the pathogenesis of various types of AKI. Therefore, we present here the signaling pathways and main regulators of necroptosis that are potential candidate for therapeutic strategies. Moreover, we emphasize on the potential role and corresponding mechanisms of necroptosis in AKI based on recent advances, and also discuss the possible therapeutic regimens based on manipulating necroptosis. Taken together, the progress in this field sheds new light into the prevention and management of AKI in clinical practice. PMID:26938298

  12. Pyelonephritis and obstructive uropathy: a case of acute kidney injury.

    PubMed

    Ashmore, Adam Edward; Thompson, Christopher James

    2016-01-01

    We present a case of a man in his late 50s with a history of metastatic prostate carcinoma requiring bilateral ureteric stenting. He was admitted with increasing confusion and lethargy. He was diagnosed with sepsis and an acute kidney injury (AKI). Clinical suspicions of an obstructive component to his AKI were not confirmed by an ultrasound scan, which showed a unilateral hydronephrosis unchanged from a scan 1 month previously. A nephrostomy was performed, and frank pus aspirated. The patient's clinical state improved steadily thereafter. Patients who are dehydrated, or who have suffered from malignant or fibrotic processes affecting the retroperitoneum, may present with urinary obstruction without a corresponding increase in urinary tract dilation. Additionally, there must be a suspicion of pyonephrosis in a symptomatic patient with known hydronephrosis. Clinicians should be aware that clinical suspicions of urinary obstruction not demonstrated on ultrasound scanning require further investigation. PMID:26733429

  13. Renoprotective approaches and strategies in acute kidney injury.

    PubMed

    Yang, Yuan; Song, Meifang; Liu, Yu; Liu, Hong; Sun, Lin; Peng, Youming; Liu, Fuyou; Venkatachalam, Manjeri A; Dong, Zheng

    2016-07-01

    Acute kidney injury (AKI) is a major renal disease associated with high mortality rate and increasing prevalence. Decades of research have suggested numerous chemical and biological agents with beneficial effects in AKI. In addition, cell therapy and molecular targeting have been explored for reducing kidney tissue damage and promoting kidney repair or recovery from AKI. Mechanistically, these approaches may mitigate oxidative stress, inflammation, cell death, and mitochondrial and other organellar damage, or activate cytoprotective mechanisms such as autophagy and pro-survival factors. However, none of these findings has been successfully translated into clinical treatment of AKI. In this review, we analyze these findings and propose experimental strategies for the identification of renoprotective agents or methods with clinical potential. Moreover, we propose the consideration of combination therapy by targeting multiple targets in AKI. PMID:27108948

  14. Mitochondria: a therapeutic target in acute kidney injury.

    PubMed

    Ishimoto, Yu; Inagi, Reiko

    2016-07-01

    Acute kidney injury (AKI) is a common clinical entity that is associated with high mortality and morbidity. It is a risk factor for the development and progression of chronic kidney disease. Presently, no effective treatment for AKI is available, and novel therapeutic approaches are desperately needed. Accumulating evidence highlights mitochondrial dysfunction as an important factor in the pathogenesis of AKI. Recent advances in our understanding of the molecules involved in mitochondrial biogenesis, fusion/fission, mitophagy and their pathophysiological roles will lead to the development of drugs that target mitochondria for the treatment of various diseases, including AKI. In this review, we summarize current knowledge of the contribution of mitochondria-related pathophysiology in AKI and the prospective benefits of mitochondria-targeting therapeutic approaches against AKI. PMID:26333547

  15. Recurrent acute kidney injury associated with metastatic bronchial carcinoid.

    PubMed

    Barton, James C; Barton, J Clayborn; Bertoli, Luigi F

    2012-01-01

    Acute kidney injury (AKI) is a rare complication of carcinoid syndrome. A 61-year-old man developed carcinoid syndrome 51 months after pneumonectomy for bronchial carcinoid, and 8 episodes of AKI 101 to 118 months after pneumonectomy. Serum chromogranin A and urine 5-hydroxyindoleacetic acid levels were elevated for more than 1 year before AKI occurred. Each episode was characterized by flushing, facial edema, mild diarrhea, necrosis of hepatic metastatic nodules, mild oliguria, hyponatremia, acidosis, hypokalemia, hypomagnesemia and hyperphosphatemia. He did not have elevated urine sodium levels or osmolality, hypotension or hypertension. Plasma levels of dopamine, epinephrine and norepinephrine, measured during a single episode, were markedly elevated. Serum creatinine levels returned to normal after most episodes. Hyponatremia persisted but was more severe during AKI. Elevated plasma levels of vasoactive substances other than 5-hydroxytryptamine, perhaps dopamine or other catecholamines, could explain recurrent AKI. The natriuretic effect of elevated plasma dopamine levels could explain chronic hyponatremia. PMID:22008780

  16. Acute Kidney Injury in Cardiorenal Syndrome Type 1 Patients: A Systematic Review and Meta-Analysis

    PubMed Central

    Vandenberghe, Wim; Gevaert, Sofie; Kellum, John A.; Bagshaw, Sean M.; Peperstraete, Harlinde; Herck, Ingrid; Decruyenaere, Johan; Hoste, Eric A.J.

    2016-01-01

    Background We evaluated the epidemiology and outcome of acute kidney injury (AKI) in patients with cardiorenal syndrome type 1 (CRS-1) and its subgroups: acute heart failure (AHF), acute coronary syndrome (ACS) and after cardiac surgery (CS). Summary We performed a systematic review and meta-analysis. CRS-1 was defined by AKI (based on RIFLE, AKIN and KDIGO), worsening renal failure (WRF) and renal replacement therapy (RRT). We investigated the three most common clinical causes of CRS-1: AHF, ACS and CS. Out of 332 potential papers, 64 were eligible - with AKI used in 41 studies, WRF in 25 and RRT in 20. The occurrence rate of CRS-1, defined by AKI, WRF and RRT, was 25.4, 22.4 and 2.6%, respectively. AHF patients had a higher occurrence rate of CRS-1 compared to ACS and CS patients (AKI: 47.4 vs. 14.9 vs. 22.1%), but RRT was evenly distributed among the types of acute cardiac disease. AKI was associated with an increased mortality rate (risk ratio = 5.14, 95% CI 3.81-6.94; 24 studies and 35,227 patients), a longer length of stay in the intensive care unit [LOSICU] (median duration = 1.37 days, 95% CI 0.41-2.33; 9 studies and 10,758 patients) and a longer LOS in hospital [LOShosp] (median duration = 3.94 days, 95% CI 1.74-6.15; 8 studies and 35,227 patients). Increasing AKI severity was associated with worse outcomes. The impact of CRS-1 defined by AKI on mortality was greatest in CS patients. RRT had an even greater impact compared to AKI (mortality risk ratio = 9.2, median duration of LOSICU = 10.6 days and that of LOShosp = 20.2 days). Key Messages Of all included patients, almost one quarter developed AKI and approximately 3% needed RRT. AHF patients experienced the highest occurrence rate of AKI, but the impact on mortality was greatest in CS patients. PMID:26989397

  17. Lipocalin-2 promotes m1 macrophages polarization in a mouse cardiac ischaemia-reperfusion injury model.

    PubMed

    Cheng, L; Xing, H; Mao, X; Li, L; Li, X; Li, Q

    2015-01-01

    Ischaemia-reperfusion (IR) injury is a major issue in cardiac transplantation. Inflammatory processes play a major role in myocardial IR injury. Lipocalin-2 (Lcn2), which is also known as neutrophil gelatinase-associated lipocalin, has multiple functions that include the regulation of cell death/survival, cell migration/invasion, cell differentiation and iron delivery. In our study, the hearts of C57BL/6 mice were flushed with and stored in cold Bretschneider solution for 8 h and then transplanted into a syngeneic recipient. We found that Lcn2 neutralization decreased the recruitment of neutrophils and macrophages. Troponin T (TnT) production, 24 h after myocardial IR injury, was reduced through anti-Lcn2 antibody administration. The cardiac output at 60 mmHg of afterload pressure was significantly increased in hearts administrated with anti-Lcn2 antibody administration (anti-Lcn-2: 58.9 ± 5.62 ml/min; control: 25.8 ± 4.1 ml/min; P < 0.05). Anti-Lcn2 antibody treatment suppressed M1 marker (IL-12, IL-23 and iNOS) expression but increased M2 marker (IL-10, Arg1 and Mrc1) expression. Furthermore, in our vitro and vivo experiments, we found that anti-Lcn2 antibody treatment failed to induce M1-related gene expression in response to LPS and that Lcn2 neutralization enhanced the expression of M2-related genes following IL-4 treatment. In conclusion, Lcn2 promotes M1 polarization, and Lcn2 neutralization attenuates cardiac IR injury. PMID:25359467

  18. What is the real impact of acute kidney injury?

    PubMed Central

    2014-01-01

    Background Acute kidney injury (AKI) is a common clinical problem. Studies have documented the incidence of AKI in a variety of populations but to date we do not believe the real incidence of AKI has been accurately documented in a district general hospital setting. The aim here was to describe the detected incidence of AKI in a typical general hospital setting in an unselected population, and describe associated short and long-term outcomes. Methods A retrospective observational database study from secondary care in East Kent (adult catchment population of 582,300). All adult patients (18 years or over) admitted between 1st February 2009 and 31st July 2009, were included. Patients receiving chronic renal replacement therapy (RRT), maternity and day case admissions were excluded. AKI was defined by the acute kidney injury network (AKIN) criteria. A time dependent risk analysis with logistic regression and Cox regression was used for the analysis of in-hospital mortality and survival. Results The incidence of AKI in the 6 month period was 15,325 pmp/yr (adults) (69% AKIN1, 18% AKIN2 and 13% AKIN3). In-hospital mortality, length of stay and ITU utilisation all increased with severity of AKI. Patients with AKI had an increase in care on discharge and an increase in hospital readmission within 30 days. Conclusions This data comes closer to the real incidence and outcomes of AKI managed in-hospital than any study published in the literature to date. Fifteen percent of all admissions sustained an episode of AKI with increased subsequent short and long term morbidity and mortality, even in those with AKIN1. This confers an increased burden and cost to the healthcare economy, which can now be quantified. These results will furnish a baseline for quality improvement projects aimed at early identification, improved management, and where possible prevention, of AKI. PMID:24952580

  19. Useful laboratory tests for studying thrombogenesis in acute cardiac syndromes.

    PubMed

    Fareed, J; Hoppensteadt, D A; Leya, F; Iqbal, O; Wolf, H; Bick, R

    1998-08-01

    We review laboratory tests that evaluate thrombogenesis during acute coronary syndromes. These tests have been found to be valuable research tools in more clearly understanding the pathophysiology of acute coronary syndromes. In particular, we describe tissue factor, tissue factor pathway inhibitor, prothrombin fragment 1.2, thrombin-antithrombin complex, fibrinopeptide A, tissue plasminogen activator (t-PA), plasminogen activator inhibitor-1 (PAI-1), t-PA-PAI complex, Bbeta 15-42-related peptides, fibrinogen degradation products, fibrin degradation products, D-dimer, platelet factor 4, beta-thromboglobulin, 5-hydroxytryptamine, thromboxane B2, prostacyclin, endothelin, angiotensin-converting enzyme, soluble thrombomodulin, C1-esterase inhibitor, anaphylotoxins C3a, C4a, and C5a, bradykinin, tumor necrosis factor, leukotriene C4, platelet activating factor, anti-phospholipid antibody, and von Willebrand factor. Some of these tests may prove to be useful in clinical diagnosis and management of acute coronary syndromes. Clinical outcome studies are needed to determine which tests may be cost effective and medically useful. PMID:9702994

  20. Electronic Medical Record-Based Predictive Model for Acute Kidney Injury in an Acute Care Hospital.

    PubMed

    Laszczyńska, Olga; Severo, Milton; Azevedo, Ana

    2016-01-01

    Patients with acute kidney injury (AKI) are at risk for increased morbidity and mortality. Lack of specific treatment has meant that efforts have focused on early diagnosis and timely treatment. Advanced algorithms for clinical assistance including AKI prediction models have potential to provide accurate risk estimates. In this project, we aim to provide a clinical decision supporting system (CDSS) based on a self-learning predictive model for AKI in patients of an acute care hospital. Data of all in-patient episodes in adults admitted will be analysed using "data mining" techniques to build a prediction model. The subsequent machine-learning process including two algorithms for data stream and concept drift will refine the predictive ability of the model. Simulation studies on the model will be used to quantify the expected impact of several scenarios of change in factors that influence AKI incidence. The proposed dynamic CDSS will apply to future in-hospital AKI surveillance in clinical practice. PMID:27577501

  1. Mitochondrial dysfunction in inherited renal disease and acute kidney injury.

    PubMed

    Emma, Francesco; Montini, Giovanni; Parikh, Samir M; Salviati, Leonardo

    2016-05-01

    Mitochondria are increasingly recognized as key players in genetic and acquired renal diseases. Most mitochondrial cytopathies that cause renal symptoms are characterized by tubular defects, but glomerular, tubulointerstitial and cystic diseases have also been described. For example, defects in coenzyme Q10 (CoQ10) biosynthesis and the mitochondrial DNA 3243 A>G mutation are important causes of focal segmental glomerulosclerosis in children and in adults, respectively. Although they sometimes present with isolated renal findings, mitochondrial diseases are frequently associated with symptoms related to central nervous system and neuromuscular involvement. They can result from mutations in nuclear genes that are inherited according to classic Mendelian rules or from mutations in mitochondrial DNA, which are transmitted according to more complex rules of mitochondrial genetics. Diagnosis of mitochondrial disorders involves clinical characterization of patients in combination with biochemical and genetic analyses. In particular, prompt diagnosis of CoQ10 biosynthesis defects is imperative because of their potentially reversible nature. In acute kidney injury (AKI), mitochondrial dysfunction contributes to the physiopathology of tissue injury, whereas mitochondrial biogenesis has an important role in the recovery of renal function. Potential therapies that target mitochondrial dysfunction or promote mitochondrial regeneration are being developed to limit renal damage during AKI and promote repair of injured tissue. PMID:26804019

  2. Escin attenuates acute lung injury induced by endotoxin in mice.

    PubMed

    Xin, Wenyu; Zhang, Leiming; Fan, Huaying; Jiang, Na; Wang, Tian; Fu, Fenghua

    2011-01-18

    Endotoxin causes multiple organ dysfunctions, including acute lung injury (ALI). The current therapeutic strategies for endotoxemia are designed to neutralize one or more of the inflammatory mediators. Accumulating experimental evidence suggests that escin exerts anti-inflammatory and anti-edematous effects. The aim of this study was to evaluate the effect of escin on ALI induced by endotoxin in mice. ALI was induced by injection of lipopolysaccharide (LPS) intravenously. The mice were given dexamethasone or escin before injection of LPS. The mortality rate was recorded. Tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β) and nitric oxide (NO) were measured. Pulmonary superoxide dismutase (SOD), glutathione peroxidase (GPx) activity, glutathione (GSH), malondialdehyde (MDA) contents, and myeloperoxidase (MPO) activity were also determined. The expression of glucocorticoid receptor (GR) level was detected by Western blotting. Pretreatment with escin could decrease the mortality rate, attenuate lung injury resulted from LPS, down-regulate the level of the inflammation mediators, including NO, TNF-α, and IL-1β, enhance the endogenous antioxidant capacity, and up-regulating the GR expression in lung. The results suggest that escin may have potent protective effect on the LPS-induced ALI by inhibiting of the inflammatory response, and its mechanism involves in up-regulating the GR and enhancing the endogenous antioxidant capacity. PMID:21040784

  3. Acute kidney injury: Renal disease in the ICU.

    PubMed

    Seller-Pérez, G; Más-Font, S; Pérez-Calvo, C; Villa-Díaz, P; Celaya-López, M; Herrera-Gutiérrez, M E

    2016-01-01

    Acute kidney injury (AKI) in the ICU frequently requires costly supportive therapies, has high morbidity, and its long-term prognosis is not as good as it has been presumed so far. Consequently, AKI generates a significant burden for the healthcare system. The problem is that AKI lacks an effective treatment and the best approach relies on early secondary prevention. Therefore, to facilitate early diagnosis, a broader definition of AKI should be established, and a marker with more sensitivity and early-detection capacity than serum creatinine - the most common marker of AKI - should be identified. Fortunately, new classification systems (RIFLE, AKIN or KDIGO) have been developed to solve these problems, and the discovery of new biomarkers for kidney injury will hopefully change the way we approach renal patients. As a first step, the concept of renal failure has changed from being a "static" disease to being a "dynamic process" that requires continuous evaluation of kidney function adapted to the reality of the ICU patient. PMID:27388683

  4. Endothelial Glycocalyx Damage Is Associated with Leptospirosis Acute Kidney Injury

    PubMed Central

    Libório, Alexandre Braga; Braz, Marcelo Boecker Munoz; Seguro, Antonio Carlos; Meneses, Gdayllon C.; Neves, Fernanda Macedo de Oliveira; Pedrosa, Danielle Carvalho; Cavalcanti, Luciano Pamplona de Góes; Martins, Alice Maria Costa; Daher, Elizabeth de Francesco

    2015-01-01

    Leptospirosis is a common disease in tropical countries, and the kidney is one of the main target organs. Membrane proteins of Leptospira are capable of causing endothelial damage in vitro, but there have been no studies in humans evaluating endothelial glycocalyx damage and its correlation with acute kidney injury (AKI). We performed a cohort study in an outbreak of leptospirosis among military personnel. AKI was diagnosed in 14 of 46 (30.4%) patients. Leptospirosis was associated with higher levels of intercellular adhesion molecule-1 (ICAM-1; 483.1 ± 31.7 versus 234.9 ± 24.4 mg/L, P < 0.001) and syndecan-1 (73.7 ± 15.9 versus 21.2 ± 7.9 ng/mL, P < 0.001) compared with exposed controls. Patients with leptospirosis-associated AKI had increased level of syndecan-1 (112.1 ± 45.4 versus 41.5 ± 11.7 ng/mL, P = 0.021) and ICAM-1 (576.9 ± 70.4 versus 434.9 ± 35.3, P = 0.034) compared with leptospirosis patients with no AKI. Association was verified between syndecan-1 and ICAM-1 with serum creatinine elevation and neutrophil gelatinase-associated lipocalin (NGAL) levels. This association remained even after multivariate analysis including other AKI-associated characteristics. Endothelial injury biomarkers are associated with leptospirosis-associated renal damage. PMID:25624405

  5. Crocin attenuates lipopolysacchride-induced acute lung injury in mice

    PubMed Central

    Wang, Jian; Kuai, Jianke; Luo, Zhonghua; Wang, Wuping; Wang, Lei; Ke, Changkang; Li, Xiaofei; Ni, Yunfeng

    2015-01-01

    Crocin, a representative of carotenoid compounds, exerts a spectrum of activities including radical scavenger, anti-microbial and anti-inflammatory properties. To investigate the protective effect of crocin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. ALI was induced in mice by intratracheal instillation of LPS (1 mg/kg). The mice received intragastric injection of crocin (50 mg/kg) 1 h before LPS administration. Pulmonary histological changes were evaluated by hematoxylineosin stain and lung wet/dry weight ratios were observed. Concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and nitric oxide (NO), and myeloperoxidase (MPO) activity were measured by enzymelinked immunosorbent assay. Expression of inducible nitric oxide synthase (iNOS) in lung tissues was determined by Western blot analysis. Crocin pretreatment significantly alleviated the severity of lung injury and inhibited the production of TNF-α and IL-1β in mice with ALI. After LPS administration, the lung wet/dry weight ratios, as an index of lung edema, and MPO activity were also markedly reduced by crocin pretreatment. Crocin pretreatment also reduced the concentrations of NO in lung tissues. Furthermore, the expression of iNOS was significantly suppressed by crocin pretreatment. Croncin potently protected against LPS-induced ALI and the protective effects of crocin may attribute partly to the suppression of iNOS expression. PMID:26191176

  6. Pharmacotherapy in rehabilitation of post-acute traumatic brain injury.

    PubMed

    Bhatnagar, Saurabha; Iaccarino, Mary Alexis; Zafonte, Ross

    2016-06-01

    There are nearly 1.8 million annual emergency room visits and over 289,000 annual hospitalizations related to traumatic brain injury (TBI). The goal of this review article is to highlight pharmacotherapies that we often use in the clinic that have been shown to benefit various sequelae of TBI. We have decided to focus on sequelae that we commonly encounter in our practice in the post-acute phase after a TBI. These symptoms are hyper-arousal, agitation, hypo-arousal, inattention, slow processing speed, memory impairment, sleep disturbance, depression, headaches, spasticity, and paroxysmal sympathetic hyperactivity. In this review article, the current literature for the pharmacological management of these symptoms are mentioned, including medications that have not had success and some ongoing trials. It is clear that the pharmacological management specific to those with TBI is often based on small studies and that often treatment is based on assumptions of how similar conditions are managed when not relating to TBI. As the body of the literature expands and targeted treatments start to emerge for TBI, the function of pharmacological management will need to be further defined. This article is part of a Special Issue entitled SI:Brain injury and recovery. PMID:26801831

  7. Effects of acute stress on cardiac endocannabinoids, lipogenesis, and inflammation in rats

    PubMed Central

    Lim, James; Piomelli, Daniele

    2014-01-01

    Objective Trauma exposure can precipitate acute/post-traumatic stress responses (AS/PTSD) and disabling cardiovascular disorders (CVD). Identifying acute stress-related physiologic changes that may increase CVD risk could inform development of early CVD-prevention strategies. The endocannabinoid system (ECS) regulates hypothalamic-pituitary-adrenal (HPA) axis response and stress-related cardiovascular function. We examine stress-related endocannabinoid system (ECS) activity and its association with cardiovascular biochemistry/function following acute stress. Methods Rodents (n=8-16/group) were exposed to predator odor or saline; elevated plus maze (EPM), blood pressure (BP), serum and cardiac tissue ECS markers, and lipid metabolism were assessed at 24h and 2wks post-exposure. Results At 24h the predator odor group demonstrated anxiety-like behavior and had (a) elevated serum markers of cardiac failure/damage (brain natriuretic peptide [BNP]: 275.1 vs. 234.6, p=0.007; troponin-I: 1.50 vs. 0.78, p=0.076), lipogenesis (triacylglycerols [TAG]: 123.5 vs. 85.93, p=0.018), and inflammation (stearoyl delta-9 desaturase activity [SCD-16]: 0.21 vs. 0.07, p<0.001); (b) significant decrease in cardiac endocannabinoid (2-arachidonoyl-sn-glycerol, 2-AG: 29.90 vs. 65.95, p<0.001) and fatty acid ethanolamides (FAE: oleoylethanolamide, OEA: 114.3 vs. 125.4, p=0.047; palmitoylethanolamide, PEA: 72.96 vs. 82.87, p=0.008); and (c) increased cardiac inflammation (IL-1β/IL-6 ratio: 19.79 vs.13.57, p=0.038; TNF-α/IL-6 ratio: 1.73 vs. 1.03, p=0.019) and oxidative stress (thiobarbituric acid reactive substances [TBARS]: 7.81 vs. 7.05, p=0.022), that were associated with cardiac steatosis (higher TAG: 1.09 vs. 0.72, p<0.001). Cardiac lipogenesis persisted, and elevated BP emerged two weeks after exposure. Conclusions Acute psychological stress elicits ECS-related cardiac responses associated with persistent, potentially-pathological changes in rat cardiovascular biochemistry

  8. National Heart Attack Alert Program position paper: chest pain centers and programs for the evaluation of acute cardiac ischemia.

    PubMed

    Zalenski, R J; Selker, H P; Cannon, C P; Farin, H M; Gibler, W B; Goldberg, R J; Lambrew, C T; Ornato, J P; Rydman, R J; Steele, P

    2000-05-01

    The National Heart Attack Alert Program (NHAAP), which is coordinated by the National Heart, Lung, and Blood Institute (NHLBI), promotes the early detection and optimal treatment of patients with acute myocardial infarction and other acute coronary ischemic syndromes. The NHAAP, having observed the development and growth of chest pain centers in emergency departments with special interest, created a task force to evaluate such centers and make recommendations pertaining to the management of patients with acute cardiac ischemia. This position paper offers recommendations to assist emergency physicians in EDs, including those with chest pain centers, in providing comprehensive care for patients with acute cardiac ischemia. PMID:10783408

  9. Moderate exercise training attenuates aging-induced cardiac inflammation, hypertrophy and fibrosis injuries of rat hearts

    PubMed Central

    Liao, Po-Hsiang; Hsieh, Dennis Jine-Yuan; Kuo, Chia-Hua; Day, Cecilia-Hsuan; Shen, Chia-Yao; Lai, Chao-Hung; Chen, Ray-Jade; Padma, V. Vijaya

    2015-01-01

    Aging is the most important risk factor in cardiovascular disease (CVD), which is the leading causes of death worldwide and the second major cause of death in Taiwan. The major factor in heart failure during aging is heart remodeling, including long-term stress-induced cardiac hypertrophy and fibrosis. Exercise is good for aging heart health, but the impact of exercise training on aging is not defined. This study used 3-, 12- and 18-month-old rats and randomly divided each age group into no exercise training control groups (C3, A12 and A18) and moderate gentle swimming exercise training groups (E3, AE12 and AE18). The protocol of exercise training was swimming five times weekly with gradual increases from the first week from 20 to 60 min for 12 weeks. Analyses of protein from rat heart tissues and sections revealed cardiac inflammation, hypertrophy and fibrosis pathway increases in aged rat groups (A12 and A18), which were improved in exercise training groups (AE12 and AE18). There were no heart injuries in young rat hearts in exercise group E3. These data suggest that moderate swimming exercise training attenuated aging-induced cardiac inflammation, hypertrophy and fibrosis injuries of rat hearts. PMID:26496028

  10. TNFR1-dependent pulmonary apoptosis during ischemic acute kidney injury

    PubMed Central

    White, Laura E.; Santora, Rachel J.; Cui, Yan; Moore, Frederick A.

    2012-01-01

    Despite advancements in renal replacement therapy, the mortality rate for acute kidney injury (AKI) remains unacceptably high, likely due to remote organ injury. Kidney ischemia-reperfusion injury (IRI) activates cellular and soluble mediators that incite a distinct pulmonary proinflammatory and proapoptotic response. Tumor necrosis factor receptor 1 (TNFR1) has been identified as a prominent death receptor activated in the lungs during ischemic AKI. We hypothesized that circulating TNF-α released from the postischemic kidney induces TNFR1-mediated pulmonary apoptosis, and we aimed to elucidate molecular pathways to programmed cell death. Using an established murine model of kidney IRI, we characterized the time course for increased circulatory and pulmonary TNF-α levels and measured concurrent upregulation of pulmonary TNFR1 expression. We then identified TNFR1-dependent pulmonary apoptosis after ischemic AKI using TNFR1−/− mice. Subsequent TNF-α signaling disruption with Etanercept implicated circulatory TNF-α as a key soluble mediator of pulmonary apoptosis and lung microvascular barrier dysfunction during ischemic AKI. We further elucidated pathways of TNFR1-mediated apoptosis with NF-κB (Complex I) and caspase-8 (Complex II) expression and discovered that TNFR1 proapoptotic signaling induces NF-κB activation. Additionally, inhibition of NF-κB (Complex I) resulted in a proapoptotic phenotype, lung barrier leak, and altered cellular flice inhibitory protein signaling independent of caspase-8 (Complex II) activation. Ischemic AKI activates soluble TNF-α and induces TNFR1-dependent pulmonary apoptosis through augmentation of the prosurvival and proapoptotic TNFR1 signaling pathway. Kidney-lung crosstalk after ischemic AKI represents a complex pathological process, yet focusing on specific biological pathways may yield potential future therapeutic targets. PMID:22728466

  11. Neutrophil lipoxygenase metabolism and adhesive function following acute thermal injury.

    PubMed

    Damtew, B; Marino, J A; Fratianne, R B; Spagnuolo, P J

    1993-02-01

    Leukotrienes, especially leukotriene B4, are important modulators of various neutrophil functions including adherence and chemotaxis. In previous work, we demonstrated that neutrophil adherence to extracellular matrixes was diminished in the acute stages of burn injury. In this study, we demonstrated that neutrophil adhesion to human and bovine endothelium in the baseline state and after stimulation with leukotriene B4 is depressed markedly after burn injury. The defect in stimulated adherence to endothelium was not specific to leukotriene B4 because impaired adhesion was observed with n-formyl-methionyl-leucyl-phenylalanine and ionophore A23187 as well. Moreover, the adherence defect correlated with 95% and 81% decreases in the release of leukotriene B4 and 5-hydroxy-(6E,87,117,147)-eicosatetraenoic acid, respectively, from burn PMN treated with A23187. Burn neutrophils also released proportionately more byproducts of leukotriene B4 omega oxidation, particularly 20-COOH-leukotriene B4, than did control neutrophils. When examined 3 1/2 weeks after injury, abnormalities in neutrophil leukotriene B4 generation and the adherence of burn neutrophils had recovered to near normal values. To determine whether the decreased release of leukotriene B4 from burn neutrophils was due to increased degradation or diminished synthesis of leukotriene B4, we examined the degradation of exogenous tritiated leukotriene B4 as well as the production of leukotriene B4 from tritiated arachidonic acid in neutrophils. Burn neutrophils converted significantly greater quantities of tritiated leukotriene B4 to tritiated 20-COOH-leukotriene B4 and synthesized markedly less tritiated leukotriene B4 from tritiated arachidonic acid than did control neutrophils, suggesting that decreased leukotriene B4 release by burn neutrophils was the result of both enhanced degradation and decreased synthesis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8381849

  12. Postpartum acute kidney injury: a review of 99 cases.

    PubMed

    Eswarappa, Mahesh; Madhyastha, P Rakesh; Puri, Sonika; Varma, Vijay; Bhandari, Aneesh; Chennabassappa, Gurudev

    2016-07-01

    Postpartum acute kidney injury (PPAKI) constitutes an important cause of obstetric AKI. It is associated with high maternal and fetal mortality in developing nations. The aim of this study is to survey the etiology and outcomes of PPAKI in a tertiary care Indian hospital. Ninety-nine patients, without prior comorbidities, treated for PPAKI, between 2005-2014 at M.S. Ramaiah Medical College, were included for analysis in this retrospective, observational study. AKI was analyzed in terms of maximal stage of renal injury attained as per RIFLE criteria. Outcomes included requirement for renal replacement therapy (RRT), maternal and fetal outcomes. PPAKI constituted 60% of all obstetric AKI cases. Median maternal age was 23 years and 52% of patients were primigravidas. Mean serum creatinine was 4.1 mg/dL. Failure (33%) and injury (31%) were the major categories as per RIFLE criteria. Thirty-nine percent of cases required RRT. Sepsis, particularly puerperal sepsis, was the leading causes of PPAKI (75% of cases) and maternal mortality (94% of deaths). Maternal and fetal mortality were 19% and 22% respectively. The incidence of cortical necrosis was 10.3%. Three patients required long-term RRT. In conclusion, consistent with other Indian literature, we report a high incidence of PPAKI. We found incremental mortality on moving from "Risk" to "Failure" category of RIFLE. PPAKI was associated with high maternal and fetal mortality with sepsis being the leading cause. Our study highlights the need for provision of better quality of maternal care and fetal monitoring to decrease mortality associated with PPAKI in developing countries. PMID:27319810

  13. Relationship of non-cardiac biomarkers with periprocedural myocardial injury in patients undergoing percutaneous coronary intervention.

    PubMed

    Zeng, Rui-Xiang; Li, Jian-Jun; Liao, Peng-da; Zhang, Min-Zhou

    2016-10-15

    percutaneous coronary intervention (PCI) is one of the dominant methods for revascularization in patient with coronary artery disease (CAD), which accompanied with high incidence of periprocedural myocardial injury (PMI) evaluated by postprocedural cardiac biomarker elevation. For the convenience of risk stratification of PMI following PCI, the aim of present review provides a unique opportunity to summarize the relationship of non-cardiac biomarkers with PMI by extensively searching in the MEDLINE to identify all the relevant studies. In conclusion, we found that PCI related PMI might be correlated positively to those non-cardiac biomarkers such as low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol, total cholesterol, triglyceride, the ratios of LDL-C to high-density lipoprotein cholesterol (HDL-C), the ratios of HDL-C to apolipoprotein A-I, the ratio of eicosapentaenoic acid to arachidonic acid, lectin-like oxidized low-density lipoprotein receptor-1, C-reactive protein, high on-treatment platelet reactivity, platelet-monocyte aggregates, N-term pro-B-type natriuretic peptide, hemoglobin and albuminuria. Inversely, no relationships of PMI with those non-cardiac biomarkers such as mean platelet volume, platelet distribution width, platelet-larger cell ratio, uric acid, eosinophils count and the genetic variant of methylenetetrahydrofolate reductase (MTHFR) 677 C>T polymorphism. Moreover, there were controversial associations between PMI and those non-cardiac biomarkers such as high-density lipoprotein cholesterol, glycosylated hemoglobin, homocysteine and the polymorphism Leu33Pro of platelet glycoprotein IIbIIIa. However, almost all studies failed to provide definite mechanism of its findings, and further reaches are needed to focus on the potential mechanisms of association between non-cardiac biomarkers and PMI related to PCI. PMID:27428312

  14. Acute effects of carbon monoxide on cardiac electrical stability. Research report, Sep 85-Jul 88

    SciTech Connect

    Verrier, R.L.; Mills, A.K.; Skornik, W.A.

    1990-01-01

    The objective of the project was to determine the effects of acute carbon monoxide exposure on cardiac electrical stability in the normal and ischemic heart of anesthetized and conscious dogs. Exposure (90 to 120 minutes) to relatively high levels of carbon monoxide, leading to carboxyhemoglobin concentrations of up to 20 percent, was without significant effect on ventricular electrical stability in laboratory dogs. This appears to be the case in the acutely ischemic heart as well as in the normal heart. Using a model involving partial coronary artery stenosis, no changes were found in either the cycle frequency of coronary blood flow oscillations or in platelet aggregability during carbon monoxide exposure. Also examined were the effects of carbon monoxide exposure in the conscious state in order to take into consideration possible adverse consequences mediated by the central nervous system. The study found no adverse effects on the cardiac-excitable properties in response to either a 2-hour- or 24-hour-exposure paradigm.

  15. A partial defect in technetium-99m pyrophosphate image suggesting cardiac rupture following acute myocardial infarction.

    PubMed

    Tsujino, M; Hiroe, M; Sugimoto, K; Miyahara, Y; Ishii, Z; Taniguchi, K; Marumo, F

    1992-01-01

    We present the case of a 70-year-old woman with acute myocardial infarction who died of cardiac rupture on the 2nd hospital day. Dual isotope single photon emission computed tomography (SPECT) using thallium-201 chloride and technetium-99m pyrophosphate (PYP) performed on the 2nd hospital day showed a large perfusion defect in the anteroseptal wall on 201Tl image and a increased accumulation on 99mTc-PYP image in the anterior area consistent with a partial defect. Autopsy performed 1 h after death revealed a tear in the left ventricular anterior wall consistent with the defect on the 99mTc-PYP image. We propose that the finding of a partial defect in 99mTc-PYP is an interesting finding which may be associated with cardiac rupture following acute myocardial infarction. PMID:1533369

  16. Severe physical exertion, oxidative stress, and acute lung injury.

    PubMed

    Shah, Nikunj R; Iqbal, M Bilal; Barlow, Andrew; Bayliss, John

    2011-11-01

    We report the case of a 27-year-old male athlete presenting with severe dyspnoea 24 hours after completing an "Ironman Triathlon." Subsequent chest radiology excluded pulmonary embolus but confirmed an acute lung injury (ALI). Echocardiography corroborated a normal brain natriuretic peptide level by demonstrating good biventricular systolic function with no regional wall motion abnormalities. He recovered well, without requiring ventilatory support, on supplemental oxygen therapy and empirical antibiotics. To date, ALI following severe physical exertion has never been described. Exercise is a form of physiological stress resulting in oxidative stress through generation of reactive oxygen/nitrogen species. In its extreme form, there is potential for an excessive oxidative stress response--one that overwhelms the body's protective antioxidant mechanisms. As our case demonstrated, oxidative stress secondary to severe physical exertion was the most likely factor in the pathogenesis of ALI. Further studies are necessary to explore the pathological consequences of exercise-induced oxidative stress. Although unproven as of yet, further research may be needed to demonstrate if antioxidant therapy can prevent or ameliorate potential life-threatening complications in the acute setting. PMID:22064719

  17. Acute kidney injury in critically ill cancer patients: an update.

    PubMed

    Lameire, Norbert; Vanholder, Raymond; Van Biesen, Wim; Benoit, Dominique

    2016-01-01

    Patients with cancer represent a growing group among actual ICU admissions (up to 20 %). Due to their increased susceptibility to infectious and noninfectious complications related to the underlying cancer itself or its treatment, these patients frequently develop acute kidney injury (AKI). A wide variety of definitions for AKI are still used in the cancer literature, despite existing guidelines on definitions and staging of AKI. Alternative diagnostic investigations such as Cystatin C and urinary biomarkers are discussed briefly. This review summarizes the literature between 2010 and 2015 on epidemiology and prognosis of AKI in this population. Overall, the causes of AKI in the setting of malignancy are similar to those in other clinical settings, including preexisting chronic kidney disease. In addition, nephrotoxicity induced by the anticancer treatments including the more recently introduced targeted therapies is increasingly observed. However, data are sometimes difficult to interpret because they are often presented from the oncological rather than from the nephrological point of view. Because the development of the acute tumor lysis syndrome is one of the major causes of AKI in patients with a high tumor burden or a high cell turnover, the diagnosis, risk factors, and preventive measures of the syndrome will be discussed. Finally, we will briefly discuss renal replacement therapy modalities and the emergence of chronic kidney disease in the growing subgroup of critically ill post-AKI survivors. PMID:27480256

  18. Lithium-Induced Minimal Change Disease and Acute Kidney Injury

    PubMed Central

    Tandon, Parul; Wong, Natalie; Zaltzman, Jeffrey S

    2015-01-01

    Context: Lithium carbonate is a psychiatric medication commonly used in the treatment of bipolar disorder. It has been implicated in inducing nephrogenic diabetes inspidus, chronic tubulointerstitial nephropathy, and acute tubular necrosis. We describe a case of lithium-induced minimal change disease (MCD) and acute kidney injury (AKI). Case Report: A 32-year-old female with a medical history of bipolar disorder treated with chronic lithium therapy presented with anasarca, fatigue, and tremors. Work-up revealed supra-therapeutic lithium levels, hypoalbuminemia, and significant proteinuria. The patient was treated conservatively with fluids and discontinuation of lithium therapy. Subsequently, she developed significant AKI and persistent proteinuria. She underwent a renal biopsy that demonstrated effacement of podocyte foot processes consistent with lithium-induced MCD. This was treated with corticosteroids, which decreased the proteinuria and resolved all the patient's symptoms. Conclusion: Lithium-induced MCD is a rare disease that affects patients of all ages. It is often associated with therapeutic lithium and is typically resolved with discontinuation of lithium. In some cases, concurrent AKI may result due to vascular obstruction from hyperalbuminuria and associated renal interstitial edema. Corticosteroids may be needed to reduce the proteinuria and prevent progression to chronic kidney disease. As such, patients on lithium therapy may benefit from monitoring of glomerular function via urinalysis to prevent the onset of nephrotic syndrome. PMID:26258081

  19. Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury.

    PubMed

    Duann, Pu; Lianos, Elias A; Ma, Jianjie; Lin, Pei-Hui

    2016-01-01

    Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI) is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed. PMID:27153058

  20. Effect of Thoracentesis on Intubated Patients with Acute Lung Injury.

    PubMed

    Bloom, Matthew B; Serna-Gallegos, Derek; Ault, Mark; Khan, Ahsan; Chung, Rex; Ley, Eric J; Melo, Nicolas; Margulies, Daniel R

    2016-03-01

    Pleural effusions occur frequently in mechanically ventilated patients, but no consensus exists regarding the clinical benefit of effusion drainage. We sought to determine the impact of thoracentesis on gas exchange in patients with differing severities of acute lung injury (ALI). A retrospective analysis was conducted on therapeutic thoracenteses performed on intubated patients in an adult surgical intensive care unit of a tertiary center. Effusions judged by ultrasound to be 400 mL or larger were drained. Subjects were divided into groups based on their initial P:F ratios: normal >300, ALI 200 to 300, and acute respiratory distress syndrome (ARDS) <200. Baseline characteristics, physiologic variables, arterial blood gases, and ventilator settings before and after the intervention were analyzed. The primary end point was the change in measures of oxygenation. Significant improvements in P:F ratios (mean ± SD) were seen only in patients with ARDS (50.4 ± 38.5, P = 0.001) and ALI (90.6 ± 161.7, P = 0.022). Statistically significant improvement was observed in the pO2 (31.1, P = 0.005) and O2 saturation (4.1, P < 0.001) of the ARDS group. The volume of effusion removed did not correlate with changes in individual patient's oxygenation. These data support the role of therapeutic thoracentesis for intubated patients with abnormal P:F ratios. PMID:27099064

  1. Gastric dysreflexia after acute experimental spinal cord injury in rats

    PubMed Central

    Tong, M.; Holmes, G. M.

    2009-01-01

    Gastric reflexes are mediated mainly by vago-vagal reflex circuits in the caudal medulla. Despite the fact that brainstem vago-vagal circuitry remains intact after spinal cord injury (SCI), patients with SCI at the cervical level most often present gastric stasis with an increased risk of reflux and aspiration of gastric contents. Using a miniature strain gauge sutured to the gastric surface; we tested gastric motility and reflexive gastric relaxation following oesophageal distension (oesophageal-gastric relaxation reflex) in animals 3 days after a severe spinal contusion at either the third or ninth thoracic spinal segment (acute T3- or T9 SCI, respectively). Both basal gastric motility and the oesophageal-gastric relaxation reflex were significantly diminished in animals with T3 SCI. Conversely, both basal gastric motility and the oesophageal-gastric relaxation reflex were not significantly reduced in T9 SCI animals compared to controls. The reduced gastric motility and oesophageal-gastric reflex in T3 SCI rats was not ameliorated by celiac sympathectomy. Our results show that gastric stasis following acute SCI is independent of altered spinal sympathetic input to the stomach caudal to the lesion. Our data suggest that SCI may alter the sensitivity of vagal reflex function, perhaps by interrupting ascending spinosolitary input to brainstem vagal nuclei. PMID:19126185

  2. Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury

    PubMed Central

    Duann, Pu; Lianos, Elias A.; Ma, Jianjie; Lin, Pei-Hui

    2016-01-01

    Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI) is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed. PMID:27153058

  3. Changing Interdigestive Migrating Motor Complex in Rats under Acute Liver Injury

    PubMed Central

    Zheng, Su-Jun; Xu, Weihong; Zhang, Jianying; Chen, Yu; Duan, Zhongping

    2014-01-01

    Gastrointestinal motility disorder is a major clinical manifestation of acute liver injury, and interdigestive migrating motor complex (MMC) is an important indicator. We investigated the changes and characteristics of MMC in rats with acute liver injury. Acute liver injury was created by d-galactosamine, and we recorded the interdigestive MMC using a multichannel physiological recorder and compared the indexes of interdigestive MMC. Compared with normal controls, antral MMC Phase I duration was significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury. The duodenal MMC cycle and MMC Phases I and IV duration were significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury. The jejunal MMC cycle and MMC Phases I and IV duration were significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury compared with normal controls. Compared with the normal controls, rats with acute liver injury had a significantly prolonged interdigestive MMC cycle, related mainly to longer MMC Phases I and IV, shortened MMC Phase III, and MMC Phase II characterized by increased migrating clustered contractions, which were probably major contributors to the gastrointestinal motility disorders. PMID:25544942

  4. The Complex Role of iNOS in Acutely-Rejecting Cardiac Transplants

    PubMed Central

    Pieper, Galen M.; Roza, Allan M.

    2008-01-01

    This review summarizes the evidence for a detrimental role of nitric oxide (NO) derived from inducible NO synthase (iNOS) and/or reactive nitrogen species such as peroxynitrite in acutely-rejecting cardiac transplants. In chronic cardiac transplant rejection, iNOS may have an opposing beneficial component. The purpose of this review is primarily to address issues related to acute rejection which is a recognized risk factor for chronic rejection. The evidence for a detrimental role is based upon strategies involving non-selective NOS inhibitors, NO neutralizers, selective iNOS inhibitors and iNOS gene deletion in rodent models of cardiac rejection. The review is discussed in the context of the impact on various components including graft survival, histological rejection and cardiac function which may contribute in toto to the process of graft rejection. Possible limitations of each strategy are discussed in order to understand better the variance in published findings including issues related to the potential importance of cell localization of iNOS expression. Finally, the concept of a dual role of NO and its down-stream product, peroxynitrite, in rejection vs. immune regulation is discussed. PMID:18291116

  5. Outcome of veno-venous extracorporeal membrane oxygenation use in acute respiratory distress syndrome after cardiac surgery with cardiopulmonary bypass

    PubMed Central

    Song, Joo Han; Woo, Won Ki; Song, Seung Hwan; Kim, Hyo Hyun; Kim, Bong Joon; Kim, Ha Eun; Kim, Do Jung; Suh, Jee Won; Shin, Yu Rim; Park, Han Ki; Lee, Seung Hyun; Joo, Hyun Chel; Lee, Sak; Chang, Byung Chul; Yoo, Kyung Jong; Kim, Young Sam

    2016-01-01

    Background Cardiac surgery with cardiopulmonary bypass (CPB) is a known risk factor for acute respiratory distress syndrome (ARDS). We aimed to analyze the treatment outcome in patients who required veno-venous extracorporeal membrane oxygenation (VV-ECMO) for postcardiotomy ARDS despite other rescue modalities. Methods We retrospectively reviewed the outcomes in 13 patients (mean age, 54.7±5.9 years) who received VV-ECMO support for refractory ARDS after cardiac surgery between March 2013 and February 2016 at Severance Hospital, Yonsei University (Seoul, Korea). Results At the start of VV-ECMO, the average lung injury score was 3.0±0.2, and the Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) score was −4±1.1. Although 7 patients initiated VV-ECMO support within 24 h from operation, the remaining 6 started at a median of 8.5 days (range, 5−16 days). Nine (69.3%) patients were successfully weaned from VV-ECMO. After a median follow-up duration of 14.5 months (range, 1.0−33.0 months) for survivors, the 1-year overall survival was 58.6%±14.4%. The differences in the overall survival from VV-ECMO according to the RESP score risk classes were borderline significant (100% in class III, 50%±25% in class IV, and 20%±17.9% in class V; P=0.088). Conclusions VV-ECMO support can be a feasible rescue strategy for adult patients who develop refractory ARDS after a cardiac surgery. Additionally, the RESP score seems a valuable prognostic tool for post-ECMO survival outcome in this patient population as well. PMID:27499972

  6. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    PubMed Central

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-01-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries. PMID:27351915

  7. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    NASA Astrophysics Data System (ADS)

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-06-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries.

  8. Acute Respiratory Distress Syndrome: Role of Oleic Acid-Triggered Lung Injury and Inflammation

    PubMed Central

    Gonçalves-de-Albuquerque, Cassiano Felippe; Silva, Adriana Ribeiro; Burth, Patrícia; Castro-Faria, Mauro Velho; Castro-Faria-Neto, Hugo Caire

    2015-01-01

    Lung injury especially acute respiratory distress syndrome (ARDS) can be triggered by diverse stimuli, including fatty acids and microbes. ARDS affects thousands of people worldwide each year, presenting high mortality rate and having an economic impact. One of the hallmarks of lung injury is edema formation with alveoli flooding. Animal models are used to study lung injury. Oleic acid-induced lung injury is a widely used model resembling the human disease. The oleic acid has been linked to metabolic and inflammatory diseases; here we focus on lung injury. Firstly, we briefly discuss ARDS and secondly we address the mechanisms by which oleic acid triggers lung injury and inflammation. PMID:26640323

  9. Effort test performance in clinical acute brain injury, community brain injury, and epilepsy populations.

    PubMed

    Hampson, Natalie E; Kemp, Steven; Coughlan, Anthony K; Moulin, Chris J A; Bhakta, Bipin B

    2014-01-01

    Effort tests have become commonplace within medico-legal and forensic contexts and their use is rising within clinical settings. It is recognized that some patients may fail effort tests due to cognitive impairment and not because of poor effort. However, investigation of the base rate of failure among clinical populations other than dementia is limited. Forty-seven clinical participants were recruited and comprised three subgroups: acute brain injury (N = 11), community brain injury (N = 20), and intractable epilepsy (N = 16). Base rates of failure on the Word Memory Test (WMT; Green, 2003 ) and six other less well-validated measures were investigated. A significant minority of patients failed effort tests according to standard cutoff scores, particularly patients with severe traumatic brain injury and marked frontal-executive features. The WMT was able to identify failures associated with significant cognitive impairment through the application of profile analysis and/or lowered cutoff levels. Implications for clinical assessment, effort test interpretation, and future research are discussed. PMID:25084843

  10. Update on management of cardiac arrhythmias in acute coronary syndromes.

    PubMed

    Willich, T; Goette, A

    2015-04-01

    This review summarizes different types of arrhythmias in patients with acute coronary syndromes and provides an overview of the available therapeutic options for acute care and management of critical arrhythmias. The different therapeutic options are depending on the origin and type of arrhythmia. The main common dominant mechanisms are intramural re-entry in ischemia and triggered activity in reperfusion. The different forms of arrhythmia were explained in detail. Atrial arrhythmias are mainly atrial fibrillation; other forms are rare and usually self-limited. As therapeutic options antiarrhythmic drug therapy with beta-blockers or amiodarone and direct current cardioversion are suitable. Ventricular arrhythmias can be divided in premature ventricular complexes, accelerated idioventricular rhythm, non-sustained ventricular tachycardia, sustained ventricular tachycardia (VT), ventricular fibrillation (VF) and electrical storm. As therapeutic options antiarrhythmic drug therapy, implantable cardioverter defibrillator therapy (ICD), radiofrequency catheter ablation (RFA) and stellate ganglion blockade are available. The treatment with antiarrhythmic drug is rather cautious recommended, with the exception of beta-blockers. An additional drug therapy with ranolazine may be considered. The advantage of ICD therapy for long-term primary or secondary prophylactic therapy has been well documented. ICD therapy is associated with significant reduction in mortality compared with antiarrhythmic drug therapy (mainly amiodarone), with the exception of beta-blockers. RFA and stellate ganglion blockade are rather intended as therapeutically options for incessant VT/VF or electrical storm. PMID:25612305

  11. Effects of glutamine treatment on myocardial damage and cardiac function in rats after severe burn injury

    PubMed Central

    Yan, Hong; Zhang, Yong; Lv, Shang-jun; Wang, Lin; Liang, Guang-ping; Wan, Qian-xue; Peng, Xi

    2012-01-01

    Treatment with glutamine has been shown to reduce myocardial damage associated with ischemia/reperfusion injury. However, the cardioprotective effect of glutamine specifically after burn injury remains unclear. The present study explores the ability of glutamine to protect against myocardial damage in rats that have been severely burned. Seventy-two Wistar rats were randomly divided into three groups: normal controls (C), burned controls (B) and a glutamine-treated group (G). Groups B and G were subjected to full thickness burns comprising 30% of total body surface area. Group G was administered 1.5 g/ (kg•d) glutamine and group B was given the same dose of alanine via intragastric administration for 3 days. Levels of serum creatine kinase (CK), lactate dehydrogenase (LDH), aspartate transaminase (AST) and blood lactic acid were measured, as well as myocardial ATP and glutathione (GSH) contents. Cardiac function indices and histopathological changes were analyzed at 12, 24, 48 and 72 post-burn hours. In both burned groups, levels of serum CK, LDH, AST and blood lactic acid increased significantly, while myocardial ATP and GSH contents decreased. Compared with group B, CK, LDH, and AST levels were lower and blood lactic acid, myocardial ATP and GSH levels were higher in group G. Moreover, cardiac contractile function inhibition and myocardial histopathological damage were significantly reduced in group G compared to B. Taken together, these results show that glutamine supplementation protects myocardial structure and function after burn injury by improving energy metabolism and by promotedthe synthesis of ATP and GSH in cardiac myocytes. PMID:22977661

  12. [Acute mediastinitis except in a context of cardiac surgery].

    PubMed

    Doddoli, C; Trousse, D; Avaro, J-P; Djourno, X-B; Giudicelli, R; Fuentes, P; Thomas, P

    2010-02-01

    Acute mediastinitis is a life-threatening complication (20 to 40 % of mortality) secondary to oropharyngeal abscesses, neck infections or oesophageal leak spreading into the mediastium. Early diagnosis and optimal therapeutic approach are crucial for patient survival. CT scanning of the cervical and thoracic area is a useful tool for diagnosis and follow-up. Treatment is based on broad-spectrum antibiotherapy, adequate surgery, mediastinal drainage, and treatment of possible organ failure. There is no surgical standardized attitude. Mini-invasive approach could be satisfactory when prompt diagnosis is established and the thoracic drainage is effective. Repeated postoperative CT scanning and close clinical and laboratory monitoring could make an additional thoracotomy a second-line procedure. PMID:20207299

  13. Outcomes After Kidney injury in Surgery (OAKS): protocol for a multicentre, observational cohort study of acute kidney injury following major gastrointestinal and liver surgery

    PubMed Central

    2016-01-01

    Introduction Acute kidney injury (AKI) is associated with increased morbidity and mortality following cardiac surgery. Data focusing on the patterns of AKI following major gastrointestinal surgery could inform quality improvement projects and clinical trials, but there is a lack of reliable evidence. This multicentre study aims to determine the incidence and impact of AKI following major gastrointestinal and liver surgery. Methods and analysis This prospective, collaborative, multicentre cohort study will include consecutive adults undergoing gastrointestinal resection, liver resection or reversal of ileostomy or colostomy. Open and laparoscopic procedures in elective and emergency patients will be included in the study. The primary end point will be the incidence of AKI within 7 days of surgery, identified using an adaptation of the National Algorithm for Detecting Acute Kidney Injury, which is based on the Kidney Disease Improving Global Outcomes (KDIGO) AKI guidelines. Secondary outcomes will include persistent renal dysfunction at discharge and 1 year postoperatively. The 30-day adverse event rate will be measured using the Clavien-Dindo scale. Data on factors that may predispose to the development of AKI will be collected to identify variables associated with AKI. Based on our previous collaborative studies, a minimum of 114 centres are expected to be recruited, contributing over 6500 patients in total. Ethics and dissemination This study will be registered as clinical audit at each participating hospital. The protocol will be disseminated through local and national medical student networks in the UK and Ireland. PMID:26769786

  14. Inhibition of SOCs Attenuates Acute Lung Injury Induced by Severe Acute Pancreatitis in Rats and PMVECs Injury Induced by Lipopolysaccharide.

    PubMed

    Wang, Guanyu; Zhang, Jingwen; Xu, Caiming; Han, Xiao; Gao, Yanyan; Chen, Hailong

    2016-06-01

    Acute lung injury (ALI) is a critical complication of the severe acute pancreatitis (SAP), characterized by increased pulmonary permeability with high mortality. Pulmonary microvascular endothelial cells (PMVECs) injury and apoptosis play a key role in ALI. Previous studies indicated that store-operated calcium entry (SOCE) could regulate a variety of cellular processes. The present study was to investigate the effects of SOCE inhibition on ALI induced by SAP in Sprague-Dawley rats, and PMVECs injury induced by lipopolysaccharide (LPS). Rat model of SAP-associated ALI were established by the retrograde infusion of sodium deoxycholate. Serum levels of amylase, TNF-α, and IL-6, histological changes, water content of the lung, oxygenation index, and ultrastructural changes of PMVECs were examined in ALI rats with or without store-operated Ca(2+) channels (SOCs) pharmacological inhibitor (2-aminoethoxydiphenyl borate, 2-APB) pretreatment. For in vitro studies, PMVECs were transiently transfected with or without small interfering RNA (siRNA) against calcium release-activated calcium channel protein1 (Orai1) and stromal interaction molecule1 (STIM1), the two main molecular constituents of SOCs, then exposed to LPS. The viability of PMVECs was determined. The expression of STIM1, Orai1, Bax, and caspase3, both in lung tissue and in PMVECs, were assessed by quantitative real-time PCR and western blot. Administration of sodium deoxycholate upregulated the expression of SOCs proteins in lung tissue. Similarly, the SOCs proteins were increased in PMVECs induced by LPS. 2-APB reduced the serum levels of amylase, TNF-α, and IL-6, and attenuated lung water content and histological findings. In addition, the decreased oxygenation index and ultrastructural damage in PMVECs associated with SAP were ameliorated after administration of 2-APB. Knockdown of STIM1 and Orai1 inhibited LPS-induced PMVECs death. Furthermore, blockade of SOCE significantly suppressed Orai1, STIM1, Bax

  15. Adrenoceptor Polymorphisms and the Risk of Cardiac Injury and Dysfunction After Subarachnoid Hemorrhage

    PubMed Central

    Zaroff, Jonathan G.; Pawlikowska, Ludmila; Miss, Jacob C.; Yarlagadda, Sirisha; Ha, Connie; Achrol, Achal; Kwok, Pui-Yan; McCulloch, Charles E.; Lawton, Michael T.; Ko, Nerissa; Smith, Wade; Young, William L.

    2015-01-01

    Background and Purpose Cardiac abnormalities occur commonly after subarachnoid hemorrhage (SAH) and may be caused by excessive release of catecholamines from the myocardial sympathetic nerves. We hypothesized that adrenoceptor polymorphisms resulting in greater catecholamine sensitivity would be associated with an increased risk of cardiac injury. Methods This was a prospective cohort study. The primary outcome variables were the serum level of cardiac troponin I (cTi, abnormal if >1.0 µg/L) and the left ventricular ejection fraction (LVEF, abnormal if <50%). Six adrenoceptor polymorphisms were genotyped: β1AR Arg389Gly, β1AR Ser49Gly, β2AR Gly16Arg, β2AR Gln27Glu, β2AR Thr164Ile, and α2AR del322–325. The effect of each polymorphism on the risk of developing cardiac abnormalities was quantified using multivariable logistic regression. Results The study included 182 patients. The CC genotype (Arg/Arg) of β1AR Arg389Gly (odds ratio [OR] 3.4, P=0.030) and the CC genotype (Gln/Gln) of β2AR Gln27Glu (OR 3.1, P=0.032) were predictive of cTi release. The presence of the α2AR deletion was predictive of reduced LVEF (OR 4.2, P=0.023). The combination of the β1AR 389 CC and the β2AR 27 CC genotypes resulted in a marked increase in the odds of cTi release (OR 15.5, P=0.012). The combination of the β1AR 389 CC and the α2AR deletion genotypes resulted in a marked increase in the odds of developing a reduced LVEF (OR 10.3, P=0.033). Conclusions Genetic polymorphisms of the adrenoceptors are associated with an increased risk of cardiac abnormalities after SAH. These data support the hypothesis that cardiac dysfunction after SAH is a form of neurocardiogenic injury. PMID:16728691

  16. Time representation of mitochondrial morphology and function after acute spinal cord injury

    PubMed Central

    Jia, Zhi-qiang; Li, Gang; Zhang, Zhen-yu; Li, Hao-tian; Wang, Ji-quan; Fan, Zhong-kai; Lv, Gang

    2016-01-01

    Changes in mitochondrial morphology and function play an important role in secondary damage after acute spinal cord injury. We recorded the time representation of mitochondrial morphology and function in rats with acute spinal cord injury. Results showed that mitochondria had an irregular shape, and increased in size. Mitochondrial cristae were disordered and mitochondrial membrane rupture was visible at 2–24 hours after injury. Fusion protein mitofusin 1 expression gradually increased, peaked at 8 hours after injury, and then decreased to its lowest level at 24 hours. Expression of dynamin-related protein 1, amitochondrial fission protein, showed the opposite kinetics. At 2–24 hours after acute spinal cord injury, malondialdehyde content, cytochrome c levels and caspase-3 expression were increased, but glutathione content, adenosine triphosphate content, Na+-K+-ATPase activity and mitochondrial membrane potential were gradually reduced. Furthermore, mitochondrial morphology altered during the acute stage of spinal cord injury. Fusion was important within the first 8 hours, but fission played a key role at 24 hours. Oxidative stress was inhibited, biological productivity was diminished, and mitochondrial membrane potential and permeability were reduced in the acute stage of injury. In summary, mitochondrial apoptosis is activated when the time of spinal cord injury is prolonged. PMID:26981103

  17. Cardiac function in an endothermic fish: cellular mechanisms for overcoming acute thermal challenges during diving.

    PubMed

    Shiels, H A; Galli, G L J; Block, B A

    2015-02-01

    Understanding the physiology of vertebrate thermal tolerance is critical for predicting how animals respond to climate change. Pacific bluefin tuna experience a wide range of ambient sea temperatures and occupy the largest geographical niche of all tunas. Their capacity to endure thermal challenge is due in part to enhanced expression and activity of key proteins involved in cardiac excitation-contraction coupling, which improve cardiomyocyte function and whole animal performance during temperature change. To define the cellular mechanisms that enable bluefin tuna hearts to function during acute temperature change, we investigated the performance of freshly isolated ventricular myocytes using confocal microscopy and electrophysiology. We demonstrate that acute cooling and warming (between 8 and 28°C) modulates the excitability of the cardiomyocyte by altering the action potential (AP) duration and the amplitude and kinetics of the cellular Ca(2+) transient. We then explored the interactions between temperature, adrenergic stimulation and contraction frequency, and show that when these stressors are combined in a physiologically relevant way, they alter AP characteristics to stabilize excitation-contraction coupling across an acute 20°C temperature range. This allows the tuna heart to maintain consistent contraction and relaxation cycles during acute thermal challenges. We hypothesize that this cardiac capacity plays a key role in the bluefin tunas' niche expansion across a broad thermal and geographical range. PMID:25540278

  18. Cardiac function in an endothermic fish: cellular mechanisms for overcoming acute thermal challenges during diving

    PubMed Central

    Shiels, H. A.; Galli, G. L. J.; Block, B. A.

    2015-01-01

    Understanding the physiology of vertebrate thermal tolerance is critical for predicting how animals respond to climate change. Pacific bluefin tuna experience a wide range of ambient sea temperatures and occupy the largest geographical niche of all tunas. Their capacity to endure thermal challenge is due in part to enhanced expression and activity of key proteins involved in cardiac excitation–contraction coupling, which improve cardiomyocyte function and whole animal performance during temperature change. To define the cellular mechanisms that enable bluefin tuna hearts to function during acute temperature change, we investigated the performance of freshly isolated ventricular myocytes using confocal microscopy and electrophysiology. We demonstrate that acute cooling and warming (between 8 and 28°C) modulates the excitability of the cardiomyocyte by altering the action potential (AP) duration and the amplitude and kinetics of the cellular Ca2+ transient. We then explored the interactions between temperature, adrenergic stimulation and contraction frequency, and show that when these stressors are combined in a physiologically relevant way, they alter AP characteristics to stabilize excitation–contraction coupling across an acute 20°C temperature range. This allows the tuna heart to maintain consistent contraction and relaxation cycles during acute thermal challenges. We hypothesize that this cardiac capacity plays a key role in the bluefin tunas' niche expansion across a broad thermal and geographical range. PMID:25540278

  19. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin) induced cardiac injury in mice

    PubMed Central

    2011-01-01

    Background Cardiac inflammation and generation of oxidative stress are known to contribute to trastuzumab (herceptin) induced cardiac toxicity. Toll-like receptors (TLRs) are a part of the innate immune system and are involved in cardiac stress reactions. Since TLR4 might play a relevant role in cardiac inflammatory signaling, we investigated whether or not TLR4 is involved in trastuzumab induced cardiotoxicity. Methods Seven days after a single injection of herceptin (2 mg/kg; i.p.), left ventricular pressure volume loops were measured in HeN compotent (TLR4+/+) and HeJ mutant (TLR4-/-) treated with trastuzumab and control mice. Immunofluorescent staining for monocyte infiltration and analyses of plasma by (ELISAs) for different chemokines including: MCP-1and tumor necrosis factor-α (TNF-α), Western immunoblotting assay for ICAM-1, and used troponin I for cardiac injury marker. Results Trastuzumab injection resulted in an impairment of left ventricular function in TLR-4 competent (HeN), in contrast TLR4-/- trastuzumab mice showed improved left ventricular function EF%, CO; p < 0.05, attenuation of mononuclear cell infiltration in TLR4 -/-; p < 0.05 vs.TLR-4 competent (HeN), reduced level of cytokines TNF-α, MCP-1 and ICAM-1 expression in TLR4-/-, marked reduction of myocardial troponin-I levels in TLR4-deficient mice. Data are presented as means ± SE; n = 8 in each group p < 0.05 vs.TLR-4 competent (HeN). Conclusions Treatment with trastuzumab induces an inflammatory response that contributes to myocardial tissue TLR4 mediates chemokine expression (TNF-α, MCP-1and ICAM-1), so in experimental animals TLR4 deficiency improves left ventricular function and attenuates pathophysiological key mechanisms in trastuzumab induced cardiomyopathy. PMID:21999911

  20. Wider Perioperative Glycemic Fluctuations Increase Risk of Postoperative Acute Kidney Injury

    PubMed Central

    Sim, Ming Ann; Liu, Weiling; Ng, Roderica R.G.; Ti, Lian Kah; Chew, Sophia T.H.

    2015-01-01

    Abstract Acute kidney injury (AKI) is a common complication after cardiac surgery. Recent studies have revealed emerging associations between the magnitude of acute glycemic fluctuations and intensive care unit (ICU) mortality rates. However, the effect of acute glycemic fluctuations on the development of postoperative AKI remains unclear. Thus, we aim to investigate the effect of the magnitude of acute perioperative glycemic fluctuations on the incidence of postoperative AKI. We conducted a prospective cohort study by prospectively obtaining data from all patients who underwent elective coronary artery bypass grafting in a tertiary heart institution from 2009 to 2011. The magnitude of the difference between the highest and lowest perioperative glucose levels within 48 hr was calculated as a measure of perioperative glycemic fluctuation. Patients were divided into 4 groups for analysis based on the magnitude of perioperative glycemic fluctuation-A: 0 to 2 mmol/L; B: >2 to 4 mmol/L; C: >4 to 6 mmol/L; and D: >6 mmol/L. We analyzed the incidence of postoperative AKI, ICU mortality and ICU length of stay as primary and secondary outcomes, respectively. Both univariate and multivariate analyses were used. We analyzed data from 1386 patients. The overall incidence of AKI was 29.9% and increased with wider glycemic fluctuation. The incidence of AKI was statistically highest in Group D (38.3%), followed by Groups C (28.6%), B (21.7%), and A (17.4%), respectively (P�=�0.001). A similar trend was observed among both diabetics and nondiabetics (P�=�0.001 and P�=�0.002, respectively). Multivariate logistic regression showed the magnitude of perioperative glycemic fluctuations to be an independent risk factor in the development of AKI (P < 0.001, odds ratio 1.180, 95% confidence interval 1.116-1.247). ICU length of stay was statistically highest in Group D (58.3�hr) compared with Groups C (44.5�hr), B (37.3�hr), and A (32.8�hr, P�=�0.003). ICU

  1. Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury.

    PubMed

    Alidori, Simone; Akhavein, Nima; Thorek, Daniel L J; Behling, Katja; Romin, Yevgeniy; Queen, Dawn; Beattie, Bradley J; Manova-Todorova, Katia; Bergkvist, Magnus; Scheinberg, David A; McDevitt, Michael R

    2016-03-23

    RNA interference has tremendous yet unrealized potential to treat a wide range of illnesses. Innovative solutions are needed to protect and selectively deliver small interfering RNA (siRNA) cargo to and within a target cell to fully exploit siRNA as a therapeutic tool in vivo. Herein, we describe ammonium-functionalized carbon nanotube (fCNT)-mediated transport of siRNA selectively and with high efficiency to renal proximal tubule cells in animal models of acute kidney injury (AKI). fCNT enhanced siRNA delivery to tubule cells compared to siRNA alone and effectively knocked down the expression of several target genes, includingTrp53,Mep1b,Ctr1, andEGFP A clinically relevant cisplatin-induced murine model of AKI was used to evaluate the therapeutic potential of fCNT-targeted siRNA to effectively halt the pathogenesis of renal injury. Prophylactic treatment with a combination of fCNT/siMep1band fCNT/siTrp53significantly improved progression-free survival compared to controls via a mechanism that required concurrent reduction of meprin-1β and p53 expression. The fCNT/siRNA was well tolerated, and no toxicological consequences were observed in murine models. Toward clinical application of this platform, fCNTs were evaluated for the first time in nonhuman primates. The rapid and kidney-specific pharmacokinetic profile of fCNT in primates was comparable to what was observed in mice and suggests that this approach is amenable for use in humans. The nanocarbon-mediated delivery of siRNA provides a therapeutic means for the prevention of AKI to safely overcome the persistent barrier of nephrotoxicity during medical intervention. PMID:27009268

  2. NOS-2 Inhibition in Phosgene-Induced Acute Lung Injury

    PubMed Central

    Filipczak, Piotr T.; Senft, Albert P.; Seagrave, JeanClare; Weber, Waylon; Kuehl, Philip J.; Fredenburgh, Laura E.; McDonald, Jacob D.; Baron, Rebecca M.

    2015-01-01

    Phosgene exposure via an industrial or warfare release produces severe acute lung injury (ALI) with high mortality, characterized by massive pulmonary edema, disruption of epithelial tight junctions, surfactant dysfunction, and oxidative stress. There are no targeted treatments for phosgene-induced ALI. Previous studies demonstrated that nitric oxide synthase 2 (NOS-2) is upregulated in the lungs after phosgene exposure; however, the role of NOS-2 in the pathogenesis of phosgene-induced ALI remains unknown. We previously demonstrated that NOS-2 expression in lung epithelium exacerbates inhaled endotoxin-induced ALI in mice, mediated partially through downregulation of surfactant protein B (SP-B) expression. Therefore, we hypothesized that a selective NOS-2 inhibitor delivered to the lung epithelium by inhalation would mitigate phosgene-induced ALI. Inhaled phosgene produced increases in bronchoalveolar lavage fluid protein, histologic lung injury, and lung NOS-2 expression at 24 h. Administration of the selective NOS-2 inhibitor 1400 W via inhalation, but not via systemic delivery, significantly attenuated phosgene-induced ALI and preserved epithelial barrier integrity. Furthermore, aerosolized 1400 W augmented expression of SP-B and prevented downregulation of tight junction protein zonula occludens 1 (ZO-1), both critical for maintenance of normal lung physiology and barrier integrity. We also demonstrate for the first time that NOS-2-derived nitric oxide downregulates the ZO-1 expression at the transcriptional level in human lung epithelial cells, providing a novel target for ameliorating vascular leak in ALI. Our data demonstrate that lung NOS-2 plays a critical role in the development of phosgene-induced ALI and suggest that aerosolized NOS-2 inhibitors offer a novel therapeutic strategy for its treatment. PMID:25870319

  3. Hyperglycemia and acute kidney injury in critically ill children

    PubMed Central

    Gordillo, Roberto; Ahluwalia, Tania; Woroniecki, Robert

    2016-01-01

    Background Hyperglycemia and acute kidney injury (AKI) are common in critically ill children and have been associated with higher morbidity and mortality. The incidence of AKI in children is difficult to estimate because of the lack of a standard definition for AKI. The pediatric RIFLE (Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease) criteria can be used to define AKI in children. Various biomarkers in urine and blood have been studied to detect AKI in critically ill children. However, it is not clear whether hyperglycemia is associated with AKI. Our objective was to evaluate the effect of hyperglycemia on kidney function and its effect on neutrophil gelatinase-associated lipocalin (NGAL) in children. Methods We studied retrospective and prospective cohorts of pediatric critically ill subjects admitted to the pediatric intensive care unit (PICU). We analyzed data from admission that included estimated glomerular filtration rate, plasma and urine NGAL, serum glucose and peak glycemia (highest glycemia during PICU admission), and length of hospital and PICU stay from two different institutions. Results We found that the prevalence of hyperglycemia was 89% in the retrospective cohort and 86% in the prospective cohort, P=0.99. AKI was associated with peak glycemia, P=0.03. There was a statistically significant correlation between peak glycemia and hospital and PICU stays, P=<0.001 and P<0.001, respectively. Urine NGAL and plasma NGAL were not statistically different in subjects with and without hyperglycemia, P=0.99 and P=0.85, respectively. Subjects on vasopressors had lower estimated glomerular filtration rate and higher glycemia, P=0.01 and P=0.04, respectively. Conclusion We conclude that in critically ill children, hyperglycemia is associated with AKI and longer PICU stays. PMID:27601931

  4. Early Identification of Patients at Risk of Acute Lung Injury

    PubMed Central

    Gajic, Ognjen; Dabbagh, Ousama; Park, Pauline K.; Adesanya, Adebola; Chang, Steven Y.; Hou, Peter; Anderson, Harry; Hoth, J. Jason; Mikkelsen, Mark E.; Gentile, Nina T.; Gong, Michelle N.; Talmor, Daniel; Bajwa, Ednan; Watkins, Timothy R.; Festic, Emir; Yilmaz, Murat; Iscimen, Remzi; Kaufman, David A.; Esper, Annette M.; Sadikot, Ruxana; Douglas, Ivor; Sevransky, Jonathan

    2011-01-01

    Rationale: Accurate, early identification of patients at risk for developing acute lung injury (ALI) provides the opportunity to test and implement secondary prevention strategies. Objectives: To determine the frequency and outcome of ALI development in patients at risk and validate a lung injury prediction score (LIPS). Methods: In this prospective multicenter observational cohort study, predisposing conditions and risk modifiers predictive of ALI development were identified from routine clinical data available during initial evaluation. The discrimination of the model was assessed with area under receiver operating curve (AUC). The risk of death from ALI was determined after adjustment for severity of illness and predisposing conditions. Measurements and Main Results: Twenty-two hospitals enrolled 5,584 patients at risk. ALI developed a median of 2 (interquartile range 1–4) days after initial evaluation in 377 (6.8%; 148 ALI-only, 229 adult respiratory distress syndrome) patients. The frequency of ALI varied according to predisposing conditions (from 3% in pancreatitis to 26% after smoke inhalation). LIPS discriminated patients who developed ALI from those who did not with an AUC of 0.80 (95% confidence interval, 0.78–0.82). When adjusted for severity of illness and predisposing conditions, development of ALI increased the risk of in-hospital death (odds ratio, 4.1; 95% confidence interval, 2.9–5.7). Conclusions: ALI occurrence varies according to predisposing conditions and carries an independently poor prognosis. Using routinely available clinical data, LIPS identifies patients at high risk for ALI early in the course of their illness. This model will alert clinicians about the risk of ALI and facilitate testing and implementation of ALI prevention strategies. Clinical trial registered with www.clinicaltrials.gov (NCT00889772). PMID:20802164

  5. Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury

    PubMed Central

    Alidori, Simone; Akhavein, Nima; Thorek, Daniel L. J.; Behling, Katja; Romin, Yevgeniy; Queen, Dawn; Beattie, Bradley J.; Manova-Todorova, Katia; Bergkvist, Magnus; Scheinberg, David A.; McDevitt, Michael R.

    2016-01-01

    RNA interference has tremendous yet unrealized potential to treat a wide range of illnesses. Innovative solutions are needed to protect and selectively deliver small interfering RNA (siRNA) cargo to and within a target cell to fully exploit siRNA as a therapeutic tool in vivo. Herein, we describe ammonium-functionalized carbon nanotube (fCNT)–mediated transport of siRNA selectively and with high efficiency to renal proximal tubule cells in animal models of acute kidney injury (AKI). fCNT enhanced siRNA delivery to tubule cells compared to siRNA alone and effectively knocked down the expression of several target genes, including Trp53, Mep1b, Ctr1, and EGFP. A clinically relevant cisplatin-induced murine model of AKI was used to evaluate the therapeutic potential of fCNT-targeted siRNA to effectively halt the pathogenesis of renal injury. Prophylactic treatment with a combination of fCNT/siMep1b and fCNT/siTrp53 significantly improved progression-free survival compared to controls via a mechanism that required concurrent reduction of meprin-1β and p53 expression. The fCNT/siRNA was well tolerated, and no toxicological consequences were observed in murine models. Toward clinical application of this platform, fCNTs were evaluated for the first time in nonhuman primates. The rapid and kidney-specific pharmacokinetic profile of fCNT in primates was comparable to what was observed in mice and suggests that this approach is amenable for use in humans. The nanocarbon-mediated delivery of siRNA provides a therapeutic means for the prevention of AKI to safely overcome the persistent barrier of nephrotoxicity during medical intervention. PMID:27009268

  6. [Time costs cardiac muscle tissue--prehospital therapy of acute myocardial infarct--a case report].

    PubMed

    Eschenburg, G; Pappert, D; Ohlmeier, H

    2003-01-01

    Symptoms of an acute myocardial infarction are a common reason for calling the emergency physician. Pre-hospital mortality caused by cardiac infarction is constantly high. The main potential for decreasing infarction mortality lies in the pre-hospital period. The problems and prospects of treatment in the early period are described in the case of a 73-year-old patient with an acute anterior infarction. The diagnostic and therapeutic approach is shown and discussed in this concrete case, taking into consideration the guidelines for diagnostics and therapy of acute myocardial infarction in the pre-hospital period of the German Society for Cardiology. A particular focus is the management of pre-hospital thrombolysis, the preconditions, realization and risks of which are described. In this context, the experience and competence of the emergency physician is prerequisite for the exact diagnosis and therapy. Furthermore, the importance of a smooth transition from pre-hospital therapy to intensive care is emphasized. PMID:12666508

  7. Effect of hydrogen sulfide on inflammatory cytokines in acute myocardial ischemia injury in rats

    PubMed Central

    LIU, FANG; LIU, GUANG-JIE; LIU, NA; ZHANG, GANG; ZHANG, JIAN-XIN; LI, LAN-FANG

    2015-01-01

    Hydrogen sulfide (H2S) is believed to be involved in numerous physiological and pathophysiological processes, and now it is recognized as the third endogenous signaling gasotransmitter, following nitric oxide and carbon monoxide; however, the effects of H2S on inflammatory factors in acute myocardial ischemia injury in rats have not been clarified. In the present study, sodium hydrosulfide (NaHS) was used as the H2S donor. Thirty-six male Sprague Dawley rats were randomly divided into five groups: Sham, ischemia, ischemia + low-dose (0.78 mg/kg) NaHS, ischemia + medium-dose (1.56 mg/kg) NaHS, ischemia + high-dose (3.12 mg/kg) NaHS and ischemia + propargylglycine (PPG) (30 mg/kg). The rats in each group were sacrificed 6 h after the surgery for sample collection. Compared with the ischemia group, the cardiac damage in the rats in the ischemia + NaHS groups was significantly reduced, particularly in the high-dose group; in the ischemia + PPG group, the myocardial injury was aggravated compared with that in the ischemia group. Compared with the ischemia group, the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in the serum of rats in the ischemia + medium- and high-dose NaHS groups were significantly reduced, and the expression of intercellular adhesion molecule-1 (ICAM-1) mRNA and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) protein in the myocardial tissues of rats was significantly reduced. In the ischemia + PPG group, the TNF-α, IL-1β and IL-6 levels in the serum were significantly increased, the expression of ICAM-1 mRNA was increased, although without a significant difference, and the expression of NF-κB was increased. The findings of the present study provide novel evidence for the dual effects of H2S on acute myocardial ischemia injury via the modulation of inflammatory factors. PMID:25667680

  8. Measuring dead-space in acute lung injury.

    PubMed

    Kallet, R H

    2012-11-01

    Several recent studies have advanced our understanding of dead-space ventilation in patients with acute lung injury/acute respiratory distress syndrome (ALI/ARDS). They have demonstrated the utility of measuring physiologic dead-space-to-tidal volume ratio (VD/VT) and related variables in assessing outcomes as well as therapeutic interventions. These studies have included the evaluation of mortality risk, pulmonary perfusion, as well as the effectiveness of drug therapy, prone positioning, positive end-expiratory pressure (PEEP) titration, and inspiratory pattern in improving gas exchange. In patients with ALI/ARDS managed with lung-protective ventilation a significant relationship between elevated VD/VT and increased mortality continues to be reported in both early and intermediate phases of ALI/ARDS. Some clinical evidence now supports the suggestion that elevated VD/VT in part reflects the severity of pulmonary vascular endothelial damage. Monitoring VD/VT also appears useful in assessing alveolar recruitment when titrating PEEP and may be a particularly expedient method for assessing the effectiveness of prone positioning. It also has revealed how subtle manipulations of inspiratory time and pattern can improve CO(2) excretion. Much of this has been accomplished using volumetric capnography. This allows for more sophisticated measurements of pulmonary gas exchange function including: alveolar VD/VT, the volume of CO(2) excretion and the slope of the alveolar plateau which reflects ventilation: perfusion heterogeneity. Many of these measurements now can be made non-invasively which should only increase the research and clinical utility of volumetric capnography in studying and managing patients with ALI/ARDS. PMID:22858884

  9. [Disglycemia in patients with acute kidney injury in the ICU].

    PubMed

    Fiaccadori, E; Sabatino, A; Morabito, S; Bozzoli, L; Donadio, C; Maggiore, U; Regolisti, G

    2015-01-01

    Derangements of glucose metabolism are common among critically ill patients. Critical illness- associated hyperglycemia (CIAH) is characterized by raised blood glucose levels in association with an acute event that is reversible after resolution of the underlying disease. CIAH has many causes, such as changes in counter-regulatory hormone status, release of sepsis mediators, insulin resistance, drugs and nutritional factors. It is associated with increased mortality risk. This association appears to be strongly influenced by diabetes mellitus as a comorbidity, suggesting the need for an accurate individualization of glycemic targets according to baseline glycemic status. Hypoglycemia is also very common in this clinical context and it has a negative prognostic impact. Many studies based on intensive insulin treatment protocols targeting normal blood glucose values have in fact documented both an increased incidence of hypoglycemia and an increased mortality risk. Finally, glycemic control in the ICU is made even more complex in the presence of acute kidney injury. On one hand, there is in fact a reduction of both the renal clearance of insulin and of gluconeogenesis by the kidney. On the other hand, the frequent need for renal replacement therapy (dialysis / hemofiltration) may result in an energy intake excess, under the form of citrate, lactate and glucose in the dialysate/reinfusion fluids. With regard to the possible renal protective effects afforded by intensive glycemic control protocols, the presently available evidence does not support a reduction in the incidence of AKI and/or the need for RRT with this approach, when compared with standard glucose control. Thus, the most recent guidelines now suggest higher blood glucose targets (<180 mg/dl or 140-180 mg/dl) than in the past (80-110 mg/dl). Albeit with limited evidence, it seems reasonable to extend these indications also to patients with AKI in the intensive care unit. Further studies are needed in order

  10. Effects of Different Tidal Volume Ventilation on Paraquat-Induced Acute Lung Injury in Piglets

    PubMed Central

    Lan, Chao; Wang, Jinzhu; Li, Li; Li, Haina; Li, Lu; Su, Qianqian; Che, Lu; Liu, Lanping; Di, Min

    2015-01-01

    Background The aim of this study was to explore the effects of different tidal volume (VT) ventilation on paraquat-induced acute lung injury or acute respiratory distress syndrome (ALI/ARDS) in piglets. Material/Methods We developed ALI/ARDS models in piglets by intraperitoneal injection of paraquat (PQ). The piglets were randomly divided into three groups: small VT group (VT=6 ml/kg, n=6), middle VT group (VT=10 ml/kg, n=6), and large VT group (VT=15 ml/kg, n=6), with the positive end-expiratory pressure (PEEP) set as 10 cmH2O. The hemodynamics were monitored by pulse-indicated continuous cardiac output (PiCCO) and the airway pressure changes and blood gas analysis indexes were recorded at different time points. The pathological changes were observed by lung puncture. Results The piglets showed ALI/ARDS in 4.5±0.8 hours after PQ intraperitoneal injection. PH, PaO2 and oxygenation indexes in the three groups all decreased after modeling success compared with baseline, and PaCO2 increased significantly. PH in the small VT group decreased most obviously after ventilation for 6 hours. PaO2 and oxygenation indexes in the small VT group showed the most obvious increase after ventilation for 2 hours and were much higher than the other two groups after ventilation for 6 hours. PaCO2 increased gradually after mechanical ventilation and the small VT group showed most obvious increase. The ELWI increased obviously after ventilation for 2 hours and then the small VT group clearly decreased. PIP and plateau pressure (Pplat) in the small VT group decreased gradually and in the middle and large VT group they increased after ventilation. The lung histopathology showed that the large VT group had the most severe damage and the small VT group had only minimal damage. Conclusions Small tidal volume ventilation combined with PEEP could alleviate the acute lung injury induced by paraquat and improve oxygenation. PMID:25671690

  11. Deficiency of Senescence Marker Protein 30 Exacerbates Cardiac Injury after Ischemia/Reperfusion

    PubMed Central

    Kadowaki, Shinpei; Shishido, Tetsuro; Sasaki, Toshiki; Sugai, Takayuki; Narumi, Taro; Honda, Yuki; Otaki, Yoichiro; Kinoshita, Daisuke; Takahashi, Tetsuya; Nishiyama, Satoshi; Takahashi, Hiroki; Arimoto, Takanori; Miyamoto, Takuya; Watanabe, Tetsu; Ishigami, Akihiko; Takeishi, Yasuchika; Kubota, Isao

    2016-01-01

    Early myocardial reperfusion is an effective therapy but ischemia/reperfusion (I/R) causes lethal myocardial injury. The aging heart was reported to show greater cardiac damage after I/R injury than that observed in young hearts. Senescence marker protein 30 (SMP30), whose expression decreases with age, plays a role in reducing oxidative stress and apoptosis. However, the impact of SMP30 on myocardial I/R injury remains to be determined. In this study, the left anterior descending coronary artery was occluded for 30 min, followed by reperfusion in wild-type (WT) and SMP30 knockout (KO) mice. After I/R, cardiomyocyte apoptosis and the ratio of infarct area/area at risk were higher, left ventricular fractional shortening was lower, and reactive oxygen species (ROS) generation was enhanced in SMP30 KO mice. Moreover, the previously increased phosphorylation of GSK-3β and Akt was lower in SMP30 KO mice than in WT mice. In cardiomyocytes, silencing of SMP30 expression attenuated Akt and GSK-3β phosphorylation, and increased Bax to Bcl-2 ratio and cardiomyocyte apoptosis induced by hydrogen peroxide. These results suggested that SMP30 deficiency augments myocardial I/R injury through ROS generation and attenuation of Akt activation. PMID:27077846

  12. Oral Administration of Escin Inhibits Acute Inflammation and Reduces Intestinal Mucosal Injury in Animal Models.

    PubMed

    Li, Minmin; Lu, Chengwen; Zhang, Leiming; Zhang, Jianqiao; Du, Yuan; Duan, Sijin; Wang, Tian; Fu, Fenghua

    2015-01-01

    The present study aimed to investigate the effects of oral administration of escin on acute inflammation and intestinal mucosal injury in animal models. The effects of escin on carrageenan-induced paw edema in a rat model of acute inflammation, cecal ligation and puncture (CLP) induced intestinal mucosal injury in a mouse model, were observed. It was shown that oral administration of escin inhibits carrageenan-induced paw edema and decreases the production of prostaglandin E2 (PGE2) and cyclooxygenase- (COX-) 2. In CLP model, low dose of escin ameliorates endotoxin induced liver injury and intestinal mucosal injury and increases the expression of tight junction protein claudin-5 in mice. These findings suggest that escin effectively inhibits acute inflammation and reduces intestinal mucosal injury in animal models. PMID:26199634

  13. Oral Administration of Escin Inhibits Acute Inflammation and Reduces Intestinal Mucosal Injury in Animal Models

    PubMed Central

    Li, Minmin; Lu, Chengwen; Zhang, Leiming; Zhang, Jianqiao; Du, Yuan; Duan, Sijin; Wang, Tian; Fu, Fenghua

    2015-01-01

    The present study aimed to investigate the effects of oral administration of escin on acute inflammation and intestinal mucosal injury in animal models. The effects of escin on carrageenan-induced paw edema in a rat model of acute inflammation, cecal ligation and puncture (CLP) induced intestinal mucosal injury in a mouse model, were observed. It was shown that oral administration of escin inhibits carrageenan-induced paw edema and decreases the production of prostaglandin E2 (PGE2) and cyclooxygenase- (COX-) 2. In CLP model, low dose of escin ameliorates endotoxin induced liver injury and intestinal mucosal injury and increases the expression of tight junction protein claudin-5 in mice. These findings suggest that escin effectively inhibits acute inflammation and reduces intestinal mucosal injury in animal models. PMID:26199634

  14. The radiology of pulmonary complications associated with acute spinal cord injury.

    PubMed

    Scher, A T

    1982-08-28

    Pulmonary complications after acute cervical spinal cord injury are common. Paralysis of the intercostal muscles leads to decreased respiratory function. In addition, injuries of the thoracic cage, pleura and lungs are commonly associated with spinal injuries. A survey of radiologically demonstrable pulmonary complications in 50 patients with acute tetraplegia has been made. Changes were present in 28% of the patients surveyed. The changes in pulmonary and haemodynamic function consequent upon cervical spinal cord injury are briefly described. Radiological manifestations of pulmonary complications due to decreased pulmonary function, direct pulmonary trauma and rare pulmonary complications of skeletal injury are reviewed. The value of routine and intensive radiographic monitoring of the chest in the patient with acute tetraplegia is emphasized, as clinical diagnosis is hampered in the absence of motor and sensory function. PMID:7112294

  15. Bridging translation for acute kidney injury with better preclinical modeling of human disease.

    PubMed

    Skrypnyk, Nataliya I; Siskind, Leah J; Faubel, Sarah; de Caestecker, Mark P

    2016-05-15

    The current lack of effective therapeutics for patients with acute kidney injury (AKI) represents an important and unmet medical need. Given the importance of the clinical problem, it is time for us to take a few steps back and reexamine current practices. The focus of this review is to explore the extent to which failure of therapeutic translation from animal studies to human studies stems from deficiencies in the preclinical models of AKI. We will evaluate whether the preclinical models of AKI that are commonly used recapitulate the known pathophysiologies of AKI that are being modeled in humans, focusing on four common scenarios that are studied in clinical therapeutic intervention trials: cardiac surgery-induced AKI; contrast-induced AKI; cisplatin-induced AKI; and sepsis associated AKI. Based on our observations, we have identified a number of common limitations in current preclinical modeling of AKI that could be addressed. In the long term, we suggest that progress in developing better preclinical models of AKI will depend on developing a better understanding of human AKI. To this this end, we suggest that there is a need to develop greater in-depth molecular analyses of kidney biopsy tissues coupled with improved clinical and molecular classification of patients with AKI. PMID:26962107

  16. Dyschloremia Is a Risk Factor for the Development of Acute Kidney Injury in Critically Ill Patients

    PubMed Central

    Shao, Min; Li, Guangxi; Sarvottam, Kumar; Wang, Shengyu; Thongprayoon, Charat; Dong, Yue; Gajic, Ognjen

    2016-01-01

    Introduction Dyschloremia is common in critically ill patients, although its impact has not been well studied. We investigated the epidemiology of dyschloremia and its associations with the incidence of acute kidney injury and other intensive care unit outcomes. Material and Methods This is a single-center, retrospective cohort study at Mayo Clinic Hospital—Rochester. All adult patients admitted to intensive care units from January 1st, 2006, through December 30th, 2012 were included. Patients with known acute kidney injury and chronic kidney disease stage 5 before intensive care unit admission were excluded. We evaluated the association of dyschloremia with ICU outcomes, after adjustments for the effect of age, gender, Charlson comorbidity index and severity of illness score. Results A total of 6,025 patients were enrolled in the final analysis following the implementation of eligibility criteria. From the cohort, 1,970 patients (33%) developed acute kidney injury. Of the total patients enrolled, 4,174 had a baseline serum chloride. In this group, 1,530 (37%) had hypochloremia, and 257 (6%) were hyperchloremic. The incidence of acute kidney injury was higher in hypochloremic and hyperchloremic patients compared to those with a normal serum chloride level (43% vs.30% and 34% vs. 30%, respectively; P < .001). Baseline serum chloride was lower in the acute kidney injury group vs. the non-acute kidney injury group [100 mmol/L (96–104) vs. 102 mmol/L (98–105), P < .0001]. In a multivariable logistic regression model, baseline serum chloride of ≤94 mmol/L found to be independently associated with the risk of acute kidney injury (OR 1.7, 95% CI 1.1–2.6; P = .01). Discussion Dyschloremia is common in critically ill patients, and severe hypochloremia is independently associated with an increased risk of development of acute kidney injury. PMID:27490461

  17. Evaluation of the acute cardiac and central nervous system effects of the fluorocarbon trifluoromethane in baboons

    SciTech Connect

    Branch, C.A.; Goldberg, D.A.; Ewing, J.R.; Butt, S.S.; Gayner, J.; Fagan, S.C.

    1994-12-31

    The gaseous fluorocarbon trifluoromethane has recently been investigated for its potential as an in vivo gaseous indicator for nuclear magnetic resonance studies of brain perfusion. Trifluoromethane may also have significant value as a replacement for chlorofluorocarbon fire retardants. Because of possible species-specific cardiotoxic and anesthetic properties, the toxicological evaluation of trifluoromethane in primates (Papio anubis) is necessary prior to its evaluation in humans. We report the acute cardiac and central nervous system effects of trifluoromethane in eight anesthetized baboons. A dose-response effect was established for respiratory rate, electroencephalogram, and cardiac sinus rate, which exhibited a stepwise decrease from 10% trifluoromethane. No spontaneous arrhythmias were noted, and arterial blood pressure remained unchanged at any inspired level. Intravenous epinephrine infusions (1 {mu}g/kg) induced transient cardiac arrhythmia in 1 animal only at 70% FC-23 (v/v) trifluoromethane. Trifluoromethane appears to induce mild dose-related physiological changes at inspired levels of 30% or more, indicative of an anesthetic effect. These data suggest that trifluoromethane may be safe to use in humans, without significant adverse acute effects, at an inspired level of 30%. 23 refs., 3 figs., 3 tabs.

  18. Bone marrow transplantation modulates tissue macrophage phenotype and enhances cardiac recovery after subsequent acute myocardial infarction

    PubMed Central

    Protti, Andrea; Mongue-Din, Heloise; Mylonas, Katie J.; Sirker, Alexander; Sag, Can Martin; Swim, Megan M.; Maier, Lars; Sawyer, Greta; Dong, Xuebin; Botnar, Rene; Salisbury, Jon; Gray, Gillian A.; Shah, Ajay M.

    2016-01-01

    Background Bone marrow transplantation (BMT) is commonly used in experimental studies to investigate the contribution of BM-derived circulating cells to different disease processes. During studies investigating the cardiac response to acute myocardial infarction (MI) induced by permanent coronary ligation in mice that had previously undergone BMT, we found that BMT itself affects the remodelling response. Methods and results Compared to matched naive mice, animals that had previously undergone BMT developed significantly less post-MI adverse remodelling, infarct thinning and contractile dysfunction as assessed by serial magnetic resonance imaging. Cardiac rupture in male mice was prevented. Histological analysis showed that the infarcts of mice that had undergone BMT had a significantly higher number of inflammatory cells, surviving cardiomyocytes and neovessels than control mice, as well as evidence of significant haemosiderin deposition. Flow cytometric and histological analyses demonstrated a higher number of alternatively activated (M2) macrophages in myocardium of the BMT group compared to control animals even before MI, and this increased further in the infarcts of the BMT mice after MI. Conclusions The process of BMT itself substantially alters tissue macrophage phenotype and the subsequent response to acute MI. An increase in alternatively activated macrophages in this setting appears to enhance cardiac recovery after MI. PMID:26688473

  19. Mitochondrial targets for volatile anesthetics against cardiac ischemia-reperfusion injury

    PubMed Central

    Agarwal, Bhawana; Stowe, David F.; Dash, Ranjan K.; Bosnjak, Zeljko J.; Camara, Amadou K. S.

    2014-01-01

    Mitochondria are critical modulators of cell function and are increasingly recognized as proximal sensors and effectors that ultimately determine the balance between cell survival and cell death. Volatile anesthetics (VA) are long known for their cardioprotective effects, as demonstrated by improved mitochondrial and cellular functions, and by reduced necrotic and apoptotic cell death during cardiac ischemia and reperfusion (IR) injury. The molecular mechanisms by which VA impart cardioprotection are still poorly understood. Because of the emerging role of mitochondria as therapeutic targets in diseases, including ischemic heart disease, it is important to know if VA-induced cytoprotective mechanisms are mediated at the mitochondrial level. In recent years, considerable evidence points to direct effects of VA on mitochondrial channel/transporter protein functions and electron transport chain (ETC) complexes as potential targets in mediating cardioprotection. This review furnishes an integrated overview of targets that VA impart on mitochondrial channels/transporters and ETC proteins that could provide a basis for cation regulation and homeostasis, mitochondrial bioenergetics, and reactive oxygen species (ROS) emission in redox signaling for cardiac cell protection during IR injury. PMID:25278902

  20. [Use of Plaferon LB for cardiac preconditioning during experimental ischemia/reperfusion injury in rabbits].

    PubMed

    Ubilava, T O; Megreladze, I I; Dzhangavadze, M B; Khodeli, N G; Chkhaidze, Z A

    2007-01-01

    The main goal of research was to study potential of Plaferon LB for cardiac preconditioning during experimental ischemia/reperfusion injury in rabbits. 30 rabbits (2.5-3.0 kg) were used in experiment. They were divided in 3 groups and 6 subgroups (n=5). In I group experimental design of m/i was performed by proximal ligation of left coronary artery (LCA) (2-6 hours). In II group on the 2 and 6 hour ligature was removed - reperfusion during 1 hour. In III group before ligation of LCA animals was administered Plaferon LB (0.2 mg/kg). The animals were under electrocardiographic monitoring. Troponin I was measured in blood. In II group after 1 hour of reperfusion Troponin I concentration was higher than in I group after 2 and 6 hours. In II group electrocardiographic data was worsened (rhythm and heart rate). In III group these changes were less marked. Obtained data confirm enhancement of myocardial injury during the reperfusion. Cardiac preconditioning by Plaferon LB significantly decreased pathologic indices. PMID:17921551

  1. Epithelial cell apoptosis causes acute lung injury masquerading as emphysema.

    PubMed

    Mouded, Majd; Egea, Eduardo E; Brown, Matthew J; Hanlon, Shane M; Houghton, A McGarry; Tsai, Larry W; Ingenito, Edward P; Shapiro, Steven D

    2009-10-01

    Theories of emphysema traditionally revolved around proteolytic destruction of extracellular matrix. Models have recently been developed that show airspace enlargement with the induction of pulmonary cell apoptosis. The purpose of this study was to determine the mechanism by which a model of epithelial cell apoptosis caused airspace enlargement. Mice were treated with either intratracheal microcystin (MC) to induce apoptosis, intratracheal porcine pancreatic elastase (PPE), or their respective vehicles. Mice from all groups were inflated and morphometry was measured at various time points. Physiology measurements were performed for airway resistance, tissue elastance, and lung volumes. The groups were further analyzed by air-saline quasistatic measurements, surfactant staining, and surfactant functional studies. Mice treated with MC showed evidence of reversible airspace enlargement. In contrast, PPE-treated mice showed irreversible airspace enlargement. The airspace enlargement in MC-treated mice was associated with an increase in elastic recoil due to an increase in alveolar surface tension. PPE-treated mice showed a loss of lung elastic recoil and normal alveolar surface tension, a pattern more consistent with human emphysema. Airspace enlargement that occurs with the MC model of pulmonary epithelial cell apoptosis displays physiology distinct from human emphysema. Reversibility, restrictive physiology due to changes in surface tension, and alveolar enlargement associated with heterogeneous alveolar collapse are most consistent with a mild acute lung injury. Inflation near total lung capacity gives the appearance of enlarged alveoli as neighboring collapsed alveoli exert tethering forces. PMID:19188661

  2. Science review: Searching for gene candidates in acute lung injury

    PubMed Central

    Grigoryev, Dmitry N; Finigan, James H; Hassoun, Paul; Garcia, Joe GN

    2004-01-01

    Acute lung injury (ALI) is a complex and devastating illness, often occurring within the setting of sepsis, and carries an annual mortality rate of 30–50%. Although the genetic basis of ALI has not been fully established, an increasing body of evidence suggests that genetic predisposition contributes to disease susceptibility and severity. Significant difficulty exists, however, in defining the exact nature of these genetic factors, including large phenotypic variance, incomplete penetrance, complex gene–environment interactions, and strong potential for locus heterogeneity. We utilized the candidate gene approach and an ortholog gene database to provide relevant gene ontologies and insights into the genetic basis of ALI. We employed a Medline search of selected basic and clinical studies in the English literature and studies sponsored by the HopGene National Institutes of Health sponsored Program in Genomic Applications. Extensive gene expression profiling studies in animal models of ALI (rat, murine, canine), as well as in humans, were performed to identify potential candidate genes . We identified a number of candidate genes for ALI, with blood coagulation and inflammation gene ontologies being the most highly represented. The candidate gene approach coupled with extensive gene profiling and novel bioinformatics approaches is a valuable way to identify genes that are involved in ALI. PMID:15566614

  3. Contrast-Induced Acute Kidney Injury: Definition, Epidemiology, and Outcome

    PubMed Central

    Meinel, Felix G.; De Cecco, Carlo N.; Schoepf, U. Joseph

    2014-01-01

    Contrast-induced acute kidney injury (CI-AKI) is commonly defined as a decline in kidney function occurring in a narrow time window after administration of iodinated contrast material. The incidence of AKI after contrast material administration greatly depends on the specific definition and cutoff values used. Although self-limiting in most cases, postcontrast AKI carries a risk of more permanent renal insufficiency, dialysis, and death. The risk of AKI from contrast material, in particular when administered intravenously for contrast-enhanced CT, has been exaggerated by older, noncontrolled studies due to background fluctuations in renal function. More recent evidence from controlled studies suggests that the risk is likely nonexistent in patients with normal renal function, but there may be a risk in patients with renal insufficiency. However, even in this patient population, the risk of CI-AKI is probably much smaller than traditionally assumed. Since volume expansion is the only preventive strategy with a convincing evidence base, liberal hydration should be encouraged to further minimize the risk. The benefits of the diagnostic information gained from contrast-enhanced examinations will still need to be balanced with the potential risk of CI-AKI for the individual patient and clinical scenario. PMID:24734250

  4. Functional Magnetic Resonance Imaging in Acute Kidney Injury: Present Status

    PubMed Central

    Zhou, Hai Ying; Chen, Tian Wu; Zhang, Xiao Ming

    2016-01-01

    Acute kidney injury (AKI) is a common complication of hospitalization that is characterized by a sudden loss of renal excretory function and associated with the subsequent development of chronic kidney disease, poor prognosis, and increased mortality. Although the pathophysiology of renal functional impairment in the setting of AKI remains poorly understood, previous studies have identified changes in renal hemodynamics, perfusion, and oxygenation as key factors in the development and progression of AKI. The early assessment of these changes remains a challenge. Many established approaches are not applicable to humans because of their invasiveness. Functional renal magnetic resonance (MR) imaging offers an alternative assessment tool that could be used to evaluate renal morphology and function noninvasively and simultaneously. Thus, the purpose of this review is to illustrate the principle, application, and role of the techniques of functional renal MR imaging, including blood oxygen level-dependent imaging, arterial spin labeling, and diffusion-weighted MR imaging, in the management of AKI. The use of gadolinium in MR imaging may exacerbate renal impairment and cause nephrogenic systemic fibrosis. Therefore, dynamic contrast-enhanced MR imaging will not be discussed in this paper. PMID:26925411

  5. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway. PMID:25008149

  6. Wogonoside ameliorates lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Zhang, Liang; Ren, Yi; Yang, Chengliang; Guo, Yue; Zhang, Xiaojing; Hou, Gang; Guo, Xinjin; Sun, Nan; Liu, Yongyu

    2014-12-01

    Wogonoside has been reported to have anti-inflammatory properties. In this study, we evaluated the effect of wogonoside on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Male BALB/c mice with ALI, induced by intranasal instillation of LPS, were treated with wogonoside 1 h prior to LPS exposure. Mice treated with LPS alone showed significantly increased TNF-α, IL-6, and IL-1β levels in the bronchoalveolar lavage fluid (BALF). When pretreated with wogonoside, the TNF-α, IL-6, and IL-1β levels were significantly decreased. Meanwhile, wogonoside significantly inhibited LPS-induced increases in the macrophage and neutrophil infiltration of lung tissues and markedly attenuated myeloperoxidase activity. Furthermore, wogonoside inhibited the TLR4 expression and the phosphorylation of NF-κB p65, and IκB induced by LPS. In conclusion, our results indicate that wogonoside exhibits a protective effect on LPS-induced ALI via suppression of TLR4-mediated NF-κB signaling pathways. PMID:24854163

  7. Clinical Predictors of Acute Kidney Injury Following Snake Bite Envenomation

    PubMed Central

    Dharod, Mrudul V; Patil, Tushar B; Deshpande, Archana S; Gulhane, Ragini V; Patil, Mangesh B; Bansod, Yogendra V

    2013-01-01

    Background: Snake bite envenomation is a major public health concern in developing countries. Acute kidney injury (AKI) is as important cause of mortality in patients with vasculotoxic snake bite. Aims: This study was to evaluate the clinical profile of snake bite patients and to determine the predictors of developing AKI following snake bite. Materials and Methods: Two hundred and eighty-one patients with snake envenomation were included. Eighty-seven patients developed AKI (Group A) and 194 (Group B) did not. History, examination findings and investigations results were recorded and compared between the two groups. Results: In group A, 61 (70.11%) patients were male and in group B, 117 (60.30%) patients were male. Out of 281 patients, 232 had cellulitis, 113 had bleeding tendencies, 87 had oliguria, 76 had neuroparalysis, and 23 had hypotension at presentation. After multivariate analysis, bite to hospital time (P = 0.016), hypotension (P = 0.000), albuminuria (P = 0.000), bleeding time (P = 0.000), prothrombin time (P = 0.000), hemoglobin (P = 0.000) and total bilirubin (P = 0.010) were significant independent predictors of AKI. Conclusions: AKI developed in 30.96% of patients with snake bite, leading to mortality in 39.08% patients. Factors associated with AKI are bite to hospital time, hypotension, albuminuria, prolonged bleeding time, prolonged prothrombin time, low hemoglobin and a high total bilirubin. PMID:24350071

  8. Methylprednisolone for acute spinal cord injury: an increasingly philosophical debate.

    PubMed

    Bowers, Christian A; Kundu, Bornali; Hawryluk, Gregory W J

    2016-06-01

    Following publication of NASCIS II, methylprednisolone sodium succinate (MPSS) was hailed as a breakthrough for patients with acute spinal cord injury (SCI). MPSS use for SCI has since become very controversial and it is our opinion that additional evidence is unlikely to break the stalemate amongst clinicians. Patient opinion has the potential to break this stalemate and we review our recent findings which reported that spinal cord injured patients informed of the risks and benefits of MPSS reported a preference for MPSS administration. We discuss the implications of the current MPSS debate on translational research and seek to address some misconceptions which have evolved. As science has failed to resolve the MPSS debate we argue that the debate is an increasingly philosophical one. We question whether SCI might be viewed as a serious condition like cancer where serious side effects of therapeutics are tolerated even when benefits may be small. We also draw attention to the similarity between the side effects of MPSS and isotretinoin which is prescribed for the cosmetic disorder acne vulgaris. Ultimately we question how patient autonomy should be weighed in the context of current SCI guidelines and MPSS's status as a historical standard of care. PMID:27482201

  9. Advances in the rehabilitation management of acute spinal cord injury.

    PubMed

    Ditunno, John F; Cardenas, Diana D; Formal, Christopher; Dalal, Kevin

    2012-01-01

    Aggressive assessment and management of the secondary complications in the hours and days following spinal cord injury (SCI) leads to restoration of function in patients through intervention by a team of rehabilitation professionals. The recent certification of SCI physicians, newly validated assessments of impairment and function measures, and international databases agreed upon by SCI experts should lead to documentation of improved rehabilitation care. This chapter highlights recent advances in assessment and treatment based on evidence-based classification of literature reviews and expert opinion in the acute phase of SCI. A number of these reviews are the product of the Consortium for Spinal Cord Medicine, which offers clinical practice guidelines for healthcare professionals. Recognition of and early intervention for problems such as bradycardia, orthostatic hypotension, deep vein thrombosis/pulmonary embolism, and early ventilatory failure will be addressed although other chapters may discuss some issues in greater detail. Early assessment and intervention for neurogenic bladder and bowel function has proven effective in the prevention of renal failure and uncontrolled incontinence. Attention to overuse and disuse with training and advanced technology such as functional electrical stimulation have reduced pain and disability associated with upper extremity deterioration and improved physical fitness. Topics such as chronic pain, spasticity, sexual dysfunction, and pressure sores will be covered in more detail in additional chapters. However, the comprehensive and integrated rehabilitation by specialized SCI teams of physicians, nurses, therapists, social workers, and psychologists immediately following SCI has become the standard of care throughout the world. PMID:23098713

  10. Inhibition of Neutrophil Exocytosis Ameliorates Acute Lung Injury in Rats

    PubMed Central

    Uriarte, Silvia M.; Rane, Madhavi J.; Merchant, Michael L.; Jin, Shunying; Lentsch, Alex B.; Ward, Richard A.; McLeish, Kenneth R.

    2013-01-01

    Exocytosis of neutrophil granules contributes to acute lung injury (ALI) induced by infection or inflammation, suggesting that inhibition of neutrophil exocytosis in vivo could be a viable therapeutic strategy. This study was conducted to determine the effect of a cell-permeable fusion protein that inhibits neutrophil exocytosis (TAT-SNAP-23) on ALI using an immune complex deposition model in rats. The effect of inhibition of neutrophil exocytosis by intravenous administration of TAT-SNAP-23 on ALI was assessed by albumin leakage, neutrophil infiltration, lung histology, and proteomic analysis of bronchoalveolar lavage fluid (BALf). Administration of TAT-SNAP-23, but not TAT-Control, significantly reduced albumin leakage, total protein levels in the BALf, and intra-alveolar edema and hemorrhage. Evidence that TAT-SNAP-23 inhibits neutrophil exocytosis included a reduction in plasma membrane CD18 expression by BALf neutrophils and a decrease in neutrophil granule proteins in BALf. Similar degree of neutrophil accumulation in the lungs and/or BALf suggests that TAT-SNAP-23 did not alter vascular endothelial cell function. Proteomic analysis of BALf revealed that components of the complement and coagulation pathways were significantly reduced in BALf from TAT-SNAP-23-treated animals. Our results indicate that administration of a TAT-fusion protein that inhibits neutrophil exocytosis reduces in vivo ALI. Targeting neutrophil exocytosis is a potential therapeutic strategy to ameliorate ALI. PMID:23364427

  11. Functional Magnetic Resonance Imaging in Acute Kidney Injury: Present Status.

    PubMed

    Zhou, Hai Ying; Chen, Tian Wu; Zhang, Xiao Ming

    2016-01-01

    Acute kidney injury (AKI) is a common complication of hospitalization that is characterized by a sudden loss of renal excretory function and associated with the subsequent development of chronic kidney disease, poor prognosis, and increased mortality. Although the pathophysiology of renal functional impairment in the setting of AKI remains poorly understood, previous studies have identified changes in renal hemodynamics, perfusion, and oxygenation as key factors in the development and progression of AKI. The early assessment of these changes remains a challenge. Many established approaches are not applicable to humans because of their invasiveness. Functional renal magnetic resonance (MR) imaging offers an alternative assessment tool that could be used to evaluate renal morphology and function noninvasively and simultaneously. Thus, the purpose of this review is to illustrate the principle, application, and role of the techniques of functional renal MR imaging, including blood oxygen level-dependent imaging, arterial spin labeling, and diffusion-weighted MR imaging, in the management of AKI. The use of gadolinium in MR imaging may exacerbate renal impairment and cause nephrogenic systemic fibrosis. Therefore, dynamic contrast-enhanced MR imaging will not be discussed in this paper. PMID:26925411

  12. Methylprednisolone for acute spinal cord injury: an increasingly philosophical debate

    PubMed Central

    Bowers, Christian A.; Kundu, Bornali; Hawryluk, Gregory W. J.

    2016-01-01

    Following publication of NASCIS II, methylprednisolone sodium succinate (MPSS) was hailed as a breakthrough for patients with acute spinal cord injury (SCI). MPSS use for SCI has since become very controversial and it is our opinion that additional evidence is unlikely to break the stalemate amongst clinicians. Patient opinion has the potential to break this stalemate and we review our recent findings which reported that spinal cord injured patients informed of the risks and benefits of MPSS reported a preference for MPSS administration. We discuss the implications of the current MPSS debate on translational research and seek to address some misconceptions which have evolved. As science has failed to resolve the MPSS debate we argue that the debate is an increasingly philosophical one. We question whether SCI might be viewed as a serious condition like cancer where serious side effects of therapeutics are tolerated even when benefits may be small. We also draw attention to the similarity between the side effects of MPSS and isotretinoin which is prescribed for the cosmetic disorder acne vulgaris. Ultimately we question how patient autonomy should be weighed in the context of current SCI guidelines and MPSS's status as a historical standard of care. PMID:27482201

  13. Hospital Mortality in the United States following Acute Kidney Injury

    PubMed Central

    Rezaee, Michael E.; Marshall, Emily J.; Matheny, Michael E.

    2016-01-01

    Acute kidney injury (AKI) is a common reason for hospital admission and complication of many inpatient procedures. The temporal incidence of AKI and the association of AKI admissions with in-hospital mortality are a growing problem in the world today. In this review, we discuss the epidemiology of AKI and its association with in-hospital mortality in the United States. AKI has been growing at a rate of 14% per year since 2001. However, the in-hospital mortality associated with AKI has been on the decline starting with 21.9% in 2001 to 9.1 in 2011, even though the number of AKI-related in-hospital deaths increased almost twofold from 147,943 to 285,768 deaths. We discuss the importance of the 71% reduction in AKI-related mortality among hospitalized patients in the United States and draw on the discussion of whether or not this is a phenomenon of hospital billing (coding) or improvements to the management of AKI. PMID:27376083

  14. Urinary Biomarkers TIMP-2 and IGFBP7 Early Predict Acute Kidney Injury after Major Surgery

    PubMed Central

    Gocze, Ivan; Koch, Matthias; Renner, Philipp; Zeman, Florian; Graf, Bernhard M.; Dahlke, Marc H.; Nerlich, Michael; Schlitt, Hans J.; Kellum, John A.; Bein, Thomas

    2015-01-01

    Objective To assess the ability of the urinary biomarkers IGFBP7 (insulin-like growth factor-binding protein 7) and TIMP-2 (tissue inhibitor of metalloproteinase 2) to early predict acute kidney injury (AKI) in high-risk surgical patients. Introduction Postoperative AKI is associated with an increase in short and long-term mortality. Using IGFBP7 and TIMP-2 for early detection of cellular kidney injury, thus allowing the early initiation of renal protection measures, may represent a new concept of evaluating renal function. Methods In this prospective study, urinary [TIMP-2]×[IGFBP7] was measured in surgical patients at high risk for AKI. A predefined cut-off value of [TIMP-2]×[IGFBP7] >0.3 was used for assessing diagnostic accuracy. Perioperative characteristics were evaluated, and ROC analyses as well as logistic regression models of risk assessment were calculated with and without a [TIMP-2]×[IGFBP7] test. Results 107 patients were included in the study, of whom 45 (42%) developed AKI. The highest median values of biomarker were detected in septic, transplant and patients after hepatic surgery (1.24 vs 0.45 vs 0.47 ng/l2/1000). The area under receiving operating characteristic curve (AUC) for the risk of any AKI was 0.85, for early use of RRT 0.83 and for 28-day mortality 0.77. In a multivariable model with established perioperative risk factors, the [TIMP-2]×[IGFBP7] test was the strongest predictor of AKI and significantly improved the risk assessment (p<0.001). Conclusions Urinary [TIMP-2]×[IGFBP7] test sufficiently detect patients with risk of AKI after major non-cardiac surgery. Due to its rapid responsiveness it extends the time frame for intervention to prevent development of AKI. PMID:25798585

  15. Comparison of Plasma and Urine Biomarker Performance in Acute Kidney Injury

    PubMed Central

    Schley, Gunnar; Köberle, Carmen; Manuilova, Ekaterina; Rutz, Sandra; Forster, Christian; Weyand, Michael; Formentini, Ivan; Kientsch-Engel, Rosemarie; Eckardt, Kai-Uwe; Willam, Carsten

    2015-01-01

    Background New renal biomarkers measured in urine promise to increase specificity for risk stratification and early diagnosis of acute kidney injury (AKI) but concomitantly may be altered by urine concentration effects and chronic renal insufficiency. This study therefore directly compared the performance of AKI biomarkers in urine and plasma. Methods This single-center, prospective cohort study included 110 unselected adults undergoing cardiac surgery with cardiopulmonary bypass between 2009 and 2010. Plasma and/or urine concentrations of creatinine, cystatin C, neutrophil gelatinase-associated lipocalin (NGAL), liver fatty acid-binding protein (L-FABP), kidney injury molecule 1 (KIM1), and albumin as well as 15 additional biomarkers in plasma and urine were measured during the perioperative period. The primary outcome was AKI defined by AKIN serum creatinine criteria within 72 hours after surgery. Results Biomarkers in plasma showed markedly better discriminative performance for preoperative risk stratification and early postoperative (within 24h after surgery) detection of AKI than urine biomarkers. Discriminative power of urine biomarkers improved when concentrations were normalized to urinary creatinine, but urine biomarkers had still lower AUC values than plasma biomarkers. Best diagnostic performance 4h after surgery had plasma NGAL (AUC 0.83), cystatin C (0.76), MIG (0.74), and L-FAPB (0.73). Combinations of multiple biomarkers did not improve their diagnostic power. Preoperative clinical scoring systems (EuroSCORE and Cleveland Clinic Foundation Score) predicted the risk for AKI (AUC 0.76 and 0.71) and were not inferior to biomarkers. Preexisting chronic kidney disease limited the diagnostic performance of both plasma and urine biomarkers. Conclusions In our cohort plasma biomarkers had higher discriminative power for risk stratification and early diagnosis of AKI than urine biomarkers. For preoperative risk stratification of AKI clinical models showed

  16. Inhaled nitric oxide exacerbated phorbol-induced acute lung injury in rats.

    PubMed

    Lin, Hen I; Chu, Shi Jye; Hsu, Kang; Wang, David

    2004-01-01

    In this study, we determined the effect of inhaled nitric oxide (NO) on the acute lung injury induced by phorbol myristate acetate (PMA) in isolated rat lung. Typical acute lung injury was induced successfully by PMA during 60 min of observation. PMA (2 microg/kg) elicited a significant increase in microvascular permeability, (measured using the capillary filtration coefficient Kfc), lung weight gain, lung weight/body weight ratio, pulmonary arterial pressure (PAP) and protein concentration of the bronchoalveolar lavage fluid. Pretreatment with inhaled NO (30 ppm) significantly exacerbated acute lung injury. All of the parameters reflective of lung injury increased significantly except PAP (P<0.05). Coadministration of Nomega-nitro-L-arginine methyl ester (L-NAME) (5 mM) attenuated the detrimental effect of inhaled NO in PMA-induced lung injury, except for PAP. In addition, L-NAME (5 mM) significantly attenuated PMA-induced acute lung injury except for PAP. These experimental data suggest that inhaled NO significantly exacerbated acute lung injury induced by PMA in rats. L-NAME attenuated the detrimental effect of inhaled NO. PMID:14643171

  17. Upper gastrointestinal haemorrhage in the acute cardiac care setting: antiplatelets and endoscopy.

    PubMed

    Musa, S A; Brecker, S J; Rahman, T M; Kang, J Y

    2012-05-01

    Upper gastrointestinal haemorrhage (UGIH) in cardiac patients receiving antiplatelets presents a difficult management problem. The aim of this study was to describe a series of cardiac inpatients receiving antiplatelets who underwent endoscopy for an acute UGIH. Cardiac inpatients receiving antiplatelets and requiring endoscopy for UGIH over an 18-month period were followed up. Forty-one patients were studied. Most patients (25 [61%]) presented with melaena. Antiplatelets were withheld in 34 (83%) patients; predominantly in those with higher pre-endoscopy Rockall scores (median, 4; interquartile range [IQR], 3-5 versus median, 3; IQR, 2-4; P < 0.05). Positive findings were identified at endoscopy in 80%. Duodenal ulcers were the most common lesion and adrenaline the most common method of haemostasis. Median time to first endoscopy was 0 (IQR, 0-1) days. Seven (17%) patients re-bled, median Rockall score was six (IQR, 4-8). Three (7%) patients experienced procedural complications, two patients became hypoxic and one patient died. Following endoscopy, antiplatelets were restarted after a median of three (IQR, 3-5) days. On discharge, 27/28 (96%) patients continued with antiplatelet and proton-pump inhibitor therapy. Thirty-day inpatient mortality was 7% (3 patients). One patient re-bled within six months of discharge. Endoscopy helped assess the risk of re-bleeding and timing of antiplatelet re-introduction in cardiac inpatients experiencing UGIH. PMID:22555229

  18. Combined analyses of creatine kinase MB, cardiac troponin I and myoglobin in pericardial and cerebrospinal fluids to investigate myocardial and skeletal muscle injury in medicolegal autopsy cases.

    PubMed

    Wang, Qi; Michiue, Tomomi; Ishikawa, Takaki; Zhu, Bao-Li; Maeda, Hitoshi

    2011-09-01

    Creatine kinase-MB (CK-MB), cardiac troponin I (cTnI) and myoglobin (Mb) are biochemical markers of myocardial injury; however, Mb is more abundant in skeletal muscles. The present study involved analysis of these markers in pericardial and cerebrospinal fluids (PCF and CSF) from serial medicolegal autopsy cases (n=295, within 48h) to examine their efficacy in determining the cause of death. Although these markers showed a slight postmortem time-dependent elevation, except for CK-MB in CSF, the distribution depended on the cause of death. Mb levels in PCF and CSF were higher in fatal hyperthermia (heat stroke) and methamphetamine abuse, and CK-MB in both fluids was also higher in the latter. In psychotropic drug intoxication, CK-MB, cTnI and Mb were higher in PCF, but only cTnI was elevated in CSF. In electrocution and cerebrovascular disease, each marker was higher in PCF and also relatively high in CSF. PCF cTnI level was higher in acute pulmonary embolism without significant elevation of any other markers, whereas CSF CK-MB was higher in acute blunt brain injury death and methamphetamine abuse. In most cases of delayed brain injury death, hypothermia (cold exposure) and pneumonia, these markers were low or intermediate in both PCF and CSF; however, sudden cardiac death, asphyxiation and fire fatality cases showed few characteristic findings. These observations suggest that combined analyses of these markers in postmortem PCF and CSF, in addition to blood samples, are helpful for evaluating the severity of myocardial and/or skeletal muscle damage in death processes, in particular for investigating deaths due to hyperthermia, hypothermia, electrocution and intoxication. PMID:21683643

  19. Risk scoring for prediction of acute cardiac complications from imbalanced clinical data.

    PubMed

    Liu, Nan; Koh, Zhi Xiong; Chua, Eric Chern-Pin; Tan, Licia Mei-Ling; Lin, Zhiping; Mirza, Bilal; Ong, Marcus Eng Hock

    2014-11-01

    Fast and accurate risk stratification is essential in the emergency department (ED) as it allows clinicians to identify chest pain patients who are at high risk of cardiac complications and require intensive monitoring and early intervention. In this paper, we present a novel intelligent scoring system using heart rate variability, 12-lead electrocardiogram (ECG), and vital signs where a hybrid sampling-based ensemble learning strategy is proposed to handle data imbalance. The experiments were conducted on a dataset consisting of 564 chest pain patients recruited at the ED of a tertiary hospital. The proposed ensemble-based scoring system was compared with established scoring methods such as the modified early warning score and the thrombolysis in myocardial infarction score, and showed its effectiveness in predicting acute cardiac complications within 72 h in terms of the receiver operation characteristic analysis. PMID:25375686

  20. Neuroinflammation and Neuroimmune Dysregulation after Acute Hypoxic-Ischemic Injury of Developing Brain

    PubMed Central

    Bhalala, Utpal S.; Koehler, Raymond C.; Kannan, Sujatha

    2015-01-01

    Hypoxic-ischemic (HI) injury to developing brain results from birth asphyxia in neonates and from cardiac arrest in infants and children. It is associated with varying degrees of neurologic sequelae, depending upon the severity and length of HI. Global HI triggers a series of cellular and biochemical pathways that lead to neuronal injury. One of the key cellular pathways of neuronal injury is inflammation. The inflammatory cascade comprises activation and migration of microglia – the so-called “brain macrophages,” infiltration of peripheral macrophages into the brain, and release of cytotoxic and proinflammatory cytokines. In this article, we review the inflammatory and immune mechanisms of secondary neuronal injury after global HI injury to developing brain. Specifically, we highlight the current literature on microglial activation in relation to neuronal injury, proinflammatory and anti-inflammatory/restorative pathways, the role of peripheral immune cells, and the potential use of immunomodulators as neuroprotective compounds. PMID:25642419

  1. Incidence and severity of reported acute sports injuries in 35 sports using insurance registry data.

    PubMed

    Åman, M; Forssblad, M; Henriksson-Larsén, K

    2016-04-01

    Acute injuries in sport are still a problem where limited knowledge of incidence and severity in different sports at national level exists. In Sweden, 80% of the sports federations have their mandatory injury insurance for all athletes in the same insurance company and injury data are systematically kept in a national database. The aim of the study was to identify high-risk sports with respect to incidence of acute and severe injuries in 35 sports reported to the database. The number and incidences of injuries as well as injuries leading to permanent medical impairment (PMI) were calculated during 2008-2011. Each year approximately 12,000 injuries and 1,162,660 licensed athletes were eligible for analysis. Eighty-five percent of the injuries were reported in football, ice hockey, floorball, and handball. The highest injury incidence as well as PMI was in motorcycle, handball, skating, and ice hockey. Females had higher risk of a PMI compared with males in automobile sport, handball, floorball, and football. High-risk sports with numerous injuries and high incidence of PMI injuries were motorcycle, handball, ice hockey, football, floorball, and automobile sports. Thus, these sports ought to be the target of preventive actions at national level. PMID:25850826

  2. Intravenous Immunoglobulin Prevents Murine Antibody-Mediated Acute Lung Injury at the Level of Neutrophil Reactive Oxygen Species (ROS) Production

    PubMed Central

    Semple, John W.; Kim, Michael; Hou, Jing; McVey, Mark; Lee, Young Jin; Tabuchi, Arata; Kuebler, Wolfgang M.; Chai, Zhong-Wei; Lazarus, Alan H.

    2012-01-01

    Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-associated mortality that can occur with any type of transfusion and is thought to be primarily due to donor antibodies activating pulmonary neutrophils in recipients. Recently, a large prospective case controlled clinical study of cardiac surgery patients demonstrated that despite implementation of male donors, a high incidence of TRALI still occurred and suggested a need for additional interventions in susceptible patient populations. To examine if intravenous immunoglobulin (IVIg) may be effective, a murine model of antibody-mediated acute lung injury that approximates human TRALI was examined. When BALB/c mice were injected with the anti-major histocompatibility complex class I antibody 34-1-2s, mild shock (reduced rectal temperature) and respiratory distress (dyspnea) were observed and pre-treatment of the mice with 2 g/kg IVIg completely prevented these symptoms. To determine IVIg's usefulness to affect severe lung damage, SCID mice, previously shown to be hypersensitive to 34-1-2s were used. SCID mice treated with 34-1-2s underwent severe shock, lung damage (increased wet/dry ratios) and 40% mortality within 2 hours. Treatment with 2 g/kg IVIg 18 hours before 34-1-2s administration completely protected the mice from all adverse events. Treatment with IVIg after symptoms began also reduced lung damage and mortality. While the prophylactic IVIg administration did not affect 34-1-2s-induced pulmonary neutrophil accumulation, bone marrow-derived neutrophils from the IVIg-treated mice displayed no spontaneous ROS production nor could they be stimulated in vitro with fMLP or 34-1-2s. These results suggest that IVIg prevents murine antibody-mediated acute lung injury at the level of neutrophil ROS production and thus, alleviating tissue damage. PMID:22363629

  3. Increased myocardial ischemia-reperfusion injury in renal failure involves cardiac adiponectin signal deficiency.

    PubMed

    Song, Yanbin; Yu, Qiujun; Zhang, Junyi; Huang, Weidong; Liu, Yi; Pei, Haifeng; Liu, Jingyi; Sun, Lu; Yang, Lu; Li, Congye; Li, Yan; Zhang, Fuyang; Qu, Yan; Tao, Ling

    2014-05-01

    Plasma levels of adiponectin (APN) are significantly increased in patients with renal dysfunction and are inversely related to the risk of cardiovascular mortality. The present study was designed to determine the role of APN in myocardial ischemia-reperfusion (MI/R) injury in mice with renal failure and delineate the underlying mechanisms. Renal failure was induced by subtotal nephrectomy (SN). Human recombinant globular domain of adiponectin (gAd) or full-length adiponectin (fAd) was administered via intraperitoneal injection once daily for 7 consecutive days after SN, and in vivo MI/R was introduced 3 wk later. Both plasma and urinary levels of APN increased significantly in SN mice. Compared with sham-operated mice, cardiac function was significantly depressed, and myocardial infarct size and apoptosis increased in SN mice following MI/R. The aggravated MI/R injury was further intensified in APN-knockout mice and markedly ameliorated by treatment with gAd but not fAd. Moreover, SN increased myocardial NO metabolites, superoxide, and their cytotoxic reaction product peroxynitrite, upregulated inducible NO synthase expression, and decreased endothelial NOS phosphorylation. In addition, SN mice also exhibited reduced APN receptor-1 (AdipoR1) expression and AMPK activation. All these changes were further amplified in the absence of APN but reversed by gAd treatment. The present study demonstrates that renal dysfunction increases cardiac susceptibility to ischemic-reperfusion injury, which is associated with downregulated APN/AdipoR1/AMPK signaling and increased oxidative/nitrative stress in local myocardium, and provides the first evidence for the protective role of exogenous supplement of gAd on MI/R outcomes in renal failure. PMID:24595307

  4. Estrogen receptor agonists alleviate cardiac and renal oxidative injury in rats with renovascular hypertension.

    PubMed

    Özdemir Kumral, Zarife Nigâr; Kolgazi, Meltem; Üstünova, Savaş; Kasımay Çakır, Özgür; Çevik, Özge Dağdeviren; Şener, Göksel; Yeğen, Berrak Ç

    2016-01-01

    Although endogenous estrogen is known to offer cardiac and vascular protection, the involvement of estrogen receptors in mediating the protective effect of estrogen on hypertension-induced cardiovascular and renal injury is not fully explained. We aimed to investigate the effects of estrogen receptor (ER) agonists on oxidative injury, cardiovascular and renal functions of rats with renovascular hypertension (RVH). Female Sprague-Dawley rats were randomly divided as control and RVH groups, and RVH groups had either ovariectomy (OVX) or sham-OVX. Sham-OVX-RVH and OVX-RVH groups received either ERβ agonist diarylpropiolnitrile (1 mg/kg/day) or ERα agonist propyl pyrazole triol (1 mg/kg/day) for 6 weeks starting at the third week following the surgery. At the end of the 9(th) week, systolic blood pressures were recorded, cardiac functions were determined, and the contraction/relaxation responses of aortic rings were obtained. Serum creatinine levels, tissue malondialdehyde, glutathione, superoxide dismutase, catalase levels, and myeloperoxidase activity in heart and kidney samples were analyzed, and Na(+), K(+)-ATPase activity was measured in kidney samples. In both sham-OVX and OVX rats, both agonists reduced blood pressure and reversed the impaired contractile performance of the heart, while ERβ agonist improved renal functions in both the OVX and non-OVX rats. Both agonists reduced neutrophil infiltration, lipid peroxidation, and elevated antioxidant levels in the heart, but a more ERβ-mediated protective effect was observed in the kidney. Our data suggest that activation of ERβ might play a role in preserving the function of the stenotic kidney and delaying the progression of renal injury, while both receptors mediate similar cardioprotective effects. PMID:27399230

  5. Critical care in the ED: potentially fatal asthma and acute lung injury syndrome

    PubMed Central

    Hodder, Rick

    2012-01-01

    Emergency department clinicians are frequently called upon to assess, diagnose, and stabilize patients who present with acute respiratory failure. This review describes a rapid initial approach to acute respiratory failure in adults, illustrated by two common examples: (1) an airway disease – acute potentially fatal asthma, and (2) a pulmonary parenchymal disease – acute lung injury/acute respiratory distress syndrome. As such patients are usually admitted to hospital, discussion will be focused on those initial management aspects most relevant to the emergency department clinician. PMID:27147862

  6. Platelet-rich plasma (PRP) treatment of sports-related severe acute hamstring injuries

    PubMed Central

    Guillodo, Yannick; Madouas, Gwénaelle; Simon, Thomas; Le Dauphin, Hermine; Saraux, Alain

    2015-01-01

    Summary Purpose hamstring injury is the most common musculoskeletal disorder and one of the main causes of missed sporting events. Shortening the time to return to play (TTRTP) is a priority for athletes and sports medicine practitioners. Hypothesis platelet-rich plasma (PRP) injection at the site of severe acute hamstring injury increases the healing rate and shortens the TTRTP. Study design Cohort study. Methods all patients with ultrasonography and MRI evidence of severe acute hamstring injury between January 2012 and March 2014 were offered PRP treatment. Those who accepted received a single intramuscular PRP injection within 8 days post-injury; the other patients served as controls. The same standardized rehabilitation program was used in both groups. A physical examination and ultrasonography were performed 10 and 30 days post-injury, then a phone interview 120 days post-injury, to determine the TTRTP at the pre-injury level. Results of 34 patients, 15 received PRP and 19 did not. Mean TTRTP at the pre-injury level was 50.9±10.7 days in the PRP group and 52.8±15.7 days in the control group. The difference was not statistically significant. Conclusion a single intramuscular PRP injection did not shorten the TTRTP in sports people with severe acute hamstring injuries. PMID:26958537

  7. Minimal Effects of Acute Liver Injury/Acute Liver Failure on Hemostasis as Assessed by Thromboelastography

    PubMed Central

    Stravitz, R. Todd; Lisman, Ton; Luketic, Velimir A.; Sterling, Richard K.; Puri, Puneet; Fuchs, Michael; Ibrahim, Ashraf; Lee, William M.; Sanyal, Arun J.

    2016-01-01

    Background & Aims Patients with acute liver injury/failure (ALI/ALF) are assumed to have a bleeding diathesis on the basis of elevated INR; however, clinically significant bleeding is rare. We hypothesized that patients with ALI/ALF have normal hemostasis despite elevated INR Methods Fifty-one patients with ALI/ALF were studied prospectively using thromboelastography (TEG), which measures the dynamics and physical properties of clot formation in whole blood. ALI was defined as an INR ≥1.5 in a patient with no previous liver disease, and ALF as ALI with hepatic encephalopathy. Results Thirty-seven of 51 patients (73%) had ALF and 22 patients (43%) underwent liver transplantation or died. Despite a mean INR of 3.4±1.7 (range 1.5–9.6), mean TEG parameters were normal, and 5 individual TEG parameters were normal in 32 (63%). Low maximum amplitude, the measure of ultimate clot strength, was confined to patients with platelet counts <126 × 109/L. Maximum amplitude was higher in patients with ALF than ALI and correlated directly with venous ammonia concentrations and with increasing severity of liver injury assessed by elements of the systemic inflammatory response syndrome. All patients had markedly decreased procoagulant factor V and VII levels, which were proportional to decreases in anticoagulant proteins and inversely proportional to elevated factor VIII levels. Conclusions Despite elevated INR, most patients with ALI/ALF maintain normal hemostasis by TEG, the mechanisms of which include an increase in clot strength with increasing severity of liver injury, increased factor VIII levels, and a commensurate decline in pro- and anticoagulant proteins. PMID:21703173

  8. MicroRNA Regulation of Acute Lung Injury and Acute Respiratory Distress Syndrome.

    PubMed

    Rajasekaran, Subbiah; Pattarayan, Dhamotharan; Rajaguru, P; Sudhakar Gandhi, P S; Thimmulappa, Rajesh K

    2016-10-01

    The acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI), is a very common condition associated with critically ill patients, which causes substantial morbidity and mortality worldwide. Despite decades of research, effective therapeutic strategies for clinical ALI/ARDS are not available. In recent years, microRNAs (miRNAs), small non-coding molecules have emerged as a major area of biomedical research as they post-transcriptionally regulate gene expression in diverse biological and pathological processes, including ALI/ARDS. In this context, this present review summarizes a large body of evidence implicating miRNAs and their target molecules in ALI/ARDS originating largely from studies using animal and cell culture model systems of ALI/ARDS. We have also focused on the involvement of miRNAs in macrophage polarization, which play a critical role in regulating the pathogenesis of ALI/ARDS. Finally, the possible future directions that might lead to novel therapeutic strategies for the treatment of ALI/ARDS are also reviewed. J. Cell. Physiol. 231: 2097-2106, 2016. © 2016 Wiley Periodicals, Inc. PMID:26790856

  9. Selective Blockade of Periostin Exon 17 Preserves Cardiac Performance in Acute Myocardial Infarction.

    PubMed

    Taniyama, Yoshiaki; Katsuragi, Naruto; Sanada, Fumihiro; Azuma, Junya; Iekushi, Kazuma; Koibuchi, Nobutaka; Okayama, Keita; Ikeda-Iwabu, Yuka; Muratsu, Jun; Otsu, Rei; Rakugi, Hiromi; Morishita, Ryuichi

    2016-02-01

    We previously reported that overexpression of full-length periostin, Pn-1, resulted in ventricular dilation with enhanced interstitial collagen deposition in a rat model. However, other reports have documented that the short-form splice variants Pn-2 (lacking exon 17) and Pn-4 (lacking exons 17 and 21) promoted cardiac repair by angiogenesis and prevented cardiac rupture after acute myocardial infarction. The apparently differing findings from those reports prompted us to use a neutralizing antibody to selectively inhibit Pn-1 by blockade of exon 17 in a rat acute myocardial infarction model. Administration of Pn neutralizing antibody resulted in a significant decrease in the infarcted and fibrotic areas of the m